高考数学基本初等函数一专题卷(附答案)

合集下载

高一数学必修一基本初等函数高考真题(含详细答案)

高一数学必修一基本初等函数高考真题(含详细答案)

基本初等函数11.(2012年高考(安徽文))23log 9log 4⨯=( )A .14B .12C .2D .4 22.(2012年高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数的是( )A .()ln 2y x =+ B.y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+33.(2012年高考(重庆))设函数2()43,()32,x f x x x g x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则MN 为 ( )A .(1,)+∞B .(0,1)C .(-1,1)D .(,1)-∞44.(2012年高考(天津))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+55.(2012年高考(四川))函数(0,1)x y a a a a =->≠的图象可能是66.(2012年高考(山东))函数1()ln(1)f x x =+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-77.(2012年高考(广东))(函数)下列函数为偶函数的是( )A .sin y x =B .3y x =C .x y e = D.y =88.(2012年高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B =( )A .(1,2)B .[1,2]C .[,)12D .(,]1299.(2012年高考(四川理))函数1(0,1)x y a a a a=->≠的图象可能是1010.(2012年高考(江西理))下列函数中,与函数定义域相同的函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xx二、填空题1111.(2012年高考(上海))方程03241=--+x x的解是_________.1212.(2012年高考(陕西))设函数发0,()1(),0,2x x f x x ìï³ïï=íï<ïïïî,则((4))f f -=_____ 1313.(2012年高考(北京))已知()(2)(3)f x m x m x m =-++,()22x g x =-.若,()0x R f x ∀∈<或()0g x <,则m 的取值范围是________.1414.(2012年高考(北京))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.1515.(2012年高考(上海春))函数224log ([2,4])log y x x x=+∈的最大值是______.1616.(2012年高考(江苏))函数x x f 6log 21)(-=的定义域为____.三、解答题1717.(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.基本初等函数参考答案一、选择题 1)【解析】选D23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯= 2)(2012年高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数的是( )A .()ln 2y x =+ B .y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+解析:A.()ln 2y x =+在()2,-+∞上是增函数.3).(2012年高考(重庆文))设函数2()43,()32,x f x x x g x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则MN 为 ( )A .(1,)+∞B .(0,1)C .(-1,1)D .(,1)-∞【答案】:D 【解析】:由(())0f g x >得2()4()30g x g x -+>则()1g x <或()3g x >即321x -<或323x ->所以1x <或3log 5x>;由()2g x <得322x -<即34x <所以3log 4x <故(,1)MN =-∞4)(2012年高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+【解析】函数xy 2log =为偶函数,且当0>x时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B.5)(2012年高考(四川文))函数(0,1)x y a a a a =->≠的图象可能是[答案]C[解析]采用特殊值验证法.函数(0,1)x y a a a a =->≠恒过(1,0),只有C 选项符合.6)(2012年高考(山东文))函数1()ln(1)f x x =++( ) A .[2,0)(0,2]- B .(1,0)(0,2]-C .[2,2]-D .(1,2]-解析:要使函数)(x f 有意义只需⎩⎨⎧≥-≠+040)1ln(2x x ,即⎩⎨⎧≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B.7)(2012年高考(广东文))(函数)下列函数为偶函数的是( )A .sin y x =B .3y x =C .x y e =D .y =:D.()()f x f x -===.8)(2012年高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B =( )A .(1,2)B .[1,2]C .[,)12D .(,]12【解析】选D {3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=9)(2012年高考(四川理))函数1(0,1)x y a a a a=->≠的图象可能是[答案]C[解析]采用排除法.函数(0,1)x y a a a a =->≠恒过(1,0),选项只有C 符合,故选C.10)(2012年高考(江西理))下列函数中,与函数定义域相同的函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xxD【解析】函数y =的定义域为()(),00,-∞+∞,而答案中只有sin xy x=的定义域为()(),00,-∞+∞.故选D.二、填空题11)(2012年高考(上海文))方程03241=--+x x的解是_________.[解析]0322)2(2=-⋅-x x ,0)32)(12(=-+x x ,32=x ,3log 2=x .12)(2012年高考(陕西文))设函数发0,()1(),0,2x x f x x ³=íï<ïïïî,则((4))f f -=_____解析:41(4)()162f --==,((4))(16)4f f f -==13)(2012年高考(北京文))已知()(2)(3)f x m x m x m =-++,()22x g x =-.若,()0x R f x ∀∈<或()0g x <,则m 的取值范围是________.【解析】首先看()22x g x =-没有参数,从()22x g x =-入手,显然1x <时,()0g x <,1x ≥时,()0g x ≥,而对,()0x R f x ∀∈<或()0g x <成立即可,故只要1x ∀≥时,()0f x <(*)恒成立即可.当0m =时,()0f x =,不符合(*),所以舍去;当0m >时,由()(2)(3)0f x m x m x m =-++<得32m x m --<<,并不对1x ∀≥成立,舍去;当0m <时,由()(2)(3)0f x m x m x m =-++<,注意20,1m x ->≥,故20x m ->,所以30x m ++>,即(3)m x >-+,又1x ≥,故(3)(,4]x -+∈-∞-,所以4m >-,又0m <,故(4,0)m ∈-,综上,m 的取值范围是(4,0)-.14)(2012年高考(北京文))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.【解析】()lg ,()1f x x f ab ==,lg()1ab ∴=2222()()lg lg 2lg()2f a f b a b ab ∴+=+==15)(2012年高考(上海春))函数224log ([2,4])log y x x x=+∈的最大值是___5___.16)(2012年高考(江苏))函数x x f 6log 21)(-=的定义域为____.1266000112log 0log 620<x >x >x >x x x x -≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩三、解答题18.(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x 因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .由⎩⎨⎧<<-<<-313211x x 得3132<<-x (2)当x ?[1,2]时,2-x ?[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==由单调性可得]2lg ,0[∈y .因为y x 103-=,所以所求反函数是x y 103-=,]2lg ,0[∈x_s 12__。

2023年新版高一数学必修一基本初等函数高考真题含详细答案

2023年新版高一数学必修一基本初等函数高考真题含详细答案

基本初等函数1.(高考(安徽文))23log 9log 4⨯=( )A .14 B .12C .2D .4 2.(高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数旳是( )A .()ln 2y x =+B .1y x =-+C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+3.(高考(重庆))设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则M N 为 ( )A .(1,)+∞ B .(0,1) C .(-1,1) D .(,1)-∞4.(高考(天津))下列函数中,既是偶函数,又在区间(1,2)内是增函数旳为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --= D .31y x =+5.(高考(四川))函数(0,1)xy a a a a =->≠旳图象也许是6.(高考(山东))函数21()4ln(1)f x x x =+-+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-7.(高考(广东))(函数)下列函数为偶函数旳是( )A .sin y x =B .3y x =C .x y e =D .21y x =+8.(高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-旳定义域;则AB =( )A .(1,2)B .[1,2]C .[,)12D .(,]129.(高考(四川理))函数1(0,1)x y a a a a=->≠旳图象也许是10.(高考(江西理))下列函数中,与函数3x( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xx二、填空题11.(高考(上海))方程03241=--+x x 旳解是_________.12.(高考(陕西))设函数发,0,()1(),0,2xx x f x x ,则((4))f f =_____13.(高考(北京))已知()(2)(3)f x m x m x m =-++,()22xg x =-.若,()0x R f x ∀∈<或()0g x <,则m旳取值范围是________.14.(高考(北京))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.15.(高考(上海春))函数224log ([2,4])log y x x x=+∈旳最大值是______.16.(高考(江苏))函数x x f 6log 21)(-=旳定义域为____.三、解答题17.(高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 旳取值范围;(2)若)(x g 是以2为周期旳偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 旳反函数.基本初等函数参照答案一、选择题1.【解析】选D 23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯= 2.(高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数旳是( )A .()ln 2y x =+B .1y x =-+C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+解析:A.()ln 2y x =+在()2,-+∞上是增函数.3..(高考(重庆文))设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则M N 为 ( )A .(1,)+∞ B .(0,1)C .(-1,1)D .(,1)-∞【答案】:D 【解析】:由(())0f g x >得2()4()30g x g x -+>则()1g x <或()3g x >即321x -<或323x ->因此1x <或3log 5x >;由()2g x <得322x -<即34x <因此3log 4x <故(,1)MN =-∞4.(高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数旳为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,因此在)2,1(上也为增函数,选B.5.(高考(四川文))函数(0,1)xy a a a a =->≠旳图象也许是[答案]C [解析]采用特殊值验证法. 函数(0,1)xy a a a a =->≠恒过(1,0),只有C 选项符合. 6. (高考(山东文))函数21()4ln(1)f x x x =-+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-解析:要使函数)(x f 故意义只需⎩⎨⎧≥-≠+040)1ln(2x x ,即⎩⎨⎧≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B. 7.(高考(广东文))(函数)下列函数为偶函数旳是( )A .sin y x =B .3y x =C .x y e =D .2ln 1y x =+解析:D.()()()22ln 1ln 1f x x x f x -=-+=+=.8.(高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-旳定义域;则AB =( )A.(1,2)B .[1,2]C .[,)12D .(,]12【解析】选D {3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=9.(高考(四川理))函数1(0,1)x y a a a a=->≠旳图象也许是[答案]C [解析]采用排除法. 函数(0,1)xy a a a a =->≠恒过(1,0),选项只有C 符合,故选C. 10.(高考(江西理))下列函数中,与函数3x定义域相似旳函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xxD 【解析】 函数3y x=旳定义域为()(),00,-∞+∞,而答案中只有sin xy x=旳定义域为()(),00,-∞+∞.故选D.二、填空题11.(高考(上海文))方程03241=--+x x 旳解是_________.[解析] 0322)2(2=-⋅-xx ,0)32)(12(=-+xx,32=x ,3log 2=x . 12.(高考(陕西文))设函数发,0,()1(),0,2x x x f x x ,则((4))f f =_____解析:41(4)()162f ,((4))(16)164f f f13.(高考(北京文))已知()(2)(3)f x m x m x m =-++,()22xg x =-.若,()0x R f x ∀∈<或()0g x <,则m 旳取值范围是________. 【解析】首先看()22xg x =-没有参数,从()22xg x =-入手,显然1x <时,()0g x <,1x ≥时,()0g x ≥,而对,()0x R f x ∀∈<或()0g x <成立即可,故只要1x ∀≥时,()0f x <(*)恒成立即可.当0m =时,()0f x =,不符合(*),因此舍去;当0m >时,由()(2)(3)0f x m x m x m =-++<得32m x m --<<,并不对1x ∀≥成立,舍去;当0m <时,由()(2)(3)0f x m x m x m =-++<,注意20,1m x ->≥,故20x m ->,因此30x m ++>,即(3)m x >-+,又1x ≥,故(3)(,4]x -+∈-∞-,因此4m >-,又0m <,故(4,0)m ∈-,综上,m 旳取值范围是(4,0)-.14.(高考(北京文))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.【解析】()lg ,()1f x x f ab ==,lg()1ab ∴= 2222()()lg lg 2lg()2f a f b a b ab ∴+=+==15.(高考(上海春))函数224log ([2,4])log y x x x=+∈旳最大值是___5___.16.(高考(江苏))函数xx f 6log 21)(-=旳定义域为____.1266000112log 0log 620<x >x >x >x x x x -≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩三、解答题18.(高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 旳取值范围;(2)若)(x g 是以2为周期旳偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 旳反函数.[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x . 由1lg)1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x 由于01>+x ,因此1010221+<-<+x x x ,3132<<-x . 由⎩⎨⎧<<-<<-313211x x 得3132<<-x (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-== 由单调性可得]2lg ,0[∈y . 由于y x 103-=,因此所求反函数是xy 103-=,]2lg ,0[∈x。

(完整版)基本初等函数测试题及答案

(完整版)基本初等函数测试题及答案

基本初等函数测试题一、选择题 (本大题共 12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.有以下各式:① na n = a ; ②若 a ∈ R ,则 (a 2- a + 1)0= 1;③ 3 x 44y ; ④6- 2 2= 3- 2.y3x3此中正确的个数是 ()A . 0B . 1C .2D .3|x|的图象是 ()2.函数 y = a (a>1)3.以下函数在 (0,+∞ )上是增函数的是 ()-xB . y =- 2x1A . y = 3C . y = logxD . y = x24.三个数 log 21, 20.1,2-1 的大小关系是 ()51-1--11 -A . log 25<2<2 1 B . log 25<2 1<20.1 C . 2<2 1<log 25 D . 2<log 25<215.已知会合 A = { y|y = 2x , x<0} , B = { y|y =log 2x} ,则 A ∩ B = ()A . { y|y>0}B . { y|y>1}C . { y|0<y<1}D .6.设 P 和 Q 是两个会合,定义会合 P -Q = { x|x ∈ P 且 x?Q} ,假如 P ={ x|log x < 1} ,Q2= { x|1<x<3} ,那么 P -Q 等于 ( )A . { x|0< x < 1}B . { x|0< x ≤ 1}C . { x|1≤ x <2}D . { x|2≤ x < 3}17.已知 0<a<1, x = log a 2+ log a 3, y =2log a 5,z =log a 21- log a 3,则 ( )A . x>y>zB . x>y>xC . y>x>zD . z>x>y8.函数 y = 2x - x 2 的图象大概是 ()9.已知四个函数① y = f 1(x);② y = f 2 (x);③ y =f 3(x);④ y = f 4( x)的图象以以下图:- 1 -则以下不等式中可能建立的是 ()A . f (x + x )= f (x )+ f (x )B . f (x + x )=f (x )+ f(x )112111 22122122C . f 3(x 1+ x 2) =f 3(x 1)+ f 3(x 2 )D . f 4(x 1+ x 2)=f 4(x 1)+ f 4(x 2)f ( x)12-1, f 3 2,则 f 1 2 310.设函数x 2(x)= x(2010))) 等于 ()1, f (x)= x ( f (fB . 2010211A . 2010 C.2010 D. 201211.函数 f(x)=3x 2 + lg(3 x + 1)的定义域是 ( )1-xA. -∞,- 1B. - 1, 133 3C. -1, 1D. - 1,+∞332e x -1, x<2,12. (2010 石·家庄期末测试)设 f(x)=则 f[ f(2)] 的值为 ()log 3 x 2- 1 , x ≥ 2.A . 0B . 1C . 2D . 3二、填空题 (本大题共 4 小题,每题 5 分,共 20 分.把答案填在题中横线上 )13. 给出以下四个命题:(1)奇函数的图象必定经过原点;(2)偶函数的图象必定经过原点;1(3)函数 y = lne x 是奇函数; (4)函数 yx 3 的图象对于原点成中心对称.此中正确命题序号为 ________. (将你以为正确的都填上 )14. 函数 y log 1 (x 4) 的定义域是.215.已知函数 y = log a (x +b)的图象以以下图所示,则 a = ________, b = ________.16.(2008 上·海高考 )设函数 f(x)是定义在 R 上的奇函数, 若当 x ∈ (0,+∞ )时,f(x)= lgx ,则知足 f(x)>0 的 x 的取值范围是 ________.- 2 -三、解答题 (本大题共 6 小题,共 70 分.解答应写出必需的文字说明、证明过程或演算步骤 )17. (本小题满分 10 分 )已知函数 f( x)= log 2(ax + b),若 f(2)= 1, f(3)= 2,求 f(5).118. (本小题满分 12 分 )已知函数 f (x)2 x 2 .(1)求 f(x) 的定义域; (2) 证明 f(x)在定义域内是减函数.2x - 1 19. (本小题满分 12 分 )已知函数f( x)=2x + 1.(1)判断函数的奇偶性; (2) 证明: f( x)在(-∞,+∞ )上是增函数.220. (本小题满分 12 分 )已知函数 f x(m 2 m 1)x mm 3是幂函数 , 且 x ∈ (0,+∞ )时, f(x)是增函数,求 f(x)的分析式.21. (本小题满分 12 分 )已知函数 f( x)= lg(a x -b x ), (a>1>b>0) .(1)求 f(x)的定义域;(2)若 f(x)在 (1,+∞ )上递加且恒取正当,求a ,b 知足的关系式.1122. (本小题满分 12 分 )已知 f(x)= 2x -1+2 ·x.(1)求函数的定义域;(2)判断函数 f(x)的奇偶性;(3)求证: f(x)>0.- 3 -参照答案答案速查: 1-5 BCDBC6-10 BCACC11-12 CC1.分析: 仅有②正确. 答案: Ba x , x ≥0 ,2.分析: y = a |x|=-且 a>1 ,应选 C.答案: Ca x, x<0 ,3.答案: D4.答案: B5.分析:A = { y|y = 2x ,x<0} = { y|0<y<1} ,B = { y|y = log 2x} = { y|y ∈ R} ,∴ A ∩ B ={ y|0<y<1} .答案: C6.分析: P ={ x|log 2x<1} = { x|0<x<2} , Q ={ x|1<x<3} ,∴ P - Q = { x|0<x ≤1} ,应选 B.答案: B17.分析: x = log a 2+ log a 3= log a 6= 2log a 6, z = loga21- loga 3= loga 7= 2log 7.1a∵ 0<a<1 ,∴ 111log a 7.2 log a 5> log a 6> 22 即 y>x>z.答案: C8.分析: 作出函数 y =2x 与 y = x 2 的图象知,它们有3 个交点,因此 y =2x - x 2 的图象与x 轴有 3 个交点,清除B 、C ,又当 x<- 1 时, y<0,图象在 x 轴下方,清除 D.应选 A.答案: A9.分析: 联合图象知, A 、 B 、 D 不建立, C 建立. 答案: C10.分析: 依题意可得 f 3(2010) = 20102, f 2(f 3(2010))22 -1-2 = f 2(2010 ) =(2010 ) = 2010 ,∴ f 1(f 2(f 3(2010))) = f 1(2010 - 2-2 1-11 .)= (2010) =2010=20102答案: C1-x>0x<1-111.分析: 由 ?1? <x<1. 答案: C3x +1>0x>- 3312.分析: f(2) = log 3(22- 1)= log 33= 1,∴ f[f(2)] = f(1) = 2e 0= 2.答案: C13.分析: (1) 、 (2)不正确,可举出反例,如1, y = x -2,它们的图象都可是原点. (3)y = x中函数 y = lne x=x ,明显是奇函数.对于(4) , y =x 13是奇函数,而奇函数的图象对于原点对称,因此 (4)正确.答案: (3)(4)- 4 -14.答案: (4,5]15.分析: 由图象过点 (- 2,0), (0,2)知, log a (- 2+ b)= 0, log a b = 2,∴- 2+ b =1,∴ b= 3, a 2= 3,由 a>0 知 a = 3.∴ a = 3, b = 3.答案: 3 316.分析: 依据题意画出 f(x)的草图,由图象可知,f(x)>0 的 x 的取值范围是-1<x<0 或x>1.答案: (- 1,0)∪ (1,+∞ )17.解:由 f(2) log 2 2a + b =12a + b =2 ? a = 2, = 1,f(3)= 2,得 3a + b = 2? ∴ f(x)= log 2(2xlog 2 3a + b =4 b =- 2. - 2),∴ f(5)= log 28 =3.18.∵ x 2>x 1≥ 0,∴ x 2- x 1>0, x 2+ x 1>0,∴ f(x 1) - f(x 2)>0 ,∴ f(x 2)<f( x 1).于是 f(x)在定义域内是减函数.19.解: (1) 函数定义域为 R.2-x - 11- 2x2x - 1f(- x)=- x+ 1 =x =-x=- f(x),21+ 22 + 1因此函数为奇函数.1 2< +∞ ,(2)证明:不如设- ∞<x <x∴ 2x 2>2x 1.又由于 f(x 2)- f(x 1)= 2x 2- 1 - 2x 1- 1 = 2 2x 2- 2x 12 1 1 2x 2>0,2x + 1 2x + 1 2x + 1 +1∴ f(x 2)> f(x 1).因此 f(x)在 (- ∞ ,+ ∞ )上是增函数.20.解: ∵ f(x)是幂函数,∴ m 2- m - 1= 1, ∴ m =- 1 或 m = 2,∴ f(x)= x -3 或 f(x)= x 3,而易知 f(x)= x -3 在 (0,+ ∞ )上为减函数,f(x)=x 3 在 (0,+ ∞ )上为增函数. ∴ f(x)= x 3.21.解: (1) 由 a x- b x>0,得 a x>1.ba∵ a>1>b>0,∴ b >1, ∴ x>0.即 f(x)的定义域为 (0,+ ∞ ).(2)∵ f( x)在 (1,+ ∞ )上递加且恒为正当,∴ f(x)>f(1) ,只需 f(1)≥ 0,即 lg(a - b)≥ 0,∴ a - b ≥1.∴ a ≥ b + 1 为所求22.解: (1) 由 2x - 1≠ 0 得 x ≠0,∴函数的定义域为 { x|x ≠0, x ∈ R} . (2)在定义域内任取 x ,则- x 必定在定义域内. 1 1 f(- x)= 2-x - 1+ 2 (- x)=2xx +1 ( -x) =- 1+2x ·x = 2x +1 ·x.1-2 22 1- 2x 2 2x - 111 2x + 1而f(x)=2x - 1+2 x = 2 2x -1 ·x , ∴ f(- x)= f(x).∴ f(x)为偶函数.(3)证明:当 x>0 时, 2x >1,11∴2x - 1+2 ·x>0.又 f(x)为偶函数,∴当 x<0 时, f(x)>0.故当 x ∈ R 且 x ≠ 0 时, f(x)>0.。

(word完整版)高中数学必修1数学基本初等函数经典复习试题答案解析

(word完整版)高中数学必修1数学基本初等函数经典复习试题答案解析

必修1基本初等函数复习题n 1 (1) log a mb n—log a b ; (2) log a b — m log b a3、 定义域:能使函数式有意义的实数 x 的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是: (1)偶次方根的被开方数不小于零;(2)对数式的真数必须大于零;(3)分式的分母不等于零;(4)指数、对数式的底必须大于零且不等于 1.4、 函数单调区间与单调性的判定方法 (A)定义法:① 任取X 1,X 2€ D,且X 1<X 2;① 作差f(x1) - f(x 2);①变形(通常是因式分解和配方):①定号(即判断差f(x 1) - f(X 2)的正负); ① 下结论(指出函数f(x)在给定的区间D 上的单调性).1、 幂的运算性质 (1) a r a s a r s (r,s R); (3) a r b r ab r (r R)2、 对数的运算性质 如果a 0,且a 1, M 0 ,① log a M N log a M log a N; ③ log a M n nlog a M , n R . 换底公式:log a blog c b( alog c ar s(2)(a )rsa;(r,s R)m4 訂 na m( a ' *0, m, n N ,n 1)xaN log a N x N 0,那么:① log a M lo g aM log a N ;④ log a 1 0,log a a 1, 且 a 1 ; c 0,且 c 1 ; b 0)(B) 图象法(从图象上看升降)(C) 复合函数的单调性:复合函数f [g(x)]的单调性与构成它的函数u=g(x), y=f(u)的单调性密切相关,其规律:“同增异减”1、F列函数中,在区间0, 不是增函数的是(A. y 2xB. y lg xC. D.2、函数y = log 2x + 3 (x> 1)的值域是A. 2, B. (3,+呵 C. 3, D. (-TO,+OO)3、若M {y|y 2x}, P {y|y 1},则Mn PA. {y|y 1}B. {y|y 1}C. {y|y 0}D. {y|y 0}4、对数式b log a 2(5 a)中,实数a 的取值范围是A.a>5,或a<2B.2<a<5C.2<a<3,或3<a<5D.3<a<45、已知f (x) (a 0且a 1),且f( 2) f( 3),则a的取值范围是()A. a 0 B. a 1 C. D.6、函数f (x) | log]2x|的单调递增区间是A (0,1](0,1] C 、(0, +O)7、图中曲线分别表示y l o g a x,y log b x象,a,b,c,d的关系是(A、0<a<b<1<d<c 0<b<a<1<c<dC、0<d<c<1<a<b 0<c<d<1<a<b、[1, ) y8、已知幕函数f(x) 过点(2,的值为9、a log°.5 0.6,log 2 0.5 , c log3 5,则()A.a v b v cB.b v a v cC.a v c v bD.c v a v b10、已知y log a(2 ax)在]0, 1:上是x的减函数,贝U a的取值范围是A.(0,1)B.(1 ,2)C.(0 ,2)D. :2,11、函数y log i (x 1)的定义域为 ____________ . ________V 212、设函数 f x 2 x 4,则 f log23 =f x 2 x 413、计算机的成本不断降低,如果每隔5年计算机的价格降低丄,现在3 价格为8100元的计算机,15年后的价格可降为_________________14、____________________________________________________ 函数f(x) lg(3x 2) 2恒过定点______________________________________________15、求下列各式中的x的值(1)ln(x 1) 1x 2(2)a2x 1丄,其中a 0且a 1.a16•点(2, 1)与(1, 2)在函数f x 2axb的图象上,求f x的解析式18•已知f(x) 2x, g(x)是一次函数,并且点(2,2)在函数f[g(x)]的图象上,点(2,5)在函数g[f(x)]的图象上,求g(x)的解析式.1 x19、已知函数f(x) lg —,( 1)求f(x)的定义域;(2)使f(x) 0的 I xx 的取值范围.20、已知定义域为R的函数f(x)二是奇函数(I)求b 的值;(H)判断函数f x 的单调性;17.设函数f(x)2 xx 1 log 4 x x 1求满足f(x)J 的x 的值.4必修1基本初等函数参考答案:一、选择题D C C C D D D A B B 11 ・{x| 1 x 2}12. 48 13. 2400 元14 (1, 2)15( 1)解:In(x-1)<lne x-1<e 即x<e+1T x-1>0 即x>1,「. 1<x<e+1x 2(2)解:a2x 1丄a2x 1 2 xa a当a 1 时,2x 1 2 x x 1当0 a 1 时,2x 1 2 x x 116.解::(2, 1)在函数 f x 2axb的图象上,1 = 22a+b,又T(1, 2) 在f x 2axb的图象上,2= 2a+b,可得a=-1,b=2,二 f x 2x2。

高考数学 基本初等函数1试题汇编 A 试题

高考数学 基本初等函数1试题汇编 A 试题

卜人入州八九几市潮王学校根本初等函数I题组一一、选择题1.〔宁夏一中2021届高三第五次月考试题全解全析理〕2(sin cos )1y x x =+-是〔〕A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数【答案】D【分析】对给出的三角函数式进展变换,然后根据三角函数的性质进展判断。

【解析】2(sin cos )12sin cos sin 2yx x x x x =+-==,所以函数2(sin cos )1y x x =+-是最小正周期为π的奇函数。

【考点】根本初等函数Ⅱ。

【点评】此题考察三角函数的性质,但要借助三角恒等变换,在大多数三角函数性质的试题中往往要以三角恒等变换为工具,把三角函数式化为一个角的一个三角函数,再根据根本的三角函数的性质对所给的三角函数的性质作出结论。

2.〔东北师大附中2021届高三上学期第三次模底考试理〕定义两种运算:22b a ba -=⊕,2)(b a b a -=⊗,那么()()222xf x x ⊕=-⊗是〔〕函数.〔〕A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数答案A.3.〔宁夏一中2021届高三第五次月考试题全解全析理〕把函数)||,0)(sin(πφωφω<>+=x y 的图象向左平移6π个单位,再将图像上所有点的横坐标伸长到原来的2倍〔纵坐标不变〕所得的图象解析式为 x sin y =,那么〔〕A .62πφω==, B .32π-=φ=ω,C .621π=φ=ω,D .1221π=φ=ω, 【答案】B【分析】根据变换的结果,逆行变换后即可得到sin y x =经过变换后的函数解析式,通过比较即可确定,ωϕ的值。

【解析】把sin y x =图象上所有点的横坐标缩小到原来的12倍得到的函数解析式是sin 2y x =,再把这个函数图象向右平移6π,得到的函数图象的解析式是sin 2()sin(2)63y x x ππ=-=-,与函数比较得2,3πωϕ==-。

高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.方程的根的情况是()A.仅有一根B.有两个正根C.有一正根和一个负根D.有两个负根【答案】C【解析】主要考查指数函数、对数函数的图象和性质。

解:采用数形结合的办法,在同一坐标系中,画出的图象可知。

2.已知 .【答案】8【解析】主要考查指数函数、二次函数的性质。

利用换元法。

解:可化为,令,又因为所以,,,故。

3.若下列命题正确的个数为()A.0B.1C.2D.3【答案】B【解析】主要考查对数运算法则。

解:根据对数的运算性质易知只有④是正确的。

4.已知_____________【答案】【解析】主要考查对数运算。

解:5.已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x年的剩留量为y,则y 与x的函数关系是A.y=(0.9576)B.y=(0.9576)100xC.y=()x D.y=1-(0.0424)【答案】A【解析】设每年减少q%,因为镭经过100年,剩留原来质量的95.76%,所以=95.76%, q%=1-(0.9576),所以=(0.9576)。

故选A。

【考点】主要考查函数的概念、解析式,考查应用数学知识解决实际问题的能力。

点评:审清题意,构建函数解析式。

6.一个体户有一种货,如果月初售出可获利100元,再将本利都存入银行,已知银行月息为2.4%,如果月末售出可获利120元,但要付保管费5元,问这种货是月初售出好,还是月末售出好?【答案】当成本大于525元时,月末售出好;成本小于525元时,月初售出好.【解析】解:设这种货的成本费为a元,则若月初售出,到月末共获利润为:y1=100+(a+100)×2.4%若月末售出,可获利y2=120-5=115(元)y 2-y1=0.024a-12.6=0.024(a-525)故当成本大于525元时,月末售出好;成本小于525元时,月初售出好.【考点】主要考查函数模型的广泛应用,考查应用数学知识解决实际问题的能力。

高一数学必修1《基本初等函数Ⅰ》测试卷(含答案)

高一数学必修1《基本初等函数Ⅰ》测试卷(含答案)

第二章《基本初等函数Ⅰ》测试卷考试时间:120分钟 满分:150分一.选择题.(本大题共12小题,每小题5分,共60分)1.给出下列说法:①0的有理次幂等于0;②01()a a R =∈;③若0,x a R >∈,则0a x >;④11221()33-=.其中正确的是( )A.①③④B.③④C.②③④D. ③ 2.552log 10log 0.25+的值为( )A.0B.1C.2D.4 3.函数2()3x f x =的值域为( )[A.[)0,+∞B.(],0-∞C.[)1,+∞D.(),-∞+∞4.幂函数2()(1),(0,)m f x m m x x =--∈+∞当时为减函数,则m 的值为( ) A.1 B.1- C.12-或 D.25.若函数2013()2012(0,1)x f x a a a -=->≠且,则()f x 的反函数图象恒过定点( ) A.(2013,2011)B.(2011,2013)C.(2011,2012)D.(2012,2013)6.函数22()log (1)()f x x x x R =++∈的奇偶性为( ) A.奇函数而非偶函数 B.偶函数而非奇函数C.非奇非偶函数D.既是奇函数又是偶函数-7. 若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的2倍,则a 的值为( )A. 24B. 22C. 14D. 128.如果60.7a =,0.76b =,0.7log 6c =,则( )A.a b c <<B.c b a <<C.c a b <<D.b c a <<9.函数2()log (1)2f x x =++的单调递增区间为( ) A.()1,-+∞ B.[)0,+∞ C.[]1,2 D.(]0,110.当1a >时,在同一坐标系中,函数x y a -=与log xa y =的图象是下图中的( )}11.对于0,1a a >≠,下列说法中,正确的是( )①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若22log log a a M N =则M N =; ④若M N =则22log log a a M N =?A.①②③④B.①③C.②④D.②12.已知R 上的奇函数()f x 和偶函数()g x 满足()()2(0,1)x x f x g x a a a a -+=-+>≠且,若(2),(2)g a f =则的值为( )A.2B.154 C.174D.2a 二.填空题.(本大题共4小题,每小题5分,共20分)13.设12322()((2))log (1)2x e x f x f f x x -⎧<⎪=⎨-≥⎪⎩,,则的值为, . 14.函数215()log (1)f x x =+的单调递减区间为 .15.已知23234(0),log 9a a a =>则的值为 .16.关于函数()2x f x -=,对任意的1212,,x x R x x ∈≠且,有下列四个结论:&()(0)0()0,F x F x F x ∴=⎧⎪=⎨又是a0∴<①当max 1241()()/xf t -⎡∴∈⎢⎣=5.0lg1.5L =+(0)1(2)f ∴=对任意的。

基本初等函数含答案,附上学生版

基本初等函数含答案,附上学生版

基本初等函数1.若函数y =f (x )的定义域是[0, 2 018],则函数g (x )=f (x +1)x -1的定义域是________. 解析:要使函数f (x +1)有意义,则0≤x +1≤2 018,解得-1≤x ≤2 017,故函数f (x +1)的定义域为[-1,2 017],所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 017x -1≠0,解得-1≤x <1或1<x ≤2 017.故函数g (x )的定义域为[-1,1)∪(1,2 017]. 2解析:∵ƒ(x )=log 2(x 2+a )且ƒ(3)=1,∴1=log 2(9+a ),∴9+a =2,∴a =-7. 答案:-73.若幂函数y =(m 2-3m +3)·x (m-2)(m +1)的图象不经过原点,则实数m 的值为________.解析:由⎩⎪⎨⎪⎧m 2-3m +3=1,(m -2)(m +1)≤0,解得m =1或2,经检验m =1或2都适合.答案:1或24.下列函数在其定义域上既是增函数又是奇函数的是________. A .f (x )=sin xB .f (x )=x 3+1C .f (x )=log 2(x 2+1+x )D .f (x )=1-2x1+2x解析:依题意,对于选项A ,注意到f (0)=f (π),因此函数f (x )=sin x 在其定义域上不是增函数;对于选项B ,注意到f (x )的定义域为R ,但f (0)=1≠0,因此函数f (x )=x 3+1不是奇函数;对于选项C ,注意到f (x )的定义域是R ,且f (-x )=log 2(x 2+1-x )=log 21x 2+1+x=-log 2(x 2+1+x )=-f (x ),因此f (x )是奇函数,且f (x )在R 上是增函数;对于选项D ,注意到f (x )=1-2x 1+2x =-1+21+2x 在R 上是减函数.故选C. 5.函数f (x )=|log 2 x |+x -2的零点个数为_______.解析:函数f (x )=|log 2 x |+x -2的零点个数,就是方程|log 2 x |+x -2=0的根的个数.令h (x )=|log 2 x |,g (x )=2-x ,画出两函数的图象,如图.由图象得h (x )与g (x )有2个交点,∴方程|log 2 x |+x -2=0的解的个数为2.6.已知a =log 372,b =⎝⎛⎭⎫1413,c =log 1315,则a ,b ,c 的大小关系为 .A .a >b >cB .b >a >cC .c >b >aD .c >a >b解析:∵ c =log 1315=log 35,a =log 372,又y =log3x 在(0,+∞)上是增函数, ∴ log35>log372>log33=1,∴ c >a >1.∵ y =14x 在(-∞,+∞)上是减函数,∴ 1413<140=1,即b <1.∴ c >a >b . 故选D.7.已知定义在R 上的偶函数f (x )满足对任意的0<x 1<x 2,f (x 2)-f (x 1)x 2-x 1>0均成立,若a =f (334),b=f (943-),c =f (-543),则a ,b ,c 的大小关系为( )A .b <a <cB .a <b <cC .c <b <aD .b <c <a解析:因为偶函数f (x )满足对任意的0<x 1<x 2,f (x 2)-f (x 1)x 2-x 1>0均成立,所以f (x )在(0,+∞)上是增函数.因为幂函数y =x 43在(0,+∞)上是增函数,指数函数y =3x 在(0,+∞)上是增函数,所以343<543,943-=383-<334<343,故c =f (-543)=f (543)>a =f (334)>b =f (943-),故b <a <c ,故选A.8.已知f (x )是R 上的奇函数,且f (x )=则f = .[解析] f=-f =-f =-f =-log 2=-log 22-1=1.9.若函数y =⎝⎛⎭⎫12|1-x |+m 的图象与x 轴有公共点,则实数m 的取值范围是________. 解析:∵|1-x |≥0,∴0<⎝⎛⎭⎫12|1-x |≤1,由题意得0<-m ≤1,即-1≤m <0. 答案:[-1,0)10.已知函数f (x )在定义域(0,+∞)上是单调函数,若对于任意x ∈(0,+∞),都有f =2,则f的值是 . 因为函数f (x )在定义域(0,+∞)上是单调函数,且f=2恒成立,所以f (x )-为一个大于0的常数,令这个常数为n (n>0),则有f (x )-=n ,且f (n )=2,所以f (n )=+n=2,解得n=1,所以f (x )=1+,11.设m ∈N ,若函数f (x )=2x -m 10-x +10存在整数零点,则符合条件的m 的个数为 .解析:由f (x )=0得m =2x +1010-x .又m ∈N ,因此有⎩⎪⎨⎪⎧10-x >0,2x +10≥0,解得-5≤x <10,x ∈Z ,∴x=-5,-4,-3,…,1,2,3,…,8,9,将它们分别代入m =2x +1010-x,一一验证得,符合条件的m 的取值为0,4,11,28,共4个.12.已知函数f (x )=⎩⎪⎨⎪⎧|x +2|,-3≤x <0,log a x ,x >0,其中a >0且a ≠1,若函数f (x )的图象上有且仅有一对点关于y 轴对称,则实数a 的取值范围是 . 解析:∵函数f (x )的图象上有且仅有一对点关于y 轴对称,∴f (x )=|x +2|(-3≤x <0)的图象关于y 轴对称的图象与f (x )=log a x (x >0)的图象有且只有一个交点.记f (x )=|x +2|(-3≤x <0)的图象关于y 轴对称的图象对应的函数为g (x ),则g (x )=|x -2|(0<x ≤3),作出函数f (x )与g (x )的大致图象.当0<a <1时,如图(1),显然g (x )的图象与f (x )(x >0)的图象有且只有一个交点,符合题意;当a >1时,如图(2),要使g (x )的图象与f (x )(x >0)的图象有且只有一个交点,则需log a 3>1,∴ 1<a <3.综上a ∈(0,1)∪(1,3).13.已知函数f (x )=⎩⎪⎨⎪⎧|log 3x |,0<x <3,13x 2-103x +8,x ≥3,若存在实数a 、b 、c 、d ,满足f (a )=f (b )=f (c )=f (d ),其中d >c >b >a >0,则abcd 的取值范围是 .解析:画出f (x )的图象,如图.由图象知0<a <1,1<b <3,则f (a )=|log 3a |=-log 3a ,f (b )=|log 3b |=log 3b ,∵f (a )=f (b ),∴-log 3a =log 3b ,∴ab =1.又由图象知,3<c <4,d >6,点(c ,f (c ))和点(d ,f (d ))均在二次函数y =13x 2-103x +8的图象上,故有c +d 2=5,∴d =10-c ,∴abcd =c (10-c )=-c 2+10c =-(c -5)2+25,∵3<c <4,∴21<-(c -5)2+25<24,即21<abcd <24.14.已知f (x )=2|x |+x 2+a 有唯一的零点,则实数a 的值为________.解析:设函数g (x )=2|x |+x 2,因为g (-x )=g (x ),所以函数g (x )为偶函数,当x ≥0时,g (x )=2x +x 2,为增函数;当x <0时,g (x )=⎝⎛⎭⎫12x +x 2,为减函数,所以g (x )≥g (0)=1.因为f (x )=2|x |+x 2+a 有唯一的零点,所以y =g (x )与y =-a 有唯一的交点,即a =-1. 答案:-115.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.解析:∵f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),∴-log 3m =log 3n ,∴mn =1.∵f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理:若log 3n =2,得n =9,则m =19,此时-log 3m 2=4,不满足题意.综上,可得nm=9.答案:916.函数f (x )的定义域为D ,若满足f (x )在D 内是单调函数,且存在[a ,b ]⊆D ,使得f (x )在[a ,b ]上的值域为,则称函数f (x )为“成功函数”.若函数f (x )=log m (m x +2t )(其中m>0且m ≠1)是“成功函数”,则实数t 的取值范围为 .[解析] 无论m>1还是0<m<1,f(x)=log m(m x+2t)都是R上的增函数,故应有则问题可转化为已知f(x)=,即log m(m x+2t)=,即m x+2t=在R上有两个不相等的实数根,求实数t的取值范围.令λ=(λ>0),则m x+2t=可化为2t=λ-λ2=-+,结合图像(图略)可得t∈.。

高中数学基本初等函数集锦(含解析)

高中数学基本初等函数集锦(含解析)

函数集锦1.(2018·江苏卷)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx 2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f [f (15)]的值为________. 解析 因为函数f (x )满足f (x +4)=f (x )(x ∈R ),所以函数f (x )的最小正周期为4.又因为在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx 2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,所以f [f (15)]=f [f (-1)]=f ⎝ ⎛⎭⎪⎫12=cos π4=22. 2.(2018·湖北名校联考)已知函数f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (32a -1)≥f (-3),则a 的最大值是( )A.1B.12C.14D.34解析f (x )在R 上是偶函数,且在(-∞,0)上是增函数,∴f (x )在(0,+∞)上是减函数,由f (32a -1)≥f (-3)=f (3),∴32a -1≤3,则2a -1≤12,∴a ≤34.故a 的最大值是34.3.(2018·全国Ⅱ卷)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A.-50B.0C.2D.50解析 ∵f (x )是定义域为(-∞,+∞)的奇函数,且f (1-x )=f (1+x ),∴f (4+x )=f (x ),∴f (x )是周期函数,且一个周期为4,又f (0)=0,知f (2)=f (0),f (4)=f (0)=0,由f (1)=2,知f (-1)=-2,则f (3)=f (-1)=-2,从而f (1)+f (2)+f (3)+f (4)=0,故f (1)+f (2)+f (3)+f (4)+…+f (50)=12×0+f (49)+f (50)=f (1)+f (2)=2,故选C.4.f (x )是定义在R 上的偶函数,f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=______. ∵f (x +4)=f (x -2),∴f (x +6)=f (x ),则T =6是f (x )的周期.∴f (919)=f (153×6+1)=f (1),又f (x )在R 上是偶函数,∴f (1)=f (-1)=6-(-1)=6,即f (919)=6.5.(2018·全国Ⅲ卷)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A.y =ln(1-x )B.y =ln(2-x )C.y =ln(1+x )D.y =ln(2+x )解析 设所求函数图象上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图象上,所以y =ln(2-x ).6.(2018·全国Ⅱ卷)函数f (x )=e x -e -xx 2的图象大致为( )解析 f (x )=e x -e -x x 2为奇函数,排除A ;当x >0时,f (1)=e -1e >2,排除C ,D ,只有B 项满足.答案 B7.(2018·浙江卷)函数y =2|x |sin 2x 的图象可能是( )解析 (1)设f (x )=2|x |sin 2x ,其定义域关于坐标原点对称,又f (-x )=2|-x |·sin(-2x )=-f (x ),所以y =f (x )是奇函数,故排除选项A ,B ;令f (x )=0,则sin 2x =0,所以x =k π2(k ∈Z ),故排除选项C.故选D.8.(2017·全国Ⅰ卷)已知函数f (x )=ln x +ln(2-x ),则( )A.f (x )在(0,2)上单调递增B.f (x )在(0,2)上单调递减C.y =f (x )的图象关于直线x =1对称D.y =f (x )的图象关于点(1,0)对称解析 由题意知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x -1)2+1],由复合函数的单调性知,函数f (x )在(0,1)上单调递增,在(1,2)上单调递减,所以排除A ,B ;又f (2-x )=ln(2-x )+ln x =f (x ),所以f (x )的图象关于直线x =1对称,C 正确,D 错误.9.已知偶函数f (x )在[0,+∞)上单调递减,且f (2)=0.若f (x -1)>0,则x 的取值范围是________. 由题意知f (x -1)>f (2). 又因为f (x )是偶函数且在[0,+∞)上单调递减,所以f (|x -1|)>f (2),即|x -1|<2,解得-1<x <3.10.(2018·天津卷)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系是( )A.a >b >cB.b >a >cC.c >b >aD.c >a >b 解析 c =log 1213=log 23,a =log 2e ,由y =log 2x 在(0,+∞)上是增函数,知c >a >1.又b =ln 2<1,故c >a >b . 答案 D11.(2018·全国Ⅰ卷)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A.[-1,0)B.[0,+∞)C.[-1,+∞)D.[1,+∞)解析 函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y=-x -a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1. C12 (1)函数f (x )=log 2x -1x 的零点所在的区间为( ) A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫12,1 C.(1,2) D.(2,3)(2)(2018·全国Ⅲ卷)函数f (x )=cos ⎝⎛⎭⎫3x +π6在[0,π]的零点个数为________. 解析 (1)函数f (x )的定义域为(0,+∞),且函数f (x )在(0,+∞)上为增函数.f ⎝ ⎛⎭⎪⎫12=log 212-112=-1-2=-3<0,f (1)=log 21-11=0-1<0, f (2)=log 22-12=1-12=12>0,f (3)=log 23-13>1-13=23>0,即f (1)·f (2)<0,∴函数f (x )=log 2x -1x 的零点在区间(1,2)内.(2)cos ⎝ ⎛⎭⎪⎫3x +π6=0,所以3x +π6=π2+k π,k ∈Z ,所以x =π9+k π3,k ∈Z ,当k =0时,x =π9;当k =1时,x =4π9;当k =2时,x =7π9,均满足题意,所以13.函数f (x )在[0,π]的零点个数为3.13.(2018·潍坊三模)已知a =⎝ ⎛⎭⎪⎫2323,b =⎝ ⎛⎭⎪⎫3423,c =log 3423,则a ,b ,c 的大小关系是( ) A.a <b <cB.b <a <cC.c <a <bD.a <c <b解析 ∵y =x 23在(0,+∞)上是增函数,∴a <b <1.由于0<23<34,∴c =log 3423>1.因此c >b >a . A14.函数f (x )=ln x +e x (e 为自然对数的底数)的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫0,1eB.⎝ ⎛⎭⎪⎫1e ,1C.(1,e)D.(e ,+∞)解析 函数f (x )=ln x +e x 在(0,+∞)上单调递增,因此函数f (x )最多只有一个零点.当x →0+时,f (x )→-∞;又f ⎝ ⎛⎭⎪⎫1e =ln 1e +e 1e =e 1e -1>0,∴⎝ ⎛⎭⎪⎫0,1e .。

高一数学函数概念与基本初等函数Ⅰ试题答案及解析

高一数学函数概念与基本初等函数Ⅰ试题答案及解析

高一数学函数概念与基本初等函数Ⅰ试题答案及解析1. (2010·浙江文,16)某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7 000万元,则x 的最小值是________. 【答案】20【解析】本题考查了不等式的实际应用.由题意列出不等式:3860+500+2[500(1+x %)+500(1+x %)2]≥7000 (x >0) 整理可得:x 2+300x -6400≥0,解之得,x ≥20. ∴x 的最小值为20.【考点】一元二次不等式的应用点评:本题是应用题,题中涉及的量比较多,在仔细审题、正确列出不等式的同时还应考虑到实际意义得到x >0. 2. 若,则( ) A .B .C .D .【答案】B 【解析】化为指数式即,所以,故选B 。

【考点】本题主要考查对数函数的概念、对数式与指数式的互化。

点评:理解对数函数的定义,注意对数式与指数式的互化。

3. (2011·佛山质检)如图所示是函数y =()x 和y =3x 2图象的一部分,其中x =x 1,x 2(-1<x 1<0<x 2)时,两函数值相等.(1)给出如下两个命题: ①当x <x 1时,()x <3x 2; ②当x >x 2时,()x <3x 2,试判断命题①②的真假并说明理由; (2)求证:x 2∈(0,1).【答案】(1)当x =-8时, ()-8=28=256,3×(-8)2=192,此时()-8>3×(-8)2,故命题①是假命题.又当x ∈(0,+∞)时,y =()x 是减函数,y =3x 2是增函数,故命题②是真命题. (2)证明:令则,∴f (x )在区间(0,1)内有零点, 又∵函数在区间(0,+∞)上单调递增,∴x 2∈(0,1)【解析】首先从图象上直观观察很容易得到①是错误的②正确。

基本初等函数练习题与答案

基本初等函数练习题与答案

5.
1
3x 3x 3x 3x 3, x 1 1 3x
6.

x
|
x

1

,y
|
y

0,
且y

1
2x
1
0,
x

1

y

1
8 2 x 1

0, 且y
1

2
2
7. 奇函数 f (x) x2 lg(x x2 1) x2 lg(x x2 1) f (x)
84 411
212 222
212 (1 210 )
3. 2 原式 log2 5 2 log2 51 log2 5 2 log2 5 2
4. 0 (x 2)2 ( y 1)2 0, x 2且y 1, logx ( yx ) log2 (12 ) 0
4.若函数
f
(x)
1
m ax 1
是奇函数,则 m
为__________。
5.求值:
2
27 3

2log2 3
log2
1 8

2 lg(
3
5
3
5 ) __________。
三、解答题
1.解方程:(1) log4 (3 x) log0.25 (3 x) log4 (1 x) log0.25 (2x 1)

log a
(1
1 a
)

log a
(1

a)

log a
(1

1 a
)
③ a1a

高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.函数的单调增区间为()A.(,+∞)B.(3,+∞)C.(-∞,)D.(-∞,2)【答案】D【解析】由得所以函数的定义域为设函数在是减函数;在是增函数;函数是减函数,所以函数单调增区间为故选D2.已知函数=" " ,求,的值.【答案】(1)(2)解:=()2+1 = ==+1=【解析】略3.(本小题满分12分)若非零函数对任意实数均有¦(a+b)=¦(a)·¦(b),且当时,.(1)求证:(2)求证:为减函数;(3)当时,解不等式【答案】解:(1)(2)设则,为减函数(3)由原不等式转化为,结合(2)得:故不等式的解集为.【解析】略4.(本小题满分14分)某商店经营的消费品进价每件14元,月销售量Q(百件)与销售价格P(元)的关系如下图,每月各种开支2000元,(1)写出月销售量Q(百件)与销售价格P(元)的函数关系。

(2)该店为了保证职工最低生活费开支3600元,问:商品价格应控制在什么范围?(3)当商品价格每件为多少元时,月利润并扣除职工最低生活费的余额最大?并求出最大值。

【答案】解:(1)2)当时,即,解得,故;当时,即,解得,故。

所以(3)每件19.5元时,余额最大,为450元。

【解析】略5.函数在上是增函数,则实数的范围是(▲ )A.≥B.≥C.≤D.≤【答案】A【解析】函数图像是开口向下,对称轴为的抛物线,所以函数在上是增函数,需使故选A6.求值:= ▲(答案化为最简形式)【答案】1【解析】略7.定义在区间(0,+∞)上的函数f(x)满足对任意的实数x,y都有,则等于▲【解析】略8.下面运算结果正确的是()A.B.C.D.【答案】B【解析】此题考查指数的运算性质;同底数幂的乘法法则:底数不变指数相加,所以,所以A错误;根据,可知:,所以B正确;因为,,二者不相等,所以C错误;因为任何一个不为零的零次方等于1,所以D中的底数是否为零不知道,所以D错误;所以选 B;9.设函数,则=()A.-3B.4C.9D.16【答案】B【解析】故选B10.A.B.C.D.【答案】D【解析】主要考查二次函数的图象和性质。

基本初等函数基础题(答案解析)

基本初等函数基础题(答案解析)

基本初等函数基础题汇总一、单选题(共15小题)1.若a>b,则下列各式中恒正的是()A.lg(a﹣b)B.a3﹣b3C.0.5a﹣0.5b D.|a|﹣|b|【解答】解:选项A:令a=1,b=,则a﹣b=,而lg=﹣lg2<0,A错误,选项B:因为函数y=x3在R上单调递增,又a>b,所以有a3>b3,则a3﹣b3>0,B正确,选项C:因为函数y=0.5x在R上单调递减,又a>b,所以有0.5a<0.5b,即0.5a﹣0.5b<0,C错误,选项D:令a=1,b=﹣2,则|a|﹣|b|=1﹣2=﹣1<0,D错误,故选:B【知识点】指数函数的图象与性质、对数函数的图象与性质、幂函数的性质2.设a=40.4,b=log0.40.5,c=log50.4,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【解答】解:∵a=40.4>1,0<b=log0.40.5<log0.40.4=1,c=log50.4<0,∴c<b<a.故选:D.【知识点】对数值大小的比较3.设lg2=a,lg3=b,则log512等于()A.B.C.D.【解答】C【知识点】对数的运算性质4.已知幂函数f(x)的图象过点(2,),则f()的值为()A.B.C.2D.8【解答】解:设幂函数f(x)=xα(α为常数),∵幂函数f(x)的图象过点(2,),∴,∴,∴f(x)==,∴f()==,故选:A.【知识点】幂函数的概念、解析式、定义域、值域5.已知幂函数y=(k﹣1)xα的图象过点(2,4),则k+α等于()A.B.3 C.D.4【解答】解:∵幂函数y=(k﹣1)xα的图象过点(2,4),∴k﹣1=1,2α=4,∴k=2,α=2,∴k+α=4,故选:D.【知识点】幂函数的概念、解析式、定义域、值域6.已知x>0,y>0,a≥1,若a•()y+log2x=log8y3+2﹣x,则()A.ln|1+x﹣3y|<0 B.ln|1+x﹣3y|≤0C.ln(1+3y﹣x)>0 D.ln(1+3y﹣x)≥0【解答】解:由题意可知,a•()3y+log2x=log2y+,∴=<≤,令f(x)=,则f(x)<f(3y),易知f(x)在(0,+∞)上为增函数,由f(x)<f(3y)得:x<3y,∴3y﹣x>0,∴1+3y﹣x>1,∴ln(1+3y﹣x)>ln1=0,故选:C.【知识点】对数的运算性质7.若a,b,c满足,则()A.c<b<a B.a<b<c C.b<c<a D.c<a<b【解答】解:∵2a=3,∴a=log23,∵1=log22<log23<log25,∴b>a>1,∵3c=2,∴c=log32,∵0=log31<log32<log33=1,∴0<c<1,∴b>a>c,故选:D.【知识点】对数值大小的比较8.已知实数a,b,c∈R,满足==﹣<0,则a,b,c的大小关系为()A.c>b>a B.c>a>b C.b>c>a D.b>a>c【解答】解:易知,a,b,c>0.由﹣<0,则c>1,不妨令c=e.则<0,故0<2a<1,0<b<1.因为,故,所以,而函数f(x)=,,易知0<x<1时,f′(x)>0,f(x)在(0,1)上递增,故0<a<b<1.所以c>b>a.故选:A.【知识点】对数值大小的比较9.函数f(x)=a x﹣2﹣ax+2a+1恒过定点P,则点P的坐标为()A.(2,1)B.(2,2)C.(3,1)D.(2,2)或(3,1)【解答】解:①令x﹣2=0,得x=2,此时y=1﹣2a+2a+1=2,所以定点P(2,2),②令x﹣2=1,得x=3,此时y=a﹣3a+2a+1=1,所以定点P(3,1)综上所述,点P的坐标为(2,2)或(3,1),故选:D.【知识点】指数函数的单调性与特殊点10.若函数为对数函数,则a=()A.1 B.2 C.3 D.4【解答】解:∵函数为对数函数,∴a2﹣3a+2=0,则a=1(舍去)或a=2,故选:B.【知识点】对数函数的定义11.若实数a,b满足2a=2﹣a,log2(b﹣1)=3﹣b,则a+b=()A.3 B.C.D.4【解答】解:由2a=2﹣a可知,a为函数y=2x与y=2﹣x的交点A的横坐标,由log2(b﹣1)=3﹣b=2﹣(b﹣1)可知,b﹣1为函数y=log2x与y=2﹣x的交点B的横坐标,如图所示:,∵函数y=2x与函数y=log2x关于直线y=x对称,∴点A与点B关于点(1,1)对称,∴a+b﹣1=2,即a+b=3,故选:A.【知识点】指数式与对数式的互化、对数的运算性质12.函数f(x)=a x﹣2+3(a>0且a≠1)的图象恒过定点P,点P又在幂函数g(x)的图象上,则g(3)的值为()A.4 B.8 C.9 D.16【解答】解:∵f(x)=a x﹣2+3,令x﹣2=0,得x=2,∴f(2)=a0+3=4,∴f(x)的图象恒过点(2,4).设幂函数g(x)=xα,把P(2,4)代入得2α=4,∴α=2,∴g(x)=x2,∴g(3)=32=9,故选:C.【知识点】幂函数的概念、解析式、定义域、值域13.已知幂函数f(x)=(m2﹣2m﹣2)x在(0,+∞)上是减函数,则f(m)的值为()A.3 B.﹣3 C.1 D.﹣1【解答】解:∵幂函数f(x)=(m2﹣2m﹣2)x在(0,+∞)上是减函数,则m2﹣2m﹣2=1,且m2+m﹣2<0,求得m=﹣1,故f(x)=x﹣2=,故f(m)=f(﹣1)==1,故选:C.【知识点】幂函数的概念、解析式、定义域、值域、幂函数的性质14.已知对数函数y=log a x(a>0,a≠1)的图象经过点P(3,﹣1),则幂函数y=x a的图象是()A.B.C.D.【解答】解:∵对数函数y=log a x(a>0,a≠1)的图象经过点P(3,﹣1),∴﹣1=log a3,∴a=,故幂函数y=x a=,它的图象如图D所示,故选:D.【知识点】幂函数的图象15.从2,4,6,8,10这五个数中,每次取出两个不同的数分别为a,b,共可得到lga﹣lgb的不同值的个数是()A.20 B.18 C.10 D.9【解答】解:首先从2,4,6,8,10这五个数中任取两个不同的数排列,共A52=20有种排法,又,,∴从2,4,6,8,10这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb=的不同值的个数是:20﹣2=18.故选:B.【知识点】对数的运算性质二、填空题(共10小题)16.设函数f(x)=a x+1﹣2(a>1)的反函数为y=f﹣1(x),若f﹣1(2)=1,则f(2)=【解答】解:由题意得:函数f(x)=a x+1﹣2(a>1)过(1,2),将(1,2)代入f(x)得:a2﹣2=2,解得:a=2,故f(x)=2x+1﹣2,故f(2)=6,故答案为:6.【知识点】反函数17.若函数y=f(x)的反函数f﹣1(x)=log a x(a>0,a≠1)图象经过点(8,),则f(﹣)的值为.【解答】解:由已知可得log a8=,即a=8,解得a=4,所以f﹣1(x)=log4x,再令log4x=﹣,即4=x,解得x=,由反函数的定义可得f(﹣)=,故答案为:.【知识点】反函数、函数的值18.若函数y=log2(x﹣m)+1的反函数的图象经过点(1,3),则实数m=.【解答】解:∵函数y=log2(x﹣m)+1的反函数的图象经过点(1,3),∴函数y=log2(x﹣m)+1的图象过点(3,1),∴1=log2(3﹣m)+1∴log2(3﹣m)=0,∴3﹣m=1,∴m=2.故答案为:2.【知识点】反函数19.已知幂函数y=(n∈N*)的定义域为(0,+∞),且单调递减,则n=.【解答】解:∵幂函数y=(n∈N*)的定义域为(0,+∞),且单调递减,∴,解得n=2.故答案为:2.【知识点】幂函数的性质20.已知函数y=f(x)在定义域R上是单调函数,值域为(﹣∞,0),满足f(﹣1)=﹣,且对于任意x,y∈R,都有f(x+y)=﹣f(x)f(y).y=f(x)的反函数为y=f﹣1(x),若将y=kf(x)(其中常数k>0)的反函数的图象向上平移1个单位,将得到函数y=f﹣1(x)的图象,则实数k的值为()【解答】解:由题意,设f(x)=y=﹣a x,根据f(﹣1)=﹣,解得a=3,∴f(x)=y=﹣3x,那么x=log3(﹣y),(y<0),x与y互换,可得f﹣1(x)=log3(﹣x),(x<0),则y=kf(x)=﹣k•3x,那么x=,x与y互换,可得y=,向上平移1个单位,可得y=+1,即log3(﹣x)=,故得k=3,故答案为:3.【知识点】反函数21.若函数y=log a(x﹣7)+2恒过点A(m,n),则=()【解答】解:∵函数y=log a(x﹣7)+2恒过点A(m,n),令x﹣7=1,求得x=8,y=2,可得函数的图象经过定点(8,2).若函数y=log a(x﹣7)+2恒过点A(m,n),则m=8,n=2,则==2,故答案为:2.【知识点】对数函数的单调性与特殊点22.已知函数f(x)=(m2﹣m﹣1)x1﹣m是幂函数,在x∈(0,+∞)上是减函数,则实数m的值为.【解答】解:∵函数f(x)=(m2﹣m﹣1)x1﹣m是幂函数,∴m2﹣m﹣1=1,求得m=2,或m=﹣1.∵当x∈(0,+∞)时,f(x)=x1﹣m是上是减函数,∴1﹣m<0,故m=2,f(x)=x﹣1=,故答案为:2.【知识点】幂函数的性质23.已知函数f(x)=x2﹣3tx+1,其定义域为[0,3]∪[12,15],若函数y=f(x)在其定义域内有反函数,则实数t的取值范围是()【解答】解:函数f(x)=x2﹣3tx+1的对称轴为x=,若≤0,即 t≤0,则 y=f(x)在定义域上单调递增,所以具有反函数;若≥15,即 t≥10,则 y=f(x)在定义域上单调递减,所以具有反函数;当3≤≤12,即 2≤t≤8时,由于区间[0,3]关于对称轴的对称区间是[3t﹣3,3t],于是当或,即t∈[2,4)或t∈(6,8]时,函数在定义域上满足1﹣1对应关系,具有反函数.综上,t∈(﹣∞,0]∪[2,4)∪(6,8]∪[10,+∞).【知识点】反函数24.如图所示,正方形ABCD的四个顶点在函数y1=log a x,y2=2log a x,y3=log a x+3(a>1)的图象上,则a=()【解答】解:设B(x1,2log a x1),C(x1,log a x1+3),A(x2,log a x2),D(x2,2log a x2),则log a x2=2log a x1,∴,又2log a x2=log a x1+3,,即x1=a,,∵ABCD为正方形,∴|AB|=|BC|;可得a2﹣a=2,解得a=2.故答案为:2.【知识点】对数函数的图象与性质25.已知函数y=f(x)与y=g(x)的图象关于直线y=x对称,若f(x)=x+log2(2x+2),则满足f(x)>log23>g(x)的x的取值范围是.【解答】解:∵函数y=f(x)与y=g(x)的图象关于直线y=x对称,f(x)=x+log2(2x+2),设y=x+,则y﹣x=,∴2y﹣x=2x+2,∴2y=22x+2x+1,∴2x==﹣1,x=.互换x,y,得g(x)=,∵f(x)>log23>g(x),∴x+log2(2x+2)>log23>,解得0<x<log215.∴满足f(x)>log23>g(x)的x的取值范围是(0,log215).故答案为:(0,log215).【知识点】反函数三、解答题(共10小题)26.计算以下式子的值:(1)2lg2+lg25;(2);(3)(2)0+2﹣2•(2)﹣(0.01)0.5.【解答】解:(1)原式=lg4+lg25=lg(4×25)=lg100=2;(2)原式=====1;(3)原式=.【知识点】对数的运算性质、有理数指数幂及根式27.求值:(1);(2)log354﹣log32+log23•log34.【解答】解:(1)原式=+4+1+=7;(2)原式=log327+•=3+2=5.【知识点】有理数指数幂及根式、对数的运算性质28.计算下列各式的值:(1);(2)lg25+4.【解答】解:(1)原式===;(2)原式=2lg5+2lg2﹣2log23•log32=2(lg5+lg2)﹣2=2﹣2=0.【知识点】对数的运算性质、有理数指数幂及根式29.已知幂函数f(x)=(m∈N*),经过点(2,),试确定m的值,并求满足条件f(2﹣a)>f(a﹣1)的实数a的取值范围.【解答】解:∵幂函数f(x)经过点(2,),∴=,即=∴m2+m=2.解得m=1或m=﹣2.又∵m∈N*,∴m=1.∴f(x)=,则函数的定义域为[0,+∞),并且在定义域上为增函数.由f(2﹣a)>f(a﹣1)得解得1≤a<.∴a的取值范围为[1,).【知识点】幂函数的性质30.(1)化简:(a,b均为正数);(2)求值:lg4+2lg5+π0﹣4ln+.【解答】解:(1)===.(2)lg4+2lg5+π0﹣4ln+==2+1﹣4×=22.【知识点】对数的运算性质、有理数指数幂及根式31.已知函数f(x)为函数y=a x(a>0,a≠1)的反函数,f(5)>f(6),且f(x)在区间[a,3a]上的最大值与最小值之差为1.(1)求a的值;(2)解关于x的不等式.【解答】解:(1)∵f(x)为函数y=a x的反函数,∴f(x)=log a x,又∵log a5>log a6得:0<a<1,由f(x)在区间[a,3a]上的最大值与最小值之差为1,得:log a a﹣log a3a=1,解得:a=;(2)∵0<a<1,∴,∴1<x≤2.【知识点】反函数、指、对数不等式的解法32.计算:(1).(2)已知,,求实数B的值.【解答】解:(1)原式==.(2)由题意知:,,∴3B=9B﹣6=(3B)2﹣6,解得3B=3或﹣2(舍),∴B=1.【知识点】对数的运算性质33.已知函数f(x)=log a(kx2﹣2x+6)(a>0且a≠1).(1)若函数的定义域为R,求实数k的取值范围;(2)若函数f(x)在[1,2]上恒有意义,求k的取值范围;(3)是否存在实数k,使得函数f(x)在区间[2,3]上为增函数,且最大值为2?若存在,求出k的值;若不存在,请说明理由。

(完整版)新高考真题《函数的概念与基本初等函数》小题专题训练(含答案)

 (完整版)新高考真题《函数的概念与基本初等函数》小题专题训练(含答案)
【解析】因为 ,故 ,
因为 为偶函数,故 ,
时 ,整理得到 ,
故 ,
7.【2020年高考全国I卷理数】若 ,则
A. B.
C. D.
【答案】B
【解析】设 ,则 为增函数,因为
所以 ,
所以 ,所以 .

当 时, ,此时 ,有
当 时, ,此时 ,有 ,所以C、D错误.
【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题.
13.【2020年高考天津】函数 的图象大致为
A B
CD
【答案】A
【解析】由函数的解析式可得: ,则函数 为奇函数,其图象关于坐标原点对称,选项CD错误;
当 时, ,选项B错误.
【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
14.【2020年高考天津】设 ,则 的大小关系为
A. B.
C. D.
【答案】D
【解析】因为 ,


所以 .
故选:D.
【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.
比较指对幂形式的数的大小关系,常用方法:
(1)利用指数函数的单调性: ,当 时,函数递增;当 时,函数递减;
A.10名B.18名
C.24名D.32名
【答案】B
【解析】由题意,第二天新增订单数为 ,设需要志愿者x名,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学基本初等函数一专题卷(附答案)
一、单选题(共10题;共20分)
1.若函数在区间上存在零点,则常数a的取值范围为()
A. B. C. D.
2.已知函数为函数的反函数,且函数的图像经过点,则函数的图像一定经过点()
A. B. C. D.
3.若,,,,则()
A. B. C. D.
4.设函数,则函数的零点的个数为( )
A. 4
B. 5
C. 6
D. 7
5.设集合,则()
A. B. C. D.
6.已知函数,若,,则的取值范围是()
A. B. C. D.
7.已知函数(),若函数有三个零点,则实数的取值范围是()
A. B. C. D.
8.已知函数,则函数的零点所在区间为()
A. B. C. D.
9.已知函数,若函数有四个零点,则的取值范围是()
A. B. C. D.
10.已知函数,若函数有且只有3个零点,则实数k的取值范围是()
A. B. C. D.
二、填空题(共6题;共7分)
11.函数的反函数________.
12.已知集合,任取,则幂函数为偶函数的概率为________(结果用数值表示)
13.定义,已知函数,, ,则的取值范围是________,若有四个不同的实根,则的取值范围是________.
14.设函数y=f(x)的定义域为D,若对任意的x1∈D,总存在x2∈D,使得f(x1)•f(x2)=1,则称函数f(x)具有性质M.下列结论:①函数y=x3﹣x具有性质M;②函数y=3x+5x具有性质M;③若函数y=log8(x+2),x∈[0,t]时具有性质M,则t=510;④若y具有性质M,则a =5.其中正确结论的序号是________.
15.已知函数,且在定义域内恒成立,则实数的取值范围为________.
16.设是定义在上的两个周期函数,的周期为4,的周期为2,且是奇函数.
当时,,,其中.若在区间上,
关于的方程有8个不同的实数根,则的取值范围是________.
三、解答题(共5题;共45分)
17.某工厂预购买软件服务,有如下两种方案:
方案一:软件服务公司每日收取工厂元,对于提供的软件服务每次元;
方案二:软件服务公司每日收取工厂元,若每日软件服务不超过次,不另外收费,若超过
次,超过部分的软件服务每次收费标准为元.
(1)设日收费为元,每天软件服务的次数为,试写出两种方案中与的函数关系式;
(2)该工厂对过去天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.
18.2021年我省将实施新高考,新高考“依据统一高考成绩、高中学业水平考试成绩,参考高中学生综合素质评价信息”进行人才选拔。

我校2018级高一年级一个学习兴趣小组进行社会实践活动,决定对某商场销售的商品A进行市场销售量调研,通过对该商品一个阶段的调研得知,发现该商品每日的销售量(单位:百件)与销售价格(元/件)近似满足关系式,其中为常数
已知销售价格为3元/件时,每日可售出该商品10百件。

(1)求函数的解析式;
(2)若该商品A的成本为2元/件,根据调研结果请你试确定该商品销售价格的值,使该商场每日销售该商品所获得的利润(单位:百元)最大。

19.设函数
(1)当时,求不等式的解集;
(2)当时,恒成立,求的最小值.
20.已知函数g(x)=e x﹣ax2﹣ax,h(x)=e x﹣2x﹣lnx.其中e为自然对数的底数.
(1)若f(x)=h(x)﹣g(x).
①讨论f(x)的单调性;
②若函数f(x)有两个不同的零点,求实数a的取值范围.
(2)已知a>0,函数g(x)恰有两个不同的极值点x1,x2,证明:.
21.己知函数.
(Ⅰ)当时,函数在上是减函数,求的取值范围;
(Ⅱ)若方程的两个根分别为,求证:.
答案
一、单选题
1. C
2. B
3. B
4. C
5. C
6. B
7. D
8. A
9. C 10. D
二、填空题
11. 12. 13. ;14. ②③ 15. 或16.
三、解答题
17. (1)解:由题可知,方案一中的日收费与的函数关系式为
方案二中的日收费与的函数关系式为
(2)解:设方案一种的日收费为,由条形图可得的分布列为
所以(元)
方案二中的日收费为,由条形图可得的分布列为
200
0.6
(元)
所以从节约成本的角度考虑,选择方案一.
18. (1)解:由题意,10 2(3-5)2,解得a=2,
故g(x)2(x﹣5)2(2<x<5)
(2)解:商场每日销售该商品所获得的利润为:
y=h(x)=(x﹣2)g(x)=2+2(x﹣5)2(x﹣2)(2<x<5),
y′=4(x-5)(x-2)+2(x﹣5)2=2(3x-9)(x﹣5).
列表得x,y,y′的变化情况:
由上表可得,x=3是函数h(x)在区间(2,5)内的极大值点,也是最大值点,此时
y=10
19. (1)解:当时,不等式化为
,或,或
综上,原不等式的解集为
(2)解:时,
作与的图像,
可知
的最小值为3(这时)
20. (1)解:f(x)=h(x)﹣g(x)=e x﹣2x﹣lnx﹣e x+ax2+ax=ax2+(a﹣2)x﹣lnx(x>0),
① (x>0),
(i)当a≤0时,f′(x)<0,函数f(x)在(0,+∞)上递减;
(ii)当a>0时,令f′(x)>0,解得;令f′(x)<0,解得,
∴函数f(x)在递减,在递增;
综上,当a≤0时,函数f(x)在(0,+∞)上单调递减;
当a>0时,函数f(x)在上单调递减,在上单调递增
②由①知,若a≤0,函数f(x)在(0,+∞)上单调递减,不可能有两个不同的零点,故a>0;
且当x→0时,f(x)→+∞;当x→+∞时,f(x)→+∞;
故要使函数f(x)有两个不同的零点,只需,即, 又函数在(0,+∞)上为增函数,且,故的解集为(0,1), 故实数a的取值范围为(0,1)
(2)证明: g′(x)=e x﹣2ax﹣a,依题意,则,两式相减得, ,
因为a>0,要证,即证,即证,
两边同除以,即证,
令t=x1﹣x2(t<0),即证,
令,则,
令,则,
当t<0时,p′(t)<0,所以p(t)在(﹣∞,0)上递减,
∴p(t)>p(0)=0,∴h′(t)<0,∴h(t)在(﹣∞,0)上递减,∴h(t)>h(0)=0,即, 故.
21. 解;(Ⅰ)在上递减,
对恒成立.
即对恒成立,所以只需.
,,
当且仅当时取“ ”,.
(Ⅱ)由已知,得,两式相减,
得.
由知

设,则.
.
在上递增,.

.
即.。

相关文档
最新文档