固体物理基础第四章晶格振动和晶体的热性质4.7-非简谐效应

合集下载

固体物理:晶格振动与晶体的热学性质

固体物理:晶格振动与晶体的热学性质

5. k空间中点的分布密度
k 点在 k 空间中均匀分布,其分布密度为
k
b1 N1
1
b2 N2
b3 N3
N
(2 )3
V
/ (2 )3
简约布里渊区内 k 点的总数等于原胞的数目,即
N
(2 )3
(2 )3
N
相应的简正模式的数目等于体系的自由度数,为
N[(3n 3) 3] 3nN
五、离子晶体中的长光学波
解: 原子的平均平方位移为(计及相位因子的任意性)
un2
j
1 2
a
2 j
每个格波的平均能量为
Ej
N
1 2
a2j
1 2
Nm
a2 2
jj
由于 Ej kT ,所以
a
2 j
2kT
Nm
2 j
从而
un2
j
kT
Nm
2 j
四、三维晶格的振动 1. 原子位移的表示方法
第 l 个原胞的位置 R(l) l1a1 l2a2 l3a3
l s
k
动力学方程
ms2 As
s ',
D ,
k
s,
s
'
As
'
该方程共有 3n 个解,其中 3 个为声学模式,其余 3n-3 个为光学模式。
4. K的取值与倒格矢及布里渊区
玻恩-卡门边界条件要求
u(Rl N1a1) u(Rl ) u(Rl N2a2 ) u(Rl ) u(Rl N3a3 ) u(Rl )
I m / 1 2 (M M ') / M
M ' M
当 M’> M 时,就会出现一种所谓的共振模式,这是一种准局域模 式,其频率位于原来的频带之中。这种模式虽然不是局域的,但在 杂质附近表现的特别强。

固体物理学:第四章 晶格振动与晶体的热学性质1

固体物理学:第四章 晶格振动与晶体的热学性质1

第四章晶格振动4.1 晶格振动的经典理论4.2 晶格振动的量子化-声子4.3 固体热容的量子理论4.4 非简谐效应:晶体的热膨胀和热传导4.5晶格振动的实验研究原子或离子是不可能严格的固定在其平衡位置上的,而是在固体温度所控制的能量范围内在平衡位置附近做微振动。

只有深入地了解了晶格振动的规律,更多的晶体性质才能得到理解。

如:固体热容,热膨胀,热传导,融化,声的传播,电导率,压电现象,某些光学和介电性质,位移性相变,超导现象,晶体和辐射波的相互作用等等。

•19 世纪初人们就通过Dulong-Petit 定律:认识到:热容量是原子热运动在宏观上的最直接表现;1907年,Einstein 利用Plank量子假说解释了固体热容为什么会随温度降低而下降的现象;1912年玻恩(Born,1954年Nobel物理学奖获得者)和冯卡门(Von-Karman)发表了论晶体点阵振动的论文,首次使用了周期性边界条件;Debye热容理论1935年Blakman才重新利用Born和Von-Karman近似讨论晶格振动,发展成现在的晶格动力学理论;1954年黄昆和Born共同写作的《晶格动力学》一书已成为该领域公认的权威著作4.1 晶格振动的经典理论一. 一维单原子链的振动运动方程:考虑N个质量为m 的同种原子组成的一维单原子链的。

设平衡时相邻原子间距为a(即原胞大小),在t 时刻第n 个原子偏离其平衡位置的位移为µn设在平衡时,两原子的相互作用势为V(a),产生相对位移(例如)后势能发生变化是V(a+δ) ,将它在平衡位置附近做泰勒展开:首项是常数,可取为能量零点,由于平衡时势能取极小值,第二项为零,简谐近似下,我们只取到第三项,即势能展开式中的二阶项(δ2项),而忽略三阶及三阶以上的项,显然,这只适用于微振动,即δ值很小的情况。

此时,恢复力:如只考虑最近邻原子间的相互作用,第n 个原子受到的力:于是第n个原子的运动方程可写为:一维原子链上的每个原子,忽略边界原子的区别,应有同样的方程,所以它是和原子数目相同的N个联立的线性齐次方程。

固体物理各章节知识点详细总结

固体物理各章节知识点详细总结

3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32

2π Kh
d h1h2h3

d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···

固体物理参考答案(前七章)

固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。

固体物理总结晶格振动与晶体的热学性质完全版

固体物理总结晶格振动与晶体的热学性质完全版

固体物理总结晶格振动与晶体的热学性质完全版第四章总结第四章要求1、掌握⼀维单原⼦链振动的格波解及⾊散关系的求解过程以及格波解的物理意义;2、掌握⼀维双原⼦链振动的⾊散关系的求解过程,清楚声学波与光学波的定义以及它们的物理本质;3、了解三维晶格的振动;4、掌握离⼦晶体长光学波近似的宏观运动⽅程的建⽴过程及系数的确定,清楚LST关系及离⼦晶体的光学性质;5、了解局域振动的概念;6、掌握晶格热容的量⼦理论;熟悉晶格振动模式密度;7、掌握⾮谐效应的概念以及它在热膨胀和热传导中的作⽤。

⼀维晶格的振动和三维晶格的振动晶格振动的简谐近似和简正坐标状态及能量确定晶格振动谱的实验⽅法离⼦晶体的长波近似热容晶格振动的爱因斯坦模型热容量德拜模型晶格状态⽅程⾮简谐效应热膨胀1、⼀维单晶格的振动⼀维单原⼦链格波:晶格振动是晶体中诸原⼦(离⼦)集体地在作振动,由于晶体内原⼦间有相互作⽤,存在相互联系,各个原⼦的振动间都存在着固定的位相关系,从⽽形成各种模式的波,即各晶格原⼦在平衡位臵附近作振动时,将以前进波的形式在晶体中传播,这种波称为格波。

相邻原⼦之间的相互作⽤βδδ-≈-=d dv Fa d vd ???? ?=22δβ表明存在于相邻原⼦之间的弹性恢复⼒是正⽐于相对位移的第n 个原⼦的运动⽅程)2(11n n n n m µµµβµ-+=-+?)(naq t i nq Ae-=ωµ⾊散关系:把ω与q 之间的关系称为⾊散关系,也称为振动频谱或振动谱。

)21(sin 4]cos 1[222aq maq mββω=-=其中波数为λπ/2=q ,ω是圆频率,λ是波长有位相差。

相邻原⼦之间的位相差为aq 。

(2)q 的取值范围【-(π/a)""这个范围以外的值,不能提供其它不同的波。

q 的取值及范围常称为布⾥渊区。

前⾯所考虑的运动⽅程实际上只适⽤于⽆穷长的链,⽽两端原⼦的运动⽅程与中间的不同,因此有了玻恩-卡曼提出的环状链模型。

晶体中晶格振动频谱的非谐性效应探究

晶体中晶格振动频谱的非谐性效应探究

晶体中晶格振动频谱的非谐性效应探究晶体是由排列有序的原子、离子或分子构成的固体。

在晶体中,晶格振动频谱是描述晶体内原子或离子围绕其平衡位置振动的频率分布。

传统的晶格振动频谱假设晶体中原子或离子的振动是谐振子,即其振动是线性的,并且与晶体中其他原子或离子的振动无关。

然而,实际晶体中的晶格振动往往受到非谐性效应的影响,这导致了晶格振动频谱的一些特殊行为。

非谐性效应来源于晶体中原子或离子间的相互作用,这种相互作用本质上是非线性的。

在非谐性振动中,晶格振动的幅度会随着振动的能量增加而变化,这容易导致晶格结构的失稳现象。

非谐性振动可通过分析原子间势能函数的非线性项来建模。

最简单的非线性势能函数是二次谐振子势能函数的修正,其形式为:V(x) = (1/2)kx^2 + (1/3)γx^3 + (1/4)δx^4其中,V(x) 是势能函数,k 是线性弹性常数,γ 是非谐性常数,δ 是更高阶非线性常数。

这个势能函数能够描述晶体中原子或离子振动的非谐性行为。

非谐性振动导致晶体中振动模式的频率发生变化。

传统的谐振子模型中,振动频率只与弹性常数 k 相关。

而在非谐性振动中,振动频率会因为非线性项的存在产生偏移。

随着振动幅度增加,振动频率随之发生改变,呈现出蓝移或红移的现象。

此外,非谐性效应还会引起晶体中的声子相互作用。

声子是描述固体中振动的量子,对于任何晶体,都存在一系列不同的声子模式。

在非谐性振动中,声子之间可以发生相互转化,例如三声子相互作用过程。

这些声子相互作用直接影响晶体的热传导性质和声学性质。

非谐性振动的实验观测可以通过许多技术手段进行,例如拉曼光谱、中子散射和红外光谱等。

这些实验方法可以用来研究晶体中声子的频率和幅度。

通过分析实验结果,可以确定晶体中非谐性效应的程度和影响。

对于晶体中晶格振动频谱的非谐性效应进行深入研究,不仅可以帮助我们更全面地理解晶体的结构和性质,还可以为设计新型材料和开展热传导研究提供有价值的参考。

固体物理1-6章总结

固体物理1-6章总结

CV
3NkB
θE 2 θE / T ) e T
爱因斯坦特征温度
CV 3NkB (
Debye模型 认为晶体可以看成是连续介质中的弹性波,但晶体中的格波的频率应 该有一个分布,频率与波矢的关系近似为线性关系 CV 3Nk 在高温下:T >> D
12 Nk B T 3 D 在低温下:T << D CV T 德拜温度 D 5 D kB 在高温下多用爱因斯坦模型,低温下则应用德拜模型。
熔点和沸点介于离子晶体和分子晶体 之间,密度小,有许多分子聚合的趋 势,介电系数大。
冰 H2F H2N

~ 0.1ev/ 键
习题
P35- 1.1; ▲ 1.5; ▲ 1.6; ▲ 1.7;1.8;1.10 ▲ 1.设一格子基矢分别为a1=3i,a2=3j,a3=1.5(i+j+2k),试 求该晶体的倒格子基矢。 ▲ 2.半导体GaAs具有闪锌矿结构, Ga、As两原子最近 距离为d=2.45A,求晶格常数,原胞基矢和倒格子基矢。 ▲ P58- 2.8
ni 0,1,2,3....
1 E i (ni )i 2 i 1 i 1 1 ni ▲频率为ωi的格波的平均声子数
i
平均能量
i i i i 2 e k BT 1
e k BT 1
绝缘体中声子热导率与温度的关系
1 CV v l 3
离子晶体导电的机制 离子晶体的导电率 位错的定义、分类,刃型位错的滑移
半导体物理
作业
▲ P101- 4.3;4.4;4.7
第五章 金属电子论
1. ▲自由电子气的概念及模型:特鲁德模型与索末菲模型(定性)

固体物理讲义第四章

固体物理讲义第四章

第四章 晶格振动和晶体的热学性质● 晶格振动:晶体中的原子在格点附近作热振动● 原子的振动以波的形式在晶体传播(原子的振动波称为格波) ● 晶格振动对晶体的性质有重要影响 主要内容● 晶格动力学(经典理论,1912年由波恩和卡门建立)晶格振动的模式数量(有多少种基本的波动解) 晶格振动的色散关系(波动的频率和波数的关系)● 晶格振动的量子理论 ● 固体的热容量 4.1 一维单原子链的振动原子链共有N 个原胞,每个原胞只有一个原子,每个原子具有相同的质量m,平衡时原子间距等于晶格常数a,原子沿链方向运动,第n 个原子离开平衡位置的位移用x n 表示,第n 个原子和第n+1个原子间的相对位移为 一维单原子链原子振动时,相邻两个原子之间的间距: 基本假设● 平衡时原子位于Bravais 格点上 ● 原子围绕平衡位置作微振动●简谐近似:原子间的相互作用势能只考虑到平方项 微振动时:简谐近似:势能展开式保留到二次项微振动:原子离开平衡位置的位移与原子间距相比是小量。

晶体中原子的平衡位置由原子结合能(势)决定。

任何一种晶体,原子间的相互作用势能可以表述成原子之间距离的函数。

n n x x -=+1δδ+=a x ()()⋅⋅⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=+=222 21 )(δδδa ax d U d x d U d a U a U x U把qa改变一个2π的整数倍,原子的振动相同,因此可以把qa限制负pi和正pi之间,此范围以外的q值,并不提供新的物理内容.群速度是指波包的传播速度,dw/dq,也就是能量在介质中的传播速度。

在布里渊区的边界上,群速度为零,波是一个驻波。

4.2 一维双原子链的振动q趋于0时,w也趋于零,称为声学波4.3 三维晶格的振动(略) 一个原胞中有n 个原子晶格基矢: 原胞数目: 原子的质量: 对于一个波矢q,有3n 个ω(即有3n 支色散曲线) 在3n 支色散关系中,当q→0时(长波):有三支ω →0,且各原子的振幅趋于相同,这三支为声学波。

固体物理学课程教学大纲

固体物理学课程教学大纲

《固体物理学》课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;《固体物理学》是物理学院的主干基础课之一,是针对微电子专业的本科生开设于二年级的第二学期的专业基础课,4个学分,课堂讲授72学时。

(二)课程简介、目标与任务;固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。

它是物理学中内容极丰富、应用极广泛的分支学科,同时也是微电子专业本科生学习《半导体物理学》、《半导体材料》和《固体电子器件》等后续课程的基础。

本课程以点阵及晶体对称性为主线,以周期结构中的波动问题贯穿固体物理的整个教学内容。

掌握包括对点阵及晶体对称性的定义、表征和检测,以及在晶体中物质的运动规律。

在掌握知识架构的同时,对固体物理中处理多体问题的方法及其局限性有所了解,并了解一些重要概念的实验探测。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程要求:《力学》《量子物理》《热学》《热力学统计物理》先修课与后续相关课程之间的逻辑关系和内容衔接:《力学》中的处理物体运动的基本规律,尤其是振动与波动内容,是本课程第四章结合周期性晶体结构推演格波性质的基础。

《量子力学》或《量子物理》中的升降算符与谐振子的能量量子化,是提出声子(晶格振动的能量量子)的理论基础。

《量子力学》或《量子物理》中关于散射态的处理,如直角势垒和直角势阱的散射态,是学习电子声子散射和电子杂质散射的理论基础,也是学习电子在周期性势场下行为的基础。

《量子力学》或《量子物理》中关于束缚态的处理,是本课程第八章学习非本征半导体的理论基础。

《原子物理学》或《量子物理》中类氢原子的量子理论基础,原子的壳层结构,电子的自旋,是本课程第三章学习晶体结合的理论基础。

《热力学统计物理》和《热学》的基本原理,气体分子动理论,能量均分定理,内能和热容,平衡态的统计规律,是学习本课程第五章声子热学性质的基础。

孙会元固体物理基础第四章晶格振动和晶体的热性质4.2 长波近似

孙会元固体物理基础第四章晶格振动和晶体的热性质4.2 长波近似

因此恢复力又可写为:
um1 um F c a/2
此外,因第m +1个原子的位移而引起的对第m 个原子产生的恢复力可写为:
F ( u u ) m 1 m
mM 对于一维复式格子,质量密度为: 1 a c 2 v a 弹 2 ( m M )
对于长光学波,用u+表示质量为M的正离子位 移,用u-表示质量为m的负离子位移. 由正、负离子的相对位移所引起的宏观电场 强度设为E.这时,作用在离子上的除了准弹性恢 复力之外,还有电场的作用. 但是,必须注意,作用在某一离子上的电场不能 包括该离子本身所产生的电场. 从宏观电场强度E中减去该离子本身所产生 的场强,称为有效场强,用E有效表示
N N W u W u V V
N * N E q u /1 u W / 把 E 有 效 V 3 V 0 0 3
N V
代入
u u q E 得:
* 有 效
N N N N * * W / W / qE u / 1 q V V V V 0 0 3 3 整理得: * 2 * ( ) /3 0V N q Nq W W E N V N 1 1 3 0V 3 V 0
一、长声学波 由前面一维双原子链的色散关系,声学波:
1 2 m M m M 2 1 4 2 2 () q 1 1 s i n a A q 2 m M m M ) 2 (
当波矢q
2 A qa (m M ) 2
* 有 效
其中b12 =b21, 这组方程是黄昆在1951年讨论 光学波的长波近似时引进的,通称为黄昆方程.

固体物理学中的晶格振动

固体物理学中的晶格振动

固体物理学中的晶格振动在固体物理学中,晶格振动是一个重要而有趣的研究领域。

晶格振动指的是晶体中原子或离子在其平衡位置附近发生的微小振动。

这种振动是由于原子或离子之间的相互作用而产生的。

晶格振动广泛应用于各种领域,如材料科学、固体力学和纳米技术等。

本文将介绍晶格振动的基本原理和应用。

晶格振动的基本原理是基于区域平衡理论。

根据这个理论,晶体中的每个原子或离子都处于一个平衡位置,附近的原子或离子对其施加一个平衡力。

当原子或离子受到微小扰动时,平衡力会使其回到平衡位置,并且会引起周围原子或离子的扰动。

这种扰动会在整个晶体中传播,形成晶格振动。

晶格振动有两种基本类型:声子振动和光子振动。

声子振动是通过晶体中的弹性介质传播的机械波。

它的频率和波矢由晶体的结构确定。

光子振动是通过晶体中的电磁介质传播的电磁波。

它的频率和波矢由晶体的电子结构和禁带结构决定。

晶格振动在材料科学中有广泛的应用。

例如,在合金的研究中,了解晶格振动对合金的力学性能和热学性能的影响非常重要。

通过研究晶格振动,可以预测合金的热膨胀性质、热导率和声速等。

这对于材料的设计和制备具有重要意义。

此外,晶格振动还在固体力学中起着重要作用。

晶格振动对晶体的弹性性能和声学性能有直接影响。

通过研究晶格振动,可以预测晶体的弹性恢复和声学传播特性,这对于材料的强度和稳定性分析非常重要。

晶格振动在纳米技术中也发挥了关键作用。

由于纳米材料的尺寸非常小,其表面与体积之比很大,晶格振动对它们的性质有显著影响。

例如,纳米材料的热导率会因为晶格振动的限制而降低。

这一特性被广泛应用于热电材料和热障涂层等领域。

尽管晶格振动在许多领域中都起着关键作用,但要准确地描述和理解它仍然具有挑战性。

由于晶格振动是一个多粒子系统,需要考虑到多个原子或离子之间的相互作用和非线性效应。

因此,研究晶格振动需要使用复杂的数学模型和计算方法。

总之,晶格振动在固体物理学中是一个重要的研究领域。

通过研究晶格振动,我们可以更好地理解晶体的性质和行为,并在材料科学、固体力学和纳米技术等领域中应用这一知识。

2023年大学_固体物理基础第三版(阎守胜著)课后题答案下载

2023年大学_固体物理基础第三版(阎守胜著)课后题答案下载

2023年固体物理基础第三版(阎守胜著)课后题答案下载固体物理基础第三版(阎守胜著)课后答案下载第一章金属自由电子气体模型1.1 模型及基态性质1.1.1 单电子本征态和本征能量1.1.2 基态和基态的能量1.2 自由电子气体的热性质1.2.1 化学势随温度的变化1.2.2 电子比热1.3 泡利顺磁性1.4 电场中的`自由电子1.4.1 准经典模型1.4.2 电子的动力学方程1.4.3 金属的电导率1.5 光学性质1.6 霍尔效应和磁阻1.7 金属的热导率1.8 自由电子气体模型的局限性第二章晶体的结构2.1 晶格2.1.1 布拉维格子2.1.2 原胞2.1.3 配位数2.1.4 几个常见的布拉维格子2.1.5 晶向、晶面和基元的坐标2.2 对称性和布拉维格子的分类2.2.1 点群2.2.2 7个晶系2.2.3 空间群和14个布拉维格子2.2.4 单胞或惯用单胞2.2.5 二维情形2.2.6 点群对称性和晶体的物理性质 2.3 几种常见的晶体结构2.3.1 CsCl结构和立方钙钛矿结构 2.3.2 NaCl和CaF、2结构2.3.3 金刚石和闪锌矿结构2.3.4 六角密堆积结构2.3.5 实例,正交相YBa2Cu307-82.3.6 简单晶格和复式晶格2.4 倒格子2.4.1 概念的引入2.4.2 倒格子是倒易空间中的布拉维格子 2.4.3 倒格矢与晶面2.4.4 倒格子的点群对称性2.5 晶体结构的实验确定2.5.1 X射线衍射2.5.2 电子衍射和中子衍射2.5.3 扫描隧穿显微镜第三章能带论I3.1 布洛赫定理及能带3.1.1 布洛赫定理及证明3.1.2 波矢七的取值与物理意义3.1.3 能带及其图示3.2 弱周期势近似3.2.1 一维情形3.2.2 能隙和布拉格反射3.2.3 复式晶格3.3 紧束缚近似3.3.1 模型及计算3.3.2 万尼尔函数3.4 能带结构的计算3.4.1 近似方法3.4.2 n(K)的对称性3.4.3 n(K)和n的图示3.5 费米面和态密度3.5.1 高布里渊区3.5.2 费米面的构造3.5.3 态密度第四章能带论Ⅱ4.1 电子运动的半经典模型 4.1.1 模型的表述4.1.2 模型合理性的说明4.1.3 有效质量4.1.4 半经典模型的适用范围4.2 恒定电场、磁场作用下电子的运动4.2.1 恒定电场作用下的电子4.2.2 满带不导电4.2.3 近满带中的空穴4.2.4 导体、半导体和绝缘体的能带论解释 4.2.5 恒定磁场作用下电子的准经典运动 4.3 费米面的测量4.3.1 均匀磁场中的自由电子4.3.2 布洛赫电子的轨道量子化4.3.3 德哈斯一范阿尔芬效应4.3.4 回旋共振方法4.4 用光电子谱研究能带结构4.4.1 态密度分布曲线4.4.2 角分辨光电子谱测定n(K)4.5 一些金属元素的能带结构4.5.1 简单金属4.5.2 一价贵金属4.5.3 四价金属和半金属4.5.4 过渡族金属和稀土金属第五章晶格振动5.1 简谐晶体的经典运动5.1.1 简谐近似5.1.2 一维单原子链,声学支 5.1.3 一维双原子链,光学支 5.1.4 三维情形5.2 简谐晶体的量子理论5.2.1 简正坐标5.2.2 声子5.2.3 晶格比热5.2.4 声子态密度5.3 晶格振动谱的实验测定 5.3.1 中子的非弹性散射5.3.2 可见光的非弹性散射 5.4 非简谐效应5.4.1 热膨胀5.4.2 晶格热导率第六章输运现象6.1 玻尔兹曼方程6.2 电导率6.2.1 金属的直流电导率6.2.2 电子和声子的相互作用 6.2.3 电阻率随温度的变化 6.2.4 剩余电阻率6.2.5 近藤效应06.2.6 半导体的电导率6.3 热导率和热电势6.3.1 热导率6.3.2 热电势6.4 霍尔系数和磁阻第七章固体中的原子键合7.1 概述7.1.1 化学键7.1.2 晶体的分类7.1.3 晶体的结合能7.2 共价晶体7.3 离子晶体7.3.1 结合能7.3.2 离子半径7.3.3 部分离子部分共价的晶体7.4 分子晶体、金属及氢键晶体7.4.1 分子晶体7.4.2 量子晶体7.4.3 金属……第八章缺陷第九章无序第十章尺寸第十一章维度第十二章关联固体物理基础第三版(阎守胜著):基本信息阎守胜,1938生出生,1962年毕业于北京大学物理系,现任北京大学物理学院教授,博士生导师,兼任中国物理学会《物理》杂志主编,他长期从事低温物理,低温物理实验技术,高温超导电性物理和介观物理方面的实验研究,并讲授大学生的固体物理学,低温物理学和现代固体物理学等课程。

固体物理学_晶格振动与晶体的热学性质之_晶格振动模式密度剖析

固体物理学_晶格振动与晶体的热学性质之_晶格振动模式密度剖析
03_09 晶格振动模式密度
晶体中同时可以存在不同频率的简谐振动 —— 不同频率的振动模对应不同的能量
给定晶体 —— 总的振动模数目是一定的 按振动频率分布 —— 用晶格振动模式密度来描述
振动模式密度 —— 研究晶体热容、电学和光学性质
晶格振动模式密度 g() lim n —— 单位频范霍夫奇点 —— 晶体中一些高对称点__布里渊区边界 —— 这些临界点与晶体的对称性密切相联
03_09_晶格振动模式密度 —— 晶格振动与晶体的热学性质
ds
(2 )3 q(q)
03_09_晶格振动模式密度 —— 晶格振动与晶体的热学性质
简单几种情况下振动模式密度的表示 一维无限长单原子链 —— 最大频率 振动模式密度 一维情况下
03_09_晶格振动模式密度 —— 晶格振动与晶体的热学性质
考虑到一个频率可以有 两个值 振动模式密度
g() 2N 1 m2 2
03_09_晶格振动模式密度 —— 晶格振动与晶体的热学性质
q空间 —— 振动模是均匀分布的,状态密度
根据
做出一个等频率面
两个等频率面 和
之间的振动模式数目
—— 频率是q的连续函数
03_09_晶格振动模式密度 —— 晶格振动与晶体的热学性质
之间振动模式数目
g() lim n 0
g() V
03_09_晶格振动模式密度 —— 晶格振动与晶体的热学性质
—— 也可以直接由q空间的状态密度来计算 状态密度
振动模式密度 g() 2N 1 m2 2
03_09_晶格振动模式密度 —— 晶格振动与晶体的热学性质
德拜近似下的振动模式密度 振动频率与波矢成正比
g()
V
2 2c3
2

晶体的热学性质与晶格振动的相干性分析

晶体的热学性质与晶格振动的相干性分析

晶体的热学性质与晶格振动的相干性分析晶体是由周期性排列的原子或分子构成的固体物质,其热学性质与晶格振动之间存在着相互的联系和相干性。

本文将对晶体的热学性质和晶格振动的相干性进行分析和探讨。

一、晶体的热学性质晶体的热学性质是指晶体在温度变化下所表现出的性质和特点。

其中,热容、导热性、热膨胀等是最常见的晶体热学性质。

下面将对这些性质进行详细介绍。

1. 热容热容是指单位质量的晶体在温度变化下吸收或释放的热量。

晶体的热容受到晶格振动和晶格缺陷的影响。

晶格振动包括晶格的弹性振动、声子振动等,它们会影响晶体内部的能量传递和分布。

晶格缺陷包括点缺陷、面缺陷等,它们会散射热子和声子,影响晶格的热传导性能。

2. 导热性导热性是指晶体在温度梯度下传导热量的能力。

晶体的导热性与晶格振动的相干性密切相关。

晶格振动的相干性越高,晶体的热导率就越高。

晶体的导热性还受到晶体的宏观结构和缺陷等因素影响。

3. 热膨胀热膨胀是指晶体在温度变化下的尺寸变化。

晶体的热膨胀与晶体中原子的振动有关。

当温度升高时,晶体内原子的振动增强,原子之间的相互作用减弱,晶体的体积就会扩大。

晶体的热膨胀系数与晶格振动的相干性强弱密切相关。

二、晶格振动的相干性晶格振动是晶体中原子或分子围绕平衡位置做小幅振动而引起的能量传递和分布现象。

这些振动以声子的形式进行传递,其相干性对晶体的物理性质有重要影响。

晶格振动的相干性决定了晶格对热量和声波的传递情况。

当声子的相干性较高时,晶体的热导率会增加。

而当声子的相干性较低时,晶体中的散射会增加,导致热传导能力变弱。

因此,晶格振动的相干性是晶体热学性质的重要影响因素。

晶体中振动的相干性主要受到以下因素的影响:1. 晶格结构:不同晶体的晶格结构会影响振动的传播和相干性。

晶格结构越有序,振动的相干性越高。

2. 晶体缺陷:晶体中的缺陷会散射声子,降低振动的相干性。

例如点缺陷、面缺陷等都会对声子的传播和相互作用产生影响。

3. 温度:温度的变化会影响晶格振动的相干性。

孙会元固体物理基础第四章晶格振动和晶体的热性质4.4 晶格比热

孙会元固体物理基础第四章晶格振动和晶体的热性质4.4 晶格比热

下面分别用经典理论和量子理论来解释晶体比热的规
律。
一、晶体比热的一般理论 晶体的定容比热定义为:
CV



T
V
是晶体的平均内能, 包括与热运动无关的基态能量、
晶格振动的平均能量(晶格热能)和电子热能三部分.
CV CVa CVe
晶格振动比热 晶体电子比热
通常情况下, CVe CVa 本节只讨论晶格振动比热. 根据经典统计理论的能量均分定理,每一个自由度的
e
kBT
s (q )
kBT
2 1



s
(q
)
kBT
2

将CV中的求和改成积分,认为频率在q空间为球面, 则:体积元dq对应的波矢数目为:
V
(2
)3

4
q2dq

V
2
2
q2dq
qy
所以有:
qx
s (q )
CV

kBV
2 2
3p s
FBZ
e
e
kBT
s (q ) kBT
考虑到:s (q) cs (q)q,
2

2
O
m
在很低温度下:CV

T
s
cs (q)q Vdq
e
cs (q)q kBT
1
8 3
A
π
o
2 M
πq
a
a
注意:这和第一章态密度的求法类似。且
我们考虑的是整个晶体V。积分范围限制在第
一布里渊区。
不过,按照前面的分析,在很低的温度下, s(q) kBT 部分对上面的积分贡献很小,因而,积分也可 看成是在整个q空间进行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两个声子通过非简谐项的作用, 产生了第三个声子, 这可以看成是两个声子碰撞之后变成了第三个声子.
声子的这种相互作用可以理解为: 一个声子的存在将 在晶体中引起周期性的弹性应变, 由于非简谐项的影响, 晶体的弹性模量不是常数, 而受到弹性应变的调制.
由于弹性模量的变化,将使第二个声子受到散射而 产生第三个声子。
流的声子分布一旦建立,将不随时间变化(表明弛
豫时间为无穷大),这意味着无限大的热导率.
1 3
cV vl
1 3
cV v2
所以,用简谐近似理论不能解释晶体的热膨胀和热 传导现象。
实际上,原子间的相互作用力(恢复力)并非严格地 与原子的位移成正比。
当在晶体的势能展开式中,考虑3次方及其以上的 高次项时,则晶格振动就不能描述为一系列严格线性 独立的谐振子.
h1 h2 h3
hqv1 hqv2 hqv3
v hGh
qv1
qv2
qv3
v Gh
实际情况确实存在上述两种对应关系. 比如在研究热阻时,发现两个同向运动的声子相互 碰撞,产生的第三个声子的运动方向与它们相反,即 运动方向发生倒转。 因此两个声子的碰撞过程可以满足
h1 h2 h3
qv1 qv2 qv3
所以,T<<ΘD时,晶格热导率满足 T3eA/T。 显然T→0时,声子的平均自由程→∞,从而导致晶
格热导率→∞。
实际上热导系数并不会趋向无穷大,因为在 实际晶体中存在杂质和缺陷,声子的平均自由 程不会非常大。
对于完整的晶体,即不存在杂质和缺陷的
这种声子态之间的跃迁常称为声子-声子相互作用, 或声子之间的碰撞或散射。 声子间的相互作用遵循能量守恒和准动量守恒。
非简谐作用中的势能三次方项对应于三声子过程, 如两个声子碰撞产生另一个声子或一个声子劈裂成两 个声子;非简谐作用中的势能四次方项对应于四声子 过程。
三声子过程(势能展开取到3次方项) 四声子过程 (势能展开取到4次方项)
而U过程则要求波矢q1+q2在第一布里渊区以外,导 致q3几乎与q1+q2方向相反.
qy
qv1
qv3
qv2
qx
qy
v
qv3 Gh
qv1
qv2
qv1 qv2
qx
N过程
U过程
反常过程可以认为是碰撞的同时发生了布拉格反射 的结果,它是产生热阻的一个重要机制。
2. 晶格的热传导和热导率
我们在第一章已经讨论过金属的热传导,金属主要 是自由电子气体对热能的输运。对于晶格而言,我们 可以认为晶格中存在大量的声子气体,声子是热能的 携带者。声子属于波色子,满足波色统计,即
由于声子的平均热运动速度一般取成固体中的平均 声速,所以基本上与温度无关,因而影响热导率的主
要是晶格比热容CV和声子的平均自由程。
声子的平均自由程与声子数目有关,声子数目越
多,声子之间的碰撞几率就越大,从而声子的平均自
由程就越小;反之,声子数目越少,声子之间的碰 撞几率就越小,从而声子的平均自由程就越大。
因此T >>ΘD时,晶格的热导率随温度的升高而变小, 满足 T-1。
低温下, T <<ΘD时,声子数目满足
nqs
1
hqs
e e hqs kBT
A T
e kBT 1
1 3
CV
v
所以,声子数目随温度的升高成指数规律变小,从
而导致声子的平均自由程随温度升高而成指数规律
变大,即 e A/T。
此外,T<<ΘD时,晶格比热容CV满足德拜三次方定 律,即CV T3。
1
n qs
hqs
e kBT 1
显然温度高的地方,声子数目就多;温度低的地方,
声子数目就少。从而由于温度梯度的存在,将导致声
子从高温向低温的扩散,形成热流。这是热传导的准
经典解释。
类似于第一章,晶格的热导率满足
1 3
CV
v
1 3
CV v
其中,CV为晶格比热容,为声子的平均自由程,v为
声子的平均热运动速度,常取固体中的平均声速。
这样,经过一定的弛豫时间后,各种声子的分布就 能达到热平衡。
所以,非简谐项的存在是使晶格振动达到热平衡的 最主要原因.
一般把从简谐晶体的声子出发,在此基础上做进一 步修改的方法,称为准简谐近似。
一、 晶体的热传导
1. N过程和U过程
把声子看成准粒子后,非简谐项的微扰作用,可导 致声子态之间的跃迁。
4.7 非简谐效应
本节主要内容: 一、 晶体的热传导 二、 晶体的热膨胀
4.7 非简谐效应
在简谐近似的情况下,晶格原子振动可描述为
3N个线性独立的谐振子的迭加,各振子间不发
生作用,也不交换能量; 晶体中某种声子一旦产生,其数目就一直保持
不变,既不能把能量传递给其他声子,也不能
使自己处于热平衡状态。 也就是说,在简谐晶体中,声子态是定态,携带热
通常把3次方及其以上的高次项称为非简谐项。
如果原子的位移相当小,则非简谐项和简谐项(2次 方项)相比为一小量,则可把非简谐项看成微扰项。
由于微扰项的存在,这些谐振子就不再是相互独立 的了,而相互间要发生作用,即声子和声子之间要相 互交换能量。
这样,如果开始时只存在某种频率的声子,由于 声子间的互作用,这种频率的声子转换成另一种频率 的声子。即一种频率的声子要湮灭,而另一种频率的 声子会产生。
该过程遵循能量守恒和准动量守恒。
设两个相互碰撞的声子的频率和波矢分别为1、q1 和2、q2;而第三个声子的频率和波矢为3、q3,对
于该三声子过程,则有:
hhqv11hhqv2 2hhqv3 3 qv1 qv2 qv3
由于晶格振动的状态是波矢的周期函数,即q 态和q
+ Gh态等价。因此还有如下等效关系
称为正常过程(normal process)或N过程.
两个声子的碰撞过程也可以满足
h1
qv1
qv2h2qv3hGvh3
称为倒逆过程(Umldapp process)或U过程,也叫反 转过程。
显然对于三声子碰撞过程来说,N过程意味着波矢
q1+q2=q3始终在第一布里渊区内,且方向大致相同,
因而不改变热流的基本方向.
声子数目可由波色统计给出。 高温时,声子数目满足 :1 3CV来自vnqs1
hqs
e kBT
1
1
1
hqs
kBT
1
kBT
hqs
所以, 高温时, 声子数目与温度成正比, 从而导致声
子的平均自由程随温度升高而变小, 即 T-1。
我们知道在高温时, 也就是温度远高于德拜温度时, 晶
格比热容CV是一个与温度无关的常数。
相关文档
最新文档