第2章 8086微处理器结构

合集下载

第2章-8086微处理器part2

第2章-8086微处理器part2

8086 CPU在最小模式中引脚定义
M/#IO:Memory/Input & Output,三态输出
存储器或I/O端口访问信号 。指示8086的访问对象,发 给MEM或I/O接口。 M/# IO为高电平时,表示 当前CPU正在访问存储器;
M/# IO 为低电平时,表 示当前CPU正在访问I/O端 口
数据驱动器数据流向控制信 号,输出,三态。
在8086系统中,通常采用 74LS245、8286或8287作 为数据总线的驱动器,用 DT/#R信号来控制数据驱动 器的数据传送方向。 当DT/#R=1时,进行数据 发送; 当DT/#R=0时,进行数据 接收。
8086 CPU在最小模式中引脚定义
READY:准备就绪信号 由外部输入,高电平有效 ,表示CPU访问的存储器 或I/O端口己准备好传送 数据。 当READY无效时,要求 CPU插入一个或多个等待 周期Tw,直到READY信 号有效为止。
S3 0 1 0 1
当前正在使用的段寄存器 ES SS CS或未使用任何段寄存器 DS
8086 CPU在最小模式中引脚定义
#BHE/S7:高8位总线允许(Bus High Enable)
T1:指示高8位数据总线上的数据 是否有效 (#BHE:AD0)配合:00时读写字 ,01时读写奇地址字节,10时读写 偶地址字节 其他T周期:输出状态信号S7(S7 始终为逻辑1,未定义) DMA方式下,该引脚为高阻态。
最大模式引脚信号(续)
LOCK# :总线封锁(优先权锁定) 三态输出,低电平有效。 LOCK有效时表示CPU不允许其它总线主控者占用 总线。 ห้องสมุดไป่ตู้ 这个信号由软件设置。 • 当在指令前加上LOCK前缀时,则在执行这条 指令期间LOCK保持有效,即在此指令执行期 间,CPU封锁其它主控者使用总线。 在保持响应期间,LOCK#为高阻态。

【教学课件】第2章 8086微处理器

【教学课件】第2章  8086微处理器

控制 电路
局部总线 接口
SYSB/RESB
1
20
2
19
3
18
4
17
5
8289 16
6
15
7
14
8
13
9
12
10
11
INIT
BCLK BREQ BPRN BPRO BUSY CBRQ
总线仲裁 信号
AEN
V CC S1 S0 CLK
LOCK
CRQLCK ANYRQST
AEN CBRQ BUSY
2021/8/17
DEN CEN
INTA IORC AIOWC IOWC
2021/8/17
23
2.总线仲裁控制器8289
仲裁电路
状态
S2
信号
S1
S0
状态 译码器
多路总线 接口
控制 输入
LOCK CLK
CRQLCK
RESB ANYRQST
IOB
S2 IOB
RESB BCLK INIT BREQ BPRO BPRN
GND
数据总线
2021/8/17
S0
S1
S2
INTR R Q / G T0
R Q / G T1
8288 总线控制器
IN T A
8259A 及有关电路
控制总线 中 断 请 求
22
1.总线控制器8288
状态
S2
信号
S1
S0
状态 译码器
控制 输入
CLK
AEN CEN IOB
控制 电路
命令 信号 发生器
控制信号 发生器
2.3.1 最小模式和最大模式的概念

微机原理课件第二章 8086系统结构

微机原理课件第二章 8086系统结构

但指令周期不一定都大于总线周期,如MOV AX,BX
操作都在CPU内部的寄存器,只要内部总线即可完成,不 需要通过系统总线访问存储器和I/O接口。
2021/8/17
17
• 8086CPU的典型总线时序,充分体现了总 线是严格地按分时复用的原则进行工作的。 即:在一个总线周期内,首先利用总线传 送地址信息,然后再利用同一总线传送数 据信息。这样减少了CPU芯片的引脚和外 部总线的数目。
• 执行部件(EU)
• 功能:负责译码和执行指令。
2021/8/17
5
• 联系BIU和EU的纽带为流水指令队列
• 队列是一种数据结构,工作方式为先进先出。写入的指令 只能存放在队列尾,读出的指令是队列头存放的指令。
2021/8/17
6
•BIU和EU的动作协调原则 BIU和EU按以下流水线技术原则协调工作,共同完成所 要求的任务: ①每当8086的指令队列中有空字节,BIU就会自动把下 一条指令取到指令队列中。 ②每当EU准备执行一条指令时,它会从BIU部件的指令 队列前部取出指令的代码,然后译码、执行指令。在执 行指令的过程中,如果必须访问存储器或者I/O端口, 那么EU就会请求BIU,完成访问内存或者I/O端口的操 作; ③当指令队列已满,且EU又没有总线访问请求时,BIU 便进入空闲状态。(BIU等待,总线空操作) ④开机或重启时,指令队列被清空;或在执行转移指令、 调用指令和返回指令时,由于待执行指令的顺序发生了 变化,则指令队列中已经装入的字节被自动消除,BIU会 接着往指令队列装入转向的另一程序段中的指令代码。 (EU等待)
•CF(Carry Flag)—进位标志位,做加法时最高位出现进位或 做减法时最高位出现借位,该位置1,反之为0。

第二章 8086微处理器

第二章 8086微处理器

第二章8086/8088微处理器及其系统结构内容提要:1.8086微处理器结构:CPU内部结构:总线接口部件BIU,执行部件EU;CPU寄存器结构:通用寄存器,段寄存器,标志寄存器,指令指针寄存器;CPU引脚及其功能:公用引脚,最小模式控制信号引脚,最大模式控制信号引脚。

2.8086微机系统存储器结构:存储器地址空间与数据存储格式;存储器组成;存储器分段。

3.8086微机系统I/O结构4.8086最小/最大模式系统总线的形成5.8086CPU时序6.最小模式系统中8086CPU的读/写总线周期7.微处理器的发展学习目标1.掌握CPU寄存器结构、作用、CPU引脚功能、存储器分段与物理地址形成、最小/最大模式的概念和系统组建、系统总线形成;2.理解存储器读/写时序;3.了解微处理器的发展。

难点:1.引脚功能,最小/最大模式系统形成;2.存储器读/写时序。

学时:8问题:为什么选择8088/8086?•简单、容易理解掌握•与目前流行的P3、P4向下兼容,形成x86体系•16位CPU目前仍在大量应用思考题1、比较8086CPU与8086CPU的异同之处。

2、8086CPU从功能上分为几部分?各部分由什么组成?各部分的功能是什么?3、CPU的运算功能是由ALU实现的,8086CPU中有几个ALU?是多少位的ALU?起什么作用?4、8086CPU有哪些寄存器?各有什么用途?标志寄存器的各标志位在什么情况下置位?5、8086CPU内哪些寄存器可以和I/O端口打交道,它们各有什么作用?6、8086系统中的物理地址是如何得到的?假如CS=2400H,IP=2l00H,其物理地址是多少?思考题1.从时序的观点分析8088完成一次存储器读操作的过程?2.什么是8088的最大、最小模式?3.在最小模式中,8088如何产生其三总线?4.在最大模式中,为什么要使用总线控制器?思考题1.试述最小模式下读/写总线周期的主要区别。

第二章-8086微处理器

第二章-8086微处理器

答案:A
思考题
8086/8088的状态标志有 A)3 B)4 C)5 答案:D 个。 D)6
思考题
8086/8088的控制标志有 A)3 B)4 C)5 答案:A 个。 D)6
三、引脚信号和功能(图2-5 )
8086总线周期的概念: 为了取得指令或传送数据,就需要CPU的总线接 口单元(BIU)执行一个总线周期。 一个最基本的总线周期由4个时钟周期组成。 习惯上将4个时钟周期分别称为4个状态,即T1状 态、T2状态、T3状态和T4状态。 图2-17
2.方向标志DF(Direction Flag) 用于串操作指令中的地址增量修改(DF =0)还是减量修改(DF=1)。 STD使DF=1 CLD使DF=0
(三)标志寄存器-控制标志(续)
3.跟踪标志TF(Trap Flag) 若TF=1,则CPU按跟踪方式(单步方式) 执行程序,否则将正常执行程序。
思考题
指令队列的作用是 A)暂存操作数地址 。 B)暂存操作数
C)暂存指令地址
D)暂存预取指令 答案:D
思考题
8086的指令队列的长度是 A)4个 B)5个 C)6个 D)8个 字节。
答案: C
思考题
8088的指令队列的长度是 A)4个 B)5个 C)6个 D)8个 字节。
答案:A
思考题
第二章 8086/8088微处理器
8086/8088微处理器的结构 8086/8088典型时序分析

简 介
8086:16位微处理器 数据总线宽度16位:可以处理8位或16位数据 地址总线宽度20位:可直接寻址1MB存储单元和 64KB的I/O端口 8088:准16位处理器 内部寄存器及内部操作均为16位,外部数据总线8位 8088与8086指令系统完全相同,芯片内部逻辑结构、芯片引 脚有个别差异。 设计8088的目的主要是为了与Intel原有的8位外围接口芯片 直接兼容

第2章 16位微处理器

第2章 16位微处理器

表2.2 段寄存器使用时的一些基本约定
思考题
下列CPU中属于准16位的是 A.8080 B.8086 C.8088 。 D.80386SX A.ALU,EU,BIU C.寄存器组,ALU 答案: C
思考题
8086CPU的内部结构由 组成。 B.ALU,BIU,地址加法器 D.EU,BIU
答案:D
思考题

例题
设(CS)=4232H ,(IP)=0066H,试计算物理地址。
思考题
已知物理地址为FFFF0H,且段内偏移量为 A000H,若对应的段基址放在DS中,则DS 应为 。 A.5FFFH B.F5FFH C.5FFF0H D.F5FF0H 答案:B
注意
一个存储单元的物理地址是唯一的,而逻辑 地址是可以不唯一的。 例如: 1200H:0345H12345H 1100H:1345H12345H
第2章 16位微处理器8086/8088
2.1.0 简介 2.1.1 8086/8088CPU的内部结构 2.1.2 8086/8088CPU的总线周期 2.1.3 8086/8088系统的工作模式 2.1.4 8086/8088的操作和时序 作业

2.1.0 简介
1978年,Intel推出了8086微处理器,一年多以后推出了 8088,这两种都是16位微处理器。 时钟频率为5MHz~10MHz,最快的指令执行时间为400ns。 8086有16根数据线:可以处理8位或16位数据。 有20根地址线:可寻址即1MB(220)的存储单元和 64KB(216)的I/O端口。 8088:准16位微处理器 8088的内部寄存器、运算器以及内部数据总线都是按16位设 计的,但外部数据总线只有8条,因此执行相同的程序, 8088要比8086有较多的外部存取操作而执行得较慢。 设计的主要目的:为了与Intel原有的8位外围接口芯片直接 兼容。

第二章 8086系统

第二章  8086系统
通过本章的学习,应该掌握以下内容:
8086/8088微处理器的结构及指令执行的操作 过程 8086/8088微处理器的寄存器组织、存储器组 织、I/O组织、堆栈 8086/8088在最小模式下引脚功能 8086/8088微处理器在最小模式下的典型配置 8086的操作时序
第二章
8086/8088系统结构
2、物理地址和逻辑地址 8086系统中的每个存储单元在1M内存空间中的位 置可以用2个形式的地址来表示。 物理地址(实际地址、绝对地址)和逻辑地址。
物理地址:是用唯一的20位二进制数所表示的地 址,规定了1M字节存储体中某个具体单元的地址 。 CPU与存储器之间进行信息交换都需要提供的地 址,范围00000H—FFFFFH。
BP作基址寻址 SS 一般数据存取 源字符串 目的字符串 DS DS ES
5、8086存储器的分体结构 由于访问存储器的操作类型不同,BIU所使用的逻辑 地址来源也不同。 (1)存储体
15 00001 00003 00005 512KB× 8(位) 奇地址存储体 (A0=1) 512KB× 8(位) 偶地址存储体 (A0=0) 8 7 0 00000 00002 00004
数据DS、ES:存放数据和运算结果; 堆栈段SS:用来传递参数,保存数据和状态信息。
CS IP
0000
代码段
DS或ES
0000
数据段
SI、DI或BX
SS
0000 SP或BP
堆栈段 存储器
段寄存器和偏移地址寄存器组合关系
存储器分段的好处 (1)使指令系统中的大部分指令仅涉及16位偏移 地址,减少了指令长度,提高了程序的执行速度。 (2)为程序在内存中的浮动分配创造了条件。由 于程序可以浮动地装配在内存任何一个区域。这 使得多道程序和多任务程序能充分使用现有的存 储器容量。

第2章 16位微处理器8086

第2章 16位微处理器8086

计算机原理讲义
执行单元EU
4) 标志寄存器 FLAG
6位状态标志,3位控制标志IF、DF、TF,剩下7位保留 位状态标志, 位控制标志IF、DF、TF,剩下7 IF 15 14 13 12 11 10 9 IF 8 7 6 5 4 AF 3 2 PF 1 0 CF
OF DF
TF SF ZF
Flag) 位标志, CF(Carry Flag)进(借)位标志,加法运算最高位产生进位或减法运算 最高位产生借位, 否则置0 最高位产生借位,则CF置1,否则置0 Flag)辅助进位标志,加法运算时第3位往第4 AF(Auxiliary Carry Flag)辅助进位标志,加法运算时第3位往第4位 有进位,或减法运算时第3位往第4位有借位, AF置 否则置0 有进位,或减法运算时第3位往第4位有借位,则AF置1,否则置0 Flag)零标志, 若当前运算结果为零, ZF置1,否则置 否则置0 ZF(Zero Flag)零标志, 若当前运算结果为零, 则ZF置1,否则置0 SF( Flag)符号标志,与运算结果最高位相同,若为负数, SF(Sign Flag)符号标志,与运算结果最高位相同,若为负数,则SF 否则置0 SF指示了当前运算结果是正还是负 置1,否则置0,SF指示了当前运算结果是正还是负 Flag)溢出标志,有符号数算术运算结果溢出, OF置 OF(Overflow Flag)溢出标志,有符号数算术运算结果溢出,则OF置1, 否则置 否则置0 PF(Parity Flag)奇偶标志,运算结果低8位所含1的个数为偶数则PF Flag)奇偶标志,运算结果低8位所含1的个数为偶数则PF 置1,否则置0 否则置 计算机原理讲义
总线接口单元(BIU) 一. 总线接口单元(BIU) 1. 具体功能

微机原理第二章8086微处理器

微机原理第二章8086微处理器
▪ 表面上看来,微处理器的外部就是数量有限的输入输出 引脚。但是,正是依靠这些引脚与其它逻辑部件相连接, 才能组成多种型号的微型计算机系统。
▪ 这些引脚就是微处理器级总线。微处理器通过微处理器 级总线沟通与外部部件和设备之间的联系。这些总线及 其信号必须完成以下功能:
▪ (1)和存储器之间交换信息; ▪ (2)和I/O设备之间交换信息; ▪ (3)为了系统工作而接收和输出必要的信号,如输入
▪ 时钟信号输入端。19 CLK(输入) ▪ 8086和8088为5MHz。 ▪ 8086/8088的CLK信号必须由8284A时钟发生器产生。 ▪ 微处理器是在统一的时钟信号CLK控制下,按节拍进行
工作的。
2021/6/12
16
8086/8088微处理器——微处理器的引脚功能
▪ 工作方式控制线 33
指令执行示例
2021/6/12
1
第二章:8086/8088微处理器
1. 微处理器ห้องสมุดไป่ตู้结构 2. 微处理器的内部寄存器 3. 微处理器的引脚功能 4. 微处理器的存储器组织 5. 最大模式和最小模式 6. 微处理器的时序
2021/6/12
2
2021/6/12
▪ 存储器分段
▪ 由于CPU内部的寄存器都是16位的,为了
2021/6/12
7
第二章:8086/8088微处理器
1. 微处理器的结构 2. 微处理器的内部寄存器 3. 微处理器的引脚功能 4. 微处理器的存储器组织 5. 最大模式和最小模式 6. 微处理器的时序
2021/6/12
8
8086/8088微处理器——微处理器的引脚功能
▪ 一、微处理器的外部结构
时钟脉冲、复位信号、电源和接地等。

第2章8086微处理器1-2

第2章8086微处理器1-2
来自忙碌忙碌忙碌
忙碌
1)CPU执行指令时总线处于空闲状态 ) 执行指令时总线处于空闲状态 2)CPU访问存储器 存取数据或指令 时要等待总线操作的完成 访问存储器(存取数据或指令 ) 访问存储器 存取数据或指令)时要等待总线操作的完成 缺点: 缺点:CPU无法全速运行 无法全速运行 解决:总线空闲时预取指令, 解决:总线空闲时预取指令,使CPU需要指令时能立刻得到 需要指令时能立刻得到
6
结论
指令预取队列的存在使EU和 指令预取队列的存在使 和BIU两个部 两个部 分可同时进行工作, 分可同时进行工作,从而 提高了CPU的效率; 降低了对存储器存取速度的要求
7
8088/8086 CPU的特点
采用并行流水线工作方式 对内存空间实行分段管理: 对内存空间实行分段管理:
每段大小为16B~ 每段大小为16B~64KB 16B 用段地址和段内偏移实现对1MB空间的寻址 用段地址和段内偏移实现对1MB空间的寻址 设置地址段寄存器指示段的首地址
支持多处理器系统; 支持多处理器系统; 片内没有浮点运算部件, 片内没有浮点运算部件,浮点运算由数学协处 理器8087支持(也可用软件模拟) 理器 支持(也可用软件模拟) 支持 注:80486DX以后的CPU均将数学协处理 器作为标准部件集成到CPU内部
8
二、8086CPU的内部结构
8086内部由两部分组成: 内部由两部分组成: 内部由两部分组成 执行单元(EU) 执行单元( ) 总线接口单元(BIU) 总线接口单元( )
2
指令预取队列(IPQ)
指令的一般执行过程: 指令的一般执行过程: 取指令 指令译码 读取操作数 执行指令 存放结果
3
串行工作方式:
8086以前的CPU采用串行工作方式: 8086以前的CPU采用串行工作方式: 以前的CPU采用串行工作方式

第2章8086CPU的原理

第2章8086CPU的原理

(2)DS:数据段段寄存器,在数据段寻址时,与BX、SI、DI 合用。 (3)SS:堆栈段段寄存器,在栈操作时,与SP合用对栈顶数据进 行存取。在对栈中数据存取时与BP合用。 (4)ES:附加数据段段寄存器,在串操作时,存放目标串,与DI 合用。也可以用来存放数据。 2 标志寄存器FLAGS FLAGS是16位寄存器,包含9个标志,标示CPU的状态和某些操 作特性。
其中:AH、AL寄存分别表示AX寄存器的高8位和低8位,如下图: 1Fh AH 50h AL AX
AH=1Fh AL=50h AX=1F50h
但AH和AL都可以作为8位的寄存器独立使用, 如 MOV BL,AH 指令执行后, BL=1Fh
其余的8位寄存器如上所述。 8086的4个数据寄存器,通常都是用来存储供CPU处理的数据或 保存结果的,但在特定的场合里,它们又有自己的特殊用途。 (1)AX、AL---累加器:在乘法、除法和符号扩展指令中,有一 个操作数预先放在累加器中;在I/O操作时,通过它CPU与接口交 换数据。累加器也是所有寄存器中执行速度最快的。
IF 中断允许标志: IF 的值决定CPU是否响应外部的可屏蔽中断。 当 IF=1 时,CPU可以响应外部的可屏蔽中断,否则相反。IF 的值 由专门的指令控制,即:STI 指令置 IF=1 CLI 指令置 IF=0 当 IF=0 时,CPU不能屏蔽非屏蔽中断和CPU内部中断。 TF 跟踪标志: TF=1 时,CPU进入单步程序执行方式,TF的控 制没有专用的指令,要通过其它方式设置。
图(3.5)8086/8088的引脚信号
最小方式 用于单个微处理器组成的系统,由8086产生系 统所需的全部控制信号。 最大方式 用于多处理器系统中,8086不直接提供控制信 号 。

[工学]第2章8086微处理器与汇编语言上

[工学]第2章8086微处理器与汇编语言上
寄存器构成。
表2-1-2 段寄存器和现行段的对应关系
寄存器 CS DS SS ES
含义 代码段寄存器 数据段寄存器 堆栈段寄存器 附加段寄存器
隐含识别的现行段 现行代码段 现行数据段
现行堆栈段 现行附加段
2021/8/26
19
2.寄存器组
(2)段寄存器组(续)
8086通过CS得到执行指令的段基地址,加上 指令指针IP中的指令偏移量,产生20位的存储 器地址。例如CS=4000H、IP=004AH。那么, 20位物理地址应该是4004AH单元。
2021/8/26
22
2.寄存器组
(4)标志寄存器(续)
① 条件标志位(续)
● AF辅助进位标志位:在运算结果的低4位向 高4位有进位或借位时,AF为“1”;反之, AF为“0”。
● OF溢出标志位:运算结果超出机器表示范 围时,OF为“1”;否则,OF为“0”。带符 号数的操作,若字节运算结果超过-128~+127 范围或者字运算结果超过-32768~+32767范围 时,OF为“1”。
2021/8/26
15
2.寄存器组
(1)通用寄存器组
通用寄存器组由八个16位寄存器构成,按用 途可分为数据寄存器和指针/变址寄存器两大 类 。它们都可以参加算术和逻辑运算。
① 数据寄存器
由四个16位的AX、BX、CX和DX寄存器组 成。每个寄存器可作为一个独立的16位寄存器 使用,也可以分别编址成两个8位寄存器使用。 这样,每个数据寄存器对应的高8位寄存器是 AH、BH、CH和DH;低8位寄存器是AL、BL、 CL和DL。
指令队列状态(输出)。
31
第四节 总线周期
4.总线周期
8086的时钟脉冲(CLK)由时钟发生器(如 8284A)来提供,例如若机器的主频为10MHz, 那么一个时钟周期为100ns。

第二章 8086 8088微处理器

第二章  8086 8088微处理器
(一)、 总线接口单元BIU
1、指令队列缓冲器 2、地址加法器和段寄存器
3、 16位的指令指针寄存器IP
IP中存放的是BIU要取的下一条指令(字 节)的偏移地址,BIU取过后,IP自动加1。 与IP相配的段寄存器是代码段寄存器CS。
扬州大学信息工程学院
第一节 8086/8088 微处理器的结构 一、8086/8088的内部结构
扬州大学信息工程学院
(一)最小工作模式
在最小工作模式,8086/8088 第24~31引脚的含义: 5、M/IO存储器/输入,输出控 制信号,输出。 为1时与存储器数椐传送; 为0时输入,输出接口进 行数据传送。T1~T4有效
6、WR写信号,输出。 在总线周期的T2~T4状态 输出低电平。 7、HOLD总线保持请求信号, 输入。其它主模块要求占用总线 时通过HOLD向CPU发高电平请 求。若“允许”,CPU在T4状态 从HLDA发出高电平后,就得到 总线控制权。
扬州大学信息工程学院
第二章 8086/8088微处理器
第一节 8086/8088 微处理器的结构 一、8086/8088的内部结构
从功能上,8086分为两部分:
1、 总线接口单元BIU (Bus Interface Unit)。 2、执行单元EU (Execution Unit)。 说明:这两个单元在CPU内部担负着不同的任务。 两个单元并行地工作,能使大部分取指令操作与执 行指令操作重叠的进行 (即所谓“流水线”结构)。
扬州大学信息工程学院
第一节8086/8088的微处理器结构
三、8086/8088的引脚信号和功能 (一)地址/数椐总线
AD15~AD0(复用的)
总线周期的状态 T1:输出地址; T2:浮置成高阻; T3:输入/输出数椐;

微机原理 第2章_8086系统结构

微机原理 第2章_8086系统结构

8086 CPU的引脚及其功能

8086 CPU的两种工作模式


最小模式:用于单机系统,系统所需要的控 制信号由8086直接提供,MN/MX=1,CPU 工作于最小模式 最大模式:用于多处理机系统,系统所需的 控制信号由总线控制器8288提供, MN/MX=0,CPU工作于最大模式

8086 CPU在最小模式下的引脚定义 8088与8086的区别
通 用 寄 存 器
AX BX CX DX SP BP SI DI
8086 CPU结构框图
20位地址总线
Σ
数据 总线 16位
ALU数据总线 (16位) 暂存器
队列 总线 (8位)
CS DS SS ES IP 内部寄存器 指令队列
总线 控制 电路 8086 总线
ALU
标志寄存器
EU 控制器
1 3 4 5 6
PSW
存放状态标志、控制标志和系统标 志
PSW格式:
15 11 10
OF DF
9 IF
8
7
6
4 AF
2 PF
0 CF
TF SF ZF
状态标志




状态标志用来记录程序中运行结果的状态信息,它们根据有关指 令的运行结果由CPU自动设置,这些状态信息往往作为后续条件 转移指令的转移控制条件,包括6位: OF:溢出标志,在运算过程中,如操作数超出了机器数的表示范 围,称为溢出,OF=1,否则OF=0 SF:符号标志,记录结果的符号,结果为负SF=1,否则SF=0 ZF:零标志,运算结果为0,ZF=1,否则ZF=0 CF:进位标志,进行加法运算时从最高位产生进位,或减法运算 从最高位产生借位CF=1,否则CF=0 AF:辅助进位标志:本次运算结果,低4位向高4位产生进位或借 位,AF=1,否则AF=0 PF:奇偶标志,用来为机器中传送信息时可能产生的代码出错情 况提供检验条件,当结果操作数中低8位中1的个数为偶数时PF=1, 否则PF=0

计算机原理_2 8086微处理器

计算机原理_2 8086微处理器

READY RDY1 AEN1 RDY2 AEN 2
3 复位信号产生 输入RES经过斯密特触发器分频以后,在时钟同频下产生RESET信号 送给CPU的RESET引脚,进行复位。 通常有以下两种情况会产生硬件复位信号: a 电源开关打开 b 按下机箱上的Reset按钮 电路如下所示:
例:CS的内容是89ABH,IP 的内容是0201H,则生成的地
址是89AB0H+0201H=89CB1H


20位的地址加法器 段地址左移4位+偏移量 → 20位的实际物理地址 段地址*16+偏移量 → 20位的实际物理地址 6个字节的指令队列

执行部件(EU)

16位的算术逻辑单元ALU 4个16位的通用寄存器 AX,BX,CX,DX,它们又可以分成8个8位的寄存器使用 AH,AL,BH,BL,CH,CL,DH,DL AL AH 4个16位的专用寄存器 SP——堆栈指针寄存器 BP——基址指针寄存器 SI ——源变址寄存器 DI ——目的变址寄存器
(二)时钟发生电路8284A 1 产生时钟信号 OSC 内部时钟同频信号 CLK 内部时钟三分频信号,占空比1/3 PCLK 内部时钟六分频信号,占空比1/2 CSYNC 外部时钟的同频信号 X1、X2 外接晶体,供内部振荡器产生震荡频率 EFI 外接时钟入端 F/C 时钟输入选择 PC机中14.31818MHz的外接晶体 CLK=4.77MHz 2 准备就绪信号 ASYNC为低电平时,表示READY输出时插入一个时钟周期延时。
三、常用的数据管理方式


LIFO FIFOቤተ መጻሕፍቲ ባይዱ
1
2
堆栈:按照后进先出(LIFO)的原则组织的存储器空间(栈)。

第2章 8086微处理器1

第2章  8086微处理器1

例3 已知逻辑地址,指出下列存储器地址的段内偏 移量、段基址、物理地址。 1)1123H:0015H 2)1124H:0005H
一个物理地址可以对应多个逻辑地址
例如:设当前有效的代码段、数据段、堆栈段、附加段的段基址分别 为1066H、251BH、900CH、F001H,则各段在内存中的分配情况如 图2-5所示。
VCC AD15 A16/S3 A17 /S4 A18 /S5 A19 /S6 (HIGH) (SSO) MN/MX RD RQ/GT0 (HOLD) RQ/GT1 (HLDA) LOCK (WR) S2 (IO/M) S1 (DT/R) S0 (DEN) QS0 (ALE) QS1 (INTA) TEST READY RESET
六个状态标志含义如下: 1.进位标志CF或C 运算结果的最高位产生进位或借位时,则 CF=1,否则CF=0(字节操作D7、字操作D15、 双字D31) 2.奇偶标志PF 运算结果中1的个数为偶数,则PF=1,否 则PF=0 3.辅助进位标志AF 运算时当 D3 向D4 有进位或有借位时 ,则 AF=1,否则AF=0
DS:数据段寄存器 ES:附加段寄存器
数据段和附加段用来存放操作数
SS:堆栈段寄存器
堆栈段用于存放返回地址,保存寄存器内容, 传递参数
3、控制寄存器

IP:指令指针寄存器,其内容为下一条 要执行的指令的偏移地址 FLAGS:标志寄存器
状态标志:存放运算结果的特征
控制标志:控制某些特殊操作
四、存储器寻址

物理地址
8086:20根地址线,可寻址220(1MB)
个存储单元,1M字节的存储器单元编 址为00000H~FFFFFH(16进制) CPU送到AB上的20位的地址称为物理 地址
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28086第章微处理器8086微处理器80X86微处理器系列概况微处理器系列概况2.180X86微处理器2.2 80862.2 8086微处理器微处理器引脚说明2.3 80862.3 8086微处理器引脚说明访问存储器特性2.4 80862.4 8086访问存储器特性2.5 8086CPU和寄存器组258086CPU2.6 存储器物理地址的形成开始返回目录80X86微处理器系列概况微处理器系列概况2.180X86• 2.1.1 从8080/8085到8086从到• 2.1.2 从8086到80882138028680386及80486微处理器• 2.1.3 80286、80386及80486微处理器返回本章首页到8086从8080/80858080/8085到2.1.1 从2.1.1•8086是16微处理器,内部及对外有16位数据通路,8080/8085只有8位。

8086寻址空间1MB,8080/8085为64KB。

•8086寻址空间1MB8080/8085为64KB。

•8086有一个初级流水线结构,内部操作与对外操作具有并行性,8080/8085没有与对外操作具有并行性没有这个特性。

返回本节2.1.2 从8086到8088•8088内部结构与8086相同,是16位微处理器,对外数据总线是位的对外数据总线是8位的。

•8088与已有的8位外围芯片容易配合使用。

8088与已有的8位外围芯片容易配合使用•8088价格低,适合当时的微计算机使用。

•IBM公司选择8088作为处理器设计个人计算机,大获成功,Intel微处理器成为主流产品。

返回本节2.1.3 80286、80386及80486微处理•8028616位结构16MB寻址空间支持保护器80286:16位结构,16MB寻址空间,支持保护方式,可执行多任务,速度比8086快。

•80386:32位结构,4GB寻址空间,支持保护方式可执行多任务性能大大优于16位结构方式,可执行多任务,性能大大优于16位结构。

•32位结构比80386有很大改进80486:32位结构,比80386有很大改进,片内FPU,片内Cache,速度比80386快很多。

返回本节2.2 8086微处理器2.28086•2.2.1 8086微处理器的结构2218086微处理器的结构•2.2.2 BIU与EU的重叠操作222BIU与EU的重叠操作返回本章首页22180862.2.1 8086微处理器的结构•8086微处理器逻辑结构如图,分EU与BIU两部分:•执行部件(EU):由ALU、通用寄存器组、状态寄存器及操作控制器电路组成。

•总线接口部件(BIU):由专用寄存器、指令队列缓冲器、地址加法器等功能部件组成。

形成对外总线,与存储接行输器、I/O接口电路进行数据传输。

•EU与BIU的流水线操作:EU与BIU可独立工作,BIU在保证EU与片外传送操作数前提下,可进行指令预取,与EU可重叠操作。

AHAL AX BH BL CH CL DHDLBX CX DX通用寄SP BP DI (Stack pointer)(Base pointer)(Destination Index)存器0816CS DS SS (Code Segment)(Data Segment)(Stack Segment)总SI (Source Index)8线6总ES IP (Extra Segment)(InstructionPointer)内部通信寄存器线控制逻辑16暂存寄存器ALU总线ALUE U 控制指令寄Q总线123456标 志系统存器8总线接口单元返回本节2.2.2BIU • 2.2.2 BIU与EU 的重叠操作8080/8085受结构限制,取指令和执行指令串行进行,操作无重叠(无并行性)。

由与两个独立的功能部件组成它们的操•8086由EU与BIU两个独立的功能部件组成,它们的操作有并行性。

•EU与BIU的流水线操作:EU与BIU可独立工作,BIU在保证EU与片外传送操作数前提下,可进行指令预取,与EU可重叠操作。

指令队列出现个空字节且未占总线•8086指令队列出现2个空字节,且EU未占总线,BIU 自动取指令填充队列。

取指令1执行指令1取指令2执行指令2非流水线操作8085取指令1执行指令1流水线操作8086取指令2执行指令2取指令3执行指令3t0t1t2t3t4t在t0~t4时间间隔中,8085执行了2条指令。

在t0~t4时间间隔中理想情况下8086可执行3条指令在t0~t4时间间隔中,理想情况下,8086可执行3条指令。

8080-8085MPCPUEXECUTEFETCHEXECUTEREADEXECUTEWRITEFETCHI1I1I2I2I3I3I3BUS BUSY BUSYBUSY BUSU8086 MPEUEXECUTEI1EXECUTEEXECUTEI3I2BIUFETCHFETCHFETCHI2FETCHI3WRITEI1I4READI3I5BUSBUSYBUSY BUSY BUSYBUSYBUSY 返回本节2.3 8086脚2.3 8086\\8088微处理器引脚说明•8086/8088微处理器采用40条引线双列直插(DIP)封装。

()封装•8086/8088微处理器引线是对外前端总线及专用信号引线。

•微处理器引线,在逻辑上可分为3类:8086/8088微处理器引线在逻辑上可分为地址总线信号、数据总线信号、控制总线信号。

还有些专用信号:电源、地、时钟。

还有一些专用信号:电源、地、时钟。

•8086/8088采用引线分时复用技术,一条引线不解决引线不够问题同时间代表不同信号,解决引线不够问题。

返回本章首页338AD13A16/S3635AD10A19/S61724NMI INTA (QS1)2021GNDRESET338A13A16/S3635A101724NMI INTA (QS1)2021GNDRESET返回本节2.4 80862N+32N+2访问存储器特性D15D02N 12N+12N的字操作的字操作返回本章首页(A0)B1B0ODD B1 B0D15D0D7D8512K-BYTE 512K-BYTE 888DATA BUS D8-D158DATA BUS D8D15返回本节2.5 8086CPU和寄存器组258086CPU●2.5.1 Intel8086CPU内部结构●2.5.2 8086寄存器组253●2.5.3 标志寄存器返回本章首页251Intel2.5.1 Intel 8086CPU 内部结构图1.2 8086CPU 内部结构返回本节2.5.2 8086寄存器组图1.38086CPPU寄存器分组1.通用寄存器●(1)数据寄存器●数据寄存器共有4个16位的寄存器AX、BX、CX、DX 用来保存操作数或运算结果等信息,这4个16位的寄存器还可以分为高8位AH、BH、CH、DH和低8位AL、BL、CL、DL来独立使用。

也就是说,既可以将每个数C来独立使用也就是说既可以将每个数据寄存器作为一个16位的寄存器进行操作,也可以当作2个8位的寄存器使用。

位的寄存器使用●AX寄存器称为累加器。

使用频度最高,用于算术、逻辑运算以及与外设传送信息等。

辑运算以及与外设传送信息等●BX寄存器称为基址寄存器。

常用于存放存储器地址。

寄存器称为计数器般作为循环或串操作等指令●CX寄存器称为计数器。

一般作为循环或串操作等指令中的隐含计数器。

寄存器称为数据寄存器常用来存放双字数据的高●DX寄存器称为数据寄存器。

常用来存放双字数据的高16位,或存放外设端口地址。

(2)变址和指针寄存器●变址和指针寄存器包括SI、DI、SP、BP4个16位寄存器,主要用于存放某个存储单元的偏移地址。

这4个16位的寄存器只能按16位进行存地址这取操作。

S是源变址寄存器是目的变址寄存器在●SI是源变址寄存器,DI是目的变址寄存器,在字符串操作中,SI和DI都具有自动增量或减量的功能。

的功能●SP为堆栈指针寄存器,用于存放当前堆栈段中栈顶的偏移地址为基址指针寄存器用于栈顶的偏移地址;BP为基址指针寄存器,用于存放堆栈段中某一存储单元的偏移地址。

所有的通用寄存器,包括16位和8位的,都可作累加器使用。

2.段寄存器●8086CPU的4个16位的段寄存器分别称为代码段寄存器CS,数据段寄存器DS,堆栈段寄存器附加数据段寄存器SS,附加数据段寄存器ES。

段寄存器用来确定该段在内存中的起始地址地址。

●代码段用来存放程序的指令序列。

CS存放代码段的段首址,指令指针寄存器IP 放代码段的段首址指令指针寄存器指示代码段中指令的偏移地址。

3.指令指针8086CPU中的指令指针IP,它总是保存下一次将要从主存中取出指令的偏移地址,偏移地址的值为该指令到所在段段首址的字节距离。

在目标程序运行时,IP的内容由微处理器硬件自动设置,程序不能直接访问IP,但一些指令却可改变IP的值,如转移指令、子程序调用指的值如转移指令子程序调用指令等。

返回本节2.5.3 标志寄存器●8086CPU中有一个很重要的16位标志寄存器,它包含9个标志位,主要用于保存条指令执行后所处状态信及一条指令执行后,CPU所处状态信息及运算结果的特征。

条件标志●1.条件标志●2.状态控制标志1.条件标志(1)进位标志CF:当指令执行结果最高位向前有一个进位或借位时,使CF=1(CY),否则为0(NC);在字节操作时,最高位为D7,在字操作时最高位为操作时,最高位为D15。

(2)零标志ZF:当执行结果为0时,ZF=1(ZR),否则为0(NZ)。

(S S取值与指令执行结果的最高位相同即结果的最3)符号标志SF:SF取值与指令执行结果的最高位相同,即结果的最高位(字节操作时为D7,字操作时为D15)为1时,SF=1(NG),否则为0(PL)。

(4)溢出标志OF:有符号数运算时,当结果超过有符号数所能表示的范围时将产生溢出,OF=1(OV),否则为0(NV)。

的范围时将产溢出否则为(5)奇偶标志PF:当指令执行结果使1的个数为偶数时,PF=1(PE),否则为0(PO)。

(6)辅助进位标志AF:当指令执行的结果,若低半字节向高半字节(D3向D4)有进位或借位时,AF=1(AC),否则为0(NA)。

2.状态控制标志(1)方向标志DF:在串操作指令中,串操作可自动增址或减址,变化方向由DF标志决定。

当DF=1时自动减址,DF=0时自动增址。

动减址时自动增址(2)中断允许标志IF:该标志对外部可屏蔽中断进行管理。

当IF=1时,允许CPU接受外部可屏蔽中断请管理当1时允许C求;当IF=0时,禁止CPU接受可屏蔽中断请求。

该标志对非屏蔽中断请求和内部中断均不起作用。

相关文档
最新文档