统计学第四版第七章课后题最全答案
《统计学》-第7章-习题答案
第七章思考与练习参考答案1.答:函数关系是两变量之间的确定性关系,即当一个变量取一定数值时,另一个变量有确定值与之相对应;而相关关系表示的是两变量之间的一种不确定性关系,具体表示为当一个变量取一定数值时,与之相对应的另一变量的数值虽然不确定,但它仍按某种规律在一定的范围内变化。
2.答:相关和回归都是研究现象及变量之间相互关系的方法。
相关分析研究变量之间相关的方向和相关的程度,但不能确定变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况;回归分析则可以找到研究变量之间相互关系的具体形式,并可变量之间的数量联系进行测定,确定一个回归方程,并根据这个回归方程从已知量推测未知量。
3.答:单相关系数是度量两个变量之间线性相关程度的指标,其计算公式为:总体相关系数,样本相关系数。
复相关系数是多元线性回归分析中度量因变量与其它多个自变量之间的线性相关程度的指标,它是方程的判定系数2R 的正的平方根。
偏相关系数是多元线性回归分析中度量在其它变量不变的情况下两个变量之间真实相关程度的指标,它反映了在消除其他变量影响的条件下两个变量之间的线性相关程度。
4.答:回归模型假定总体上因变量Y 与自变量X 之间存在着近似的线性函数关系,可表示为t t t u X Y ++=10ββ,这就是总体回归函数,其中u t 是随机误差项,可以反映未考虑的其他各种因素对Y 的影响。
根据样本数据拟合的方程,就是样本回归函数,以一元线性回归模型的样本回归函数为例可表示为:tt X Y 10ˆˆˆββ+=。
总体回归函数事实上是未知的,需要利用样本的信息对其进行估计,样本回归函数是对总体回归函数的近似反映。
两者的区别主要包括:第一,总体回归直线是未知的,它只有一条;而样本回归直线则是根据样本数据拟合的,每抽取一组样本,便可以拟合一条样本回归直线。
第二,总体回归函数中的0β和1β是未知的参数,表现为常数;而样本回归直线中的0ˆβ和1ˆβ是随机变量,其具体数值随所抽取的样本观测值不同而变动。
统计学贾俊平第四版第七章课后答案目前最全
7.1从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
(1) 样本均值的抽样标准差x σ等于多少?(2) 在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25, (1)样本均值的抽样标准差x σ=n σ=405=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96, 于是,允许误差是E =nα/2σZ =1.96×0.7906=1.5496。
7.2 某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x nσ=49==2.143 (2)在95%的置信水平下,求边际误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:(),x x x x -∆+∆=()120 4.2,120 4.2-+=(115.8,124.2) 7.37.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,xN n σμ⎛⎫ ⎪⎝⎭或2,s xN n μ⎛⎫⎪⎝⎭置信区间为:2x z x z n n αα⎛-+ ⎝n 100=1.2 (1)构建μ的90%的置信区间。
2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。
2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。
应用统计学(第四版) 第7章案例题目及答案
应用统计学(第四版)第7章案例题目及答案案例分析题一个纺织品制造商收到一个很大的用于制作制服的衣料订单,这些衣料由4条不同的染色流水线进行染色,每条流水线每天生产的衣料数量大致相同。
通常,如果订单数量不是很大,只会用到一条流水线来完成订单,因为这样衣料的图案亮度会控制得较好,而不同流水线染色的图案亮度总会有些差异。
但是这个订单很大,要同时用到4条流水线,这时候需要通过使所有生产的衣料的图案亮度的方差最小化来尽可能使图案保持一致。
最近,顾客抱怨图案亮度的差异太大了。
因此决定对4条流水线生产的衣料图案亮度进行方差分析检验。
从每条流水线随机抽取样本并测量亮度,测量值在0~100之间,数据如下表所示。
要求:(1) 在 =0.05的显著性水平下进行检验并给出你的结论。
(2) 哪两条流水线染色的衣料的平均亮度有明显的不同?(3) 在生产过程中停止某一流水线进行亮度调整的成本很高,如果只能将一条流水线停下来调整,应该调整哪一条呢?应该将其调整到多少亮度值才能使所染色的衣料的图案尽可能保持一致?答案P207四、案例分析因F=10.590967> F crit=2.7826004或P-value=1.526E-05<α=0.05,拒绝原假设H0,即不同流水线对衣料图案的亮度有显著影响。
(2)利用Fisher最小显著差异(LSD)方法进行多重比较,可判断哪些均值间有显著差异。
t分布的自由度为n-k=56-4=52,所以/20.025(52)t tα==2.0066,MSE=6.2109,有关样本均值差的绝对值及相应的LSD计算结果如下表所示:判断:若均值差绝对值大于相应的LSD就拒绝H0,表明它们之间衣料平均亮度有显著差异;否则不拒绝H0,不能认为它们之间有显著差异。
因此,根据上表计算结果判断如下:流水线1和2,流水线1和3,流水线2和4,流水线3和4它们之间衣料的图案的平均亮度有明显的不同。
(3)我们把各样本均值与样本总均值进行比较,从中找出偏离样本总均值最大者,则停止该流水线并将其图案亮度调整到样本总均值,能够使所染色衣料的图案亮度尽可能保持一致。
统计学7-10章课后作业答案
第7章 相关与回归分析1、设销售收入x 为自变量,销售成本y 为因变量。
现已根据某百货公司某年12个月的有关资料计算出以下数据(单位:万元):2()425053.73ix x -=∑ 647.88x =2()262855.25iy y -=∑549.8y =()()334229.09iix x y y --=∑(1)拟合简单线性回归方程,并对方程中回归系数的经济意义作出解释。
(2)计算可决系数和回归估计的标准误差。
(3)对回归系数进行显著性水平为5%的显著性检验。
(4)假定下年一月销售收入为800万元,利用拟合的回归方程预测销售成本,并给出置信度为95%的预测区间。
解:(1)定性分析可知,销售收入影响销售成本,以销售收入为自变量,销售成本为因变量拟合线性回归方程i i i y x u αβ=++,采用最小二乘法估计回归参数得:22()()(,)334229.09ˆ0.7863()425053.73ii xix x y y Cov x y x x βσ--===≈-∑∑ˆˆ549.80.7863647.8840.372y x αβ=-=-⨯= 因此,拟合的回归方程为:ˆˆˆ40.3720.7863i i iy x x αβ=+=+ 其中,回归系数β表示自变量每变动一个单位,因变量的平均变量幅度。
在此,表示销售收入每增加1万元,销售成本平均增加0.7863万元。
(2)可决系数22222[()()]334229.090.9998()()425053.73262855.25i i i i x x y y SSR R SST x x y y --===≈-⋅-⨯∑∑∑ (本问接下来的计算不做要求:为计算回归系数的标准误差,根据离差平方和分解,可知:2222222[()()]ˆˆˆˆˆˆ()[()()]()()334229.09262811.68425053.73i i i iiix x y y SSR y y x x x x x x αβαββ--=-=+-+=-=-==∑∑∑∑∑22ˆ()()262855.25262811.6843.57i i SSE SST SSR y y yy =-=---=-=∑∑因此有ˆ()0.0032S β===≈) (3)陈述假设:01:0 :0H H ββ=≠在原假设成立的前提下,构造t 检验统计量245.598t ===在5%的双侧检验显著性水平下,查自由度为10的t 分布表,得临界值0.025(10) 2.228t t =<,因此拒绝原假设。
统计学课后习题答案_(第四版)4.5.7.8章
《统计学》第四版 第四章练习题答案4.1 (1)众数:M 0=10; 中位数:中位数位置=n+1/2=5.5,M e =10;平均数:6.91096===∑nxx i(2)Q L 位置=n/4=2.5, Q L =4+7/2=5.5;Q U 位置=3n/4=7.5,Q U =12 (3)2.494.1561)(2==-=∑-n i s x x (4)由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
4.2 (1)从表中数据可以看出,年龄出现频数最多的是19和23,故有个众数,即M 0=19和M 0=23。
将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13个位置上的数值为23,所以中位数为M e =23(2)Q L 位置=n/4=6.25, Q L ==19;Q U 位置=3n/4=18.75,Q U =26.5(3)平均数==∑nx x i600/25=24,标准差65.612510621)(2=-=-=∑-n i s x x(4)偏态系数SK=1.08,峰态系数K=0.77(5)分析:从众数、中位数和平均数来看,网民年龄在23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
4.3 (1(2)==∑nx x i63/9=7,714.0808.41)(2==-=∑-n i s x x (3)由于两种排队方式的平均数不同,所以用离散系数进行比较。
第一种排队方式:v 1=1.97/7.2=0.274;v 2=0.714/7=0.102.由于v 1>v 2,表明第一种排队方式的离散程度大于第二种排队方式。
(4)选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。
4.4 (1)==∑nx x i8223/30=274.1中位数位置=n+1/2=15.5,M e =272+273/2=272.5(2)Q L 位置=n/4=7.5, Q L ==(258+261)/2=259.5;Q U 位置=3n/4=22.5,Q U =(284+291)/2=287.5(3) 17.211307.130021)(2=-=-=∑-n i s x x4.5 (1)甲企业的平均成本=总成本/总产量=41.193406600301500203000152100150030002100==++++乙企业的平均成本=总成本/总产量=29.183426255301500201500153255150015003255==++++原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
第四版统计学课后习题答案
第四版统计学课后习题答案《统计学》第四版统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学课后习题答案第七章相关分析与回归分析
统计学课后习题答案第七章相关分析与回归分析第七章相关分析与回归分析⼀、单项选择题1、相关分析就是研究变量之间得A、数量关系B、变动关系C、因果关系D、相互关系得密切程度2、在相关分析中要求相关得两个变量A、都就是随机变量B、⾃变量就是随机变量C、都不就是随机变量D、因变量就是随机变量3、下列现象之间得关系哪⼀个属于相关关系?A、播种量与粮⾷收获量之间关系B、圆半径与圆周长之间关系C、圆半径与圆⾯积之间关系D、单位产品成本与总成本之间关系4、正相关得特点就是A、两个变量之间得变化⽅向相反B、两个变量⼀增⼀减C、两个变量之间得变化⽅向⼀致D、两个变量⼀减⼀增5、相关关系得主要特点就是两个变量之间A、存在着确定得依存关系B、存在着不完全确定得关系C、存在着严重得依存关系D、存在着严格得对应关系6、当⾃变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A、直线相关关系B、负相关关系C、曲线相关关系在着A、正相关关系B、直线相关关系C、负相关关系D、曲线相关关系8、当变量X值增加时,变量Y值都随之增加,则变量X与Y之间存在着A、直线相关关系B、负相关关系C、曲线相关关系D、正相关关系9、判定现象之间相关关系密切程度得最主要⽅法就是A.对现象进⾏定性分析 B、计算相关系数C、编制相关表D、绘制相关图10、相关分析对资料得要求就是A.⾃变量不就是随机得,因变量就是随机得B、两个变量均不就是随机得C、⾃变量就是随机得,因变量不就是随机得D、两个变量均为随机得11、相关系数A、既适⽤于直线相关,⼜适⽤于曲线相关B、只适⽤于直线相关C、既不适⽤于直线相关,⼜不适⽤于曲线相关D、只适⽤于曲线相关12、两个变量之间得相关关系称为A、单相关B、复相关C、不相关D、负相关13、相关系数得取值范围就是A、-1≤r≤1B、-1≤r≤0C、0≤r≤114、两变量之间相关程度越强,则相关系数A、愈趋近于1B、愈趋近于0C、愈⼤于1D、愈⼩于115、两变量之间相关程度越弱,则相关系数A、愈趋近于1B、愈趋近于0C、愈⼤于1D、愈⼩于116、相关系数越接近于-1,表明两变量间A、没有相关关系B、有曲线相关关系C、负相关关系越强D、负相关关系越弱17、当相关系数r=0时,A.现象之间完全⽆关 B、相关程度较⼩B.现象之间完全相关 D、⽆直线相关关系18、假设产品产量与产品单位成本之间得相关系数为-0、89,则说明这两个变量之间存在A、⾼度相关B、中度相关C、低度相关D、显著相关19、从变量之间相关得⽅向瞧可分为A、正相关与负相关B、直线相关与曲线相关C、单相关与复相关D、完全相关与⽆相关20、从变量之间相关得表现形式瞧可分为A、正相关与负相关B、直线相关与曲线相关C、单相关与复相关D、完全相关与⽆相关21、物价上涨,销售量下降,则物价与销售量之间属于B、负相关C、正相关D、⽆法判断22、配合回归直线最合理得⽅法就是A、随⼿画线法B、半数平均法C、最⼩平⽅法D、指数平滑法23、在回归直线⽅程y=a+bx中b表⽰A、当x增加⼀个单位时,y增加a得数量B、当y增加⼀个单位时,x增加b得数量C、当x增加⼀个单位时,y得平均增加量D、当y增加⼀个单位时, x得平均增加量24、计算估计标准误差得依据就是A、因变量得数列B、因变量得总变差C、因变量得回归变差D、因变量得剩余变差25、估计标准误差就是反映A、平均数代表性得指标B、相关关系程度得指标C、回归直线得代表性指标D、序时平均数代表性指标26、在回归分析中,要求对应得两个变量A、都就是随机变量B、不就是对等关系C、就是对等关系D、都不就是随机变量27、年劳动⽣产率(千元)与⼯⼈⼯资(元)之间存在回归⽅程y=10+70x,这意味着年劳动⽣产率每提⾼⼀千元时,⼯⼈⼯资平均A、增加70元B、减少70元C、增加80元D、减少80元固定成本6000元,则总⽣产成本对产量得⼀元线性回归⽅程为:A、y=6+0、24xB、y=6000+24xC、y=24000+6xD、y=24+6000x29、⽤来反映因变量估计值代表性⾼低得指标称作A、相关系数B、回归参数C、剩余变差D、估计标准误差⼆、多项选择题1、下列现象之间属于相关关系得有A、家庭收⼊与消费⽀出之间得关系B、农作物收获量与施肥量之间得关系C、圆得⾯积与圆得半径之间得关系D、⾝⾼与体重之间得关系E、年龄与⾎压之间得关系2、直线相关分析得特点就是A、相关系数有正负号B、两个变量就是对等关系C、只有⼀个相关系数D、因变量就是随机变量E、两个变量均就是随机变量3、从变量之间相互关系得表现形式瞧,相关关系可分为A、正相关B、负相关C、直线相关D、曲线相关E、单相关与复相关4、如果变量x与y之间没有线性相关关系,则A、相关系数r=0B、相关系数r=1C、估计标准误差等于0D、估计标准误差等于15、设单位产品成本(元)对产量(件)得⼀元线性回归⽅程为y=85-5、6x,则A.单位成本与产量之间存在着负相关B、单位成本与产量之间存在着正相关C、产量每增加1千件,单位成本平均增加5、6元D、产量为1千件时,单位成本为79、4元E、产量每增加1千件,单位成本平均减少5、6元6、根据变量之间相关关系得密切程度划分,可分为A、不相关B、完全相关C、不完全相关D、线性相关E、⾮线性相关7、判断现象之间有⽆相关关系得⽅法有A、对现象作定性分析B、编制相关表C、绘制相关图D 、计算相关系数E 、计算估计标准误差8、当现象之间完全相关得,相关系数为A 、0B 、-1C 、1D 、0、5E 、-0、59、相关系数r =0说明两个变量之间就是A 、可能完全不相关B 、可能就是曲线相关C 、肯定不线性相关D 、肯定不曲线相关E 、⾼度曲线相关10、下列现象属于正相关得有A.家庭收⼊愈多,其消费⽀出也愈多B 、流通费⽤率随商品销售额得增加⽽减少D 、⽣产单位产品耗⽤⼯时,随劳动⽣产率得提⾼⽽减少E 、⼯⼈劳动⽣产率越⾼,则创造得产值就越多11、直线回归分析得特点有A 、存在两个回归⽅程B 、回归系数有正负值C 、两个变量不对等关系D 、⾃变量就是给定得,因变量就是随机得E 、利⽤⼀个回归⽅程,两个变量可以相互计算12、直线回归⽅程中得两个变量A 、都就是随机变量B 、都就是给定得变量C 、必须确定哪个就是⾃变量,哪个就是因变量D 、⼀个就是随机变量,另⼀个就是给定变量E 、⼀个就是⾃变量,另⼀个就是因变量13、从现象间相互关系得⽅向划分,相关关系可以分为A 、直线相关B 、曲线相关C 、正相关D 、负相关E 、单相关14、估计标准误差就是A.说明平均数代表性得指标B 、说明回归直线代表性指标C 、因变量估计值可靠程度指标D 、指标值愈⼩,表明估计值愈可靠E 、指标值愈⼤,表明估计值愈可靠15、下列公式哪些就是计算相关系数得公式16、⽤最⼩平⽅法配合得回归直线,必须满⾜以下条件A 、∑(y-y c )=最⼩值B 、∑(y-y c )=0C 、∑(y-y c )2=最⼩值D 、∑(y-y c )2=0E 、∑(y-y c )2=最⼤值17、⽅程y c =a+bx)((...))((.y y n x x n y x xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xx xy xy yy xx xy y x ∑-∑?∑-∑∑?∑-∑=-∑?-∑--∑===--∑=σσA.这就是⼀个直线回归⽅程B、这就是⼀个以X为⾃变量得回归⽅程C、其中a就是估计得初始值D、其中b就是回归系数E、y c就是估计值18、直线回归⽅程y c=a+bx中得回归系数bA.能表明两变量间得变动程度B、不能表明两变量间得变动程度C、能说明两变量间得变动⽅向D、其数值⼤⼩不受计量单位得影响E、其数值⼤⼩受计量单位得影响19、相关系数与回归系数存在以下关系A.回归系数⼤于零则相关系数⼤于零B、回归系数⼩于零则相关系数⼩于零C、回归系数等于零则相关系数等于零D、回归系数⼤于零则相关系数⼩于零E、回归系数⼩于零则相关系数⼤于零20、配合直线回归⽅程得⽬得就是为了A.确定两个变量之间得变动关系 B、⽤因变量推算⾃变量C、⽤⾃变量推算因变量D、两个变量相互推算E、确定两个变量之间得相关程度21、若两个变量x与y之间得相关系数r=1,则A.观察值与理论值得离差不存在B、y得所有理论值同它得平均值⼀致C、x与y就是函数关系D、x与y不相关E、x与y就是完全正相关22、直线相关分析与直线回归分析得区别在于A.相关分析中两个变量都就是随机得;⽽回归分析中⾃变量就是给定得数值,因变量就是随机得B.回归分析中两个变量都就是随机得;⽽相关分析中⾃变量就是给定得数值,因变量就是随机得C、相关系数有正负号;⽽回归系数只能取正值E、相关分析中根据两个变量只能计算出⼀个相关系数;⽽回归分析中根据两个变量只能计算出⼀个回归系数三、填空题1、研究现象之间相关关系称作相关分析。
统计学原理 第七章课后习题及答案
第七章 相关和回归一、单项选择题1.相关关系中,用于判断两个变量之间相关关系类型的图形是( )。
(1)直方图 (2)散点图 (3)次数分布多边形图 (4)累计频率曲线图 2.两个相关变量呈反方向变化,则其相关系数r( )。
(1)小于0 (2)大于0 (3)等于0 (4)等于13.在正态分布条件下,以2yx S (提示:yx S 为估计标准误差)为距离作平行于回归直线的两条直线,在这两条平行直线中,包括的观察值的数目大约为全部观察值的( )。
(1)68.27% (2)90.11% (3)95.45% (4)99.73% 4.合理施肥量与农作物亩产量之间的关系是( )。
(1)函数关系 (2)单向因果关系 (3)互为因果关系 (4)严格的依存关系 5.相关关系是指变量之间( )。
(1)严格的关系 (2)不严格的关系(3)任意两个变量之间关系 (4)有内在关系的但不严格的数量依存关系 6.已知变量X 与y 之间的关系,如下图所示:其相关系数计算出来放在四个备选答案之中,它是( )。
(1)0.29 (2)-0.88 (3)1.03 (4)0.997.如果变量z 和变量Y 之间的相关系数为-1,这说明两个变量之间是( )。
(1)低度相关关系 (2)完全相关关系 (3)高度相关关系 (4)完全不相关 8.若已知2()x x -∑是2()y y -∑的2倍,()()x x y y --∑是2()y y -∑的1.2倍,则相关系数r=( )。
(1)1.2 (3)0.92 (4)0.65 9.当两个相关变量之问只有配合一条回归直线的可能,那么这两个变量之间的关系是( )。
(1)明显因果关系 (2)自身相关关系(3)完全相关关系 (4)不存在明显因果关系而存在相互联系 10.在计算相关系数之前,首先应对两个变量进行( )。
(1)定性分析 (2)定量分析 (3)回归分析 (4)因素分析 11.用来说明因变量估计值代表性高低的分析指标是( )。
统计学贾俊平_第四版课后习题答案第七章
7.11 (1) 解:已知n=50,1a -=0.9522,ss x z xz nn a aæö-×+×ç÷èø=81.822981.8229101.491.966,101.491.9665050æö-´+´ç÷èø= (100.89,101.91)(2)解:已知n=50,1a -=0.95,2z a =00.0225z =1.96,样本比率p=(50-5)/50=0.9 则食品合格率的95%的置信区间:()()2211,p p p p p zp z nna aæö--ç÷-×+×ç÷èø=()()0.910.90.910.90.9 1.91.966,0.9 1.91.9665050æö---´+´ç÷èø=(0.8168,0.9832)7.22 (1)由题知,该题为大样本,方差已知,则有21m m -的95%的置信区间为:176.12100201001696.1)2325()(2221212/21±=+´±-=+±-n s n s z x x a即(0.824,3.176)(2m m -的95%的置信区间为:()()64.42112212212/21±=÷÷øöççèæ+-+±-n n s n ntxxpa 即(—2.64,6.64) (3)由题知,该题为小样本,方差不同, 则有21m m -的95%的置信区间为:()()64.42112212212/21±=÷÷øöççèæ+-+±-n n s n n tx x p a 即(—2.64,6.64) (4)由题知,该题为小样本,样本量不等,方差相等,则合并估计量为()()713128524211212222112==-+-+-=n n s n s n s p 则有21m m -的95%的置信区间为:()()02.42112212212/21±=÷÷øöççèæ+-+±-n n s n n tx x p a 即(—2.02,6.02) ,2z a =00.0225z =1.96。
统计学原理 第七章课后习题及答案
第七章 相关和回归一、单项选择题1.相关关系中,用于判断两个变量之间相关关系类型的图形是( )。
(1)直方图 (2)散点图 (3)次数分布多边形图 (4)累计频率曲线图 2.两个相关变量呈反方向变化,则其相关系数r( )。
(1)小于0 (2)大于0 (3)等于0 (4)等于13.在正态分布条件下,以2yx S (提示:yx S 为估计标准误差)为距离作平行于回归直线的两条直线,在这两条平行直线中,包括的观察值的数目大约为全部观察值的( )。
(1)68.27% (2)90.11% (3)95.45% (4)99.73% 4.合理施肥量与农作物亩产量之间的关系是( )。
(1)函数关系 (2)单向因果关系 (3)互为因果关系 (4)严格的依存关系 5.相关关系是指变量之间( )。
(1)严格的关系 (2)不严格的关系(3)任意两个变量之间关系 (4)有内在关系的但不严格的数量依存关系 6.已知变量X 与y 之间的关系,如下图所示:其相关系数计算出来放在四个备选答案之中,它是( )。
(1)0.29 (2)-0.88 (3)1.03 (4)0.997.如果变量z 和变量Y 之间的相关系数为-1,这说明两个变量之间是( )。
(1)低度相关关系 (2)完全相关关系 (3)高度相关关系 (4)完全不相关 8.若已知2()x x -∑是2()y y -∑的2倍,()()x x y y --∑是2()y y -∑的1.2倍,则相关系数r=( )。
(1)21.2 2(3)0.92 (4)0.65 9.当两个相关变量之问只有配合一条回归直线的可能,那么这两个变量之间的关系是( )。
(1)明显因果关系 (2)自身相关关系(3)完全相关关系 (4)不存在明显因果关系而存在相互联系 10.在计算相关系数之前,首先应对两个变量进行( )。
(1)定性分析 (2)定量分析 (3)回归分析 (4)因素分析 11.用来说明因变量估计值代表性高低的分析指标是( )。
统计学第四版第七章课后题最全答案
配对号
来自总体A得样本
来自总体B得样本
1
2
3
4
2
5
10
8
0
7
6
5
(1)计算A与B各对观察值之差,再利用得出得差值计算与。
=1、75,=2、62996
(2)设分别为总体A与总体B得均值,构造得95%得置信区间。
解:小样本,配对样本,总体方差未知,用t统计量
均值=1、75,样本标准差s=2、62996
(2)已知:E=0、1,=0、8,=0、05,=1、96
应抽取得样本量为:=≈62
7.20
(1)构建第一种排队方式等待时间标准差得95%得置信区间。
解:估计统计量
经计算得样本标准差=3、318
置信区间:
=0、95,n=10,==19、02,==2、7
==(0、1075,0、7574)
因此,标准差得置信区间为(0、3279,0、8703)
(3)已知=0、01,=2、58
由于n=100为大样本,所以总体均值得99%得置信区间为:
=812、58*813、096,即(77、94,84、096)
7、5(1)已知=3、5,n=60,=25,=0、05,=1、96
由于总体标准差已知,所以总体均值得95%得置信区间为:
=251、96*250、89,即(24、11,25、89)
7、4(1)已知n=100,=81,s=12, =0、1,=1、645
由于n=100为大样本,所以总体均值得90%得置信区间为:
=811、645*811、974,即(79、026,82、974)
(2)已知=0、05,=1、96
由于n=100为大样本,所以总体均值得95%得置信区间为:
统计学第七章课后题及答案解析
第七章 一、单项选择题1.按指数所包括的范围不同, 可以把它分为( )A.个体指数和总指数 B .数量指标指数和质量指标指数C.综合指数和平均指数 D.定基指数和环比指数2. 某集团公司为了反映所属各企业劳动生产率水平的提高情况 ,需要编制(A.质量指标综合指数B.数量指标综合指数C.可变构成指数D.固定构成指数3.在一般情况下,商品销售量指数和工资水平指数的同度量因素分别为( 商品销售量、平均工资水平 单位商品销售价格、职工人数 下列指数中属于数量指标指数的是 产品价格指数 产量指数 下面属于价格指数的是(B .商品销售量、职工人数D.单位商品销售价格、平均工资水平 )B .单位成本指数 D.劳动生产率指数5. A.工RQ 1 氓Q 1B -F 1Q 1ZFO Q OC.QZP0QoD E pQ oZP0Q O6. A.7. 某商品价格发生变化,现在的10%B. 90% 固定构成指数的公式是(100元只值原来的 C. 110%)90元,则价格指数为(D. 111%A. C.1. A. D.2. A. C. E.3. A. D.4.A. C. ZX i F i ZF iZX 1F 1ZF I... ZX P F O 1F0 D. ZX O F^ IXo F oIX 0F 1ZF iZFoIX 1F 0ZF O、多项选择题下列属于数量指标指数的有( 产量指数单位产品成本指数 下列表述正确的是( 综合指数是先综合后对比 平均数指数必须使用全面资料 固定构成指数受总体结构影响 同度量因素的作用有( 同度量作用 B.比较作用E. )B.销售量指数E.职工人数指数C.价格指数B .平均数指数是先对比后综合 D.平均数指数可以使用固定权数联系作用平衡作用c.权数作用对某商店某时期商品销售额的变动情况进行分析,其指数体系包括( 销售量指数B.销售价格指数总平均价格指数 D.销售额指数 E.个体指数若用某企业职工人数和劳动生产率的分组资料来进行分析时,该企业总的劳动生产率的A.C.4.A.C.变动主要受到()A.企业全部职工人数变动的影响B.企业劳动生产率变动的影响C.企业各类职工人数在全部职工人数中所占比重的变动影响D.企业各类工人劳动生产率的变动影响E.受各组职工人数和相应劳动生产率两因素的影响6.下列指数中,属于拉氏指数的有()' Q1P01 0 1 01 1 1 1P0Q0 P0Q1 C X Q0 P0 P0Q1 Q0 P1 7.某企业产品总成本报告期为183150元,比基期增长10%单位成本综合指数为104%则()A.总成本指数110%B.产量增长了5.77%C.基期总成本为166500元D.单位成本上升使总成本增加了7044元E.产量增产使总成本增加了9606元三、判断题1.综合指数的编制方法是先综合后对比。
统计学第七章、第八章课后题答案
统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3. 怎样理解置信区间 在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌.在公布调查结果时给出被调查人数是负责任的表现.这样则可以由此推算出置信度(由后面给出的公式),反之亦然.4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率.也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0。
95的概率覆盖总体参数.5. 简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为其中: 2222)(E z n σα=n z E σα2=▪与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
统计学课后习题答案第七章相关分析与回归分析
第七章相关分析与回归分析一、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.自变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪一个属于相关关系A.播种量与粮食收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆面积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化方向相反B.两个变量一增一减C.两个变量之间的变化方向一致D.两个变量一减一增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当自变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存在着A.正相关关系B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要方法是A.对现象进行定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.自变量不是随机的,因变量是随机的B.两个变量均不是随机的C.自变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适用于直线相关,又适用于曲线相关B.只适用于直线相关C.既不适用于直线相关,又不适用于曲线相关D.只适用于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值范围是≤r≤1 ≤r≤0≤r≤1 D. r=014.两变量之间相关程度越强,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全无关B.相关程度较小B.现象之间完全相关 D.无直线相关关系18.假设产品产量与产品单位成本之间的相关系数为,则说明这两个变量之间存在A.高度相关B.中度相关C.低度相关D.显着相关19.从变量之间相关的方向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关21.物价上涨,销售量下降,则物价与销售量之间属于A.无相关B.负相关C.正相关D.无法判断22.配合回归直线最合理的方法是A.随手画线法B.半数平均法C.最小平方法D.指数平滑法23.在回归直线方程y=a+bx中b表示A.当x增加一个单位时,y增加a的数量B.当y增加一个单位时,x增加b的数量C.当x增加一个单位时,y的平均增加量D.当y增加一个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动生产率(千元)和工人工资(元)之间存在回归方程y=10+70x,这意味着年劳动生产率每提高一千元时,工人工资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其生产成本为30000元,其中固定成本6000元,则总生产成本对产量的一元线性回归方程为:=6+ =6000+24x=24000+6x =24+6000x29.用来反映因变量估计值代表性高低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差二、多项选择题1.下列现象之间属于相关关系的有A.家庭收入与消费支出之间的关系B.农作物收获量与施肥量之间的关系C.圆的面积与圆的半径之间的关系D.身高与体重之间的关系E.年龄与血压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有一个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的一元线性回归方程为y=,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加元D.产量为1千件时,单位成本为元E.产量每增加1千件,单位成本平均减少元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.非线性相关7.判断现象之间有无相关关系的方法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差8.当现象之间完全相关的,相关系数为B.-1 E.-9.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.高度曲线相关10.下列现象属于正相关的有A.家庭收入愈多,其消费支出也愈多B.流通费用率随商品销售额的增加而减少C.产量随生产用固定资产价值减少而减少D.生产单位产品耗用工时,随劳动生产率的提高而减少E.工人劳动生产率越高,则创造的产值就越多11.直线回归分析的特点有A.存在两个回归方程B.回归系数有正负值C.两个变量不对等关系D.自变量是给定的,因变量是随机的E.利用一个回归方程,两个变量可以相互计算12.直线回归方程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是自变量,哪个是因变量D.一个是随机变量,另一个是给定变量E.一个是自变量,另一个是因变量13.从现象间相互关系的方向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关14.估计标准误差是A.说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈小,表明估计值愈可靠E.指标值愈大,表明估计值愈可靠15.下列公式哪些是计算相关系数的公式16.用最小平方法配合的回归直线,必须满足以下条件A.?(y-y c )=最小值B.?(y-y c )=0C.?(y-y c )2=最小值D.?(y-y c )2=0E.?(y-y c )2=最大值17.方程y c =a+bx222222)()(.)()())((...))((.y y n x x n y x xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xx xy xy yy xx xy yx ∑-∑⋅∑-∑∑⋅∑-∑=-∑⋅-∑--∑===--∑=σσA.这是一个直线回归方程B.这是一个以X为自变量的回归方程C.其中a是估计的初始值D.其中b是回归系数是估计值18.直线回归方程y c=a+bx中的回归系数bA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动方向D.其数值大小不受计量单位的影响E. 其数值大小受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数大于零则相关系数大于零B.回归系数小于零则相关系数小于零C.回归系数等于零则相关系数等于零D.回归系数大于零则相关系数小于零E.回归系数小于零则相关系数大于零20.配合直线回归方程的目的是为了A.确定两个变量之间的变动关系B.用因变量推算自变量C.用自变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在的所有理论值同它的平均值一致和y是函数关系与y不相关与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;而回归分析中自变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;而相关分析中自变量是给定的数值,因变量是随机的C.相关系数有正负号;而回归系数只能取正值D.相关分析中的两个变量是对等关系;而回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出一个相关系数;而回归分析中根据两个变量只能计算出一个回归系数三、填空题1.研究现象之间相关关系称作相关分析。
《统计学》-第7章-习题答案
第七章思考与练习参考答案1 •答:函数关系是两变量之间的确定性关系,即当一个变量取一定数值时,另一个变量有确定值与之相对应;而相关关系表示的是两变量之间的一种不确定性关系,具体表示为当一个变量取一定数值时,与之相对应的另一变量的数值虽然不确定,但它仍按某种规律在定的范围内变化。
2•答:相关和回归都是研究现象及变量之间相互关系的方法。
相关分析研究变量之间相关的方向和相关的程度,但不能确定变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况;回归分析则可以找到研究变量之间相互关系的具体形式,并可变量之间的数量联系进行测定,确定一个回归方程,并根据这个回归方程从已知量推测未知量。
3•答:单相关系数是度量两个变量之间线性相关程度的指标,其计算公式为:总体相关系数二样本相关系数,「一】。
复相关系数是多元线性回归分析中度量因变量与其它多个自变量之间的线性相关程度的指标,它是方程的判定系数R2的正的平方根。
偏相关系数是多元线性回归分析中度量在其它变量不变的情况下两个变量之间真实相关程度的指标,它反映了在消除其他变量影响的条件下两个变量之间的线性相关程度。
4.答:回归模型假定总体上因变量Y与自变量X之间存在着近似的线性函数关系,可表示为Y^ 11X t u t,这就是总体回归函数,其中u t是随机误差项,可以反映未考虑的其他各种因素对Y的影响。
根据样本数据拟合的方程,就是样本回归函数,以一元线性回归模型的样本回归函数为例可表示为:Y?=耳+弭x t。
总体回归函数事实上是未知的,需要利用样本的信息对其进行估计,样本回归函数是对总体回归函数的近似反映。
两者的区别主要包括:第一,总体回归直线是未知的,它只有一条;而样本回归直线则是根据样本数据拟合的,每抽取一组样本,便可以拟合一条样本回归直线。
第二,总体回归函数中的-0和-1是未知的参数,表现为常数;而样本回归直线中的'?Q和?i是随机变量,其具体数值随所抽取的样本观测值不同而变动。
统计学第四版第七章答案
第四章抽样分布与参数估计7.2某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
15=2.143xn49(2)在95%的置信水平下,求边际误差。
xt x,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=z2 因此,x txz2xz0.025x=1.96×2.143=4.2(3)如果样本均值为120元,求总体均值的95%的置信区间。
置信区间为:x,x=1204.2,1204.2=(115.8,124.2)xx7.4从总体中抽取一个n=100的简单随机样本,得到x=81,s=12。
要求:大样本,样本均值服从正态分布:xN,2n或xN,2sn置信区间为:ssxz2,xz2nn,sn=12100=1.2(1)构建的90%的置信区间。
z=2 z=1.645,置信区间为:811.6451.2,811.6451.2=(79.03,82.97)0.5(2)构建的95%的置信区间。
z=z0.025=1.96,置信区间为:811.961.2,811.961.2=(78.65,83.35)2(3)构建的99%的置信区间。
z=z0.005=2.576,置信区间为:812.5761.2,812.5761.2=(77.91,84.09)27.7某大学为了解学生每天上网的时间,在全校7500名学生中采取重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):3.33.16.25.82.34.15.44.53.24.42.05.42.66.41.83.55.72.32.11.91.25.14.34.23.60.81.54.71.41.22.93.52.40.53.62.5求该校大学生平均上网时间的置信区间,置信水平分别为90%,95%和99%。
解:(1)样本均值x=3.32,样本标准差s=1.61;(2)抽样平均误差:s重复抽样:x==1.61/6=0.268nn不重复抽样:x=NnsNnn1nN1N=7.37500363675001=0.268×0.995=0.268×0.998=0.267 (3)置信水平下的概率度:1=0.9,t= z=2 z=1.645 7.51=0.95,t= z=2 z=1.96 0.61=0.99,t= z=2 z=2.576 7.8(4)边际误差(极限误差):xtxzx21=0.9,x txz x=2 z3.4x重复抽样:x zx=z0.05x=1.645×0.268=0.4412不重复抽样:x zx= 2 z=1.645×0.267=0.4394.5x1=0.95,xtxz2x= z2.2x重复抽样:x zx= 2 z=1.96×0.268=0.5254.8x不重复抽样:x zx=z0.025x=1.96×0.267=0.52321=0.99,x txz x=z0.005x2重复抽样:x zx= 2 z=2.576×0.268=0.690.5x不重复抽样:xz2x= z=2.576×0.267=0.6880.5x(5)置信区间:x,xxx1=0.9,重复抽样:x,x=3.320.441,3.320.441=(2.88,3.76)xx不重复抽样:x,x=3.320.439,3.320.439=(2.88,3.76)xx 1=0.95,重复抽样:x,x=3.320.525,3.320.525=(2.79,3.85)xx 不重复抽样:x,x=3.320.441,3.320.441=(2.80,3.84)xx 1=0.99,重复抽样:x,x=3.320.69,3.320.69=(2.63,4.01)xx 不重复抽样:x,x=3.320.688,3.320.688=(2.63,4.01)xx7.4某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是: 103148691211751015916132假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。
统计学原理 第七章课后习题及答案(2020年7月整理).pdf
第七章 相关和回归 一、单项选择题1.相关关系中,用于判断两个变量之间相关关系类型的图形是( )。
(1)直方图 (2)散点图 (3)次数分布多边形图 (4)累计频率曲线图 2.两个相关变量呈反方向变化,则其相关系数r( )。
(1)小于0 (2)大于0 (3)等于0 (4)等于13.在正态分布条件下,以2yx S (提示:yx S 为估计标准误差)为距离作平行于回归直线的两条直线,在这两条平行直线中,包括的观察值的数目大约为全部观察值的( )。
(1)68.27% (2)90.11% (3)95.45% (4)99.73% 4.合理施肥量与农作物亩产量之间的关系是( )。
(1)函数关系 (2)单向因果关系 (3)互为因果关系 (4)严格的依存关系 5.相关关系是指变量之间( )。
(1)严格的关系 (2)不严格的关系(3)任意两个变量之间关系 (4)有内在关系的但不严格的数量依存关系 6.已知变量X 与y 之间的关系,如下图所示:其相关系数计算出来放在四个备选答案之中,它是( )。
(1)0.29 (2)-0.88 (3)1.03 (4)0.997.如果变量z 和变量Y 之间的相关系数为-1,这说明两个变量之间是( )。
(1)低度相关关系 (2)完全相关关系 (3)高度相关关系 (4)完全不相关 8.若已知2()x x −∑是2()y y −∑的2倍,()()x x y y −−∑是2()y y −∑的1.2倍,则相关系数r=( )。
(1)21.2 2(3)0.92 (4)0.65 9.当两个相关变量之问只有配合一条回归直线的可能,那么这两个变量之间的关系是( )。
(1)明显因果关系 (2)自身相关关系(3)完全相关关系 (4)不存在明显因果关系而存在相互联系 10.在计算相关系数之前,首先应对两个变量进行( )。
(1)定性分析 (2)定量分析 (3)回归分析 (4)因素分析 11.用来说明因变量估计值代表性高低的分析指标是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 练习题参考答案(1)已知σ=5,n=40,x =25,α=,z205.0=样本均值的抽样标准差σx=nσ=79.0405= (2)估计误差(也称为边际误差)E=z 2αnσ=*= (1)已知σ=15,n=49,x =120,α=,z205.0=(2)样本均值的抽样标准差σx=nσ==4915估计误差E=z 2αnσ=*=4915(3)由于总体标准差已知,所以总体均值μ的95%的置信区间为: nx z σα2±=±*=±,即(,)(1)已知σ=85414,n=100,x =104560,α=,z05.0=由于总体标准差已知,所以总体均值μ的95%的置信区间为: nx z σα2±=±*=10085414±.144即(,)(1)已知n=100,x =81,s=12, α=,z1.0=由于n=100为大样本,所以总体均值μ的90%的置信区间为:ns x z 2α±=±*=10012±,即(,)(2)已知α=,z205.0=由于n=100为大样本,所以总体均值μ的95%的置信区间为:ns x z 2α±=±*=10012±,即(,)(3)已知α=,z201.0=由于n=100为大样本,所以总体均值μ的99%的置信区间为:ns x z 2α±=±*=10012±,即(,)(1)已知σ=,n=60,x =25,α=,z05.0=由于总体标准差已知,所以总体均值μ的95%的置信区间为: nx z σα2±=±*=60.53±,即(,)(2)已知n=75,x =,s=, α=,z02.0=由于n=75为大样本,所以总体均值μ的98%的置信区间为:ns x z 2α±=±=759.823±,即(,)(3)已知x =,s=,n=32,α=,z21.0=由于n=32为大样本,所以总体均值μ的90%的置信区间为:ns x z 2α±=±=3274.90±,即(,)(1)已知:总体服从正态分布,σ=500,n=15,x =8900,α=,z205.0=由于总体服从正态分布,所以总体均值μ的95%的置信区间为:nx z σα2±=±*=15500±,即(,)(2)已知:总体不服从正态分布,σ=500,n=35,x =8900,α=,z205.0=虽然总体不服从正态分布,但由于n=35为大样本,所以总体均值μ的95%的置信区间为:nx z σα2±=±*=35500±,即(,)(3)已知:总体不服从正态分布,σ未知, n=35,x =8900,s=500, α=,z1.0=虽然总体不服从正态分布,但由于n=35为大样本,所以总体均值μ的90%的置信区间为:ns x z 2α±=±*=35500±,即(,)(4)已知:总体不服从正态分布,σ未知, n=35,x =8900,s=500, α=,z201.0=虽然总体不服从正态分布,但由于n=35为大样本,所以总体均值μ的99%的置信区间为:ns x z 2α±=±*=35500±,即(,)已知:n=36,当α=,,时,相应的z21.0=,z205.0=,z201.0=根据样本数据计算得:x =,s=由于n=36为大样本,所以平均上网时间的90%置信区间为:ns x z 2α±=±=361.61±,即(,)平均上网时间的95%置信区间为:ns x z 2α±=±=361.61±,即(,)平均上网时间的99%置信区间为:ns x z 2α±=±=361.61±,即(,)已知:总体服从正态分布,但σ未知,n=8为小样本,α=,)(18t205.0-= 根据样本数据计算得:x =10,s= 总体均值μ的95%的置信区间为:ns x t 2α±=±*=83.46±,即(,)已知:总体服从正态分布,但σ未知,n=16为小样本,α=,)(116t205.0-= 根据样本数据计算得:x =,s=从家里到单位平均距离的95%的置信区间为:ns x t 2α±=±=144.113±即(,)(1)已知:n=36,x =,α=,z205.0=由于n=36为大样本,所以零件平均长度的95%的置信区间为:ns x z 2α±=±=361.93±即(,)(2)在上面的估计中,使用了统计中的中心极限定理。
该定理表明:从均值为μ、方差为σ2的总体中,抽取了容量为n 的随机样本,当n 充分大时(通常要求30n ≥),样本均值的抽样分布近似服从均值为μ,方差为nσ2的正态分布。
(1)已知:总体服从正态分布,但σ未知,n=25为小样本,α=,)125(201.0-t=根据样本数据计算得:x =,s= 总体均值μ的99%的置信区间为:ns x t 2α±=±=250.871±即(,)已知:总体服从正态分布,但σ未知,n=18为小样本,α=,)118(1.0-t=根据样本数据计算得:x =,s=网络公司员工平均每周加班时间的90%的置信区间为:ns x t 2α±=±=187.8±即(,)(1)已知:n=44,p=,α=,z201.0=总体比例π的99%的置信区间为:n p p )1(p z 2-±α=±44)51.01(51.0-±,即(,)(2)已知:n=300,p=,α=,z205.0=总体比例π的95%的置信区间为:n p p )1(p z 2-±α=±300)82.01(82.0-±,即(,)(3)已知:n=1150,p=,α=,,z1.0=总体比例π的90%的置信区间为:n p p )1(p z 2-±α=±1150)48.01(48.0-±,即(,)已知:n=200,p=,α为和时,相应的z21.0=,z05.0=总体比例π的90%的置信区间为:n p p )1(p z 2-±α=±200)23.01(23.0-±,即(,)总体比例π的95%的置信区间为:n p p )1(p z 2-±α=±200)23.01(23.0-±,即(,)已知:σ=1000,估计误差E=200,α=,z201.0=应抽取的样本量为:Ez 222)(2n σα==200100058.2222⨯=167(1)已知:E=,π=,α=,z204.0=应抽取的样本量为:Ez 2212n )()(ππα-==2.0005.222.401.40)(-⨯⨯=2522(2)已知:E=,π未知,α=,z205.0=由于π未知,可以使用(因为对于服从二项分布的随机变量,当π取时,其方差达到最大值。
因此,在无法得到总体比例的值时,可以用代替计算。
这样得出的必要样本容量虽然可能比实际需要的容量大一些,但可以充分保证有足够高的置信水平和尽可能小的置信区间)故应抽取的样本量为:Ez 2212n )()(ππα-==4.006.9122.501.50)(-⨯⨯=601(3)已知:E=,π=,α=,z21.0=应抽取的样本量为:Ez 2212n )()(ππα-==.050.645122.5501.550)(-⨯⨯=268(1)已知:n=50,p=32/50=,α=,z205.0=总体中赞成该项改革的户数比例的95%的置信区间为:n p p )1(p z 2-±α=±50)64.01(64.0-±,即(,)(2)已知:E=,π=,α=,z205.0=应抽取的样本量为:Ez 2212n )()(ππα-==.10.96122.801.80)(-⨯⨯≈627.20(1)构建第一种排队方式等待时间标准差的95%的置信区间。
解:估计统计量()()2221~1n S n χσ--经计算得样本标准差22s = 置信区间:()()()()222222121111n S n S n n αασχχ---≤≤-- 1α-=,n=10,()221n αχ-=()20.0259χ=,()2121n αχ--=()20.9759χ=()()()()222221211,11n S n S n n ααχχ-⎛⎫-- ⎪ ⎪--⎝⎭=90.227290.2272,19.022.7⨯⨯⎛⎫ ⎪⎝⎭=(,) 因此,标准差的置信区间为(,)(2)构建第二种排队方式等待时间标准差的95%的置信区间。
解:估计统计量()()2221~1n S n χσ-- 经计算得样本标准差21s = 置信区间:()()()()222222121111n S n S n n αασχχ---≤≤--1α-=,n=10,()221n αχ-=()20.0259χ=,()2121n αχ--=()20.9759χ=()()()()222221211,11n S n S n n ααχχ-⎛⎫-- ⎪ ⎪--⎝⎭=9 3.3189 3.318,19.02 2.7⨯⨯⎛⎫ ⎪⎝⎭=(,) 因此,标准差的置信区间为(,)(3)根据(1)和(2)的结果,你认为哪种排队方式更好 第一种方式好,标准差小!7.23 下表是由4对观察值组成的随机样本。
(1)计算A 与B 各对观察值之差,再利用得出的差值计算d 和d s 。
d =,d s =(2)设12μμ和分别为总体A 和总体B 的均值,构造12d μμμ=-的95%的置信区间。
解:小样本,配对样本,总体方差未知,用t 统计量d d t =()1t n -均值=,样本标准差s= 置信区间:()()2211d t n d t n αα⎛--+- ⎝1α-=,n=4,()21t n α-=()0.0253t =()()2211d t n d t n αα⎛--+- ⎝=1.75 3.182 3.182⎛-+ ⎝=(,)7.25 从两个总体中各抽取一个12n n ==250的独立随机样本,来自总体1的样本比例为1p =40%,来自总体2的样本比例为2p =30%。
要求: (1)构造12ππ-的90%的置信区间。
(2)构造12ππ-的95%的置信区间。