【全国百强校】衡水金卷河北衡水中学2017-2018年高二下学期期中考试数学(理)试卷

合集下载

【全国百强校】河北省衡水中学2017届高三下学期二调考试数学(文)试题版答案

【全国百强校】河北省衡水中学2017届高三下学期二调考试数学(文)试题版答案

2016~2017学年度第二学期高三年级二调考试一、选择题ABCCD ADDCB CD二、填空题5 2- 4 191622=+y x . 三、解答题:本大题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

18. 解:(1)当日需求量n ≥20时,利润y=1000;当日需求量n <20时,利润y=50n ﹣20(20﹣n )=70n ﹣400;(4分) ∴利润y 关于当天需求量n 的函数解析式y=(n ∈N *)(2)(i )这100天的日利润的平均数为=937;(9分)(ii )当天的利润不少于900元,当且仅当日需求量不少于19个,故当天的利润不少于900元的概率为P=0.2+0.14+0.13+0.13+0.1=0.7.(12分)19. (本题满分12分)(1)证明:连接AO ,在1AOA ∆中,作1OE AA ⊥于点E ,因为11//AA BB ,得1OE BB ⊥,因为1A O ⊥平面ABC ,所以1A O BC ⊥,因为,AB AC OB OC ==,得AO BC ⊥,所以BC ⊥平面1AA O ,所以BC OE ⊥,所以OE ⊥平面11BB C C ,又2211,5AO AB BO AA =-==,得2155AO AE AA ==........5分 (2)由已知可得11ABB A Y 的高2212262()55h =+=,11BCC B Y 的高222215h =+=⇒2S =⨯侧()265454565⨯+⨯=+.......12分 20. (Ⅰ)由题设可得(2,)M a a ,(22,)N a -,或(22,)M a -,(2,)N a a .∵12y x '=,故24x y =在x =22a 处的到数值为a ,C 在(22,)a a 处的切线方程为(2)y a a x a -=-,即0ax y a --=.故24x y =在x =-22a 处的到数值为-a ,C 在(22,)a a -处的切线方程为(2)y a a x a -=-+,即0ax y a ++=.故所求切线方程为0ax y a --=或0ax y a ++=. ……5分 (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a +. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意. ……12分 21.若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h fg f ==<,故x =1不是()h x 的零点. 当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数.(ⅰ)若3a ≤-或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(0,3a -)单调递减,在(3a -,1)单调递增,故当x =3a-时,()f x 取的最小值,最小值为()3a f -=21334aa -+. ①若()3af ->0,即34-<a <0,()f x 在(0,1)无零点. ②若()3af -=0,即34a =-,则()f x 在(0,1)有唯一零点; ③若()3af -<0,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时,()f x 在(0,1)有两个零点;当534a -<≤-时,()f x 在(0,1)有一个零点.…10分综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点. ……12分故)max3+12+4t t-=.。

河北省衡水中学高二下学期期中考试(数学文).doc

河北省衡水中学高二下学期期中考试(数学文).doc

河北省衡水中学高二下学期期中考试(数学文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间1。

第Ⅰ卷(选择题 共70分)一、 选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. 高三某班有50名学生,其中男生30人,女生为了调查这50名学生的身体状况,现采用分层抽样的方法,抽取一个容量为本,则男生被抽取的人数是( ) A .10 B .12 C .8 D .62.在84)21(xx +的展开式中有理项的项数共有( )项。

A .8B .3C .2D .03.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为( )A .540B .300C .180D .1504.605.1的计算结果精确到0.01的近似值是( )A .1.23B .1.24C .1.33D .1.345. 若443322104)32(x a x a x a x a a x ++++=+,则2024()a a a ++213()a a -+的值为: ( ) A 、1 B 、-1 C 、0 D 、26.某家庭电话,打进的电话响第一声时被接的概率为101,响第一声时不接响第二声时被接的概率为103,响前两声时不接响第三声时被接的概率为52,则电话在响三声内被接的概率为( )A .53B . 107C . 54D .17.某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为 ( )12527.12536.12554.12581.D C B A8.为了调查某厂工人生产某种产品的能力,随机抽查了人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)55,65,65,75,[)[)75,85,85,95,由此得到频率分布直方图如图,则这人中一天生产该产品数量在[)55,75的人数是( )A .5B .8C .13D .17第8题9.曲线1323+-=x x y 在点)1,1(-处的切线方程为( ) A .43-=x y B .23+-=x y C .34+-=x y D .54-=x y10.甲、乙两种冬小麦实验品种连续x 年的平均单位面积产量如上:试根据这组数据估计哪一种小麦品种产量较稳定( )。

河北省衡水中学滁州分校2017-2018学年高二下学期开学考试数学理试题 含答案 精品

河北省衡水中学滁州分校2017-2018学年高二下学期开学考试数学理试题 含答案 精品

启用前绝密河北省衡水中学滁州分校2017-2018学年下学期开学考试高二(理科)数学注意事项:1.你现在拿到的这份试卷是满分150分,作答时间为120分钟 2.答题前请在答题卷上填写好自己的姓名、班级、考号等信息 3.请将答案正确填写在答题卡上第I 卷(选择题60分)一、选择题(本大题共12个小题,每小题5分,共60分。

)1.已知m 为正数,则“1m >”是“11lg 1m m+< ”的 ( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 2. 由命题“存在,使”是假命题,得的取值范围是,则实数的值是( )A. 2B.C. 1D.3. 如图,空间四边形OABC 中,点,M N 分别在,OA BC 上, 2OM MA =,BN CN =,则MN = ( )A.121232OA OB OC -+ B. 211322OA OB OC -++ C. 111222OA OB OC +- D. 221332OA OB OC +-4. 设点P 为双曲线22221x y a b-=(0a >, 0b >)上一点, 12,F F 分别是左右焦点,I 是12PF F ∆的内心,若1IPF ∆, 2IPF ∆, 12IF F ∆的面积123,,S S S 满足()1232S S S -=,则双曲线的离心率为( )A. 2B.C. 4D.5.如图,面ACD α⊥,B 为AC 的中点, 2,60,AC CBD P α=∠=为内的动点,且P 到直线BD APC ∠的最大值为( )A. 30°B. 60°C. 90°D. 120°6.如图,在长方体ABCD A B C D '-'''中,点,P Q 分别是棱,BC CD 上的动点,4,3,BC CD CC '===直线CC '与平面'PQC 所成的角为030,则PQC ∆'的面积的最小值是( )A.B. 8C.D. 10 7.如图,60°的二面角的棱上有,A B 两点,直线,AC BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4,6,8AB AC BD ===,则CD 的长为( )A. B. 7C. D. 98.已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形, AD ⊥平面ABC , 26AD AB ==,则该球的表面积为( )A. 48πB.C. 24πD. 16π9.若直线()2y k x =-与曲线y = )A. k 有最大值3,最小值3- B. k 有最大值12,最小值12-C. k 有最大值0,最小值D. k 有最大值0,最小值12-10.在四面体ABCD 中, ,E G 分别是,CD BE 的中点,若AG xAB yAD zAC =++,则x y z ++=( )A.13 B. 12C. 1D. 211.若直线()220,0ax by a b +-=>始终平分圆224280x y x y +---=的周长,则12a b+的最小值为A. 1B. 5C.D. 3+12.如图,在长方体1111ABCD A BC D -中, 1AB =, BC =,点M 在棱1CC 上,且1MD MA ⊥,则当1MAD ∆的面积最小时,棱1CC 的长为A.B. C. 2 D. 第II 卷(非选择题 90分)二、填空题(本大题共4个小题,每小题5分,共20分。

2017-2018学年河北省衡水中学高二下期末考试复习卷数学(文)试题(解析版)

2017-2018学年河北省衡水中学高二下期末考试复习卷数学(文)试题(解析版)

2017-2018学年河北省衡水中学高二下期末考试复习卷数学(文)试题(解析版)一、单选题1.已知集合2{|230}A x x x =--≤,(){|ln 2}B x y x ==-,则A B ⋂=( ) A. ()13, B. (]13, C. [)12-, D. ()12-, 【答案】C【解析】由题意可得:{}|13A x x =-≤≤,{}|2B x x =<,结合交集的定义可得:{}|12A B x x ⋂=-≤<,表示为区间的形式即:[)1,2-. 本题选择C 选项.2.如图,已知AB a = ,AC b = ,4BC BD = ,3CA CE = ,则DE =( )A. 3143b a -B.53124a b - C. 3143a b - D. 53124b a -【答案】D【解析】由题意可得:()3344DC BC b a ==- ,1133CE CA b ==-,则:()315343124DE DC CE b a b b a =+=--=- .本题选择D 选项.3.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则Sn a n=( )A. 4n −1B. 4n −1C. 2n −1D. 2n −1 【答案】D【解析】试题分析:设等比数列{a n }的公比为q ,则a 1(1+q 2)=52a 1q (1+q 2)=54,解得 a 1=2q =12,∴S n a n =a 1(1−q n )1−q a 1q n −1=2×(1−12n )1−122×(12)n −1=2n −1.故选D .【考点】1、等比数列的通项公式;2、等比数列的前n 项和公式.4.某校有高级教师90人,一级教师120人,二级教师75人,现按职称用分层抽样的方法抽取38人参加一项调查,则抽取的一级教师人数为( ) A. 10 B. 12 C. 16 D. 18 【答案】C【解析】根据分层抽样性质,设抽取的一级教师人数为m ,则120901207538m=++,解得16m =,故选择C.5.已知不等式2201x m x ++>-对一切()1x ∈+∞,恒成立,则实数m 的取值范围是( )A. 6m >-B. 6m <-C. 8m >-D. 8m <- 【答案】A【解析】不等式即:21221111m x x x x ⎛⎫>--=--++ ⎪--⎝⎭恒成立, 则max 221m x x ⎛⎫>-- ⎪-⎝⎭结合1x >可得:10x ->,由均值不等式的结论有:12112161x x ⎛⎫⎛⎫--++≤-=- ⎪ ⎪ ⎪-⎝⎭⎝⎭, 当且仅当2x =时等号成立,据此可得实数m 的取值范围是6m >-. 本题选择A 选项.点睛:对于恒成立问题,常用到以下两个结论: (1)a ≥f (x )恒成立⇔a ≥f (x )max ; (2)a ≤f (x )恒成立⇔a ≤f (x )min .6.已知函数()cos2f x x x =-的图象在区间0,3a ⎡⎤⎢⎥⎣⎦和42,3a π⎡⎤⎢⎥⎣⎦上均单调递增,则正数a 的取值范围是( )A. 5,612ππ⎡⎤⎢⎥⎣⎦B.5,12ππ⎡⎤⎢⎥⎣⎦ C. ,4ππ⎡⎤⎢⎥⎣⎦ D. 2,43ππ⎡⎤⎢⎥⎣⎦【答案】B【解析】()cos22sin 26f x x x x π⎛⎫=-=- ⎪⎝⎭,由222262k x k πππππ-≤-≤+,得63k x k ππππ-≤≤+,因为在区间0,3a ⎡⎤⎢⎥⎣⎦和42,3a π⎡⎤⎢⎥⎣⎦上均单调递增, 533{51226a a a ππππ≤⇒≤≤≥7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A. 12B. 18C. 24D. 30【答案】C【解析】如图还原几何体,A C=3,A B=4,A A′=5,红色线表示削下去的部分,剩下的蓝色的线为三视图的几何体,∠C A B=900,所以几何体的体积是V=12×3×4×5−13×12×3×4×3=24,故选C.8.执行如图所示的程序框图,若输入的16,4a b==,则输出的n=()A. 4B. 5C. 6D. 7 【答案】B【解析】 执行该程序框图,可知第1次循环:1161624,248,22a b n =+⨯==⨯==;第2次循环:1242436,2816,32a b n =+⨯==⨯==;第3次循环:1363654,21632,42a b n =+⨯==⨯==;第4次循环:1545481,23264,52a b n =+⨯==⨯==;第5次循环:12438181,26412822a b =+⨯==⨯=, 此时a b ≤成立,输出结果5n =,故选B.9.已知函数()2x xe ef x --=,1x 、2x 、3x R ∈,且120x x +>,230x x +>,310x x +>,则()()()123f x f x f x ++的值(______)A.一定等于零.B.一定大于零.C.一定小于零.D.正负都有可能.【答案】B【解析】由已知可得()f x 为奇函数,且()f x 在R 上是增函数,由12120x x x x +>⇒>-⇒()()()122f x f x f x >-=-,同理可得()()23f x f x >-,()()()()3112f x f x f x f x >-⇒+()()()()()()()()32311230f x f x f x f x f x f x f x +>-++⇒++>.【点睛】本题考查函数的奇偶性和单调性,涉及函数与不等式思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性强,属于较难题型.由已知可得()f x 为奇函数,且是增函数,由12120x x x x +>⇒>-()()()122f x f x f x ⇒>-=-,同理可得()()23f x f x >-,()()31f x f x >-,三式相加化简即可得正解.10.已知点()M a b ,与点()01N -,在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,a b +有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是9344⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,, 正确的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】将N 点坐标代入直线方程有:04590++=>, 据此由M 点的坐标可得:3450a b -+<,说法①错误;当a>0时,结合3450a b -+<可得354a b +>,则35544a ab a ++>+>,a+b 既无最小值,也无最大值,故②错误; 很明显点N 与坐标原点位于直线的同侧,设原点到直线3x−4y+5=0的距离为d,则1d ==,而点M 与坐标原点位于直线的异侧,故221a b +>,说法③正确;当a>0且a≠1时,11b a +-表示点M(a,b)与P(1,−1)连线的斜率,如图所示: 当a=0,54b =时,1914b a +=--,又直线3x−4y+5=0的斜率为34, 故11b a +-的取值范围是9344⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,,,故④正确。

河北省衡水市安平中学2017-2018学年高二下学期期中考试文科数学试题(含精品解析)

河北省衡水市安平中学2017-2018学年高二下学期期中考试文科数学试题(含精品解析)

安平中学2017-2018学年第二学期期中考试高二数学(文科)试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.1.若a,b是任意实数,且a>b,则下列不等式成立的是( )A. a2>b2B.C. lg(a-b)>0D. (【答案】D【解析】试题分析:A中不成立,B中不成立,C中不成立,D中由指数函数单调性可知是成立的考点:不等式性质2.2.将参数方程(θ为参数)化为普通方程是( )A. y=x-2B. y=x+2C. y=x-2(2≤x≤3)D. y=x+2(0≤y≤1)【答案】C【解析】分析:先根据代入消元法消参数,再根据三角函数有界性确定范围.详解:因为,所以y=x-2,因为,所以2≤x≤3,因此选C.点睛:1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换法.2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x及y的取值范围的影响.3.3.设a、b∈R,则“(a-b)·a2<0”是“a<b”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】由(a-b)a2<0⇒a≠0且a<b,∴充分性成立;由a<b⇒a-b<0,当0=a<b(a-b)·a2<0,必要性不成立;故选A.视频4.4.已知x+2y+3z=6,则2x+4y+8z的最小值为( )A. 3B. 2C. 12D. 12【答案】C【解析】【分析】利用三元的均值不等式即可求得最小值.【详解】,当且仅当时等号成立,故选C.【点睛】一般地,如果是正数,那么(当且仅当时等号成立),进一步地,(1)如果(定值),那么有最小值,当且仅当时取最小值;(1)如果(定值),那么有最大值,当且仅当时取最大值.5.5.直线:3x-4y-9=0与圆:(θ为参数)的位置关系是( )A. 相切B. 相离C. 直线过圆心D. 相交但直线不过圆心【答案】D【解析】【分析】把圆的参数方程改写成直角方程,利用圆心到直线的距离与半径的大小来判断它们的位置关系.【详解】圆的方程是,故圆心到直线的距离为,所以直线与圆是相交的.又,故直线不过圆心,故选D.【点睛】参数方程转化为普通方程,关键是消去参数,消参数的方法有:(1)加减消元法;(2)平方消元法;(3)反解消元法;(4)交轨法.6.6.若a,b,c为正数,且a+b+c=1,则++的最小值为( )A. 9B. 8C. 3D.【答案】A【解析】【分析】利用柯西不等式可得最小值.【详解】因为当且仅当时等号成立,故所求最小值为,故选A.【点睛】一般地,如果,是实数,那么,进一步地,(1)如果,那么有最小值,当且仅当时取最小值;(1)如果,那么有最大值,当且仅当时取最大值.7.7.下列可以作为直线2x-y+1=0的参数方程的是( )A. (t为参数)B. (t为参数)C. (t为参数)D. (t为参数)【答案】C【解析】【分析】消去参数检验所得方程是否为.【详解】对于A,消去参数后得到,不符合;对于B,消去参数后得到,不符合;对于C,消去参数后得到,符合;对于D,消去参数后得到,不符合;故选C.【点睛】直线的参数方程有多种,特别地,当直线的参数方程是(是参数且,是直线的倾斜角)时,那么表示与之间的距离.8.8.设,下面四个不等式中,正确的是()①;②;③;④A. ①和②B. ①和③C. ①和④D. ②和④【答案】C【解析】试题分析:由题,则说明两个数同号,易判断①,正确;②错误;③;错误;④正确. 故选C.考点:绝对值不等式的性质.9.9.A(0,1)是椭圆x2+4y2=4上一定点,P为椭圆上异于A的一动点,则|AP|的最大值为( )A. B. C. D.【答案】C【解析】【分析】利用椭圆的参数方程可设动点,故的最大值归结三角函数的最值问题.【详解】设,则,整理得到,所以,此时.故选C .【点睛】椭圆的参数方程为(为参数),注意此处不是与轴正向所成的角.我们常通过椭圆的参数方程把椭圆上的动点的横纵坐标用参数的三角函数来表示.10.10.若,给出下列不等式:①a+b<ab;②|a|>|b|;③a<b;④.其中正确的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据可以得到,从而①④正确,②③错误.【详解】因为,故,所以,故①正确,③错误.又,故,故④正确.又,故,故②错误,综上,①④正确,故选B.【点睛】本题考察不等式的性质,属于基础题.11.11.已知直线l:(t为参数)和抛物线C:y2=2x,l与C分别交于点P1,P2,则点A(0,2)到P1,P2两点距离之和是( )A. 4+B. 2(2+)C. 4(2+)D. 8+【答案】C【解析】分析:先将直线参数方程化为标准方程,再代入抛物线方程,根据参数几何意义求点A(0,2)到P1,P2两点距离之和.详解:因为直线l:(t为参数),所以直线l:(m为参数)代入抛物线方程得,因此点A(0,2)到P1,P2两点距离之和是选C.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0)若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.12.12.过抛物线(t为参数)的焦点的弦长为2,则弦长所在直线的倾斜角为( )A. B. 或 C. D. 或【答案】B【解析】【分析】抛物线的标准方程是,故焦点坐标为,直线的参数方程为(为直线的倾斜角),代入抛物线方程得到关于的方程,其两个根为,再利用求出.【详解】消去参数得到抛物线方程为:,设直线的参数方程为(为直线的倾斜角),故,设两个根为,则且,因,故,或者,故选B.【点睛】如果直线的参数方程是(是参数且,是直线的倾斜角),那么表示与之间的距离.因此,在参数方程中,针对直线上的动点到定点的距离和、积或差等问题(动点和定点都在该直线上),可用直线的参数方程结合韦达定理来考虑.二、填空题(本大题共4小题,每小题5分,共20分).13.13.已知椭圆的参数方程(t为参数),点M在椭圆上,对应参数t=,点O为原点,则直线OM的斜率为________.【答案】.【解析】【分析】先求出的直角坐标,再求出的斜率.【详解】,故,故,填.【点睛】本题考察椭圆的参数方程,属于基本题.14.14.已知点M的极坐标为,则它化成直角坐标为________.【答案】.【解析】【分析】利用把点的极坐标转化直角坐标.【详解】,故,填.【点睛】极坐标转化为直角坐标,关键是,而直角坐标转化为极坐标,关键是.15.15.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是________(填序号).①;②;③(1,0);④(1,π)【答案】②.【解析】【分析】先求出圆的直角方程,从而得到圆心的直角坐标后再转化为极坐标.【详解】因为,故,因此,故圆心为,其极坐标为,故填②.【点睛】一般地,表示圆心为且半径为的圆,表示圆心为且半径为的圆.注意这两个圆都过极点.16.16.设a+b=2,b>0,则+的最小值为.【答案】【解析】由a+b=2,b>0.则+=+=++,由a≠0,若a>0,则原式=++≥+2=.当且仅当b=2a=时,等号成立.若a<0,则原式=---≥-+2=.当且仅当b=-2a即a=-2,b=4时等号成立.综上得当a=-2,b=4时,+取最小值.三、解答题(本大题共6小题,共70分,解答应写出相应的文字说明,证明过程或演算步骤).17. 将下列参数方程化为普通方程:(1)(为参数);(2)(为参数).【答案】(1);(2).【解析】试题分析:(1)分别分离处参数中的,根据同角三角函数的基本关系式,即可消去参数得到普通方程;(2)由参数方程中求出,代入整理即可得到其普通方程.试题解析:(1)∵,∴,两边平方相加,得,即.(2)∵,∴由代入,得,∴.考点:曲线的参数方程与普通方程的互化.18.18.曲线C1的参数方程为 (θ为参数),将曲线C1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的倍,得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-2sinθ)=6.(1)求曲线C2和直线l的普通方程.(2)P为曲线C2上任意一点,求点P到直线l的距离的最值.【答案】(1) =1, x-2y-6=0.(2) 点P到直线l的距离的最大值为2,最小值为.【解析】【分析】(1)先根据变换得到,再利用把直线的极坐标方程改成直角方程.(2)利用的参数方程为设出动点,再利用点到直线的距离公式得到距离的表达式后可得其最大值和最小值.【详解】(1)由题意可得的参数方程为 (为参数),即.直线化为直角坐标方程为.(2)设点,由点到直线的距离公式得点到直线的距离为因为,故而.【点睛】一般地,当点在圆锥曲线运动变化时,我们可以用含参数的代数式表示动点的横纵坐标.比如,动点在椭圆,可设动点为,又如动点在双曲线,可设动点为. 19.19.已知在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),直线l经过定点P(3,5),倾斜角为.(1)写出直线l的参数方程和曲线C的标准方程.(2)设直线l与曲线C相交于A,B两点,求|P A|·|PB|的值.【答案】(1) , x2+y2-2x-4y-11=0.(2)3.【解析】【分析】(1)利用公式写出直线的参数方程.再利用平方消元法消去曲线的参数可得曲线的直角方程.(2)利用直线参数方程中参数的几何意义把归结为,其中是把直线的参数方程代入曲线后得到的关于参数的方程的两个根.【详解】(1)由曲线的参数方程 (为参数),得普通方程为,即.直线经过定点,倾斜角为,直线的参数方程为 (是参数).(2)将直线的参数方程代入,整理得,设方程的两根分别为,则,因为直线与曲线相交于两点,所以.【点睛】如果直线的参数方程是(是参数且,是直线的倾斜角),那么表示与之间的距离.因此,在参数方程中,针对直线上的动点到定点的距离和、积或差等问题(动点和定点都在该直线上),可用直线的参数方程结合韦达定理来考虑.20.20.已知a,b,c为正实数,且a+b+c=2.(1)求证:ab+bc+ac≤;(2)若a,b,c都小于1,求a2+b2+c2的取值范围.【答案】(1)见解析.(2) .【解析】【分析】(1)可变形为,利用基本不等式可证.(2)可变形为,利用基本不等式可以得到,再根据,,可以得到,,,从而,故可求所需范围.【详解】(1)证明:∵,∴,又,所以,故,也就是.(2)解:由题意可知,,∴,也就是,当且仅当时取等号,∴.∵,∴ .同理,.∴,∴,∴的取值范围为.【点睛】基本不等式有如下变形:(1)();(2);上述不等式体现了代数式和与积两种形式之间的转化,解题中注意对代数式和或积的结构分析.21.21.已知曲线:,直线:(为参数).(1)写出曲线的参数方程,直线的普通方程;(2)过曲线上任一点作与夹角为的直线,交于点,求的最大值与最小值.【答案】(1)曲线C的参数方程为为参数);直线的普通方程为2x+y-6=0.(2)最大值为;最小值为.【解析】试题分析:(1)由平方关系和曲线方程写出曲线的参数方程,消去参数作可得直线的普通方程;(2)由曲线的参数方程设曲线上任意一点的坐标,利用点到直线的距离公式求出点直线的距离,利用正弦函数求出,利用辅助角公式进行化简,再由正弦函数的性质求出的最大值与最小值.试题解析:(1)曲线的参数方程为,(为参数),直线的普通方程为.(2)曲线上任意一点到的距离为.则,其中为锐角,且,当时,取得最大值,最大值为.当时,取得最小值,最小值为.考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程.22.22.在直角坐标系xOy 中,曲线C1的参数方程为(为参数)M是C1上的动点,P点满足,P点的轨迹为曲线C2(1)求C2的方程(2)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求.【答案】(1)(为参数)(2)【解析】(I)设P(x,y),则由条件知M().由于M点在C1上,所以即从而的参数方程为(为参数)(2)曲线的极坐标方程为,曲线的极坐标方程为。

河北衡水市安平中学2017-2018学年高二下学期期中考试理科数学试题(解析版)

河北衡水市安平中学2017-2018学年高二下学期期中考试理科数学试题(解析版)

安平中学2017-2018学年第二学期期中考试高二数学(理科)试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.1.若随机变量ξ的分布列如下表所示,则p1=( )A. 0B.C.D. 1【答案】B【解析】【分析】由分布列的性质:所有随机变量对应概率的和为列方程求解即可.【详解】因为所有随机变量对应概率的和为,所以,,解得,故选B.【点睛】本题主要考查分布列的性质,意在考查对基本性质的掌握情况,属于简单题.2. 若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是()A. 2×0.44B. 2×0.45C. 3×0.44D. 3×0.64【答案】C【解析】试题分析:根据随机变量符合二项分布,根据期望值求出n的值,写出对应的自变量的概率的计算公式,代入自变量等于1时的值.解:∵随机变量X服从,∵E(X)=3,∴0.6n=3,∴n=5∴P(X=1)=C51(0.6)1(0.4)4=3×0.44故选C.考点:二项分布与n次独立重复试验的模型.3.3.下列说法正确的是( )A. 相关关系是一种不确定的关系,回归分析是对相关关系的分析,因此没有实际意义B. 独立性检验对分类变量关系的研究没有100%的把握,所以独立性检验研究的结果在实际中也没有多大的实际意义C. 相关关系可以对变量的发展趋势进行预报,这种预报可能是错误的D. 独立性检验如果得出的结论有99%的可信度就意味着这个结论一定是正确的【答案】C相关关系虽然是一种不确定关系,但是回归分析可以在某种程度上对变量的发展趋势进行预报,这种预报在尽量减小误差的条件下可以对生产与生活起到一定的指导作用;独立性检验对分类变量的检验也是不确定的,但是其结果也有一定的实际意义,故正确答案为C.4.4.已知回归直线方程,其中且样本点中心为,则回归直线方程为()A. B. C. D.【答案】C【解析】【分析】根据回归直线方程,将样本点的中心坐标代入,即可求得回归直线方程.【详解】回归直线方程为,样本点的中心为,,,回归直线方程,故选C.【点睛】本题主要考查回归方程的性质以及求回归方程的方法,属于简单题. 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.5.5.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.6826.若μ=4,σ=1,则P(5<X<6)=( )A. 0.135 9B. 0.135 8C. 0.271 8D. 0.271 6【解析】【分析】根据变量符合正态分布和所给的和的值,结合原则,得到,两个式子相减,根据对称性得到结果.【详解】随机变量符合正态分布,,,,,,故选A.【点睛】本题主要考查正态分布的性质,属于中档题.有关正态分布应用的题考查知识点较为清晰,只要熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系,问题就能迎刃而解.6.6.如图所示,表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为()A. 0.504B. 0.994C. 0.496D. 0.06【答案】B【解析】试题分析:系统正常工作的概率为,即可靠性为0.994.故选B.考点:相互独立事件同时发生的概率.【名师点睛】1.对于事件A,B,若A的发生与B的发生互不影响,则称A,B相互独立;2.若A与B相互独立,则P(B|A)=P(B),P(AB)=P(B|A)×P(A)=P(A)×P(B)3.若A与B相互独立,则A与,与B,与也都相互独立.4.若P(AB)=P(A)P(B),则称A,B相互独立.7.7.如图所示的5个数据,去掉后,下列说法错误的是()A. 相关系数变大B. 残差平和变大C. 变大D. 解释变量与预报变量的相关性变强【答案】B【解析】分析:由散点图知,去掉后,与的线性相关加强,由相关系数,相关指数及残差平方和与相关性的关系得出选项.详解:由散点图知,去掉后,与的线性相关加强,且为正相关,所以r变大,变大,残差平方和变小.故选B.点睛:本题考查刻画两个变量相关性强弱的量:相关系数r,相关指数R2及残差平方和,属基础题.8. 已知随机变量X~B(6,0.4),则当η=-2X+1时,D(η)=()A. -1.88B. -2.88C. 5. 76D. 6.76【答案】C【解析】试题分析:因为随机变量X~B(6,0.4),所以,.故选C.考点:1、离散型随机变量的分布列(二项分布);2、离散型随机变量函数的方差.9.9.一名篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为( )A. B. C. D.【答案】D【解析】试题分析:由题意,投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a、b、c∈(0,1)),∴3a+2b=2,∴2≥2,∴ab≤(当且仅当a=,b=时取等号)∴ab的最大值为.故答案:D.考点:离散型随机变量的期望与方差.10.10.下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和大小,残差平方和越小的模型拟合效果越好.其中说法正确的是( )A. ①②B. ②③C. ①③D. ①②③【答案】C【解析】①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.②相关指数来刻画回归的效果,值越大,说明模型的拟合效果越好,因此②不正确.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.综上可知:其中正确命题的是①③.故答案为C11.11.将三颗骰子各掷一次,设事件“三个点数都不相同”,“至少出现一个6点”,则概率等于()A. B. C. D.【答案】A【解析】试题分析:∵P(A|B)=P(AB)÷P(B),P(AB)=P(B)=1-P(.B)=1-∴P(A/B)=P(AB)÷P(B)=考点:条件概率与独立事件12.12.同时抛掷5枚质地均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为X,则X 的均值是( )A. 20B. 25C. 30D. 40【答案】B【解析】抛掷一次正好出现3枚反面向上,2枚正面向上的概率为,所以X~B.故E(X)=80×=25.二、填空题(本大题共4小题,每小题5分,共20分).13.13.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射一个目标,则他们都中靶的概率是.【答案】【解析】试题分析:依题意可知甲中靶与乙中靶是相互独立事件,且他们中靶的概率分布为0.8,0.7。

河北省衡水中学滁州分校2017-2018学年高二6月调研考试数学(理)试题(含精品解析)

河北省衡水中学滁州分校2017-2018学年高二6月调研考试数学(理)试题(含精品解析)

2017-2018学年第二学期6月调研考试卷高二理科数学试题注意事项:1.你现在拿到的这份试卷是满分150分,作答时间为120分钟2.答题前请在答题卷上填写好自己的姓名、班级、考号等信息3.请将答案正确填写在答题卷上,写在其它地方无效.第I卷(选择题60分)一、选择题(本大题共12个小题,每小题5分,共60分。

)1.1.若,,则等于( )A. B. C. D.【答案】B【解析】由条件概率公式可得:故答案选2. 三边长均为正整数,且最大边长为11的三角形的个数为()A. 25B. 26C. 36D. 37【答案】C【解析】设三角形另外两边为X,Yx+y>11x-y<11x<11,y<11且均为整数所以x,y中有个数最大为11最小的整数为1,最大边为11x=1的时候1个x=2的时候2个x=3的时候3个x=4的时候4个x=5的时候5个x=6的时候6个x=7的时候5个x=8的时候4个x=9的时候3个x=10的时候2个x=11的时候1个所以共有1+2+3+4+5+6+5+4+3+2+1=36.故选C。

考点:本题主要考查三角形构成条件、分类计数原理的应用。

点评:结合三角形知识,将符合条件的三角形分成11类,运用分类计数原理得解。

视频3.3.已知(2-x)10=a0+a1x+a2x2+…+a10x10,则a8等于( )A. 180B. -180C. 45D. -45【答案】A【解析】根据二项式定理知,故选A.4.4.若复数满足,其中为虚数单位,则().A. B. C. D.【答案】B【解析】【分析】利用复数的乘法运算计算即可.【详解】故选B.【点睛】本题考查复数的乘法运算,属基础题.5.5.已知x,y的取值如表所示,若y与x线性相关,且线性回归方程为,则的值为()A. B. C. D.【答案】D【解析】【分析】根据所给的三组数据,求出这组数据的平均数,得到这组数据的样本中心点,根据线性回归直线一定过样本中心点,把样本中心点代入所给的方程,得到的值.【详解】根据所给的三对数据,得到∴这组数据的样本中心点是∵线性回归直线的方程一定过样本中心点,线性回归方程为,故选:D.【点睛】本题考查线性回归方程,考查数据的样本中心点,考查样本中心点和线性回归直线的关系,属基础题.6.6.设随机变量服从二项分布,且期望,,则方差等于( )A. B. C. D.【答案】C【解析】由于二项分布的数学期望,所以二项分布的方差,应填选答案C。

【全国百强校】河北省衡水中学2017届高三下学期二调考试数学(理)试题

【全国百强校】河北省衡水中学2017届高三下学期二调考试数学(理)试题

河北省衡水中学2017届高三下学期二调考试理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|2}A x x =<,{|21,}xB y y x A ==-∈,则AB =( )A .(,3)-∞B .[2,3)C .(,2)-∞D .(1,2)- 2.已知复数1z i =-(i 为虚数单位),则22z z-的共轭复数的虚部是( ) A .13i - B .13i + C .13i -+ D .13i --3.有一长、宽分别为50m 、30m 的矩形游泳池,一名工作人员在池边巡逻,某时刻出现在池边任一位置可能性相同,一人在池中心(对角线交点)处呼唤工作人员,其声音可传出152m ,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是( ) A .34 B .38 C .316π D .12332π+ 4.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长五尺,松日自半,竹日自倍,松竹何日而长等,下图是源于其思想的一个程序框图,若输入的,a b 分别为5、2,则输出的n =( )A . 2B . 3 C. 4 D .55.已知数列{}n a 的前n 项和为n S ,若12(2)n n S a n =+≥,且12a =,则20S =( ) A .1921- B .2122- C. 1921+ D .2122+6.已知圆C :224x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB ,,A B 为切点,则直线AB 经过定点( )A .48(,)99B .24(,)99C. (2,0) D .(9,0) 7.某几何体的三视图如图所示,则该几何体的体积为( )A .43B .53 C. 63 D .838. 212()log (21)f x ax x =+-,22sin(2)6()sin 3cos x g x x x π++=+,若不论2x 取何值,对12()()f x g x >任意173[,]102x ∈总是恒成立,则a 的取值范围是( ) A .7(,)10-∞-B .4(,)5-∞- C. 63(,)80-+∞ D .404(,)495-- 9.如图,三个边长为2的等边三角形有一条边在同一直线上,边33B C 上有10个不同的点1210,,P P P ,记2(1,2,,10)i i m AB AP i =∙=,则1210m m m +++的值为( )A .153B .45 C. 603 D .18010.已知函数()f x 是定义在R 上的单调函数,且对任意的,x y R ∈都有()()()f x y f x f y +=+,若动点(,)P x y 满足等式22(22)(83)0f x x f y y +++++=,则x y +的最大值为( ) A . 265- B . -5 C. 265+ D .5 11.数列{}n a 满足143a =,*1(1)()n n n a a a n N +=-∈,且12111n nS a a a =+++,则n S 的整数部分的所有可能值构成的集合是( )A .{0,1,2}B .{0,1,2,3} C. {1,2} D .{0,2}12.等腰直角三角形AOB 内接于抛物线22(0)y px p =>,O 为抛物线的顶点,OA OB ⊥,AOB ∆的面积是16,抛物线的焦点为F ,若M 是抛物线上的动点,则||||OM MF 的最大值为( ) A .33 B .63 C. 233 D .263第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某校今年计划招聘女教师x 人,男教师y 人,若,x y 满足2526x y x y x -≥⎧⎪-≤⎨⎪<⎩,则该学校今年计划招聘教师最多 人. 14.已知函数2()2sin()12f x x x x π=-+的两个零点分别为,()m n m n <,则21nmx dx -=⎰.15.已知四面体ABCD 的每个顶点都在球O 的表面上,5AB AC ==,8BC =,AD ⊥底面ABC ,G 为ABC ∆的重心,且直线DG 与底面ABC 所成角的正切值为12,则球O 的表面积为 . 16.已知是定义在R 上的函数,且满足①(4)0f =;②曲线(1)y f x =+关于点(1,0)-对称;③当(4,0)x ∈-时,2||()log (1)xx x f x e m e=+-+,若()y f x =在[4,4]x ∈-上有5个零点,则实数m 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知向量(3sin ,1)m x ω=,2(cos ,cos 1)n x x ωω=+,设函数()f x m n b =∙+.(1)若函数()f x 的图象关于直线6x π=对称,且[0,3]ω∈时,求函数()f x 的单调增区间;(2)在(1)的条件下,当7[0,]12x π∈时,函数()f x 有且只有一个零点,求实数b 的取值范围. 18. 如图,已知四棱锥S ABCD -中,SA ⊥平面ABCD ,90ABC BCD ∠=∠=,且2SA AB BC CD ===,E 是边SB 的中点.(1)求证://CE 平面SAD ;(2)求二面角D EC B --的余弦值大小.19. 某公司准备将1000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目供选择,若投资甲项目一年后可获得的利润为1ξ(万元)的概率分布列如表所示:且1ξ的期望1()120E ξ=;若投资乙项目一年后可获得的利润2ξ(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否受第二和第三季度进行产品的价格调整,两次调整相互独立,且调整的概率分别为(01)p p <<和1p -,乙项目产品价格一年内调整次数X (次)与2ξ的关系如表所示:(1)求,m n 的值; (2)求2ξ的分布列;(3)根据投资回报率的大小请你为公司决策:当p 在什么范围时选择投资乙项目,并预测投资乙项目的最大投资回报率是多少?(投资回报率=年均利润/投资总额×100%)20. 如图,曲线Γ由曲线22122:1(0,0)x y C a b y a b+=>>≤和曲线22222:1(0,0,0)x y C a b y a b-=>>>组成,其中点12,F F 为曲线1C 所在圆锥曲线的焦点,点34,F F 为曲线2C 所在圆锥曲线的焦点.(1)若23(2,0),(6,0)F F -,求曲线Γ的方程;(2)如图,作直线l 平行于曲线2C 的渐近线,交曲线1C 于点,A B ,求证:弦AB 的中点M 必在曲线2C 的另一条渐近线上;(3)对于(1)中的曲线Γ,若直线1l 过点4F 交曲线1C 于点,C D ,求1CDF ∆的面积的最大值. 21. 设(4)ln ()31x a xf x x +=+,曲线()y f x =在点(1,(1))f 处的切线与直线10x y ++=垂直.(1)求a 的值;(2)若对于任意的[1,)x ∈+∞,()(1)f x m x ≤-恒成立,求m 的取值范围; (3)求证:*1ln(41)16()(41)(43)ni in n N i i =+≤∈+-∑. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),曲线2C 的参数方程为cos sin x a y b ϕϕ=⎧⎨=⎩(0,a b ϕ>>为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线:l θα=与12,C C 各有一个交点,当0α=时,这两个交点间的距离为2,当2πα=时,这两个交点重合.(1)分别说明12,C C 是什么曲线,并求a 与b 的值; (2)设当4πα=时,l 与12,C C 的交点分别为11,A B ,当4πα=-时,l 与12,C C 的交点分别为22,A B ,求直线1212,A A B B 的极坐标方程. 23.选修4-5:不等式选讲设函数()||,0f x x a a =-<. (1)证明:1()()2f x f x+-≥; (2)若不等式1()(2)2f x f x +<的解集是非空集,求a 的范围.试卷答案1-12 DABCC AADDA BC 13. 10 14. 2π 15. 6349π 16. 42[3,1){}e e ----17. 解:向量(3sin ,1)m x ω=,(cos ,cos 21)n x x ωω=+,2()3sin cos cos 1f x m n b x x x b ωωω=∙+=+++3133sin 2cos 2sin(2)22262x x b x b πωωω=+++=+++(1)∵函数()f x 图象关于直线6x π=对称,∴2()662k k Z πππωπ∙+=+∈,解得:31()k k Z ω=+∈,∵[0,3]ω∈,∴1ω=,∴3()sin(2)62f x x b π=+++,由222262k x k πππππ-≤+≤+, 解得:()36k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调增区间为[,]()36k k k Z ππππ-+∈.(2)由(1)知3()sin(2)62f x x b π=+++,∵7[0,]12x π∈, ∴42[,]663x πππ+∈, ∴2[,]662x πππ+∈,即[0,]6x π∈时,函数()f x 单调递增; 42[,]663x πππ+∈,即7[,]612x ππ∈时,函数()f x 单调递减. 又(0)()3f f π=,∴当7()0()312f f ππ>≥或()06f π=时函数()f x 有且只有一个零点. 即435sinsin326b ππ≤--<或3102b ++=, 所以满足条件的335(2,]{}22b -∈--. 18.(1)证明:取SA 中点F ,连接EF ,FD ,∵E 是边SB 的中点,∴//EF AB ,且12EF AB =,又∵90ABC BCD ∠=∠=,∴//AB CD ,又∵2AB CD =,即12CD AB =∴//EF CD ,且EF CD =,∴四边形EFDC 为平行四边形,∴//FD EC ,又FD ⊆面SAD ,CE ⊄面SAD ,∴CE ∥面SAD . (2)解:在底面内过点A 作直线//AM BC ,则AB AM ⊥,又SA ⊥平面ABCD , 以,,AB AM AS 所在直线分别为,,x y z 轴,建立空间直角坐标系,如图.设2AB =,则(0,0,0),(2,0,0),(2,2,0),(1,2,0),(1,0,1)A B C D E , 则(0,2,0),(1,0,1)BC BE ==-,(1,0,0),(1,2,1)CD CE =-=--,设面BCE 的一个法向量为(,,)n x y z =,则00n BC n BE ⎧∙=⎪⎨∙=⎪⎩,即200y x z =⎧⎨-+=⎩令1x =,则1z =,∴(1,0,1)n =.同理可求面DEC 的一个法向量为(0,1,2)m =,10cos ,5||||n m n m n m ∙<>==, 由图可知,二面角D EC B --是钝二面角, 所以其平面角的余弦值为105-. 19.解:(1)由题意得:0.411101200.4170120m n m n ++=⎧⎨+⨯+=⎩,得:0.5,0.1m n ==.(2)2ξ的可能取值为41.2,117.6,204.0,2(41.2)(1)[1(1)](1)P p p p p ξ==---=-222(117.6)[1(1)](1)(1)(1)P p p p p p p ξ==--+--=+-2(204.0)(1)P p p ξ==-所以2ξ的分布列为2ξ41.2 117.6 204.0P(1)p p -22(1)p p +-(1)p p -(3)由(2)可得:222()41.2(1)117.6[(1)]204.0(1)E p p p p p p ξ=⨯-+⨯+-+⨯-21010117.6p p =-++根据投资回报率的计算办法,如果选择投资乙项目,只需12()()E E ξξ<,即21201010117.6p p <-++,得0.40.6p <<.因为22()1010117.6E p p ξ=-++,所以当12P =时,2()E ξ取到最大值为120.1,所以预测投资回报率的最大值为12.01%.20.(Ⅰ)2222223620416a b a a b b ⎧⎧+==⎪⎪⇒⎨⎨-==⎪⎪⎩⎩, 则曲线Γ的方程为221(0)2016x y y +=≤和221(0)2016x y y -=> (Ⅱ)曲线2C 的渐近线为b y x a =±,如图,设直线:()bl y x m a=- 则2222()1b y x m a x y a b ⎧=-⎪⎪⎨⎪+=⎪⎩22222()0x mx m a ⇒-+-= 22222(2)42()4(2)022m m a a m a m a ∆=-∙∙-=->⇒-<<又由数形结合知m a ≥,∴2a m a ≤<设点112200(,),(,),(,)A x y B x y M x y ,则1222122x x mm a x x +=⎧⎪⎨-=⎪⎩,∴12022x x m x +==,00()2b b my x m a a =-=-∙ ∴00b y x a =-,即点M 在直线by x a=-上. (Ⅲ)由(Ⅰ)知,曲线221:1(0)2016x y C y +=≤,点4(6,0)F 设直线1l 的方程为6(0)x ny n =+>22221(45)4864020166x y n y ny x ny ⎧+=⎪⇒+++=⎨⎪=+⎩222(48)464(45)01n n n ∆=-∙∙+>⇒>设3344(,),(,)C x y D x y ,由韦达定理:34234248456445n y y n y y n -⎧+=⎪⎪+⎨⎪=⎪+⎩∴2234343421||()416545n y y y y y y n --=+-=+11414221434221111||||||8165645224545CDF CF F DF F n n S S S F F y y n n ∆∆∆--=-=∙-=∙∙∙=++ 令210t n =->,∴221n t =+, ∴1216456459494CDF t S t t t∆=∙=∙++∵0t >,∴9412t t +≥,当且仅当32t =,即132n =时等号成立 132n =时,∴1max 1165645123CDF S ∆=∙= 21.(Ⅰ)'24(4ln )(31)3(4)ln ()(31)x ax x x a xx f x x +++-+=+ 由题设'(1)1f =,∴414a+= ∴0a =. (Ⅱ)4ln ()31x x f x x =+,[1,)x ∀∈+∞,()(1)f x m x ≤-,即14ln (32)x m x x≤--设1()4ln (32)g x x m x x=---,即[1,)x ∀∈+∞,()0g x ≤. 2'224134()(3)mx x m g x m x x x-+-=-+=,'(1)44g m =- ①若'0,()0m g x ≤>,()(1)0g x g ≥=,这与题设()0g x ≤矛盾②若(0,1)m ∈,当2'243(1,),()03m x g x m+-∈>,()g x 单调递增,()(1)0g x g >=,与题设矛盾.③若1m ≥,当'(1,),()0x g x ∈+∞≤,()g x 单调递减,()(1)0g x g ≤=,即不等式成立 综上所述,1m ≥ .(Ⅲ)由(Ⅱ)知,当1x >时, 1m =时, 11ln (32)4x x x ≤--成立. 不妨令4143i x i +=-,*i N ∈,所以4116ln 43(41)(43)i i i i i +≤-+-, 4116ln43(41)(43)+≤-+- 421162ln423(421)(423)⨯+⨯≤⨯-⨯+⨯- 431163ln 433(431)(433)⨯+⨯≤⨯-⨯+⨯- ………… 4116ln 43(41)(43)n n n n n +≤-+- 累加可得∴*1ln(41)16()(41)(43)n i i n n N i i =+≤∈+-∑ 22.(本题满分10分)【选修4—4 坐标系统与参数方程】(Ⅰ) 1C 是圆,2C 是椭圆当0α=时,射线l 与1C ,2C 交点的直角坐标分别为(1,0),(,0)a ,因为这两点间的距离为2,所以3a =; 当2πα=时,射线l 与1C ,2C 交点的直角坐标分别为(0,1),(0,)b ,因为这两点重合,所以1b =.(Ⅱ) 1C ,2C 的普通方程分别为221x y +=和2219x y += 当4πα=时,射线l 与1C 的交点1A 的横坐标为22x =,与2C 的交点1B 的横坐标为'31010x = 当4πα=-时,射线l 与1C ,2C 的交点2A ,分别与1A ,1B 关于x 轴对称因此直线12A A 、12B B 垂直于极轴,故直线12A A 和12B B 的极坐标方程分别为2sin 2ρθ=,310sin 10ρθ= 23.(Ⅰ)函数()||,0f x x a a =-<则1111()()||||||||||f x f x a a x a a x a a x x x x+-=-+--=-++≥-++ 111||||||2||||2x x x x x x=+=+≥∙= (Ⅱ) ()(2)|||2|,0f x f x x a x a a +=-+-<当x a ≤时,()223f x a x a x a x =-+-=-, 则()f x a ≥-, 当2a a x <<时,()2f x x a a x x =-+-=-, 则()2a f x a -<<-; 当2a x ≥时,()232f x x a x a x a =-+-=-, 则()2a f x ≥-, 于是()f x 的值域为[,)2a -+∞ 由不等式1()(2)2f x f x +<的解集是非空集, 即122a >-, 解得1a >-,由于0a <,则a 的取值范围是(1,0)-.。

河北省衡水中学滁州分校2017-2018学年高二数学6月调研考试试题 文 精

河北省衡水中学滁州分校2017-2018学年高二数学6月调研考试试题 文 精

2017-2018学年第二学期6月调研考试卷高二文科数学试题注意事项:1.你现在拿到的这份试卷是满分150分,作答时间为120分钟 2.答题前请在答题卷上填写好自己的姓名、班级、考号等信息 3.请将答案正确填写在答题卷上,写在其它地方无效.第I 卷(选择题 60分)一、选择题(本大题共12个小题,每小题5分,共60分。

) 1.已知p :a <0,q :a 2>a ,则﹁p 是﹁q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.已知命题;和命题则下列命题为真的是( )A.B.C.D.3.已知椭圆的左顶点为 ,上顶点为 ,右焦点为 ,若,则椭圆的离心率为( )A. B. C.D.4.设1F 、2F 分别是双曲线2214y x -=的左、右焦点,点P 在双曲线上,且15PF =,则2PF =( )A. 1B. 3C. 3或7D. 1或95.设抛物线 的焦点为 ,过 点且倾斜角为 的直线 与抛物线相交于A,B 两点,若以 为直径的圆过点 ,则该抛物线的方程为( )A.B.C.D.6.已知函数()()2ln f x xf e x +'=,则()f e =( ) A. e - B. e C. 1- D. 17.函数32y x ax a =-+在()0,1内有极小值,则实数a 的取值范围( ) A. ()0,3 B. (),3-∞ C. ()0,+∞ D. 30,2⎛⎫ ⎪⎝⎭8.下面几种推理过程是演绎推理的是( )A. 两条直线平行,同旁内角互补,如果A ∠和B ∠是两条平行直线的同旁内角,则180A B ∠∠+=︒B. 由平面三角形的性质,推测空间四面体的性质C. 三角形内角和是180︒,四边形内角和是360︒,五边形内角和是540︒,由此得凸多边形内角和是()2180n -⋅D. 在数列{}n a 中, 11a =, 11112n n n a a a --⎛⎫=+ ⎪⎝⎭(2n ≥),由此归纳出{}n a 的通项公式 9.复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .210.如图所示的程序框图,若输入8,3,m n ==则输出的S 值为( )A. 56B. 336C. 360D. 144011.已知某种商品的广告费支出(单位:万元)与销售额(单位:万元)之间有如下对应数据:根据表中的全部数据,用最小二乘法得出与的线性回归方程为,则表中的值为( )A. 45B. 50C. 55D. 6012.在同一坐标系中,方程 与的曲线大致是( )A. B. C. D.第II 卷(非选择题 90分)二、填空题(本大题共4个小题,每小题5分,共20分。

河北省衡水中学高二下学期期中考试(数学理).doc

河北省衡水中学高二下学期期中考试(数学理).doc

河北省衡水中学高二下学期期中考试(数学理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间1第 I 卷 选择题 (共70分)一. 选择题:本大题共14个小题,每题5分,共70分。

在每小题给出的四个选项中,有且只有一个选项是符合题目要求的1. 某自然保护区有12只大熊猫,从中捕捉5只做上标记,半年后,再从此保护区捕捉1只,则恰好此只带有标志的概率为( )A 51B 121C 125D 1272.易建联在3月27日蓝网与活塞的比赛中,16投中12,保持此命中率不变,假设在下次比赛中有无限投篮权,那么他第一次投中时投篮次数的期望值为( )A 34B 1C 94D 433.6个相同的小球放入标号为1、2、3的3个小盒中,要求每盒不空,共有放法种数为( )A.8B.10C.6D.604 将一枚质地均匀的骰子掷2次,第一次出现的点数记为a ,第二次出现的点数记为b ,已知两条直线1l :8by ax =+ , 2l :42y x =+ 则两条直线相交的概率为( )A 1817B 1211C 98D 655. 379班现有同学73人,要选取6名同学参加学校组织的膳食服务座谈会,班主任老师先随机排除一个同学,然后采用系统抽样的方法,从剩下的72名学生中抽取了6名,问班长被抽到的概率为( )A 121B 721C 731D 7366. 有5张电影票,甲、乙、丙三个人分,每人最多分两张,甲若分得两张,则须为连号,则共有多少种分法 ( )A. 24B. 54C. 30D. 907. 老孙家新买两辆汽车,年初参加某种事故的保险,向保险公司交纳每辆500元的保险金,对在一年内发生此种事故的车辆可一次性赔偿5000元,已知这两辆车一年内发生此种事故的概率分别为51,101,两车是否发生事故相互独立,求一年内小李家获得赔偿的期望是( )A 10000元B 1500元C 元D 5000元8 设()*--∈++∙∙∙+++=⎪⎪⎭⎫ ⎝⎛+N n ,x a x a x a x a a 22x 2n 2n 12n 12n 22102n,则()()[]=+∙∙∙+++-∙∙∙+++-∞→212n 53122n 420n a a a a a a a a lim ( )A -1B 1C 0D 229. 已知数列{}n a 中, ⎪⎪⎩⎪⎪⎨⎧≥-≤≤=10000n ,5n n n 10000n ,1n1a 222n 则数列{}n a 的极限值( ) A.等于0 B.等于1 C.等于0或1 D.不存在10. 对于二项式()1999x 1-,下列说法正确的个数是( )① 展开式中999100019991000xC T -=; ② 展开式中非常数项的系数和为0;②展开式中系数最大的项是第1000项和第1001项;④ 当x 等于时,()1999x 1-除以的余数是1;A 1个B 2个C 3个D 4个 11.某校参加高考学生人数共人,经体检绘制视力情况频率分布直方图(如图)那么视力在0.7—1.1的学生人数估计为( )A 400人B 600人C 1000人D 1500人 12.设首项为1,公比为q (q ≥1)的等比数列前n 项和为nS ,则1n nn S lim+∞→的值为( )A 1B q 1C 1或q 1D 以上都不对13 n2x 1x ⎪⎭⎫ ⎝⎛+的展开式中的各项系数和是32,则展开式的常数项为( ) A 15 B C 0 D 不存在14. 高二某班在成人节班会上,计划从班委7人中选4人作感想发言,班长和团支书两人至少有一人发言,若两人都发言,则发言顺序不能相邻,则不同的发言种数为( )A 360B 5C 600D 7Ⅱ卷 非选择题 (共80分)二.填空题:本大题共4小题,每题5分,共把答案填在答题纸相应的位置15. 6个人分乘2辆不同的出租车,每车最多乘4人,则不同的乘车方案有。

2017-2018学年河北省衡水中学高二下学期期末考试数学(文)试题 Word版含答案

2017-2018学年河北省衡水中学高二下学期期末考试数学(文)试题  Word版含答案

2017-2018学年度下学期高二期末考试数学(文科)试卷第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知集合2{|230}A x x x =--≤,{|ln(2)}B x y x ==-,则AB =( )A .(13),B .(13],C .[12)-,D .(12)-, 2.如图,已知AB a =,AC b =,4BC BD =,3CA CE =,则DE =( )A .3143b a -B .53124a b -C .3143a b -D .53124b a -3.已知等比数列{}n a 的前n 项和为n S ,1352a a +=,且2454a a +=,则n n S a =( )A .14n -B .41n -C .12n -D .21n -4.某校有高级教师90人,一级教师120人,二级教师75人,现按职称用分层抽样的方法抽取38人参加一项调查,则抽取的一级教师人数为( ) A .10 B .12 C.16 D .185.已知不等式2201x m x ++>-对一切(1)x ∈+∞,恒成立,则实数m 的取值范围是( ) A .6m >- B .6m <- C.8m >- D .8m <-6.已知函数()2cos2f x x x -的图像在区间03a ⎡⎤⎢⎥⎣⎦,和423a π⎡⎤⎢⎥⎣⎦,上均单调递增,则正数a 的取值范围是( )A .5612ππ⎡⎤⎢⎥⎣⎦,B .512ππ⎡⎤⎢⎥⎣⎦,C.4ππ⎡⎤⎢⎥⎣⎦, D .243ππ⎡⎤⎢⎥⎣⎦, 7.如图,网格纸上小正方形的边长为1,粗线画出的是几何体的三视图,则此几何体的体积为( )A .12B .18 C.24 D .308.执行如图所示的程序框图,若输入的16a =,4b =,则输出的n =( )A .4B .5 C.6 D .79.已知函数()2x xe ef x --=,1x ,2x ,3x ∈R ,且120x x +>,230x x +>,310x x +>,则123()()()f x f x f x ++的值( )A .一定等于零B .一定大于零 C.一定小于零 D .正负都有可能 10.已知点()M a b ,与点(01)N -,在直线3450x y -+=的两侧,给出以下结论: ①3450a b -+>;②当0a >时,a b +有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是9344⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭,, 正确的个数是( )A .1B .2 C.3 D .411.已知函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭(0ω>)向左平移半个周期得()g x 的图像,若()g x 在[0]π,上的值域为1⎡⎤⎢⎥⎣⎦,则ω的取值范围是( )A .116⎡⎤⎢⎥⎣⎦,B .2332⎡⎤⎢⎥⎣⎦, C.1736⎡⎤⎢⎥⎣⎦, D .5563⎡⎫⎪⎢⎣⎭,12.对任意的0x >,总有()|lg |0f x a x x =--≤,则a 的取值范围是( ) A .(lg lg(lg )]e e -∞-,B .(1]-∞, C.[1lg lg(lg )]e e -, D .[lg lg(lg )]e e -+∞,第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知(12)a =,,(11)b =,,则与2a b +方向相同的单位向量e = .14.已知三棱锥P ABC -的三条侧棱两两垂直,且AB =BC 2AC =,则此三棱锥外接球的表面积是 .15.点P 在曲线2ln y x x =-上,则点P 到直线40x y --=的距离的最小值是 . 16.{}n a 是公差不为0的等差数列,{}n b 是公比为正数的等比数列,111a b ==,43a b =,84a b =,则数列{}n n a b 的前n 项和等于 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知向量(3sin cos 1)m x x =-,,1cos 2n x ⎛⎫= ⎪⎝⎭,,且()f x m n =.若ABC △的三内角A ,B ,C 的对边分别为a ,b ,c ,且3a =,212A f π⎛⎫+= ⎪⎝⎭A 为锐角),2sin sin C B =,求A ,c ,b 的值.18. 某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:若将月均课外阅读时间不低于30小时的学生称为“读书迷”. (1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动. (ⅰ)共有多少种不同的抽取方法?(ⅱ)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率. 19. 已知数列{}n a 是首项等于116且公比不为1的等比数列,n S 是它的前n 项和,满足325416S S =-(1)求数列{}n a 的通项公式;(2)设log n a n b a =(0a >且1a ≠),求数列{}n b 的前n 项和n T 的最值. 20. 已知函数2()()f x x x m =-在2x =处有极大值. (1)求实数m 的值;(2)若关于x 的方程()f x a =有三个不同的实根,求实数a 的取值范围.21. 如图,五面体ABCDE 中,四边形ABDE 是棱形,ABC △是边长为2的正三角形,60DBA ∠=︒,CD =.(1)证明:DC AB ⊥;(2)若C 在平面ABDE 内的正投影为H ,求点H 到平面BCD 的距离. 22.已知函数2()2ln f x x ax a x =++,0a ≤. (1)当2a =-时,求()f x 的单调区间;(2)若1()(21)2f x e a >+,求a 的取值范围.高二文科期末数学答案一、选择题1-5:CDDCA 6-10:BCBBB 11、12:DA二、填空题13.3455⎛⎫⎪⎝⎭, 14.8π 15.(1)21n n -+三、解答题17.解1()3sin cos cos 2f x m n x x x 2=⋅=-+1cos 21222x x +=-+12cos 2sin(2)26x x x π=-=-∵()sin 212A f A π+==02A π<<,∴3A π= ∵2sin sin C B =.由正弦定理得2b c =,① ∵3a =,由余弦定理,得2292cos3b c bc π=+-,②解①②组成的方程组,得c b ⎧=⎪⎨=⎪⎩综上3A π=,b =c =.18.(1)设该校900名学生中“读书迷”有x 人,则730900x=,解得210x =. 所以该校900名学生中“读书迷”约有210人.(2)(ⅰ)设抽取的男“读书迷”为35a ,38a ,41a ,抽取的女“读书迷”为34b ,36b ,38b ,40b (其中下角标表示该生月平均课外阅读时间),则从7名“读书迷”中随机抽取男、女读书迷各1人的所有基本事件为:3534()a b ,,3536()a b ,,3538()a b ,,3540()a b ,, 3834()a b ,,3836()a b ,,3838()a b ,,3840()a b ,, 4134()a b ,,4136()a b ,,4138()a b ,,4140()a b ,,所以共有12种不同的抽取方法.(ⅱ)设A 表示事件“抽取的男、女两位读书迷月均读书时间相差不超过2小时”,则事件A 包含3534()a b ,,3536()a b ,,3836()a b ,,3838()a b ,,3840()a b ,,4140()a b ,6个基本事件.所以所求概率61()122P A ==. 19.(1)∵325416S S =-,∵1q ≠,∴3211(1)(1)541116a q a q q q --=⨯---. 整理得2320q q -+=,解得2q =或1q =(舍去). ∴1512n n n a a q --=⨯=(2)log (5)log 2n a n a b a n ==-.1)当1a >时,有log 20a >,数列{}n b 是以log 2a 为公差的等差数列,此数列是首项为负的递增的等差数列.由0n b ≤,得5n ≤,所以()45min 10log 2n a T T T ===-,n T 的没有最大值.2)当01a <<时,有log 20a <,数列{}n b 是以log 2a 为公差的等差数列,此数列是首项为正的递减的等差数列.由0n b ≥,得5n ≤,所以()45max 10log 2n a T T T ===-,n T 的没有最小值. 20.(1)6m =;(2)032a <<.(1)22()34f x x mx m '=-+,由已知2(2)1280f m m '=-+=,∴26m =,, 当2m =时,2()384(32)(2)f x x x x x '=-+=--,∴()f x 在223x ⎛⎫∈ ⎪⎝⎭,上单调递减,在()2x ∈+∞,上单调递增,∴()f x 在2x =处有极小值,舍. ∴6m =.(2)由(1)知32()1236f x x x x a =-+=,令32()1236g x x x x a =-+-,则2()324363(2)(6)g x x x x x '=-+=--,∴()g x 在(2)x ∈-∞,上单调递增,在(26)x ∈,上单调递减,在(6)x ∈+∞,上单调增,要使方程()f x a =有三个不同的实根,则 3232(2)21223620(6)61263660g a g a ⎧=-⋅+⋅->⎪⎨=-⋅+⋅-<⎪⎩,解得032a <<. 21.(1)证明:如图,取AB 的中点O ,连OC ,OD因为ABC △是边长为2的正三角形,所以AB OC ⊥,OC 又四边形ABDE 是菱形,60DBA ∠=︒,所以DAB △是正三角形所以AB OD ⊥,OD =而OD OC O ⋂=,所以AB ⊥平面DOC 所以AB CD ⊥(2)取OD 的中点H ,连结CH 由(1)知OC CD =,所以AB OD ⊥AB ⊥平面DOC ,所以平面DOC ⊥平面ABD而平面DOC ⊥平面ABD ,平面DOC 与平面ABD 的交线为OD , 所以CH ⊥平面ABD ,即点H 是D 在平面ABD 内的正投影 设点H 到平面BCD 的距离为d ,则点O 到平面BCD 距离为2d因为在BCD △中,2BC BD ==,CD =1122BCDS =△12==在OCD △中,OC OD CD ===1sin 602OCD S =︒=△所以由O BCD B OCD V V --=得11.33BCD OCD S d S OB ⋅=△△即112133d =解得d =H 到平面BCD22.由题意得(0)x ∈+∞,,当2a =-时,2()42ln f x x x x =--,(2211242()x x x x f x x x----'==∴当(01x ∈+,时,()0f x '<,当()1x ∈++∞时,()0f x '>, ∴()f x的单调减区间是(01+,,单调增区间是()1+∞. (2)①当0a =时,2()0f x x =>,显然符合题意;②当0a <时,()222x ax af x x++'=,令2220x ax a ++=,2480a a ∆=->恒成立.∴该方程有两个不同实根,且一正一负,即存在()00x ∈+∞,,使得200220x ax a ++=,即0()0f x '=,∴当00x x <<时,()0f x '<,当0x x >时,()0f x '>,∴()()220000000000min 2ln ln ln 222a a a f x f x x ax a x x ax ax a x ax a x ⎛⎫==++=+++-+=-+ ⎪⎝⎭, ∵()()1212f x e a >+,∴00212ln 21x x e -+<+,即00ln 1x x e +<+, 由于()ln g x x x =+在()0+∞,上是增函数,∴00x e <<.由于20220x ax a ++=得200221x a x =-+,设22()21x h x x =-+,则2244()0(21)x x h x x +'=-<+. ∴函数()2221x h x x =-+在()0e ,上单调递减,∴22002202121x e x e ⎛⎫-∈- ⎪++⎝⎭,. 综上所述,实数a 的取值范围22021e e ⎛⎤-⎥+⎝⎦,。

2017-2018学年高二下学期期中数学试卷(理科)Word版含解析

2017-2018学年高二下学期期中数学试卷(理科)Word版含解析

2017-2018学年高二下学期期中数学试卷(理科)一、选择题(每小题5分,共60分)1.复数z1=(m2﹣2m+3)+(m2﹣m+2)i(m∈R),z2=6+8i,则m=3是z1=z2的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除3.定积分(x2+sinx)dx的值为()A. +B.﹣C.﹣D. +4.若复数z=(a∈R,i是虚数单位)是纯虚数,则复数z的共轭复数是()A. i B.﹣ i C.3i D.﹣3i5.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积()A.B.πC.πD.24π6.若复数z满足|z+3+i|=,则|z|的最大值为()A.3+B. +C. +D.37.已知=()A.f′(x0)B.f′(x)C.2f′(x)D.﹣f′(x)8.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如表.十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,则A×C=()A.6E B.78 C.5F D.C09.利用数学归纳法证明不等式+++…+>时,由k递推到k+1时,不等式左边应添加的式子是()A.B. +C.﹣D. +﹣10.设函数f(x)=x3+x2+,其中θ∈(﹣,),则导数f′(1)的取值范围是()A.(﹣,1] B.(﹣,1)C.(﹣,) D.(﹣,]11.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)﹣f(x)>0恒成立,则不等式f(x)<0的解集为()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)12.若函数f(x)的导函数f′(x)=x2﹣3x﹣10,则函数f(1﹣x)的单调递增区间是()A.(,+∞)B.(﹣,+∞)C.(﹣4,3)D.(﹣∞,﹣4)和(3,+∞)二、填空题(每小题5分,共20分)13.计算: +(3+i17)﹣= .14.在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则=+,由此类比:三棱锥S﹣ABC中的三条侧棱SA、SB、SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC 上的高为h,则.15.过点(1,0)且与曲线y=相切的直线的方程为.16.已知函数f(x)=x3+ax2+bx,(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为3,则a的值为.三、解答题(17题10分,其它每题12分)17.已知复数z+i,均为实数,且在复平面内,(z+ai)2的对应点在第四象限内,求实数a的取值范围.18.设函数f(x)=﹣x2+6ax+b,其中a,b∈R.(1)若函数f(x)在x=1处取得极值﹣,求a,b的值;(2)求函数f(x)的单调递增区间.19.设数列{an }的前n项和为Sn,且关于x的方程x2﹣anx﹣an=0有一根为Sn﹣1.(1)求出S1,S2,S3;(2)猜想{Sn}的通项公式,并用数学归纳法证明.20.设铁路AB长为100,BC⊥AB,且BC=30,为将货物从A运往C,现在AB上距点B为x 的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.(1)将总运费y表示为x的函数;(2)如何选点M才使总运费最小.21.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥.22.设函数f(x)=ax2lnx﹣(x﹣1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.(1)求证:当x≥1时,f(x)≥(x﹣1)2;(2)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.2017-2018学年高二下学期期中数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.复数z1=(m2﹣2m+3)+(m2﹣m+2)i(m∈R),z2=6+8i,则m=3是z1=z2的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由z1=z2,可得:m2﹣2m+3=6,m2﹣m+2=8,解得m,即可判断出结论.【解答】解:由z1=z2,可得:m2﹣2m+3=6,m2﹣m+2=8,解得m=3.∴m=3是z1=z2的充要条件.故选:C.2.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除【考点】R9:反证法与放缩法.【分析】“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除.【解答】解:反证法证明命题时,应假设命题的反面成立.“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除,故选 B.3.定积分(x2+sinx)dx的值为()A. +B.﹣C.﹣D. +【考点】67:定积分.【分析】根据定积分的运算,即可求得答案.【解答】解:(x2+sinx)dx=(x3﹣cosx)=(﹣)﹣(0﹣1)=+,(x2+sinx)dx=+,故选B.4.若复数z=(a∈R,i是虚数单位)是纯虚数,则复数z的共轭复数是()A. i B.﹣ i C.3i D.﹣3i【考点】A5:复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简z=,结合已知条件列出方程组,求解可得a的值,然后代入z=化简求出复数z,则复数z的共轭复数可求.【解答】解:∵z===是纯虚数,∴,解得a=6.∴z==.则复数z的共轭复数是:﹣3i.故选:D.5.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积()A.B.πC.πD.24π【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】利用定积分求体积.【解答】解:解方程组得x=4,y=4.∴几何体的体积V=π(4x﹣x2)dx=π•(2x2﹣)|=.故选B.6.若复数z满足|z+3+i|=,则|z|的最大值为()A.3+B. +C. +D.3【考点】A4:复数的代数表示法及其几何意义.【分析】由|z+3+i|=的几何意义,即复平面内的动点Z到定点P(﹣3,﹣1)的距离为画出图形,数形结合得答案.【解答】解:由|z+3+i|=的几何意义,复平面内的动点Z到定点P(﹣3,﹣1)的距离为,可作图象如图:∴|z|的最大值为|OP|+=.故选:B.7.已知=()A.f′(x0)B.f′(x)C.2f′(x)D.﹣f′(x)【考点】6F:极限及其运算.【分析】化简,根据极限的运算,即可求得答案.【解答】解:==+=2f′(x),∴=2f′(x),故选C.8.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如表.十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,则A×C=()A.6E B.78 C.5F D.C0【考点】EM:进位制.【分析】本题需先根据十进制求出A与C的乘积,再把结果转化成十六进制即可.【解答】解:∵A×C=10×12=120,∴根据16进制120可表示为78.故选:B.9.利用数学归纳法证明不等式+++…+>时,由k递推到k+1时,不等式左边应添加的式子是()A.B. +C.﹣D. +﹣【考点】RG:数学归纳法.【分析】只须求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.【解答】解:当n=k时,左边的代数式为,当n=k+1时,左边的代数式为,故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:,故选:D.10.设函数f(x)=x3+x2+,其中θ∈(﹣,),则导数f′(1)的取值范围是()A.(﹣,1] B.(﹣,1)C.(﹣,) D.(﹣,]【考点】63:导数的运算.【分析】求导,当x=1时,f′(1)=+=sin(θ+),由θ∈(﹣,),即可求得θ+∈(﹣,),根据正弦函数的性质,即可求得导数f′(1)的取值范围.【解答】解:f(x)=x3+x2+,f′(x)=x2+x,f′(1)=+=sin(θ+),由θ∈(﹣,),则θ+∈(﹣,),则sin(θ+)∈(﹣,1],∴导数f′(1)的取值范围(﹣,1],故选A.11.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)﹣f(x)>0恒成立,则不等式f(x)<0的解集为()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)【考点】6A:函数的单调性与导数的关系.【分析】设g(x)=,根据函数的单调性和函数的奇偶性求出不等式的解集即可.【解答】解:设g(x)=,∴g′(x)=,∵当x>0时,有xf′(x)﹣f(x)>0恒成立,∴当x>0时,g′(x)>0∴g(x)在(0,+∞)递增,∵f(﹣x)=f(x),∴g(﹣x)==﹣g(x),∴g(x)是奇函数,∴g(x)在(﹣∞,0)递增,∵f(2)=0∴g(2)==0,当x>0时,f(x)<0等价于<0,∴g(x)<0=g(2),∴0<x<2,当x<0时,f(x)<0等价于>0,∴g(x)>0=g(﹣2),∴﹣2<x<0,不等式f(x)<0的解集为(﹣2,0)∪(0,2),故选:C.12.若函数f(x)的导函数f′(x)=x2﹣3x﹣10,则函数f(1﹣x)的单调递增区间是()A.(,+∞)B.(﹣,+∞)C.(﹣4,3)D.(﹣∞,﹣4)和(3,+∞)【考点】6B:利用导数研究函数的单调性.【分析】由f′(x)<0求出f(x)的减区间,利用对称性求得f(﹣x)的增区间,再由平移变换可得函数f(1﹣x)的单调递增区间.【解答】解:由f′(x)=x2﹣3x﹣10<0,得﹣2<x<5,∴函数f(x)的减区间为(﹣2,5),则函数y=f(﹣x)的增区间为(﹣5,2),而f(1﹣x)=f[﹣(x﹣1)]是把函数y=f(﹣x)向右平移1个单位得到的,∴函数f(1﹣x)的单调递增区间是(﹣4,3).故选:C.二、填空题(每小题5分,共20分)13.计算: +(3+i17)﹣= 4+2i .【考点】A7:复数代数形式的混合运算.【分析】利用复数的运算法则分别计算即可.【解答】解:原式=+(3+i)﹣=+3+i﹣i10=i+3+i+1=4+2i;故答案为:4+2i.14.在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则=+,由此类比:三棱锥S﹣ABC中的三条侧棱SA、SB、SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC 上的高为h,则+.【考点】F3:类比推理.【分析】立体几何中的类比推理主要是基本元素之间的类比:平面⇔空间,点⇔点或直线,直线⇔直线或平面,平面图形⇔平面图形或立体图形,故本题由平面上的直角三角形中的边与高的关系式类比立体中两两垂直的棱的三棱锥中边与高的关系即可.【解答】解:∵PA、PB、PC两两互相垂直,∴PA⊥平面PBC.设PD在平面PBC内部,且PD⊥BC,由已知有:PD=,h=PO=,∴,即.故答案为:.15.过点(1,0)且与曲线y=相切的直线的方程为4x+y﹣4=0 .【考点】6H:利用导数研究曲线上某点切线方程.【分析】设出切点坐标,利用导数求出过切点的切线方程,再把已知点代入,求出切点横坐标,则切线方程可求.【解答】解:设切点为(),由y=,得y′=,∴,则切线方程为y﹣,把点(1,0)代入,可得,解得.∴切线方程为y﹣2=﹣4(x﹣),即4x+y﹣4=0.故答案为:4x+y﹣4=0.16.已知函数f(x)=x3+ax2+bx,(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为3,则a的值为.【考点】6G:定积分在求面积中的应用.【分析】题目中给出了函数图象与x轴围成的封闭图形的面积,所以我们可以从定积分着手,求出函数以及函数与x轴的交点,建立等式求解参数.【解答】解:由已知对方程求导,得:f′(x)=3x2+2ax+b.由题意直线y=0在原点处与函数图象相切,故f′(0)=0,代入方程可得b=0.故方程可以继续化简为:f(x)=x3+ax2=x2(x+a),令f(x)=0,可得x=0或者x=﹣a,可以得到图象与x轴交点为(0,0),(﹣a,0),由图得知a<0.故对﹣f(x)从0到﹣a求定积分即为所求面积,即:﹣a f(x)dx=3,﹣∫将 f(x)=x3+ax2代入得:﹣a(﹣x3﹣ax2)dx=3,∫求解,得a=﹣.故答案为:﹣.三、解答题(17题10分,其它每题12分)17.已知复数z+i,均为实数,且在复平面内,(z+ai)2的对应点在第四象限内,求实数a的取值范围.【考点】A4:复数的代数表示法及其几何意义;A5:复数代数形式的乘除运算.【分析】复数z+i,均为实数,可设z=x﹣i, =﹣i,可得﹣=0,z=﹣2﹣i.在复平面内,(z+ai)2=4﹣(a﹣1)2﹣4(a﹣1)i的对应点在第四象限内,可得4﹣(a﹣1)2>0,﹣4(a﹣1)<0,解出即可得出.【解答】解:∵复数z+i,均为实数,设z=x﹣i, ==﹣i,∴﹣ =0,∴x=﹣2.∴z=﹣2﹣i.∵在复平面内,(z+ai)2=[﹣2+(a﹣1)i]2=4﹣(a﹣1)2﹣4(a﹣1)i的对应点在第四象限内,∴4﹣(a﹣1)2>0,﹣4(a﹣1)<0,解得:1<a<3.∴实数a的取值范围是(1,3).18.设函数f(x)=﹣x2+6ax+b,其中a,b∈R.(1)若函数f(x)在x=1处取得极值﹣,求a,b的值;(2)求函数f(x)的单调递增区间.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)求出f′(x)=x2﹣(3a+2)x+6a,由函数f(x)在x=1处取得极值﹣,列出方程组,能求出a,b.(2)由f′(x)=x2﹣3x+2,利用导数性质能求出函数f(x)的单调递增区间.【解答】解:(1)∵f(x)=﹣x2+6ax+b,其中a,b∈R,∴f′(x)=x2﹣(3a+2)x+6a,∵函数f(x)在x=1处取得极值﹣,∴,解得a=,b=﹣1.(2)由(1)得f(x)=﹣+2x﹣1,∴f′(x)=x2﹣3x+2,由f′(x)=x2﹣3x+2>0,得x>2或x<1,∴函数f(x)的单调递增区间为(﹣∞,1],[2,+∞).19.设数列{an }的前n项和为Sn,且关于x的方程x2﹣anx﹣an=0有一根为Sn﹣1.(1)求出S1,S2,S3;(2)猜想{Sn}的通项公式,并用数学归纳法证明.【考点】RG:数学归纳法;8E:数列的求和.【分析】(1)由题设求出S1=,S2=.S3=.(2)由此猜想Sn=,n=1,2,3,….然后用数学归纳法证明这个结论.【解答】解:(1)当n=1时,x2﹣a1x﹣a1=0有一根为S1﹣1=a1﹣1,于是(a1﹣1)2﹣a1(a1﹣1)﹣a1=0,解得a1=.当n=2时,x2﹣a2x﹣a2=0有一根为S2﹣1=a2﹣,于是(a2﹣)2﹣a2(a2﹣)﹣a2=0,解得a2=由题设(Sn ﹣1)2﹣an(Sn﹣1)﹣an=0,Sn 2﹣2Sn+1﹣anSn=0.当n≥2时,an =Sn﹣Sn﹣1,代入上式得Sn﹣1Sn﹣2Sn+1=0.①得S1=a1=,S2=a1+a2=+=.由①可得S3=.(2)由(1)猜想Sn=,n=1,2,3,….下面用数学归纳法证明这个结论.(i)n=1时已知结论成立.(ii)假设n=k时结论成立,即Sk=,当n=k+1时,由①得Sk+1=,可得Sk+1=,故n=k+1时结论也成立.综上,由(i)、(ii)可知Sn=对所有正整数n都成立.20.设铁路AB长为100,BC⊥AB,且BC=30,为将货物从A运往C,现在AB上距点B为x 的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.(1)将总运费y表示为x的函数;(2)如何选点M才使总运费最小.【考点】HT:三角形中的几何计算.【分析】(1)由题意,AB=100,BC⊥AB,BC=30,BM=x,则AM=100﹣x.MC=,可得总运费y表示为x的函数;(2)根据(1)中的关系式,利用导函数单调性,可得最值.【解答】解:(1)由题意,AB=100,BC⊥AB,BC=30,BM=x,则AM=100﹣x.MC=,∴总运费y=2×+4×MC=200﹣2x+4,.(2)由(1)可得y=200﹣2x+4,.则y′=﹣2+4××令y′=0.可得:2=4x,解得:x=10.当时,y′<0,则y在当单调递减.当时,y′>0,则y在单调递增.∴当x=10时,y取得最大值为200+60.∴选点M距离B点时才使总运费最小.21.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥.【考点】8G:等比数列的性质.【分析】y,z为正数,可得≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.根据a,x,b成等差数列,a,y,z,b成等比数列,a,b>0.可得2x=a+b,,z=.令=m>0, =n>0,可得2x≥y+z⇔m3+n3≥m2n+mn2⇔(m﹣n)2≥0,【解答】证明:∵y,z为正数,∴≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.∵a,x,b成等差数列,a,y,z,b成等比数列,a,b>0,∴2x=a+b,,z=.令=m>0, =n>0,则2x≥y+z⇔m3+n3≥m2n+mn2.⇔(m﹣n)2≥0,上式显然成立,因此:x+1≥.22.设函数f(x)=ax2lnx﹣(x﹣1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.(1)求证:当x≥1时,f(x)≥(x﹣1)2;(2)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.【考点】6H:利用导数研究曲线上某点切线方程;6E:利用导数求闭区间上函数的最值.【分析】(1)由题意求得a=1,得到函数解析式,构造函数g(x)=x2lnx+x﹣x2,(x≥1).利用导数可得函数在[1,+∞)上为增函数,可得g(x)≥g(1)=0,即f(x)≥(x﹣1)2;(2)设h(x)=x2lnx﹣x﹣m(x﹣1)2+1,求其导函数,结合(1)放缩可得h′(x)≥3(x﹣1)﹣2m(x﹣1)=(x﹣1)(3﹣2m).然后对m分类讨论求解.【解答】(1)证明:由f(x)=ax2lnx﹣(x﹣1),得f′(x)=ax2lnx﹣(x﹣1)=2axlnx+ax ﹣1.∵曲线y=f(x)在点(1,0)处的切线方程为y=0,∴a﹣1=0,得a=1.则f(x)=x2lnx﹣x+1.设g(x)=x2lnx+x﹣x2,(x≥1).g′(x)=2xlnx﹣x+1,g″(x)=2lnx+1>0,∴g′(x)在[1,+∞)上为增函数,∴g′(x)≥g′(1)=0,则g(x)在[1,+∞)上为增函数,∴g(x)≥g(1)=0,即f(x)≥(x﹣1)2;(2)解:设h(x)=x2lnx﹣x﹣m(x﹣1)2+1,h′(x)=2xlnx+x﹣2m(x﹣1)﹣1,由(1)知,x2lnx≥(x﹣1)2+x﹣1=x(x﹣1),∴xlnx≥x﹣1,则h′(x)≥3(x﹣1)﹣2m(x﹣1)=(x﹣1)(3﹣2m).①当3﹣2m≥0,即m时,h′(x)≥0,h(x)在[1,+∞)上单调递增,∴h(x)≥h(1)=0成立;②当3﹣2m<0,即m>时,h′(x)=2xlnx+(1﹣2m)(x﹣1),h″(x)=2lnx+3﹣2m.令h″(x)=0,得>1,∴当x∈[1,x)时,h′(x)<h′(1)=0,)上单调递减,则h(x)<h(1)=0,不合题意.∴h(x)在[1,x综上,m.。

2017-2018年河北省衡水市武邑中学高二(下)期中数学试卷(文科)和答案

2017-2018年河北省衡水市武邑中学高二(下)期中数学试卷(文科)和答案

2017-2018学年河北省衡水市武邑中学高二(下)期中数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若z1=(1+i)2,z2=1﹣i,则等于()A.1+i B.﹣1+i C.1﹣i D.﹣1﹣i2.(5分)若P(﹣2,﹣)是极坐标系中的一点,则Q(2,)、R(2,)、M(﹣2,)、N(2,2kπ﹣)(k∈Z)四点中与P重合的点有()个.A.1B.2C.3D.43.(5分)执行如图所示的程序框图,若输出的b的值为16,则图中判断框内①处应填()A.4B.3C.2D.54.(5分)两个变量y与x的回归模型中,分别计算了4组数据的相关系数r如下,其中拟合效果最好的是()A.第一组B.第二组C.第三组D.第四组5.(5分)已知变量x与y负相关,且由观测数据算得样本平均数=2,=1.5,则由该观测数据算得的线性回归方程可能是()A.y=3x﹣4.5B.y=﹣0.4x+3.3C.y=0.6x+1.1D.y=﹣2x+5.56.(5分)年劳动生产率x(千元)和工人工资y(元)之间回归方程为=10+80x,这意味着年劳动生产率每提高1千元时,工人工资平均()A.增加10元B.减少10元C.增加80元D.减少80元7.(5分)演绎推理“因为指数函数y=a x(a>0且a≠1)是增函数,而函数是指数函数,所以是增函数”所得结论错误的原因是()A.大前提错误B.小前提错误C.推理形式错误D.以上都不是8.(5分)甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性做试验,并由回归分析法分别求得相关指数R与残差平方和m如下表:则哪位同学的试验结果体现A,B两变量更强的线性相关性()A.甲B.乙C.丙D.丁9.(5分)定义运算=ad﹣bc,若z1=(i为虚数单位)且复数z满足方程|z﹣z1|=4,那么复数z在复平面内对应的点P组成的图形为()A.以(﹣1,﹣2)为圆心,以4为半径的圆B.以(﹣1,﹣2)为圆心,以2为半径的圆C.以(1,2)为圆心,以4为半径的圆D.以(1,2)为圆心,以2为半径的圆10.(5分)若下列关于x的方程x2+4ax﹣4a+3=0,x2+2ax﹣2a=0,x2+(a﹣1)x+a2=0(a为常数)中至少有一个方程有实根,则实数a的取值范围是()A.()B.()C.(]∪[﹣1,+∞)D.(]∪[0,+∞)11.(5分)空间四边形SABC中,各边及对角线长都相等,若E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角为()A.30°B.45°C.60°D.90°12.(5分)已知A、B、C、D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=2,则该球的表面积为()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知复数满足(3﹣4i)=4﹣3i,则|z|=.14.(5分)已知F1、F2为椭圆=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|=.15.(5分)函数,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0,则a=,b=.16.(5分)在公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(D)的立方成正比”,此即V=kD3,欧几里得未给出k的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式V=kD3中的常数k称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式V=kD3求体积(在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长).假设运用此体积公式求得球(直径为a)、等边圆柱(底面圆的直径为a)、正方体(棱长为a)的“玉积率”分别为k1,k2,k3,那么k1:k2:k3=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知函数.(1)求f(x)的单调递增区间;(2)设△ABC的内角A,B,C的对边分别为a,b,c,且,若sinB=2sinA,求a、b的值.18.(12分)在直角坐标系xOy中,曲线C1的参数方程为(其中α为参数),曲线C2的方程为,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;(Ⅱ)若射线θ=(ρ>0)与曲线C1,C2分别交于A,B两点,求|AB|.19.(12分)某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据(Ⅰ)请画出上表数据的散点图;(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程= x+;(Ⅲ)试根据(Ⅱ)求出的线性回归方程,预测记忆力为9的同学的判断力.(相关公式:,=﹣x)20.(12分)如图,多面体ABC﹣B1C1D是由三棱柱ABC﹣A1B1C1截去一部分后而成,D是AA1的中点.(1)若AD=AC=1,AD⊥平面ABC,BC⊥AC,求点C到面B1C1D的距离;(2)若E为AB的中点,F在CC1上,且,问λ为何值时,直线EF∥平面B1C1D?21.(12分)在平面直角坐标系xOy中,直线l的参数方程为:(t 为参数,0≤a<π),以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程ρ=6sinθ.(I)(i)当时,写出直线l的普通方程;(ii)写出曲线C的直角坐标方程;(II)若点P(1,2),设曲线C与直线l交于点A,B,求最小值.22.(12分)已知函数f(x)=x2ln|x|.(1)判断函数f(x)的奇偶性并求当x>0时函数f(x)的单调区间;(2)若关于x的方程f(x)=kx﹣1有实数解,求实数k的取值范围.2017-2018学年河北省衡水市武邑中学高二(下)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若z1=(1+i)2,z2=1﹣i,则等于()A.1+i B.﹣1+i C.1﹣i D.﹣1﹣i【解答】解:∵z1=(1+i)2=2iz2=1﹣i,∴=故选:B.2.(5分)若P(﹣2,﹣)是极坐标系中的一点,则Q(2,)、R(2,)、M(﹣2,)、N(2,2kπ﹣)(k∈Z)四点中与P重合的点有()个.A.1B.2C.3D.4【解答】解:P(﹣2,﹣)是极坐标系中的一点,可以化为:P(2,).则Q(2,)、R(2,)、M(﹣2,)、N(2,2kπ﹣)(k∈Z)四点都与P重合,因此与点P重合的点有4个.故选:D.3.(5分)执行如图所示的程序框图,若输出的b的值为16,则图中判断框内①处应填()A.4B.3C.2D.5【解答】解:当判断框中的条件是a≤3时,∵第一次循环结果为b=2,a=2,第二次循环结果为b=4,a=3,d第三次循环结果为b=16,a=4不满足判断框中的条件,输出的结果是16满足已知条件,故选:B.4.(5分)两个变量y与x的回归模型中,分别计算了4组数据的相关系数r如下,其中拟合效果最好的是()A.第一组B.第二组C.第三组D.第四组【解答】解:两个变量y与x的回归模型中,相关系数为r,则|r|越接近于1,相关程度越大;|r|越小,相关程度越小,由第一组模型的相关系数|r|最大,其模拟效果最好.故选:A.5.(5分)已知变量x与y负相关,且由观测数据算得样本平均数=2,=1.5,则由该观测数据算得的线性回归方程可能是()A.y=3x﹣4.5B.y=﹣0.4x+3.3C.y=0.6x+1.1D.y=﹣2x+5.5【解答】解:根据变量x与y负相关,排除选项A、C;由线性回归方程过样本中心点知,1.5=﹣2×2+5.5,满足y=﹣2.5x+5.5;∴线性回归方程可能是y=﹣2x+5.5.故选:D.6.(5分)年劳动生产率x(千元)和工人工资y(元)之间回归方程为=10+80x,这意味着年劳动生产率每提高1千元时,工人工资平均()A.增加10元B.减少10元C.增加80元D.减少80元【解答】解:由题意,年劳动生产率x(千元)和工人工资y(元)之间回归方程为=10+80x,故当x增加1时,y要增加80元,∴劳动生产率每提高1千元时,工资平均提高80元,故C正确.故选:C.7.(5分)演绎推理“因为指数函数y=a x(a>0且a≠1)是增函数,而函数是指数函数,所以是增函数”所得结论错误的原因是()A.大前提错误B.小前提错误C.推理形式错误D.以上都不是【解答】解:∵当a>1时,指数函数y=a x是一个增函数,当0<a<1时,指数函数y=a x是一个减函数∴指数函数y=a x(a>0,a≠1)是减函数这个大前提是错误的,从而导致结论出错.故选:A.8.(5分)甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性做试验,并由回归分析法分别求得相关指数R与残差平方和m如下表:则哪位同学的试验结果体现A,B两变量更强的线性相关性()A.甲B.乙C.丙D.丁【解答】解:在验证两个变量之间的线性相关关系中,相关系数的绝对值越接近于1,相关性越强,残差平方和越小,相关性也越强;四个选项中甲的相关系数绝对值最大,且甲的残差平方和最小;所以,甲的试验结果体现A、B两变量有更强的线性相关性.故选:A.9.(5分)定义运算=ad﹣bc,若z1=(i为虚数单位)且复数z满足方程|z﹣z1|=4,那么复数z在复平面内对应的点P组成的图形为()A.以(﹣1,﹣2)为圆心,以4为半径的圆B.以(﹣1,﹣2)为圆心,以2为半径的圆C.以(1,2)为圆心,以4为半径的圆D.以(1,2)为圆心,以2为半径的圆【解答】解:由题意可得,z1==i2018﹣2i=(i4)504•i2﹣2i=﹣1﹣2i,由|z﹣z1|=4,得|z﹣(﹣1﹣2i)|=4,可知复数z在复平面内对应的点P组成的图形为以(﹣1,﹣2)为圆心,以4为半径的圆.故选:A.10.(5分)若下列关于x的方程x2+4ax﹣4a+3=0,x2+2ax﹣2a=0,x2+(a﹣1)x+a2=0(a为常数)中至少有一个方程有实根,则实数a的取值范围是()A.()B.()C.(]∪[﹣1,+∞)D.(]∪[0,+∞)【解答】解:不妨假设三个方程都没有实数根,则有,解得﹣<a<﹣1,故三个方程x2+4ax﹣4a+3=0,x2+(a﹣1)x+a2=0,x2+2ax﹣2a=0至少有一个方程有实根时,实数a的取值范围为:(]∪[﹣1,+∞).故选:C.11.(5分)空间四边形SABC中,各边及对角线长都相等,若E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角为()A.30°B.45°C.60°D.90°【解答】解:求EF与SA所成的角,可把SA平移,使其角的顶点在EF上,为此取SB的中点G,连结GE、GF、BE、AE.由三角形中位线定理得GE=BC,GF=SA,且GF∥SA,所以∠GFE就是EF与SA所成的角.若设此空间四边形边长为a,那么GF=GE=a,EA=a,EF==a,因此△EFG为等腰直角三角形,∠EFG=45°,所以EF与SA所成的角为45°.故选:B.12.(5分)已知A、B、C、D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=2,则该球的表面积为()A.B.C.D.【解答】解:由题意画出几何体的图形如图,把A、B、C、D扩展为三棱柱,上下底面中心连线的中点与A的距离为球的半径,AD=2AB=2,△ABC是正三角形,所以AE=,AO=.所求球的表面积为:4π()2=π.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知复数满足(3﹣4i)=4﹣3i,则|z|=1.【解答】解:由(3﹣4i)=4﹣3i,得,则|z|=||=||=.故答案为:1.14.(5分)已知F1、F2为椭圆=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|=8.【解答】解:椭圆=1的a=5,由题意的定义,可得,|AF1|+|AF2|=|BF1|+|BF2|=2a,则三角形ABF2的周长为4a=20,若|F2A|+|F2B|=12,则|AB|=20﹣12=8.故答案为:815.(5分)函数,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0,则a=1,b=1.【解答】解:函数的导数为f′(x)=﹣,可得y=f(x)在点(1,f(1))处的切线斜率为k=﹣b=a﹣b,切线方程为x+2y﹣3=0,可得a﹣b=﹣,且f(1)=b=1,解得a=b=1,故答案为:1,1.16.(5分)在公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(D)的立方成正比”,此即V=kD3,欧几里得未给出k的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式V=kD3中的常数k称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式V=kD3求体积(在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长).假设运用此体积公式求得球(直径为a)、等边圆柱(底面圆的直径为a)、正方体(棱长为a)的“玉积率”分别为k1,k2,k3,那么k1:k2:k3=::1.【解答】解:∵V1=πR3=π()3=a3,∴k1=,∵V2=aπR2=aπ()2=a3,∴k2=,∵V3=a3,∴k3=1,∴k1:k2:k3=::1,故答案为:三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知函数.(1)求f(x)的单调递增区间;(2)设△ABC的内角A,B,C的对边分别为a,b,c,且,若sinB=2sinA,求a、b的值.【解答】解:(1),由,得∴函数f(x)的单调递增区间为.(2)由f(C)=0,得,又∵0<C<π,∴,.又sinB=2sinA,由正弦定理得①;由余弦定理得,即a2+b2﹣ab=3,②由①②解得a=1,b=2.18.(12分)在直角坐标系xOy中,曲线C1的参数方程为(其中α为参数),曲线C2的方程为,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;(Ⅱ)若射线θ=(ρ>0)与曲线C1,C2分别交于A,B两点,求|AB|.【解答】(满分12分)解:(I)∵曲线C1的参数方程为(其中α为参数),∴曲线C1的普通方程为:x2+(y﹣2)2=7.∵曲线C2的方程为,∴把x=ρcosθ,y=ρsinθ,代入曲线C2得直角坐标方程,得:ρ2cos2θ+3ρ2sin2θ=3,∴曲线C2的极坐标方程为ρ2(cos2θ+3sin2θ)=3.……………………….(6分)(II)∵射线θ=(ρ>0)与曲线C1,C2分别交于A,B两点,∴依题意可设A(),B().∵曲线C1的极坐标方程为:ρ2﹣4ρsinθ﹣3=0,将(ρ>0)代入曲线C1的极坐标方程得ρ2﹣2ρ﹣3=0,解得ρ1=3.同理将(ρ>0)代入曲线C2的极坐标方程得ρ2=.∴|AB|=|ρ1﹣ρ2|=3﹣.……………………………………………(12分)19.(12分)某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据(Ⅰ)请画出上表数据的散点图;(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程= x+;(Ⅲ)试根据(Ⅱ)求出的线性回归方程,预测记忆力为9的同学的判断力.(相关公式:,=﹣x)【解答】解:(Ⅰ)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图.(Ⅱ)∵6×2+8×3+10×5+12×6=158,,∴b==0.7,a=4﹣0.7×9=﹣2.3故线性回归方程为y=0.7x﹣2.3(Ⅲ)由回归直线方程预测y=0.7×9﹣2.3=4,记忆力为9的同学的判断力约为4.20.(12分)如图,多面体ABC﹣B1C1D是由三棱柱ABC﹣A1B1C1截去一部分后而成,D是AA1的中点.(1)若AD=AC=1,AD⊥平面ABC,BC⊥AC,求点C到面B1C1D的距离;(2)若E为AB的中点,F在CC1上,且,问λ为何值时,直线EF∥平面B1C1D?【解答】解:(1)∵多面体ABC﹣B1C1D是由三棱柱ABC﹣A1B1C1截去一部分后而成,D是AA1的中点.AD⊥平面ABC,BC⊥AC,∴BC⊥面DACC1,则BC⊥CD,∵BC∥B1C1,∴CD⊥B1C1,又∵AD=AC=1,D是AA1的中点,∴,DC1=,可得,即CD⊥C1D,∴CD⊥面DC1B1,∴点C到面B1C1D的距离等于CD=,(2)当λ=4时,直线EF∥平面B1C1D,理由如下:设AD=1,则BB1=2,取DB1的中点H,连接EH,可得AD∥EH∥CC1,∵EH是梯形DABB1的中位线,∴,当C1F=EH=时,四边形C1FEH为平行四边形,即EF∥HC1,∵HC1⊂面B1C1D,∴直线EF∥平面B1C1D.此时且=4,21.(12分)在平面直角坐标系xOy中,直线l的参数方程为:(t 为参数,0≤a<π),以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程ρ=6sinθ.(I)(i)当时,写出直线l的普通方程;(ii)写出曲线C的直角坐标方程;(II)若点P(1,2),设曲线C与直线l交于点A,B,求最小值.【解答】(满分12分)解:(I)(i)当α=时,直线l的参数方程为:,∴直线l的普通方程为x﹣y+1=0.(ii)∵曲线C的极坐标方程ρ=6sinθ.∴ρ2=6ρsinθ,∴曲线C的直角坐标方程为x2+y2=6y,即x2+(y﹣3)2=9.…………(6分)(II)将直线l的参数方程代入圆的直角坐标方程,得t2+2(cosα﹣sinα)t﹣7=0,∵△=4(cosα﹣sinα)2+4×7>0,设t1,t2是方程的两根,则.又直线l过点P(1,2),结合t的几何意义得:|PA|+|PB|=|t1|+|t2|=|t1﹣t2|===2.∴==≥,∴的最小值为.……(12分)22.(12分)已知函数f(x)=x2ln|x|.(1)判断函数f(x)的奇偶性并求当x>0时函数f(x)的单调区间;(2)若关于x的方程f(x)=kx﹣1有实数解,求实数k的取值范围.【解答】解:(1)∵函数f(x)的定义域为{x|x∈R且x≠0},且f(﹣x)=(﹣x)2ln|﹣x|=x2lnx=f(x),∴f(x)为偶函数.当x>0时,.若,则f′(x)<0,f(x)递减;若,则f′(x)>0,f(x)递增.得f(x)的递增区间是,递减区间是.(3)由f(x)=kx﹣1,得:.令.当x>0,,显然g'(1)=0.当0<x<1时,g'(x)<0,g(x)为减函数;当x>0时,g'(x)>0,g(x)为增函数.∴x>0时,g(x)min=g(1)=1.又g(﹣x)=﹣g(x),可知g(x)为奇函数,∴x<0时,g(x)max=g(﹣1)=﹣1.∴g(x)的值域为(﹣∞,﹣1]∪[1,+∞).∴若方程f(x)=kx﹣1有实数解,则实数k的取值范围是(﹣∞,﹣1]∪[1,+∞).。

精品解析:【全国百强校】衡水金卷河北衡水中学2017-2018年高二下学期期中考试数学(理)试卷(解析版)

精品解析:【全国百强校】衡水金卷河北衡水中学2017-2018年高二下学期期中考试数学(理)试卷(解析版)

理数试卷第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 与极坐标表示的不是同一点的极坐标是()A. B. C. D.【答案】B【解析】分析:利用极坐标的表示方法,即可得出结果.详解:点在直角坐标系中表示点,而点在直角坐标系中表示点,所以点和点表示不同的点,故选B.点睛:本题主要考查了极坐标的表示方法,着重考查了推理与计算能力,属于基础题.2. 给出下列表述:①综合法是由因导果法;②综合法是顺推证法;③分析法是执果索因法;④分析法是间接证明法;⑤分析法是逆推证法.其中正确的表述有()A. 个B. 个C. 个D. 个【答案】C【解析】结合综合法和分析法的定义可知①②③⑤均正确,分析法和综合法均为直接证明法,故④不正确.考点:综合法和分析法的特征.3. 设复数满足(为虚数单位),则的共轭复数()A. B. C. D.【答案】D【解析】,所以,的共轭复数为,故选D.4. 用反证法证明命题“若,则且”时,下列假设的结论正确的是()A. 或B. 且C. 或D. 且【答案】A【解析】试题分析:反证法要假设所要证明的结论的反面成立,本题中要反设成立考点:反证法5. 方程(为参数)表示的曲线是()A. 双曲线B. 双曲线的上支C. 双曲线的下支D. 圆【答案】B【解析】由题意得,方程,两式相减,可得,由,所以曲线的方程为,表示双曲线的上支,故选B.考点:曲线的参数方程.6. 若,,,则,,的大小关系是()A. B. C. D.【答案】A【解析】分析:利用定积分,将已知化简,即可比较大小.详解:由题意,可得,,,则,所以,故选A.点睛:本题主要考查了定积分的运算,其中根据微积分基本定理,求解的值是解答的关键,着重考查了推理与运算能力.7. 老王和小王父子俩玩一种类似于古代印度的“梵塔游戏”:有甲、乙、丙个柱子,在甲柱上现有个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这个盘子从甲柱全部移到乙柱游戏即结束.在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且个柱子上的盘子始终保持小的盘子不能放在大的盘子之下.设游戏结束需要移动的最少次数为,则()A. B. C. D.【答案】C【解析】由题意得,根据甲乙丙三图可知最上面的两个是一样大小的,所以比三个操作的此时要多,此四个操作的此时要少,相当与操作三个的时候,最上面的那衣蛾动了几次,就会增加几次,故选C. 考点:归纳推理.8. 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下一个三条侧棱两两垂直的三棱锥,如果用,,表示三个侧面面积,表示截面面积,那么类比得到的结论是()A. B.C. D.【答案】B【解析】分析:利用从平面图形到空间图形的类比推理,即可得到结论.详解:建立从平面图形到空间图形的类比,与可得类比得到,故选B.点睛:本题主要考查了从平面图形到空间的类比推理,着重考查了学生的知识量和知识的迁移,类比的基本能力,解答的关键是掌握好类比推理的概念与应用.9. 设函数,则函数的所有极大值之和为()A. B. C. D.【答案】D【解析】∵函数,∴,∵时,时,,∴时原函数递增,时,函数递减,故当时,取极大值,其极大值为,又,∴函数的各极大值之和.故选D.10. 已知在平面直角坐标系中,曲线的参数方程为(为参数),是曲线上的动点.以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,若曲线的极坐标方程为,则点到的距离的最大值为()A. B. C. D.【答案】B【解析】分析:把曲线的极坐标方程,可得曲线的直角坐标方程为,设曲线上点的坐标为,由点到直线的距离公式,即可求得最大值.学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...详解:由曲线的极坐标方程为,可得曲线的直角坐标方程为,由曲线的参数方程,设曲线上点的坐标为,由点到直线的距离公式可得,当时,取得最大值,此时最大值为,故选B.点睛:本题主要考查了极坐标方程与直角坐标方程的互化,以及曲线的参数方程的应用,着重考查了推理与运算能力.11. 已知函数与的图象如图所示,则函数(其中为自然对数的底数)的单调递减区间为()A. B. , C. D. ,【答案】D【解析】分析:结合函数的图象求出成立的的取值范围,即可得到结论.详解:结合函数的图象可知:和时,,又由,则,令,解得,所以函数的递减区间为,故选D.点睛:本题主要考查了导数的四则运算,以及利用导数研究函数的单调性,求解单调区间,其中结合图象,得到,进而得到的解集是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.12. 已知函数,若关于的方程有个不同的实数解,则实数的取值范围是()A. B. C. D.【答案】C【解析】分析:利用导数得函数的单调性并求得最值,求解方程得到或,画出函数的图象,结合图象即可求解.详解:设,则,令,得,当时,,函数为增函数,当时,,函数为减函数,所以当时,函数取得极大值也是函数的最大值,由方程,可得或,画出函数的图象,如图所示,结合图象可得实数的取值范围是,故选C.点睛:本题主要考查了根的存在性与根的个数的判断,考查了利用导数求解函数的单调性与函数的最值,其中把根的存在性与根的个数问题转化为函数的图象的交点问题是解答的关键,着重考查了转化思想方法,以及数形结合思想的应用,试题属于中档试题.第Ⅱ卷二、填空题:本题共4小题,每小题5分.13. 复数(为虚数单位)的虚部为__________.【答案】【解析】分析:利用复数的运算,化简得,即可得到复数的虚部.详解:由题意,复数,所以复数的虚部为.点睛:本题主要考查了复数的运算法则和复数的基本概念,其中熟记复数的四则运算法则和复数的基本概念是解答的关键,着重考查了推理与运算能力.14. 在极坐标系中,直线的方程为,则点到直线的距离为__________.【答案】【解析】分析:把直线的极坐标方程化为直角坐标方程,把的极坐标化为直角坐标,再利用点到直线的距离公式求得它到直线的距离即可.详解:把直线的方程化为直角坐标方程得,点的直角坐标为,由点到直线的距离公式,可得.点睛:本题主要考查了极坐标与直角坐标的互化,以及点到直线的距离公式的应用,着重考查了推理与运算能力,属于基础题.15. 在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说:“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是__________.【答案】甲【解析】试题分析:若负主要责任的是甲,则甲乙丙都在说假话,只有丁说真话,符合题意.若负主要责任的是乙,则甲丙丁都在说真话,不合题意.若负主要责任的是丙,则乙丁都在说真话,不合题意.若负主要责任的是丁,则甲乙丙丁都在说假话,不合题意.考点:逻辑推理.16. 已知实数,满足,,则的最小值为__________.【答案】【解析】分析:分别设,则表曲线上的点到直线的距离,则最小值表示与直线平行的切线之间的距离,求出曲线的切线方程,根据平行线之间的距离公式,即可求解.详解:分别设,则表曲线上的点到直线的距离,所以最小值表示与直线平行的切线之间的距离,因为,所以,令,解得,所以,所以曲线过点的切线方程为,即,所以直线与直线间的距离为,即最小值.点睛:本题主要考查了利用导数研究曲线在某点处的切线方程,以及两条平行线之间的距离公式的应用,其中解答中把最小值转化为直线平行的切线之间的距离上解答的关键,着重考查了转化与化归思想,以及推理与计算能力,试题属于中档试题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 设复数,其中为虚数单位,当实数取何值时,复数对应的点:(1)位于虚轴上;(2)位于一、三象限;(3)位于以原点为圆心,以为半径的圆上.【答案】(1)(2)(3)或【解析】分析:(1)根据题设条件得到复数对应点坐标,当复数位于虚轴上时,实部为零,虚部不为零,即可求解;(2)当复数位于一、三象限时,复数满足实部和虚部之积大于零,即可求解;(3)位于以原点为圆心,以为半径的圆上时,满足,即可求解.详解:(1)复数对应的点位于虚轴上,则.∴时,复数对应的点位于虚轴上.(2)复数对应的点位于一、三象限,则或.∴当时,复数对应的点位于一、三象限.(3)复数对应的点位于以原点为圆心,以为半径的圆上,则或.∴或时,复数对应的点位于以原点为圆心,以为半径的圆上.点睛:本题主要考查了复数表示,解答中根据题设条件求出复数对应点的坐标,结合点的位置列出不等式组或关系式是解答的关键,着重考查了推理与计算能力.18. 已知数列的前项和为,且满足,.(1)写出,,,并推测数列的表达式;(2)用数字归纳法证明(1)中所得的结论.【答案】(1),,.(2)见解析【解析】分析:(1)利用,代入计算,即可得到的值,猜想;(2)利用数学归纳法进行证明,检验当时等式成立,假设是命题成立,证明当时,命题也成立即可.详解:(1)将,,分别代入,可得,,.猜想.(2)①由(1),得时,命题成立;②假设时,命题成立,即,那么当时,,且,所以,所以,即当时,命题也成立.根据①②,得对一切,都成立.点睛:本题主要考查了数列的递推公式的应用,以及数列归纳、猜想、证明,对于数学归纳法的证明,一般分三步:(1)验证成立;(2)假设是命题成立,证明当时,命题也成立,从而得证,这是数列通项的一种求解方法,着重考查了推理与论证能力.19. 在平面直角坐标系中,曲线过点,其参数方程为(为参数,),以为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)已知曲线与曲线交于,两点,且,求实数的值.【答案】(1),(2)或.【解析】试题分析: (Ⅰ)根据加减相消法将曲线参数方程化为普通方程,利用将曲线(Ⅱ)先将直线参数方程转化为(为参数,),再根据直线参数方程几何意义由得,最后将直线参数方程代入,利用韦达定理得关于的方程,解得的值.试题解析: (Ⅰ)曲线参数方程为,∴其普通方程,由曲线的极坐标方程为,∴∴,即曲线的直角坐标方程.(Ⅱ)设、两点所对应参数分别为,联解得要有两个不同的交点,则,即,由韦达定理有根据参数方程的几何意义可知,又由可得,即或∴当时,有,符合题意.当时,有,符合题意.综上所述,实数的值为或.20. 某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级的对应关系,如下表所示(假设该区域空气质量指数不会超过):级优级良级轻度污染级中度污染级重度污染级严重污染该社团将该校区在年某天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.(1)请估算年(以天计算)全年空气质量优良的天数(未满一天按一天计算);(2)该校年月、、日将作为高考考场,若这三天中某天出现级重度污染,需要净化空气费用元,出现级严重污染,需要净化空气费用元,记这三天净化空气总费用为元,求的分布列及数学期望.【答案】(1)110(2)见解析【解析】试题分析: (Ⅰ)根据频率分布直方图知小长方形面积为对应区间概率,先计算空气质量优良区间对应的概率,再根据频数等于总数乘以概率得空气质量优良的天数,(Ⅱ)先确定随机变量取法,再分别求对应概率,列表得分布列,最后根据期望公式求数学期望.试题解析: (Ⅰ)由直方图可估算年(以天计算)全年空气质量优良的天数为(天).(Ⅱ)由题可知,的所有可能取值为:,,,,,,,则:,.的分布列为(元).21. 已知抛物线的焦点为椭圆:的右焦点,点为此抛物线与椭圆在第一象限的交点,且.(1)求椭圆的方程;(2)过点作两条互相垂直的直线,,直线与椭圆交于,两点,直线与直线交于点,求的取值范围.【答案】(1)(2)【解析】【试题分析】(1)依据题设条件建立方程组求解;(2)借助题设条件,运用直线与椭圆的位置关系,通过研究坐标之间的关系进行分析探求:(1)由已知可得的焦点坐标为,设,则,解得,所以,由点在椭圆上,得,即,又,解得,所以椭圆的方程为.(2)设直线的方程为,由,得,则,,当时,直线的方程为,由,得.即,所以,所以,设,则,则,由于,在上为增函数,,则,当时,的中点为,则,,综上,,故的取值范围是.点睛:椭圆是重要的圆锥曲线代表之一,也是高中数学的重要知识点与高考的必考考点。

【全国百强校word】河北省衡水中学2017届高三下学期二调考试数学(理)试题

【全国百强校word】河北省衡水中学2017届高三下学期二调考试数学(理)试题

绝密★启用前【全国百强校word 】河北省衡水中学2017届高三下学期二调考试数学(理)试题试卷副标题考试范围:xxx ;考试时间:69分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、等腰直角三角形内接于抛物线,为抛物线的顶点,,的面积是16,抛物线的焦点为,若是抛物线上的动点,则的最大值为( )A .B .C .D .2、数列满足,,且,则的整数部分的所有可能值构成的集合是( )A .B .C .D .3、如图,三个边长为2的等边三角形有一条边在同一直线上,边上有10个不同的点,记,则的值为( )A .B .45C .D .1804、已知圆:,点为直线上一动点,过点向圆引两条切线,为切点,则直线经过定点( )A .B .C .D .5、有一长、宽分别为、的矩形游泳池,一名工作人员在池边巡逻,某时刻出现在池边任一位置可能性相同,一人在池中心(对角线交点)处呼唤工作人员,其声音可传出,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是( )A .B .C .D .6、已知复数(为虚数单位),则的共轭复数是( )A .B .C .D .7、已知函数是定义在上的单调函数,且对任意的都有,若动点满足等式,则的最大值为( )A .B .-5C .D .58、,,若不论取何值,对任意总是恒成立,则的取值范围是( ) A .B .C .D .9、某几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .10、已知数列的前项和为,若,且,则( )A .B .C .D .11、设集合,,则( )A .B .C .D .第II卷(非选择题)二、填空题(题型注释)12、某校今年计划招聘女教师人,男教师人,若,满足,则该学校今年计划招聘教师最多__________人.13、已知函数的两个零点分别为,则__________.14、已知是定义在上的函数,且满足①;②曲线关于点对称;③当时,,若在上有5个零点,则实数的取值范围为__________.15、已知四面体的每个顶点都在球的表面上,,,底面,为的重心,且直线与底面所成角的正切值为,则球的表面积为__________.三、解答题(题型注释)16、选修4-5:不等式选讲设函数.(1)证明:;(2)若不等式的解集是非空集,求的范围.17、选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数),在以为极点,轴的正半轴为极轴的极坐标系中,射线,与,各有一个交点,当时,这两个交点间的距离为2,当,这两个交点重合.(1)分别说明,是什么曲线,并求出与的值;(2)设当时,与,的交点分别为,当,与,的交点分别为,求四边形的面积.18、如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.(1)若,求曲线的方程;(2)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;(3)对于(1)中的曲线,若直线过点交曲线于点,求的面积的最大值.19、设,曲线在点处的切线与直线垂直.(1)求的值; (2)若对于任意的,恒成立,求的取值范围;(3)求证:.20、如图,已知四棱锥中,平面,,且,是边的中点.(1)求证:平面;(2)求二面角的余弦值大小.21、某公司准备将1000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目供选择,若投资甲项目一年后可获得的利润为(万元)的概率分布列如表所示:且的期望;若投资乙项目一年后可获得的利润(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否受第二和第三季度进行产品的价格调整,两次调整相互独立,且调整的概率分别为和,乙项目产品价格一年内调整次数(次)与的关系如表所示:(1)求的值;(2)求的分布列;(3)根据投资回报率的大小请你为公司决策:当在什么范围时选择投资乙项目,并预测投资乙项目的最大投资回报率是多少?(投资回报率=年均利润/投资总额×100%)22、已知向量,,设函数.(1)若函数的图象关于直线对称,且时,求函数的单调增区间;(2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.参考答案1、C2、A3、D4、A5、B6、A7、A8、D9、A10、C11、D12、13、14、15、16、(1)见解析;(2).17、(1)详见解析;(2)18、(1)和;(2)证明见解析;(3).19、(Ⅰ)(Ⅱ)(Ⅲ)详见解析20、(1)详见解析;(2).21、(1);(2)分布列见解析;(3),最大回报率为.22、(1);(2).【解析】1、试题分析:因为等腰直角△内接于抛物线,为抛物线的顶点,所以,可设,得,将代入,得,抛物线的方程为,所以,设,则,设,则,时,“”成立.故选C.考点:1、抛物线的标准方程及几何性质;2、配方法圆锥曲线求最值.【方法点晴】本题主要考查抛物线的标准方程及几何性质、圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是根据这种思路,利用配方法求的最大值的.2、试题分析:对两边取倒数,得,累加得,由,为单调递增数列,,其中,整数部分为,,整数部分为,,整数部分为,由于,故选A.考点:递推数列,数列求和.【思路点晴】本题主要考查递推数列求通项、数列求和有关问题.对两边取倒数后,有,这个相当于数列求和方法中的列项求和法,由此可以得到,结合数列,为单调递增数列,通过列举法,可求得整数部分有,三种可能.3、因为与垂直,设垂足为,所以在投影为,,从而的值为选D.点睛:本题解题关键为运用向量数量积的几何意义:投影. 其有两个要素,一是有个定向量,二是明确垂足位置.4、设则即因此、在直线上,直线方程为,又,所以即,直线经过定点,选A.5、所求概率为几何概型,测度为长度,如图,因此概率为,选B.6、 ,所以共轭复数是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【全国百强校】衡水金卷河北衡水中学2017-2018年高二下学期期中考试数学(理)试卷
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 与极坐标表示的不是同一点的极坐标是()
A.B.C.D.
2. 下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是逆推法;⑤反证法是间接证法.其中正确的有()A.2个B.3个C.4个D.5个
3. 设复数满足(为虚数单位),则()
A.B.
C.D.
4. 用反证法证明命题“若,则
”时,下列假设的结论正确的是()
A.B.
C.D.
5. 方程(为参数)表示的曲线是( )
A.双曲线B.双曲线的上支C.双曲线的下支D.圆
6. 若,,,则,,的大小关系是
()
A.B.C.D.
7. 老王和小王父子俩玩一种类似于古代印度的“梵塔游戏”;有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为,则()
A.7 B.8 C.11 D.15
8. 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下一个三条侧棱两两垂直的三棱锥
,如果用,,表示三个侧面面积,表示截面面积,那么类比得到的结论是()
A.B.
C.D.
9. 设函数,则函数的所有极大值之和为A.B.C.D.
10. 已知在平面直角坐标系中,曲线C的参数方程为
,M是曲线C上的动点.以原点O为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,若曲线的极坐标方程为
,则点M到点T的距离的最大值为()A.B.C.D.
11. 已知函数与的图象如图所示,则函数(其中为自然对数的底数)的单调递减区间为()
B.
A.
D.
C.
12. 已知函数,若关于的方程
由5个不同的实数解,则实数的取值范围是()
D.
A.B.C.
二、填空题
13. 复数(其中为虚数单位)的虚部为__________.
14. 在极坐标系中,直线的方程为,则点到直线的距离为__________.
15. 在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是_____.
16. 已知实数,满足,,则的最小值为__________.
三、解答题
17. 设复数,当实数取何值时,复数对应的点:
(1)位于实轴上?
(2)位于第一、三象限?
(3)位于以原点为圆心、4为半径的圆上?
18. 已知数列的前项和为,且满足,.
(1)写出,,,并推测数列的表达式;
(2)用数字归纳法证明(1)中所得的结论.
19. 在平面直角坐标系中,曲线过点,其参数方程为
(t为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线
的极坐标方程为.
求曲线的普通方程和曲线的直角坐标方程;
已知曲线和曲线交于两点,且,求实数的值.
20. 某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与
空气质
量指数
空气质量等级级优级良
级轻度
污染
级中度
污染
级重度
污染
级严重
污染
该社团将该校区在年天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.
(Ⅰ)请估算年(以天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校年月、、日将作为高考考场,若这三天中某天出现级重度污染,需要净化空气费用元,出现级严重污染,需要净化空气费用元,记这两天净化空气总费用为元,求的分布列及数学期望.
21. 已知抛物线的焦点为椭圆的右焦点, 点
为此抛物线与椭圆在第一象限的交点,且.
(1)求椭圆的方程;
(2)过点作两条互相垂直的直线,直线与椭圆交于两点,直线与直线交于点,求的取值范围.
22. 已知,函数.
(Ⅰ)若函数在上递减, 求实数的取值范围;
(Ⅱ)当时,求的最小值的最大值;
(Ⅲ)设,求证:.。

相关文档
最新文档