2018年湖南高考文科数学试题及答案word版
2018全国高考1卷文科数学试题及答案(官方)word版
2018 年一般高等学校招生全国一致考试文科数学注意事项:1.答卷前,考生务必然自己的姓名、考生号等填写在答题卡和试卷指定地址上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.)1.已知会集 A0 ,2, B2,1,0,1,2,则AIB()A. 0,2B. 1,2C. 0D. 2, 1,0,1,21i,则 z()2.设 z2i1iA . 0B.1C.1D. 2 23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地认识该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比率.获取以下饼图:则下面结论中不正确的选项是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和高出了经济收入的一半4.已知椭圆C:x2y 21的一个焦点为2,0 ,则 C 的离心率()a24A .1B .1C.2D.2 2 32235.已知圆柱的上、下底面的中心分别为O1, O2,过直线 O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12 2B.12C.8 2D.106.设函数 f x x3 a 1 x2ax .若 f x 为奇函数,则曲线y f x 在点0 ,0处的切线方程为()A . y 2 xB .y x C. y 2x D .y x7.在△ABC中,AD为 BC 边上的中线,uuurE 为 AD 的中点,则EB()A .3 uuur1uuurB.1 uuur3 uuur 4AB4AC AB AC44C.3 uuur1 uuurD.1 uuur3 uuur 4AB4AC AB AC448.已知函数f x22)2cos x sin x 2 ,则(A .f x的最小正周期为,最大值为 3B.f x的最小正周期为,最大值为 4C.f x的最小正周期为2,最大值为 3D.f x的最小正周期为2,最大值为 49.某圆柱的高为 2,底面周长为 16,其三视图以下列图,圆柱表面上的点M在正视图上的对应点为 A ,圆柱表面上的点N在左视图上的对应点为 B ,则在此圆柱侧面上,从M 到N的路径中,最短路径的长度为()A.2 17B.2 5C.3D.210.在长方体ABCD A1B1C1 D1中,AB BC 2 ,AC1与平面BB1C1C所成的角为 30 ,则该长方体的体积为()A.8B.62C.82D.8311.已知角的极点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点 A 1,a , B 2, b ,且cos22(),则 a b3A .1B.5255C. D .1 5512.设函数 f x 2 x,x ≤ 0 ,则满足f x1f 2 x 的x的取值范围是()1 ,x0A.,1B. 0,C. 1,0 D .,0二、填空题(本题共 4 小题,每题 5 分,共20 分)13.已知函数f x log 2x2 a ,若f31,则 a________.x 2 y2≤014.若x,y满足拘束条件x y ≥,则 z3x 2 y 的最大值为 ________.1y≤ 015.直线 y x 1与圆 x2y2 2 y 3 0 交于 A ,B 两点,则AB________.16.△ABC的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sin C c sin B4a sin B sin C ,b2c2 a 28 ,则△ ABC 的面积为________.三、解答题(共70 分。
2018年高考试题——文科数学(全国卷Ⅰ)版含答案(最新整理)
4.记 Sn 为等差数列 an 的前 n 项和.若 3S3 S2 S4 , a1 2 ,则 a3 ( )
A. 12
B. 10
C.10
D.12
-1-
5.设函数 f x x3 a 1 x2 ax .若 f x 为奇函数,则曲线 y f x 在点 0 ,0 处的切线
方程为( )
A. y 2x
以这组数据所在区间中点的值作代表.)
-5-
20.(12 分)
设摆好物线 C:y2 2x ,点 A2 ,0 , B 2 ,0 ,过点 A 的直线 l 与 C 交于 M , N 两点.
⑴当 l 与 x 轴垂直时,求直线 BM 的方程; ⑵证明:∠ABM ∠ABN .
21.(12 分)
已知函数 f x aex ln x 1 . ⑴油麦菜 x 2 是 f x 的极值点.求 a ,并求 f x 的单调区间; ⑵证明:当 a ≥ 1 , f x≥ 0 .
一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的.)
1.已知集合 A 0 ,2 , B 2 ,1,0 ,1,2 ,则 A B ( )
A.0 ,2
B. 1,2
C. 0
D.2 ,1,0 ,1,2
2.设 z 1 i 2i ,则 z ( ) 1 i
A.0
B. 1 2
C.1
D. 2
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该 地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比 例.得到如下饼图:
则下面结论中不正确的是( ) A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
湖南省2018年高考文科数学试题及答案(Word版)
湖南省2018年高考文科数学试题及答案(Word 版)(试卷满分150分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为 A .13B .12C .22D .2235.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 8.已知函数()222cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B.C.D.11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= A .15B.5C.5D .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.三、解答题:共70分。
(完整版)2018年高考文科数学(全国I卷)试题及答案,推荐文档
2an n
,即 bn1
2bn
,又 b1
1 ,所以 {bn} 是首项为 1 ,公比为
2
的等比数列.
(3)由(2)可得
an n
2n1 ,所以 an
n 2n1 .
18.解:
(1)由已知可得, BAC 90 , BA AC .
又 BA AD ,所以 AB 平面 ACD .
又 AB 平面 ABC ,
文科数学试题 第 3 页(共 10 页)
19.(12 分)
某家庭记录了未使用节水龙头 50 天的日用水量数据(单位: m3 )和使用了节水龙头 50 天的日用水量数据, 得到频数分布表如下:
未使用节水龙头 50 天的日用水量频数分布表
日用水量 [0,0.1) [0.1,0.2 [0.2,0.3 [0.3,0.4 [0.4,0.5 [0.5,0.6 [0.6,0.7
2
2
(2)当 l 与 x 轴垂直时,AB 为 MN 的垂直平分线,所以 ABM ABN .
当 l 与 x 轴不垂直时,设 l 的方程为 y k(x 2) (k 0) , M (x1, y1) , N (x2 , y2 ) ,则 x1 0, x2 0 .
由
y k(x
y
2
2x
2),
得
ky 2
则 | a b |
1 A.
5
5 B.
5
25 C.
5
D. 1
12.设函数
f
(x)
2x ,
1,
x ≤ 0, 则满足 f (x 1) f (2x) 的 x 的取值范围是 x 0,
A. (, 1]
B. (0,)
C. (1, 0)
湖南省长沙市2018高三统考文科数学试题Word版含答案
爱好体育锻炼 不爱好体育锻炼 总计
1. 己知集合 A = {x|x-1>0} , B={x| 2-x<0} ,则下列结论正确的是
A.A∩ B=A
B.AUB=B
C. “ x∈ B”的必要条件
2. 己知复数 z 2 ,则下列结论正确的是 1i
A. z 的虚部为 i B.|z|=2
16. 如图,在平面四边形 ABCD中, AB丄 AD,AB=AD=1, BC=CD=,5 以直
线 AB 为轴,将四边形 ABCD旋转一周,则所得旋转体的体积为
.
三、 解答题: 本大题共 7 个小题, 共 70 分 , 解答应写出文字说明 , 证明过
程或演算步骤。第 17 ? 21 题为必考题,每个试题考生都必须作答,第 考生根据要求作答。
横线上。
13. 已知数列 {a n} 满足 an 1 an 2(n N ) , Sn 为 {a n } 的前 n 项和,若 Sn= S 10+12, 则 a 1
=. 14. 某种活性细胞的存活率
y (%) 与存放温度 x ( ℃ ) 之间具有线性相关关系,样本数据如下表
所示:
存放温度 x( ℃ )
10
A.2 B.
1 C.-2 2
D.
1
2
12. 设平行于 x 轴的直线 l 分别与函数 y
x
2 和y
x1
2 的图象相交于点
A,B, 若函数
y 2x 的图象上存在点 C,使得△ ABC为等边三角形,则这样的直线 l
A. 不存在
B. 有且只有一条 C. 至少有两条
D. 有无数条
二、填空题:本大题共 4 个小题,每小题 5 分,共 20 分。把各题答案的最简形式写在题中的
最新--湖南卷高考文科数学真题 精品推荐
2018年湖南高考数学试题(文史类)一.选择题:本大题共18小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设命题2:,10p x R x ∀∈+>,则p ⌝为( )200.,10A x R x ∃∈+> 200.,10B x R x ∃∈+≤200.,10C x R x ∃∈+< 200.,10D x R x ∀∈+≤2.已知集合{|2},{|13}A x x B x x =>=<<,则A B =( ).{|2}A x x > .{|1}B x x > .{|23}C x x << .{|13}D x x <<3.对一个容器为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p ==4.下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( )21.()A f x x=2.()1B f x x =+3.()C f x x = .()2x D f x -= 5.在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( )4.5A 3.5B 2.5C 1.5D 6.若圆221:1C x y +=与圆222:680C x y x y m +--+=,则m =( ).21A .19B .9C .11D -7.执行如图1所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( )A.[]6,2--B.[]5,1--C.[]4,5-D.[]3,6-8.一块石材表示的几何体的三视图如图2所示,将学科 网石材切削、打磨、加工成球,则能得 到的最大球的半径等于( )A.1B.2C.3D.4 9.若1201x x <<<,则( ) A.2121ln ln x x e e x x ->- B.2121ln ln x x e e x x -<-C.1221x x x e x e > D.1221x x x e x e <18.在平面直角坐标系中,O 为原点,()1,0A -,(0B ,()30C ,,动点D 满足 1CD =,则OA OB OD ++的取值范围是( )A.[]46,B.⎤⎦C.⎡⎣D.⎤⎦二.填空题:本大题共5小题,每小题5分,共25分. 11.复数23ii+(i 为虚数单位)的实部等于_________.12.在平面直角坐标系中,曲线22:12x tC y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)的普通方程为___________.18.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≤14y y x x y ,则y x z +=2的最大值为_________.18.平面上以机器人在行进中始终保持与点()01,F 的距离和到直线1-=x 的距离相等.若机器人接触不到过点()01,-P 且斜率为k 的直线,则k 的取值范围是___________.18.若()()ax e x f x ++=1ln 3是偶函数,则=a ____________.三、解答题:本大题共6小题,学科 网共75分.解答应写出文字说明,证明过程或演算过程. 18.(本小题满分18分)已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (I )求数列{}n a 的通项公式;(II )设()n n a n a b n12-+=,求数列{}n b 的前n 2项和.18.(本小题满分18分)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:()()()()()()()()()()()()()()()b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,其中a a,分别表示甲组研发成功和失败;b b ,分别表示乙组研发成功和失败.(I )若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平; (II )若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.18.(本小题满分18分)如图3,已知二面角MN αβ--的大小为60,菱形ABCD 在面β内,,A B 两点在棱MN 上,60BAD ∠=,E 是AB 的中点,DO ⊥面α,垂足为O . (1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值.19.(本小题满分18分)如图4,在平面四边形ABCD 中,32,2,7,1,π=∠===⊥ADC EA EC DE AB DA , 3π=∠BEC(1)求CED ∠sin 的值; (2)求BE 的长20.(本小题满分18分)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b -=>>均过点23(3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.21.(本小题满分18分)已知函数()cos sin 1(0)f x x x x x =-+>. (1)求()f x 的单调区间;(2)记i x 为()f x 的从小到大的第(*)i i N ∈个零点,证明:对一切*n N ∈,有2221211123n x x x +++<。
2018高考湖南文科数学试题及全解全析.doc
yx2018高考湖南文科数学试题及全解全析一.选择题1.已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}6,4=⋂N M .B M N U =UC .U M N C u =Y )( D. N N M C u =I )( 【答案】B【解析】由{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,易知B 正确. 2.“21<-x ”是“3<x ”的( )A .充分不必要条件 B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件 【答案】A【解析】由21<-x 得13x -<<,所以易知选A.3.已条变量y x ,满足⎪⎩⎪⎨⎧≤-≤≥,0,2,1y x y x 则y x +的最小值是( )A .4 B.3 C.2 D.1 【答案】C【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,2),(2,2),代入验证知在点(1,1)时,x y +最小值是11 2.+=故选C.4.函数)0()(2≤=x x x f 的反函数是( ))0()(.1≥=-x x x f A )0()(.1≥-=-x x x f B)0()(.1≤--=-x x x fC )0()(.21≤-=-x x x fD【答案】B【解析】用特殊点法,取原函数过点(1,1),-则其反函数过点(1,1),-验证知只有答案B 满足.也可用直接法或利用“原函数与反函数的定义域、值域互换”来解答。
5.已知直线m,n 和平面βα,满足βα⊥⊥⊥,,a m n m ,则( ).A n β⊥ ,//.βn B 或β⊂n α⊥n C . ,//.αn D 或α⊂n 【答案】D【解析】易知D 正确.6.下面不等式成立的是( )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<< 【答案】A【解析】由322log 21log 3log 5<<< , 故选A.7.在ABC ∆中,AB=3,AC=2,BC=10,则AB AC •=u u u r u u u r( )A .23-B .32-C .32D .23 【答案】D【解析】由余弦定理得1cos ,4CAB ∠=所以1332,42AB AC •=⨯⨯=u u u r u u u r 选D.8.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A 和一般项目B 至少有一个被选中的不同选法种数是( ) A .15 B .45 C .60 D .75 【答案】C 【解析】用直接法:11122135353515301560,C C C C C C ++=++=或用间接法:22224635903060,C C C C -=-=故选C.9.长方体1111ABCD A B C D -的8个顶点在同一个球面上,且AB=2,AD=3,11=AA ,则顶点A 、B 间的球面距离是( ) A .42π B .22π C .π2 D .2π2 【答案】B【解析】112BD AC R ===Q R ∴=设11,BD AC O =Q I 则OA OB R ===,2AOB π⇒∠=,2l R πθ∴==故选B.10.双曲线)0,0(12222>>=-b a by a x 的右支上存在一点,它到右焦点及左准线的XyOPBA 距离相等,则双曲线离心率的取值范围是( )A .2]B .[2,)+∞C .21]+D .[21,)++∞ 【答案】C【解析】200a ex a x c -=+Q 20(1)a e x a c ⇒-=+2(1),a a e a c⇒+≥-1111,a e c e∴-≤+=+2210,e e ⇒--≤1212,e ⇒≤≤+ 而双曲线的离心率1,e >21],e ∴∈故选C.二.填空题11.已知向量)3,1(=a ,)0,2(-=b ,则b a +=_____________________. 【答案】2【解析】由(3),||13 2.a b a b +=-∴+=+=r r r rQ12.从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多_____________人。
2018高考文科数学全国1卷完整版.doc
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( )A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( )A .0B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :=1的一个焦点为(2,0),则C 的离心率为 A .B.C.D.5.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1.O 2的平面截该圆柱所得的 截面是面积为8的正方形,则该圆柱的表面积为 A .12 πB.12πC. 8 πD.10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC -B .1344AB AC - C .3144AB AC + D .1344AB AC +8.已知知函数f (x )=2( ) ( ) +2,则A .f (x )的最小正周期为,π,最大值为3B .f (x )的最小正周期为π,最大值为4C .f (x )的最小正周期为2π,最大值为3D .f (x )的最小正周期为2π,最大值为4 9.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱 侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .210.在长方体ABCD -A1B1C1D1中,AB =BC =2,AC1与平面BB1CC1所成的角为30°, 则该长方体的体积为 A.8 B.6 C.8 D .811.已知角a 的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ), B (2,b ),且cos2a =,则|a -b|=A.BC.D.112.设函数()2010x x f x y -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。
2018文科数学高考真题.doc
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z =A .0B .12C .1D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C .22D .2235.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.三、解答题:共70分。
高三数学-2018年普通高等学校招生全国统一考试(湖南卷
绝密★启用前2018年普通高等学校招生全国统一考试(湖南卷)数学(文史类)注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡和该试题卷的封面上,并认真核对条形码上的姓名、准考证号和科目。
2.考生作答时,选择题和非选择题均须作在答题卡上,在草稿纸和本试卷上答题无效。
考生在答题卡上按如下要求答题:(1)选择题部分请用2B铅笔把应题目的答案标号所在方框涂黑,修改时用橡皮擦干净,不留痕迹。
(2)非选择题部分(包括填空题和解答题)请按题号用0.5毫米黑色墨水签字笔书写,否则作答无效。
(3)保持字体工整、笔迹清晰、卡面清洁、不折叠。
3.考试结束后,将本试题卷和答题卡一并交回。
4. 本试卷共5页。
如缺页,考生须声明,否则后果自负。
本试题卷他选择题和非选择题(包括填空题和解答题)两部分. 选择题部分1至2页. 非选择题部分3至5页. 时量120分钟. 满分150分. 参考公式: 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么)()()(B P A P AB P ⋅=如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率是()(1)k k n kn n P k C P P -=-球的体积公式 343V R π=,球的表面积公式24S R π=,其中R 表示球的半径一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数x y 2log=的定义域是A .(0,1]B . (0,+∞) C. (1,+∞) D . [1,+∞)2.已知向量),2,1(),,2(==b t a 若1t t =时,a∥b ;2t t =时,b a ⊥,则A .1,421-=-=t tB . 1,421=-=t t C. 1,421-==t t D . 1,421==t t3. 若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是A .-2B . 22 C. 34 D . 24.过半径为12的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°则该截面的面积是A .πB . 2π C. 3π D . π325.“a =1”是“函数ax x f -=)(在区间[1,+∞)上为增函数”的A .充分不必要条件B . 必要不充分条件C. 充要条件 D . 既不充分也不必要条件6.在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A .6B . 12 C. 18 D . 24 7.圆0104422=---+y x yx 上的点到直线014=-+y x 的最大距离与最小距离的差是A .36B . 18 C. 26 D . 258.设点P 是函数x x f ωsin )(=的图象C 的一个对称中心,若点P 到图象C 的对称轴上的距离的最小值4π,则)(x f 的最小正周期是A .2πB . π C.2π D .4π9.过双曲线M :2221y x b-=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且BCAB =,则双曲线M 的离心率是A .25 B . 310 C.5D .1010. 如图1:OM ∥AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OBy OA x OP +=,则实数对(x ,y )可以是A .)43,41(B . )32,32(-C. )43,41(-D . )57,51(-二.填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡中....对应题号的横上.11. 若数列{}n a 满足:1.2,111===+n a a a n n ,2,3….则=+++n a a a 21 .12. 某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人.现分析两个班的A一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是 分.13. 已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 则22yx +的最小值是 .14. 过三棱柱 ABC -A 1B 1C 1 的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有 条. 15. 若)4sin(3)4sin()(ππ-++=x x a x f 是偶函数,则a = .三.解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知),,0(,1cos )cos()22sin(sin 3πθθθπθπθ∈=⋅+--求θ的值.17.(本小题满分12分) 某安全生产监督部门对5家小型煤矿进行安全检查(简称安检). 若安检不合格,则必须整改. 若整改后经复查仍不合格,则强制关闭. 设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):(Ⅰ)恰好有两家煤矿必须整改的概率; (Ⅱ)某煤矿不被关闭的概率; (Ⅲ)至少关闭一家煤矿的概率.18.(本小题满分14分) 如图2,已知两个正四棱锥P -ABCD 与Q -ABCD 的高都是2,AB =4.(Ⅰ)证明PQ ⊥平面ABCD ;(Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离.Q B C P AD图219.(本小题满分14分) 已知函数axaxx f 313)(23-+-=.(I)讨论函数)(x f 的单调性;(Ⅱ)若曲线)(x f y =上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实数a 的取值范围.20.(本小题满分14分) 在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数23a =.排列4321的逆序数36a =(Ⅰ)求a 4、a 5,并写出a n 的表达式; (Ⅱ)令nn n n na a a ab 11+++=,证明32221+<++<n b b b nn ,n =1,2,….21.(本小题满分14分)已知椭圆C 1:13422=+yx,抛物线C 2:)0(2)(2>=-p px m y ,且C 1、C 2的公共弦AB过椭圆C 1的右焦点.(Ⅰ)当x AB ⊥轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若34=p 且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.参考答案1-10:DCDAABCBDC 11.12-n, 12. 85, 13. 5 ,14. 6 ,15. -3 .16.解:由已知条件得1cos cos 2cos sin 3=⋅--θθθθ.即sin2sin 32=-θθ. 解得0sin 23sin==θθ或.由0<θ<π知23sin=θ,从而323πθπθ==或.17.解:(Ⅰ)每家煤矿必须整改的概率是1-0.5,且每家煤矿是否整改是相互独立的. 所以恰好有两家煤矿必须整改的概率是31.01655.0)5.01(32251==⨯-⨯=C P .(Ⅱ)解法一 某煤矿被关闭,即该煤矿第一次安检不合格,整改后经复查仍不合格,所以该煤矿被关闭的概率是1.0)8.01()5.01(2=-⨯-=P ,从而煤矿不被关闭的概率是0.90. 解法二 某煤矿不被关闭包括两种情况:(i )该煤矿第一次安检合格;(ii )该煤矿第一次安检不合格,但整改后合格.所以该煤矿不被关闭的概率是90.08.0)5.01(5.02=⨯-+=P .(Ⅲ)由题设(Ⅱ)可知,每家煤矿不被关闭的概率是0.9,且每家煤矿是否被关闭是相互独立的,所以到少关闭一家煤矿的概率是41.09.0153=-=P .18.解法一 (Ⅰ)连结AC 、BD ,设OBD AC= .由P -ABCD 与Q -ABCD 都是正四棱锥,所以PO ⊥平面ABCD ,QO ⊥平面ABCD . 从而P 、O 、Q 三点在一条直线上,所以PQ ⊥平面ABCD . (Ⅱ)由题设知,ABCD 是正方形,所以AC ⊥BD . 由(Ⅰ),PQ ⊥平面ABCD . 故可分别以直线CA 、DB 、QP 为x 轴、y 轴、z 轴建立空间直角坐标系(如图),由题设条件,相关各点的坐标分别是P (0,0,2),A (22,0,0),Q (0,0,-2),B (0,22,0).所以)2,0,22(--=AQ )2,22,0(-=PB于是3132324,cos=⨯=>=<PB AQ .从而异面直线AQ 与PB 所成的角是31arccos.(Ⅲ)由(Ⅱ),点D 的坐标是(0,-22,0),)0,22,22(--=AD,)4,0,0(-=PQ,设),,(z y x n=是平面QAD 的一个法向量,由 ⎪⎩⎪⎨⎧=⋅=⋅00AD n AQ n 得⎪⎩⎪⎨⎧=+=+02y x z x .取x =1,得)2,1,1(--=n.所以点P 到平面QAD的距离22==d.解法二 (Ⅰ)取AD 的中点,连结PM ,QM . 因为P -ABCD 与Q -ABCD 都是正四棱锥, 所以AD ⊥PM ,AD ⊥QM . 从而AD ⊥平面PQM . 又⊂PQ 平面PQM ,所以PQ ⊥AD .同理PQ ⊥AB ,所以PQ ⊥平面ABCD .(Ⅱ)连结AC 、BD 设O BD AC = ,由PQ ⊥平面ABCD 及正四棱锥的性质可知O 在PQ 上,从而P 、A 、Q 、C 四点共面.因为OA =OC ,OP =OQ ,所以P AQC 为平行四边形,AQ ∥PC .从而∠BPC (或其补角)是异面直线AQ 与PB 所成的角.因为322)22(2222=+=+==OPOCPC PB,所以31323221612122cos222=⨯⨯-+=⋅-∠PCPB BCPCPBBPC +=.从而异面直线AQ 与PB 所成的角是31arccos .(Ⅲ)连结OM ,则PQAB OM21221===.所以∠PMQ =90°,即PM ⊥MQ .由(Ⅰ)知AD ⊥PM ,所以PM ⊥平面QAD . 从而PM 的长是点P 到平面QAD 的距离. 在直角△PMO 中,22222222=+=+=OMPOPM.即点P 到平面QAD 的距离是22.19.(Ⅰ)由题设知)2(363)(,02ax ax x axx f a-=-='≠.QBCPADOM令ax x x f 2,00)(21==='得.当(i )a >0时, 若)0,(-∞∈x ,则0)(>'x f ,所以)(x f 在区间(,0)-∞上是增函数;若)2,0(a x ∈,则)(<'x f ,所以)(x f 在区间)2,0(a 上是减函数;若),2(+∞∈a x ,则)(>'x f ,所以)(x f 在区间),2(+∞a 上是增函数;(i i )当a <0时, 若)2,(a x -∞∈,则)(<'x f ,所以)(x f 在区间)2,(a-∞上是减函数;若)2,0(a x ∈,则0)(<'x f ,所以)(x f 在区间)2,0(a上是减函数; 若)0,2(a x ∈,则0)(>'x f ,所以)(x f 在区间)0,2(a上是增函数;若),0(+∞∈x ,则0)(<'x f ,所以)(x f 在区间),0(+∞上是减函数.(Ⅱ)由(Ⅰ)的讨论及题设知,曲线)(x f y =上的两点A 、B 的纵坐标为函数的极值,且函数)(x f y=在ax x2,0==处分别是取得极值af 31)0(-=,134)2(2+--=aaaf .因为线段AB 与x 轴有公共点,所以0)2()0(≤⋅af f . 即0)31)(134(2≤-+--aaa.所以)4)(3)(1(2≤--+aa a a .故0,0)4)(3)(1(≠≤--+a a a a 且.解得 -1≤a <0或3≤a ≤4.即所求实数a 的取值范围是[-1,0)∪[3,4].20.(本小题满分14分)(Ⅰ)由已知得15,1054==a a ,2)1(12)1(+=+++-+=n n n n a n .(Ⅱ)因为,2,1,22222211==+⋅+>+++=+=++n nn n n nn n n a a a a b nn n n n,所以nb b b n 221>+++ .又因为 ,2,1,222222=+-+=+++=n n n nn n n b n ,所以)]211()4121()3111[(2221+-++-+-+=+++n n n b b b n=32221232+<+-+-+n n n n .综上,,2,1,32221=+<++<n n b b b nn .21.(本小题满分14分)(Ⅰ)当AB ⊥x 轴时,点A 、B 关于x 轴对称,所以m =0,直线AB 的方程为x =1,从而点A 的坐标为(1,23)或(1,-23).因为点A 在抛物线上,所以p249=,即89=p.此时C 2的焦点坐标为(169,0),该焦点不在直线AB 上.(Ⅱ)解法一 当C 2的焦点在AB 上时,由(Ⅰ)知直线AB 的斜率存在,设直线AB的方程为)1(-=x k y .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 消去y 得01248)43(2222=-+-+kx kx k . ……①设A 、B 的坐标分别为(x 1,y 1), (x 2,y 2), 则x 1,x 2是方程①的两根,x 1+x 2=22438kk+.因为AB 既是过C 1的右焦点的弦,又是过C 2所以)(214)212()212(2121x x x x AB +-=-+-=,且34)2()2(212121++=++=+++=x x p x x p x p x AB .从而)(214342121x x x x +-=++.所以91621=+x x ,即91643822=+kk.解得6,62±==k k 即. 因为C 2的焦点),32(m F '在直线)1(-=x k y上,所以km31-=.即3636-==m m 或.当36=m 时,直线AB 的方程为)1(6--=x y; 当36-=m时,直线AB 的方程为)1(6-=x y.解法二 当C 2的焦点在AB 时,由(Ⅰ)知直线AB 的斜率存在,设直线AB 的方程 为)1(-=x k y .由⎪⎩⎪⎨⎧-==-)1(38)(2x k y x m y 消去y 得xm k kx38)(2=--. ……①因为C 2的焦点),32(m F '在直线)1(-=x k y上,所以)132(-=k m ,即km31-=.代入①有xk kx38)32(2=-.即094)2(342222=++-k x kxk. ……②设A 、B 的坐标分别为(x 1,y 1), (x 2,y 2), 则x 1,x 2是方程②的两根,x 1+x 2=223)2(4kk+.由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 消去y 得01248)43(2222=-+-+kx kx k . ……③由于x 1,x 2也是方程③的两根,所以x 1+x 2=22438kk+.从而223)2(4k k+=22438kk+. 解得6,62±==k k 即.因为C 2的焦点),32(m F '在直线)1(-=x k y上,所以km 31-=.即3636-==m m 或.当36=m 时,直线AB 的方程为)1(6--=x y; 当36-=m时,直线AB 的方程为)1(6-=x y.解法三 设A 、B 的坐标分别为(x 1,y 1), (x 2,y 2), 因为AB 既过C 1的右焦点)0,1(F ,又是过C 2的焦点),32(m F ', 所以)212()212()2()2(212121x x p x x p x p x AB -+-=++=+++=.即916)4(3221=-=+p x x . ……①由(Ⅰ)知21x x ≠,于是直线AB 的斜率mm x x y y k313201212=--=--=, ……②且直线AB 的方程是)1(3--=x m y ,所以32)2(32121m x x m y y =-+-=+. ……③又因为⎪⎩⎪⎨⎧=+=+1243124322222121y x y x ,所以0)(4)(312122121=--⋅+++x x y y y y x x . ……④将①、②、③代入④得322=m ,即3636-==m m或.当36=m时,直线AB 的方程为)1(6--=x y;当36-=m时,直线AB 的方程为)1(6-=x y.。
2018年高考(湖南省)真题数学(文)试题及答案解析
2018年湖南高考数学试题(文史类)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设命题2:,10p x R x ∀∈+>,则p ⌝为( )200.,10A x R x ∃∈+> 200.,10B x R x ∃∈+≤200.,10C x R x ∃∈+< 200.,10D x R x ∀∈+≤ 2.已知集合{|2},{|13}A x x B x x =>=<<,则A B =( ).{|2}A x x > .{|1}B x x > .{|23}C x x <<.{|13}D x x << 3.对一个容器为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p == 4.下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( )21.()A f x x= 2.()1B f x x =+ 3.()C f x x = .()2x D f x -= 5.在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( )4.5A 3.5B 2.5C 1.5D 6.若圆221:1C x y +=与圆222:680C x y x y m +--+=,则m =( ).21A .19B .9C .11D - 7.执行如图1所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( )A.[]6,2--B.[]5,1--C.[]4,5-D.[]3,6-8.一块石材表示的几何体的三视图如图2所示,将学科 网石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4 9.若1201x x <<<,则( )。
湖南省2018年高考文科数学试题及答案汇总(word解析版)
绝密★启用前湖南省2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={0,2},B={ -2,-1,0,1,2},则A∩B=A. {0,2}B. {1,2}C. {0}D. {-2,-1,0,1,2}2,设z=,则∣z∣=A. 0B.C. 1D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为A.B.C.D.5.已知椭圆的上、下底面的中心分别为O₁,O₂,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. 12πB. 12πC. 8πD. 10π6.设函数f(x)=x ³+(a-1)x ²+ax。
若f(x)为奇函数,则曲线y= f(x)在点(0,0)处的切线方程为A. y=-2xB. y=-xC. y=2x7.在∆ABC中,AD为BC边上的中线,E为AD的中点,则=A. -B. -C. +D. +8.已知函数f(x)=2cos ²x-sin ²x+2,则A. f(x)的最小正周期为π,最大值为3B. 不f(x)的最小正周期为π,最大值为4C. f(x)的最小正周期为2π,最大值为3D. D. f(x)的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =I A .{0,2} B .{1,2}C .{0}D .{2,1,0,1,2}--2.设1i2i 1iz -=++,则||z =A .0B .12C .1D 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为A .13B .12C .2D .35.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π6.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u ru u u r u u u r u u ur u u u rC .3144AB AC +u u ur u u u r D .1344AB AC +u u ur u u u r 8.已知函数22()2cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||a b -=A .15B .5 C .25D .112.设函数2,0,()1,0,x x f x x -⎧=⎨>⎩≤ 则满足(1)(2)f x f x +<的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数22()log ()f x x a =+. 若(3)1f =,则a = .14.若x ,y 满足约束条件220,10,0,x y x y y --⎧⎪-+⎨⎪⎩≤≥≤ 则32z x y =+的最大值为 .15.直线1y x =+与圆22230x y y ++-=交于A ,B 两点,则||AB = .16.ABC △的内角A ,B ,C 的对边分别为a ,b ,c . 已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为 .三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
已知数列{}n a 满足11a =,12(1)n n na n a +=+. 设nn a b n=. (1)求1b ,2b ,3b ;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式. 18.(12分)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒. 以AC 为折痕将ACM △折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.m)和使用了节水龙头50天的日用水量数据,某家庭记录了未使用节水龙头50天的日用水量数据(单位:3得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图;m的概率;(2)估计该家庭使用节水龙头后,日用水量小于0.353(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)设抛物线22C y x =:,点(2,0)A ,(2,0)B -,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠. 21.(12分)已知函数()e ln 1x f x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间;(2)证明:当1e a ≥时,()0f x ≥.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xO y 中,曲线1C 的方程为||2y k x =+. 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.23.[选修4-5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.绝密★启用前2018年普通高等学校招生全国统一考试文科数学试题参考答案一、选择题 1.A 2.C 3.A 4.C 5.B 6.D7.A8.B9.B10.C11.B12.D二、填空题 13.7- 14.615.2216.23三、解答题 17.解:(1)由条件可得12(1)n n n a a n++=. 将1n =代入得,214a a =,而11a =,所以,24a =. 将2n =代入得,323a a =,所以,312a =. 从而11b =,22b =,34b =.(2){}n b 是首项为1,公比为2的等比数列. 由条件可得121n na a n n +=+,即12n n b b +=,又11b =,所以{}n b 是首项为1,公比为2的等比数列.(3)由(2)可得12n na n-=,所以12n n a n -=⋅. 18.解:(1)由已知可得,90BAC ∠=︒,BA AC ⊥. 又BA AD ⊥,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,3DC CM AB ===,32DA =. 又23BP DQ DA ==,所以22BP =. 作QE AC ⊥,垂足为E ,则QE13DC . 由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,1QE =. 因此,三棱锥Q ABP -的体积为1111322sin 451332Q ABP ABP V QE -=⨯⨯=⨯⨯⨯⨯︒=△S .(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m 3的频率为 0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 20.解:(1)当l 与x 轴垂直时,l 的方程为2x =,可得M 的坐标为(2,2)或(2,2)-. 所以直线BM 的方程为112y x =+或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以ABM ABN ∠=∠.当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,11(,)M x y ,22(,)N x y ,则120,0x x >>. 由2(2),2y k x y x=-⎧⎨=⎩得2240ky y k --=,可知12122,4y y y y k +==-.直线BM ,BN 的斜率之和为121222BM BN y y k k x x +=+++211212122()(2)(2)x y x y y y x x +++=++. ①将112y x k =+,222yx k =+及1212,y y y y +的表达式代入①式分子,可得 121221121224()2()y y k y y x y x y y y k +++++=880k-+==.所以0BM BN k k +=,可知BM ,BN 的倾斜角互补,所以ABM ABN ∠=∠. 综上,ABM ABN ∠=∠.(1)()f x 的定义域为(0,)+∞,1()e x f x a x '=-.由题设知,(2)0f '=,所以212ea =.从而21()e ln 12e x f x x =--,211()e 2e x f x x'=-.当02x <<时,()0f x '<;当2x >时,()0f x '>. 所以()f x 在(0,2)单调递减,在(2,)+∞单调递增.(2)当1ea ≥时,e ()ln 1e x f x x --≥.设e ()ln 1e x g x x =--,则e 1()e x g x x'=-.当01x <<时,()0g x '<;当1x >时,()0g x '>. 所以1x =是()g x 的最小值点. 故当0x >时,()(1)0g x g =≥.因此,当1e a ≥时,()0f x ≥.22.解:(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线. 记y 轴右边的射线为1l ,y 轴左边的射线为2l . 由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+.23.解:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x --⎧⎪=-<<⎨⎪⎩≤≥ 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0a ≤,则当(0,1)x ∈时|1|1ax -≥;若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(0,2].。