七年级数学上册全册单元试卷专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册全册单元试卷专题练习(解析版)

一、初一数学上学期期末试卷解答题压轴题精选(难)

1.如图1,已知∠AOB=140°,∠AOC=30°,OE是∠AOB内部的一条射线,且OF平分∠AOE.

(1)若∠EOB=30°,则∠COF=________;

(2)若∠COF=20°,则∠EOB=________;

(3)若∠COF=n°,则∠EOB=________(用含n的式子表示).

(4)当射线OE绕点O逆时针旋转到如图2的位置时,请把图补充完整;此时,∠COF与∠EOB有怎样的数量关系?请说明理由.

【答案】(1)20°

(2)40°

(3)80°-2n°

(4)如图所示:∠EOB=80°+2∠COF.

证明:设∠COF=n°,则∠AOF=∠AOC-∠COF=30°-n°,

又∵OF平分∠AOE,

∴∠AOE=2∠AOF=60°-2n°.

∴∠EOB=∠AOB-∠AOE=140°-(60°-2n°)=(80+2n)°

即∠EOB=80°+2∠COF.

【解析】【解答】(1)∵∠AOB=140°,∠EOB=30°,

∴∠AOE=∠AOB-∠EOB=140°-30°=110°,

∵OF平分∠AOE,

∴∠AOF= ∠AOE= ×110°=55°,

∴∠COF=∠AOF-∠AOC,

=55°-30°,

=25°;

故答案为:25°;

(2)∵∠AOC=30°,∠COF=20°,

∴∠AOF=∠AOC+∠COF=30°+20°=50°,

∵OF平分∠AOE,

∴∠AOE=2∠AOF=2×50°=100°,

∴∠EOB=∠AOB-∠AOE=140°-100°=40°;

故答案为:40°;

(3)∵∠AOC=30°,∠COF=n°,

∴∠AOF=∠AOC+∠COF=30°+n°,

∵OF平分∠AOE,

∴∠AOE=2∠AOF=2(30°+n°)=60°+2n°,

∴∠EOB=∠AOB-∠AOE=140°-(60°+2n°)=80°-2n°;

故答案为:80°-2n°;

【分析】(1)根据∠AOE=∠AOB-∠EOB先求出∠AOE,再根据角平分线的定义求出∠AOF,最后根据∠COF=∠AOF-∠AOC解答即可;

(2)根据∠AOF=∠AOC+∠COF先求出∠AOF,再根据角平分线的定义求出∠AOE,最后根据∠EOB=∠AOB-∠AOE解答即可;

(3)与(2)的思路相同求解即可;

(4)设∠COF=n°,先表示出∠AOF,再根据角平分线的定义求出∠AOE,最后根据∠EOB=∠AOB-∠AOE解答即可.

2.如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM=

∠AOC,∠BON=∠BOD.

(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,∠MON=________°;

(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON的度数;

(3)∠COD从图2中的位置绕点O顺时针旋转n°(0<n<120),则n=________时,∠MON=2∠BOC.

【答案】(1)100

(2)解:①当0<n<60°时,∠AOC=∠AOB-∠BOC=120°-n,∠BOD=60°-n,

∴∠MON=∠MOC+∠COB+∠BON= ∠AOC+n+ ∠BOD= (120°-n)+n+ (60°-n)=100°;

②当60°<n<120°时,∠AOC=120°-n,∠COD=60°,∠BOD=n-60°,∠MOC= ∠AOC,

∠DON= ∠BOD,∴∠MON=∠MOC+∠COD+∠DON= (120°-n)+60°+ (n-60°)=100°.

综上所述:∠MON的度数恒为100°

(3)解:①当0<n<60°时,∠BOC=n,∠MON=2n,∴∠MON= (120°+n)+60°-

(60°+n)=100°;解得:n=50°;

②当60°<n<120°时,∠AOC=360°-(120°+n)=240°-n,∠BOD=60°+n,∴∠MON=360°

-∠AOM-∠AOB-∠BON=360°-(240°-n)-120°-(60°+n)=140°,解得:n=70°.

综上所述:n=50°或70°

【解析】【解答】解:(1)∠MON= ∠AOB+ ∠COD=100°;

【分析】(1)由∠AOM=∠AOC,∠AOC= ∠AOB,∠AOC=∠AOM+∠MOC得出

∠MOC= ∠AOB,又∠BON=∠BOD,从而由∠MON= ∠AOB+ ∠COD即可算出答案;

(2)需要分类讨论:①当0<n<60°时,根据旋转的性质得出∠AOC=∠AOB-∠BOC=120°-n,∠BOD=60°-n,由∠MON=∠MOC+∠COB+∠BON整体替换再化简即可得出答案;

②当60°<n<120°时,根据旋转的性质得出∠AOC=120°-n,∠COD=60°,∠BOD=n-

60°,∠MOC= ∠AOC,∠DON= ∠BOD,由∠MON=∠MOC+∠COD+∠DON整体替换再化简即可得出答案;

(3)分类讨论:①当0<n<60°时,∠BOC=n,∠MON=2n,又∠MON=∠MOB+∠BOC-

∠NOC = (120°+n)+60°- (60°+n)=100°,从而列出方程,求解得出n的值;②当60°<n<120°时,∠BOC=n,∠MON=2n,∠AOC=360°-(120°+n)=240°-n,∠BOD=60°+n,又∠MON=360°-∠AOM-∠AOB-∠BON,从而整体整体代入化简并列出方程,求解即可。

3.

相关文档
最新文档