高等数学试题(第六版上册)

合集下载

同济大学 第六版 高数练习册答案 上册

同济大学 第六版 高数练习册答案 上册

高等数学习题解答第一章(7-11) 第六节 极限存在准则 两个重要极限1.0;1;1;0;2;2/32. 1-e ;1432;0;;;--e e e e3. 证明:{n x }显然单调递增,1x 3≤,若31≤-n x ,则n x ≤33+≤3∴ {n x }单调有界,∴{n x }收敛,不妨设∞→n lim n x =a , 则有 a =3+a ,解得,a =(1+13)/2,2)131(-=a∴2)131(lim +=∞→n n x4. 解:1)12111(22222+≤++++++≤+n n nn n n n n n11limlim22=+=+∞→∞→n nn n n n n∴1)12111(lim 222=++++++∞→nn n n n第七节 无穷小的比较1.(B )2. (A )3. 证明: 令t x sin = , 1sin lim arcsin lim00==→→ttx x t x∴当0→x 时,x x ~arcsin 。

4. 解:(1)0lim →x x x 25tan =0lim →x x x 25=25(2)0lim →x ())cos 1(arcsin 2x x x -=0lim →x 222x x x =∞(3)0lim →x x x )sin 21ln(-=0lim→x 2sin 2-=-xx(4)0lim →x =-+1)21ln(3x e x 3232lim 0=→x x x(5)0lim→x x x x 3sin sin tan -=0lim →x =-xx x x cos )cos 1(sin 30lim →x 322xx x=1/2(6)0lim →x ⎪⎭⎫ ⎝⎛-x x tan 1sin 1=0lim →x x x sin cos 1-=0lim →x 022=x x (7)431)3tan arctan (lim 220=+=+++→nn n n n a n n第八节 函数的连续性与间断点1. 0 ;2. 充要;3. 2;4. D5. B6. C7. 解:12121lim 1212lim )(lim0=+-=+-=--+∞→+∞→→+t tt t t t x x f1)(lim 0-=-→x f x ∴ )(x f 在x=0 不连续,且x=0 为函数)(x f 的第一类间断点。

高等数学第六版上册课后习题答案与及解析

高等数学第六版上册课后习题答案与及解析

高等数学第六版上册课后习题答案与及解析第一章习题111设A (5)(5)B [103)写出ABABA \B 及A \(A \B )的表达式 解AB (3)(5) AB [105) A \B (10)(5)A \(A \B )[105)2设A 、B 是任意两个集合证明对偶律(AB )C A C B C 证明因为x (AB )C xABxA 或xBxA C 或xB C xA C B C 所以(AB )C A C B C3设映射fXYAXBX 证明 (1)f (AB )f (A )f (B ) (2)f (AB )f (A )f (B ) 证明因为yf (AB )xAB 使f (x )y(因为xA 或xB )yf (A )或yf (B ) yf (A )f (B )所以f (AB )f (A )f (B ) (2)因为yf (AB )xAB 使f (x )y (因为xA 且xB )yf (A )且yf (B )yf (A )f (B ) 所以f (AB )f (A )f (B )4设映射fXY 若存在一个映射gYX 使X I f g =οY I g f =ο其中I X 、I Y 分别是X 、Y 上的恒等映射即对于每一个xX 有I X xx 对于每一个yY 有I Y yy 证明f 是双射且g 是f 的逆映射gf 1 证明因为对于任意的yY 有xg (y )X 且f (x )f [g (y )]I y yy 即Y 中任意元素都是X 中某元素的像所以f 为X 到Y 的满射又因为对于任意的x 1x 2必有f (x 1)f (x 2)否则若f (x 1)f (x 2)g [f (x 1)]g [f (x 2)]x 1x 2 因此f 既是单射又是满射即f 是双射对于映射gYX 因为对每个yY 有g (y )xX 且满足f (x )f [g (y )]I y yy 按逆映射的定义g 是f 的逆映射5设映射fXYAX 证明 (1)f 1(f (A ))A(2)当f 是单射时有f 1(f (A ))A证明(1)因为xAf (x )yf (A )f 1(y )xf 1(f (A )) 所以f 1(f (A ))A(2)由(1)知f 1(f (A ))A另一方面对于任意的xf 1(f (A ))存在yf (A )使f 1(y )xf (x )y 因为yf (A )且f 是单射所以xA 这就证明了f 1(f (A ))A 因此f 1(f (A ))A 6求下列函数的自然定义域 (1)23+=x y解由3x 20得32->x 函数的定义域为) ,32[∞+-(2)211x y -=解由1x 20得x 1函数的定义域为(1)(11)(1) (3)211x x y --=解由x 0且1x 20得函数的定义域D [10)(01] (4)241x y -=解由4x 20得|x |2函数的定义域为(22) (5)x y sin =解由x 0得函数的定义D [0) (6)y tan(x 1)解由21π≠+x (k 012)得函数的定义域为 12-+≠ππk x (k 012)(7)y arcsin(x 3)解由|x 3|1得函数的定义域D [24] (8)x x y 1arctan 3+-=解由3x 0且x 0得函数的定义域D (0)(03) (9)y ln(x 1)解由x 10得函数的定义域D (1) (10)xe y 1=解由x 0得函数的定义域D (0)(0)7下列各题中函数f (x )和g (x )是否相同?为什么? (1)f (x )lg x 2g (x )2lg x (2)f (x )xg (x )2x(3)334)(x x x f -=31)(-=x x x g (4)f (x )1g (x )sec 2x tan 2x 解(1)不同因为定义域不同(2)不同因为对应法则不同x 0时g (x )x (3)相同因为定义域、对应法则均相相同 (4)不同因为定义域不同8设⎪⎩⎪⎨⎧≥<=3||03|| |sin |)(ππϕx x x x 求)6(πϕ)4(πϕ)4(πϕ-(2)并作出函数y (x )的图形 解21|6sin |)6(==ππϕ22|4sin |)4(==ππϕ22|)4sin(|)4(=-=-ππϕ0)2(=-ϕ9试证下列函数在指定区间内的单调性 (1)x x y -=1(1)(2)yx ln x (0)证明(1)对于任意的x 1x 2(1)有1x 101x 20因为当x 1x 2时 所以函数x x y -=1在区间(1)内是单调增加的(2)对于任意的x 1x 2(0)当x 1x 2时有所以函数yx ln x 在区间(0)内是单调增加的10设f (x )为定义在(ll )内的奇函数若f (x )在(0l )内单调增加证明f (x )在(l 0)内也单调增加证明对于x 1x 2(l 0)且x 1x 2有x 1x 2(0l )且x 1x 2 因为f (x )在(0l )内单调增加且为奇函数所以f (x 2)f (x 1)f (x 2)f (x 1)f (x 2)f (x 1)这就证明了对于x 1x 2(l 0)有f (x 1)f (x 2)所以f (x )在(l 0)内也单调增加 11设下面所考虑的函数都是定义在对称区间(ll )上的证明 (1)两个偶函数的和是偶函数两个奇函数的和是奇函数(2)两个偶函数的乘积是偶函数两个奇函数的乘积是偶函数偶函数与奇函数的乘积是奇函数证明(1)设F (x )f (x )g (x )如果f (x )和g (x )都是偶函数则 F (x )f (x )g (x )f (x )g (x )F (x )所以F (x )为偶函数即两个偶函数的和是偶函数 如果f (x )和g (x )都是奇函数则 F (x )f (x )g (x )f (x )g (x )F (x )所以F (x )为奇函数即两个奇函数的和是奇函数 (2)设F (x )f (x )g (x )如果f (x )和g (x )都是偶函数则F (x )f (x )g (x )f (x )g (x )F (x )所以F (x )为偶函数即两个偶函数的积是偶函数 如果f (x )和g (x )都是奇函数则F (x )f (x )g (x )[f (x )][g (x )]f (x )g (x )F (x )所以F (x )为偶函数即两个奇函数的积是偶函数 如果f (x )是偶函数而g (x )是奇函数则 F (x )f (x )g (x )f (x )[g (x )]f (x )g (x )F (x )所以F (x )为奇函数即偶函数与奇函数的积是奇函数12下列函数中哪些是偶函数哪些是奇函数哪些既非奇函数又非偶函数? (1)yx 2(1x 2)(2)y 3x 2x 3(3)2211x x y +-= (4)yx (x 1)(x 1) (5)y sin x cos x 1(6)2x x a a y -+= 解(1)因为f (x )(x )2[1(x )2]x 2(1x 2)f (x )所以f (x )是偶函数 (2)由f (x )3(x )2(x )33x 2x 3可见f (x )既非奇函数又非偶函数(3)因为())(111)(1)(2222x f xx x x x f =+-=-+--=-所以f (x )是偶函数 (4)因为f (x )(x )(x 1)(x 1)x (x 1)(x 1)f (x )所以f (x )是奇函数(5)由f (x )sin(x )cos(x )1sin x cos x 1可见f (x )既非奇函数又非偶函数(6)因为)(22)()()(x f a a a a x f xx x x =+=+=-----所以f (x )是偶函数13下列各函数中哪些是周期函数?对于周期函数指出其周期 (1)y cos(x 2)解是周期函数周期为l 2 (2)y cos4x解是周期函数周期为2π=l(3)y 1sin x解是周期函数周期为l 2 (4)yx cos x解不是周期函数 (5)y sin 2x解是周期函数周期为l 14求下列函数的反函数(1)31+=x y解由31+=x y 得xy 31所以31+=x y 的反函数为yx 31 (2)xx y +-=11解由x x y +-=11得y yx +-=11所以x x y +-=11的反函数为xx y +-=11(3)dcx b ax y ++=(adbc 0)解由d cx b ax y ++=得a cy bdy x -+-=所以d cx b ax y ++=的反函数为acx b dx y -+-=(4)y 2sin3x解由y 2sin3x 得2arcsin 31yx =所以y 2sin3x 的反函数为2arcsin 31x y =(5)y 1ln(x 2)解由y 1ln(x 2)得xe y 12所以y 1ln(x 2)的反函数为ye x 12(6)122+=xxy 解由122+=x x y 得y y x -=1log 2所以122+=x x y 的反函数为x x y -=1log 215设函数f (x )在数集X 上有定义试证函数f (x )在X 上有界的充分必要条件是它在X上既有上界又有下界证明先证必要性设函数f (x )在X 上有界则存在正数M 使|f (x )|M 即Mf (x )M 这就证明了f (x )在X 上有下界M 和上界M再证充分性设函数f (x )在X 上有下界K 1和上界K 2即K 1f (x )K 2取M max{|K 1||K 2|}则MK 1f (x )K 2M 即|f (x )|M这就证明了f (x )在X 上有界16在下列各题中求由所给函数复合而成的函数并求这函数分别对应于给定自变量值x 1和x 2的函数值(1)yu 2u sin x 61π=x 32π=x解y sin 2x 41)21(6sin 221===πy 43)23(3sin 222===πy(2)y sin uu 2x 81π=x 42π=x解y sin2x 224sin )82sin(1==⋅=ππy 12sin )42sin(2==⋅=ππy(3)u y =u 1x 2x 11x 2 2解21x y +=21121=+=y 52122=+=y (4)ye u ux 2x 10x 21解2x e y =1201==e y e e y ==212(5)yu 2ue x x 11x 21 解ye 2x y 1e 21e 2y 2e 2(1)e 217设f (x )的定义域D [01]求下列各函数的定义域 (1)f (x 2)解由0x 21得|x |1所以函数f (x 2)的定义域为[11] (2)f (sin x )解由0sin x 1得2nx (2n 1)(n 012)所以函数f (sin x )的定义域为 [2n (2n 1)](n 012) (3)f (xa )(a >0)解由0xa 1得ax 1a 所以函数f (xa )的定义域为[a 1a ] (4)f (xa )f (xa )(a 0)解由0xa 1且0xa 1得当210≤<a 时ax 1a 当21>a 时无解因此当210≤<a 时函数的定义域为[a 1a ]当21>a 时函数无意义18设⎪⎩⎪⎨⎧>-=<=1||11||01||1)(x x x x f g (x )e x 求f [g (x )]和g [f (x )]并作出这两个函数的图形 解⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)]([x x x e e e x g f 即⎪⎩⎪⎨⎧>-=<=0 10 001)]([x x x x g f ⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| )]([101)(x e x x e e x f g x f 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g19已知水渠的横断面为等腰梯形斜角40(图137)当过水断面ABCD 的面积为定值S 0时求湿周L (LABBCCD )与水深h 之间的函数关系式并指明其定义域 图137解ο40sin h DC AB ==又从)]40cot 2([21S h BC BC h =⋅++ο得h hS BC ⋅-=ο40cot 0所以自变量h 的取值范围应由不等式组h 0040cot 0>⋅-h hS ο确定定义域为ο40cot 00S h <<20收敛音机每台售价为90元成本为60元厂方为鼓励销售商大量采购决定凡是订购量超过100台以上的每多订购1台售价就降低1分但最低价为每台75元 (1)将每台的实际售价p 表示为订购量x 的函数 (2)将厂方所获的利润P 表示成订购量x 的函数 (3)某一商行订购了1000台厂方可获利润多少? 解(1)当0x 100时p 90令001(x 0100)9075得x 01600因此当x 1600时p 75 当100x 1600时p 90(x 100)00191001x 综合上述结果得到(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P(3)P 3110000011000221000(元)习题121观察一般项x n 如下的数列{x n }的变化趋势写出它们的极限 (1)nn x 21=解当n 时n n x 21=0021lim =∞→nn (2)nx n n 1)1(-=解当n 时n x n n 1)1(-=001)1(lim =-∞→nn n(3)212nx n +=解当n 时212n x n +=22)12(lim 2=+∞→n n (4)11+-=n n x n解当n 时12111+-=+-=n n n x n 0111lim =+-∞→n n n(5)x n n (1)n解当n 时x n n (1)n 没有极限2设数列{x n }的一般项n n x n 2cos π=问n n x ∞→lim 求出N 使当nN 时x n 与其极限之差的绝对值小于正数当0001时求出数N 解0lim =∞→n n xn n n x n 1|2cos ||0|≤=-π0要使|x n 0|只要ε<n 1也就是ε1>n 取]1[ε=N 则nN 有|x n 0| 当0001时]1[ε=N 10003根据数列极限的定义证明(1)01lim 2=∞→n n分析要使ε<=-221|01|n n 只须ε12>n 即ε1>n 证明因为0]1[ε=N 当nN 时有ε<-|01|2n 所以01lim 2=∞→n n (2)231213lim =++∞→n n n分析要使ε<<+=-++n n n n 41)12(21|231213|只须ε<n41即ε41>n 证明因为0]41[ε=N 当nN 时有ε<-++|231213|n n 所以231213lim =++∞→n n n(3)1lim22=+∞→na n n分析要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|只须ε2a n >证明因为0][2εa N =当nN 时有ε<-+|1|22n a n 所以1lim 22=+∞→n a n n(4)19 999.0lim =⋅⋅⋅∞→43421个n n 分析要使|09991|ε<=-1101n 只须1101-n 即ε1lg 1+>n 证明因为0]1lg 1[ε+=N 当nN 时有|09991|所以19 999.0lim =⋅⋅⋅∞→43421个n n 4a u n n =∞→lim 证明||||lim a u n n =∞→并举例说明如果数列{|x n |}有极限但数列{x n }未必有极限证明因为a u n n =∞→lim 所以0N N 当nN 时有ε<-||a u n 从而||u n ||a |||u n a |这就证明了||||lim a u n n =∞→数列{|x n |}有极限但数列{x n }未必有极限例如1|)1(|lim =-∞→n n 但n n )1(lim -∞→不存在5设数列{x n }有界又0lim =∞→n n y 证明0lim =∞→n n n y x证明因为数列{x n }有界所以存在M 使n Z 有|x n |M 又0lim =∞→n n y 所以0N N 当nN 时有M y n ε<||从而当nN 时有 所以0lim =∞→n n n y x6对于数列{x n }若x 2k 1a (k )x 2k a (k ) 证明x n a (n )证明因为x 2k 1a (k )x 2k a (k )所以0 K 1当2k 12K 11时有|x 2k 1a | K 2当2k 2K 2时有|x 2k a |取N max{2K 112K 2}只要nN 就有|x n a | 因此x n a (n ) 习题131根据函数极限的定义证明 (1)8)13(lim 3=-→x x分析因为|(3x 1)8||3x 9|3|x 3|所以要使|(3x 1)8|只须ε31|3|<-x证明因为0εδ31=当0|x 3|时有|(3x 1)8| 所以8)13(lim 3=-→x x(2)12)25(lim 2=+→x x分析因为|(5x 2)12||5x 10|5|x 2|所以要使|(5x 2)12|只须ε51|2|<-x证明因为0εδ51=当0|x 2|时有 |(5x 2)12|所以12)25(lim 2=+→x x(3)424lim 22-=+--→x x x分析因为所以要使ε<--+-)4(242x x 只须ε<--|)2(|x 证明因为0εδ=当0|x (2)|时有所以424lim 22-=+--→x x x(4)21241lim 321=+--→x x x 分析因为所以要使ε<-+-212413x x 只须ε21|)21(|<--x 证明因为0εδ21=当δ<--<|)21(|0x 时有所以21241lim 321=+--→x x x 2根据函数极限的定义证明(1)2121lim 33=+∞→x x x 分析因为所以要使ε<-+212133x x 只须ε<3||21x 即321||ε>x 证明因为0321ε=X 当|x |X 时有所以2121lim 33=+∞→x x x (2)0sin lim =+∞→x x x分析因为所以要使ε<-0sin x x 只须ε<x1即21ε>x证明因为021ε=X 当xX 时有所以0sin lim =+∞→xx x3当x 2时yx 24问等于多少使当|x 2|<时|y 4|<0001? 解由于当x 2时|x 2|0故可设|x 2|1即1x 3要使|x 24||x 2||x 2|5|x 2|0001 只要0002.05001.0|2|=<-x取00002则当0|x 2|时就有|x 24|00014当x 时13122→+-=x x y 问X 等于多少使当|x |X 时|y 1|001 解要使01.034131222<+=-+-x x x 只要397301.04||=->x 故397=X5证明函数f (x )|x |当x 0时极限为零证明因为|f (x )0|||x |0||x ||x 0| 所以要使|f (x )0|只须|x | 因为对0使当0|x 0|时有 |f (x )0|||x |0| 所以0||lim 0=→x x6求,)(xx x f =x x x ||)(=ϕ当x 0时的左﹑右极限并说明它们在x 0时的极限是否存在证明因为所以极限)(lim 0x f x →存在因为所以极限)(lim 0x x ϕ→不存在7证明若x 及x 时函数f (x )的极限都存在且都等于A 则A x f x =∞→)(lim证明因为A x f x =-∞→)(lim A x f x =+∞→)(lim 所以>0X 10使当xX 1时有|f (x )A | X 20使当xX 2时有|f (x )A |取X max{X 1X 2}则当|x |X 时有|f (x )A |即A x f x =∞→)(lim8根据极限的定义证明函数f (x )当xx 0时极限存在的充分必要条件是左极限、右极限各自存在并且相等证明先证明必要性设f (x )A (xx 0)则>00使当0<|xx 0|<时有 |f (x )A |<因此当x 0<x <x 0和x 0<x <x 0时都有 |f (x )A |<这说明f (x )当xx 0时左右极限都存在并且都等于A 再证明充分性设f (x 00)f (x 00)A 则>0 1>0使当x 01<x <x 0时有|f (x )A <2>0使当x 0<x <x 0+2时有|f (x )A |<取min{12}则当0<|xx 0|<时有x 01<x <x 0及x 0<x <x 0+2从而有 |f (x )A |< 即f (x )A (xx 0)9试给出x 时函数极限的局部有界性的定理并加以证明解x 时函数极限的局部有界性的定理如果f (x )当x 时的极限存在则存在X 0及M 0使当|x |X 时|f (x )|M证明设f (x )A (x )则对于1X 0当|x |X 时有|f (x )A |1所以 |f (x )||f (x )AA ||f (x )A ||A |1|A |这就是说存在X 0及M 0使当|x |X 时|f (x )|M 其中M 1|A | 习题141两个无穷小的商是否一定是无穷小?举例说明之 解不一定例如当x 0时(x )2x (x )3x 都是无穷小但32)()(lim0=→x x x βα)()(x x βα不是无穷小2根据定义证明(1)392+-=x x y 当x 3时为无穷小; (2)xx y 1sin =当x 0时为无穷小证明(1)当x 3时|3|39||2-=+-=x x x y 因为0当0|x 3|时有所以当x 3时392+-=x x y 为无穷小 (2)当x 0时|0||1sin |||||-≤=x xx y 因为0当0|x 0|时有所以当x 0时xx y 1sin =为无穷小3根据定义证明函数xx y 21+=为当x 0时的无穷大问x 应满足什么条件能使|y |104?证明分析2||11221||-≥+=+=x x x x y 要使|y |M 只须M x >-2||1即21||+<M x证明因为M 021+=M δ使当0|x 0|时有M xx >+21所以当x 0时函数xx y 21+=是无穷大取M 104则21014+=δ当2101|0|04+<-<x 时|y |104 4求下列极限并说明理由 (1)xx x 12lim +∞→;(2)xx x --→11lim 20 解(1)因为xx x 1212+=+而当x 时x 1是无穷小所以212lim =+∞→x x x(2)因为x xx +=--1112(x 1)而当x 0时x 为无穷小所以111lim 20=--→x x x5根据函数极限或无穷大定义填写下表f (x )Af (x )f (x )f (x )xx 0 00使当0|xx 0|时 有恒|f (x )A |xx 0 xx 0x 0X 0使当|x |X 时 有恒|f (x )|Mx x解f (x )A f (x ) f (x ) f (x ) xx 000使当0|xx 0|时有恒|f (x )A | M 00使当0|xx 0|时有恒|f (x )|M M 00使当0|xx 0|时有恒f (x )M M 00使当0|xx 0|时有恒f (x )M xx 000使当0xx 0时有恒|f (x )A | M 00使当0xx 0时有恒|f (x )|M M 00使当0xx 0时有恒f (x )M M 00使当0xx 0时有恒f (x )M xx 000使当0x 0x 时有恒|f (x )A | M 00使当0x 0x 时有恒|f (x )|M M 00使当0x 0x 时有恒f (x )M M 00使当0x 0x 时有恒f (x )M x0X 0使当|x |X 时有恒|f (x )A | 0X 0使当|x |X 时有恒|f (x )|M 0X 0使当|x |X 时有恒f (x )M 0X 0使当|x |X 时有恒f (x )M x0X 0使当xX 时有恒|f (x )A | 0X 0使当xX 时有恒|f (x )|M 0X 0使当xX 时有恒f (x )M 0X 0使当xX 时有恒f (x )Mx0X 0使当xX 时有恒|f (x )A | 0X 0使当xX 时有恒|f (x )|M 0X 0使当xX 时有恒f (x )M 0X 0使当xX 时有恒f (x )M6函数yx cos x 在()内是否有界?这个函数是否为当x 时的无穷大?为什么? 解函数yx cos x 在()内无界这是因为M 0在()内总能找到这样的x 使得|y (x )|M 例如y (2k )2k cos2k 2k (k 012)当k 充分大时就有|y (2k )|M 当x 时函数yx cos x 不是无穷大这是因为M 0找不到这样一个时刻N 使对一切大于N 的x 都有|y (x )|M 例如0)22cos()22()22(=++=+ππππππk k k y (k 012)对任何大的N 当k 充分大时总有N k x >+=22ππ但|y (x )|0M7证明函数xx y 1sin 1=在区间(01]上无界但这函数不是当x 0+时的无穷大证明函数xx y 1sin 1=在区间(01]上无界这是因为M 0在(01]中总可以找到点x k 使y (x k )M 例如当221ππ+=k x k (k 012)时有当k 充分大时y (x k )M当x 0+时函数xx y 1sin 1=不是无穷大这是因为M 0对所有的0总可以找到这样的点x k 使0x k 但y (x k )M 例如可取πk x k 21=(k 012)当k 充分大时x k 但y (x k )2k sin2k 0M 习题151计算下列极限(1)35lim 22-+→x x x 解9325235lim222-=-+=-+→x x x (2)13lim 223+-→x x x 解01)3(3)3(13lim 22223=+-=+-→x x x (3)112lim 221-+-→x x x x 解02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x (4)x x x x x x 2324lim 2230++-→ 解2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x (5)hx h x h 220)(lim -+→解x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→(6))112(lim 2x x x +-∞→解21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x (7)121lim 22---∞→x x x x 解2111211lim 121lim 2222=---=---∞→∞→xx x x x xx x (8)13lim 242--+∞→x x x x x 解013lim 242=--+∞→x x x x x (分子次数低于分母次数极限为零) 或012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x (9)4586lim 224+-+-→x x x x x 解32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x (10))12)(11(lim 2x x x -+∞→解221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x (11))21 41211(lim n n +⋅⋅⋅+++∞→ 解2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n (12)2)1( 321limn n n -+⋅⋅⋅+++∞→解211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n (13)35)3)(2)(1(limn n n n n +++∞→解515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同极限为 最高次项系数之比)或51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n (14))1311(lim 31x x x ---→解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 2计算下列极限(1)2232)2(2lim -+→x x x x 解因为01602)2(lim 2322==+-→x x x x 所以∞=-+→2232)2(2lim x x x x (2)12lim 2+∞→x x x解∞=+∞→12lim 2x x x (因为分子次数高于分母次数) (3))12(lim 3+-∞→x x x解∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数)3计算下列极限 (1)xx x 1sin lim 20→解01sin lim 20=→x x x (当x 0时x 2是无穷小而x 1sin 是有界变量) (2)xx x arctan lim ∞→解0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x 时x 1是无穷小 而arctan x 是有界变量) 4证明本节定理3中的(2) 习题151计算下列极限(1)35lim 22-+→x x x解9325235lim222-=-+=-+→x x x (2)13lim 223+-→x x x解01)3(3)3(13lim 22223=+-=+-→x x x (3)112lim 221-+-→x x x x 解02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x (4)xx x x x x 2324lim 2230++-→ 解2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x (5)hx h x h 220)(lim -+→解x h x h x h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→ (6))112(lim 2x x x +-∞→解21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x (7)121lim 22---∞→x x x x 解2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x (8)13lim 242--+∞→x x x x x 解013lim 242=--+∞→x x x x x (分子次数低于分母次数极限为零) 或012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x (9)4586lim 224+-+-→x x x x x解32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x (10))12)(11(lim 2xx x -+∞→解221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x (11))21 41211(lim n n +⋅⋅⋅+++∞→解2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n (12)2)1( 321limnn n -+⋅⋅⋅+++∞→ 解211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n (13)35)3)(2)(1(limn n n n n +++∞→解515)3)(2)(1(lim 3=+++∞→nn n n n (分子与分母的次数相同极限为 最高次项系数之比)或51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n (14))1311(lim 31x x x ---→解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 2计算下列极限(1)2232)2(2lim -+→x x x x 解因为01602)2(lim 2322==+-→x x x x 所以∞=-+→2232)2(2limx x x x (2)12lim 2+∞→x x x 解∞=+∞→12lim 2x x x (因为分子次数高于分母次数) (3))12(lim 3+-∞→x x x解∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数)3计算下列极限 (1)xx x 1sin lim 20→解01sin lim 20=→x x x (当x 0时x 2是无穷小而x 1sin 是有界变量) (2)xx x arctan lim ∞→解0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x 时x 1是无穷小 而arctan x 是有界变量) 4证明本节定理3中的(2) 习题171当x 0时2xx 2与x 2x 3相比哪一个是高阶无穷小?解因为02lim 2lim 202320=--=--→→xx x x x x x x x 所以当x 0时x 2x 3是高阶无穷小即x 2x 3o (2xx 2)2当x 1时无穷小1x 和(1)1x 3(2))1(212x -是否同阶?是否等价?解(1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x 所以当x 1时1x 和1x 3是同阶的无穷小但不是等价无穷小(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x 所以当x 1时1x 和)1(212x -是同阶的无穷小而且是等价无穷小3证明当x 0时有 (1)arctan x ~x(2)2~1sec 2x x - 证明(1)因为1tan limarctan lim 00==→→y yxx y x (提示令y arctan x 则当x 0时y 0) 所以当x 0时arctan x ~x(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x 所以当x 0时2~1sec 2x x -4利用等价无穷小的性质求下列极限 (1)xx x 23tan lim 0→(2)mn x x x )(sin )sin(lim 0→(nm 为正整数)(3)x x x x 30sin sin tan lim -→ (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x 解(1)2323lim 23tan lim 00==→→x x x x x x(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00 (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x x x x x x x x x x x (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x 0)23232223231~11)1(11x x x x x ++++=-+(x 0) x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x 0) 所以33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x 5证明无穷小的等价关系具有下列性质 (1)~(自反性)(2)若~则~(对称性) (3)若~~则~(传递性) 证明(1)1lim =αα所以~(2)若~则1lim =βα从而1lim=αβ因此~ (3)若~~1lim limlim =⋅=βαγβγα因此~ 习题181研究下列函数的连续性并画出函数的图形(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f解已知多项式函数是连续函数所以函数f (x )在[01)和(12]内是连续的 在x 1处因为f (1)1并且所以1)(lim 1=→x f x 从而函数f (x )在x 1处是连续的综上所述,函数f (x )在[02]上是连续函数(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f解只需考察函数在x 1和x 1处的连续性在x 1处因为f (1)1并且所以函数在x 1处间断但右连续 在x 1处因为f (1)1并且1lim )(lim 11==--→→x x f x x f (1)11lim )(lim 11==++→→x x x f f (1)所以函数在x 1处连续综合上述讨论函数在(1)和(1)内连续在x 1处间断但右连续2下列函数在指出的点处间断说明这些间断点属于哪一类如果是可去间断点则补充或改变函数的定义使它连续(1)23122+--=x x x y x 1x 2 解)1)(2()1)(1(23122---+=+--=x x x x x x x y 因为函数在x 2和x 1处无定义所以x 2和x 1是函数的间断点因为∞=+--=→→231lim lim 2222x x x y x x 所以x 2是函数的第二类间断点因为2)2()1(limlim 11-=-+=→→x x y x x 所以x 1是函数的第一类间断点并且是可去间断点在x 1处令y 2则函数在x 1处成为连续的 (2)xx y tan =xk 2ππ+=k x (k 012)解函数在点xk (k Z)和2ππ+=k x (k Z)处无定义因而这些点都是函数的间断点因∞=→x x k x tan lim π(k 0)故xk (k 0)是第二类间断点 因为1tan lim0=→x x x 0tan lim2=+→xx k x ππ(k Z)所以x 0和2 ππ+=k x (k Z)是第一类间断点且是可去间断点令y |x 01则函数在x 0处成为连续的令2 ππ+=k x 时y 0则函数在2ππ+=k x 处成为连续的(3)xy 1cos 2=x 0解因为函数x y 1cos 2=在x 0处无定义所以x 0是函数x y 1cos 2=的间断点又因为xx 1cos lim 20→不存在所以x 0是函数的第二类间断点(4)⎩⎨⎧>-≤-=1 31 1x x x x y x 1解因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x 所以x 1是函数的第一类不可去间断点3讨论函数x x x x f nnn 2211lim )(+-=∞→的连续性若有间断点判别其类型 解⎪⎩⎪⎨⎧<=>-=+-=∞→1||1|| 01|| 11lim )(22x x x x x x xx x f nnn 在分段点x 1处因为1)(lim )(lim 11=-=---→-→x x f x x 1lim )(lim 11-==++-→-→x x f x x 所以x 1为函数的第一类不可去间断点在分段点x 1处因为1lim )(lim 11==--→→x x f x x 1)(lim )(lim 11-=-=++→→x x f x x 所以x 1为函数的第一类不可去间断点4证明若函数f (x )在点x 0连续且f (x 0)0则存在x 0的某一邻域U (x 0)当xU (x 0)时f (x )0 证明不妨设f (x 0)>0因为f (x )在x 0连续所以0)()(lim 00>=→x f x f x x 由极限的局部保号性定理存在x 0的某一去心邻域)(0x U ο使当x )(0x U ο时f (x )>0从而当xU (x 0)时f (x )>0这就是说则存在x 0的某一邻域U (x 0)当xU (x 0)时f (x )0 5试分别举出具有以下性质的函数f (x )的例子(1)x 01221±n n1±是f (x )的所有间断点且它们都是无穷间断点解函数x x x f ππcsc )csc()(+=在点x 01221±n n1±处是间断的且这些点是函数的无穷间断点(2)f (x )在R 上处处不连续但|f (x )|在R 上处处连续解函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续但|f (x )|1在R 上处处连续(3)f (x )在R 上处处有定义但仅在一点连续解函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义它只在x 0处连续习题191求函数633)(223-+--+=x x x x x x f 的连续区间并求极限)(lim 0x f x →)(lim 3x f x -→及)(lim 2x f x → 解)2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f 函数在()内除点x 2和x 3外是连续的所以函数f (x )的连续区间为(3)、(32)、(2) 在函数的连续点x 0处21)0()(lim 0==→f x f x 在函数的间断点x 2和x 3处2设函数f (x )与g (x )在点x 0连续证明函数 (x )max{f (x )g (x )}(x )min{f (x )g (x )} 在点x 0也连续证明已知)()(lim 00x f x f x x =→)()(lim 00x g x g x x =→可以验证因此] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ因为] |)()(|)()([210000x g x f x g x f -++=(x 0) 所以(x )在点x 0也连续同理可证明(x )在点x 0也连续 3求下列极限 (1)52lim 20+-→x x x(2)34)2(sin lim x x π→(3))2cos 2ln(lim 6x x π→(4)xx x 11lim 0-+→(5)145lim 1---→x x x x(6)a x a x a x --→sin sin lim(7))(lim 22x x x x x --++∞→解(1)因为函数52)(2+-=x x x f 是初等函数f (x )在点x 0有定义所以(2)因为函数f (x )(sin2x )3是初等函数f (x )在点4π=x 有定义所以(3)因为函数f (x )ln(2cos2x )是初等函数f (x )在点6π=x 有定义所以(4))11(lim)11()11)(11(lim 11lim 000++=++++-+=-+→→→x x x x x x x x x x x x (5))45)(1()45)(45(lim 145lim 11x x x x x x x x x x x x +--+---=---→→(6)ax ax a x a x a x a x a x --+=--→→2sin 2cos 2limsin sin lim (7))())((lim )(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→4求下列极限 (1)xx e 1lim∞→(2)x x x sin ln lim 0→(3)2)11(lim xx x +∞→ (4)x x x 2cot 20)tan 31(lim +→(5)21)63(lim -∞→++x x xx (6)x x x x x x -++-+→20sin 1sin 1tan 1lim解(1)1lim 01lim 1===∞→∞→e ee xxx x(2)01ln )sin lim ln(sin ln lim 00===→→x x x x x x(3)[]e e x x x x xx ==+=+∞→∞→21212)11(lim )11(lim(4)[]33tan 312cot 222)tan31(lim )tan 31(lim e x x x x x x =+=+→→(5)21633621)631()63(-+-⋅-+-+-+=++x x x x xx x 因为 所以2321)63(lim --∞→=++e xx x x(6))sin 1tan 1)(1sin 1()1sin 1)(sin 1tan 1(limsin 1sin 1tan 1lim 22020x x x x x x x x x x x x x x +++-++++-+=-++-+→→ 5设函数⎩⎨⎧≥+<=0 0)(x x a x e x f x 应当如何选择数a 使得f (x )成为在()内的连续函数?解要使函数f (x )在()内连续只须f (x )在x 0处连续即只须 因为1lim )(lim 0==-→-→x x x e x f a x a x f x x =+=+→+→)(lim )(lim 00所以只须取a 1习题1101证明方程x 53x 1至少有一个根介于1和2之间 证明设f (x )x 53x 1则f (x )是闭区间[12]上的连续函数因为f (1)3f (2)25f (1)f (2)0所以由零点定理在(12)内至少有一点 (12)使f ()0即x 是方程x 53x 1的介于1和2之间的根 因此方程x 53x 1至少有一个根介于1和2之间2证明方程xa sin xb 其中a 0b 0至少有一个正根并且它不超过ab 证明设f (x )a sin xbx 则f (x )是[0ab ]上的连续函数f (0)bf (ab )a sin(ab )b (ab )a [sin(ab )1]0若f (ab )0则说明xab 就是方程xa sin xb 的一个不超过ab 的根若f (ab )0则f (0)f (ab )0由零点定理至少存在一点(0ab )使f ()0这说明x 也是方程x =a sin xb 的一个不超过ab 的根总之方程xa sin xb 至少有一个正根并且它不超过ab3设函数f (x )对于闭区间[ab ]上的任意两点x 、y 恒有|f (x )f (y )|L |xy |其中L 为正常数且f (a )f (b )0证明至少有一点(ab )使得f ()0 证明设x 0为(ab )内任意一点因为 所以0|)()(|lim 00=-→x f x f x x即)()(lim 00x f x f x x =→因此f (x )在(ab )内连续同理可证f (x )在点a 处左连续在点b 处右连续所以f (x )在[ab ]上连续因为f (x )在[ab ]上连续且f (a )f (b )0由零点定理至少有一点(ab )使得f ()0 4若f (x )在[ab ]上连续ax 1x 2x n b 则在[x 1x n ]上至少有一点使证明显然f (x )在[x 1x n ]上也连续设M 和m 分别是f (x )在[x 1x n ]上的最大值和最小值因为x i [x 1x n ](1in )所以有mf (x i )M 从而有 由介值定理推论在[x 1x n ]上至少有一点使5证明若f (x )在()内连续且)(lim x f x ∞→存在则f (x )必在()内有界证明令A x f x =∞→)(lim 则对于给定的0存在X 0只要|x |X 就有|f (x )A |即Af (x )A又由于f (x )在闭区间[XX ]上连续根据有界性定理存在M 0使|f (x )|Mx [XX ] 取N max{M |A ||A |}则|f (x )|Nx ()即f (x )在()内有界 6在什么条件下(ab )内的连续函数f (x )为一致连续? 总习题一1在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内 (1)数列{x n }有界是数列{x n }收敛的________条件数列{x n }收敛是数列{x n }有界的________的条件(2)f (x )在x 0的某一去心邻域内有界是)(lim 0x f x x →存在的________条件)(lim 0x f x x →存在是f (x )在x 0的某一去心邻域内有界的________条件(3)f (x )在x 0的某一去心邻域内无界是∞=→)(lim 0x f x x 的________条件∞=→)(lim 0x f x x 是f (x )在x 0的某一去心邻域内无界的________条件(4)f (x )当xx 0时的右极限f (x 0)及左极限f (x 0)都存在且相等是)(lim 0x f x x →存在的________条件 解(1)必要充分 (2)必要充分 (3)必要充分 (4)充分必要2选择以下题中给出的四个结论中一个正确的结论 设f (x )2x 3x 2则当x 0时有()(A )f (x )与x 是等价无穷小(B )f (x )与x 同阶但非等价无穷小 (C )f (x )是比x 高阶的无穷小(D )f (x )是比x 低阶的无穷小解因为x x xx x f x x x x x x x x 13lim 12lim 232lim )(lim 0000-+-=-+=→→→→3ln 2ln )1ln(lim 3ln )1ln(lim 2ln 00+=+++=→→u u t t u t (令2x 1t 3x 1u )所以f (x )与x 同阶但非等价无穷小故应选B 3设f (x )的定义域是[01]求下列函数的定义域 (1)f (e x ) (2)f (ln x ) (3)f (arctan x ) (4)f (cos x )解(1)由0e x 1得x 0即函数f (e x )的定义域为(0] (2)由0ln x 1得1xe 即函数f (ln x )的定义域为[1e ](3)由0arctan x 1得0x tan1即函数f (arctan x )的定义域为[0tan1] (4)由0cos x 1得2222ππππ+≤≤-n x n (n 012)即函数f (cos x )的定义域为[2,22ππππ+-n n ](n 012)4设求f [f (x )]g [g (x )]f [g (x )]g [f (x )]解因为f (x )0所以f [f (x )]f (x )⎩⎨⎧>≤=0 00x x x因为g (x )0所以g [g (x )]0因为g (x )0所以f [g (x )]0因为f (x )0所以g [f (x )]f 2(x )⎩⎨⎧>-≤=0 002x x x5利用y sin x 的图形作出下列函数的图形(1)y |sin x | (2)y sin|x | (3)2sin 2x y =6把半径为R 的一圆形铁片自中心处剪去中心角为的一扇形后围成一无底圆锥试将这圆锥的体积表为的函数解设围成的圆锥的底半径为r 高为h 依题意有R (2)2r παπ2)2(-=R r圆锥的体积为22234)2(24a R -⋅-=πααππ(02) 7根据函数极限的定义证明536lim 23=---→x x x x证明对于任意给定的0要使ε<----|536|2x x x 只需|x 3|取当0|x 3|时就有|x 3|即ε<----|536|2x x x 所以536lim 23=---→x x x x8求下列极限(1)221)1(1lim -+-→x x x x (2))1(lim 2x x x x -++∞→(3)1)1232(lim +∞→++x x x x(4)30sin tan lim x x x x -→ (5)x x x x x c b a 10)3(lim ++→(a 0b 0c 0) (6)x x x tan 2)(sin lim π→解(1)因为01)1(lim 221=+--→x x x x 所以∞=-+-→221)1(1lim x x x x (2))1()1)(1(lim )1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→(3)2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x (4)xx x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→ (提示用等价无穷小换)(5)x c b a c b a x x x x x x x x x x x x x x x c b a c b a 3333010)331(lim )3(lim -++⋅-++→→-+++=++因为所以3ln 103)3(lim abc e c b a abc x x x x x ==++→提示求极限过程中作了变换a x 1tb x 1uc x1v(6)xx x x xx x x tan )1(sin 1sin 12tan 2)]1(sin 1[lim )(sin lim -⋅-→→-+=ππ因为 所以1)(sin lim 0tan 2==→e x x x π9设⎪⎩⎪⎨⎧≤+>=01sin )(2x x a x xx x f 要使f (x )在()内连续应怎样选择数a 解要使函数连续必须使函数在x 0处连续 因为f (0)a a x a x f x x =+=--→→)(lim )(lim 20001sin lim )(lim 00==++→→xx x f x x所以当a 0时f (x )在x 0处连续因此选取a 0时f (x )在()内连续10设⎪⎩⎪⎨⎧≤<-+>=-01 )1ln(0 )(11x x x e x f x 求f (x )的间断点并说明间断点所属类形 解因为函数f (x )在x 1处无定义所以x 1是函数的一个间断点因为0lim )(lim 1111==-→→--x x x e x f (提示-∞=--→11lim 1x x )∞==-→→++1111lim )(lim x x x e x f (提示+∞=-+→11lim 1x x )所以x 1是函数的第二类间断点又因为0)1ln(lim )(lim 0=+=--→→x x f x x ee xf x x x 1lim )(lim 11==-→→++所以x 0也是函数的间断点且为第一类间断点11证明()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n 证明因为()11 211122222+≤++⋅⋅⋅++++≤+n n n n n n n n n 且所以()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n 12证明方程sin xx 10在开区间)2,2(ππ-内至少有一个根证明设f (x )sin xx 1则函数f (x )在]2,2 [ππ-上连续因为2121)2 (πππ-=+--=-f 22121)2 (πππ+=++=f 0)2 ()2 (<⋅-ππf f所以由零点定理在区间)2,2 (ππ-内至少存在一点使f ()0这说明方程sin xx 10在开区间)2,2 (ππ-内至少有一个根13如果存在直线Lykxb 使得当x (或xx )时曲线yf (x )上的动点M (xy )到直线L 的距离d (ML )0则称L 为曲线yf (x )的渐近线当直线L 的斜率k 0时称L 为斜渐近线 (1)证明直线Lykxb 为曲线yf (x )的渐近线的充分必要条件是 (2)求曲线xe x y 1)12(-=的斜渐近线证明(1)仅就x 的情况进行证明按渐近线的定义ykxb 是曲线yf (x )的渐近线的充要条件是 必要性设ykxb 是曲线yf (x )的渐近线则0)]()([lim =+-∞→b kx x f x于是有0])([lim =--∞→x b k x x f x x 0)(lim =-∞→k x x f x xx f k x )(lim∞→= 同时有0])([lim =--∞→b kx x f x ])([lim kx x f b x -=∞→充分性如果xx f k x )(lim∞→=])([lim kx x f b x -=∞→则 因此ykxb 是曲线yf (x )的渐近线(2)因为212lim lim 1=⋅-==∞→∞→x x x e x x x y k。

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射. 5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x x y --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞). (6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2,⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4]. (8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3). (9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么? (1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ; (3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3||03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ.9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数x x y -=1在区间(-∞, 1)内是单调增加的.(2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明: (1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数. 如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2); (2)y =3x 2-x 3;(3)2211x x y +-=; (4)y =x (x -1)(x +1); (5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2);解 是周期函数, 周期为l =2π. (2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin πx ;解 是周期函数, 周期为l =2. (4)y =x cos x ; 解 不是周期函数. (5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。

【7A文】高等数学第六版(同济大学)上册课后习题答案解析.doc

【7A文】高等数学第六版(同济大学)上册课后习题答案解析.doc

高等数学第六版上册课后习题答案及解析第一章习题1-11.设A =(-∞,-5)⋃(5,+∞),B =[-10,3),写出A ⋃B ,A ⋂B ,A \B 及A \(A \B )的表达式. 解A ⋃B =(-∞,3)⋃(5,+∞),A ⋂B =[-10,-5),A \B =(-∞,-10)⋃(5,+∞),A \(A \B )=[-10,-5).2.设A 、B 是任意两个集合,证明对偶律:(A ⋂B )C =A C ⋃B C .证明因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔x ∉A 或x ∉B ⇔x ∈A C 或x ∈B C ⇔x ∈A C ⋃B C ,所以(A ⋂B )C =A C ⋃B C .3.设映射f :X →Y ,A ⊂X ,B ⊂X .证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B ,使f (x )=y⇔(因为x ∈A 或x ∈B )y ∈f (A )或y ∈f (B )⇔y ∈f (A )⋃f (B ),所以f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B ,使f (x )=y ⇔(因为x ∈A 且x ∈B )y ∈f (A )且y ∈f (B )⇒y ∈f (A )⋂f (B ), 所以f (A ⋂B )⊂f (A )⋂f (B ).4.设映射f :X →Y ,若存在一个映射g :Y →X ,使X I f g = ,Y I g f = ,其中I X 、I Y 分别是X 、Y 上的恒等映射,即对于每一个x ∈X ,有I X x =x ;对于每一个y ∈Y ,有I Y y =y .证明:f 是双射,且g 是f 的逆映射:g =f -1.证明因为对于任意的y ∈Y ,有x =g (y )∈X ,且f (x )=f [g (y )]=I y y =y ,即Y 中任意元素都是X 中某元素的像,所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2,必有f (x 1)≠f (x 2),否则若f (x 1)=f (x 2)⇒g [f (x 1)]=g [f (x 2)]⇒x 1=x 2.因此f 既是单射,又是满射,即f 是双射.对于映射g :Y →X ,因为对每个y ∈Y ,有g (y )=x ∈X ,且满足f (x )=f [g (y )]=I y y =y ,按逆映射的定义,g 是f 的逆映射.5.设映射f :X →Y ,A ⊂X .证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时,有f -1(f (A ))=A .证明(1)因为x ∈A ⇒f (x )=y ∈f (A )⇒f -1(y )=x ∈f -1(f (A )),所以f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面,对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ),使f -1(y )=x ⇒f (x )=y .因为y ∈f (A )且f 是单射,所以x ∈A .这就证明了f -1(f (A ))⊂A .因此f -1(f (A ))=A .6.求下列函数的自然定义域: (1)23+=x y ;解由3x +2≥0得32->x .函数的定义域为) ,32[∞+-. (2)211xy -=; 解由1-x 2≠0得x ≠±1.函数的定义域为(-∞,-1)⋃(-1,1)⋃(1,+∞). (3)211x xy --=; 解由x ≠0且1-x 2≥0得函数的定义域D =[-1,0)⋃(0,1]. (4)241xy -=; 解由4-x 2>0得|x |<2.函数的定义域为(-2,2). (5)x y sin =;解由x ≥0得函数的定义D =[0,+∞).(6)y =tan(x +1); 解由21π≠+x (k =0,±1,±2,⋅⋅⋅)得函数的定义域为 12-+≠ππk x (k =0,±1,±2,⋅⋅⋅).(7)y =arcsin(x -3);解由|x -3|≤1得函数的定义域D =[2,4]. (8)xx y 1arctan 3+-=; 解由3-x ≥0且x ≠0得函数的定义域D =(-∞,0)⋃(0,3).(9)y =ln(x +1);解由x +1>0得函数的定义域D =(-1,+∞). (10)x e y 1=.解由x ≠0得函数的定义域D =(-∞,0)⋃(0,+∞).7.下列各题中,函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2,g (x )=2lg x ;(2)f (x )=x ,g (x )=2x ; (3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1,g (x )=sec 2x -tan 2x .解(1)不同.因为定义域不同.(2)不同.因为对应法则不同,x <0时,g (x )=-x .(3)相同.因为定义域、对应法则均相相同.(4)不同.因为定义域不同.8.设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x ,求)6(πϕ,)4(πϕ,)4(πϕ-,ϕ(-2),并作出函数y =ϕ(x )的图形. 解21|6sin |)6(==ππϕ,22|4sin |)4(==ππϕ,22|)4sin(|)4(=-=-ππϕ,0)2(=-ϕ. 9.试证下列函数在指定区间内的单调性: (1)xx y -=1,(-∞,1); (2)y =x +ln x ,(0,+∞).证明(1)对于任意的x 1,x 2∈(-∞,1),有1-x 1>0,1-x 2>0.因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y ,所以函数xx y -=1在区间(-∞,1)内是单调增加的. (2)对于任意的x 1,x 2∈(0,+∞),当x 1<x 2时,有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0,+∞)内是单调增加的.10.设f (x )为定义在(-l ,l )内的奇函数,若f (x )在(0,l )内单调增加,证明f (x )在(-l ,0)内也单调增加.证明对于∀x 1,x 2∈(-l ,0)且x 1<x 2,有-x 1,-x 2∈(0,l )且-x 1>-x 2.因为f (x )在(0,l )内单调增加且为奇函数,所以f (-x 2)<f (-x 1),-f (x 2)<-f (x 1),f (x 2)>f (x 1),这就证明了对于∀x 1,x 2∈(-l ,0),有f (x 1)<f (x 2),所以f (x )在(-l ,0)内也单调增加. 11.设下面所考虑的函数都是定义在对称区间(-l ,l )上的,证明:(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.证明(1)设F (x )=f (x )+g (x ).如果f (x )和g (x )都是偶函数,则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数,即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数,则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数,即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ).如果f (x )和g (x )都是偶函数,则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数,即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数,则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数,即两个奇函数的积是偶函数.如果f (x )是偶函数,而g (x )是奇函数,则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数,即偶函数与奇函数的积是奇函数.12.下列函数中哪些是偶函数,哪些是奇函数,哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3; (3)2211xxy +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1; (6)2x x a a y -+=. 解(1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ),所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-,所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ),所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----,所以f (x )是偶函数. 13.下列各函数中哪些是周期函数?对于周期函数,指出其周期:(1)y =cos(x -2);解是周期函数,周期为l =2π.(2)y =cos4x ;解是周期函数,周期为2π=l . (3)y =1+sin πx ;解是周期函数,周期为l =2.(4)y =x cos x ;解不是周期函数.(5)y =sin 2x .解是周期函数,周期为l =π.14.求下列函数的反函数: (1)31+=x y ; 解由31+=x y 得x =y 3-1,所以31+=x y 的反函数为y =x 3-1. (2)xx y +-=11; 解由x x y +-=11得y y x +-=11,所以x x y +-=11的反函数为xx y +-=11. (3)dcx b ax y ++=(ad -bc ≠0); 解由d cx b ax y ++=得a cy b dy x -+-=,所以d cx b ax y ++=的反函数为acx b dx y -+-=. (4)y =2sin3x ;解由y =2sin3x 得2arcsin 31y x =,所以y =2sin3x 的反函数为2arcsin 31x y =. (5)y =1+ln(x +2);解由y =1+ln(x +2)得x =e y -1-2,所以y =1+ln(x +2)的反函数为y =e x -1-2. (6)122+=x x y . 解由122+=x x y 得y y x -=1log 2,所以122+=x x y 的反函数为xx y -=1log 2. 15.设函数f (x )在数集X 上有定义,试证:函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明先证必要性.设函数f (x )在X 上有界,则存在正数M ,使|f (x )|≤M ,即-M ≤f (x )≤M .这就证明了f (x )在X 上有下界-M 和上界M .再证充分性.设函数f (x )在X 上有下界K 1和上界K 2,即K 1≤f (x )≤K 2.取M =max{|K 1|,|K 2|},则-M ≤K 1≤f (x )≤K 2≤M ,即|f (x )|≤M .这就证明了f (x )在X 上有界.16.在下列各题中,求由所给函数复合而成的函数,并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1)y =u 2,u =sin x ,61π=x ,32π=x ;解y =sin 2x ,41)21(6sin 221===πy ,43)23(3sin 222===πy . (2)y =sin u ,u =2x ,81π=x ,42π=x ; 解y =sin2x ,224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy . (3)u y =,u =1+x 2,x 1=1,x 2=2; 解21x y +=,21121=+=y ,52122=+=y .(4)y =e u ,u =x 2,x 1=0,x 2=1;解2x e y =,1201==e y ,e e y ==212.(5)y =u 2,u =e x ,x 1=1,x 2=-1.解y =e 2x ,y 1=e 2⋅1=e 2,y 2=e 2⋅(-1)=e -2.17.设f (x )的定义域D =[0,1],求下列各函数的定义域:(1)f (x 2);解由0≤x 2≤1得|x |≤1,所以函数f (x 2)的定义域为[-1,1].(2)f (sin x );解由0≤sin x ≤1得2n π≤x ≤(2n +1)π(n =0,±1,±2⋅⋅⋅),所以函数f (sin x )的定义域为[2n π,(2n +1)π](n =0,±1,±2⋅⋅⋅).(3)f (x +a )(a >0);解由0≤x +a ≤1得-a ≤x ≤1-a ,所以函数f (x +a )的定义域为[-a ,1-a ].(4)f (x +a )+f (x -a )(a >0).解由0≤x +a ≤1且0≤x -a ≤1得:当210≤<a 时,a ≤x ≤1-a ;当21>a 时,无解.因此当210≤<a 时函数的定义域为[a ,1-a ],当21>a 时函数无意义. 18.设⎪⎩⎪⎨⎧>-=<=1||11||01|| 1)(x x x x f ,g (x )=e x ,求f [g (x )]和g [f (x )],并作出这两个函数的图形. 解⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)]([x x x e e e x g f ,即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f .⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| )]([101)(x e x x e e x f g x f ,即⎪⎩⎪⎨⎧>=<=-1|| 1||11|| )]([1x e x x e x f g . 19.已知水渠的横断面为等腰梯形,斜角ϕ=40︒(图1-37).当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.图1-37 解 40sin h DC AB ==,又从0)]40cot 2([21S h BC BC h =⋅++ 得h h S BC ⋅-= 40cot 0,所以 h h S L 40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS 确定,定义域为 40cot 00S h <<.20.收敛音机每台售价为90元,成本为60元.厂方为鼓励销售商大量采购,决定凡是订购量超过100台以上的,每多订购1台,售价就降低1分,但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数;(2)将厂方所获的利润P 表示成订购量x 的函数;(3)某一商行订购了1000台,厂方可获利润多少?解(1)当0≤x ≤100时,p =90.令0.01(x 0-100)=90-75,得x 0=1600.因此当x ≥1600时,p =75.当100<x <1600时,p =90-(x -100)⨯0.01=91-0.01x .综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 751600100 01.0911000 90x x x x p .(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 15160010001.0311000 30)60(2x x x x x x x x p P . (3)P =31⨯1000-0.01⨯10002=21000(元).习题1-21.观察一般项x n 如下的数列{x n }的变化趋势,写出它们的极限: (1)nn x 21=; 解当n →∞时,nn x 21=→0,021lim =∞→n n . (2)nx n n 1)1(-=; 解当n →∞时,n x n n 1)1(-=→0,01)1(lim =-∞→nn n . (3)212n x n +=; 解当n →∞时,212n x n +=→2,2)12(lim 2=+∞→n n . (4)11+-=n n x n ; 解当n →∞时,12111+-=+-=n n n x n →0,111lim =+-∞→n n n . (5)x n =n (-1)n .解当n →∞时,x n =n (-1)n 没有极限.2.设数列{x n }的一般项nn x n 2cos π=.问n n x ∞→lim =?求出N ,使当n >N 时,x n 与其极限之差的绝对值小于正数ε,当ε=0.001时,求出数N .解0lim =∞→n n x . n n n x n 1|2cos ||0|≤=-π.∀ε>0,要使|x n -0|<ε,只要ε<n 1,也就是ε1>n .取]1[ε=N , 则∀n >N ,有|x n -0|<ε.当ε=0.001时,]1[ε=N =1000. 3.根据数列极限的定义证明:(1)01lim 2=∞→n n ; 分析要使ε<=-221|01|n n ,只须ε12>n ,即ε1>n . 证明因为∀ε>0,∃]1[ε=N ,当n >N 时,有ε<-|01|2n ,所以01lim 2=∞→n n . (2)231213lim =++∞→n n n ; 分析要使ε<<+=-++n n n n 41)12(21|231213|,只须ε<n41,即ε41>n . 证明因为∀ε>0,∃]41[ε=N ,当n >N 时,有ε<-++|231213|n n ,所以231213lim =++∞→n n n . (3)1lim 22=+∞→na n n ; 分析要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|,只须ε2a n >. 证明因为∀ε>0,∃][2εa N =,当∀n >N 时,有ε<-+|1|22n a n ,所以1lim 22=+∞→na n n . (4)19 999.0lim =⋅⋅⋅∞→个n n . 分析要使|0.99⋅⋅⋅9-1|ε<=-1101n ,只须1101-n <ε,即ε1lg 1+>n . 证明因为∀ε>0,∃]1lg 1[ε+=N ,当∀n >N 时,有|0.99⋅⋅⋅9-1|<ε,所以19 999.0lim =⋅⋅⋅∞→个n n . 4.a u n n =∞→lim ,证明||||lim a u n n =∞→.并举例说明:如果数列{|x n |}有极限,但数列{x n }未必有极限.证明因为a u n n =∞→lim ,所以∀ε>0,∃N ∈N ,当n >N 时,有ε<-||a u n ,从而 ||u n |-|a ||≤|u n -a |<ε.这就证明了||||lim a u n n =∞→. 数列{|x n |}有极限,但数列{x n }未必有极限.例如1|)1(|lim =-∞→n n ,但n n )1(lim -∞→不存在. 5.设数列{x n }有界,又0lim =∞→n n y ,证明:0lim =∞→n n n y x . 证明因为数列{x n }有界,所以存在M ,使∀n ∈Z ,有|x n |≤M .又0lim =∞→n n y ,所以∀ε>0,∃N ∈N ,当n >N 时,有My n ε<||.从而当n >N 时,有 εε=⋅<≤=-MM y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6.对于数列{x n },若x 2k -1→a (k →∞),x 2k →a (k →∞), 证明:x n →a (n →∞).证明因为x 2k -1→a (k →∞),x 2k →a (k →∞),所以∀ε>0, ∃K 1,当2k -1>2K 1-1时,有|x 2k -1-a |<ε; ∃K 2,当2k >2K 2时,有|x 2k -a |<ε.取N =max{2K 1-1,2K 2},只要n >N ,就有|x n -a |<ε. 因此x n →a (n →∞). 习题1-31.根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;分析因为|(3x -1)-8|=|3x -9|=3|x -3|,所以要使|(3x -1)-8|<ε,只须ε31|3|<-x .证明因为∀ε>0,∃εδ31=,当0<|x -3|<δ时,有|(3x -1)-8|<ε, 所以8)13(lim 3=-→x x .(2)12)25(lim 2=+→x x ;分析因为|(5x +2)-12|=|5x -10|=5|x -2|,所以要使|(5x +2)-12|<ε,只须ε51|2|<-x .证明因为∀ε>0,∃εδ51=,当0<|x -2|<δ时,有 |(5x +2)-12|<ε,所以12)25(lim 2=+→x x .(3)424lim 22-=+--→x x x ; 分析因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x , 所以要使ε<--+-)4(242x x ,只须ε<--|)2(|x .证明因为∀ε>0,∃εδ=,当0<|x -(-2)|<δ时,有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x . (4)21241lim 321=+--→x x x . 分析因为|)21(|2|221|212413--=--=-+-x x x x , 所以要使ε<-+-212413x x ,只须ε21|)21(|<--x . 证明因为∀ε>0,∃εδ21=,当δ<--<|)21(|0x 时,有ε<-+-212413x x , 所以21241lim 321=+--→x x x .2.根据函数极限的定义证明:(1)2121lim 33=+∞→x x x ; 分析因为333333||21212121x x x x x x =-+=-+, 所以要使ε<-+212133x x ,只须ε<3||21x ,即321||ε>x . 证明因为∀ε>0,∃321ε=X ,当|x |>X 时,有ε<-+212133x x , 所以2121lim 33=+∞→x x x . (2)0sin lim =+∞→xx x . 分析因为xx x x x 1|sin |0sin ≤=-. 所以要使ε<-0sin x x ,只须ε<x1,即21ε>x . 证明因为∀ε>0,∃21ε=X ,当x >X 时,有ε<-0sin xx ,所以0sin lim =+∞→xx x .3.当x →2时,y =x 2→4.问δ等于多少,使当|x -2|<δ时,|y -4|<0.001? 解由于当x →2时,|x -2|→0,故可设|x -2|<1,即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001, 只要0002.05001.0|2|=<-x .取δ=0.0002,则当0<|x -2|<δ时,就有|x 2-4|<0.001.4.当x →∞时,13122→+-=x x y ,问X 等于多少,使当|x |>X 时,|y -1|<0.01? 解要使01.034131222<+=-+-x x x ,只要397301.04||=->x ,故397=X .5.证明函数f (x )=|x |当x →0时极限为零. 证明因为|f (x )-0|=||x |-0|=|x |=|x -0|, 所以要使|f (x )-0|<ε,只须|x |<ε.因为对∀ε>0,∃δ=ε,使当0<|x -0|<δ,时有 |f (x )-0|=||x |-0|<ε,所以0||lim 0=→x x .6.求,)(x x x f =xx x ||)(=ϕ当x →0时的左﹑右极限,并说明它们在x →0时的极限是否存在. 证明因为11lim lim )(lim 000===---→→→x x x x x x f , 11lim lim )(lim 000===+++→→→x x x x x x f , )(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在. 因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim ||lim )(lim 000===+++→→→x x x x x x x x ϕ, )(lim )(lim 0x x x x ϕϕ+→→≠-, 所以极限)(lim 0x x ϕ→不存在.7.证明:若x →+∞及x →-∞时,函数f (x )的极限都存在且都等于A ,则A x f x =∞→)(lim .证明因为A x f x =-∞→)(lim ,A x f x =+∞→)(lim ,所以∀ε>0,∃X 1>0,使当x <-X 1时,有|f (x )-A |<ε; ∃X 2>0,使当x >X 2时,有|f (x )-A |<ε.取X =max{X 1,X 2},则当|x |>X 时,有|f (x )-A |<ε,即A x f x =∞→)(lim .8.根据极限的定义证明:函数f (x )当x →x 0时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明先证明必要性.设f (x )→A (x →x 0),则∀ε>0,∃δ>0,使当0<|x -x 0|<δ时,有 |f (x )-A |<ε.因此当x 0-δ<x <x 0和x 0<x <x 0+δ时都有 |f (x )-A |<ε.这说明f (x )当x →x 0时左右极限都存在并且都等于A .再证明充分性.设f (x 0-0)=f (x 0+0)=A ,则∀ε>0, ∃δ1>0,使当x 0-δ1<x <x 0时,有|f (x )-A <ε; ∃δ2>0,使当x 0<x <x 0+δ2时,有|f (x )-A |<ε.取δ=min{δ1,δ2},则当0<|x -x 0|<δ时,有x 0-δ1<x <x 0及x 0<x <x 0+δ2,从而有 |f (x )-A |<ε, 即f (x )→A (x →x 0).9.试给出x →∞时函数极限的局部有界性的定理,并加以证明.解x →∞时函数极限的局部有界性的定理:如果f (x )当x →∞时的极限存在,则存在X >0及M >0,使当|x |>X 时,|f (x )|<M .证明设f (x )→A (x →∞),则对于ε=1,∃X >0,当|x |>X 时,有|f (x )-A |<ε=1.所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0,使当|x |>X 时,|f (x )|<M ,其中M =1+|A |. 习题1-41.两个无穷小的商是否一定是无穷小?举例说明之. 解不一定.例如,当x →0时,α(x )=2x ,β(x )=3x 都是无穷小,但32)()(lim 0=→x x x βα,)()(x x βα不是无穷小.2.根据定义证明:(1)392+-=x x y 当x →3时为无穷小; (2)xx y 1sin =当x →0时为无穷小.证明(1)当x ≠3时|3|39||2-=+-=x x x y .因为∀ε>0,∃δ=ε,当0<|x -3|<δ时,有εδ=<-=+-=|3|39||2x x x y , 所以当x →3时392+-=x xy 为无穷小.(2)当x ≠0时|0||1sin |||||-≤=x xx y .因为∀ε>0,∃δ=ε,当0<|x -0|<δ时,有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3.根据定义证明:函数xx y 21+=为当x →0时的无穷大.问x 应满足什么条件,能使|y |>104?证明分析2||11221||-≥+=+=x x x x y ,要使|y |>M ,只须M x >-2||1,即21||+<M x .证明因为∀M >0,∃21+=M δ,使当0<|x -0|<δ时,有M x x >+21,所以当x →0时,函数xx y 21+=是无穷大.取M =104,则21014+=δ.当2101|0|04+<-<x 时,|y |>104. 4.求下列极限并说明理由: (1)xx x 12lim +∞→; (2)xx x --→11lim 20. 解(1)因为xx x 1212+=+,而当x →∞时x 1是无穷小,所以212lim =+∞→x x x .(2)因为x x x +=--1112(x ≠1),而当x →0时x 为无穷小,所以111lim 20=--→x x x .5.根据函数极限或无穷大定义,填写下表:解6.函数y=x cos x在(-∞,+∞)内是否有界?这个函数是否为当x→+∞时的无穷大?为什么?解函数y=x cos x在(-∞,+∞)内无界.这是因为∀M>0,在(-∞,+∞)内总能找到这样的x,使得|y(x)|>M.例如y(2kπ)=2kπcos2kπ=2kπ(k=0,1,2,⋅⋅⋅),当k充分大时,就有|y(2kπ)|>M.当x→+∞时,函数y=x cos x不是无穷大.这是因为∀M >0,找不到这样一个时刻N ,使对一切大于N 的x ,都有|y (x )|>M .例如0)22cos()22()22(=++=+ππππππk k k y (k =0,1,2,⋅⋅⋅),对任何大的N ,当k 充分大时,总有N k x >+=22ππ,但|y (x )|=0<M .7.证明:函数xx y 1sin 1=在区间(0,1]上无界,但这函数不是当x →0+时的无穷大.证明函数x x y 1sin 1=在区间(0,1]上无界.这是因为∀M >0,在(0,1]中总可以找到点x k ,使y (x k )>M .例如当221ππ+=k x k(k =0,1,2,⋅⋅⋅)时,有22)(ππ+=k x y k ,当k 充分大时,y (x k )>M .当x →0+时,函数xx y 1sin 1=不是无穷大.这是因为∀M >0,对所有的δ>0,总可以找到这样的点x k ,使0<x k <δ,但y (x k )<M .例如可取πk x k 21=(k =0,1,2,⋅⋅⋅),当k 充分大时,x k <δ,但y (x k )=2k πsin2k π=0<M . 习题1-5 1.计算下列极限:(1)35lim 22-+→x xx ; 解9325235lim 222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ; 解02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x .(4)xx x x x x 2324lim 2230++-→; 解2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→; 解x h x h x h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→.(6))112(lim 2x x x +-∞→; 解21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ; 解2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x .(8)13lim 242--+∞→x x x x x ; 解013lim 242=--+∞→x x x x x (分子次数低于分母次数,极限为零). 或012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x . (10))12)(11(lim 2xx x -+∞→; 解221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim nn +⋅⋅⋅+++∞→;解2211)21(1lim )2141211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limnn n -+⋅⋅⋅+++∞→; 解211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同,极限为 最高次项系数之比).或51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n nn n n n n . (14))1311(lim 31xx x ---→;解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112lim 21-=+++-=→x x x x . 2.计算下列极限:(1)2232)2(2lim -+→x x x x ; 解因为01602)2(lim 2322==+-→x x x x ,所以∞=-+→2232)2(2lim x x x x .(2)12lim 2+∞→x x x ; 解∞=+∞→12lim2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3.计算下列极限: (1)xx x 1sin lim 20→; 解01sin lim 20=→x x x (当x →0时,x 2是无穷小,而x 1sin 是有界变量). (2)xx x arctan lim ∞→.解0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x →∞时,x 1是无穷小, 而arctan x 是有界变量).4.证明本节定理3中的(2).习题1-51.计算下列极限: (1)35lim 22-+→x x x ; 解9325235lim 222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ; 解02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx x x x x 2324lim 2230++-→; 解2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→; 解x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2x x x +-∞→; 解21lim 1lim 2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ; 解2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x .(8)13lim 242--+∞→x x x x x ; 解013lim 242=--+∞→x x x x x (分子次数低于分母次数,极限为零). 或012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x . (10))12)(11(lim 2x x x -+∞→; 解221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim nn +⋅⋅⋅+++∞→; 解2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321lim nn n -+⋅⋅⋅+++∞→; 解211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim nn n n n +++∞→; 解515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同,极限为 最高次项系数之比). 或51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n nn n n n n . (14))1311(lim 31xx x ---→; 解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112lim 21-=+++-=→xx x x .2.计算下列极限: (1)2232)2(2lim -+→x x x x ; 解因为01602)2(lim 2322==+-→x x x x ,所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x x x ; 解∞=+∞→12lim 2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x . 解∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数). 3.计算下列极限: (1)xx x 1sin lim 20→; 解01sin lim 20=→xx x (当x →0时,x 2是无穷小,而x 1sin 是有界变量). (2)xx x arctan lim ∞→. 解0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x →∞时,x 1是无穷小, 而arctan x 是有界变量).4.证明本节定理3中的(2).习题1-71.当x →0时,2x -x 2与x 2-x 3相比,哪一个是高阶无穷小? 解因为02lim 2lim 202320=--=--→→xx x x x x x x x , 所以当x →0时,x 2-x 3是高阶无穷小,即x 2-x 3=o (2x -x 2).2.当x →1时,无穷小1-x 和(1)1-x 3,(2))1(212x -是否同阶?是否等价? 解(1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x , 所以当x →1时,1-x 和1-x 3是同阶的无穷小,但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时,1-x 和)1(212x -是同阶的无穷小,而且是等价无穷小. 3.证明:当x →0时,有:(1)arctan x ~x ; (2)2~1sec 2x x -. 证明(1)因为1tan lim arctan lim 00==→→y y xx y x (提示:令y =arctan x ,则当x →0时,y →0), 所以当x →0时,arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x x x x x x x x x x x x x , 所以当x →0时,2~1sec 2x x -. 4.利用等价无穷小的性质,求下列极限: (1)xx x 23tan lim 0→; (2)mn x x x )(sin )sin(lim 0→(n ,m 为正整数); (3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim 320-+-+-→x x x x x . 解(1)2323lim 23tan lim 00==→→x x x x x x . (2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x m n x m n x 0 1lim )(sin )sin(lim 00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0), 所以33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x . 5.证明无穷小的等价关系具有下列性质: (1)α~α(自反性);(2)若α~β,则β~α(对称性);(3)若α~β,β~γ,则α~γ(传递性).证明(1)1lim =αα,所以α~α; (2)若α~β,则1lim=βα,从而1lim =αβ.因此β~α; (3)若α~β,β~γ,1lim lim lim =⋅=βαγβγα.因此α~γ. 习题1-81.研究下列函数的连续性,并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ; 解已知多项式函数是连续函数,所以函数f (x )在[0,1)和(1,2]内是连续的. 在x =1处,因为f (1)=1,并且1lim )(lim 211==--→→x x f x x ,1)2(lim )(lim 11=-=++→→x x f x x . 所以1)(lim 1=→x f x ,从而函数f (x )在x =1处是连续的. 综上所述,函数f (x )在[0,2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f . 解只需考察函数在x =-1和x =1处的连续性.在x =-1处,因为f (-1)=-1,并且)1(11lim )(lim 11-≠==---→-→f x f x x , )1(1lim )(lim 11-=-==++-→-→f x x f x x , 所以函数在x =-1处间断,但右连续.在x =1处,因为f (1)=1,并且1lim )(lim 11==--→→x x f x x =f (1),11lim )(lim 11==++→→x x x f =f (1), 所以函数在x =1处连续.综合上述讨论,函数在(-∞,-1)和(-1,+∞)内连续,在x =-1处间断,但右连续.2.下列函数在指出的点处间断,说明这些间断点属于哪一类,如果是可去间断点,则补充或改变函数的定义使它连续: (1)23122+--=x x x y ,x =1,x =2; 解)1)(2()1)(1(23122---+=+--=x x x x x x x y .因为函数在x =2和x =1处无定义,所以x =2和x =1是函数的间断点. 因为∞=+--=→→231limlim 2222x x x y x x ,所以x =2是函数的第二类间断点; 因为2)2()1(lim lim 11-=-+=→→x x y x x ,所以x =1是函数的第一类间断点,并且是可去间断点.在x =1处,令y =-2,则函数在x =1处成为连续的. (2)x x y tan =,x =k ,2ππ+=k x (k =0,±1,±2,⋅⋅⋅); 解函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义,因而这些点都是函数的间断点. 因∞=→xx k x tan lim π(k ≠0),故x =k π(k ≠0)是第二类间断点; 因为1tan lim 0=→x x x ,0tan lim 2=+→x x k x ππ(k ∈Z),所以x =0和2 ππ+=k x (k ∈Z)是第一类间断点且是可去间断点.令y |x =0=1,则函数在x =0处成为连续的; 令2 ππ+=k x 时,y =0,则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=,x =0; 解因为函数x y 1cos 2=在x =0处无定义,所以x =0是函数x y 1cos 2=的间断点.又因为xx 1cos lim 20→不存在,所以x =0是函数的第二类间断点. (4)⎩⎨⎧>-≤-=1 31 1x x x x y ,x =1. 解因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x ,所以x =1是函数的第一类不可去间断点.3.讨论函数x xxx f n n n 2211lim )(+-=∞→的连续性,若有间断点,判别其类型. 解⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f n n n . 在分段点x =-1处,因为1)(lim )(lim 11=-=---→-→x x f x x ,1lim )(lim 11-==++-→-→x x f x x ,所以x =-1为函数的第一类不可去间断点.在分段点x =1处,因为1lim )(lim 11==--→→x x f x x ,1)(lim )(lim 11-=-=++→→x x f x x ,所以x =1为函数的第一类不可去间断点.4.证明:若函数f (x )在点x 0连续且f (x 0)≠0,则存在x 0的某一邻域U (x 0),当x ∈U (x 0)时,f (x )≠0.证明不妨设f (x 0)>0.因为f (x )在x 0连续,所以0)()(lim 00>=→x f x f x x ,由极限的局部保号性定理,存在x 0的某一去心邻域)(0x U,使当x ∈)(0x U 时f (x )>0,从而当x ∈U (x 0)时,f (x )>0.这就是说,则存在x 0的某一邻域U (x 0),当x ∈U (x 0)时,f (x )≠0. 5.试分别举出具有以下性质的函数f (x )的例子:(1)x =0,±1,±2,21±,⋅⋅⋅,±n ,n1±,⋅⋅⋅是f (x )的所有间断点,且它们都是无穷间断点; 解函数x x x f ππcsc )csc()(+=在点x =0,±1,±2,21±,⋅⋅⋅,±n ,n1±,⋅⋅⋅处是间断的 且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续,但|f (x )|在R 上处处连续;解函数⎩⎨⎧∉∈-=Q Q x x x f 1 1)(在R 上处处不连续,但|f (x )|=1在R 上处处连续. (3)f (x )在R 上处处有定义,但仅在一点连续.解函数⎩⎨⎧∉-∈=Q Q x x x x x f )(在R 上处处有定义,它只在x =0处连续. 习题1-91.求函数633)(223-+--+=x x x x x x f 的连续区间,并求极限)(lim 0x f x →,)(lim 3x f x -→及)(lim 2x f x →. 解)2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f ,函数在(-∞,+∞)内除点x =2和x =-3外是连续的,所以函数f (x )的连续区间为(-∞,-3)、(-3,2)、(2,+∞). 在函数的连续点x =0处,21)0()(lim 0==→f x f x . 在函数的间断点x =2和x =-3处,∞=-++-+=→→)2)(3()1)(1)(3(lim )(lim 22x x x x x x f x x ,582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x . 2.设函数f (x )与g (x )在点x 0连续,证明函数ϕ(x )=max{f (x ),g (x )},ψ(x )=min{f (x ),g (x )}在点x 0也连续.证明已知)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→. 可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ, ] |)()(|)()([21)(x g x f x g x f x --+=ψ. 因此] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ, ] |)()(|)()([21)(00000x g x f x g x f x --+=ψ. 因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0), 所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3.求下列极限: (1)52lim 20+-→x x x ; (2)34)2(sin lim x x π→; (3))2cos 2ln(lim 6x x π→; (4)xx x 11lim 0-+→; (5)145lim 1---→x x x x ; (6)ax a x a x --→sin sin lim ; (7))(lim 22x x x x x --++∞→. 解(1)因为函数52)(2+-=x x x f 是初等函数,f (x )在点x =0有定义,所以 55020)0(52lim 220=+⋅-==+-→f x x x . (2)因为函数f (x )=(sin2x )3是初等函数,f (x )在点4π=x 有定义,所以 1)42(sin )4()2(sin lim 334=⋅==→πππf x x . (3)因为函数f (x )=ln(2cos2x )是初等函数,f (x )在点6π=x 有定义,所以 0)62cos 2ln()6()2cos 2ln(lim 6=⋅==→πππf x x . (4))11(lim )11()11)(11(lim 11lim 000++=++++-+=-+→→→x x x x x x x x x x x x 211101111lim 0=++=++=→x x . (5))45)(1()45)(45(lim 145lim 11x x x x x x x x x x x x +--+---=---→→)45)(1(44lim1x x x x x +---=→214154454lim 1=+-⋅=+-=→x x x . (6)ax ax a x a x a x a x a x --+=--→→2sin 2cos 2lim sin sin lim a a a a x ax a x a x a x cos 12cos 22sin lim 2cos lim =⋅+=--⋅+=→→. (7))())((lim )(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→ 1)1111(2lim )(2lim 22=-++=-++=+∞→+∞→x x x x x x x x x . 4.求下列极限: (1)x x e 1lim ∞→; (2)xx x sin ln lim 0→; (3)2)11(lim x x x+∞→; (4)x x x 2cot 20)tan 31(lim +→; (5)21)63(lim -∞→++x x xx ; (6)xx x x x x -++-+→20sin 1sin 1tan 1lim . 解(1)1lim 01lim 1===∞→∞→e e e x x x x . (2)01ln )sin lim ln(sin ln lim 00===→→x x xx x x . (3)[]e e xx xx x x ==+=+∞→∞→21212)11(lim )11(lim . (4)[]33tan 3120cot 2022)tan 31(lim )tan 31(lim e x x x x x x =+=+→→. (5)21633621)631()63(-+-⋅-+-+-+=++x x x x x x x .因为 e x x x =+-+-+∞→36)631(lim ,232163lim -=-⋅+-∞→x x x ,所以2321)63(lim --∞→=++e xx x x . (6))sin 1tan 1)(1sin 1()1sin 1)(sin 1tan 1(lim sin 1sin 1tan 1lim 22020x x x x x x x x x x x x x x +++-++++-+=-++-+→→ xx x x x x x x x x x x x 220220sin 2sin 2tan lim )sin 1tan 1(sin )1sin 1)(sin (tan lim ⋅=+++++-=→→ 21)2(2lim 320=⋅=→x x x x . 5.设函数⎩⎨⎧≥+<=00 )(x x a x e x f x 应当如何选择数a ,使得f (x )成为在(-∞,+∞)内的连续函数?解要使函数f (x )在(-∞,+∞)内连续,只须f (x )在x =0处连续,即只须a f x f x f x x ===+→-→)0()(lim )(lim 00. 因为1lim )(lim 00==-→-→x x x e x f ,a x a x f x x =+=+→+→)(lim )(lim 00,所以只须取a =1. 习题1-101.证明方程x 5-3x =1至少有一个根介于1和2之间.证明设f (x )=x 5-3x -1,则f (x )是闭区间[1,2]上的连续函数.因为f (1)=-3,f (2)=25,f (1)f (2)<0,所以由零点定理,在(1,2)内至少有一点ξ (1<ξ<2),使f (ξ)=0,即x =ξ是方程x 5-3x =1的介于1和2之间的根.因此方程x 5-3x =1至少有一个根介于1和2之间.2.证明方程x =a sin x +b ,其中a >0,b >0,至少有一个正根,并且它不超过a +b . 证明设f (x )=a sin x +b -x ,则f (x )是[0,a +b ]上的连续函数.f (0)=b ,f (a +b )=a sin(a +b )+b -(a +b )=a [sin(a +b )-1]≤0.若f (a +b )=0,则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根;若f (a +b )<0,则f (0)f (a +b )<0,由零点定理,至少存在一点ξ∈(0,a +b ),使f (ξ)=0,这说明x =ξ也是方程x =a sin x +b 的一个不超过a +b 的根.总之,方程x =a sin x +b 至少有一个正根,并且它不超过a +b .3.设函数f (x )对于闭区间[a ,b ]上的任意两点x 、y ,恒有|f (x )-f (y )|≤L |x -y |,其中L 为正常数,且f (a )⋅f (b )<0.证明:至少有一点ξ∈(a ,b ),使得f (ξ)=0.证明设x 0为(a ,b )内任意一点.因为0||lim |)()(|lim 00000=-≤-≤→→x x L x f x f x x x x , 所以0|)()(|lim 00=-→x f x f x x , 即)()(lim 00x f x f x x =→. 因此f (x )在(a ,b )内连续.同理可证f (x )在点a 处左连续,在点b 处右连续,所以f (x )在[a ,b ]上连续.因为f (x )在[a ,b ]上连续,且f (a )⋅f (b )<0,由零点定理,至少有一点ξ∈(a ,b ),使得f (ξ)=0. 4.若f (x )在[a ,b ]上连续,a <x 1<x 2<⋅⋅⋅<x n <b ,则在[x 1,x n ]上至少有一点ξ,使nx f x f x f f n )( )()()(21+⋅⋅⋅++=ξ. 证明显然f (x )在[x 1,x n ]上也连续.设M 和m 分别是f (x )在[x 1,x n ]上的最大值和最小值. 因为x i ∈[x 1,x n ](1≤i ≤n ),所以有m ≤f (x i )≤M ,从而有M n x f x f x f m n n ⋅≤+⋅⋅⋅++≤⋅)( )()(21,M nx f x f x f m n ≤+⋅⋅⋅++≤)( )()(21. 由介值定理推论,在[x 1,x n ]上至少有一点ξ使nx f x f x f f n )( )()()(21+⋅⋅⋅++=ξ. 5.证明:若f (x )在(-∞,+∞)内连续,且)(lim x f x ∞→存在,则f (x )必在(-∞,+∞)内有界. 证明令A x f x =∞→)(lim ,则对于给定的ε>0,存在X >0,只要|x |>X ,就有 |f (x )-A |<ε,即A -ε<f (x )<A +ε.又由于f (x )在闭区间[-X ,X ]上连续,根据有界性定理,存在M >0,使|f (x )|≤M ,x ∈[-X ,X ]. 取N =max{M ,|A -ε|,|A +ε|},则|f (x )|≤N ,x ∈(-∞,+∞),即f (x )在(-∞,+∞)内有界.。

高等数学第六版上册(同济大学) 第四章答案.

高等数学第六版上册(同济大学) 第四章答案.

dx =

−1
x2
dx =

1 1 +1
− 1 +1
x2
+C
=2
x +C .
2
(4) ∫ x 2 3 xdx ;

∫x23
7
xdx = ∫ x 3 dx =
1
7 +1
x3
+C =
3
7 +1
10
x33
x +C
.
3
(5)

1 x2
x
dx
;


1 x2
x
dx
=

x

5 2
dx
=

1 5 +1
x

5 2
+1
x

∫e
x
(1−
e−x
)dx= ∫(e x

−1
x2
)dx = e
x
−2x
1 2
+C
.
x
(19) ∫3x e xdx ;


3x
e
x
dx
=

(3e)
x
dx
=
(3e) x ln(3e)
+
C
=
3x ex ln 3 +1
+C
.
(20)

2⋅3x −5⋅2 x 3x
dx
;


2⋅3x −5⋅2 x 3x
dx
x
dx
+
3∫
1 x

高等数学上册第六版课后习题图文详细答案第一章

高等数学上册第六版课后习题图文详细答案第一章

高等数学上册第六版课后习题详细答案(图文)习题1-11. 设A =(-, -5)⋃(5, +), B =[-10, 3), 写出A ⋃B , AB , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +),A B =[-10, -5),A \B =(-∞, -10)⋃(5, +),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (AB )C =A C ⋃B C . 证明 因为 x (A B )C x ∉A B x ∉A 或x ∉Bx A C 或x B C x A C ⋃B C ,所以 (A B )C =A C ⋃B C .3. 设映射f : X →Y , A X , B X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A B )f (A )f (B ).证明 因为y f (A ⋃B )x ∈A ⋃B , 使f (x )=y(因为x ∈A 或x ∈B ) y f (A )或y f (B ) y f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y f (A B )x ∈A B , 使f (x )=y(因为x ∈A 且x ∈B ) y f (A )且y f (B )y f (A )f (B ),所以 f (A B )f (A )f (B ). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x X , 有I X x =x ; 对于每一个y Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y Y , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)] x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y Y , 有g (y )=x X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x A f (x )=y f (A ) f -1(y )=x f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x f -1(f (A ))存在y f (A ), 使f -1(y )=x f (x )=y . 因为y f (A )且f 是单射, 所以x A . 这就证明了f -1(f (A ))A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-, -1)⋃(-1, 1)⋃(1, +).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2(0, +∞), 当x 1<x 2时, 有0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211x x y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f xx x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y ;解 由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1.(2)xx y +-=11; 解 由x x y +-=11得y y x +-=11, 所以x x y +-=11的反函数为xx y +-=11. (3)dcx b ax y ++=(ad -bc ≠0); 解 由d cx b ax y ++=得a cy b dy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=. (4) y =2sin3x ;解 由y =2sin 3x 得2arcsin 31y x =, 所以y =2sin3x 的反函数为2arcsin 31x y =. (5) y =1+ln(x +2);解 由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)122+=x x y . 解 由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为x x y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M ,即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ;解 y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy . (2) y =sin u , u =2x , 81π=x ,42π=x ; 解 y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy . (3)u y =, u =1+x 2, x 1=1, x 2= 2;解 21x y +=, 21121=+=y , 52122=+=y .(4) y =e u , u =x 2, x 1 =0, x 2=1;解 2x e y =, 1201==e y , e e y ==212.(5) y =u 2 , u =e x , x 1=1, x 2=-1.解 y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域:(1) f (x 2);解 由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1].(2) f (sin x );解 由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为[2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) .(3) f (x +a )(a >0);解 由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ].(4) f (x +a )+f (x -a )(a >0).解 由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义. 18. 设⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解 ⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f . ⎪⎩⎪⎨⎧>=<==-1|| 1||e 1|| )]([101)(x e x x e e xfg x f , 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g . 19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式, 并指明其定义域.图1-37解 40sin h DC AB ==, 又从0)]40cot 2([21S h BC BC h =⋅++ 得h hS BC ⋅-= 40cot 0, 所以 h h S L40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0, 040cot 0>⋅-h hS 确定, 定义域为40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数;(2)将厂方所获的利润P 表示成订购量x 的函数;(3)某一商行订购了1000台, 厂方可获利润多少?解 (1)当0≤x ≤100时, p =90.令0.01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75.当100<x <1600时,p =90-(x -100)⨯0.01=91-0. 01x .综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 75160010001.0911000 90x x x x p . (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3) P =31⨯1000-0.01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)nn x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n .(2)n x n n 1)1(-=; 解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n . (3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→n n . (4)11+-=n n x n ; 解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n . (5) x n =n (-1)n .解 当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当=0.001时, 求出数N .解 0lim =∞→n n x . n n n x n 1|2cos ||0|≤=-π ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000. 3. 根据数列极限的定义证明:(1)01lim 2=∞→n n ; 分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim 2=∞→n n . (2)231213lim =++∞→n n n ; 分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n . 证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n . (3)1lim 22=+∞→n a n n分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n . (4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而 ||u n |-|a ||≤|u n -a |<.这就证明了||||lim a u n n =∞→. 数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x . 证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M . 又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有My n ε<||. 从而当n >N 时, 有 εε=⋅<≤=-MM y M y x y x n n n n n |||||0|, 所以0lim =∞→n n n y x .6. 对于数列{x n } 若x 2k -1→a (k →∞), x 2k →a (k →∞),证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0,∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ;∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε .因此x n →a (n →∞).习题1-3 1. 根据函数极限的定义证明:(1)8)13(lim 3=-→x x ; 分析 因为|(3x -1)-8|=|3x -9|=3|x -3|所以要使|(3x -1)-8|<ε , 只须ε31|3|<-x . 证明 因为∀ε>0, ∃εδ31=, 当0<|x -3|<δ时, 有 |(3x -1)-8|<ε ,所以8)13(lim 3=-→x x . (2)12)25(lim 2=+→x x ; 分析 因为|(5x +2)-12|=|5x -10|=5|x -2|所以要使|(5x +2)-12|<ε , 只须ε51|2|<-x . 证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有 |(5x +2)-12|<ε ,所以12)25(lim 2=+→x x . (3)424lim 22-=+--→x x x ; 分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x所以要使ε<--+-)4(242x x , 只须ε<--|)2(|x . 证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x .(4)21241lim 321=+--→x x x . 分析 因为|)21(|2|221|212413--=--=-+-x x x x 所以要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim 321=+--→x x x .2. 根据函数极限的定义证明:(1)2121lim 33=+∞→x x x ; 分析 因为333333||21212121x x x x x x =-+=-+所以要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x . 证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有ε<-+212133x x , 所以2121lim 33=+∞→x x x . (2)0sin lim =+∞→xx x .分析 因为xx x x x 1|sin |0sin ≤=- 所以要使ε<-0sin x x , 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0sin xx ,所以0sin lim =+∞→xx x .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0.001? 解 由于当x →2时, |x -2|→0, 故可设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001,只要0002.05001.0|2|=<-x取δ=0.0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001.4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只要397301.04||=->x , 故397=X .5. 证明函数f (x )=|x |当x →0时极限为零.证明 因为|f (x )-0|=||x |-0|=|x |=|x -0| 所以要使|f (x )-0|< 只须|x |< 因为对∀ε>0, ∃= 使当0<|x -0|< 时有 |f (x )-0|=||x |-0|< 所以0||lim 0=→x x6. 求,)(xx x f = x x x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在. 证明 因为11lim lim )(lim 000===---→→→x x x x x x f ,11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim ||lim )(lim 000===+++→→→x x x x x x x x ϕ,)(lim )(lim 0x x x x ϕϕ+→→≠-,所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0, ∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ;∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有|f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有 |f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有 | f (x )-A |<ε ,即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理 如果f (x )当x →∞时的极限存在 则存在X >0及M >0 使当|x |>X 时 |f (x )|<M 证明 设f (x )→A (x →∞) 则对于 =1 X >0 当|x |>X 时 有|f (x )-A |< =1 所以|f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |这就是说存在X >0及M >0 使当|x |>X 时 |f (x )|<M 其中M =1+|A | 习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x x y 当x 3时为无穷小; (2)xx y 1sin =当x 0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为ε>0, ∃δ=ε , 当0<|x -3|<δ时, 有 εδ=<-=+-=|3|39||2x x x y ,所以当x 3时392+-=x x y 为无穷小. (2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为ε>0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x 0时xx y 1sin =为无穷小.3. 根据定义证明: 函数xx y 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x . 证明 因为M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M x x >+21,所以当x →0时, 函数xx y 21+=是无穷大.取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由: (1)x x x 12lim +∞→;(2)xx x --→11lim 20. 解 (1)因为xx x 1212+=+, 而当x → 时x 1是无穷小, 所以212lim =+∞→x x x .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x .f (x )→Af (x )→∞f (x )→+∞ f (x )→-∞x →x 0∀>0 ∃>0 使 当0<|x -x 0|<时 有恒|f (x )-A |<x →x 0+x →x 0-x →∞∀>0 ∃X >0 使当|x |>X 时 有恒|f (x )|>Mx →+∞ x →-∞f (x )→A f (x )→∞ f (x )→+∞ f (x )→-∞ x →x 0∀>0 ∃>0 使当0<|x -x 0|<时 有恒|f (x )-A |<∀M >0 ∃>0 使当0<|x -x 0|<时 有恒|f (x )|>M ∀M >0 ∃>0 使当0<|x -x 0|<时 有恒f (x )>M ∀M >0 ∃>0 使当0<|x -x 0|<时 有恒f (x )<-Mx →x 0+∀>0 ∃>0 使当0<x -x 0<时 有恒|f (x )-A |< ∀M >0 ∃>0 使当0<x -x 0<时 有恒|f (x )|>M∀M >0 ∃>0 使当0<x -x 0<时 有恒f (x )>M∀M >0 ∃>0 使当0<x -x 0<时 有恒f (x )<-Mx →x 0-∀>0 ∃>0 使当0<x 0-x <时 有恒|f (x )-A |< ∀M >0 ∃>0 使当0<x 0-x <时 有恒|f (x )|>M∀M >0 ∃>0 使当0<x 0-x <时 有恒f (x )>M∀M >0 ∃>0 使当0<x 0-x <时 有恒f (x )<-M x →∞∀>0 ∃X >0 使当|x |>X 时 有恒|f (x )-A |<∀>0 ∃X >0 使当|x |>X 时 有恒|f (x )|>M∀>0 ∃X >0 使当|x |>X 时 有恒f (x )>M∀>0 ∃X >0 使当|x |>X 时 有恒f (x )<-Mx →+∞∀>0 ∃X >0 使当x >X 时 有恒|f (x )-A |<∀>0 ∃X >0 使当x >X 时 有恒|f (x )|>M∀>0 ∃X >0 使当x >X 时 有恒f (x )>M∀>0 ∃X >0 使当x >X 时 有恒f (x )<-Mx →-∞∀>0 ∃X >0 使当x <-X 时 有恒|f (x )-A |<∀>0 ∃X >0 使当x <-X 时 有恒|f (x )|>M ∀>0 ∃X >0 使当x <-X 时 有恒f (x )>M ∀>0 ∃X >0 使当x <-X 时 有恒f (x )<-M6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+ 时, 函数y =x cos x 不是无穷大.这是因为M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .习题1-51. 计算下列极限:(1)35lim 22-+→x x x ; 解 9325235lim 222-=-+=-+→x x x .(2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ; 解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx x x x x 2324lim2230++-→; 解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2x x x +-∞→;解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x xx x . (8)13lim242--+∞→x x x x x ; 解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零) 或 012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x . (10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→; 解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→112lim21-=+++-=→x x x x . 2. 计算下列极限: (1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x x x ;解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x →时, x 1是无穷小,而arctan x 是有界变量).4. 证明本节定理3中的(2).习题1-61. 计算下列极限: (1)xx x ωsin lim 0→;解 ωωωωω==→→x x xx x x sin lim sin lim 00.(2)xx x 3tan lim 0→;解 33cos 133sin lim 33tan lim 00=⋅=→→xx x x x x x .(3)xx x 5sin 2sin lim 0→;解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x .(4)x x x cot lim 0→;解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x .(5)xx x x sin 2cos 1lim 0-→;解 2)sin (lim 2sin 2lim 2cos1lim sin 2cos 1lim 20220200===-=-→→→→x x x x x x x x x x x x x . 或 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→xx x x x x x x x x x . (6)n n n x 2sin 2lim ∞→(x 为不等于零的常数). 解 x x xxx nn n n n n =⋅=∞→∞→22sin lim2sin 2lim . 2. 计算下列极限:(1)x x x 1)1(lim -→; 解 11)(1)1()(101})](1[lim {)](1[lim )1(lim ---→--→→=-+=-+=-e x x x x x x x x x .(2)x x x 1)21(lim +→;解 22210221010])21(lim [)21(lim )21(lim e x x x x x x x x x =+=+=+→⋅→→.(3)x x xx 2)1(lim +∞→; 解 222])11(lim [)1(lim e xx x x x x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数).解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim .3. 根据函数极限的定义, 证明极限存在的准则I '. 证明 仅对x →x 0的情形加以证明设为任一给定的正数由于Ax g x x =→)(lim 0故由定义知对>0 存在1>0 使得当0<|x -x 0|<1时恒有|g (x )-A |<即A -<g (x )<A + 由于Ax h x x =→)(lim 0故由定义知 对>0存在2>0使得当0<|x -x 0|<2时 恒有|h (x )-A |< 即 A -<h (x )<A +取=min{1 2} 则当0<|x -x 0|<时A -<g (x )<A +与A -<h (x )<A +同时成立 又因为g (x )≤f (x )≤h (x ) 所以 A -<f (x )<A + 即 |f (x )-A |< 因此Ax f x x =→)(lim 0证明 仅对x →x 0的情形加以证明因为Ax g x x =→)(lim 0Ax h x x =→)(lim 0所以对任一给定的>0 存在>0 使得当0<|x -x 0|<时 恒有|g (x )-A |<及|h (x )-A |<即 A -<g (x )<A +及A -<h (x )<A +又因为 g (x )≤f (x )≤h (x ) 所以 A -<f (x )<A + 即 |f (x )-A |< 因此Ax f x x =→)(lim 04. 利用极限存在准则证明: (1)111lim =+∞→nn ;证明 因为n n 11111+<+<,而 11lim =∞→n 且1)11(lim =+∞→n n ,由极限存在准则I , 111lim =+∞→nn .(2)1)1 211(lim 222=++⋅⋅⋅++++∞→πππn n n n n n ;证明 因为πππππ+<++⋅⋅⋅++++<+2222222)1 211(n n n n n n n n n n而 1lim 22=+∞→πn n n n , 1lim 22=+∞→πn n n , 所以 1)1 211(lim 222=++⋅⋅⋅++++∞→πππn n n n n n(3)数列2,22+, 222++, ⋅ ⋅ ⋅ 的极限存在;证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅). 先证明数列{x n }有界.当n =1时221<=x , 假定n =k 时x k <2, 则当n =k +1时, 22221=+<+=+k k x x , 所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界. 再证明数列单调增. 因为nn n n n n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221, 而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增.因为数列{x n }单调增加有上界, 所以此数列是有极限的. (4)11lim 0=+→n x x ;证明 当|x |≤1时, 则有 1+x ≤1+|x |≤(1+|x |)n , 1+x ≥1-|x |≥(1-|x |)n , 从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 0=+=-→→x x x x ,根据夹逼准则, 有 11lim 0=+→n x x .(5)1]1[lim 0=+→xx x .证明 因为x x x 1]1[11≤<-, 所以1]1[1≤<-xx x .又因为11lim )1(lim 00==-++→→x x x , 根据夹逼准则, 有1]1[lim 0=+→xx x .习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim 202320=--=--→→xx x x x x x x x , 所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ;(2)2~1sec 2x x -. 证明 (1)因为1tan limarctan lim 00==→→y yx x y x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x x x x x x x , 所以当x →0时, 2~1sec 2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xx x 23tan lim 0→;(2)mn x x x )(sin )sin(lim 0→(n , m 为正整数);(3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x .解 (1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0), 所以 33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim=αβ. 因此β~α ; (3) 若α ~β, β~γ, 1lim limlim =⋅=βαγβγα. 因此α~γ. 习题1-81. 研究下列函数的连续性, 并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;解 已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 并且1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 只需考察函数在x =-1和x =1处的连续性.在x =-1处, 因为f (-1)=-1, 并且)1(11lim )(lim 11-≠==---→-→f x f x x ,)1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续. 在x =1处, 因为f (1)=1, 并且1lim )(lim 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1),所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续.2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;解 )1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)x x y tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 函数在点x =k (k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点.因∞=→x x k x tan lim π(k 0), 故x =k (k 0)是第二类间断点;因为1tan lim0=→xx x , 0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2= x =0;解 因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点.又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点.(4)⎩⎨⎧>-≤-=1 311x x x x y , x =1.解 因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x xx x f n nn 2211lim )(+-=∞→的连续性, 若有间断点, 判别其类型.解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1||1|| 01|| 11lim)(22x x x x x x x x x f nn n在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0. 5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点;解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅处是间断的且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;解 函数⎩⎨⎧∉∈-=QQx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义, 但仅在一点连续.解 函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x .在函数的间断点x =2和x =-3处, ∞=-++-+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x .2. 设函数f (x )与g (x )在点x 0连续, 证明函数(x )=max{f (x ), g (x )}, (x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==(x 0),所以(x )在点x 0也连续.同理可证明(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;(2)34)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→(4)xx x 11lim 0-+→;。

高等数学上册第六版课后习题答案

高等数学上册第六版课后习题答案

习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y ,所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211x x y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y ;解 由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1.(2)xx y +-=11; 解 由x x y +-=11得y y x +-=11, 所以x x y +-=11的反函数为xx y +-=11. (3)dcx b ax y ++=(ad -bc ≠0);解 由d cx b ax y ++=得a cy b dy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=. (4) y =2sin3x ;解 由y =2sin 3x 得2arcsin 31y x =, 所以y =2sin3x 的反函数为2arcsin 31x y =. (5) y =1+ln(x +2);解 由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)122+=x x y . 解 由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为x x y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M ,即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ; 解 y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy . (2) y =sin u , u =2x , 81π=x ,42π=x ; 解 y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy . (3)u y =, u =1+x 2, x 1=1, x 2= 2;解 21x y +=, 21121=+=y , 52122=+=y .(4) y =e u , u =x 2, x 1 =0, x 2=1;解 2x e y =, 1201==e y , e e y ==212.(5) y =u 2 , u =e x , x 1=1, x 2=-1.解 y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域:(1) f (x 2);解 由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1].(2) f (sin x );解 由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为[2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) .(3) f (x +a )(a >0);解 由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ].(4) f (x +a )+f (x -a )(a >0).解 由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义. 18. 设⎪⎩⎪⎨⎧>-=<=1||11||01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解 ⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f . ⎪⎩⎪⎨⎧>=<==-1|| 1||e 1|| )]([101)(x e x x e e xfg x f , 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g . 19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式, 并指明其定义域.图1-37解 40sin h DC AB ==, 又从0)]40cot 2([21S h BC BC h =⋅++ 得h hS BC ⋅-= 40cot 0, 所以 h h S L40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0, 040cot 0>⋅-h hS 确定, 定义域为40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数;(2)将厂方所获的利润P 表示成订购量x 的函数;(3)某一商行订购了1000台, 厂方可获利润多少?解 (1)当0≤x ≤100时, p =90.令0.01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75.当100<x <1600时,p =90-(x -100)⨯0.01=91-0. 01x .综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 75160010001.0911000 90x x x x p . (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3) P =31⨯1000-0.01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)nn x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n .(2)nx n n 1)1(-=; 解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n . (3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→nn . (4)11+-=n n x n ; 解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n . (5) x n =n (-1)n .解 当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N . 解 0lim =∞→n n x . n n n x n 1|2cos ||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000. 3. 根据数列极限的定义证明:(1)01lim 2=∞→n n ; 分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim 2=∞→n n . (2)231213lim =++∞→n n n ; 分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n .证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n . (3)1lim 22=+∞→na n n ; 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n . (4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而 ||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→. 数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x . 证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M . 又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有M y n ε<||. 从而当n >N 时, 有εε=⋅<≤=-M M y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6. 对于数列{x n }, 若x 2k -1→a (k →∞), x 2k →a (k →∞), 证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0, ∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ; ∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε .取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;分析 因为|(3x -1)-8|=|3x -9|=3|x -3|, 所以要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε>0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)12)25(lim 2=+→x x ;分析 因为|(5x +2)-12|=|5x -10|=5|x -2|, 所以要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有 |(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)424lim22-=+--→x x x ;分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x ,所以要使ε<--+-)4(242x x , 只须ε<--|)2(|x . 证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x .(4)21241lim 321=+--→x x x .分析 因为|)21(|2|221|212413--=--=-+-x x x x ,所以要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x ,所以21241lim 321=+--→x x x . 2. 根据函数极限的定义证明:(1)2121lim 33=+∞→x x x ; 分析 因为333333||21212121x x x x x x =-+=-+, 所以要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x . 证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有ε<-+212133x x , 所以2121lim 33=+∞→x x x . (2)0sin lim =+∞→xx x .分析 因为xxx x x 1|sin |0sin ≤=-. 所以要使ε<-0sin xx , 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0sin xx ,所以0sin lim =+∞→xx x .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0.001? 解 由于当x →2时, |x -2|→0, 故可设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001, 只要0002.05001.0|2|=<-x .取δ=0.0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001.4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01? 解 要使01.034131222<+=-+-x x x , 只要397301.04||=->x , 故397=X .5. 证明函数f (x )=|x |当x →0时极限为零.证明 因为|f (x )-0|=||x |-0|=|x |=|x -0|, 所以要使|f (x )-0|<ε, 只须|x |<ε.因为对∀ε>0, ∃δ=ε, 使当0<|x -0|<δ, 时有 |f (x )-0|=||x |-0|<ε, 所以0||lim 0=→x x .6. 求,)(xx x f = x x x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在. 证明 因为11lim lim )(lim 000===---→→→x x x x x x f ,11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim ||lim )(lim 000===+++→→→x x x x x x x x ϕ,)(lim )(lim 0x x x x ϕϕ+→→≠-,所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0, ∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ;∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有|f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有 |f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有 | f (x )-A |<ε ,即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |. 习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x x y 当x →3时为无穷小; (2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε>0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y , 所以当x →3时392+-=x x y 为无穷小. (2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为∀ε>0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数xx y 21+=为当x →0时的无穷大. 问x 应满足什么条件,能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x . 证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M x x >+21,所以当x →0时, 函数xx y 21+=是无穷大.取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由: (1)x x x 12lim +∞→;(2)xx x --→11lim 20. 解 (1)因为xx x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→x x x .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x .6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .习题1-51. 计算下列极限:(1)35lim 22-+→x x x ;解 9325235lim 222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ; 解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx x x x x 2324lim2230++-→; 解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2xx x +-∞→; 解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ;解或 012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim nn +⋅⋅⋅+++∞→;解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321limnn n -+⋅⋅⋅+++∞→; 解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n .(14))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112lim21-=+++-=→x x x x . 2. 计算下列极限: (1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x x x ;解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量).4. 证明本节定理3中的(2).习题1-61. 计算下列极限: (1)xx x ωsin lim 0→;解 ωωωωω==→→x x xx x x sin lim sin lim 00.(2)xx x 3tan lim 0→;解 33cos 133sin lim 33tan lim 00=⋅=→→xx x x x x x .(3)xx x 5sin 2sin lim 0→;解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x .(4)x x x cot lim 0→;解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x . (5)xx x x sin 2cos 1lim 0-→;解 2)sin (lim 2sin 2lim 2cos 1lim sin 2cos 1lim 20220200===-=-→→→→x x x x x x x x x x x x x . 或 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→xx x x x x x x x x x . (6)nn n x 2sin 2lim ∞→(x 为不等于零的常数).解 x x xxx nn n n n n =⋅=∞→∞→22sin lim2sin 2lim . 2. 计算下列极限:(1)x x x 1)1(lim -→; 解 11)(10)1()(101})](1[lim {)](1[lim )1(lim ---→--→→=-+=-+=-e x x x x x x x x x .(2)x x x 1)21(lim +→;解 2221221010])21(lim [)21(lim )21(lim e x x x x x x x x x =+=+=+→⋅→→.(3)x x xx 2)1(lim +∞→;解 222])11(lim [)1(lim e xx x x x x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数).解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim .3. 根据函数极限的定义, 证明极限存在的准则I '. 证明 仅对x →x 0的情形加以证明.设ε为任一给定的正数, 由于A x g x x =→)(lim 0, 故由定义知, 对ε>0, 存在δ1>0, 使得当0<|x -x 0|<δ1时, 恒有|g (x )-A |<ε, 即A -ε<g (x )<A +ε.由于A x h x x =→)(lim 0, 故由定义知, 对ε>0, 存在δ2>0, 使得当0<|x -x 0|<δ2时, 恒有|h (x )-A |<ε, 即A -ε<h (x )<A +ε.取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ时, A -ε<g (x )<A +ε与A -ε<h (x )<A +ε 同时成立, 又因为g (x )≤f (x )≤h (x ), 所以 A -ε<f (x )<A +ε, 即 |f (x )-A |<ε, 因此A x f x x =→)(lim 0.证明 仅对x →x 0的情形加以证明. 因为A x g x x =→)(lim 0, A x h x x =→)(lim 0,所以对任一给定的ε>0, 存在δ>0, 使得当0<|x -x 0|<δ时, 恒有 |g (x )-A |<ε及|h (x )-A |<ε,即 A -ε<g (x )<A +ε及A -ε<h (x )<A +ε.又因为 g (x )≤f (x )≤h (x ), 所以 A -ε<f (x )<A +ε, 即 |f (x )-A |<ε, 因此A x f x x =→)(lim 0.4. 利用极限存在准则证明: (1)111lim =+∞→nn ;证明 因为n n 11111+<+<,而 11lim =∞→n 且1)11(lim =+∞→n n ,由极限存在准则I , 111lim =+∞→nn .(2)1)1 211(lim 222=++⋅⋅⋅++++∞→πππn n n n n n ;证明 因为πππππ+<++⋅⋅⋅++++<+2222222)1 211(n n n n n n n n n n , 而 1lim 22=+∞→πn n n n , 1lim 22=+∞→πn n n , 所以 1)1 211(lim 222=++⋅⋅⋅++++∞→πππn n n n n n .(3)数列2,22+, 222++, ⋅ ⋅ ⋅ 的极限存在;证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅). 先证明数列{x n }有界.当n =1时221<=x , 假定n =k 时x k <2, 则当n =k +1时, 22221=+<+=+k k x x , 所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增. 因为nn n n n n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221, 而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增.因为数列{x n }单调增加有上界, 所以此数列是有极限的. (4)11lim 0=+→n x x ;证明 当|x |≤1时, 则有 1+x ≤1+|x |≤(1+|x |)n , 1+x ≥1-|x |≥(1-|x |)n , 从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 0=+=-→→x x x x ,根据夹逼准则, 有 11lim 0=+→n x x .(5)1]1[lim 0=+→xx x .证明 因为x x x 1]1[11≤<-, 所以1]1[1≤<-xx x .又因为11lim )1(lim 00==-++→→x x x , 根据夹逼准则, 有1]1[lim 0=+→xx x .习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim 202320=--=--→→xx x x x x x x x , 所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ;(2)2~1sec 2x x -.证明 (1)因为1tan lim arctan lim00==→→y y xx y x (提示: 令y =arctan x , 则当x →0时,y →0),所以当x →0时, arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x , 所以当x →0时, 2~1sec 2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xx x 23tan lim 0→;(2)mn x x x )(sin )sin(lim 0→(n , m 为正整数);(3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x . 解 (1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n xx x x m n x m n x 0 1lim )(sin )sin(lim 00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0),所以 33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim=αβ. 因此β~α ; (3) 若α ~β, β~γ, 1lim limlim =⋅=βαγβγα. 因此α~γ. 习题1-81. 研究下列函数的连续性, 并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;解 已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 并且1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x .所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 只需考察函数在x =-1和x =1处的连续性.在x =-1处, 因为f (-1)=-1, 并且)1(11lim )(lim 11-≠==---→-→f x f x x ,)1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续. 在x =1处, 因为f (1)=1, 并且1lim )(lim 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1),所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续. 2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2; 解 )1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)x x y tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点.因∞=→x x k x tan lim π(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xx x , 0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=, x =0;解 因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点.又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点.(4)⎩⎨⎧>-≤-=1 311x x x x y , x =1.解 因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim )(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1||1|| 01|| 11lim)(22x x x x x x x x x f nn n . 在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0. 5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点;解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅处是间断的且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;解 函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义, 但仅在一点连续.解 函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x .在函数的间断点x =2和x =-3处, ∞=-++-+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x .2. 设函数f (x )与g (x )在点x 0连续, 证明函数ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;(2)34)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→;(4)xx x 11lim 0-+→;(5)145lim 1---→x x x x ;(6)a x a x a x --→sin sin lim ;(7))(lim 22x x x x x --++∞→.解 (1)因为函数52)(2+-=x x x f 是初等函数, f (x )在点x =0有定义, 所以 55020)0(52lim 220=+⋅-==+-→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数, f (x )在点4π=x 有定义, 所以1)42(sin )4()2(sin lim 334=⋅==→πππf x x . (3)因为函数f (x )=ln(2cos2x )是初等函数, f (x )在点6π=x 有定义, 所以0)62cos 2ln()6()2cos 2ln(lim 6=⋅==→πππf x x .(4))11(lim)11()11)(11(lim 11lim 000++=++++-+=-+→→→x x x x x x x x x x x x 211101111lim=++=++=→x x .(5))45)(1()45)(45(lim 145lim 11x x x x x x x x x x x x +--+---=---→→)45)(1(44lim 1x x x x x +---=→214154454lim 1=+-⋅=+-=→x x x .(6)ax ax a x a x a x a x a x --+=--→→2sin 2cos 2limsin sin lim a a a a x ax a x a x a x cos 12cos 22sin lim2cos lim =⋅+=--⋅+=→→. (7))())((lim )(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→1)1111(2lim )(2lim22=-++=-++=+∞→+∞→xx x x x x x x x .4. 求下列极限: (1)xx e 1lim∞→;(2)x x x sin ln lim 0→;(3)2)11(lim xx x +∞→; (4)x x x 2cot 20)tan 31(lim +→;(5)21)63(lim -∞→++x x xx ;。

(完整版)同济大学第六版高等数学第一章综合测试题

(完整版)同济大学第六版高等数学第一章综合测试题

第一章综合测试题一、填空题1、函数1()arccos(1)f x x =-的定义域为 . 2、设()2ln f x x =,[()]ln(1ln )fg x x =-, 则()g x = .3、已知1tan ,0,()ln(1), 0ax x e e x f x x a x +⎧+-≠⎪=+⎨⎪=⎩在0x =连续,则a = . 4、若lim 25nn n c n c →∞+⎛⎫= ⎪-⎝⎭,则c = . 5、函数y =的连续区间为 .二、选择题1、 设()f x 是奇函数,()g x 是偶函数, 则( )为奇函数.(A )[()]g g x (B )[()]g f x (C )[()]f f x (D )[()]f g x2、 设)(x f 在(,)-∞+∞内单调有界, {}n x 为数列,则下列命题正确的是( ).(A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛(C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛 3、 设21(2)cos ,2,()4 0, 2,x x f x x x ⎧+≠±⎪=-⎨⎪=±⎩ 则()f x ( ). (A )在点2x =,2x =-都连续 (B )在点2x =,2x =-都间断(C )在点2x =连续,在点2x =-间断 (D )在点2x =间断,在点2x =-连续4、 设lim 0n n n x y →∞=,则下列断言正确的是( ). (A )若{}n x 发散,则{}n y 必发散 (B )若{}n x 无界,则{}n y 必有界(C )若{}n x 有界,则{}n y 必为无穷小 (D )若1n x ⎧⎫⎨⎬⎩⎭收敛 ,则{}n y 必为无穷小 5、当0x x →时,()x α与()x β都是关于0x x -的m 阶无穷小,()()x x αβ+是关于0x x -的n 阶无穷小,则( ).(A )必有m n = (B )必有m n > (C )必有m n ≤ (D )以上情况皆有可能 三、设2,0,1()(||),(),0.2x x f x x x x x x ϕ<⎧=+=⎨≥⎩ 求[()]f x ϕ,[()]f x ϕ. 四、求极限1、22lim(4)tan 4x x x π→-2、3113lim 11x x x →⎛⎫- ⎪--⎝⎭ 3、11lim 3x x x x →+∞⎛⎫+ ⎪⎝⎭4、22212lim 12n n n n n n →∞⎛⎫+++ ⎪+++⎝⎭L 5、1/1/011lim arctan 1x x x e e x→+- 五、讨论函数22(4),0,sin ()(1),01x x x x f x x x x x π⎧-<⎪⎪=⎨+⎪≥⎪-⎩的连续性,如有间断点,判别其类型.六、设kA x αβ==,求A 及k ,使得当x →+∞时,αβ:. 七、已知()f x连续,05x →=,求20()lim x f x x →. 八、设函数)(x f 在(,)-∞+∞内有定义,且在点0x =处连续,对任意1x 与2x 有1212()()()f x x f x f x +=+. 证明:)(x f 在(,)-∞+∞内连续.九、证明:函数()[]f x x x =-在(,)-∞+∞上是有界的周期函数.十、设)(x f 在]1,0[上非负连续,且(0)(1)0f f ==. 证明:对任意实数(01)a a <<必存在实数0[0,1]x ∈,使得0[0,1]x a +∈,且00()()f x a f x +=.。

高等数学上册第六版课后习题详细图文答案第二章

高等数学上册第六版课后习题详细图文答案第二章

高等数学上册第六版课后习题详细答案第二章习题2-11. 设物体绕定轴旋转, 在时间间隔[0, t ]内转过的角度为θ, 从而转角θ是t 的函数: θ=θ(t ). 如果旋转是匀速的, 那么称tθω=为该物体旋转的角速度, 如果旋转是非匀速的, 应怎样确定该物体在时刻t 0的角速度?解 在时间间隔[t 0, t 0+∆t ]内的平均角速度ω为tt t t t ∆-∆+=∆∆=)()(00θθθω, 故t 0时刻的角速度为)()()(l i m l i m l i m 000000t tt t t t t t t θθθθωω'=∆-∆+=∆∆==→∆→∆→∆. 2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T 与时间t 的函数关系为T =T (t ), 应怎样确定该物体在时刻t 的冷却速度? 解 物体在时间间隔[t 0, t 0+∆t ]内, 温度的改变量为∆T =T (t +∆t )-T (t ),平均冷却速度为tt T t t T t T ∆-∆+=∆∆)()(, 故物体在时刻t 的冷却速度为)()()(lim lim 00t T tt T t t T t T t t '=∆-∆+=∆∆→∆→∆. 3. 设某工厂生产x 单位产品所花费的成本是f (x )元, 此函数f (x )称为成本函数, 成本函数f (x )的导数f '(x )在经济学中称为边际成本. 试说明边际成本f '(x )的实际意义.解 f (x +∆x )-f (x )表示当产量由x 改变到x +∆x 时成本的改变量.xx f x x f ∆-∆+)()(表示当产量由x 改变到x +∆x 时单位产量的成本. xx f x x f x f x ∆-∆+='→∆)()(lim )(0表示当产量为x 时单位产量的成本. 4. 设f (x )=10x 2, 试按定义, 求f '(-1).解 xx x f x f f x x ∆--∆+-=∆--∆+-=-'→∆→∆2200)1(10)1(10lim )1()1(lim)1( 20)2(lim 102lim 10020-=∆+-=∆∆+∆-=→∆→∆x x x x x x . 5. 证明(cos x )'=-sin x .解 xx x x x x ∆-∆+='→∆cos )cos(lim )(cos 0xx x x x ∆∆∆+-=→∆2s i n )2s i n (2lim 0 x x x x x x s i n ]22s i n )2s i n ([lim 0-=∆∆∆+-=→∆. 6. 下列各题中均假定f '(x 0)存在, 按照导数定义观察下列极限, 指出A 表示什么:(1)A xx f x x f x =∆-∆-→∆)()(lim000; 解 xx f x x f A x ∆-∆-=→∆)()(lim 000 )()()(lim 0000x f xx f x x f x '-=∆--∆--=→∆-. (2)A xx f x =→)(lim 0, 其中f (0)=0, 且f '(0)存在; 解 )0()0()0(lim )(lim 00f xf x f x x f A x x '=-+==→→. (3)A hh x f h x f h =--+→)()(lim 000. 解 hh x f h x f A h )()(lim 000--+=→ hx f h x f x f h x f h )]()([)]()([lim 00000----+=→ h x f h x f h x f h x f h h )()(lim )()(lim 000000----+=→→ =f '(x 0)-[-f '(x 0)]=2f '(x 0).7. 求下列函数的导数:(1)y =x 4;(2)32x y =;(3)y =x 1. 6;(4)xy 1=; (5)21xy =; (6)53x x y =;(7)5322x x x y =; 解 (1)y '=(x 4)'=4x 4-1=4x 3 .(2)3113232323232)()(--=='='='x x x x y . (3)y '=(x 1. 6)'=1.6x 1. 6-1=1.6x 0. 6.(4)23121212121)()1(-----=-='='='x x x x y . (5)3222)()1(---='='='x x x y . (6)511151651653516516)()(x x x x x y =='='='-. (7)651616153226161)()(--=='='='x x x x x x y . 8. 已知物体的运动规律为s =t 3(m). 求这物体在t =2秒(s )时的速度. 解v =(s )'=3t 2, v |t =2=12(米/秒).9. 如果f (x )为偶函数, 且f (0)存在, 证明f (0)=0.证明 当f (x )为偶函数时, f (-x )=f (x ), 所以)0(0)0()(l i m 0)0()(l i m 0)0()(l i m )0(000f x f x f x f x f x f x f f x x x '-=-----=---=--='→-→→, 从而有2f '(0)=0, 即f '(0)=0.10. 求曲线y =sin x 在具有下列横坐标的各点处切线的斜率: π32=x , x =π. 解 因为y '=cos x , 所以斜率分别为2132c o s 1-==πk , 1cos 2-==πk . 11. 求曲线y =cos x 上点)21 ,3(π处的切线方程和法线方程式. 解y '=-sin x , 233sin 3-=-='=ππx y , 故在点)21 ,3(π处, 切线方程为)3(2321π--=-x y , 法线方程为)3(3221π--=-x y . 12. 求曲线y =e x 在点(0,1)处的切线方程.解y '=e x , y '|x =0=1, 故在(0, 1)处的切线方程为y -1=1⋅(x -0), 即y =x +1.13. 在抛物线y =x 2上取横坐标为x 1=1及x 2=3的两点, 作过这两点的割线, 问该抛物线上哪一点的切线平行于这条割线?解 y '=2x , 割线斜率为421913)1()3(=-=--=y y k . 令2x =4, 得x =2. 因此抛物线y =x 2上点(2, 4)处的切线平行于这条割线.14. 讨论下列函数在x =0处的连续性与可导性:(1)y =|sin x |;(2)⎪⎩⎪⎨⎧=≠=000 1sin 2x x x x y . 解 (1)因为y (0)=0, 0)sin (lim |sin |lim lim 000=-==---→→→x x y x x x , 0sin lim |sin |lim lim 000===+++→→→x x y x x x , 所以函数在x =0处连续.又因为1s i n l i m 0|0s i n ||s i n |l i m 0)0()(l i m )0(000-=-=--=--='---→→→-xx x x x y x y y x x x , 1s i n lim 0|0sin ||sin |lim 0)0()(lim )0(000==--=--='+++→→→+xx x x x y x y y x x x , 而y '-(0)≠y '+(0), 所以函数在x =0处不可导.解 因为01sin lim )(lim 200==→→xx x y x x , 又y (0)=0, 所以函数在x =0处连续. 又因为01s i n l i m 01s i n l i m 0)0()(l i m 0200==-=--→→→xx x x x x y x y x x x , 所以函数在点x =0处可导, 且y '(0)=0.15. 设函数⎩⎨⎧>+≤=1 1 )(2x b ax x x x f 为了使函数f (x )在x =1处连续且可导, a , b 应取什么值?解 因为1lim )(lim 211==--→→x x f x x , b a b ax x f x x +=+=++→→)(lim )(lim 11, f (1)=a +b , 所以要使函数在x =1处连续, 必须a +b =1 .又因为当a +b =1时211l i m )1(21=--='-→-x x f x ,a x x a xb a x a x b ax f x x x =--=--++-=--+='+++→→→+1)1(lim 11)1(lim 11lim )1(111, 所以要使函数在x =1处可导, 必须a =2, 此时b =-1.16. 已知⎩⎨⎧<-≥=00 )(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在? 解 因为f -'(0)=10lim )0()(lim 00-=--=---→→xx x f x f x x , f +'(0)=00lim )0()(lim 200=-=-++→→xx x f x f x x , 而f -'(0)≠f +'(0), 所以f '(0)不存在. 17. 已知f (x )=⎩⎨⎧≥<0 0 sin x x x x , 求f '(x ) . 解 当x <0时, f (x )=sin x , f '(x )=cos x ;当x >0时, f (x )=x , f '(x )=1;因为 f -'(0)=10sin lim )0()(lim 00=-=---→→xx x f x f x x , f +'(0)=10lim )0()(lim 00=-=-++→→xx x f x f x x , 所以f '(0)=1, 从而 f '(x )=⎩⎨⎧≥<0 10 cos x x x . 18. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 .解 由xy =a 2得x a y 2=, 22x a y k -='=. 设(x 0, y 0)为曲线上任一点, 则过该点的切线方程为)(02020x x x a y y --=-. 令y =0, 并注意x 0y 0=a 2, 解得0022002x x a x y x =+=, 为切线在x 轴上的距. 令x =0, 并注意x 0y 0=a 2, 解得00022y y x a y =+=, 为切线在y 轴上的距. 此切线与二坐标轴构成的三角形的面积为200002||2|2||2|21a y x y x S ===.习题 2-21. 推导余切函数及余割函数的导数公式:(cot x )'=-csc 2x ; (csc x )'=-csc x cot x .解 xx x x x x x x 2sin cos cos sin sin )sin cos ()(cot ⋅-⋅-='=' x xx x x 22222c s c s i n 1s i n c o s s i n -=-=+-=. x x xx x x c o t c s c s i n c os )s i n 1()(c s c 2⋅-=-='='. 2. 求下列函数的导数:(1)1227445+-+=xx x y ; (2) y =5x 3-2x +3e x ;(3) y =2tan x +sec x -1;(4) y =sin x ⋅cos x ;(5) y =x 2ln x ;(6) y =3e x cos x ;(7)xx y ln =; (8)3ln 2+=xe y x ; (9) y =x 2ln x cos x ;(10)tt s cos 1sin 1++=; 解 (1))12274()12274(14545'+-+='+-+='---x x x xx x y 2562562282022820x x x x x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3e x .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ⋅tan x =sec x (2sec x +tan x ).(4) y '=(sin x ⋅cos x )'=(sin x )'⋅cos x +sin x ⋅(cos x )'=cos x ⋅cos x +sin x ⋅(-sin x )=cos 2x .(5) y '=(x 2ln x )'=2x ⋅ln x +x 2⋅x1=x (2ln x +1) . (6) y '=(3e x cos x )'=3e x ⋅cos x +3e x ⋅(-sin x )=3e x (cos x -sin x ).(7)22ln 1ln 1)ln (x x x x x x x x y -=-⋅='='. (8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=⋅-⋅='+='. (9) y '=(x 2ln x cos x )'=2x ⋅ln x cos x +x 2⋅x1⋅cos x +x 2 ln x ⋅(-sin x )2x ln x cos x +x cos x -x 2 ln x sin x .(10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t t t t t t t t tt s +++=+-+-+='++='.3. 求下列函数在给定点处的导数:(1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=d d .(3)553)(2x x x f +-=, 求f '(0)和f '(2) . 解 (1)y '=cos x +sin x ,21321236s i n 6c o s 6+=+=+='=πππx y , 222224s i n 4c o s 4=+=+='=πππx y . (2)θθθθθθθρcos sin 21sin 21cos sin +=-+=d d , )21(4222422214c o s 44s i n 214πππππθρπθ+=⋅+⋅=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=. 求:(1)该物体的速度v (t );(2)该物体达到最高点的时刻.解 (1)v (t )=s '(t )=v 0-gt .(2)令v (t )=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻. 5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程. 解 因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x ,所求的法线方程为x y 21-=, 即x +2y =0. 6. 求下列函数的导数:(1) y =(2x +5)4(2) y =cos(4-3x );(3)23x e y -=;(4) y =ln(1+x 2);(5) y =sin 2x ;(6)22x a y -=;(7) y =tan(x 2);(8) y =arctan(e x );(9) y =(arcsin x )2;(10) y =lncos x .解 (1) y '=4(2x +5)4-1⋅(2x +5)'=4(2x +5)3⋅2=8(2x +5)3.(2) y '=-sin(4-3x )⋅(4-3x )'=-sin(4-3x )⋅(-3)=3sin(4-3x ).(3)22233236)6()3(x x x xe x e x e y ----=-⋅='-⋅='.(4)222212211)1(11xxx x x x y +=⋅+='+⋅+='. (5) y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x .(6))()(21])[(221122122'-⋅-='-='-x a x a x a y 222122)2()(21x a x x x a --=-⋅-=-. (7) y '=sec 2(x 2)⋅(x 2)'=2x sec 2(x 2).(8)xx x x e e e e y 221)()(11+='⋅+='. (9) y '21arcsin 2)(arcsin arcsin 2xx x x -='⋅=. (10)x x xx x y tan )sin (cos 1)(cos cos 1-=-='⋅='. 7. 求下列函数的导数:(1) y =arcsin(1-2x );(2)211x y -=; (3)x e y x3cos 2-=;(4)xy 1arccos =; (5)xx y ln 1ln 1+-=; (6)xx y 2sin =; (7)x y arcsin =;(8))ln(22x a x y ++=;(9) y =ln(sec x +tan x );(10) y =ln(csc x -cot x ).解 (1)2221)21(12)21()21(11x x x x x y --=---='-⋅--='. (2))1()1(21])1[(21212212'-⋅--='-='---x x x y 222321)1()2()1(21xx x x x --=-⋅--=-. (3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y x xx x )3s i n 63(c o s 213s i n 33c o s 21222x x e x e x e x xx +-=--=---. (4)1||)1()1(11)1()1(1122222-=---='--='x x x x xx x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='. (6)222sin 2cos 212sin 22cos x x xx x x xx y -=⋅-⋅⋅='. (7)2222121)(11)()(11x x x x x x y -=⋅-='⋅-='.(8)])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y 2222221)]2(211[1x a x x a x a x +=++⋅++=. (9) x xx x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12=++='+⋅+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12=-+-='-⋅-='.8. 求下列函数的导数:(1)2)2(arcsin x y =; (2)2tan ln x y =; (3)x y 2ln 1+=;(4)x e y arctan =;(5)y =sin n x cos nx ;(6)11arctan -+=x x y ; (7)xx y arccos arcsin =; (8) y =ln[ln(ln x )] ;(9)xx x x y -++--+1111; (10)xx y +-=11arcsin . 解 (1)'⋅=')2(arcsin )2(arcsin 2x x y )2()2(11)2(a r c s i n 22'⋅-⋅=x x x21)2(11)2(a r c s i n 22⋅-⋅=x x . 242a r c s i n 2x x -= (2))2(2sec 2tan 1)2(tan 2tan 12'⋅⋅='⋅='x x x x xy x x x c s c 212s e c 2t a n 12=⋅⋅=. (3))ln 1(ln 121ln 1222'+⋅+=+='x xx y )(l n ln 2ln 1212'⋅⋅+=x x x x x x1ln 2ln 1212⋅⋅+= xx x 2ln 1ln +=. (4))(arctan arctan '⋅='x e y x )()(112arctan '⋅+⋅=x x e x)1(221)(11a r c t a n 2a r c t a n x x e x x e x x +=⋅+⋅=. (5) y '=n sin n -1x ⋅(sin x )'⋅cos nx +sin n x ⋅(-sin nx )⋅(nx )'=n sin n -1x ⋅cos x ⋅cos nx +sin n x ⋅(-sin nx )⋅n=n sin n -1x ⋅(cos x ⋅cos nx -sin x ⋅sin nx )= n sin n -1x cos(n +1)x .(6)222211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--⋅-++='-+⋅-++='. (7)222)(arccos arcsin 11arccos 11x x x x x y -+-=' 22)(a r c c o s a r c s i n a r c c o s 11x x x x +⋅-=22)(a r c c o s 12x x -=π. (8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'⋅⋅='⋅='x xx x x y )l n (l n ln 11ln 1)ln(ln 1x x x x x x ⋅=⋅⋅=.(9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111x x -+-=. (10)2)1()1()1(1111)11(1111x x x xx x x x x y +--+-⋅+--='+-⋅+--=' )1(2)1(1x x x -+-=. 9. 设函数f (x )和g (x )可导, 且f 2(x )+g 2(x )≠0, 试求函数)()(22x g x f y +=的导数.解 ])()([)()(212222'+⋅+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'⋅+= )()()()()()(22x g x f x g x g x f x f +'+'=. 10. 设f (x )可导, 求下列函数y 的导数dx dy : (1) y =f (x 2);(2) y =f (sin 2x )+f (cos 2x ).解 (1) y '=f '(x 2)⋅(x 2)'= f '(x 2)⋅2x =2x ⋅f '(x 2).(2) y '=f '(sin 2x )⋅(sin 2x )'+f '(cos 2x )⋅(cos 2x )'= f '(sin 2x )⋅2sin x ⋅cos x +f '(cos 2x )⋅2cos x ⋅(-sin x )=sin 2x [f '(sin 2x )- f '(cos 2x )].11. 求下列函数的导数:(1) y =ch(sh x );(2) y =sh x ⋅e ch x ;(3) y =th(ln x );(4) y =sh 3x +ch 2x ;(5) y =th(1-x 2);(6) y =arch(x 2+1);(7) y =arch(e 2x );(8) y =arctan(th x );(9)xx y 2ch 21ch ln +=; (10))11(ch 2+-=x x y 解 (1) y '=sh(sh x )⋅(sh x )'=sh(sh x )⋅ch x .(2) y '=ch x ⋅e ch x +sh x ⋅e ch x ⋅sh x =e ch x (ch x +sh 2x ) .(3))(ln ch 1)(ln )(ln ch 122x x x x y ⋅='⋅='. (4) y '=3sh 2x ⋅ch x +2ch x ⋅sh x =sh x ⋅ch x ⋅(3sh x +2) .(5))1(ch 2)1()1(ch 122222x x x x y --=-⋅-='. (6)222)1()1(112422++='+⋅++='x x x x x y . (7)12)(1)(142222-='⋅-='x x x x e ee e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11⋅+=⋅+='⋅+=' xx x 222sh 211sh ch 1+=+=. (9))ch (ch 21)ch (ch 124'⋅-'⋅='x xx x y x x xx x sh ch 2ch 21ch sh 4⋅⋅-= xx x x x x x x 323ch sh ch sh ch sh ch sh -⋅=-= x xx x x x 33332th ch sh ch )1ch (sh ==-⋅=. (10)'+-⋅+-⋅+-='+-⋅+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y )112(sh )1(2)1()1()1()112(sh 22+-⋅+=+--+⋅+-⋅=x x x x x x x x . 12. 求下列函数的导数:(1) y =e -x (x 2-2x +3);(2) y =sin 2x ⋅sin(x 2);(3)2)2(arctan x y =; (4)n xx y ln=;(5)t t t t ee e e y --+-=; (6)xy 1cos ln =; (7)x e y 1sin 2-=;(8)x x y +=;(9) 242arcsin x x x y -+=; (10)212arcsin tty +=. 解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2)=e -x (-x 2+4x -5).(2) y '=2sin x ⋅cos x ⋅sin(x 2)+sin 2x ⋅cos(x 2)⋅2x=sin2x ⋅sin(x 2)+2x ⋅sin 2x ⋅cos(x 2).(3)2arctan 44214112arctan 222x x xx y +=⋅+⋅='. (4)121ln 1ln 1+--=⋅-⋅='n n n n x x n x nx x x xy . (5)2222)1(4)())(())((+=+---++='-----t t t t t t t t t t t t e e e e e e e e e e e e y . (6)x x x x x x x y 1tan 1)1()1sin (1sec )1(cos 1sec 22=-⋅-⋅='⋅='. (7))1(1cos )1sin 2()1sin (21sin 21sin 22x x x e xe y x x -⋅⋅-⋅='-⋅='-- x e x x1s i n 222s i n 1-⋅⋅=. (8))211(21)(21x xx x x x x y +⋅+='+⋅+=' xx x x +⋅+=412. (9)2arcsin )2(421214112arcsin 22x x x x x x y =-⋅-+⋅-⋅+='.(10)22222222)1()2(2)1(2)12(11)12()12(11t t t t tt t t t t y +⋅-+⋅⋅+-='+⋅+-=' )1(|1|)1(2)1()1(2)1(1222222222t t t t t t t +--=+-⋅-+=.习题 2-31. 求函数的二阶导数:(1) y =2x 2+ln x ;(2) y =e 2x -1;(3) y =x cos x ;(4) y =e -t sin t ;(5)22x a y -=;(6) y =ln(1-x 2)(7) y =tan x ;(8)113+=x y ; (9) y =(1+x 2)arctan x ;(10)xe y x =; (11)2x xe y =;(12))1ln(2x x y ++=.解 (1)x x y 14+=', 14x y -=''. (2) y '=e 2x -1 ⋅2=2e 2x -1, y ''=2e 2x -1 ⋅2=4e 2x -1.(3) y =x cos x ; y '=cos x -x sin x ,y ''=-sin x -sin x -x cos x =-2sin x -x cos x .(4) y '=-e -t sin t +e -t cos t =e -t (cos t -sin t )y ''=-e -t (cos t -sin t )+e -t (-sin t -cos t )=-2e -t cos t .(5)222222)(21xa x x a x a y --='-⋅-=', 22222222222)(xa x a a x a x a x x x a y ---=---⋅---=''.(6) 22212)1(11xxx x y --='-⋅-=', 22)1()1(2)1()2(2)1(2x x x x x x y -+-=--⋅---=''. (7) y '=sec 2 x ,y ''=2sec x ⋅(sec x )'=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x .(8)232233)1(3)1()1(+-=+'+-='x x x x y , 333433223)1()12(6)1(3)1(23)1(6+-=+⋅+⋅-+⋅-=''x x x x x x x x x y . (9)1arctan 211)1(arctan 222+=+⋅++='x x xx x x y , 212a r c t a n 2xxx y ++=''. (10)22)1(1xx e x e x e y x x x -=⋅-⋅=', 3242)22(2)1(])1([x x x e x x x e x e x e y x x x x +-=⋅--⋅+-=''. (11))21()2(2222x e x e x e y x x x +=⋅⋅+=',)23(24)21(222222x xe x e x x e y x x x +=⋅++⋅⋅=''.(12)2222211)1221(11)1(11x x x x x x x x x y +=++⋅++='++⋅++=', xx x x x x x x y ++-=+⋅+-='⋅+⋅+-=''1)1()12211)1(1122222. 2. 设f (x )=(x +10)6, f '''(2)=?解f '(x )=6(x +10)5, f ''(x )=30(x +10)4, f '''(x )=120(x +10)3,f '''(2)=120(2+10)3=207360.3. 若f ''(x )存在, 求下列函数y 的二阶导数22dxy d : (1) y =f (x 2);(2) y =ln[f (x )] .解 (1)y '= f '(x 2)⋅(x 2)'=2xf '(x 2),y ''=2f '(x 2)+2x ⋅2xf ''(x 2)=2f '(x 2)+4x 2f ''(x 2).(2))()(1x f x f y '=',2)]([)()()()(x f x f x f x f x f y ''-''=''22)]([)]([)()(x f x f x f x f '-''=. 4. 试从y dy dx '=1导出: (1)322)(y y dy x d '''-=; (2)5233)()(3y y y y dy x d '''''-''=. 解 (1)()()()3222)(1)(11y y y y y dy dx y dx d y dy d dy dx dy d dy xd '''-='⋅'''-=⋅'='==. (2)(())(())dy dx y y dx d y y dy d dy x d ⋅'''-='''-=3333 223)()(31)()(3)(y y y y y y y y y y y ''''-''=⋅'''⋅''-''''-=.5. 已知物体的运动规律为s =A sin ωt (A 、ω是常数), 求物体运动的加速度, 并验证:0222=+s dts d ω. 解 t A dtds ωωcos =, t A dts d ωωsin 222-=. 22dt s d 就是物体运动的加速度. 0s i n s i n 22222=+-=+t A t A s dts d ωωωωω. 6. 验证函数y =C 1e λx +C 2e -λx (λ,C 1, C 2是常数)满足关系式:y ''-λ2y =0 .解 y '=C 1λe λx -C 2λe -λx ,y ''=C 1λ2e λx +C 2λ2e -λx .y ''-λ2y =(C 1λ2e λx +C 2λ2e -λx )-λ2(C 1e λx +C 2e -λx )=(C 1λ2e λx +C 2λ2e -λx )-(C 1λ2e λx +C 2λ2e -λx )=0 .7. 验证函数y =e x sin x 满足关系式:y ''-2y '+2y =0 .解 y '=e x sin x +e x cos x =e x (sin x +cos x ),y ''=e x (sin x +cos x )+e x (cos x -sin x )=2e x cos x .y ''-2y '+2y =2e x cos x -2e x (sin x +cos x )+2e x sin x=2e x cos x -2e x sin x -2e x cos x +2e x sin x =0 . 8. 求下列函数的n 阶导数的一般表达式:(1) y =x n +a 1x n -1+a 2x n -2+ ⋅ ⋅ ⋅ +a n -1x +a n (a 1, a 2, ⋅ ⋅ ⋅, a n 都是常数);(2) y =sin 2x ;(3) y =x ln x ;(4) y =xe x .解 (1) y '=nx n -1+(n -1)a 1x n -2+(n -2)a 2x n -3+ ⋅ ⋅ ⋅ +a n -1, y ''=n (n -1)x n -2+(n -1)(n -2)a 1x n -3+(n -2)(n -3)a 2x n -4+ ⋅ ⋅ ⋅ +a n -2, ⋅ ⋅ ⋅,y (n )=n (n -1)(n -2)⋅ ⋅ ⋅2⋅1x 0=n ! .(2) y '=2sin x cos x =sin2x ,)22s i n (22c o s 2π+==''x x y , )222s i n (2)22c o s (222ππ⋅+=+='''x x y , )232s i n (2)222c o s (233)4(ππ⋅+=⋅+=x x y , ⋅ ⋅ ⋅,]2)1(2s i n [21)(π⋅-+=-n x y n n . (3) 1ln +='x y ,11-==''x xy , y '''=(-1)x -2,y (4)=(-1)(-2)x -3,⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (4) y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x ,y '''=2e x +e x +xe x =3e x +xe x ,⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) .9. 求下列函数所指定的阶的导数:(1) y =e x cos x , 求y (4) ;(2) y =x sh x , 求y (100) ;(3) y =x 2sin 2x , 求y (50) .解 (1)令u =e x , v =cos x , 有u '=u ''=u '''=u (4)=e x ;v '=-sin x , v ''=-cos x , v '''=sin x , v (4)=cos x ,所以 y (4)=u (4)⋅v +4u '''⋅v '+6u ''⋅v ''+4u '⋅v '''+u ⋅v (4)=e x [cos x +4(-sin x )+6(-cos x )+4sin x +cos x ]=-4e x cos x .(2)令u =x , v =sh x , 则有u '=1, u ''=0;v '=ch x , v ''=sh x , ⋅ ⋅ ⋅ , v (99)=ch x , v (100)=sh x ,所以)100()99(99100)98(98100)98(2100)99(1100)100()100( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅==100ch x +x sh x .(3)令u =x 2 , v =sin 2x , 则有u '=2x , u ''=2, u '''=0;x x v 2s i n 2)2482sin(24848)48(=⋅+=π, v (49)=249cos 2x , v (50)=-250sin 2x ,所以 )50()49(4950)48(4850)48(250)49(1150)50()50( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅=)50()49(4950)48(4850v u v u C v u C ⋅+⋅'+⋅''=)2s i n 2(2c o s 22502sin 22249505024928x x x x x -⋅+⋅⋅+⋅⋅⋅= )2s i n 212252c o s 502sin (2250x x x x x ++-=.习题2-41. 求由下列方程所确定的隐函数y 的导数dxdy : (1) y 2-2x y +9=0;(2) x 3+y 3-3axy =0;(3) xy =e x +y ;(4) y =1-xe y .解 (1)方程两边求导数得2y y '-2y -2x y ' =0 ,于是 (y -x )y '=y ,xy y y -='. (2)方程两边求导数得3x 2+3y 2y '-2ay -3axy '=0,于是 (y 2-ax )y '=ay -x 2 ,axy x ay y --='22. (3)方程两边求导数得y +xy '=e x +y (1+y '),于是 (x -e x +y )y '=e x +y -y ,yx y x e x y e y ++--='. (4)方程两边求导数得y '=-e y -xe y y ',于是 (1+xe y )y '=-e y ,y y xeey +-='1. 2. 求曲线323232a y x =+在点)42 ,42(a a 处的切线方程和法线方程. 解 方程两边求导数得 032323131='+--y y x , 于是 3131---='y x y , 在点)42 ,42(a a 处y '=-1. 所求切线方程为)42(42a x a y --=-, 即a y x 22=+. 所求法线方程为)42(42a x a y -=-, 即x -y =0. 3. 求由下列方程所确定的隐函数y 的二阶导数22dx y d : (1) x 2-y 2=1;(2) b 2x 2+a 2y 2=a 2b 2;(3) y =tan(x +y );(4) y =1+xe y .解 (1)方程两边求导数得2x -2yy '=0,y '=yx , 3322221)(y y x y y y xx y y y x y y x y -=-=-='-='=''. (2)方程两边求导数得2b 2x +2a 2yy '=0,yx a b y ⋅-='22, 22222222)(y y x a b x y a by y x y a by ⋅--⋅-='-⋅-='' 32432222222ya b y a x b y a a b -=+⋅-=. (3)方程两边求导数得y '=sec 2(x +y )⋅(1+y '),1)(c o s 1)(s e c 1)(s e c 222-+=+-+='y x y x y x y 222211)(s i n )(c o s )(s i n y y x y x y x --=+-+++=, 52233)1(2)11(22yy y y y y y +-=--='=''. (4)方程两边求导数得y '=e y +xe y y ',ye y e xe e y y y y y -=--=-='2)1(11, 3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''. 4. 用对数求导法求下列函数的导数:(1) x xx y )1(+=;(2)55225+-=x x y ;(3)54)1()3(2+-+=x x x y ; (4)x e x x y -=1sin .解 (1)两边取对数得ln y =x ln|x |-x ln|1+x |,两边求导得xx x x x x y y +⋅-+-⋅+='11)1l n (1ln 1, 于是 ]111[l n )1(xx x x x y x ++++='. (2)两边取对数得)2l n (251|5|ln 51ln 2+--=x x y , 两边求导得22251515112+⋅--⋅='x x x y y , 于是 ]225151[25512552+⋅--=+-='x x x x x y . (3)两边取对数得)1l n (5)3l n (4)2l n (21ln +--++=x x x y , 两边求导得1534)2(211+---+='x x x y y , 于是 ]1534)2(21[)1()3(254+--+++-+='x x x x x x y (4)两边取对数得)1l n (41s i n ln 21ln 21ln x e x x y -++=, 两边求导得)1(4c o t 21211x e e x x y y --+=', 于是 ])1(4c o t 2121[1s i n x x xe e x x e x x y --+-=' ]1c o t 22[1s i n 41-++-=x x x e e x x e x x . 5. 求下列参数方程所确定的函数的导数dxdy : (1) ⎩⎨⎧==22bt y at x ; (2) ⎩⎨⎧=-=θθθθcos )sin 1(y x .解 (1)t ab at bt x y dx dy t t 23232==''=. (2)θθθθθθθθcos sin 1sin cos ---=''=x y dx dy . 6. 已知⎩⎨⎧==.cos ,sin t e y t e x t t 求当3π=t 时dx dy 的值. 解 tt t t t e t e t e t e x y dx dy t t t t t t cos sin sin cos cos sin sin cos +-=+-=''=, 当3π=t 时, 23313123212321-=+-=+-=dx dy . 7. 写出下列曲线在所给参数值相应的点处的切线方程和法线方程:(1) ⎩⎨⎧==t y t x 2cos sin , 在4π=t 处; (2) ⎪⎩⎪⎨⎧+=+=2221313taty t atx , 在t =2处.解 (1)tt x y dx dy t t cos 2sin 2-=''=. 当4π=t 时, 222224cos )42sin(2-=-=⋅-=ππdx dy , 220=x , 00=y , 所求切线方程为)22(22--=x y , 即0222=-+y x ; 所求法线方程为)22(221---=x y , 即0142=--y x . (2)222222)1(6)1(23)1(6t at t t at t at y t +=+⋅-+=', 222222)1(33)1(23)1(3t at a t t at t a x t +-=+⋅-+=', 2212336ttat a atx y dx dy t t -=-=''=. 当t =2时, 3421222-=-⋅=dx dy , a x 560=, a y 5120=, 所求切线方程为)56(34512a x a y --=-, 即4x +3y -12a =0; 所求法线方程为)56(43512a x a y -=-, 即3x -4y +6a =0. 8. 求下列参数方程所确定的函数的二阶导数22dxy d : (1) ⎪⎩⎪⎨⎧-==.122t y t x ;(2) ⎩⎨⎧==t b y t a x sin cos ; (3) ⎩⎨⎧==-t t ey e x 23; (4) ⎩⎨⎧-==)()()(t f t tf y t f x t t , 设f ''(t )存在且不为零. 解 (1) t x y dx dy t t 1-=''=, 322211)(t t t x y dx y d t t x =='''=. (2) t ab t a t b x y dx dy t t cot sin cos -=-=''=, ta b t a t a b x y dx y d t t x 32222sin sin csc )(-=-='''=. (3) t t t t t e e e x y dx dy 23232-=-=''=-, t t t t x e e e x y dx y d 322943232)(=-⋅-=''=. (4) t t f t f t f t t f x y dx dy t t ='''-''+'=''=)()()()(, )(1)(22t f x y dx y d t t x ''='''=. 9. 求下列参数方程所确定的函数的三阶导数33dxy d : (1)⎩⎨⎧-=-=321t t y t x ; (2)⎩⎨⎧-=+=t t y t x arctan )1ln(2. 解(1)tt t t t dx dy 231)1()(223--='-'-=, )31(412)231(3222t t t t t dx y d +-=-'--=,)1(832)31(4125333t t t t t dx y d +-=-'+-=. (2)t tt t t t t dx dy 2112111])1[ln()arctan (22=++-='+'-=, t t t t t dxy d 4112)21(2222+=+'=, 3422338112)41(t t tt t t dx y d -=+'+=. 10. 落在平静水面上的石头, 产生同心波纹, 若最外一圈波半径的增大率总是6m/s , 问在2秒末扰动水面面积的增大率为多少?解 设波的半径为r , 对应圆面积为S , 则S =πr 2, 两边同时对t 求导得 S t '=2πrr '.当t =2时, r =6⋅2=12, r 't =6,故S t '|t =2=2⋅12⋅6π=144π (米2/秒).11. 注水入深8m 上顶直径8m 的正圆锥形容器中, 其速率为4m 2/min . 当水深为5m 时, 其表面上升的速度为多少?解 水深为h 时, 水面半径为h r 21=, 水面面积为π241h S =, 水的体积为3212413131h h h hS V ππ=⋅==, dt dh h dt dV ⋅⋅=2312π, dtdV h dt dh ⋅=24π. 已知h =5(m),4=dtdV (m 3/min), 因此 πππ2516425442=⋅=⋅=dt dV h dt dh (m/min).12. 溶液自深18cm 直径12cm 的正圆锥形漏斗中漏入一直径为10cm 的圆柱形筒中, 开始时漏斗中盛满了溶液, 已知当溶液在漏斗中深为12cm 时, 其表面下降的速率为1cm/min . 问此时圆柱形筒中溶液表面上升的速率为多少? 解 设在t 时刻漏斗在的水深为y , 圆柱形筒中水深为h . 于是有h y r 22253118631=-⋅⋅ππ. 由186y r =, 得3y r =, 代入上式得 h y y 2225)3(3118631=-⋅⋅ππ, 即 h y 233253118631=-⋅⋅π. 两边对t 求导得h y y t '='-222531. 当y =12时, y 't =-1代入上式得64.025165)1(1231222≈=-⋅⋅-='t h (cm/min)..2-71. 已知y =x 3-x , 计算在x =2处当∆x 分别等于1, 0.1, 0.01时的∆y 及dy . 解 ∆y |x =2, ∆x =1=[(2+1)3-(2+1)]-(23-2)=18,dy |x =2, ∆x =1=(3x 2-1)∆x |x =2, ∆x =1=11;∆y |x =2, ∆x =0.1=[(2+0.1)3-(2+0.1)]-(23-2)=1.161,dy |x =2, ∆x =0.1=(3x 2-1)∆x |x =2, ∆x =0.1=1.1;∆y |x =2, ∆x =0.01=[(2+0.01)3-(2+0.01)]-(23-2)=0.110601,dy |x =2, ∆x =0.01=(3x 2-1)∆x |x =2, ∆x =0.01=0.11.2. 设函数y =f (x )的图形如图所示, 试在图(a )、(b )、(c )、(d )中分别标出在点x 0的dy 、∆y 及∆y -d y 并说明其正负.解 (a )∆y >0, dy >0, ∆y -dy >0.(b )∆y >0, dy >0, ∆y -dy <0.(c )∆y <0, dy <0, ∆y -dy <0.(d )∆y <0, dy <0, ∆y -dy >0.3. 求下列函数的微分:(1)x xy 21+=; (2) y =x sin 2x ;(3)12+=x xy ;(4) y =ln 2(1-x );(5) y =x 2e 2x ;(6) y =e -x cos(3-x );(7)21arcsin x y -=;(8) y =tan 2(1+2x 2);(9)2211arctan x x y +-=; (10) s =A sin(ωt +ϕ) (A , ω, ϕ是常数) .解 (1)因为xx y 112+-=', 所以dx x x dy )11(2+-=. (2)因为y '=sin2x +2x cos2x , 所以dy =(sin2x +2x cos2x )dx .(3)因为1)1(111122222++=++⋅-+='x x x x x x y , 所以dx x x dy 1)1(122++=. (4)dx x x dx x x dx x dx y dy )1ln(12])1(1)1ln(2[])1([ln 2--=--⋅-='-='=. (5)dy =y 'dx =(x 2e 2x )'dx =(2xe 2x +2x 2e 2x )dx =2x (1+x )e 2x .(6) dy =y 'dx =[e -x cos(3-x )]dx =[-e -x cos(3-x )+e -x sin(3-x )]dx=e -x [sin(3-x )-cos(3-x )]dx .(7)dx xx x dx x x dx x dx y dy 22221||)12()1(11)1(arcsin --=--⋅--='-='=. (8) dy =d tan 2(1+2x 2)=2tan(1+2x 2)d tan(1+2x 2)=2tan(1+2x 2)⋅sec 2(1+2x 2)d (1+2x 2)=2tan(1+2x 2)⋅sec 2(1+2x 2)⋅4xdx=8x ⋅tan(1+2x 2)⋅sec 2(1+2x 2)dx .(9))11()11(1111arctan 2222222x x d x x x x d dy +-+-+=+-= dx x x dx x x x x x x x 4222222214)1()1(2)1(2)11(11+-=+--+-⋅+-+=.(10) dy =d [A sin(ω t +ϕ)]=A cos(ω t +ϕ)d (ωt +ϕ)=A ω cos(ωt +ϕ)dx .4. 将适当的函数填入下列括号内, 使等式成立:(1) d ( )=2dx ;(2) d ( )=3xdx ;(3) d ( )=cos tdt ;(4) d ( )=sin ωxdx ;(5) d ( )dx x 11+=; (6) d ( )=e -2x dx ;(7) d ( )dx x1=; (8) d ( )=sec 23xdx .解 (1) d ( 2x +C )=2dx .(2) d (C x +223)=3xdx . (3) d ( sin t +C )=cos tdt .(4) d (C x +-ωωcos 1)=sin ωxdx . (5) d ( ln(1+x )+C )dx x 11+=. (6) d (C e x +--221)=e -2x dx . (7) d (C x +2)dx x1=. (8) d (C x +3tan 31)=sec 23xdx .5. 如图所示的电缆B O A的长为s , 跨度为2l , 电缆的最低点O 与杆顶连线AB 的距离为f , 则电缆长可按下面公式计算:)321(222lf l s +=, 当f 变化了∆f 时, 电缆长的变化约为多少?解 f f l df lf l dS S ∆='+=≈∆38)321(222. 6. 设扇形的圆心角α=60︒, 半径R =100cm(如图), 如果R 不变, α 减少30', 问扇形面积大约改变了多少?又如果α 不变, R 增加1cm , 问扇形面积大约改变了多少?解 (1)扇形面积221R S α=, αααα∆='=≈∆2221)21(R d R dS S . 将α=60︒3π=, R =100, 36003πα-='-=∆ 代入上式得 63.43)360(100212-≈-⋅⋅≈∆πS (cm 2). (2) R R dR R dS S R ∆='=≈∆αα)21(2. 将α=60︒3π=, R =100, ∆R =1代入上式得 72.10411003≈⋅⋅≈∆πS (cm 2). 7. 计算下列三角函数值的近似值:(1) cos29︒;(2) tan136︒.解 (1)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=cos x 时, 有cos(x +∆x )≈cos x -sin x ⋅∆x , 所以cos29︒=87467.01802123)180(6sin 6cos )1806cos(≈⋅+=-⋅-≈-ππππππ. (2)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=tan x 时, 有tan(x +∆x )≈tan x +sec 2x ⋅∆x , 所以。

(完整word版)高等数学(同济第六版)上册-期末试卷及答案

(完整word版)高等数学(同济第六版)上册-期末试卷及答案

高等数学(同济第六版)上册—期末试卷及答案一、填空题1.=-→xxe x x 2sin 2cos lim30 。

23 2。

曲线x xe y -=的拐点是 。

)2,2(2-e 3。

设)(x f 在0=x 处可导且,0)0(=f 则=→xx f x )(lim. )0(f ' 4.曲线x x y +-=22cos 1在)21,2(ππ+处的切线方程为 。

1y x =+ 5.曲线122-=x x y 有垂直渐近线 和水平渐近线 . 1±=x ,1=y6。

设)(u f 可导,)]([sin 2x e f y =,则=dy . dx e e f e f x x x ⋅'⋅)()]([2sin 7.=⎰dx e x 40 . )1(22+e 8。

若3)(0-='x f ,则=--+→hh x f h x f h )3()(lim000. 12-9. 若dx x p ⎰+∞1收敛,则p 的范围是 。

1-<p10.=+++∞→1)1232(lim x x x x 。

11.设⎰+=c x F dx x f )()(,则⎰=dx x f )2( .c x F +)2(2112.设)(x f 的一个原函数是x x ln ,则⎰=dx x xf )( 。

c x x x ++ln 2422 13.设⎩⎨⎧≤>=0,0,)(2x x x x x f ,则⎰-=11)(dx x f 。

61-14.过点)3,1(且切线斜率为x 2的曲线方程为 。

12+=x y15.已知函数⎪⎩⎪⎨⎧=≠=0,0,sin )(x a x x xx f ,则当→x ∞时,函数)(x f 是无穷小;当=a 时,函数)(x f 在0=x 处连续,否则0=x 为函数的第 类间断点。

1, 一16.已知⎰+=c x F dx x f )()(,则⎰=-dx x f x)(arcsin 112。

c x F +)(arcsin17.当0→x 时,1)1(312-+ax 与x cos 1-是等价无穷小,则=a 。

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析第一章习题1-11. 设A=(-, -5)(5, +), B=[-10, 3), 写出A B, A B, A\B及A\(A\B)的表达式.解A B=(-, 3)(5, +),A B=[-10, -5),A\B=(-, -10)(5, +),A\(A\B)=[-10, -5).2. 设A、B是任意两个集合, 证明对偶律: (A B)C=A C B C.证明因为x(A B)C x A B x A或x B x A C或x B C x A C B C,所以(A B)C=A C B C.3. 设映射f : X Y, A X, B X . 证明(1)f(A B)=f(A)f(B);(2)f(A B)f(A)f(B).证明因为y f (A B )x A B , 使f (x )=y(因为x A 或x B ) y f (A )或y f (B )y f (A )f (B ), 所以 f (AB )=f (A )f (B ). (2)因为y f (A B )x A B , 使f (x )=y (因为x A 且x B ) y f (A )且y f (B ) y f (A )f (B ), 所以 f (A B )f (A )f (B ).4. 设映射f : X Y , 若存在一个映射g : Y X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个xX , 有I X x =x ; 对于每一个y Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的yY , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1x 2, 必有f (x 1)f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)]x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y X , 因为对每个y Y , 有g (y )=x X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X Y , A X . 证明:(1)f -1(f (A ))A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x A f (x )=y f (A ) f -1(y )=x f -1(f (A )),所以 f -1(f (A ))A . (2)由(1)知f -1(f (A ))A .另一方面, 对于任意的xf -1(f (A ))存在y f (A ), 使f -1(y )=x f (x )=y . 因为y f (A )且f 是单射, 所以x A . 这就证明了f -1(f (A ))A . 因此f -1(f (A ))=A .6. 求下列函数的自然定义域:(1)23+=x y ; 解 由3x +20得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 20得x 1. 函数的定义域为(-, -1)(-1, 1)(1, +). (3)211x xy --=; 解 由x0且1-x 20得函数的定义域D =[-1, 0)(0, 1].(4)241x y -=; 解 由4-x 20得 |x | 2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x 0得函数的定义D =[0, +¥).(6) y =tan(x +1);解 由21π≠+x (k =0, 1, 2, )得函数的定义域为 12-+≠ππk x (k =0, 1, 2, ). (7) y =arcsin(x -3);解 由|x -3|1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x 0且x 0得函数的定义域D =(-¥, 0)È(0, 3).(9) y =ln(x +1);解 由x +10得函数的定义域D =(-1, +¥). (10)x e y 1=.解 由x0得函数的定义域D =(-¥, 0)È(0, +¥). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x 0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, j (-2), 并作出函数y =j (x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-, 1); (2)y =x +ln x , (0, +).证明 (1)对于任意的x 1, x 2(-, 1), 有1-x 10, 1-x 20. 因为当x 1x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-, 1)内是单调增加的. (2)对于任意的x 1, x 2(0, +), 当x 1x 2时, 有0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于"x 1, x 2Î(-l , 0)且x 1<x 2, 有-x 1, -x 2Î(0, l )且-x 1-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以 f (-x 2)f (-x 1), -f (x 2)-f (x 1), f (x 2)f (x 1),这就证明了对于"x1, x2Î(-l, 0), 有f(x1)f(x2), 所以f(x)在(-l, 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l, l)上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明(1)设F(x)=f(x)+g(x). 如果f(x)和g(x)都是偶函数, 则F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x),所以F(x)为偶函数, 即两个偶函数的和是偶函数.如果f(x)和g(x)都是奇函数, 则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-F(x),所以F(x)为奇函数, 即两个奇函数的和是奇函数.(2)设F(x)=f(x)×g(x). 如果f(x)和g(x)都是偶函数, 则F(-x)=f(-x)×g(-x)=f(x)×g(x)=F(x),所以F(x)为偶函数, 即两个偶函数的积是偶函数.如果f(x)和g(x)都是奇函数, 则F(-x)=f(-x)×g(-x)=[-f(x)][-g(x)]=f(x)×g(x)=F(x),所以F(x)为偶函数, 即两个奇函数的积是偶函数.如果f(x)是偶函数, 而g(x)是奇函数, 则F(-x)=f(-x)×g(-x)=f(x)[-g(x)]=-f(x)×g(x)=-F(x),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xxy +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2p .(2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin px ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =p .14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。

同济大学 第六版 高数练习册答案 上册word精品文档69页

同济大学 第六版 高数练习册答案 上册word精品文档69页

高等数学习题解答第一章(7-11)第六节 极限存在准则 两个重要极限1.0;1;1;0;2;2/32. 1-e ;1432;0;;;--e e e e3. 证明:{n x }显然单调递增,1x 3≤,若31≤-n x ,则n x ≤33+≤3∴ {n x }单调有界,∴{n x }收敛,不妨设∞→n lim nx =a , 则有 a =3+a ,解得,a =(1+13)/2, 2)131(-=a∴2)131(lim +=∞→n n x4. 解:1)12111(22222+≤++++++≤+n n nn n n nn n Λ11limlim22=+=+∞→∞→n n n n nn n∴1)12111(lim 222=++++++∞→nn n n n Λ第七节 无穷小的比较1.(B )2. (A )3.证明: 令t x sin = , 1sin lim arcsin lim00==→→t txx t x∴当0→x 时,x x ~arcsin 。

4.解:(1)0lim→x x x 25tan =0lim →x x x 25=25 (2)0lim →x ())cos 1(arcsin 2x x x -=0lim→x 222x x x =∞(3)0lim→x x x )sin 21ln(-=0lim→x 2sin 2-=-xx(4)0lim →x =-+1)21ln(3x e x 3232lim 0=→x x x (5)0lim→x x x x 3sin sin tan -=0lim →x =-xx x x cos )cos 1(sin 30lim →x 322xx x =1/2(6)0lim →x ⎪⎭⎫ ⎝⎛-x x tan 1sin 1=0lim→x x x sin cos 1-=0lim →x 022=x x (7)431)3tan arctan (lim 220=+=+++→nn n n n a n n 第八节 函数的连续性与间断点1.0 ; 2. 充要;3. 2;4. D 5. B 6. C7. 解:12121lim 1212lim )(lim 0=+-=+-=--+∞→+∞→→+t tt tt t x x f1)(lim 0-=-→x f x∴ )(x f 在x=0 不连续,且x=0 为函数)(x f 的第一类间断点。

高等数学上册第六版课后习题图文详细答案第六章(可编辑)

高等数学上册第六版课后习题图文详细答案第六章(可编辑)

高等数学上册第六版课后习题详细答案第六章习题62 1 求图621 中各画斜线部分的面积1 解画斜线部分在x轴上的投影区间为[0 1] 所求的面积为2解法一画斜线部分在x轴上的投影区间为[0 1] 所求的面积为解法二画斜线部分在y轴上的投影区间为[1 e] 所求的面积为3解画斜线部分在x轴上的投影区间为[3 1] 所求的面积为4解画斜线部分在x轴上的投影区间为[1 3] 所求的面积为2. 求由下列各曲线所围成的图形的面积1 与x2y28两部分都要计算解 2与直线yx及x2解所求的面积为3 yex yex与直线x1解所求的面积为4yln x, y轴与直线yln a, yln b ba0解所求的面积为3 求抛物线yx24x3及其在点0 3和3 0处的切线所围成的图形的面积解 y2 x4过点0, 3处的切线的斜率为4 切线方程为y4x3过点3, 0处的切线的斜率为2 切线方程为y2x6两切线的交点为所求的面积为4 求抛物线y22px及其在点处的法线所围成的图形的面积解2yy2p 在点处法线的斜率k1法线的方程为即求得法线与抛物线的两个交点为和法线与抛物线所围成的图形的面积为5 求由下列各曲线?所围成的图形的面积?12acos 解所求的面积为a22xacos3t, yasin3t; 解所求的面积为 32a2+cos 解所求的面积为6 求由摆线xatsin t ya1cos t 的一拱0t2与横轴?所围成的图形的面积解所求的面积为 7 求对数螺线ae及射线所围成的图形面积解所求的面积为8 求下列各曲线所围成图形的公共部分的面积13cos 及1cos 解曲线3cos 与1cos?交点的极坐标为由对称性所求的面积为 2及解曲线与的交点M的极坐标为M 所求的面积为 9 求位于曲线yex下方??该曲线过原点的切线的左方以及x轴上方之间的图形的面积解设直线ykx与曲线yex相切于Ax0 y0点则有求得x01 y0e ke所求面积为10 求由抛物线y24ax与过焦点的弦所围成的图形的面积的最小值解设弦的倾角为由图可以看出抛物线与过焦点的弦所围成的图形的面积为显然当时 A10 当时 A10因此抛物线与过焦点的弦所围成的图形的面积的最小值为11 把抛物线y24ax及直线xx0x00所围成的图形绕x轴旋转计算所得旋转体的体积解所得旋转体的体积为12 由yx3 x2 y0所围成的图形分别绕x轴及y轴旋转计算所得两个旋转体的体积解绕x轴旋转所得旋转体的体积为绕y轴旋转所得旋转体的体积为13 把星形线所围成的图形绕x轴旋转计算所得旋转体的体积解由对称性所求旋转体的体积为14 用积分方法证明图中球缺的体积为证明 15 求下列已知曲线所围成的图形按指定的轴旋转所产生的旋转体的体积1 绕y轴解 2 x0 xa y0 绕x轴解 3 绕x 轴解4摆线xatsin t ya1cos t的一拱 y0 绕直线y2a解 16 求圆盘绕xbba0旋转所成旋转体的体积解17 设有一截锥体其高为h 上、下底均为椭圆椭圆的轴长分别为2a、2b和2A、2B 求这截锥体的体积解建立坐标系如图过y轴上y点作垂直于y轴的平面则平面与截锥体的截面为椭圆易得其长短半轴分别为截面的面积为于是截锥体的体积为18 计算底面是半径为R的圆而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积解设过点x且垂直于x轴的截面面积为Ax 由已知条件知它是边长为的等边三角形的面积其值为所以 19 证明由平面图形0axb 0yfx绕y轴旋转所成的旋转体的体积为证明如图在x处取一宽为dx的小曲边梯形小曲边梯形绕y轴旋转所得的旋转体的体积近似为2xfxdx 这就是体积元素即dV2xfxdx于是平面图形绕y轴旋转所成的旋转体的体积为20 利用题19和结论计算曲线ysin x0x和x轴所围成的图形绕y轴旋转所得旋转体的体积解 21 计算曲线yln x上相应于的一段弧的长度解令即则22 计算曲线上相应于1x3的一段弧的长度解所求弧长为23 计算半立方抛物线被抛物线截得的一段弧的长度解由得两曲线的交点的坐标为所求弧长为因为所以24 计算抛物线y22px 从顶点到这曲线上的一点Mx y的弧长解 25 计算星形线的全长解用参数方程的弧长公式26 将绕在圆半径为a上的细线放开拉直使细线与圆周始终相切细线端点画出的轨迹叫做圆的渐伸线它的方程为计算这曲线上相应于t从0变到的一段弧的长度解由参数方程弧长公式 27 在摆线xatsin t ya1cos t上求分摆线第一拱成1 3的点的坐标解设t从0变化到t0时摆线第一拱上对应的弧长为st0 则当t02时得第一拱弧长s28a 为求分摆线第一拱为1 3的点为Ax y 令解得因而分点的坐标为横坐标纵坐标故所求分点的坐标为28 求对数螺线相应于自?0到??的一段弧长解用极坐标的弧长公式29 求曲线1相应于自至的一段弧长解按极坐标公式可得所求的弧长30 求心形线a1cos?的全长解用极坐标的弧长公式习题63 1 由实验知道弹簧在拉伸过程中需要的力F单位 N 与伸长量s单位 cm成正比即Fks k为比例常数如果把弹簧由原长拉伸6cm 计算所作的功解将弹簧一端固定于A 另一端在自由长度时的点O为坐标原点建立坐标系功元素为dWksds 所求功为 k牛厘米2 直径为20cm、高80cm的圆柱体内充满压强为10N/cm2的蒸汽设温度保持不变要使蒸汽体积缩小一半问需要作多少功? 解由玻马定律知设蒸气在圆柱体内变化时底面积不变高度减小x厘米时压强为Px牛/厘米2 则功元素为所求功为 J3 1证明把质量为m的物体从地球表面升高到h处所作的功是其中g是地面上的重力加速度 R是地球的半径2一颗人造地球卫星的质量为173kg 在高于地面630km处进入轨道问把这颗卫星从地面送到630的高空处克服地球引力要作多少功?已知g98m/s2 地球半径R6370km证明 1取地球中心为坐标原点把质量为m的物体升高的功元素为所求的功为2kJ4 一物体按规律作直线运动媒质的阻力与速度的平方成正比计算物体由x0移至xa时克服媒质阻力所作的功解因为所以阻力而所以功元素dWfxdx 所求之功为5 用铁锤将一铁钉击入木板设木板对铁钉的阻力与铁钉击入木板的深度成正比在击第一次时将铁钉击入木板1cm 如果铁锤每次打击铁钉所做的功相等问锤击第二次时铁钉又击入多少? 解设锤击第二次时铁钉又击入hcm 因木板对铁钉的阻力f与铁钉击入木板的深度xcm成正比即fkx 功元素dWf dxkxdx击第一次作功为击第二次作功为因为所以有解得cm6 设一锥形贮水池深15m 口径20m 盛满水今以唧筒将水吸尽问要作多少功? 解在水深x处水平截面半径为功元素为所求功为 1875吨米57785.7kJ7 有一闸门它的形状和尺寸如图水面超过门顶2m 求闸门上所受的水压力解建立x轴方向向下原点在水面水压力元素为闸门上所受的水压力为吨205 8kN8 洒水车上的水箱是一个横放的椭圆柱体尺寸如图所示当水箱装满水时计算水箱的一个端面所受的压力解建立坐标系如图则椭圆的方程为压力元素为所求压力为吨17.3kN提示积分中所作的变换为 9 有一等腰梯形闸门它的两条底边各长10m和6m 高为20m 较长的底边与水面相齐计算闸门的一侧所受的水压力解建立坐标系如图直线AB的方程为压力元素为所求压力为吨14388千牛10 一底为8cm、高为6cm的等腰三角形片铅直地沉没在水中顶在上底在下且与水面平行而顶离水面3cm 试求它每面所受的压力解建立坐标系如图腰AC的方程为压力元素为所求压力为克?牛 11 设有一长度为l、线密度为的均匀细直棒在与棒的一端垂直距离为a单位处有一质量为m的质点M 试求这细棒对质点M的引力解建立坐标系如图在细直棒上取一小段dy 引力元素为dF在x轴方向和y轴方向上的分力分别为12 设有一半径为R、中心角为的圆弧形细棒其线密度为常数在圆心处有一质量为m的质点F 试求这细棒对质点M的引力解根据对称性 Fy0引力的大小为方向自M点起指向圆弧中点总习题六 1 一金属棒长3m 离棒左端xm处的线密度为kg/m 问x为何值时 [0 x]一段的质量为全棒质量的一半解 x应满足因为所以 m2 求由曲线asin acossina0所围图形公共部分的面积解 3 设抛物线通过点0 0 且当x[0 1]时 y0 试确定a、b、c的值使得抛物线与直线x1 y0所围图形的面积为且使该图形绕x轴旋转而成的旋转体的体积最小解因为抛物线通过点0 0 所以c0 从而抛物线与直线x1 y0所围图形的面积为令得该图形绕x轴旋转而成的旋转体的体积为令得于是b24 求由曲线与直线x4 x轴所围图形绕y轴旋转而成的旋转体的体积解所求旋转体的体积为5 求圆盘绕y轴旋转而成的旋转体的体积解 6 抛物线被圆所需截下的有限部分的弧长解由解得抛物线与圆的两个交点为于是所求的弧长为7 半径为r的球沉入水中球的上部与水面相切球的比重与水相同现将球从水中取出需作多少功解建立坐标系如图将球从水中取出时球的各点上升的高度均为2r 在x处取一厚度为dx的薄片在将球从水中取出的过程中薄片在水下上升的高度为rx 在水上上升的高度为rx 在水下对薄片所做的功为零在水上对薄片所做的功为对球所做的功为8 边长为a和b的矩形薄板与液面成??角斜沉于液体内长边平行于液面而位于深h处设ab 液体的比重为? 试求薄板每面所受的压力解在水面上建立x轴使长边与x轴在同一垂面上长边的上端点与原点对应长边在x轴上的投影区间为[0 bcos] 在x处x轴到薄板的距离为hxtan 压力元素为薄板各面所受到的压力为9 设星形线上每一点处的线密度的大小等于该点到原点距离的立方在原点O处有一单位质点求星形线在第一象限的弧段对这质点的引力解取弧微分ds为质点则其质量为其中设所求的引力在x轴、y轴上的投影分别为Fx、Fy 则有所以。

高等数学同济第六版上_答案解析第七章

高等数学同济第六版上_答案解析第七章
^
于是
3 已知 M1(1 1 2)、M2(3 3 1)和 M3(3 1 3) 求与 M1M 2 、 M 2 M 3 同时垂直的单位向
轴 垂直于 xOy 面
u 上的投影
ww
(2)当 cos1 时 向量的方向与 y 轴的正向一致 垂直于 zOx 面 (3)当 coscos0 时 向量垂直于 x 轴和 y 轴 平行于 z 17 设向量 r 的模是 4 它与轴 u 的夹角是 60 求个学科的课后答案、视频教程在线浏览及下载。
解 设所求的点为 P(0 y z)与 A、B、C 等距离 则
| PA|2 32 ( y 1)2 ( z 2)2

由题意 有

| PA|2 | PB |2 | PC |2

解之得 y1 z2 故所求点为(0 1 2)
14 试证明以三点 A(4 1 9)、B(10 1 6)、C(2 4 3)为顶点 的三角形是等腰三角直角三角形
t
此文档由天天learn()为您收集整理。
关于 yOz 面的对称点为(a b c) 点(a b c)关于 zOx 面的对称点 为(a b c)
(2)点(a b c)关于 x 轴的对称点为(a b c) 点(a b c)关于 y 轴的对称点为(a b c) 点(a b c)关于 z 轴的对称点为(a b c) (3)点(a b c)关于坐标原点的对称点为(a b c) 9 自点 P0(x0 y0 z0)分别作各坐标面和各坐标轴的垂线 写 出各垂足的坐标
w.

tt
cos 1 cos 2 cos 1 2 2 2 2 3 3 3 4 16 设 向 量 的 方 向 余 弦 分 别 满 足 (1)cos0 (2)cos1 (3)coscos0 问这些向量与坐标轴或坐标面的关系如何?

高等数学同济第六版上试题

高等数学同济第六版上试题

大一上学期高数期末考试一、单项选择题 <本大题有4小题, 每小题4分, 共16分> 1. .〔A 〕〔B 〕〔C 〕〔D 〕不可导.2. .〔A 〕是同阶无穷小,但不是等价无穷小;〔B 〕是等价无穷小;〔C 〕是比高阶的无穷小;〔D 〕是比高阶的无穷小.3. 若,其中在区间上二阶可导且,则〔〕.〔A 〕函数必在处取得极大值; 〔B 〕函数必在处取得极小值;〔C 〕函数在处没有极值,但点为曲线的拐点; 〔D 〕函数在处没有极值,点也不是曲线的拐点.〔A 〕〔B 〕〔C 〕〔D 〕.二、填空题〔本大题有4小题,每小题4分,共16分〕 4. .5. .6..7. .三、解答题〔本大题有5小题,每小题8分,共40分〕8. 设函数由方程确定,求以与. 9. 设函数连续,,且,为常数. 求并讨论在处的连续性.10. 求微分方程满足的解.四、 解答题〔本大题10分〕)(0),sin (cos )( 处有则在设=+=x x x x x f (0)2f '=(0)1f '=(0)0f '=()f x )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα()()x x αβ与()()x x αβ与()x α()x β()x β()x α()()()02xF x t x f t dt=-⎰()f x (1,1)-'>()0f x ()F x 0x =()F x 0x =()F x 0x =(0,(0))F ()y F x =()F x 0x =(0,(0))F ()y F x =22x 222x +1x -2x +=+→xx x sin 2)31(lim ,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则lim(cos cos cos )→∞-+++=22221n n nnnn ππππ=-+⎰21212211arcsin -dx xx x =()y y x sin()1x y e xy ++='()y x '(0)y )(x f =⎰10()()g x f xt dt→=0()limx f x A x A '()g x '()g x =0x 2ln xy y x x '+==-1(1)9y11. 已知上半平面内一曲线,过点,且曲线上任一点处切线斜率数值上等于此曲线与轴、轴、直线所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题〔本大题10分〕12. 过坐标原点作曲线的切线,该切线与曲线与x 轴围成平面图形D.(1) 求D 的面积A ;<2> 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题〔本大题有2小题,每小题4分,共8分〕13. 设函数在上连续且单调递减,证明对任意的,.14. 设函数在上连续,且,.证明:在内至少存在两个不同的点,使〔提示:设〕解答一、单项选择题<本大题有4小题, 每小题4分, 共16分>1、D2、A3、C4、C二、填空题〔本大题有4小题,每小题4分,共16分〕5. .6..7. .8..三、解答题〔本大题有5小题,每小题8分,共40分〕9. 解:方程两边求导,10. 解: 11. 解:12. 解:由,知.,在处连续.13. 解:,)0()(≥=x x y y (,)01M x y (,)00x y x x =0x y ln =x y ln =)(x f []0,1[,]∈01q 1()()≥⎰⎰qf x d x q f x dx)(x f []π,00)(0=⎰πx d x f 0cos )(0=⎰πdx x x f ()π,021,ξξ.0)()(21==ξξf f ⎰=xdxx f x F 0)()(6e c x x +2)cos (21 2π3π0,0x y ==(0)1y '=-767u x x dx du ==1033()xf x dx xe dx ---=+⎰⎰⎰(0)0f =(0)0g =02()()lim ()lim22xx x xf x f u duA A g x A x→→-'==-=⎰'()g x =0x 2ln dy y xdx x +=1(1),09y C =-=11ln 39y x x x=-四、 解答题〔本大题10分〕14. 解:由已知且,将此方程关于求导得特征方程:解出特征根:其通解为代入初始条件,得故所求曲线方程为:五、解答题〔本大题10分〕 15. 解:〔1〕根据题意,先设切点为,切线方程:由于切线过原点,解出,从而切线方程为: 则平面图形面积〔2〕三角形绕直线x = e 一周所得圆锥体体积记为V 1,则曲线与x 轴与直线x = e 所围成的图形绕直线x = e 一周所得旋转体体积为V 2D 绕直线x = e 旋转一周所得旋转体的体积六、证明题〔本大题有2小题,每小题4分,共12分〕16. 证明:故有:证毕.证:构造辅助函数:.其满足在上连续,在上可导.,且由题设,有,有,由积分中值定理,存在,使即2d xy y x y'=+⎰x y y y '+=''2022=--r r .2,121=-=r r xx e C e C y 221+=-y y ()()001='=31,3221==C C xx e e y 23132+=-)ln ,(00x x )(1ln 000x x x x y -=-e x =0xe y 1=⎰-=-=10121)(e dy ey e A y 2131e V π=x y ln =)3125(6221+-=-=e e V V V π1()()qf x d x q f x dx -⎰⎰1()(()())qqqf x d x q f x d x f x dx =-+⎰⎰⎰1()()≥⎰⎰qf x d x q f x dxπ≤≤=⎰x dt t f x F x0,)()(0],0[π),0(π)()(x f x F ='0)()0(==πF F ⎰⎰⎰⋅+===ππππ0)(sin cos )()(cos cos )(0|dxx F x x x F x xdF xdx x f ⎰=πsin )(xdx x F ),0(πξ∈0sin )(=ξξF综上可知.在区间上分别应用罗尔定理,知存在和,使与,即.大一高数试题与答案一、填空题〔每小题1分,共10分〕________ 11.函数y=arcsin√1-x2+ ────── 的定义域为 _________√1- x2_______________.2.函数y=x+ex上点〔 0,1 〕处的切线方程是______________.f〔Xo +2h 〕-f〔Xo -3h 〕 3.设f〔X 〕在Xo 可导且f'〔Xo 〕=A,则lim ─────────────── h →o h = _____________.4.设曲线过〔0,1〕,且其上任意点〔X,Y〕的切线斜率为2X,则该曲线的方程是 ____________. x5.∫─────dx=_____________.1-x416.lim Xsin───=___________. x →∞ X7.设f〔x,y〕=sin〔xy〕,则fx 〔x,y〕=____________. _______R √R 2-x28.累次积分∫ dx ∫ f〔X2 + Y2〕dy 化为极坐标下的累次积分为 ____________.0 0d3y 3 d2y9.微分方程─── + ──〔─── 〕2的阶数为____________.dx3 x dx2∞ ∞10.设级数 ∑ an 发散,则级数 ∑ an _______________. n=1 n=1000 二、单项选择题〔在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的〔 〕内,1~10每小题1分,11~20每小题2分,共30分〕 〔一〕每小题1分,共10分 11.设函数f〔x〕=── ,g〔x〕=1-x,则f[g〔x〕]= 〔 〕 x0)(=ξF ),0(,0)()()0(πξπξ∈===F F F ],[,],0[πξξ),0(1ξξ∈),(2πξξ∈0)(1='ξF 0)(2='ξF 0)()(21==ξξf f111①1-──②1+──③────④xxx1-x12.x→0 时,xsin──+1是〔〕x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是〔〕①若f〔 X 〕在 X=Xo连续, 则f〔 X 〕在X=Xo可导②若f〔 X 〕在 X=Xo不可导,则f〔 X 〕在X=Xo不连续③若f〔 X 〕在 X=Xo不可微,则f〔 X 〕在X=Xo极限不存在④若f〔 X 〕在 X=Xo不连续,则f〔 X 〕在X=Xo不可导4.若在区间〔a,b〕内恒有f'〔x〕〈0,f"〔x〕〉0,则在〔a,b〕内曲线弧y=f〔x〕为〔〕①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'<x> =G'<x>,则〔〕①F<X>+G<X> 为常数②F<X>-G<X> 为常数③F<X>-G<X> =0dd④──∫F〔x〕dx=──∫G〔x〕dxdxdx16.∫│x│dx=〔〕-1①0②1③2④37.方程2x+3y=1在空间表示的图形是〔〕①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f〔x,y〕=x3+y3+x2ytg── ,则f〔tx,ty〕=〔〕y①tf〔x,y〕②t2f〔x,y〕1③t3f〔x,y〕④──f〔x,y〕t2an+1∞9.设an≥0,且lim─────=p,则级数∑an〔〕n→∞a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是〔〕①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程〔二〕每小题2分,共20分11.下列函数中为偶函数的是〔〕①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f〔x〕在〔a,b〕可导,a〈x1〈x2〈b,则至少有一点ζ∈〔a,b〕使〔〕①f〔b〕-f〔a〕=f'〔ζ〕〔b-a〕②f〔b〕-f〔a〕=f'〔ζ〕〔x2-x1〕③f〔x2〕-f〔x1〕=f'〔ζ〕〔b-a〕④f〔x2〕-f〔x1〕=f'〔ζ〕〔x2-x1〕13.设f〔X〕在 X=Xo 的左右导数存在且相等是f〔X〕在 X=Xo 可导的〔〕①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f〔x〕cosx=──[f〔x〕]2 ,则f〔0〕=1,则f〔x〕=〔〕dx①cosx②2-cosx③1+sinx④1-sinx15.过点〔1,2〕且切线斜率为4x3的曲线方程为y=〔〕①x4②x4+c③x4+1④x4-11 x16.lim───∫3tgt2dt=〔〕x→0 x3 01①0②1③──④∞3xy17.limxysin─────=〔〕x→0 x2+y2y→0①0②1③∞④sin118.对微分方程y"=f〔y,y'〕,降阶的方法是〔〕①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数∑anxn在xo〔xo≠0〕收敛, 则∑anxn在│x│〈│xo│〔〕n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫─────dσ=〔〕D x1 1 sinx①∫dx∫─────dy0 x x__1 √y sinx②∫dy∫─────dx0 y x__1 √x sinx③∫dx∫─────dy0 x x__1 √x sinx④∫dy∫─────dx0 x x三、计算题〔每小题5分,共45分〕___________/x-11.设y=/──────求y' .√x〔x+3〕sin〔9x2-16〕2.求lim─────────── .x→4/3 3x-4dx3.计算∫─────── .〔1+ex〕2t 1 dy4.设x=∫〔cosu〕arctgudu,y=∫〔sinu〕arctgudu,求─── .0 t dx5.求过点A〔2,1,-1〕,B〔1,1,2〕的直线方程.___6.设u=ex+√y+sinz,求du .x asinθ7.计算∫∫rsinθdrdθ .0 0y+18.求微分方程dy=〔────〕2dx通解 .x+139.将f〔x〕=─────────展成的幂级数 .〔1-x〕〔2+x〕四、应用和证明题〔共15分〕1.〔8分〕设一质量为m的物体从高空自由落下,空气阻力正比于速度〔比例常数为k〉0〕求速度与时间的关系.___ 12.〔7分〕借助于函数的单调性证明:当x〉1时,2√x〉3-── .x附:高数〔一〕参考答案和评分标准一、填空题〔每小题1分,共10分〕1.〔-1,1〕2.2x-y+1=03.5A4.y=x2+115.──arctgx2+c26.17.ycos〔xy〕π/2 π8.∫dθ∫f〔r2〕rdr0 09.三阶10.发散二、单项选择题〔在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的〔〕内,1~10每小题1分,11~20每小题2分,共30分〕〔一〕每小题1分,共10分1.③2.③3.④4.④5.②6.②7.②8.⑤9.④10.③〔二〕每小题2分,共20分11.④12.④13.⑤14.③15.③16.②17.①18.③19.①20.②三、计算题〔每小题5分,共45分〕11.解:lny=──[ln〔x-1〕-lnx-ln〔x+3〕]〔2分〕211111──y'=──〔────-──-────〕〔2分〕y2x-1xx+3__________1/x-1111y'=──/──────〔────-──-────〕〔1分〕2√x〔x+3〕x-1xx+318xcos〔9x2-16〕2.解:原式=lim────────────────〔3分〕x→4/3 318〔4/3〕cos[9〔4/3〕2-16]=──────────────────────=8〔2分〕31+ex-ex3.解:原式=∫───────dx〔2分〕〔1+ex〕2dxd〔1+ex〕=∫─────-∫───────〔1分〕1+ex〔1+ex〕21+ex-ex1=∫───────dx+─────〔1分〕1+ex1+ex1=x-ln〔1+ex〕+─────+c〔1分〕1+ex4.解:因为dx=〔cost〕arctgtdt,dy=-〔sint〕arctgtdt〔3分〕dy-〔sint〕arctgtdt所以───=────────────────=-tgt〔2分〕dx〔cost〕arctgtdt5.解:所求直线的方向数为{1,0,-3}〔3分〕x-1y-1z-2所求直线方程为────=────=────〔2分〕10-3__ __6.解:du=ex +√y + sinzd〔x+√y +sinx〕 〔3分〕 __ 一、D C A C A B C C B A D A B A D A D B D A二课程代码:00020一、单项选择题〔本大题共20小题,每小题2分,共40分〕在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分. 1.设函数=-=)x 2(f 1x x)x 1(f ,则〔 〕A.x 211-B.x12- C.x 2)1x (2- D.x)1x (2- 2.已知f<x>=ax+b,且f<-1>=2,f<1>=-2,则f<x>=〔 〕 A.x+3 B.x -3 C.2x D .-2x3.=+∞→xx )1x x (lim 〔 〕A.eB.e -1C.∞ D .14.函数)1x )(2x (3x y -+-=的连续区间是〔 〕A.),1()2,(+∞---∞B.),1()1,(+∞---∞C.),1()1,2()2,(+∞-----∞D.[)+∞,35.设函数⎩⎨⎧-=-≠++=1x a 1x )1x ln()1x ()x (f 2 , ,在x=-1连续,则a=〔 〕A.1B.-1C.2D.06.设y=lnsinx,则dy=〔 〕 A.-cotx dx B.cotx dx C.-tanx dx D.tanx dx7.设y=a x <a>0,a ≠1>,则y <n>==0x 〔 〕A.0B.1C.lnaD.<lna>n8.设一产品的总成本是产量x 的函数C<x>,则生产x 0个单位时的总成本变化率<即边际成本>是〔 〕A.x )x (C B.0x x x )x (C = C.dx)x (dC D.0x x dx )x (dC = 9.函数y=e -x -x 在区间<-1,1>内〔 〕A.单调减小B.单调增加C.不增不减D.有增有减10.如可微函数f<x>在x 0处取到极大值f<x 0>,则〔 〕A.0)x (f 0='B.0)x (f 0>'C.0)x (f 0<'D.)x (f 0'不一定存在11.='+⎰dx )]x (f x )x (f [〔 〕A.f<x>+CB.⎰dx )x (xfC.xf<x>+CD.⎰+dx )]x (f x [12.设f<x>的一个原函数是x 2,则⎰=dx )x (xf 〔〕 A.C 3x 3+ B.x 5+C C.C x 323+ D.C 15x 5+ 13.⎰-=88x dx e 3〔 〕A.0B.dx e 280x3⎰C.⎰-22x dx eD.⎰-22x 2dx e x 314.下列广义积分中,发散的是〔 〕 A.⎰10x dxB.⎰10x dxC.⎰103x dxD.⎰-10x 1dx15.满足下述何条件,级数∑∞=1n n U 一定收敛〔 〕A.有界∑=n1i i U B.0U lim n n =∞→ C.1r U U lim n 1n n <=+∞→ D.∑∞=1n n |U |收敛16.幂级数∑∞=-1n n )1x (的收敛区间是〔 〕A.(]2,0B.<0,2>C.[)2,0D.<-1,1>17.设y x 2e z -=,则=∂∂y z〔 〕 A.y x 2e - B.yx 222e y x - C.y x 2e y x 2-- D.yx 2e y 1--18.函数z=<x+1>2+<y -2>2的驻点是〔 〕A.<1,2>B.<-1,2>C.<-1,-2> D .<1,-2> 19.=⎰⎰π≤≤π≤≤2y 02x 0ydxdy cos x cos 〔 〕A.0B.1C.-1D.220.微分方程x sin 1dx dy+=满足初始条件y<0>=2的特解是〔〕A.y=x+cosx+1B.y=x+cosx+2C.y=x -cosx+2D.y=x -cosx+3二、简单计算题〔本大题共5小题,每小题4分,共20分〕21.求极限.1n )n 3n (lim n --+∞→22.设).1(y ,x y x 1'=求23.求不定积分⎰+.dx x cos x sin 1x2cos24.求函数z=ln<1+x 2+y 2>当x=1,y=2时的全微分.25.用级数的敛散定义判定级数∑∞=++1n .1n n 1的敛散性三、计算题〔本大题共4小题,每小题6分,共24分〕26.设.y zy x zx ,)u (F ,x y u ),u (xF xy z ∂∂+∂∂=+=求为可导函数27.计算定积分 I ⎰=21.dx x ln x28.计算二重积分dxdy )y x cos(I D 22⎰⎰+=,其中D 是由x 轴和2x 2y -π=所围成的闭区域. 29.求微分方程0e y dxdy xx =-+满足初始条件y<1>=e 的特解. 四、应用题〔本大题共2小题,每小题8分,共16分〕 30.已知某厂生产x 件某产品的成本为C=25000+200x+ 问.x 4012 <1>要使平均成本最小,应生产多少件产品?<2>如产品以每件500元出售,要使利润最大,应生产多少件产品?31.求由曲线x y =,直线x+y=6和10.设函数y =ln x ,则它的弹性函数ExEy =_____________. 11.函数f <x >=x 2e -x 的单调增加区间为______________.12.不定积分⎰+32d x x =__________________.13.设f <x >连续且⎰+=xx x t t f 022cos d )(,则f <x >=________________.14.微分方程x d y -y d x =2d y 的通解为____________________.15.设z=x e xy,则y x z ∂∂∂2=______________________. 三、计算题〔一〕〔本大题共5小题,每小题5分,共25分〕16.设函数f<x>=⎩⎨⎧≤+>-0130e x x x k x 在x =0处连续,试求常数k .17.求函数f<x>=xx2sin e +x arctan x 的导数. 18.求极限xx x x x sin e lim 20-→. 19.计算定积分⎰π202d 2sin x x . 20.求不定积分⎰++211x x d x .四、计算题〔二〕〔本大题共3小题,每小题7分,共21分〕21.求函数f <x >=x 3-6x 2+9x -4在闭区间[0,2]上的最大值和最小值.22.已知f <3x +2>=2x e -3x ,计算⎰52d )(x x f .23.计算二重积分⎰⎰Dy x y x d d 2,其中D 是由直线y =x ,x =1以与x 轴所围的区域.五、应用题〔本大题9分〕24.已知矩形相邻两边的长度分别为x,y,其周长为4.将矩形绕其一边旋转一周得一旋转体〔如图〕.问当x,y各为多少时可使旋转体的体积最大?21-3/222-e^-123x- arctgx + C243/225y + 2 = 026t^2f<x,y>27-1/<2sqrt<x>sqrt<y>>282pi/3291/230<c_1x + c_2 > e^<4x>三四一、D C A C AB C C B AD A B A DA DB D A二21-3/222-e^-123x- arctgx + C243/225y + 2 = 026t^2f<x,y>27-1/<2sqrt<x>sqrt<y>>282pi/3291/230<c_1x + c_2 > e^<4x>三四。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

科 目:高等数学考试形式:闭卷 考试时间: 120 分钟系别、班级: 姓名: 学号:一、选择题(每小题3分,共15分)1、下列函数在给定的自变量变化过程中为无穷小的是__________.A 、x x 1sin()0→x B 、x xsin 1()0→x C 、x x cos ()∞→x D 、x xcos 1()0→x2、已知函数()00222≥<⎩⎨⎧+=x x x a e x f x0=x 在连续,则=a __________. A 、0 B 、e C 、1 D 、2 3、在区间[]1,1-上满足罗尔定理条件的函数是 .A 、 xxy tan = B 、325x y -= C 、2x e y -= D 、12++=x x y4、设()x f 是连续函数,且为偶函数,则在对称区间[]a a ,-上的定积分()=⎰-aadx x f __________.A 、0B 、()⎰-02adx x f C 、()⎰-0adx x f D 、()⎰adx x f 05、微分方程()y y y x y '+='-'25是 .A 、可分离变量方程B 、二阶微分方程C 、一阶齐次线性方程D 、一阶非齐次线性方程二、填空题(每小题3分,共15分)1、如果12sin 3lim0=→xmxx ,则=m ___________________.2、已知()()()=--='→hf h f f h 233lim,230则___________________.3、已知()⎰+=C x dx x f sin ,则()⎰=+dx e f e x x 1___________________.4、()=+⎰-dx x x sin 13 2ππ___________________.5、微分方程xy y 2='的通解是__________________. 三、计算题(每小题6分,共42分) 1、求21cos 0limxdt e xt x ⎰→2、设82lim =⎪⎭⎫⎝⎛-+∞→xx a x a x ,且0≠a ,求常数a 的值.3、由方程e ln sin 2xy y x x +=确定y 是x 的隐函数,求y '.4、设()x f ''存在,求函数()[]x f y ln =的二阶导数22dxyd .5、求⎰++2211tan xxdx x6、求⎰exdx x 1ln7、设函数()2x xe x f -=,求()dx x f ⎰-412.四、应用题(第1题7分,第2题9分,共16分)1、某窗户的形状为半圆形置于矩形之上,若此窗的周长为一定值l ,试确定半圆的半径r 为多少时,使能通过窗户的光线最为充足。

2、计算由曲线12 ,22+==x y x y 所围成的平面图形的面积,并求该图形绕y 轴旋转而成的旋转体的体积。

五、证明题(8分) 设0>>b a ,证明: bba b a a b a -<<-ln .六、综合题(4分)设0>x 时)(x f 可微,若()⎰+=xdt t f x x f 0 11)( ,求()x f .(参考答案及评分标准)、一、选择题(每小题3分,共15分)1、下列函数在给定的自变量变化过程中为无穷小的是_____A_____.A 、x x 1sin()0→x B 、x xsin 1()0→x C 、x x cos ()∞→x D 、x xcos 1()0→x2、已知函数()00222≥<⎩⎨⎧+=x x x a e x f x0=x 在连续,则=a _____D_____. A 、0 B 、e C 、1 D 、2 3、在区间[]1,1-上满足罗尔定理条件的函数是 C .A 、 xxy tan = B 、325x y -= C 、2x e y -= D 、12++=x x y4、设()x f 是连续函数,且为偶函数,则在对称区间[]a a ,-上的定积分()=⎰-aadx x f _____B_____.A 、0B 、()⎰-02adx x f C 、()⎰-0adx x f D 、()⎰adx x f 05、微分方程()y y y x y '+='-'25是 A .A 、可分离变量方程B 、二阶微分方程C 、一阶齐次线性方程D 、一阶非齐次线性方程 二、填空题(每小题3分,共15分)2、如果12sin 3lim0=→x mx x ,则=m 32. 2、已知()()()=--='→hf h f f h 233lim,230则1-.3、已知()⎰+=C x dx x f sin ,则()⎰=+dx e f e x x 1()C e x ++1sin . 4、()=+⎰-dx x x sin 13 2ππ32π.5、微分方程xy y 2='的通解是2x Ce . 三、计算题(每小题6分,共42分) 1、求21cos 0limxdt e xt x ⎰→解:21cos 0limx dt e xtx ⎰→2cosx1limx dte t x ⎰-=→()xx e x x 2sin lim cos 0--=→ 4分2lim cos 0xx e →=.x x x sin lim0→2e = 2分 2、设82lim =⎪⎭⎫⎝⎛-+∞→xx a x a x ,且0≠a ,求常数a 的值.解:=⎪⎭⎫⎝⎛-+∞→xx a x a x 2lim xax aa a x x a x a --∞→⎪⎭⎫ ⎝⎛-+3331lim 2.5分a x ax x e-∞→=3lim1.5分83==a e 1分 故2ln =a 1分 3、由方程e ln sin 2xy y x x +=确定y 是x 的隐函数,求y '.x 解:方程两边关于求导得:()1ln 2cos 2xy e x xy y x y x x''+++⋅= 4.5分 xx e x xye y x x y xyxyln 2cos 22+--='∴ 1.5分 4、设()x f ''存在,求函数()[]x f y ln =的二阶导数22dxyd .解:()[]{}()()x f x f x f dx dy '⋅='=1ln 3分()()()()()[]()[]2222x f x f x f x f x f x f dx y d '-''⋅='⎥⎦⎤⎢⎣⎡'= 3分 5、求⎰++2211tan x xdx x解:⎰++2211tan x xdx x=()⎰+++2221211tan x x d x2分=⎰++2211tan x d x 2分 C x ++-=21cos ln 2分 6、求⎰exdx x 1ln解:⎰exdx x 1ln ⎰=e xdx 12ln 21 1分 ⎪⎭⎫ ⎝⎛-=⎰e e xdx x x 112ln 21 2分 ⎪⎪⎭⎫ ⎝⎛-=e x e 122221 2分 ()1412+=e 1分7、设函数()2x xe x f -=,求()dx x f ⎰-412.解:令t=x-2,则x=t+2,dx=dt 1分当x=1时,t=-1;当x=4时,t=2⎰⎰-=-4121)()2(dt t f dx x f 2分=⎰⎰------=21212)(2122x d e dx xe x x 1分 分分1 )(21 1][2114212------=-=e e e x四、应用题(第1题7分,第2题9分,共16分)1、某窗户的形状为半圆形置于矩形之上,若此窗的周长为一定值l ,试确定半圆的半径r 为多少时,使能通过窗户的光线最为充足。

解:设窗户的面积为S ,矩形的高为h ,则πr h r l ++=22 22πr r l h --=22212212r lr r rh S ⎪⎭⎫ ⎝⎛+-=+=ππ 3分()r l S π+-='4 令π+=='40lr S 得唯一驻点2分 当04,040<'<+>'+<<s r l S l r 时当时ππ 所以π+=4lr 为极大值点,也是唯一的极值点,从而也是最大值点。

故当π+=4lr 时,窗户的面积S 最大,此时通过窗户的光线最为充足。

2分2、计算由曲线12 ,22+==x y x y 所围成的平面图形的面积,并求该图形绕y 轴旋转而成的旋转体的体积。

解:曲线所围成的图形如右图:由⎩⎨⎧+==1222x y x y 得交点)1 , 1(-,)1 , 1( 1分选取x 为积分变量,则积分区间为[]1 , 1-,面积元素为dx x x ds )212(22-+= 1分∴ 所求图形的面积为:dx x x S )212(21 12-+=⎰- 1分 =dx x )221(221 0 -⎰=⎰-12)1(dx x 1分=1033⎥⎦⎤⎢⎣⎡-x x =32 1分 图形绕y 轴旋转而成的旋转体的体积为:⎰⎰--=1 0 121 )12(dy y ydy V ππ 2分=1212102)(21y y y --ππ 1分 =)21410(2+--ππ=4π1分 五、证明题(8分) 设0>>b a ,证明:bba b a a b a -<<-ln . 证:设()x x f ln =,则()[]()内可导,上连续,在在a b a b x f ,,由拉格朗日中值定理,得()()()()b a f b f a f -'=-ξ a b <<ξ 4分 ()x x f 1=' ()ξξ1='f ()b a b a -=-∴ξ1ln ln当0>>b a 时,ba 111<<ξ 0>-b abba b a a b a -<-<-ξ 3分 所以,b ba b a a b a -<-<-ln ln 即bba b a a b a -<<-ln 1分六、综合题(4分)11 设0>x 时)(x f 可微,若()⎰+=x dt t f x x f 0 11)( ,求()x f . 解:由 ()⎰+=x dt t f x x f 0 11)( 得 ()[]()⎰=-xdt t f x f x 0 1 1分 两端对x 求导,得 ()()()x f x f x x f ='+-1 1.5分 ()x x f x 10='>∴时,当 0.5分 ()C x x f +=ln1分。

相关文档
最新文档