【压轴卷】高二数学上期末第一次模拟试卷及答案(1)
【好题】高二数学上期末第一次模拟试题(含答案)(1)
【好题】高二数学上期末第一次模拟试题(含答案)(1)一、选择题1.如图阴影部分为曲边梯形,其曲线对应函数为1x y e =-,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是( )A .23e - B .13e - C .43e- D .53e- 2.口袋里装有大小相同的5个小球,其中2个白球,3个红球,现一次性从中任意取出3个,则其中至少有1个白球的概率为( ) A .910B .710C .310D .1103.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .654.某工厂对一批新产品的长度(单位:mm )进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )A .20,22.5B .22.5,25C .22.5,22.75D .22.75,22.755.设A 为定圆C 圆周上一点,在圆周上等可能地任取一点与A 连接,求弦长超过半径2倍的概率( ) A .34B .35C .13D .126.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα7.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?8.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A .1636B .1736C .12D .19369.要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( ) A .5个B .10个C .20个D .45个10.已知统计某校1000名学生的某次数学水平测试成绩得到样本频率分布直方图如图所示,则直方图中实数a 的值是( )A .0.020B .0.018C .0.025D .0.0311.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+$,则表中m 的值为( ) x 8 10 1112 14 y2125m2835A .26B .27C .28D .2912.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是12,x x ,则下列叙述正确的是( )A .12x x >,乙比甲成绩稳定B .12x x >,甲比乙成绩稳定C .12x x <,乙比甲成绩稳定D .12x x <,甲比乙成绩稳定二、填空题13.若正方形ABCD 的边长为4, E 为四边形上任意一点,则AE 的长度大于5的概率等于______14.执行如图所示的程序框图若输人x 的值为3,则输出y 的值为______.15.一个算法的伪代码如下图所示,执行此算法,若输出的y 值为1,则输入的实数x 的值为________.16.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.17.执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为_____.18.阅读如图所示的程序框图,运行相应的程序,则输出n 的值为___________19.向面积为20的ABC ∆内任投一点M ,则使MBC ∆的面积小于5的概率是__________. 20.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.三、解答题21.“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:cm ),经统计,树苗的高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于27cm 的为优质树苗.(1)求图中a 的值;(2)已知所抽取的这120株树苗来自于A ,B 两个试验区,部分数据如下列联表:A 试验区B 试验区合计优质树苗20非优质树苗 60合计将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A ,B 两个试验区有关系,并说明理由;(3)通过用分层抽样方法从B 试验区被选中的树苗中抽取5株,若从这5株树苗中随机抽取2株,求优质树苗和非优质树苗各有1株的概率.附:参考公式与参考数据:22()()()()()n ad bc K a b c d a c b d -=++++其中n a b c d =+++()20P K k ≥ 0.010 0.005 0.001 0k6.6357.87910.82822.某班60名学生期中考试数学成绩的频率分布直方图如下图所示.(1)求图中a 的值及这60名学生数学成绩的中位数;(2)若规定成绩在80分以上为优良,求该班学生中成绩达到优良的人数.23.高一某班以小组为单位在周末进行了一次社会实践活动,且每小组有5名同学,活动结束后,对所有参加活动的同学进行测评,其中A ,B 两个小组所得分数如下表: A 组 86 77 80 94 88 B 组9183?7593其中B 组一同学的分数已被污损,看不清楚了,但知道B 组学生的平均分比A 组学生的平均分高出1分.(1)若从B 组学生中随机挑选1人,求其得分超过85分的概率;(2)从A 组这5名学生中随机抽取2名同学,设其分数分别为m ,n ,求||8m n -≤的概率.24.某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试,先从这些学生的成绩中随机抽取了50名学生的成绩,按照[)[)[]50,60,60,70,...,90,100分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分)(1)求频率分布直方图中的x 的值,并估计50名学生的成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表)(2)用样本估计总体,若该校共有2000名学生,试估计该校这次成绩不低于70分的人数. 25.某高校在2017年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表:组号分组频率160,1650.05第1组[)165,1700.35第2组[)170,175①第3组[)175,1800.20第4组[)180,1850.10第5组[]()1求出频率分布表中①处应填写的数据,并完成如图所示的频率分布直方图;()2根据直方图估计这次自主招生考试笔试成绩的平均数和中位数(结果都保留两位小数).26.为庆祝新中国成立70周年,某市工会组织部分事业单位职工举行“迎国庆,广播操比赛”活动.现有200名职工参与了此项活动,将这200人按照年龄(单位:岁)分组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的频率分布直方图如图所示.记事件A为“从这200人中随机抽取一人,其年龄不低于35岁”,已知P(A)=0.75.(1)求,a b的值;(2)在第二组、第四组中用分层抽样的方法抽取6人,再从这6人中随机抽取2人作为活动的负责人,求这2人恰好都在第四组中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】通过定积分可求出空白部分面积,于是利用几何概型公式可得答案. 【详解】由题可知长方形面积为3,而长方形空白部分面积为:()()11001|2x x e dx e x e -=-=-⎰,故所求概率为25133e e---=,故选D. 【点睛】本题主要考查定积分求几何面积,几何概型的运算,难度中等.2.A解析:A 【解析】 【分析】根据题意,求出总的基本事件数和至少有1个白球包含的基本事件数,然后利用古典概型的概率计算公式求解即可. 【详解】由题意可知,从5个大小相同的小球中,一次性任意取出3个小球包含的总的基本事件数为n =35C 10=,一次性任意取出的3个小球中,至少有1个白球包含的基本事件数为122123239m C C C C =+=,由古典概型的概率计算公式得,一次性任意取出的3个小球中,至少有1个白球的概率为910m P n ==. 故选:A 【点睛】 本题考查利用组合数公式和古典概型的概率计算公式求随机事件的概率;正确求出总的基本事件数和至少有1个白球包含的基本事件数是求解本题的关键;属于中档题、常考题型.3.D解析:D 【解析】 【分析】利用与面积有关的几何概型概率计算公式求解即可.【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.4.C解析:C 【解析】 【分析】根据平均数的定义即可求出.根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.5.D解析:D 【解析】 【分析】先找出满足条件弦的长度超过2R 的图象的测度,再代入几何概型计算公式求解,即可得到答案. 【详解】根据题意可得,满足条件:“弦的长度超过2R 对应的弧”,其构成的区域为半圆»NP, 则弦长超过半径2倍的概率»12NP P ==圆的周长,【点睛】本题主要考查了几何概型的概率计算中的“几何度量”,对于几何概型的“几何度量”可以线段的长度比、图形的面积比、几何体的体积比等,且这个“几何度量”只与“大小”有关,与形状和位置无关,着重考查了分析问题和解答问题的能力.6.C解析:C【分析】由框图可知程序的功能是输出三者中的最大者,比较大小即可. 【详解】由程序框图可知a 、b 、c 中的最大数用变量x 表示并输出, ∵,42ππα⎛⎫∈⎪⎝⎭∴0cos α1sin α<<<<, 又()y xsin α=在R 上为减函数,y sin x α=在()0∞+,上为增函数, ∴()sin sin αα<()cos sin αα,()sin cos αα<()sin sin αα故最大值为()cos sin αα,输出的x 为()cos sin αα故选:C 【点睛】本题主要考查了选择结构.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.7.C解析:C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3= 满足判断框内的条件,执行循环体,a 33=,k 5= 满足判断框内的条件,执行循环体,a 170=,k 7=此时,不满足判断框内的条件,退出循环,输出a 的值为170. 则分析各个选项可得程序中判断框内的“条件”应为k 6<? 故选:C . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8.C解析:C【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率。
【压轴卷】高二数学上期末第一次模拟试卷(带答案)
【压轴卷】高二数学上期末第一次模拟试卷(带答案)一、选择题1.袋中装有红球3个、白球2个、黑球1个,从中随机摸出2个球,则与事件“至少有1个白球”互斥但不对立的事件是( ) A .没有白球 B .2个白球 C .红、黑球各1个D .至少有1个红球2.执行如图所示的程序框图,输出的S 值为( )A .1B .-1C .0D .-23.在半径为2圆形纸板中间,有一个边长为2的正方形孔,现向纸板中随机投飞针,则飞针能从正方形孔中穿过的概率为( ) A .4π B .3πC .2πD .1π4.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为( )A .4i ≤B .5i ≤C .6i ≤D .7i ≤5.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )A .华为的全年销量最大B .苹果第二季度的销量大于第三季度的销量C .华为销量最大的是第四季度D .三星销量最小的是第四季度6.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 7.执行如图的程序框图,如果输出的是a=341,那么判断框( )A .4k <B .5k <C .6k <D .7k <8.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化、相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被3sin6y x π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为()A.136B.118C.112D.199.赵爽是我国古代数学家、天文学家大约在公元222年赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的)类比“赵爽弦图”,赵爽弦图可类似地构造如图所示的图形,它是由个3全等的等边三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF 2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A.B.C.D.10.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为()A.13B.49C.59D.2311.执行如图所示的程序框图,若输入x=9,则循环体执行的次数为()A.1次B.2次C.3次D.4次12.2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是( ) A .25B .35C .23D .15二、填空题13.若正方体1111ABCD A B C D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.14.北京市某银行营业点在银行大厅悬挂着不同营业时间段服务窗口个数的提示牌,如图所示. 设某人到达银行的时间是随机的,记其到达银行时服务窗口的个数为X ,则()E X =______________.15.已知某程序框图如图所示,则该程序运行后输出S 的值为__________.16.小明通过做游戏的方式来确定接下来两小时的活动,他随机地往边长为1的正方形内扔一颗豆子,若豆子到各边的距离都大于14,则去看电影;若豆子到正方形中心的距离大于12,则去打篮球;否则,就在家写作业则小明接下来两小时不在家写作业的概率为______.(豆子大小可忽略不计)17.某程序框图如图所示,若输入的4t =,则输出的k =______.18.期末考试结束后,某老师随机抽取了本班五位同学的数学成绩进行统计,五位同学平均每天学习数学的时间t (分钟)与数学成绩y 之间的一组数据如下表所示: 时间t (分钟) 30 40 7090 120 数学成绩y3548m8292通过分析,发现数学成绩y 与学习数学的时间t 具有线性相关关系,其回归方程为0.715ˆyt =+,则表格中的m 的值是___. 19.已知某产品连续4个月的广告费i x (千元)与销售额i y (万元)(1,2,3,4i =)满足4115ii x==∑,4112i i y ==∑,若广告费用x 和销售额y 之间具有线性相关关系,且回归直线方程为^y bx a =+,0.6b =,那么广告费用为5千元时,可预测的销售额为___万元. 20.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。
【压轴卷】高二数学上期末第一次模拟试卷及答案
【压轴卷】高二数学上期末第一次模拟试卷及答案一、选择题1.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是()A.116B.18C.38D.3162.执行如图所示的程序框图,若输入8x=,则输出的y值为()A.3B.52C.12D.34-3.若执行如图所示的程序框图,则输出S的值为( )A.10072015B.10082017C.10092019D.101020214.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为1 50;④中部地区学生小张被选中的概率为1 5000A.①④B.①③C.②④D.②③5.执行如图所示的程序框图,输出的S值为()A.1B.-1C.0D.-26.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是( ) A .31号 B .32号C .33号D .34号7.把化为五进制数是( )A .B .C .D .8.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 9.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是 ( ) A .310B .25C .12D .3510.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D 为BE 中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .17B .14C .13D .41311.如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π-B .122π- C .2πD .1π12.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是12,x x ,则下列叙述正确的是( )A .12x x >,乙比甲成绩稳定B .12x x >,甲比乙成绩稳定C .12x x <,乙比甲成绩稳定D .12x x <,甲比乙成绩稳定二、填空题13.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,问一开始输入的x =______斗.遇店添一倍,逢友饮一斗,意思是碰到酒店就把壶里的酒加1倍,碰到朋友就把壶里的酒喝一斗,店友经三处,意思是每次都是遇到店后又遇到朋友,一共是3次.14.为长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于1的概率为________.15.如果执行如图的程序框图,那么输出的S =__________.16.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.17.在棱长为2 的正方体内任取一点,则此点到正方体中心的距离不大于1的概率为_____.18.在[0,1]上随机取两个实数,a b ,则,a b 满足不等式221a b +≤的概率为________. 19.阅读如图所示的程序框图,运行相应的程序,则输出n 的值为___________20.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样法抽取一个容量为45的样本,那么从高一、高二、高三各年级抽取人数分别为 .三、解答题21.已知一个口袋有3个白球,1个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为1,2,3,4的抽屉内. (1)求编号为2的抽屉内放黑球的概率;(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.22.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均数与中位数.23.随着经济的发展,轿车已成为人们上班代步的一种重要工具.现将某人三年以来每周开车从家到公司的时间之和统计如图所示.(1)求此人这三年以来每周开车从家到公司的时间之和在[)6.5,7.5(时)内的频率; (2)求此人这三年以来每周开车从家到公司的时间之和的平均数(每组取该组的中间值作代表);(3)以频率估计概率,记此人在接下来的四周内每周开车从家到公司的时间之和在[)4.5,6.5(时)内的周数为X ,求X 的分布列以及数学期望.24.某单位为了解其后勤部门的服务情况,随机访问了40名其他部门的员工,根据这40名员工对后勤部门的评分情况,绘制了频率分布直方图如图所示,其中样本数据分组区间为[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.(1)求a 的值;(2)估计该单位其他部门的员工对后勤部门的评分的中位数;(3)以评分在[)40,60的受访者中,随机抽取2人,求此2人中至少有1人对后勤部门评分在[)40,50内的概率.25.为了调查某中学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果: 表1:男、女生上网时间与频数分布表 上网时间(分钟) [30,40)[40,50)[50,60)[60,70)[70,80]男生人数 5 25 30 25 15 女生人数1020402010(Ⅰ)若该中学共有女生750人,试估计其中上网时间不少于60分钟的人数; (Ⅱ)完成下表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?上网时间少于60分钟 上网时间不少于60分钟 合计男生 女生 合计附:公式22()()()()()n ad bc k a b c d a c b d -=++++,其中20()P k k ≥ 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.0010k0.455 0.708 1.323 2.072 2.706 3.84 5.024 6.635 7.879 10.8326.随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从20092018-年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据. 年份 网民人数互联网普及率手机网民人数手机网民普及率2009 3.8 28.9% 2.3 17.5% 2010 4.534.3%3.022.9%2011 5.138.3% 3.627.0% 2012 5.642.1%4.231.6%2013 6.245.8% 5.0 36.9% 2014 6.547.9% 5.641.3% 2015 6.9 50.3% 6.2 45.2% 2016 7.353.2% 7.051.0% 20177.7 55.8%7.554.4%(互联网普及率=(网民人数/人口总数)×100%;手机网民普及率=(手机网民人数/人口总数)×100%) (Ⅰ)从20092018-这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记X 为手机网民普及率超过50%的年数,求X 的分布列及数学期望;(Ⅲ)若记20092018-年中国网民人数的方差为21s ,手机网民人数的方差为22s ,试判断21s 与22s 的大小关系.(只需写出结论)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】设阴影部分正方形的边长为a ,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率. 【详解】如图所示,设阴影部分正方形的边长为a ,则七巧板所在正方形的边长为, 由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率()2218a =,故选:B. 【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.2.C解析:C 【解析】 【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知该程序的作用是利用循环计算y 值并输出,模拟程序的运行过程,直到达到输出条件即可. 【详解】输入8,第一次执行循环:3y =,此时5y x -=, 不满足退出循环的条件,则3x =,第二次执行循环:12y =,此时52y x -=, 满足退出循环的条件,故输出的y 值为12,故选C . 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.3.C解析:C 【解析】 【分析】首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯L 的值,然后利用裂项求和的方法即可求得最终结果. 【详解】由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯L , 11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭Q,111113355720172019S ∴=++++⨯⨯⨯⨯L 11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 1110091220192019⎛⎫=-=⎪⎝⎭. 本题选择C 选项. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.4.B解析:B 【解析】分析:由题意逐一考查所给的说法是否正确即可. 详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生2400100240016001000⨯=++48人、中部地区学生1600100240016001000⨯=++32人、西部地区学生1000100240016001000⨯=++20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误; ③西部地区学生小刘被选中的概率为100124001600100050=++,题中的说法正确;④中部地区学生小张被选中的概率为100124001600100050=++,题中的说法错误;综上可得,正确的说法是①③. 本题选择B 选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B 【解析】 【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可. 【详解】结合流程图可知程序运行过程如下: 首先初始化数据:1,2i S ==, 此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S=-=-=+=; 此时不满足5i >,执行循环:112,14S i i S=-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-. 本题选择B 选项.【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题.6.C解析:C 【解析】 【分析】根据系统抽样知,组距为604=15÷,即可根据第一组所求编号,求出各组所抽编号. 【详解】学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为604=15÷, 已知03号,18号被抽取,所以应该抽取181533+=号, 故选C. 【点睛】本题主要考查了抽样,系统抽样,属于中档题.7.B解析:B 【解析】 【分析】利用倒取余数法可得化为五进制数.【详解】 因为所以用倒取余数法得323,故选:B. 【点睛】本题考查十进制数和五进制数之间的转化,利用倒取余数法可解决此类问题.8.C解析:C 【解析】 【分析】根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成立,整理后利用判别式求出a 范围即可【详解】Q A()1B A B =-∴()x a -()x a +()()()()22=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦Q ()x a -()1x a +<对于任意的实数x ∈R 恒成立,221x x a a ∴-++-<,即2210x x a a -++--<恒成立,()()2214110a a ∴∆=-⨯-⨯--<,1322a ∴-<<故选:C 【点睛】本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键9.D解析:D 【解析】 【分析】甲、乙二人抢到的金额之和包含的基本事件的总数2510n C ==,甲、乙二人抢到的金额之和不低于3元包含基本事件有6个,由此能求出甲、乙二人抢到的金额之和不低于3元的概率. 【详解】由题意,所发红包的总金额为8元,被随机分配为1.72元、1.83元、2.28元、1.55元、0.62元、5分,供甲、乙等5人抢,每人只能抢一次, 甲乙二人抢到的金额之和包含的基本事件的总数为2510n C ==,甲乙二人抢到的金额之和不低于3元包含的基本事件有6个,分别为(1.72,1.83),(1.72,2.28),(1.72,1.55),(1.83,2.28),(1.83,1.55),(2.28,1.55)所以甲乙二人抢到的金额之和不低于3元的概率为63105p ==,故选D. 【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中正确理解题意,找出基本事件的总数和不低于3元的事件中所包含的基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10.A解析:A 【解析】 【分析】根据几何概型的概率计算公式,求出中间小三角形的面积与大三角形的面积的比值即可 【详解】设DE x =,因为D 为BE 中点,且图形是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形 所以2BE x =,CE x =,120CEB ∠=︒所以由余弦定理得:2222cos BC BE CE BE CE CEB =+-⋅⋅∠222142272x x x x x ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭即7BC x =,设DEF V 的面积为1S ,ABC V 的面积为2S因为DEF V 与ABC V 相似所以21217S DE P S BC ⎛⎫=== ⎪⎝⎭故选:A11.A解析:A 【解析】试题分析:设扇形OAB 半径为,此点取自阴影部分的概率是112π-,故选B. 考点:几何概型.【方法点晴】本题主要考查几何概型,综合性较强,属于较难题型.本题的总体思路较为简单:所求概率值应为阴影部分的面积与扇形的面积之比.但是,本题的难点在于如何求阴影部分的面积,经分析可知阴影部分的面积可由扇形面积减去以为直径的圆的面积,再加上多扣一次的近似“椭圆”面积.求这类图形面积应注意切割分解,“多还少补”.12.C解析:C 【解析】 甲的平均成绩11(7378798793)825x =++++=,甲的成绩的方差22222211[(7382)(7882)(7982)(8782)(9382)]50.45s =-+-+-+-+-=;乙的平均成绩21(7989899291)885x =++++=,乙的成绩的方差22222221[(7988)(8988)(8988)(9288)(9188)]21.65s =-+-+-+-+-=.∴12x x <,乙比甲成绩稳定. 故选C .二、填空题13.【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件输出令即可得结果【详解】第一次输入执行循环体执行循环体执行循环体输出的值为0解得:故答案为【点睛】本题主要考查程 解析:78【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件输出87x -,令870x -=即可得结果. 【详解】第一次输入x x =,1i =执行循环体,21x x =-,2i =,执行循环体,()221143x x x =--=-,3i =, 执行循环体,()243187x x x =--=-,43i =>, 输出87x -的值为0,解得:78x =, 故答案为78. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.14.1-π12【解析】【分析】由题意得长方形的面积为S=3×2=6以O 点为原型半径为1作圆此时圆在长方形内部的部分的面积为Sn=π2再由面积比的几何概型即可求解【详解】由题意如图所示可得长方形的面积为S 解析:【解析】 【分析】由题意,得长方形的面积为,以O 点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,再由面积比的几何概型,即可求解.【详解】由题意,如图所示,可得长方形的面积为,以O 点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,所以取到的点到的距离大于1的表示圆的外部在矩形内部分部分,所以概率为.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.15.42【解析】【分析】输入由循环语句依次执行即可计算出结果【详解】当时当时当时当时当时当时故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算求出输出值较为基础解析:42 【解析】 【分析】输入1k =,由循环语句,依次执行,即可计算出结果 【详解】当1k =时,0212S =+⨯= 当2k =时,021226S =+⨯+⨯= 当3k =时,021222312S =+⨯+⨯+⨯= 当4k =时,021********S =+⨯+⨯+⨯+⨯= 当5k =时,0212223242530S =+⨯+⨯+⨯+⨯+⨯= 当6k =时,021222324252642S =+⨯+⨯+⨯+⨯+⨯+⨯= 故答案为42 【点睛】本题主要考查了程序框图中的循环语句的运算,求出输出值,较为基础16.80【解析】【分析】本道题一一列举把满足条件的编号一一排除即可【详解】该数可以表示为故该数一定是5的倍数所以5的倍数有5101520253035404550556065707580859095100解析:80 【解析】 【分析】本道题一一列举,把满足条件的编号一一排除,即可. 【详解】该数可以表示为32,5,73k m n ++,故该数一定是5的倍数,所以5的倍数有5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,该数满足减去3能够被7整除,只有10,45,80,而同时要满足减去2被3整除,所以只有80. 【点睛】本道题考查了列举法计算锁编号问题,难度一般.17.【解析】【分析】以正方体的中心为球心1为半径做球若点在球上或球内时符合要求求其体积根据几何概型求概率即可【详解】当正方体内的点落在以正方体中心为球心1为半径的球上或球内时此点到正方体中心的距离不大于解析:6π 【解析】 【分析】以正方体的中心为球心,1为半径做球,若点在球上或球内时,符合要求,求其体积,根据几何概型求概率即可. 【详解】当正方体内的点落在以正方体中心为球心,1为半径的球上或球内时,此点到正方体中心的距离不大于1, 因为344133V ππ=⨯⨯=球,2228V =⨯⨯=正方体 因此正方体内点到正方体中心的距离不大于1的概率24132226V P V 球正方体ππ⨯⨯===⨯⨯, 故填6π. 【点睛】本题主要考查了几何概型,球的体积,正方体的体积,属于中档题.18.【解析】【分析】画出不等式组表示的平面区域结合图形利用几何概型的概率公式可求得对应的概率【详解】根据题意画出不等式组表示的平面区域如图所示在上随机取两个实数则满足不等式的概率为故答案为【点睛】本题主解析:4π 【解析】 【分析】 画出不等式组2201011a b a b ≤≤⎧⎪≤≤⎨⎪+≤⎩表示的平面区域,结合图形利用几何概型的概率公式可求得对应的概率. 【详解】根据题意,画出不等式组2201011a b a b ≤≤⎧⎪≤≤⎨⎪+≤⎩表示的平面区域,如图所示,在[]0,1上随机取两个实数,a b ,则,a b 满足不等式221a b +≤的概率为2211414P ππ⨯==,故答案为4π. 【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.19.4【解析】由程序框图可知:S=2=0+(﹣1)1×1+(﹣1)2×2+(﹣1)3×3+(﹣1)4×4因此当n=4时满足判断框的条件故跳出循环程序故输出的n 的值为4故答案为4解析:4 【解析】由程序框图可知:S=2=0+(﹣1)1×1+(﹣1)2×2+(﹣1)3×3+(﹣1)4×4, 因此当n=4时,满足判断框的条件,故跳出循环程序. 故输出的n 的值为4. 故答案为4.20.151020【解析】试题分析:抽取比例为45900=120∴300×120=15200×120=10400×120=20抽取人数依次为151020考点:分层抽样解析:15,10,20 【解析】试题分析:抽取比例为,抽取人数依次为15,10,20 考点:分层抽样三、解答题21.(1) 14P =.(2) 12P =. 【解析】 【分析】(1)4个球放入编号为1,2,3,4的抽屉里,有4种方法,满足题意的有1中,根据古典概型公式得到结果;(2)根据抽屉的编号,对于一种确定的放法,取法有6种情况,满足一白一黑的有3种情况,进而得到结果. 【详解】(1)将口袋中的3个白球,1个黑球,依次放入编号为1,2,3,4的抽屉内,共有4种不同的放法,分别是(白,白,白,黑),(白,白,黑,白),(白,黑,白,白),(黑,白,白,白),其中编号为2的抽屉内放黑球的情况有1种,所以编号为2的抽屉内放黑球的概率为14P =. (2)假设口袋内的球逐个依次取出放入抽屉内后是(白,白,白,黑),随机取出两个球,根据抽屉的编号,可能是()1,2,()1,3,()1,4,()2,3,()2,4,()3,4共6种,其中一黑一白的是()1,4,()2,4,()3,4共3种,所以取出的两个球是一黑一白的概率为12P =. 【点睛】 本题考查了古典概型公式的应用,对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可. 22.(1)0.005a =(2)平均数为73,中位数为:2713. 【解析】 【分析】(1)由频率和为1求解即可;(2)以各区间中点值代表各组的取值,进而求得平均数;求出从左边开始小矩形的面积的和为0.5对应的横轴的值即为中位数 【详解】(1)由频率分布直方图知()20.020.030.04101a +++⨯=, 解得0.005a =(2)估计这100名学生语文成绩的平均分为:550.00510650.0410750.0310850.0210950.0051073⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=由(1),设中位数为x ,则()0.005100.04100.03700.5x ⨯+⨯+-= 解得2713x =,故估计中位数为:2713. 【点睛】本题考查频率的性质,考查利用频率分布直方图求平均数和中位数,考查数据处理能力23.(1)0.35;(2)7;(3)分布列见解析;数学期望65. 【解析】 【分析】(1)用1减去频率直方图中位于区间[)3.5,6.5和[]7.5,10.5的矩形的面积之和可得出结果;(2)将各区间的中点值乘以对应的频率,再将所得的积全部相加即可得出所求平均数; (3)由题意可知34,10X B ⎛⎫⎪⎝⎭:,利用二项分布可得出随机变量X 的概率分布列,并利用二项分布的均值可计算出随机变量X 的数学期望. 【详解】(1)依题意,此人这三年以来每周开车从家到公司的时间之和在[)6.5,7.5(时)内的频率为10.030.10.20.190.090.040.35------=; (2)所求平均数为40.0350.160.270.3580.1990.09100.047x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=(时);(3)依题意,34,10X B ⎛⎫ ⎪⎝⎭:.()47240101010000P X ⎛⎫=== ⎪⎝⎭,()314371029*********P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭,()2224371323210105000P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()33437189310102500P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()438141010000P X ⎛⎫=== ⎪⎝⎭. 故X 的分布列为故()4105E X =⨯=. 【点睛】本题考查频率分布直方图中频率和平均数的计算,同时也考查了二项分布的概率分布列和数学期望的计算,考查计算能力,属于中等题. 24.(1)0.01a =;(2)中位数75;(3)35【解析】 【分析】(1)根据频率之和为1列方程,解方程求得a 的值. (2)根据频率分布直方图,求得中位数的估计值.(3)利用列举法和古典概型概率计算公式,计算出所求概率. 【详解】(1)依题意()0.0050.0150.020.03101a ++++⨯=,解得0.01a =. (2)由于()0.0050.010.02100.35++⨯=,所以中位数为0.50.3570750.03-+=. (3)[)40,50的人数为400.005102⨯⨯=,记为1,2;[)50,60的人数为400.01104⨯⨯=,记为3,4,5,6.从1,2,3,4,5,6中任取两人,可能情况有:12,13,14,15,16,23,24,25,26,34,35,36,45,46,56共15种,其中至少有1人对后勤部门评分在[)40,50内的为12,13,14,15,16,23,24,25,26共9种,故随机抽取2人,求此2人中至少有1人对后勤部门评分在[)40,50内的概率为93155=. 【点睛】本小题主要考查补全频率分布直方图,考查利用频率分布直方图计算中位数,考查古典概型的计算,属于基础题.25.(Ⅰ)225;(Ⅱ)没有90%的把握认为“学生周日上网时间与性别有关”. 【解析】分析:(1)根据样本比例=总体比例,再计算总体人数 (2)先填表,再利用卡方公式计算详解:(Ⅰ)设估计上网时间不少于60分钟的人数x , 依据题意有30750100x =,解得:225x =, 所以估计其中上网时间不少于60分钟的人数是225人. (Ⅱ)根据题目所给数据得到如下列联表:其中2200603040702002.198 2.7061001001307091K ⨯-⨯==≈<⨯⨯⨯,因此,没有90%的把握认为“学生周日上网时间与性别有关”.点睛:本题考查概率、统计学的基础内容,卡方的计算要先化简后计算. 26.(Ⅰ)35;(Ⅱ)分布列见解析,1EX =;(Ⅲ)2212s s < 【解析】 【分析】(Ⅰ)由表格得出手机网民人数占网民总人数比值超过80%的年份,由概率公式计算即可;(Ⅱ)由表格得出X 的可能取值,求出对应的概率,列出分布列,计算数学期望即可; (Ⅲ)观察两组数据,可以发现网民人数集中在5~8之间的人数多于手机网民人数,则网民人数比较集中,而手机网民人数较为分散,由此可得出2212s s <.【详解】解:(Ⅰ)设事件A :“从20092018~这十年中随机选取一年,该年手机网民人数占网民总人数比值超过80%”.由题意可知:该年手机网民人数占网民总人数比值超过80%的年份为2013~2018,共6个 则63()105P A ==. (Ⅱ)网民人数超过6亿的年份有2013~2018共六年,其中手机网民普及率超过50% 的年份有2016,2017,2018这3年.所以X 的取值为0,1,2. 所以232631(0)155C P X C ====, 1133263(1)5C C P X C ===, 23261(2)5C P X C ===. 随机变量X 的分布列为0121555EX =⨯+⨯+⨯=. (Ⅲ)2212s s <.【点睛】本题主要考查了计算古典概型的概率,离散型随机变量的分布列,数学期望等,属于中档题.。
【典型题】高二数学上期末一模试题(及答案)(1)
【典型题】高二数学上期末一模试题(及答案)(1)一、选择题1.在如图所示的算法框图中,若()321a x dx =-⎰,程序运行的结果S 为二项式()52x +的展开式中3x 的系数的9倍,那么判断框中应填入的关于k 的判断条件是( )A .3K <B .3K >C .2K <D .2K >2.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A 33B 3C .13D .233.执行如图的程序框图,如果输入72m =,输出的6n =,则输入的n 是( )A .30B .20C .12D .84.如果数据121x +、221x +、L 、21n x +的平均值为5,方差为16,则数据:153x -、253x -、L 、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1445.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸6.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出m 的值为67,则输入a 的值为( )A .7B .4C .5D .117.某工厂对一批新产品的长度(单位:mm )进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )A .20,22.5B .22.5,25C .22.5,22.75D .22.75,22.75 8.把化为五进制数是( )A .B .C .D .9.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα10.在长为10cm 的线段AB 上任取一点C ,作一矩形,邻边长分別等于线段AC 、CB 的长,则该矩形面积小于216cm 的概率为( ) A .23B .34C .25D .1311.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率( )A .38B .34C .35 D .4512.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .72二、填空题13.根据党中央关于“精准脱贫”的要求,石嘴山市农业经济部门派3位专家对大武口、惠农2个区进行调研,每个区至少派1位专家,则甲,乙两位专家派遣至惠农区的概率为_____.14.若(9)85a =,(5)301b =,(2)1001c =,则这三个数字中最大的是___15.运行如图所示的程序框图,则输出的所有y 值之和为___________.16.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.17.某班60名学生参加普法知识竞赛,成绩都在区间[40100],上,其频率分布直方图如图所示,则成绩不低于60分的人数为___.18.已知某产品连续4个月的广告费i x (千元)与销售额i y (万元)(1,2,3,4i =)满足4115ii x==∑,4112i i y ==∑,若广告费用x 和销售额y 之间具有线性相关关系,且回归直线方程为^y bx a =+,0.6b =,那么广告费用为5千元时,可预测的销售额为___万元. 19.执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为_____.20.取一根长度为3米的绳子,拉直后在任意位置剪断,则剪出的两段的长都不小于1米(记为事件A)的概率为________三、解答题21.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82 84 85 89 79 80 91 89 79 74乙班:90 76 86 81 84 87 86 82 85 83(1)求两个样本的平均数;(2)求两个样本的方差和标准差;(3)试分析比较两个班的学习情况.22.冬季历来是交通事故多发期,面临着货运高危运行、恶劣天气频发、包车客运监管漏洞和农村交通繁忙等四个方面的挑战.全国公安交管部门要认清形势、正视问题,针对近期事故暴露出来的问题,强薄羽、补短板、堵漏洞,进一步推动五大行动,巩固扩大五大行动成果,全力确保冬季交通安全形势稳定.据此,某网站推出了关于交通道路安全情况的调查,通过调查年龄在[15,65)的人群,数据表明,交通道路安全仍是百姓最为关心的热点,参与调查者中关注此类问题的约占80%.现从参与调查并关注交通道路安全的人群中随机选出100人,并将这100人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(1)求这100人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(2)现在要从年龄较大的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行问卷调查,求第2组恰好抽到1人的概率;23.2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:g)进行了问卷调查,得到如下频率分布直方图:()1求频率分布直方图中a 的值;()2以频率作为概率,试求消费者月饼购买量在600g 1400g ~的概率;()3已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的5%,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求(频率分布直方图中同一组的数据用该组区间的中点值作代表)?24.某洗车店对每天进店洗车车辆数x 和用次卡消费的车辆数y 进行了统计对比,得到如下的表格: 车辆数x 10 18 26 36 40 用次卡消费的车辆数y710171823(Ⅰ)根据上表数据,用最小二乘法求出y 关于x 的线性回归方程;(b ∧的结果保留两位小数)(Ⅱ)试根据()I 求出的线性回归方程,预测50x =时,用次卡洗车的车辆数. 参考公式:由最小二乘法所得回归直线的方程是ˆˆˆybx a =+;其中,()1122211())()nni i i i i i nn i i i i x x y y x y nxy b x x x nx ====---==--∑∑∑∑$,a y bx =-$.25.某研究机构对春节燃放烟花爆竹的天数x 与雾霾天数y 进行统计分析,给出下表数据:x2 3 5 7 8(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;(2)试判断y 与x 之间是正相关还是负相关,并预测燃放烟花爆竹的天数为9天时的雾霾天数约为几天?(参考公式:()()()1122211nniii ii i nnii i i x x y y x y nx ybx x x nx====---==--∑∑∑∑$,a y bx =-$$.)26.随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从20092018-年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.(互联网普及率=(网民人数/人口总数)×100%;手机网民普及率=(手机网民人数/人口总数)×100%) (Ⅰ)从20092018-这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记X 为手机网民普及率超过50%的年数,求X 的分布列及数学期望;(Ⅲ)若记20092018-年中国网民人数的方差为21s ,手机网民人数的方差为22s ,试判断21s 与22s 的大小关系.(只需写出结论)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据二项式5(2)x +展开式的通项公式,求出3x 的系数,由已知先求a 的值,模拟程序的运行,可得判断框内的条件. 【详解】解:由于32300(21)|6a x dx x x =-=-=⎰,Q 二项式5(2)x -展开式的通项公式是5152r r r r T C x -+=⋅⋅,令3r =,3233152T C x +∴=⋅⋅;3x ∴的系数是32352140C ⋅⋅=.∴程序运行的结果S 为360,模拟程序的运行,可得6k =,1S = 不满足条件,执行循环体,6S =,5k = 不满足条件,执行循环体,30S =,4k = 不满足条件,执行循环体,120S =,3k = 不满足条件,执行循环体,360S =,2k =由题意,此时,应该满足条件,退出循环,输出S 的值为360. 则判断框中应填入的关于k 的判断条件是3k <? 故选A . 【点睛】本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.2.D解析:D 【解析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,ABC ∆包含9 个小三角形,同时又在DEF ∆内的小三角形共有6 个,所以(|)P B A =6293= ,故选D. 3.A解析:A 【解析】从流程图看,该程序是利用辗转相除法计算,m n 的最大公约数.题设中已知72m =,输入的数为n ,程序给出了它们的最大公约数为6,比较四个数,只有72,30的最大公约数为6,故输入的数n 的值为30,选A. 4.A解析:A 【解析】 【分析】计算出数据1x 、2x 、L 、n x 的平均值x 和方差2s 的值,然后利用平均数和方差公式计算出数据153x -、253x -、L 、53n x -的平均值和方差. 【详解】设数据1x 、2x 、L 、n x 的平均值为x ,方差为2s , 由题意()()()()121221212121215n n x x x x x x x nn++++++++=+=+=L L,得2x =,由方差公式得()()()()()()22212212121212121n x x x x x x n⎡⎤⎡⎤⎡⎤+-+++-++++-+⎣⎦⎣⎦⎣⎦L ()()()2221224416n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===L ,24s ∴=. 所以,数据153x -、253x -、L 、53n x -的平均值为()()()12535353n x x x n-+-+-L ()1235535321n x x x x n+++=-=-=-⨯=-L,方差为()()()()()()22212535353535353n x x x x x x n⎡⎤⎡⎤⎡⎤---+---++---⎣⎦⎣⎦⎣⎦L ()()()2221229936n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===L . 故选:A. 【点睛】本题考查平均数与方差的计算,熟练利用平均数与方差的公式计算是解题的关键,考查计算能力,属于中等题.5.A解析:A 【解析】 【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果. 【详解】根据频率分布直方图可列下表:故选A. 【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.6.C解析:C 【解析】模拟程序框图的运行过程,如下:输入a ,23m a =-,1i =,()223349m a a =--=-;2i =,()2493821m a a =--=-; 3i =,()282131645m a a =--=-; 4i =,()2164533293m a a =--=-;输出3293m a =-,结束; 令329367a -=,解得5a =. 故选C.7.C解析:C 【解析】 【分析】根据平均数的定义即可求出.根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.8.B解析:B 【解析】 【分析】利用倒取余数法可得化为五进制数.【详解】 因为所以用倒取余数法得323,故选:B. 【点睛】本题考查十进制数和五进制数之间的转化,利用倒取余数法可解决此类问题.9.C解析:C 【解析】 【分析】由框图可知程序的功能是输出三者中的最大者,比较大小即可. 【详解】由程序框图可知a 、b 、c 中的最大数用变量x 表示并输出, ∵,42ππα⎛⎫∈⎪⎝⎭∴20cos α12sin α<<<<, 又()y xsin α=在R 上为减函数,y sin x α=在()0∞+,上为增函数, ∴()sin sin αα<()cos sin αα,()sin cos αα<()sin sin αα故最大值为()cos sin αα,输出的x 为()cos sin αα故选:C 【点睛】本题主要考查了选择结构.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.10.C解析:C 【解析】 【分析】根据几何概型的概率公式,设AC =x ,则BC =10﹣x ,由矩形的面积S =x (10﹣x )<16可求x 的范围,利用几何概率的求解公式求解. 【详解】设线段AC 的长为xcm ,则线段CB 长为(10)cm x -, 那么矩形面积为(10)16x x -<,2x <或8x >,又010x <<, 所以该矩形面积小于216cm 的概率为42105=. 故选:C 【点睛】本题考查几何概型,考查了一元二次不等式的解法,明确测度比为长度比是关键,是中档题.11.A解析:A 【解析】设甲到达时刻为x ,乙到达时刻为y ,依题意列不等式组为{0.50,1y xx y x y ≥+≥≤≤,画出可行域如下图阴影部分,故概率为11138218--=.12.B解析:B 【解析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.二、填空题13.【解析】【分析】将所有的基本事件全部列举出来确定基本事件的总数并确定所求事件所包含的基本事件数然后利用古典概型的概率公式求出答案【详解】所有的基本事件有:(甲乙丙)(乙甲丙)(丙甲乙)(甲乙丙)(甲解析:16【解析】 【分析】将所有的基本事件全部列举出来,确定基本事件的总数,并确定所求事件所包含的基本事件数,然后利用古典概型的概率公式求出答案. 【详解】所有的基本事件有:(甲、乙丙)、(乙,甲丙)、(丙、甲乙)、(甲乙、丙)、(甲丙、乙)、(乙丙、甲)(其中前面的表示派往大武口区调研的专家),共6个, 因此,所求的事件的概率为16,故答案为16. 【点睛】本题考查古典概型概率的计算,解决这类问题的关键在于确定基本事件的数目,一般利用枚举法和数状图法来列举,遵循不重不漏的基本原则,考查计算能力,属于基础题.14.【解析】【分析】将三个数都转化为10进制的数然后比较大小即可【详解】故最大【点睛】本题考查了不同进制间的转化考查了学生的计算能力属于基础题 解析:a【解析】 【分析】将三个数都转化为10进制的数,然后比较大小即可。
高二数学第一学期期末模拟卷
第2题高二数学第一学期期末模拟卷(一)一.填空题:本大题共14小题,每小题5分,共70分.1.抛物线22y x =的焦点坐标是 .2.下面的流程图判断框中应填入 ,可以计算2222246100++++.3.命题“x x R x 21,2≥+∈∀”的否定是 .4.“a>2”是“方程x 2a+1 + y 22-a=1 表示的曲线是双曲线”的 条件(填“充分不必要,.必要不充分,充要条件,既不充分也不必要”).5. 已知变量x 与变量y 之间的一组数据如表,则y 与x 的线性回归方程y=b x +a 必过点 .6.甲、乙两个总体各抽取一个样本,若甲样本均值为15,乙样本均值为17,甲样本方差为3,乙样本方差为2,则总体 (填写“甲”或“乙”)波动小.7.如果质点A 的位移S 与时间t 满足方程32S t =(位移单位:米,时间单位:秒),则质点在3t =时的瞬时速度为 米/秒.8.从[0,1]之间选出两个数,这两个数的平方和大于1的概率是 . 9. 设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实数a 的取值范围是 .10.已知一纸箱内装有某种矿泉水12瓶,其中有2瓶不合格,若质检人员从该纸箱内随机抽出2瓶,则检测到不合格产品的事件概率是 .11.中心在原点,长轴长为8,准线方程为8x =±的椭圆标准方程为 . 12.设点P 是曲线)0(ln 2>-=x x x y 上的任意一点,则点P 到直线2:-=x y l 距离的最小值是 .13. P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为 . 14.有如下四个命题:命题①:方程221(0)mx ny m n +=>>表示焦点在x 轴上的椭圆;命题②:20a b +=是直线230ax y ++=和直线20x by ++=互相垂直的充要条件; 命题③:方程221(0)mx ny m n -=>>的双曲线; 命题④:“全等三角形的面积相等”的否命题.其中真命题的序号是 .(写出所有真命题的序号)二.解答题:本大题共6小题,每小题15分,共90分.解答应写出文字说明、证明过程或演 算步骤.15. 已知三点P (5,2)、1F (-6,0)、2F (6,0)。
2023-2024学年高二数学上学期期末模拟考试01(全解全析)(含答案)
2023-2024学年上学期期末模拟考试01高二数学(答案在最后)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:空间向量与立体几何、直线与圆的方程、圆锥曲线、数列。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.直线10x -=的倾斜角是()A .π6B .π3C .2π3D .5π6【答案】D【分析】根据已知条件,结合直线的倾斜角与斜率的关系,即可求解.【详解】设直线的倾斜角为θ,0πθ≤<,直线10x -=可化为y =所以直线的斜率tan k θ==5π6θ∴=,故选:D .2.已知)1,2n x =,(2n =--分别是平面,αβ的法向量,若//αβ,则x =()A.7-B.1-C.1D.7【答案】B【解析】【分析】利用平面平行可得法向量平行,列出等式即可求解【详解】因为)1,2n x =,(2n =--分别是平面,αβ的法向量,且//αβ,所以12//n n,即33==-,解得=1x -故选:B3.设等比数列{}n a 的前n 项和为n S ,若22a =,且2a ,3a ,42a -成等差数列,则4S =()A .7B .12C .15D .31【答案】C【分析】设出公比,根据2a ,3a ,42a -成等差数列列出方程,求出公比,利用等比数列求和公式得到答案.【详解】设公比为()0q q ≠,因为2a ,3a ,42a -成等差数列,所以32422a a a =+-,则222222q q ⨯=+-,解得:2q =或0(舍去).因为22a =,所以11a =,故44121512S -==-.故选:C4.设R a ∈,则“1a =”是“直线()130a x ay +++=与直线250ax y +-=平行”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据直线平行的条件和充分必要条件的概念可判断结果.【详解】因为直线(1)30a x ay +++=与直线250ax y +-=平行的充要条件是212a a +=且5(1)6a a -+≠,解得1a =或12a =-.所以由充分必要条件的概念判断可知:“1a =”是“直线()130a x ay +++=与直线250ax y +-=平行”的充分不必要条件,故选:A5.如图,在四面体OABC 中,,,OA a OB b OC c ===.点M 在OA 上,且2,OM MA N =为BC中点,则MN等于()A.121232a b c -+B.211322a b c-++C.111222a b c +- D.221332a b c +- 【答案】B 【解析】【分析】连接ON ,利用空间向量基本定理可得答案.【详解】连接()12211,23322ON MN ON OM OB OC OA a b c =-=+-=-++.故选:B.6.已知圆1C :221x y +=与圆2C :22860+-++=x y x y m 相内切,则1C 与2C 的公切线方程为()A.3450x y --=B.3450x y -+=C.4350x y --=D.4350x y -+=【答案】D 【解析】【分析】由两圆的位置关系得出m ,进而联立两圆方程得出公切线方程.【详解】圆1C :221x y +=的圆心11(0,0),1O r =,圆2C :22860+-++=x y x y m 可化为22(4)(3)25x y m -++=-,()25m <,则其圆心为2(4,3)O -,半径为2r =,因为圆1C 与圆2C 相内切,所以2121r O O -=,即216r ==,故11m =-.由2222186110x y x y x y ⎧+=⎨+-+-=⎩,可得4350x y -+=,即1C 与2C 的公切线方程为4350x y -+=.故选:D7.已知数列{}n a 满足1112n n n n n a a a a ++--=,且21a =-,若816k a a =,则正整数k 为()A .13B .12C .11D .10【答案】B 【分析】确定111112n n n a a -+-=,112a =-,利用累加法确定22n n a -=-,代入计算得到答案.【详解】1112n n n n n a a a a ++--=,故111112n n n a a -+-=,21a =-,故112a =-,212112111111111111112222n n n n n n n n a a a a a a a a -----⎛⎫⎛⎫⎛⎫=-+-++-+=+++-=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ .故22n n a -=-,816k a a =,即261021622k --=-⨯=-,故210k -=,解得12k =.故选:B8.已知F 为椭圆C :()222210x y a b a b+=>>的右焦点,P 为C 上的动点,过F 且垂直于x 轴的直线与C 交于M ,N 两点,若MN 等于PF 的最小值的3倍,则C 的离心率为()A.13B.12C.3D.2【答案】B 【解析】【分析】根据椭圆的性质以及通径,可得minPF a c =-,22b MN a=,再根据已知列式,结合椭圆a b c 、、的关系,求出离心率即可.【详解】F 为椭圆C :()222210x y a b a b+=>>的右焦点,P 为C 上的动点,由椭圆的性质,可得minPFa c =-.过F 且垂直于x 轴的直线与C 交于M ,N 两点,22b MN a∴=.MN 等于PF 的最小值的3倍,()223a b ac =∴-.椭圆中222a c b -=,()222233a c a ac ∴-=-,即22230c ac a -+=,则22222230c ac a a a a -+=.ce a=,22310e e ∴-+=,解得12e =或1e =(舍).故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知曲线1C :224348x y +=,2C :2213yx -=,则()A.1C 的长轴长为4B.2C 的渐近线方程为y =C.1C 与2C 的焦点坐标相同D.1C 与2C 的离心率互为倒数【答案】BD 【解析】【分析】根据椭圆与双曲线的标准方程,结合它们的几何性质逐项判断即可.【详解】曲线1C :224348x y +=整理得2211216x y+=,则曲线1C 是焦点在y 轴上的椭圆,其中221116,12a b ==,所以2221114c a b =-=,离心率为1112142c e a ===故曲线1C 的长轴长128a =,故A 不正确;曲线2C :2213y x -=是焦点在x 轴上的双曲线,其中22221,3a b ==,所以2222224c a b =+=,离心率为222221c e a ===,故与曲线1C 的焦点位置不同,故C 不正确;2C :2213y x -=的渐近线方程为y =,故B 正确;又121212e e ⋅=⨯=,所以1C 与2C 的离心率互为倒数,故D 正确.故选:BD.10.已知等差数列{}n a 的前n 项和为n S ,若23240,0S S ><,则下列结论错误的是()A .数列{}n a 是递增数列B .130a >C .当n S 取得最大值时,13n =D .1312a a >【答案】ABC【分析】由已知23240,0S S ><,利用等差数列求和公式与等差数列的性质可得:120a >,12130a a +<,进而判断选项即可.【详解】因为{}n a 是等差数列,且23240,0S S ><,所以()12312232302a a a +=>,()()()1241241213242412022a a a a a a ++==+<,即12130a a +<,所以120a >,130a <,且1312a a >,所以B 错误,D 正确;因为13120d a a =-<,所以等差数列{}n a 是递减数列,所以A 错误;所以当12n =时,n S 取得最大值,所以C 错误.故选:ABC11.如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为11A B ,AB 的中点,则下列结论正确的是()A.点B 到直线11A CB.直线CF 到平面1AEC 的距离为3C.直线11A C 与平面1AEC 所成角的余弦值为6D.直线11A C 与直线1B F 所成角的余弦值为10【答案】ABD 【解析】【分析】以D 为坐标原点,建立空间直角坐标系,利用向量法即可结合选项逐一求解.【详解】在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为11A B ,AB 的中点,以D 为坐标原点,建立空间直角坐标系,如图,(2B ,2,0),1(2A ,0,2),1(0C ,2,2),1(0A B = ,2,2)-,11(2A C =-,2,0),则点B 到直线11A C 的距离为:21||d A B==A正确;(2A,0,0),(2F,1,0),(2E,1,2),(0C,2,0),(2CF=,1-,0),(0AE=,1,2),1(2AC=-,2,2),(0AF=,1,0),设平面1AEC的法向量(n x= ,y,)z,则1202220n AE y zn AC x y z⎧⋅=+=⎪⎨⋅=-++=⎪⎩,取1x=,得(1n=,2,1)-,由于,E F分别为11,A B AB的中点,所以1//EF CC且1EF CC=,因此四边形1FCC E为平行四边形,故1//EC FC,又⊄FC平面1AEC,1EC⊂平面1AEC,所以//CF平面1AEC,∴直线CF到平面1AEC的距离为||||3AF ndn⋅===,故B正确;设直线11A C与平面1AEC所成角为θ,则1111||sin||||A C nA C nθ⋅==⋅C错误;1(2B,2,2),1(0B F=,1-,2)-,设直线11A C与直线1B F所成角为θ,则111111||cos||||AC B FAC B Fθ⋅==⋅,故D正确.故选:ABD.12.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,…设第n层有n a个球,从上往下n层球的总数为n S,则下列结论正确的是()A.420S= B.1n n na a+-=C.()112n n n n S S -+-=,2n ≥ D.1232023111120231012a a a a +++⋅⋅⋅+=【答案】ACD 【解析】【分析】根据每层球数变化规律可直接求解得到AB 正误;利用累加法可求得C 正确;采用裂项相消法可求得D 正确.【详解】对于A ,123441361020S a a a a =+++=+++=,A 正确;对于B ,由每层球数变化规律可知:()11n n a a n n *+-=+∈N ,B 错误;对于C ,当2n ≥时,()()()()()11221111212n n n n n n n a a a a a a a a n n ---+=-+-+⋅⋅⋅+-+=+-+⋅⋅⋅++=;当1n =时,11a =满足()12n n n a +=,()()12n n n a n *+∴=∈N ;()()1122n n n n n S S a n -+∴-==≥,C 正确;对于D ,()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,123202311111111112121223202320242024a a a a ⎛⎫⎛⎫∴+++⋅⋅⋅+=⨯-++⋅⋅⋅+-=⨯- ⎪⎝⎭⎝⎭20231012=,D 正确.故选:ACD.第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.已知四棱锥P ABCD -的底面ABCD 是平行四边形,若PD xPA yPB zPC =++ ,则xyz =______.【答案】1-【解析】【分析】根据空间向量的运算及空间向量基本定理得答案.【详解】因为四棱锥P ABCD -的底面ABCD 是平行四边形,所以PD PA AD PA BC PA PC PB =+=+=+- ,又PD xPA yPB zPC =++,由空间向量基本定理可得,1,1,1x y z ==-=,故1xyz =-.故答案为:1-.14.已知数列{}n a 的前n 项和为n S ,若21n n S a =+,则n a =________.【答案】12n --【解析】【分析】先令1n =得到11a =-,再令2n ≥得到1121n n S a --=+,从而得到()122nn a n a -=≥为常数,得到数列{}n a 是首项为1-,公比为2的等比数列,从而直接求得通项公式.【详解】令1n =,得11121a S a ==+,所以11a =-;令2n ≥,则1121n n S a --=+,两式相减得,1122n n n n S S a a ---=-,即122n n n a a a -=-,所以()122n n a a n -=≥,因为110a =-≠,所以0n a ≠,所以()122nn a n a -=≥为常数,所以数列{}n a 是首项为1-,公比为2的等比数列,所以11122n n n a --=-⨯=-.故答案为:12n --15.如图是一座抛物线型拱桥,拱桥是抛物线的一部分且以抛物线的轴为对称轴,当水面在l 时,拱顶离水面2米,水面宽4米.当水位下降,水面宽为6米时,拱顶到水面的距离为______米.【答案】4.5##92【解析】【分析】建立平面直角坐标系,设抛物线方程为2x my =,求出抛物线的方程,再代点的坐标即得解.【详解】如图,建立平面直角坐标系,设抛物线方程为2x my =,将()2,2A -代入2x my =,得2m =-,所以22x y =-.设()03,B y ,代入092y =-,得0 4.5y =-.所以拱桥到水面的距离为4.5m .故答案为:4.5.16.如图,我们把由半椭圆()2210169y x x +=≤和半椭圆()22102516x y x +=>合成的曲线称作“果圆”.1F ,2F ,3F 是相应半椭圆的焦点,则123F F F 的周长为______,直线y t =与“果圆”交于A ,B 两点,且AB 中点为M ,点M 的轨迹方程为______.【答案】①.8+②.()221016y x x +=>【解析】【分析】根据各半椭圆方程可得1F ,2F ,3F 的坐标,再根据两点间距离公式求得距离及周长;分别表示点A ,B 的坐标,利用中点公式表示M ,消参即可得到点M ,得轨迹方程.【详解】由1F ,2F ,3F 是相应半椭圆的焦点,可得(1F,(20,F ,()33,0F ,所以12F F =,134F F =,234F F =,故所求周长为448++=+;设(),M x y ,联立直线y t =与()2210169y xx +=≤,得x =-,即点A t ⎛⎫⎪⎝⎭,联立直线y t =与()22102516x yx +=>,得x =即点B t ⎫⎪⎭,且,A B 不重合,即4t ≠,又M 为AB 中点,所以1644242x t ty t ⎧⎪==⎪⎨⎪+==⎪⎩,即x =0x >,整理可得22116yx +=,0x >,故答案为:8+,()221016y x x +=>.四、解答题:本题共6小题,共70分.第17题10分,其他每题12分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知ABC D 的顶点坐标为(1,1)A -,(2,0)B ,(3,4)C .(1)求AB 边上的高CD 的长.(2)求ABC D 的面积.【答案】(1)10(2)13 2【分析】(1)求出直线AB的方程,利用点到直线的距离即可求解;(2)求出AB的长,用面积公式即可求解.【详解】(1)由题意,直线AB的方程为:021012y x--=---,即320x y+-=.故点C到直线AB的距离即为AB边上的高CD的长,所以||CD=(2)因为||AB==所以ABCD的面积为:111313||||22102ABCS AB CD==创=.18.(12分)已知数列{}n a是等差数列,{}n b是各项均为正数的等比数列,数列{}n b的前n项和为n S,且111a b==,221a b=+,43a S=.(1)求数列{}n a,{}n b的通项公式;(2)令()*,21,2nnna n kc kb n k=-⎧=∈⎨=⎩N,求数列{}n c的前12项和12T.【答案】(1)21na n=-,12nnb-=(2)2796【解析】【分析】(1)由数列{}n a是等差数列,{}n b是各项均为正数的等比数列,设出公差和公比,根据题意列出方程组求解即可;(2)根据题意写出数列{}n c通项公式,用分组求和法,结合等差等比求和公式求解即可.【小问1详解】设数列{}n a 的公差为d ,数列{}n b 的公比为()0q q >,由题意可得,()11211131a d b q a d b q q +=+⎧⎪⎨+=++⎪⎩,即23d q q q d =⎧⎨+=⎩,所以220q q -=,因为0q >,所以2d q ==,所以()12121n a n n =+-=-,11122n n n b --=⨯=.【小问2详解】由(1)可得*121,21,2,2n n n n k c k n k--=-⎧=∈⎨=⎩N ,所以{}n c 的所有奇数项组成以1为首项,4为公差的等差数列;所有偶数项组成以2为首项,4为公比的等比数列.所以,()()1213112412T c c c c c c =+++++++ ()()13112412a a a b b b =+++++++ ()()62146616146627302796214⨯-⨯-=⨯+⨯+=+=-.19.(12分)已知直线20x y --=经过抛物线C :()220y px p =>的焦点F ,且与C 交于A ,B两点.(1)求C 的方程;(2)求圆心在x 轴上,且过A ,B 两点的圆的方程.【答案】(1)28y x =;(2)()221096x y -+=.【解析】【分析】(1)求出抛物线的焦点坐标,代入直线方程即可求解作答.(2)根据给定条件,求出线段AB 的中垂线方程,再求出圆心坐标及半径作答.【小问1详解】依题意,抛物线C 的焦点(,0)2p F 在直线20x y --=上,则202p-=,解得4p =,所以C 的方程为28y x =.【小问2详解】由(1)知,抛物线C 的准线方程为2x =-,设()11,A x y ,()22,B x y ,AB 的中点为00(,)M x y ,由2208x y y x --=⎧⎨=⎩消去y 得21240x x -+=,则1212x x +=,有12062x x x +==,0024y x =-=,即()6,4M ,因此线段AB 的中垂线方程为()46y x -=--,即10y x =-+,令0y =,得10x =,设所求圆的圆心为E ,则()10,0E ,又AB 过C 的焦点F ,则有12||||2216AB AF BF x x =+=+++=,设所求圆的半径为r ,则222222844962AB r ME ⎛⎫=+=++= ⎪⎝⎭,故所求圆的方程为()221096x y -+=.20.(12分)已知数列{}n a 的前n 项和22n n S a =-.(1)证明{}n a 是等比数列,并求{}n a 的通项公式;(2)在n a 和1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)证明见解析,2n n a =(2)332nn +-【解析】【分析】(1)利用1(2)n n n a S S n -=-≥及已知即可得到证明,从而求得通项公式;(2)先求出通项112n n n d +=,再利用错位相减法求和即可.【小问1详解】因为22n n S a =-,当2n ≥时,1122n n S a --=-,所以,当2n ≥时,12n n a a -=,又1122a a =-,解得12a =,所以{}n a 是以2为首项,2为公比的等比数列,故2nn a =【小问2详解】因为2nn a =,所以1211nn n n a a d n n +-==++,112n nn d +=,21211111123(1)222n n n T n d d d =+++=⨯+⨯+++⨯ ,231111123(1)2222n n T n +=⨯+⨯+++⨯ ,所以231111111(1)22222n n n T n +=++++-+⨯ 211111(1)13112211222212n n n n n n -++-++=+-=---13322n n ++=-,所以332n nn T +=-21.(12分)如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AD DC ⊥,//AB DC ,222PC AB AD CD ====,点E 在棱PB上.(1)证明:平面EAC ⊥平面PBC ;(2)当2BE EP =时,求二面角P AC E --的余弦值.【答案】(1)证明见解析(2)3【解析】【分析】(1)由线面垂直得到线线垂直,求出各边长,由勾股定理逆定理得到AC BC ⊥,从而证明出线面垂直,面面垂直;(2)解法一:以C 为原点,CB ,CA ,CP 所在直线分别为x 轴,y 轴,z 轴,建系,写出点的坐标及平面的法向量,求出二面角的余弦值;解法二:取AB 的中点G ,连接CG ,以点C 为原点,CG ,CD ,CP 所在直线分别为x 轴,y 轴,z 轴,建系,写出点的坐标及平面的法向量,求出二面角的余弦值;【小问1详解】因为PC ⊥底面ABCD ,AC ⊂平面ABCD ,所以PC AC ⊥.因为2AB =,1AD CD ==,所以AC BC ==所以222AC BC AB +=,所以ACBC ⊥.又因为PC BC C ⋂=,PC ⊂平面PBC ,BC ⊂平面PBC ,所以AC ⊥平面PBC .又AC ⊂平面EAC ,所以平面EAC ⊥平面PBC .【小问2详解】解法一:以点C 为原点,CB ,CA ,CP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()0,0,0C ,)B,()A ,()002P ,,.设点E 的坐标为(),,x y z ,因为2BE EP =,所以()(),2,,2x y z x y z =---,即3x =,0y =,43z =,所以4,0,33E ⎛⎫ ⎪ ⎪⎝⎭.所以()CA =,4,0,33CE ⎛⎫= ⎪ ⎪⎝⎭.设平面ACE 的一个法向量为(),,n x y z = ,则00n CA n CE ⎧⋅=⎪⎨⋅=⎪⎩.所以04033x z =+=⎪⎩,取x =0y =,1z =-.所以平面ACE的一个法向量为()1n =-.又因为BC ⊥平面PAC ,所以平面PAC的一个法向量为)CB =.设平面PAC 与平面ACE 的夹角为θ,则cos cos ,3n CB θ==.所以,平面PAC 与平面ACE 夹角的余弦值为223.解法二:取AB 的中点G ,连接CG ,以点C 为原点,CG ,CD ,CP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()0,0,0C ,()1,1,0B -,()1,1,0A ,()002P ,,.设点E 的坐标为(),,x y z ,因为2BE EP =,所以()()1,1,2,,2x y z x y z -+=---,即13x =,13y =-,43z =,所以114,,333E ⎛⎫- ⎪⎝⎭.所以()1,1,0CA =,114,,333CE ⎛⎫=- ⎪⎝⎭.设平面ACE 的一个法向量为(),,n x y z = ,则00n CA n CE ⎧⋅=⎪⎨⋅=⎪⎩.所以01140333x y x y z +=⎧⎪⎨-+=⎪⎩,取3x =,则=3y -,32z =-.所以,平面ACE 的一个法向量为33,3,2n ⎛⎫=-- ⎪⎝⎭ .又因为BC ⊥平面PAC ,所以平面PAC 的一个法向量为()1,1,0CB =-.设平面PAC 与平面ACE 的夹角为θ,则cos cos ,3n CB θ===.所以,平面PAC 与平面ACE 夹角的余弦值为322.(12分)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F (1210F F<),上顶点为A ,12AF AF ⊥,且1F 到直线l :50x -+=的距离为3.(1)求C 的方程;(2)与l 平行的一组直线与C 相交时,证明:这些直线被C 截得的线段的中点在同一条直线上;(3)P 为C 上的动点,M ,N 为l 上的动点,且MN =,求PMN ∆面积的取值范围.【答案】(1)2212x y +=(2)证明见解析(3)[]3,7.【解析】【分析】(1)由题意,根据椭圆的顶点坐标以及点到直线距离公式,可得答案;(2)由两直线的平行关系,设出直线方程,联立方程,利用韦达定理,表示出中点坐标,可得答案;(3)根据直线的平移,取与椭圆相切是的临界点,利用三角形的面积公式,可得答案.【小问1详解】设()1 , 0F c -,()2 , 0F c,由题意得22235b c a b c c =⎧==+⎪⎪<⎩,解得1b c a ==⎧⎪⎨=⎪⎩,所以C 的方程为2212x y +=.【小问2详解】证明:设这组平行线的方程为0x m +=,与2212x y +=联立消去x ,得22420y m -+-=,则()()221620m ∆=-->,得22m -<<.设直线0x m +=被C 截得的线段的中点为(),B x y ,则1224y y y m +==,其中1y ,2y是方程22420y m -+-=的两个实数根.所以2mxm =-=-,消去m,得0x +=,所以这些直线被C截得的线段的中点均在直线0x =上.【小问3详解】由(2)知,l 与C 相离,当直线0x m +=与C相切时,()()221620m ∆=--=,解得2m =-或2m =.当2m =-时,直线与l的距离为1733d ==,此时1723PMN S =⨯=△,当2m =时,直线与l的距离为2d ==,此时132PMN S =⨯=△,。
【好题】高二数学上期末一模试题(附答案)(1)
【好题】高二数学上期末一模试题(附答案)(1)一、选择题1.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49 D .292.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .813.下面的程序框图表示求式子32×35×311×323×347×395的值, 则判断框内可以填的条件为( )A .90?i ≤B .100?i ≤C .200?i ≤D .300?i ≤4.日本数学家角谷静夫发现的“31x + 猜想”是指:任取一个自然数,如果它是偶数,我们就把它除以2,如果它是奇数我们就把它乘3再加上1,在这样一个变换下,我们就得到了一个新的自然数.如果反复使用这个变换,我们就会得到一串自然数,猜想就是:反复进行上述运算后,最后结果为1,现根据此猜想设计一个程序框图如图所示,执行该程序框图输入的6N =,则输出i 值为( )A .6B .7C .8D .9 5.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα6.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D 为BE 中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .17B .14C .13D .4137.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为( ) A .27B .57C .29D .598.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4139.设数据123,,,,n x x x x L 是郑州市普通职工*(3,)n n n N ≥∈个人的年收入,若这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入1n x +,则这1n +个数据中,下列说法正确的是( )A .年收入平均数大大增大,中位数一定变大,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数可能不变,中位数可能不变,方差可能不变10.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .至少有一个白球;红、黑球各一个D .恰有一个白球;一个白球一个黑球11.执行如图所示的程序框图,若输入x =9,则循环体执行的次数为( )A .1次B .2次C .3次D .4次12.执行如图的程序框图,若输出的4n =,则输入的整数p 的最小值是( )A .4B .5C .6D .15二、填空题13.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束,则恰好检测四次停止的概率为_____(用数字作答).14.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.15.在[0,1]上随机取两个实数,a b ,则,a b 满足不等式221a b +≤的概率为________. 16.阅读如图所示的程序框图,运行相应的程序,则输出n 的值为___________17.如图所示的程序框图,输出的S的值为()A.12B.2C.1-D.12-18.变量X与Y相对应的5组数据和变量U与V相对应的5组数据统计如表:X1011.311.812.513U1011.311.812.513 Y12345V54321用b1表示变量Y与X之间的回归系数,b2表示变量V与U之间的回归系数,则b1与b2的大小关系是___.19.投掷一枚均匀的骰子,则落地时,向上的点数是2的倍数的概率是_________,20.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________三、解答题21.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表l所示:表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,(c,d均为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:其中参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.22.某高中为了选拔学生参加“全国高中数学联赛”,先在本校进行初赛(满分150分),随机抽取100名学生的成绩作为样本,并根据他们的初赛成绩得到如图所示的频率分布直方图.(1)求频率分布直方图中a的值;(2)根据频率分布直方图,估计这次初赛成绩的平均数、中位数、众数.23.为了减轻家庭困难的高中学生的经济负担,让更多的孩子接受良好的教育,国家施行高中生国家助学金政策,普通高中国家助学金平均资助标准为每生每年1500元,具体标准由各地结合实际在1000元至3000元范围内确定,可以分为两或三档.各学校积极响应政府号召,通过各种形式宣传国家助学金政策.为了解某高中学校对国家助学金政策的宣传情况,拟采用随机抽样的方法抽取部分学生进行采访调查.(1)若该高中学校有2000名在校学生,编号分别为0001,0002,0003,…,2000,请用系统抽样的方法,设计一个从这2000名学生中抽取50名学生的方案.(写出必要的步骤)(2)该校根据助学金政策将助学金分为3档,1档每年3000元,2档每年2000元,3档每年1000元,某班级共评定出3个1档,2个2档,1个3档,若从该班获得助学金的学生中选出2名写感想,求这2名同学不在同一档的概率.24.为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]6组,得到如图所示的频率分布直方图.(1)求a的值;(2)记A表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A发生的概率;(3)在抽取的100名理科生中,采用分层抽样的方法从成绩在[60,80)内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在[60,70)内的人数为X,求X的分布列与数学期望.25.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需要看不同类型的书籍,为了合理配备资源,现对小区看书人员进行年龄调查,随机抽取了一天40名读书者进行调查. 将他们的年龄分成6段:[)[)[)[)[)[)20,30,30,40,40.50,50,60,60,70,70,80,后得到如图所示的频率分布直方图,问:30,60的人数;(1)在40名读书者中年龄分布在[)(2)估计40名读书者年龄的平均数和中位数.26.东莞市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在[20,70]之间,根据统计结果,做出频率分布直方图如图:(1)求频率分布直方图中x的值,并根据频率分布直方图,求这100位摄影者年龄的样本平均数x和中位数m(同一组数据用该区间的中点值作代表);(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会. ①在答题卡上的统计表中填出每组相应抽取的人数: 年龄 [20,30) [30,40) [40,50) [50,60) [60,70]人数②若从年龄在[30,50)的作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在[30,40)的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由题意结合几何概型计算公式求解满足题意的概率值即可. 【详解】如图所示,01,01x y ≤≤≤≤表示的平面区域为ABCD , 平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中2,03P ⎛⎫ ⎪⎝⎭,20,3Q ⎛⎫ ⎪⎝⎭, 结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯. 本题选择D 选项.【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.2.A解析:A 【解析】 【分析】利用茎叶图、平均数的性质直接求解. 【详解】由一组数据的茎叶图得: 该组数据的平均数为:1(7581858995)855++++=. 故选:A . 【点睛】本题考查平均数的求法,考查茎叶图、平均数的性质等基础知识,考查运算求解能力,是基础题.3.B解析:B 【解析】 【分析】根据题意可知该程序运行过程中,95i =时,判断框成立,191i =时,判断框不成立,即可选出答案。
2022-2023学年度(上)高二数学期末模拟卷1答案及解析
2022-2023 学年第一学期期末模拟考试 1高二数学卷参考答案及解析1.A【分析】根据向量共线定理,结合空间向量线性关系的坐标关系列方程求参数,即可得结果.【详解】由题设,存在R λ∈使a b λ= ,则21239x y λλλ=⎧⎪=-⎨⎪=⎩,可得163213x y λ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩,所以134623x y +=-=-.故选:A 2.C【分析】根据等差数列的前n 项和公式及等差数列性质:若m n p q +=+,则m n p q a a a a +=+即可得到结果.【详解】解:由题知1122S =,即()1111161111222a a S a +===,62a ∴=,13961184a a a a a ∴+++==.故选:C 3.B【分析】F 为AC 中点,连接,PF EF ,根据中位线性质及线线角定义知,PE BC 夹角为PEF ∠或其补角,结合已知确定其余弦值,应用向量数量积的定义求PE BC ⋅即可.【详解】若F 为AC 中点,连接,PF EF ,又E 是棱AB 中点,所以//EF BC 且2BC EF =,故,PE BC 夹角为PEF ∠或其补角,因为正四面体-P ABC 各棱长为4,故四面体各面均为等边三角形,所以3PF PE ==2EF =,且cos 23PEF ∠=,而,PE BC为PEF ∠的补角,故||||cos 234423PE BC PE BC PEF ⋅=-⋅∠=-⨯⨯=- .故选:B 4.A【分析】根据题意和椭圆的定义可知:动点P 的轨迹是以12(2,0),(2,0)F F -为焦点,长轴长为8的椭圆,进而求解.【详解】因为12(2,0),(2,0)F F -,所以12=F F 4,又12F F 是1PF 与2PF 的等差中项,所以121228PF PF F F +==,则点P 到定点12F F ,的距离之和为8,(大于12=F F 4),所以动点P 的轨迹是以12(2,0),(2,0)F F -为焦点,1228a PF PF =+=,则4,2a c ==,22212b a c =-=,所以椭圆方程为:2211612x y +=,故选:A .5.C【分析】利用勾股定理列方程,求得球的半径,进而求得球的表面积.【详解】如图1,设棱台为1111ABCD A B C D -,如图2,该棱台外接球的球心为O ,半径为R ,上底面中心为1O ,下底面中心为2O ,则由题意121O O =,22AO =,111A O =,1OA OA R ==,当O 在12O O 下方时,设2OO h =,则在2AOO 中,有:224R h =+(1),在11A OO 中,有:()2211R h =++(2),联立(1)、(2)得1h =,25R =,所以刍童外接球的表面积为20π.同理,当O 在12O O 中间时,设1OO h =,则有221R h =+,()2214R h =-+,解得2h =,不满足题意,舍去.综上所述:当刍童外接球的表面积为20π.故选:C 6.D【分析】根据给定条件,求出点P 的轨迹,再利用两圆有公共点的充要条件求解作答.【详解】设点(,)P x y ,由2PA PB =2222(1)2(2)x y x y ++=-+22(3)4x y -+=,即点P 的轨迹是以点0(3,0)C 为圆心,2为半径的圆,而圆C 的圆心(2,)C m ,半径为12,依题意,圆0C 与圆C 有公共点,即有0112222CC -≤≤+,即2925144m ≤+≤,而0m >,解得52122m ≤≤,所以实数m的取值范围是22⎥⎣⎦.故选:D 7.D【分析】利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,得到118a =,1433nn n a a -=⨯-,变形后得到3n n a ⎧⎫⎨⎬⎩⎭是等差数列,首项为6,公差为4,从而求出()423nn a n =+⋅,故代入2n a ≥整理得3nn≥,利用作差法得到3nn 单调递减,最小值为13,列出不等式求出答案.【详解】当1n =时,2111332a S a ==-,解得:118a =,当2n ≥时,111333322n n n n n n n a S a a S --+==-+--,整理得1433nn n a a -=⨯-,方程两边同除以3n ,得11343n n n n a a ---=,又163a =,故3n n a ⎧⎫⎨⎬⎩⎭是等差数列,首项为6,公差为4,所以()123644nn n n a =+-=+,故()423nn a n =+⋅,经验证,满足要求,所以2n a ≥为()2423nn +⋅≥故3nn≥,对任意N n +∈恒成立,111113123333n n n n n n n n n +++++---==,当1n ≥时,111120333n n n n n n+++--=<,故1133n nn n++<,3n n 单调递减,当1n =时,3n n 取得最大值13,故13≥,解得:136k ≥,则k 的最小值为136.故选:D 8.A【分析】当AC 、BD 有一条不存在斜率时,直接求得四边形ABCD 的面积.当AC 、BD 都存在斜率时,设出直线,AC BD 的方程,利用弦长公式求得,AC BD ,由此求得四边形ABCD 的面积的表达式,求得面积的取值范围,从而计算出正确结论.【详解】依题意2,1,a b c ===设点()0y在椭圆上,则(22014y +=,解得012=±y .①当AC 、BD 有一条不存在斜率时,()11222222ABCD S ⎛⎫=⨯⨯⨯⨯= ⎪⎝⎭.②当AC 、BD 都存在斜率时,设AC 方程1l:(y k x =,BD 方程2l:1(y x k=-+,1l与椭圆联立得22(14y k x x y ⎧=+⎪⎨+=⎪⎩,消去y 并化简得()2222141240k x x k +++-=,则22121222124,1414k x x x x k k --+=⋅=++,AC=224(1)14k k +=+.同理可得224(1)4k BD k +=+,∴2222114(1)4(1)22144ABCDk k S AC BD k k ++=⋅⋅=⨯⨯++2242228(1)8112541749()124k k k k +==++--++,22210,11,011k k k ≥+≥<≤+,故当21112k =+,即21k =时ABCD S 取得最小值83225254=,由于21252599(0)42444--+=-=,824=,所以32,225ABCD S ⎡⎫∈⎪⎢⎣⎭.综上所述,ABCD S 的最大值为2,最小值为3225,则最大值与最小值之差为321822525-=.故选:A【点睛】求解直线和圆锥曲线位置关系的题目,要注意判断直线的斜率是否存在,必要时要进行分类讨论.9.BC【分析】根据椭圆的标准方程,可判断A 项;求出a ,b ,c 的值,可判断B ,C 项;代入判断D 项.【详解】由已知,椭圆的焦点在y 轴上,a =2,b =c =1,则长轴长为2a =4,离心率为12c e a ==.将点代入椭圆方程左边得22312143⎛⎫ ⎪⎝⎭+≠,不满足,即点31,2⎛⎫ ⎪⎝⎭不在椭圆上.故选:BC.10.AD【分析】由题意画出图形,证明四边形1CAD V 与四边形1CBC V 是平面图形,再结合所有棱长相等得新的组合体是斜三棱柱,也是五面体.【详解】将两个正三角形侧面VAB 与△111V A B 按对应顶点粘合成一个正三角形以后,如图,取AB 中点E ,11C D 的中点F ,连接CE ,VE ,VF ,ABC 是正三角形,CE AB ∴⊥,VAB △是正三角形,VE AB ∴⊥,CE V E E = ,,CE VE ⊂平面VEC ,AB ∴⊥平面VEC ,△111V C D 是正三角形,11VF C D ∴⊥,又11//AB C D ,AB VF ∴⊥,而VE V F V = ,,VE VF ⊂平面VEF ,则AB ⊥平面VEF ,∴四边形VCEF 是平面四边形,由CE VF =,VC EF =,得四边形VCEF 为平行四边形,则//VC EF ,又1//AD EF ,1//VC AD ∴,同理可得1//VC BC ,再由所有棱长相等,可得几何体为斜三棱柱,也是五面体.故选:AD .11.BC【分析】利用(3)(1)f f ≠-可判断A;根据函数满足的性质推得14,Z x k k =+∈和34,Z x k k =+∈皆为()f x 的图象的对称轴,可判断B;数形结合判断C;数形结合,将3()20f x x -+=的实数根个数问题转化为函数图象的交点问题,判断D.【详解】由题意可知当[1,3]x ∈时,2()2f x x x =-+,故()()2211211,33233f f =-+⨯==-+⨯=-,则(3)(1)f f ≠-,即()f x 的图象不关于点(2,0)对称,A 错误;由于函数()f x 满足(4)()f x f x +=,故4为函数的周期;函数(1)f x +为偶函数,则()f x 的图象关于直线1x =对称,即有(2)()f x f x -=,则(4)(2),(4)(2)f x f x f x f x +=-∴+=-,故()f x 的图象也关于直线3x =对称,由于4为函数的周期,故14,Z x k k =+∈和34,Z x k k =+∈皆为()f x 的图象的对称轴,当505k =时,342023x k =+=,故B 正确;由函数性质作出函数的图象如图,可知函数值域为[3,1]-,C 正确;方程3()20f x x -+=的根即()y f x =与1(2)3y x =-的图象的交点的横坐标,因为当5x =-时,17(52)333y =--=->-,当7x =-时,1(92)33y =--=-,当5x =时,1(52)13y =-=,所以()y f x =与1(2)3y x =-的图象共有7个交点,即方程3()20f x x -+=的实数根个数为7,故D 错误,故选:BC .【点睛】方法点睛:(1)抽象函数的奇偶性以对称性结合问题,往往要采用赋值法,推得函数周期性;(2)方程根的个数问题,往往采用数形结合,将根的问题转化为函数图象交点问题.12.BD【分析】连AC 交BD 于E ,根据面积关系推出2AE EC =,根据平面向量知识推出BE =1233BA BC + ,结合()()1122n nn n BD a BA a BC -+=-++ ,推出11222n n n n a a +-=-,即11222n n n n a a +--=-,求出1242n n a n -=-+,()22nna n =-+⋅,根据等比数列的定义可判断A ;根据等差数列的定义可判断B ,根据数列的单调性可判断C ;利用错位相减法求出n S ,可判断D.【详解】如图,连AC 交BD 于E,则1sin 21sin 2ABD BD AE AEB S S BD EC CED ⋅⋅=⋅⋅△△BCD ÐÐ=2AEEC=,即2AE EC =,所以2AE EC =,所以()2BE BA BC BE -=- ,所以BE = 1233BA BC +,设BD tBE =(1)t >,因为()()1122n nn n BD a BA a BC -+=-++ ,所以()()111122n nn n BE a BA a BC t t -+=-++ ,()()1111231223n n n n a t a t-+⎧-=⎪⎪⎨⎪+=⎪⎩,所以()11222n n n n a a -++=-,所以11222n n n n a a +-=-,即11222n nn n a a +--=-,又12a =,所以122a =,所以12n n a -⎧⎫⎨⎬⎩⎭是首项为2,公差为2-的等差数列,所以()1221242n n an n -=--=-+,所以()()124222n n n a n n -=-+⋅=-+⋅,因为()11(1)222222n n n n a n n a n n ++-+⋅-+==-+⋅-+不是常数,所以{}n a 不为等比数列,故A 不正确;因为()()()111122(1)21212222n n n n n n n n n a a n n n ++++-+⋅-+⋅-=-=-+--+=-,所以2n n a ⎧⎫⎨⎬⎩⎭为等差数列,故B 正确;因为1n n a a +-=()1(1)222n nn n +-+⋅--+⋅=2n n -⋅,所以{}n a 为递减数列,故C 不正确;因为()1231202(1)222nn S n =⨯+⨯+-⨯++-+⋅ ,所以()234121202(1)222n n S n +=⨯+⨯+-⨯++-+⋅ ,所以()()23412222222n n n S n +-=-++++--+⋅ ,所以()()1142222263212n n n n S n n ++-⨯-=---+⋅=+-⋅-,所以()1326n n S n +=--,故D 正确.故选:BD 13【分析】根据直线与圆相切,圆心到直线的距离等于半径即可求解.r r Þ=14【分析】建立如图所示的空间直角坐标系,求出平面1AEC 的法向量后可求线面距.【详解】建立如图所示的空间直角坐标系,则()()()1111,0,0,1,,0,1,1,1,,0,0,1,022A E C F C ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,故1111,,0,1,,022EC FC ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,故1//EC FC ,而1EC ⊂平面1AEC ,⊄FC 平面1AEC ,故//FC 平面1AEC ,故直线FC 到平面1AEC 的距离为即为F 到平面1AEC 的距离.设平面1AEC 的法向量为(),,n x y z =,又10,,12AE ⎛⎫= ⎪⎝⎭ ,故102102y z x y ⎧+=⎪⎪⎨⎪-+=⎪⎩,取2y =,则()1,2,1n =- ,而()0,0,1FE = ,故F 到平面1AEC 1666=,6615.20【分析】作出图形,分析可知6PM PC =+,1PQ PC ≤+,利用基本不等式可求得2PM PQ的最小值.【详解】如下图所示:在双曲线221916x y -=中,3a =,4b =,225c a b =+=,圆()2251x y -+=的圆心为()5,0C ,半径长为1r =,所以,双曲线221916x y -=的左、右焦点分别为M 、C ,由双曲线的定义可得26PM PC a PC =+=+,1PQ PC ≤+,所以,()()()226252511011020111PC PM PC PC PQPC PC PC+≥=+++≥+⋅+=+++,当且仅当Q 为射线PC 与圆C 的交点,且4PC =时,等号成立,故2PM PQ的最小值是20.故答案为:20.16.2(1)n S n a =+【解析】根据已知条件知数列{}1n n a a +-是首项为1a -,公差为d 的等差数列,可求出11(1)n n a a a n d +-=-+-,再根据已知条件转化求出等差数列{}2n a 、{}21n a -的通项公式,再利用分组求和即可得解.【详解】2111a a a a -=-=-Q 又211n n n n a a a a d +++-=-+,即211n n n n a a a a d+++---=∴数列{}1n n a a +-是首项为1a -,公差为d 的等差数列,11(1)n n a a a n d +∴-=-+-①,又{}{}221,n n a a -分别构成等差数列,根据①式可得221[1(22)](2)n n a a a n d n --=±-+-≥②,212[1(21)](1)n n a a a n d n +-=±-+-≥③,2221[12](1)n n a a a nd n ++-=±-+≥④,由②+③,得2121[1(21)][1(22)](1)n n a a a n d a n d n +--=±-+-±-+-≥,又{}21n a -是等差数列,所以2121n n a a +--必为常数,所以2121[1(21)][1(22)](2)n n a a a n d a n d d n +--=-+---+-=≥,或2121[1(21)][1(22)](2)n n a a a n d a n d d n +--=--+-+-+-=-≥,由①得321a a a d -=-+,即32(1)a a a d -=±-+,2a a =Q ,3(1)a a d a ∴=±-++,又11a =,311(1)a a a a d ∴-=-±-+,即31a a d -=-或312(1)a a a d -=-+(舍去),2121n n a a d +-∴-=-,{}21n a -∴是首项为1,公差为d -的等差数列,211(1)n a n d -∴=--,同理,由③+④得,222[12][1(21)](1)n n a a a nd a n d n +-=±-+±-+-≥,所以222n n a a d +-=或222n n a a d +-=-,321a a a d -=-+-Q ,43(12)a a a d -=±-+,421(12)a a a d a d ∴-=-+-±-+,即42a a d -=或42223a a a d -=-+-(舍去),222n n a a d +∴-=,{}2n a ∴是首项为a ,公差为d 的等差数列,2(1)n a a n d ∴=+-,从而21221221()k k k k a a a a a k N *-+++=+=+∈,所以2122(1)(1)(1)n n S a a a a a n a =+++=++++=+ .故答案为:2(1)n S n a =+【点睛】方法点睛:本题考查递推关系求等差数列求通项公式,分组求数列和,求数列的和常用的方法有:(1)分组求和法;(2)倒序相加法;(3)11n n n b a a +=(数列{}n a 为等差数列):裂项相消法;(4)等差⨯等比数列:错位相减法,考查学生的逻辑推理能力与运算求解能力,属于难题.17.(1)72n a n =-;(2)21622n n n +-++-.【分析】(1)设{}n a 公差为d ,根据91027,40S S =-=-列出关于首项和公差的方程组,求得首项和公差,根据等差数列通项公式即可求n a ;(2)利用分组求和法求n T 即可.【详解】(1)设{}n a 公差为d ,由91027,40S S =-=-得,1198927210910402a d a d ⨯⎧+=-⎪⎪⎨⨯⎪+=-⎪⎩,解得152a d =⎧⎨=-⎩,∴52(1)72n a n n =--=-;(2)由2nn n b a =+得722n n b n =-+,∴1212(12)(1)5(2)22622122n n n n n n n T S n n n ++--=+=⨯+⨯-+-=-++--.18.(1)点P 不在圆上,证明见解析(2)x =0或3x +4y -8=0.【分析】(1)将点的坐标导入圆的方程与1比较大小即可.(2)已知弦长,求直线方程,求出圆心到直线的距离,用垂径定理,解直角三角形即可,特别要注意斜率不为0的情况.【详解】(1)点P 不在圆上.证明如下:∵3PC =<,∴由圆的定义可知点P 是在圆C 的内部,不在圆上;(2)由直线与圆的位置关系可知,圆心C 到直线l的距离2d ==,①当直线l 的斜率不存在时,直线l 的方程为x =0,此时202d =--=,满足题意;②当直线l 的斜率存在时,设直线l 为y =kx +2,即kx -y +2=0,又∵2d =,解得34k =-,此时直线l 为3x +4y -8=0,综上所述:直线l 的方程为x =0或3x +4y -8=0.19.(1)2213x y +=(2)20x -=或20x -=【分析】(1)已知可得:ca=2a =(2)直线l 的方程为2x ty =+且与椭圆相交于()11,A x y ,()22,B x y ,联立22233x ty x y =+⎧⎨+=⎩,由根与系数的关系以及弦长公式求解即可;(3)过原点O 作圆M 的切线y kx =,设()00,M x y ,利用圆心到直线的距离等于半径,结合已知条件求解即可【详解】(1)由已知可得:c e a ==2a =所以a =c =又222321b a c =-=-=,所以椭圆C 的方程为2213x y +=.(2)易知,直线l 的斜率存在且不为0,设直线l 的方程为2x ty =+且与椭圆相交于()11,A x y ,()22,B x y 由22233x ty x y =+⎧⎨+=⎩,消去x 可得()223410t y ty +++=,()21210t ∆=->.所以21t >,由韦达定理可得:12243t y y t -+=+,12213y y t =+AB ===.所以42712270t t --=即23t =或297t =-(舍),所以t =.所以直线l 的方程为20x -=或20x -=.(3)过原点O 作圆M 的切线y kx =,设()00,M x y ,圆的半径为()0r r >,由圆心()00,M x y 到直线0kx y -=的距离等于半径,可得0021y kx r k -=+.即()()222001k r y kx +=-,即()22222000020x r k x y k y r --+-=.(*)由已知OP k ,OQ k 即为方程(*)的两个根,所以由韦达定理可得:22022013OP OQy r k k x r -⋅==--,所以2220034x y r +=.因为()00,M x y 在椭圆上,所以220013x y +=,即220033x y +=.所以234r =,即32r =.所以圆M 的半径为32r =.20.(1)见解析(2)存在,14λ=【分析】(1)根据三角形中位线得线线平行,即可证明线面平行,(2)根据空间向量,利用法向量的夹角即可求解.【详解】(1)连接1AC 交1AC 于点O ,由于四边形11ACC A 为矩形,所以O 为1AC 的中点,又点D 是棱BC 的中点,故在1A BC 中,OD 是1A BC 的中位线,因此1//OD A B ,OD ⊂平面1AC D ,1A B ⊄平面1AC D ,所以1//A B 平面1AC D(2)由1AA ⊥平面ABC ,AB AC ⊥可知,三棱柱111ABC A B C -为直三棱柱,且底面为直角三角形,故以A 为坐标原点,建立如图所示的空间直角坐标系;则()()()()()10,0,0,0,0,2,4,0,0,0,4,0,2,2,0,A A B C D 由()01AM AC λλ=<<得()0,4,0M λ,()()14,0,2,2,2,0A B BD =-=-,设平面1BA D 的法向量为(),,m x y z =,则1420220m A B x z x y m BD⎧⊥-=⎧⎪⇒⎨⎨-+=⊥⎩⎪⎩,取2z =,得()1,1,2m = ,()()10,4,2,2,42,0A M DM λλ=-=--,设平面1A DM 的法向量为()111,,x n y z =,则()111114202420y z n A Mx y n DMλλ⎧-=⊥⎧⎪⇒⎨⎨-+-=⊥⎪⎩⎩ ,取12z λ=,得()211,2n λλ=- ,,故1cos ,2m n m n m n ⋅== ,化简得()()2821=04121=0λλλλ+-⇒-+由于01λ<<,所以14λ=,故棱上AC 存在点M ,其中14AM AC = ,即14λ=,使得平面1BAD 与平面1A DM 所成角的大小为60°.21.(1)见解析(2)2m =或3或4【分析】(1)由n a 与n S 的关系得出n a ,再由等差中项的性质得出q (m )的所有可能值;(2)利用错位相减法得出n T ,再结合不等式的性质得出m 的所有可能值.(1)由11a =及n S n ⎧⎫⎨⎬⎩⎭是等比数列得1n n S nq -=,故121(1),2n n n n n a S S nq n q n ---=-=-- ,且当1n =时亦满足.由12,,m m m a a a ++成等差数列得11212(1)(1)(2)(1)m m m m m mm q mq mq m q m q m q ---+⎡⎤+-=--++-+⎣⎦化简并整理得2(1)[(2)(1)]0q m q m -+--=解得1q =或12m q m -=+,因此,当1m =时,1q =;当2m ≥时,12m q m -=+.(2)当1q =时,34T >,所以12m q m -=+,2m ≥由于1212,2n nn n T q nq qT q q nq-=+++=+++ ()211111n nnnn q T q qqq q n n qq ---=---=++++ 故222211(2)(1)(1)1(1)9n n n q nq m T q q q q +=--<=----从而当4m ≤时,4n T <对任意*n ∈N 恒成立,当5m ≥时,47q ,则2344584443141344777777T ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫>++⨯++=-⨯>⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦综上,2m =或3或422.(1)124【分析】(1)联立直线l 与双曲线方程,根据点T 是MN 的中点,列方程求解即可.(2)联立直线l 与双曲线方程,表示出BN 的长,根据点到直线的距离公式表示出三角形的高,从而得到三角形面积表达式,即可求得结果.(1)设()()1122,,,A x y B x y联立直线l 与双曲线方程()221102y k x x y ⎧=-+⎪⎨-=⎪⎩,消去y 得()()22212412(1)0k x k k x k -----=,由韦达定理可知,()221212222144,1212k k k x x x x k k ---+=⋅=--联立直线l 与其中一条渐近线方程()11y k x y x ⎧=-+⎪⎨=⎪⎩,解得2x =即2N x =2M x 则21224412M N k k x x x x k -+==+-,则可知AB 的中点与MN 中点重合.由于()1,1T 是MN 的中点,所以()241212k k k -=-,解得12k =;(2)()11y k x =-+与2212x y -=联立,消去y 得()()22212412(1)20k xk k x k ------=由(1)知,2AB MNBN AM -==.或()12OBN OAB OMN S S S =-由于AB MN =,所以BN =又O到直线的距离d =,所以12OBNS BN d=⋅==整理得2OBN S =令11,12t k ⎛⎫=-∈ ⎪ ⎪⎝⎭,则2222212241142(1)k t t k t t t --+-==-+--,当12t =,即12k =时,2212(1)k k --的最大值为2,所以OBN S。
【压轴题】高二数学上期末模拟试题(含答案)
x
2
4
5
6
8
y
30
40
60
50
70
根据上表提供的数据得到回归方程
y
b
x
a
中的
b
7
,预测广告费支出
10
万元时,销
售额约为
_____________万元.(参考公式:
a
y
b
x
)
17.执行如图所示的程序框图,若输入 n 的值为 8,则输出的 s 的值为_____.
18.阅读如图所示的程序框图,运行相应的程序,则输出 n 的值为___________
【详解】 根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大; 每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销
量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小;B , C , D 都错误,故选 A .
【点睛】 本题主要考查对销量百分比堆积图的理解.
b0.78,aybx
元,据此估计,该社
区一户收入为 16 万元家庭年支出为( )
A.12.68 万元
B.13.88 万元
C.12.78 万元
D.14.28 万元
8.执行如图所示的程序框图,如果输入的 a 1,则输出的 S
A.2
B.3
C.4
D.5
9.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由 3 个全等的三角形与中间的一
19.如图是一个算法流程图,则输出的 S 的值为______.
20.向面积为 20 的 ABC 内任投一点 M ,则使 MBC 的面积小于 5 的概率是
__________.
【压轴卷】高二数学上期末模拟试题(带答案)(1)
【压轴卷】高二数学上期末模拟试题(带答案)(1)一、选择题1.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .334πB .32πC .13D .232.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是( ) A .B .C .D .3.将A ,B ,C ,D ,E ,F 这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A ,B ,C 三个字母连在一起,且B 在A 与C 之间的概率为( ) A .112B .15C .115D .2154.己知某产品的销售额y 与广告费用x 之间的关系如下表:若求得其线性回归方程为 6.5ˆˆyx a =+,其中ˆˆa y bx =-,则预计当广告费用为6万元时的销售额是( ) A .42万元B .45万元C .48万元D .51万元5.执行如图所示的程序框图,输出的S 值为( )A .1B .-1C .0D .-26.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为( )A .4i ≤B .5i ≤C .6i ≤D .7i ≤7.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元8.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是 ( ) A .310B .25C .12D .359.在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( )A .13 B .2πC .12D .2310.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是12,x x ,则下列叙述正确的是( )A .12x x >,乙比甲成绩稳定B .12x x >,甲比乙成绩稳定C .12x x <,乙比甲成绩稳定D .12x x <,甲比乙成绩稳定11.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为( ) A .13B .49C .59D .2312.执行如图所示的程序框图,若输入x =9,则循环体执行的次数为( )A .1次B .2次C .3次D .4次二、填空题13.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束,则恰好检测四次停止的概率为_____(用数字作答).14.某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线2222x y 1a b -=的离心率e 5>的概率是______.15.某篮球运动员在赛场上罚球命中率为23,那么这名运动员在赛场上的2次罚球中,至少有一次命中的概率为______.16.利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程20x x a -+=无实根的概率为______.17.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.18.变量X 与Y 相对应的5组数据和变量U 与V 相对应的5组数据统计如表: X 10 11.3 11.8 12.5 13 U 10 11.3 11.8 12.5 13 Y12345V54321用b 1表示变量Y 与X 之间的回归系数,b 2表示变量V 与U 之间的回归系数,则b 1与b 2的大小关系是___.19.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.20.已知AOB ∆中,60AOB ∠=o ,2OA =,5OB =,在线段OB 上任取一点C ,则AOC ∆为锐角三角形的概率_________.三、解答题21.为了了解某省各景区在大众中的熟知度,随机从本省1565:岁的人群中抽取了n 人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家AAAAA 级旅游景区?”,统计结果如下表所示:组号 分组 回答正确的人数 回答正确的人数占本组的频率第1组 [)1525, a0.5第2组 [)2535, 18x第3组 [)3545, b 0.9 第4组 [)4555, 9 0.36第5组[)5565,3y(1)分别求出,,,a b x y 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组抽取的人数;(3)在(2)中抽取的6人中随机抽取2人,求所抽取的人中恰好没有年龄段在[)3545,的概率22.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均数与中位数.23.为了减轻家庭困难的高中学生的经济负担,让更多的孩子接受良好的教育,国家施行高中生国家助学金政策,普通高中国家助学金平均资助标准为每生每年1500元,具体标准由各地结合实际在1000元至3000元范围内确定,可以分为两或三档.各学校积极响应政府号召,通过各种形式宣传国家助学金政策.为了解某高中学校对国家助学金政策的宣传情况,拟采用随机抽样的方法抽取部分学生进行采访调查.(1)若该高中学校有2000名在校学生,编号分别为0001,0002,0003,…,2000,请用系统抽样的方法,设计一个从这2000名学生中抽取50名学生的方案.(写出必要的步骤)(2)该校根据助学金政策将助学金分为3档,1档每年3000元,2档每年2000元,3档每年1000元,某班级共评定出3个1档,2个2档,1个3档,若从该班获得助学金的学生中选出2名写感想,求这2名同学不在同一档的概率.24.某函数的解析式由如图所示的程序框图给出.(1)写出该函数的解析式;(2)执行该程序框图,若输出的结果为4,求输入的实数x的值.25.2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:g)进行了问卷调查,得到如下频率分布直方图:()1求频率分布直方图中a的值;()2以频率作为概率,试求消费者月饼购买量在600g1400g~的概率;()3已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的5%,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求(频率分布直方图中同一组的数据用该组区间的中点值作代表)?26.为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高()x cm 和体重()y kg 数据如下表所示:编号 1 2 3 4 5 6 7 8 身高/x cm164160158172162164174166体重/y kg60 46 43 48 48 50 61 52该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.(1)调查员甲计算得出该组数据的线性回归方程为ˆˆ0.7yx a =+,请你据此预报一名身高为176cm 的女高中生的体重;(2)调查员乙仔细观察散点图发现,这8名同学中,编号为1和4的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为176cm 的女高中生的体重; (3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.附:对于一组数据()()()1122,,,,,,n n x y x y x y L ,其回归方程ˆˆˆybx a =+的斜率和截距的最小二乘法估计分别为:()()()121ˆˆ,niii nii x x y y b ay bx x x ==--==--∑∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,ABC ∆包含9 个小三角形,同时又在DEF ∆内的小三角形共有6 个,所以(|)P B A =6293= ,故选D. 2.C解析:C 【解析】 【分析】先求出基本事件总数n =27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率. 【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体, ∴基本事件总数n =27, 在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上, 且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P =故选:C【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.3.C解析:C 【解析】 【分析】将A ,B ,C 三个字捆在一起,利用捆绑法得到答案. 【详解】由捆绑法可得所求概率为242466A A 1A 15P ==. 故答案为C 【点睛】本题考查了概率的计算,利用捆绑法可以简化运算.4.C解析:C 【解析】 【分析】由已知求得样本点的中心的坐标,代入线性回归方程求得ˆa,则线性回归方程可求,取6x =求得y 值即可.【详解】()10123425x =++++=,()11015203035225y =++++=,样本点的中心的坐标为()2,22,代入ˆˆa yb x =-,得22 6.529a =-⨯=.y ∴关于x 得线性回归方程为 6.59y x =+.取6x =,可得6.56948(y =⨯+=万元). 故选:C . 【点睛】本题考查线性回归方程的求法,考查计算能力,是基础题.5.B解析:B 【解析】 【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可. 【详解】结合流程图可知程序运行过程如下:首先初始化数据:1,2i S ==, 此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S=-=-=+=; 此时不满足5i >,执行循环:112,14S i i S=-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-. 本题选择B 选项. 【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题.6.B解析:B 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,i S 的值,当输出的63S =时,退出循环,对应的条件为5i ≤,从而得到结果. 【详解】当=11S i =,时,不满足输出条件,故进行循环,执行循环体; 当1123,2S i =+==,不满足输出条件,故进行循环,执行循环体; 当2327,3S i =+==,不满足输出条件,故进行循环,执行循环体; 当37215,4S i =+==,不满足输出条件,故进行循环,执行循环体; 当415231,5S i =+==,不满足输出条件,故进行循环,执行循环体; 当313263,6S i =+==,满足输出条件,故判断框中应填入的条件为5i ≤, 故选B. 【点睛】该题考查的是有关程序框图的问题,根据题意写出判断框中需要填入的条件,属于简单题目.7.A解析:A 【解析】 【分析】由已知求得 x , y ,进一步求得$ a,得到线性回归方程,取16x =求得y 值即可.8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b =$,∴$ 80.78100.2a y bx --⨯===$. ∴$ 0.780.2y x =+.取16x =,得$ 0.78160.212.68y ⨯+==万元,故选A .【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.8.D解析:D 【解析】 【分析】甲、乙二人抢到的金额之和包含的基本事件的总数2510n C ==,甲、乙二人抢到的金额之和不低于3元包含基本事件有6个,由此能求出甲、乙二人抢到的金额之和不低于3元的概率. 【详解】由题意,所发红包的总金额为8元,被随机分配为1.72元、1.83元、2.28元、1.55元、0.62元、5分,供甲、乙等5人抢,每人只能抢一次, 甲乙二人抢到的金额之和包含的基本事件的总数为2510n C ==,甲乙二人抢到的金额之和不低于3元包含的基本事件有6个,分别为(1.72,1.83),(1.72,2.28),(1.72,1.55),(1.83,2.28),(1.83,1.55),(2.28,1.55)所以甲乙二人抢到的金额之和不低于3元的概率为63105p ==,故选D. 【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中正确理解题意,找出基本事件的总数和不低于3元的事件中所包含的基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.A解析:A 【解析】 因为[,]22x ππ∈-,若1cos [0,]2x ∈,则[,][,]2332x ππππ∈--⋃, ()21233()22P ππππ-⨯∴==--,故选A.10.C【解析】甲的平均成绩11(7378798793)825x=++++=,甲的成绩的方差22222211[(7382)(7882)(7982)(8782)(9382)]50.45s=-+-+-+-+-=;乙的平均成绩21(7989899291)885x=++++=,乙的成绩的方差22222221[(7988)(8988)(8988)(9288)(9188)]21.65s=-+-+-+-+-=.∴12x x<,乙比甲成绩稳定.故选C.11.C解析:C【解析】【分析】设小赵到达汽车站的时刻为x,小王到达汽车站的时刻为y,根据条件建立二元一次不等式组,求出对应的区域面积,结合几何概型的概率公式进行计算即可.【详解】如图,设小赵到达汽车站的时刻为x,小王到达汽车站的时刻为y,则0≤x≤15,0≤y≤15,两人到达汽车站的时刻(x,y)所对应的区域在平面直角坐标系中画出(如图所示)是大正方形.将2班车到站的时刻在图形中画出,则两人要想乘同一班车,必须满足{(x,y)|0505xy≤≤⎧⎨≤≤⎩,或515515xy≤⎧⎨≤⎩<<},即(x,y)必须落在图形中的2个带阴影的小正方形内,则阴影部分的面积S=5×5+10×10=125,则小赵和小王恰好能搭乘同一班公交车去上学的概率P=1251515⨯=59,故选:C【点睛】本题主要考查几何概型的概率公式的应用,根据条件求出对应区域的面积是解决本题的关键.12.C解析:C 【解析】 【分析】根据程序框图依次计算得到答案. 【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C . 【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力.二、填空题13.【解析】由题意可知2次检测结束的概率为3次检测结束的概率为则恰好检测四次停止的概率为解析:35【解析】由题意可知,2次检测结束的概率为22225110A p A ==,3次检测结束的概率为31123232335310A C C A p A +==, 则恰好检测四次停止的概率为231331110105p p p =--=--=. 14.【解析】【分析】基本事件总数由双曲线的离心率得利用列举法求出双曲线的离心率包含的基本事件有6个由此能求出双曲线的离心率的概率【详解】某同学同时掷两颗骰子得到点数分别为ab 基本事件总数双曲线的离心率解 解析:16【解析】 【分析】基本事件总数n 6636=⨯=,由双曲线2222x y 1a b-=的离心率e >,得b 2a >,利用列举法求出双曲线2222x y 1a b -=的离心率e >()a,b 有6个,由此能求出双曲线2222x y 1a b -=的离心率e >【详解】某同学同时掷两颗骰子,得到点数分别为a ,b , 基本事件总数n 6636=⨯=,Q双曲线2222x y 1a b-=的离心率e >ca ∴=>,解得b 2a >, ∴双曲线2222x y 1a b-=的离心率e >()a,b 有:()1,3,()1,4,()1,5,()2,5,(1,6),()2,6,共6个,则双曲线2222x y 1a b -=的离心率e >61p 366==. 故答案为16. 【点睛】本题考查概率的求法,考查古典概型、列举法、双曲线性质等基础知识,考查运算求解能力,是基础题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.15.【解析】【分析】利用对立事件概率计算公式直接求解【详解】某篮球运动员在赛场上罚球命中率为这名运动员在赛场上的2次罚球中至少有一次命中的概率为故答案为【点睛】本题考查概率的求法考查对立事件概率计算公式解析:89【解析】 【分析】利用对立事件概率计算公式直接求解. 【详解】某篮球运动员在赛场上罚球命中率为23, ∴这名运动员在赛场上的2次罚球中,至少有一次命中的概率为022181()39p C =-=. 故答案为89.【点睛】本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.16.【解析】∵方程无实根∴Δ=1-4a<0∴即所求概率为故填:解析:34【解析】∵方程无实根,∴Δ=1-4a <0,∴14a >,即所求概率为34.故填:3417.38【解析】【分析】根据几何槪型的概率意义即可得到结论【详解】正方形的面积S =1设阴影部分的面积为S∵随机撒1000粒豆子有380粒落到阴影部分∴由几何槪型的概率公式进行估计得即S =038故答案为:解析:38 【解析】 【分析】根据几何槪型的概率意义,即可得到结论. 【详解】正方形的面积S =1,设阴影部分的面积为S , ∵随机撒1000粒豆子,有380粒落到阴影部分, ∴由几何槪型的概率公式进行估计得38011000S =, 即S =0.38, 故答案为:0.38. 【点睛】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础.18.【解析】分析:根据回归系数几何意义得详解:因为Y 与X 之间正增长所以因为V 与U 之间负增长所以因此点睛:函数关系是一种确定的关系相关关系是一种非确定的关系事实上函数关系是两个非随机变量的关系而相关关系是解析:12b b >. 【解析】分析:根据回归系数几何意义得120b b >> 详解:因为Y 与X 之间正增长,所以10b > 因为V 与U 之间负增长,所以20b < 因此120b b >>,点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求$,a b$,写出回归方程,回归直线方程恒过点(,)x y .b $的正负,决定正相关与负相关.19.35【解析】79+78+80+80+x+85+92+967=85解得x=5根据中位数为83可知y=3故yx=35 解析:【解析】,解得,根据中位数为,可知,故.20.6【解析】如图过点作垂线垂足为在中故;过点作垂线与因则结合图形可知:当点位于线段上时为锐角三角形所以由几何概型的计算公式可得其概率应填答案点睛:本题的涉及到的知识点是几何概型的计算问题解答时充分借助解析:6 【解析】如图,过点A 作OB 垂线,垂足为H ,在AOB ∆中,60AOB ∠=o ,2OA =,故1OH =;过点A 作OA 垂线,与OB 交于点D ,因60AOB ∠=o ,则4,3OD DH ==,结合图形可知:当点C 位于线段DH 上时,AOC ∆为锐角三角形,所以3,5d HD D OB ====,由几何概型的计算公式可得其概率30.65d P D ===,应填答案0.6.点睛:本题的涉及到的知识点是几何概型的计算问题.解答时充分借助题设条件,运用解直角三角形的有关知识,分别算出几何概型中的3,5d HD D OB ====,然后运用几何概型的计算公式求出其概率为30.65d P D ===. 三、解答题21.(1)5a =,27b =,0.9x =,0.2y =;(2)分边抽取2,3,1人;(3)15. 【解析】 【分析】(1)根据数据表和频率分布直方图可计算得到第4组的人数和频率,从而可得总人数;根据总数、频率和频数的关系,可分别计算得到所求结果;(2)首先确定第2,3,4组的总人数,根据分层抽样原则计算即可得到结果;(3)首先计算得到基本事件总数;再计算出恰好没有年龄段在[)3545,包含的基本事件个数,根据古典概型概率公式可求得结果. 【详解】(1)第4组的人数为:9250.36=人,第4组的频率为:0.025100.25⨯= 251000.25n ∴== Q 第一组的频率为0.010100.1⨯= ∴第一组的人数为:0.110010⨯=100.55a ∴=⨯=Q 第二组的频率为0.020100.2⨯= ∴第二组的人数为:0.210020⨯=180.920x ∴== Q 第三组的频率为0.030100.3⨯= ∴第三组的人数为:0.310030⨯=300.927b ∴=⨯=Q 第五组的频率为0.015100.15⨯= ∴第五组的人数为:0.1510015⨯=30.215y ∴== (2)第2,3,4组的总人数为:1827954++=人∴第2组抽取的人数为:186254⨯=人;第3组抽取的人数为:276354⨯=人;第4组抽取的人数为:96154⨯=人 (3)在(2)中抽取的6人中随机抽取2人,基本事件总数为:2615n C ==所抽取的人中恰好没有年龄段在[)3545,包含的基本事件个数为:233m C == ∴所抽取的人中恰好没有年龄段在[)3545,的概率:31155m p n === 【点睛】本题考查利用频率分布直方图计算总数、频数和频率、分层抽样基本方法的应用、古典概型计算概率问题;关键是熟练掌握频率分布直方图的相关知识,能够通过频率分布直方图准确计算出各组数据对应的频率.22.(1)0.005a =(2)平均数为73,中位数为:2713. 【解析】 【分析】(1)由频率和为1求解即可;(2)以各区间中点值代表各组的取值,进而求得平均数;求出从左边开始小矩形的面积的和为0.5对应的横轴的值即为中位数 【详解】(1)由频率分布直方图知()20.020.030.04101a +++⨯=, 解得0.005a =(2)估计这100名学生语文成绩的平均分为:550.00510650.0410750.0310850.0210950.0051073⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=由(1),设中位数为x ,则()0.005100.04100.03700.5x ⨯+⨯+-= 解得2713x =,故估计中位数为:2713. 【点睛】本题考查频率的性质,考查利用频率分布直方图求平均数和中位数,考查数据处理能力 23.(1)见解析;(2)()1115P A = 【解析】 【分析】(1)第一步编号分组,第二步抽样;(2)先用枚举法确定从6名学生选2名的总事件数,再从中确定2名同学不在同一档的事件数,最后根据古典概型概率公式求结果. 【详解】(1)第一步:分组.将2000名学生分成50组,每组40人,编号是0001~0040的为第1组,编号为0041~0080的为第2组,…,编号为1961~2000为第50组;第二步:抽样.在第1组中用简单随机抽样方法(抓阄)抽取一个编号为m 的学生,则在第k 组抽取编号为()401k m -+的学生.每组抽取一人,共计抽取50名学生.(2)记该班3个1档的学生为1A ,2A ,3A ,2个2档的学生为1B ,2B ,1个3档的学生为1C ,从该班获得助学金的同学中选择2名同学不在同一档为事件A .基本事件:12A A ,13A A ,11A B ,11A B ,11A C ,23A A ,21A B ,22A B ,21A C ,31A B ,32A B ,31A C ,12B B ,11B C ,21B C ,共计15个.事件A 包含的基本事件共有11个,则()1115P A = 【点睛】本题考查系统抽样以及古典概型概率公式,考查基本分析求解能力,属基础题.24.(1) 22,0log ,042,4x x x y x x x ⎧<⎪=<≤⎨⎪>⎩当0x =时,y 无解.(2) 2x =-.【解析】 【分析】(1)根据框图得到函数解析式;(2)结合第一问得到的函数表达式,分情况得到x 值即可.【详解】(1)函数解析式为22,0log ,042,4x x x y x x x ⎧<⎪=<≤⎨⎪>⎩,当0x =时,y 无解.(2)当0x <时,24x =,2x =-或2(舍). 当04x ≤≤时,2log 4x =,解得16x =(舍). 当4x >时,24x =,解得2x =(舍) 所以2x =- 【点睛】这个题目考查了程序框图的应用,以及分段函数的应用;解决分段函数求值问题的策略:(1)在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f (f (f (a )))的值时,一般要遵循由里向外逐层计算的原则.25.(1)a 0.001=;(2)0.62;(3)12.08吨 【解析】 【分析】(1)由频率分布直方图列出方程能求出a .(2)由频率分布直方图先求出满足题意的频率,即得概率.(3)由频率分布直方图先求出人均月饼购买量,由此能求出该超市应准备12.08吨月饼恰好能满足市场需求. 【详解】()1由()0.00020.00055a 0.00050.000254001++++⨯=,解得a 0.001=. ()2Q 消费者月饼购买量在600g 1400g ~的频率为: ()0.000550.0014000.62+⨯=,∴消费者月饼购买量在600g 1400g ~的概率为0.62.()3由频率分布直方图得人均月饼购买量为:()4000.00028000.0005512000.00116000.000520000.000254001208g⨯+⨯+⨯+⨯+⨯⨯=,∴2012085%1208⨯⨯=万克12.08?=吨, ∴该超市应准备12.08吨月饼恰好能满足市场需求. 【点睛】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义,是中档题.26.(1)一名身高为176cm 的女大学生的体重约为58.7kg (2)回归方程为ˆ 1.1130.4yx =-,一名身高为176cm 的女大学生的体重约为63.2kg (3)乙的模型得到的预测值更可靠,详见解析 【解析】 【分析】(1)计算平均数,求出a ,即可求出回归方程;把178代入即可求出178cm 的女大学生的体重;(2)根据余下的数据计算平均数,求出b ,a ,即可求出回归方程;代入公式,即可求出身高为178cm 的女大学生的体重;(3)从散点图以及计算数据两个方面来分析甲和乙谁的方程可靠. 【详解】解:(1)经计算:165,51x y ==,于是:$510.716564.5a=-⨯=-, 则该组数据的线性回归方程为$0.764.5y x =-, 当176x =时,$0.717664.558.7y =⨯-=,于是:一名身高为176cm 的女大学生的体重约为58.7kg ; (2)按照调查人员乙的想法,剩下的数据如下表所示:于是:()()()()()()()()()()()()6162222222144672200101122 1.14620102iii ii x x y y b x x ==---⨯-+-⨯-+-⨯-+⨯+⨯+⨯===-+-+-+++-∑∑$$50 1.1164130.4a=-⨯=-, 则该组数据的线性回归方程为$1.1130.4y x =-, 当176x =时, 1.1176130.463.2y =⨯-=,于是:一名身高为176cm 的女大学生的体重约为63.2kg ; (3)乙的模型得到的预测值更可靠,理由如下:①从散点图可以看出,第一组数据和第四组数据确实偏差较大,为更准确的刻画变化趋势,有必要把这两个数据剔除掉;②从计算结果来看,相对于第七组数据174cm 的女大学生体重,甲对身高176cm 的女大学生的预测值明显偏低,而利用乙的回归方程得到的预测值增幅较合理.(以上给出了两种理由,考生答出其中任意一种或其他合理理由均可得分)【点睛】本题考查回归方程,考查学生的计算能力,正确求出回归方程是关键,属于基础题.。
【压轴卷】高二数学上期末一模试题含答案(1)
【压轴卷】高二数学上期末一模试题含答案(1)一、选择题1.口袋里装有大小相同的5个小球,其中2个白球,3个红球,现一次性从中任意取出3个,则其中至少有1个白球的概率为()A.910B.710C.310D.1102.气象意义上的春季进入夏季的标志为连续5天的日平均温度不低于022C.现有甲、乙、丙三地连续5天的日平均气温的记录数据(记录数据都是正整数):①甲地:5个数据是中位数为24,众数为22;②乙地:5个数据是中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8则肯定进入夏季的地区有()A.①②③B.①③C.②③D.①3.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为()A.0795B.0780C.0810D.08154.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的2S (单位:升),则输入k的值为A.6 B.7 C.8 D.95.如图是把二进制的数11111化成十进制数的一个程序框图,则判断框内应填入的条件是( )A .4i >?B .5i >?C .4i ≤?D .5i ≤?6.执行如图的程序框图,如果输入72m =,输出的6n =,则输入的n 是( )A .30B .20C .12D .87.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( ).①1月至8月空气合格天数超过20天的月份有5个 ②第二季度与第一季度相比,空气合格天数的比重下降了 ③8月是空气质量最好的一个月 ④6月的空气质量最差 A .①②③B .①②④C .①③④D .②③④8.执行如图所示的程序框图,输出的S 值为( )A.1B.-1C.0D.-2 9.执行如图的程序框图,那么输出的S的值是()A.﹣1 B.12C.2 D.110.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D为BE中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A.17B.14C.13D.41311.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为 A .B .C .D .12.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A .92,94B .92,86C .99,86D .95,91二、填空题13.若正方体1111ABCD A B C D 的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.14.执行如图所示的程序框图若输人x 的值为3,则输出y 的值为______.15.农历戊戌年即将结束,为了迎接新年,小康、小梁、小谭、小刘、小林每人写了一张心愿卡,设计了一个与此心愿卡对应的漂流瓶.现每人随机的选择一个漂流瓶将心愿卡放入,则事件“至少有两张心愿卡放入对应的漂流瓶”的概率为___16.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.17.执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为_____.18.如图是一个算法流程图,则输出的S 的值为______.19.如图,曲线sin32xy π=+把边长为4的正方形OABC 分成黑色部分和白色部分.在正方形内随机取一点,则此点取自黑色部分的概率是__________.20.某种活性细胞的存活率(%)y 与存放温度()x C ︒之间具有线性相关关系,样本数据如下表所示:存放温度()x C ︒ 10 4 -2 -8 存活率(%)y20445680经计算得回归直线的斜率为-3.2.若存放温度为6C ︒,则这种细胞存活率的预报值为__________%.三、解答题21.随着智能手机的发展,各种“APP”(英文单词Application 的缩写,一般指手机软件)应运而生.某机构欲对A 市居民手机内安装的APP 的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP 的个数,整理得到如图所示频率分布直方图.(Ⅰ)求a 的值;(Ⅱ)从被抽取安装APP 的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP 的个数都低于60的概率;(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A 市使用智能手机的居民手机内安装APP 的平均个数在第几组(只需写出结论). 22.某班60名学生期中考试数学成绩的频率分布直方图如下图所示.(1)求图中a 的值及这60名学生数学成绩的中位数;(2)若规定成绩在80分以上为优良,求该班学生中成绩达到优良的人数.23.某机构组织语文、数学学科能力竞赛,每个考生都参加两科考试,按照一定比例淘汰后,按学科分别评出一二三等奖.现有某考场的两科考试数据统计如下,其中数学科目成绩为二等奖的考生有12人.(Ⅰ)求该考场考生中语文成绩为一等奖的人数;(Ⅱ)用随机抽样的方法从获得数学和语文二等奖的考生中各抽取5人,进行综合素质测试,将他们的综合得分绘成茎叶图(如图),求两类样本的平均数及方差并进行比较分析;(Ⅲ)已知该考场的所有考生中,恰有3人两科成绩均为一等奖,在至少一科成绩为一等奖的考生中,随机抽取2人进行访谈,求两人两科成绩均为一等奖的概率.24.某校学生会开展了一次关于“垃圾分类”问卷调查的实践活动,组织部分学生干部在几个大型小区随机抽取了共50名居民进行问卷调查.调查结束后,学生会对问卷结果进行了统计,并将其中一个问题“是否知道垃圾分类方法(知道或不知道)”的调查结果统计如下表:年龄(岁)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数m n141286知道的人数348732(1)求上表中的,m n的值,并补全右图所示的的频率直方图;(2)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取1人参加垃圾分类知识讲座,求选中的两人中仅有一人不知道垃圾分类方法的概率.25.某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,给出下表数据:x23578y12246(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(2)试判断y与x之间是正相关还是负相关,并预测燃放烟花爆竹的天数为9天时的雾霾天数约为几天?(参考公式:()()()1122211n ni i i ii in ni ii ix x y y x y nx ybx x x nx====---==--∑∑∑∑$,a y bx=-$$.)26.2017年5月,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.乘坐高铁可以网络购票,为了研究网络购票人群的年龄分布情况,在5月31日重庆到成都高铁9600名网络购票的乘客中随机抽取了120人进行了统计并记录,按年龄段将数据分成6组:[15,25),[25,35),[65,75)L,得到如下直方图:(1)试通过直方图,估计5月31日当天网络购票的9600名乘客年龄的中位数;(2)若在调查的且年龄在[55,75)段乘客中随机抽取两人,求两人均来自同一年龄段的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据题意,求出总的基本事件数和至少有1个白球包含的基本事件数,然后利用古典概型的概率计算公式求解即可.【详解】由题意可知,从5个大小相同的小球中,一次性任意取出3个小球包含的总的基本事件数为n =35C 10=,一次性任意取出的3个小球中,至少有1个白球包含的基本事件数为122123239m C C C C =+=,由古典概型的概率计算公式得,一次性任意取出的3个小球中,至少有1个白球的概率为910m P n ==. 故选:A 【点睛】 本题考查利用组合数公式和古典概型的概率计算公式求随机事件的概率;正确求出总的基本事件数和至少有1个白球包含的基本事件数是求解本题的关键;属于中档题、常考题型.2.B解析:B 【解析】试题分析:由统计知识①甲地:5个数据的中位数为24,众数为22可知①符合题意;而②乙地:5个数据的中位数为27,总体均值为24中有可能某一天的气温低于22C o ,故不符合题意,③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8.若由有某一天的气温低于22C o 则总体方差就大于10.8,故满足题意,选C考点:统计初步3.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.4.C解析:C 【解析】分析:执行程序框图,得到输出值4k S =,令24k=,可得8k =. 详解:阅读程序框图,初始化数值1,n S k ==,循环结果执行如下:第一次:14n =<成立,2,22k k n S k ==-=;第二次:24n =<成立,3,263k k k n S ==-=; 第三次:34n =<成立,4,3124k k k n S ==-=; 第四次:44n =<不成立,输出24kS ==,解得8k =. 故选C.点睛:解决循环结构程序框图问题的核心在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.5.C解析:C 【解析】 【分析】根据程序框图依次计算得到答案. 【详解】根据程序框图:1,1S i ==;3,2S i ==;7,3S i ==;15,4S i ==;31,5S i ==,结束. 故选:C . 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.6.A解析:A 【解析】从流程图看,该程序是利用辗转相除法计算,m n 的最大公约数.题设中已知72m =,输入的数为n ,程序给出了它们的最大公约数为6,比较四个数,只有72,30的最大公约数为6,故输入的数n 的值为30,选A. 7.A解析:A 【解析】在A 中,1月至8月空气合格天数超过20谈的月份有:1月,2月,6月,7月,8月, 共5个,故A 正确;在B 中,第一季度合格天数的比重为2226190.8462312931++≈++;第二季度合格天气的比重为1913250.6263303130++≈++,所以第二季度与第一季度相比,空气达标天数的比重下降了,所以B 是正确的;在C 中,8月空气质量合格天气达到30天,是空气质量最好的一个月,所以是正确的; 在D 中,5月空气质量合格天气只有13天,5月份的空气质量最差,所以是错误的,综上,故选A .8.B解析:B 【解析】 【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可. 【详解】结合流程图可知程序运行过程如下: 首先初始化数据:1,2i S ==, 此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S=-=-=+=; 此时不满足5i >,执行循环:112,14S i i S=-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-. 本题选择B 选项. 【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题.9.B解析:B 【解析】由题意可得:初如值S=2,k=2015, S=-1,k=2016<2018 S=12,k=2017<2018 2,2018S k ==输出2,选C.10.A解析:A 【解析】 【分析】根据几何概型的概率计算公式,求出中间小三角形的面积与大三角形的面积的比值即可 【详解】设DE x =,因为D 为BE 中点,且图形是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形 所以2BE x =,CE x =,120CEB ∠=︒所以由余弦定理得:2222cos BC BE CE BE CE CEB =+-⋅⋅∠222142272x x x x x ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭即7BC x =,设DEF V 的面积为1S ,ABC V 的面积为2S因为DEF V 与ABC V 相似所以21217S DE P S BC ⎛⎫=== ⎪⎝⎭故选:A11.B解析:B 【解析】 【分析】应用平均数计算方法,设出两个平均数表达式,相减,即可。
高二数学(文科)上学期期末模拟试卷(1)(含答案)
高二数学(文科)上学期期末模拟试卷(1)一、单选题1.如图所示的程序框图,运行后输出的结果为( ) A .2 B .4 C .6 D .16 2.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法从随机数表第1行的第5列和第6列数字开7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 74813.某家庭2019年一月份收入的总开支分布饼形图如图1所示,这个月的食品开支柱状图如图2所示:图1图2那么这个月的肉食类开支占这个家庭收入总开支的( ) A .10% B .15% C .20%D .30%4.已知数据1x 、2x 、3x 的方差24S =,则122x +,222x +,322x +的方差为( ) A .4B .6C .16D .365.命题“若(1)0x x -=,则0x =或1x =”的否命题为( ) A .若(1)0x x -≠,则0x ≠或1x ≠ B .若(1)0x x -≠,则0x ≠且1x ≠ C .若0x ≠或1x ≠,则(1)0x x -≠D .若0x ≠且1x ≠,则(1)0x x -≠6.渝康码是腾讯和支付宝与重庆市政府合作推出的重庆电子健康码,用户申请使用渝康码,凭此码出入小区,学校,医院,商业,公共交通,办公楼宇,交通卡口等.如图,健康人员的渝康码是黑白相间的.已知某个重庆市民的渝康码是边长为15cm 的正方形,利用随机模拟的方法向该渝康码内投入900个点,其中落入黑色部分的点的个数为480个,则该渝康码的黑色部分的面积约为( )2cm A .105 B .115 C .120 D .1357.某市政府在调查市民收入增减与旅游愿望的关系时,采用独立性检验法抽查了3000人,计算发现2K 的观测值 6.023k =,根据这一数据查阅表,市政府断言“市民收入增减与旅游愿望有关系”这一断言()20P K k ≥0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k1.3232.0722.7063.8415.0246.6357.87910.8288.已知函数()f x 在0x x =处的导数为k ,则000(3)()lim h f x h f x h→--=( )A .kB .k -C .3kD .3k - 9.“方程22121x y m m-=++表示双曲线”的一个充要条件是( )A .21m -<<-B .0m <C .2m <-或1m >-D .0m >10.设抛物线24y x =的焦点为F , P 为其上的一点, O 为坐标原点,若OP PF =,则OPF 的面积为( )A .2B .2C .2D .2211.已知椭圆C 的中心为O ,两焦点为F 1、F 2,M 是椭圆C 上的一点,且满足1222MF MO MF ==,则椭圆C 的离心率e 等于( ) A .5B .32C .3 D .6 12.已知定义域为R 函数()f x 满足()11f =,且1'()2f x <,则1()22x f x <+的解集为( ) A .(1,1)- B .(1,)-+∞ C .(,1)(1,)-∞-+∞ D .(1,)+∞二、填空题13.命题“∀x ∈R ,x 2-2x +1≥0”的否定是_____________________________________ 14.若4进制数2m 01(4)(m 为正整数)化为十进制数为177,则m =______ 15.已知函数3()2(1)1f x x xf '=+-,则函数()f x 在(1,(1))f 处的切线方程为______16.已知P 为双曲线2222:1(0,0)x y a b a bΓ-=>>与圆222x y c +=的一个公共点,12(,0),(,0)F c F c -分别为双曲线Γ的左右焦点,设12PF k PF =,若(1,2]k ∈,则双曲线Γ的离心率的取值范围是___________三、解答题17.已知p :|1|2x +≤,q :(1)()0x x m +-≤(1)若4m =,命题“p 或q ”为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数m 的取值范围。
【压轴题】高二数学上期末第一次模拟试题附答案
【压轴题】高二数学上期末第一次模拟试题附答案一、选择题1.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49D .292.如图阴影部分为曲边梯形,其曲线对应函数为1xy e =-,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是( )A .23e - B .13e - C .43e- D .53e- 3.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是( ) A .B .C .D .4.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的2S =(单位:升),则输入k 的值为A .6B .7C .8D .95.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正n 边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出n 的值分别为( )(参考数据:20sin200.3420,sin()0.11613≈≈)A.1180sin,242S nn=⨯⨯B.1180sin,182S nn=⨯⨯C.1360sin,542S nn=⨯⨯D.1360sin,182S nn=⨯⨯6.大学生小明与另外3名大学生一起分配到某乡镇甲、乙丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为()A.112B.12C.13D.167.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为()A.4i≤B.5i≤C.6i≤D.7i≤8.已知线段MN的长度为6,在线段MN上随机取一点P,则点P到点M,N的距离都大于2的概率为()A.34B.23C.12D.139.按照程序框图(如图所示)执行,第3个输出的数是()A.6B.5C.4D.310.执行如图所示的程序框图,若输入2x=-,则输出的y=()A.8-B.4-C.4D.811.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如40337=+.(注:如果一个大于1的整数除1和自身外无其他正因数,则称这个整数为素数.)在不超过11的素数中,随机选取2个不同的数,其和小于等于10的概率是()A.12B.13C.14D.1512.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为()A.48B.60C.64D.72二、填空题13.北京市某银行营业点在银行大厅悬挂着不同营业时间段服务窗口个数的提示牌,如图所示. 设某人到达银行的时间是随机的,记其到达银行时服务窗口的个数为X ,则()E X =______________.14.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束,则恰好检测四次停止的概率为_____(用数字作答).15.已知实数]9[1x ∈,,执行如图所示的流程图,则输出的x 不小于55的概率为________.16.现有10个数,其平均数为3,且这10个数的平方和是100,则这组数据的标准差是______.17.下图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值满足关系式y=-2x+4,则这样的x 值___个.18.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,问一开始输入的x =______斗.遇店添一倍,逢友饮一斗,意思是碰到酒店就把壶里的酒加1倍,碰到朋友就把壶里的酒喝一斗,店友经三处,意思是每次都是遇到店后又遇到朋友,一共是3次.19.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为_____.20.将红、黄、蓝、白、黑5个小球分别放入红、黄、蓝、白、黑5个盒子里,每个盒子里放且只放1个小球,则红球不在红盒内且黄球不在黄盒内的概率是______.三、解答题21.某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:(1)根据频率分布直方图计算该种蔬果日需求量的平均数x(同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为x公斤≤≤,利润为y元.求y关于x的函数关系式,并结合频率分布直方图估计利润x(0500)y不小于1750元的概率.22.某公司为研究某产品的广告投入与销售收入之间的关系,对近五个月的广告投入x (万元)与销售收入y(万元)进行了统计,得到相应数据如下表:广告投入x(万元)91081112销售收入y(万元)2123212025(1)求销售收入y关于广告投入x的线性回归方程y bx a=+$$$.(2)若想要销售收入达到36万元,则广告投入应至少为多少.参考公式:()()()121ni iiniix x y ybx x∧==--=-∑∑,ˆˆ•a yb x=-23.一个盒子中有5只同型号的灯泡,其中有3只一等品,2只二等品,现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题:(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;(Ⅱ)求至少有一次取到二等品的概率.24.东莞市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在[20,70]之间,根据统计结果,做出频率分布直方图如图:(1)求频率分布直方图中x的值,并根据频率分布直方图,求这100位摄影者年龄的样本平均数x和中位数m(同一组数据用该区间的中点值作代表);(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.①在答题卡上的统计表中填出每组相应抽取的人数:年龄[20,30)[30,40)[40,50)[50,60)[60,70]人数②若从年龄在[30,50)的作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在[30,40)的概率.25.甲乙两人同时生产内径为25.41mm的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位:mm ) , 甲:25.44,25.43, 25.41,25.39,25.38 乙:25.41,25.42, 25.41,25.39,25.42. 从生产的零件内径的尺寸看、谁生产的零件质量较高. 26.某学校高一、高二、高三的三个年级学生人数如下表按年级分层抽样的方法评选优秀学生50人,其中高三有10人. (1)求z 的值;(2)用分层抽样的方法在高一中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取8人,经检测她们的得分如下:9.4,8.6,9.2, 9.6,8.7,9.3,9.0,8.2,把这8人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由题意结合几何概型计算公式求解满足题意的概率值即可. 【详解】如图所示,01,01x y ≤≤≤≤表示的平面区域为ABCD , 平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中2,03P ⎛⎫ ⎪⎝⎭,20,3Q ⎛⎫ ⎪⎝⎭,结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯. 本题选择D 选项.【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.2.D解析:D 【解析】 【分析】通过定积分可求出空白部分面积,于是利用几何概型公式可得答案. 【详解】由题可知长方形面积为3,而长方形空白部分面积为:()()11001|2x x e dx e x e -=-=-⎰,故所求概率为25133e e---=,故选D. 【点睛】本题主要考查定积分求几何面积,几何概型的运算,难度中等.3.C解析:C 【解析】 【分析】先求出基本事件总数n =27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率. 【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体, ∴基本事件总数n =27, 在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上, 且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P =故选:C 【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.4.C解析:C 【解析】分析:执行程序框图,得到输出值4k S =,令24k=,可得8k =. 详解:阅读程序框图,初始化数值1,n S k ==,循环结果执行如下:第一次:14n =<成立,2,22k k n S k ==-=; 第二次:24n =<成立,3,263k k k n S ==-=; 第三次:34n =<成立,4,3124k k k n S ==-=; 第四次:44n =<不成立,输出24kS ==,解得8k =. 故选C.点睛:解决循环结构程序框图问题的核心在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.5.C解析:C 【解析】分析:在半径为1的圆内作出正n 边形,分成n 个小的等腰三角形,可得正n 边形面积是13602S n sinn=⨯⨯o,按照程序框图规定的运算方法逐次计算,直到达到输出条件即可的结果.详解:在半径为1的圆内作出正n 边形,分成n 个小的等腰三角形,每一个等腰三角形两腰是1,顶角是360n ⎛⎫ ⎪⎝⎭o,所以正n 边形面积是13602S n sin n=⨯⨯o,当6n =时, 2.6S =≈; 当18n =时, 3.08S ≈;当54n =时, 3.13S ≈;符合 3.11S ≥,输出54n =,故选C.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.C解析:C 【解析】 【分析】基本事件总数n 2343C A ==36,小明恰好分配到甲村小学包含的基本事件个数m 322332A C A =+=12,由此能求出小明恰好分配到甲村小学的概率.【详解】解:大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教, 每个村小学至少分配1名大学生,基本事件总数n 2343C A ==36,小明恰好分配到甲村小学包含的基本事件个数m 322332A C A =+=12,∴小明恰好分配到甲村小学的概率为p 121363m n ===. 故选C . 【点睛】本题考查概率的求法,考查古典概率、排列组合等基础知识,考查运算求解能力,是基础题.7.B解析:B 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,i S 的值,当输出的63S =时,退出循环,对应的条件为5i ≤,从而得到结果. 【详解】当=11S i =,时,不满足输出条件,故进行循环,执行循环体; 当1123,2S i =+==,不满足输出条件,故进行循环,执行循环体;当2327,3S i =+==,不满足输出条件,故进行循环,执行循环体; 当37215,4S i =+==,不满足输出条件,故进行循环,执行循环体; 当415231,5S i =+==,不满足输出条件,故进行循环,执行循环体; 当313263,6S i =+==,满足输出条件,故判断框中应填入的条件为5i ≤, 故选B. 【点睛】该题考查的是有关程序框图的问题,根据题意写出判断框中需要填入的条件,属于简单题目.8.D解析:D 【解析】 【分析】根据题意画出图形,结合图形即可得出结论. 【详解】 如图所示,线段MN 的长度为6,在线段MN 上随机取一点P , 则点P 到点M ,N 的距离都大于2的概率为2163P ==. 故选D . 【点睛】本题考查了几何概型的概率计算问题,是基础题.9.B解析:B 【解析】第一次输出1,A =第二次输出123A =+=,第三次输出325A =+= ,选B.10.C解析:C 【解析】 【分析】执行程序框图,可得程序框图的功能是计算并输出分段函数32,0,0x x y x x ⎧>=⎨≤⎩的值,从而计算得解. 【详解】执行程序框图,可得程序框图的功能是计算并输出分段函数32,0,0x x y x x ⎧>=⎨≤⎩的值,由于20x =-<,可得2(2)4y =-=,则输出的y 等于4,故选C. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有读取程序框图的输出的结果,在解题的过程中,需要明确框图的功能,从而求得结果.11.A解析:A 【解析】 【分析】先列出不超过11的素数,再列举出随机选取2个不同的数的情况,进而找到和小于等于10的情况,即可求解 【详解】不超过11的素数有:2,3,5,7,11,共有5个, 随机选取2个不同的数可能为:()2,3,()2,5,()2,7,()2,11,()3,5,()3,7,()3,11,()5,7,()5,11,()7,11,共有10种情况, 其中和小于等于10的有:()2,3,()2,5,()2,7,()3,5,()3,7,共有5种情况, 则概率为51102P ==, 故选:A 【点睛】本题考查列举法求古典概型的概率,属于基础题12.B解析:B 【解析】 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.二、填空题13.【解析】【分析】列出随机变量的分布列求解【详解】由题意知某人到达银行的概率为几何概型所以:其到达银行时服务窗口的个数为的分布列为: 5 4 3 4 2 则【点睛】本题考查几何概型及随 解析:3.5625【解析】 【分析】列出随机变量的分布列求解. 【详解】由题意知某人到达银行的概率为几何概型,所以: 其到达银行时服务窗口的个数为的分布列为:则()54342 3.56258161648E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查几何概型及随机变量的分布列.14.【解析】由题意可知2次检测结束的概率为3次检测结束的概率为则恰好检测四次停止的概率为解析:35【解析】由题意可知,2次检测结束的概率为22225110A p A ==,3次检测结束的概率为31123232335310A C C A p A +==, 则恰好检测四次停止的概率为231331110105p p p =--=--=. 15.【解析】设实数x ∈19经过第一次循环得到x=2x+1n=2经过第二循环得到x=2(2x+1)+1n=3经过第三次循环得到x=22(2x+1)+1+1n=4此时输出x 输出的值为8x+7令8x+7⩾55 解析:38【解析】 设实数x ∈[1,9],经过第一次循环得到x =2x +1,n =2, 经过第二循环得到x =2(2x +1)+1,n =3,经过第三次循环得到x =2[2(2x +1)+1]+1,n =4此时输出x , 输出的值为8x +7, 令8x +7⩾55,得x ⩾6,由几何概型得到输出的x 不小于55的概率为963918P -==-. 故答案为38. 16.1【解析】【分析】设这10个数为则这组数据的方差为:由此能求出这组数据的标准差【详解】现有10个数其平均数为3且这10个数的平方和是100设这10个数为则这组数据的方差为:这组数据的标准差故答案为1解析:1 【解析】 【分析】设这10个数为1x ,2x ,3x ,⋯,10x ,则12310310x x x x +++⋯+=,222212310100x x x x +++⋯+=,这组数据的方差为:()()22222222212310123101231011[()()())69101010S x x x x x x x x x x x x x x x x ⎛⎤⎤⎡=-+-+-+⋯+-=+++⋯+-+++⋯++⨯ ⎥⎥⎢⎦⎣⎝⎦,由此能求出这组数据的标准差. 【详解】现有10个数,其平均数为3,且这10个数的平方和是100, 设这10个数为1x ,2x ,3x ,⋯,10x , 则12310310x x x x +++⋯+=,222212310100x x x x +++⋯+=,∴这组数据的方差为:()()22222222212310123101231011[()()())691011010S x x x x x x x x x x x x x x x x ⎛⎤⎤⎡=-+-+-+⋯+-=+++⋯+-+++⋯++⨯= ⎥⎥⎢⎦⎣⎝⎦,∴这组数据的标准差1S =.故答案为1. 【点睛】本题考查一组数据的标准差的求法,考查平均数、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.17.2【解析】【分析】分析程序中各变量各语句的作用再根据流程图所示的顺序可知:该程序的作用是计算分段函数的函数值并输出【详解】该题考查的是有关程序框图的问题在解题的过程中注意对框图进行分析明确框图的作用解析:2 【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数2,224,251,5x x y x x x x⎧⎪≤⎪=-<≤⎨⎪⎪>⎩的函数值,并输出.【详解】该题考查的是有关程序框图的问题,在解题的过程中,注意对框图进行分析,明确框图的作用,根据题意,建立相应的等量关系式,求得结果.根据题意,可知该程序的作用是计算分段函数2,224,251,5x x y x x x x ⎧⎪≤⎪=-<≤⎨⎪⎪>⎩的函数值,依题意得2224x x x ≤⎧⎨=-+⎩或252424x x x <≤⎧⎨-=-+⎩或5124x x x>⎧⎪⎨=-+⎪⎩,解得1x =-±x 的值有两个, 故答案是:2. 【点睛】该题考查的是有关程序框图的问题,在解题的过程中,注意分析框图的作用,之后建立相应的等量关系式,求得结果,从而得到满足条件的x 的个数.18.【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件输出令即可得结果【详解】第一次输入执行循环体执行循环体执行循环体输出的值为0解得:故答案为【点睛】本题主要考查程 解析:78【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件输出87x -,令870x -=即可得结果. 【详解】第一次输入x x =,1i =执行循环体,21x x =-,2i =,执行循环体,()221143x x x =--=-,3i =, 执行循环体,()243187x x x =--=-,43i =>,输出87x -的值为0,解得:78x =, 故答案为78. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.19.8【解析】【分析】根据程序框图知该程序的功能是计算并输出变量的值模拟程序的运行过程即可求解【详解】当时满足循环条件当时满足循环条件当时满足循环条件;当时不满足循环条件跳出循环输出故填【点睛】本题主要解析:8 【解析】 【分析】根据程序框图知,该程序的功能是计算并输出变量s 的值,模拟程序的运行过程即可求解. 【详解】当2i =时,满足循环条件,2,4,2s i k ===, 当4i =时,满足循环条件,4,6,3s i k === , 当6i =时,满足循环条件,8,8,4s i k ===; 当8i =时,不满足循环条件,跳出循环,输出8s =. 故填8. 【点睛】本题主要考查了程序框图,循环结构,属于中档题.20.65【解析】设红球不在红盒内且黄球不在黄盒内的概率为再设红球在红盒内的概率为黄球在黄盒内的概率为红球在红盒内且黄球在黄盒内的概率为则红球不在红盒且黄球不在黄盒由古典概型概率公式可得则即故答案为解析:65 【解析】设红球不在红盒内且黄球不在黄盒内的概率为P ,再设红球在红盒内的概率为1P ,黄球在黄盒内的概率为2P ,红球在红盒内且黄球在黄盒内的概率为3P ,则()1231P P P P =-+-:P 红球不在红盒且黄球不在黄盒由古典概型概率公式可得,1234!3!,5!5!P P P ===,则()1234!3!131125!5!20P P P P ⎛⎫=-+-=-⨯-=⎪⎝⎭,即0.65P =,故答案为0.65. 三、解答题21.(1)265公斤 (2)0.7 【解析】 【分析】(1)用频率分布直方图的每一个矩形的面积乘以矩形的中点坐标求和即为平均值; (2)讨论日需求量与250公斤的关系,写出分段函数再利用频率分布直方图求概率即可. 【详解】 (1)500.00101001500.00201002500.00301003500.0025100x =⨯⨯+⨯⨯+⨯⨯+⨯⨯ 4500.0015100+⨯⨯ 265=故该种蔬果日需求量的平均数为265公斤.(2)当日需求量不低于250公斤时,利润()=2515250=2500y ⨯-元, 当日需求量低于250公斤时,利润()()=25152505=151250y x x x ---⨯-元 所以151250,0250,2500,250500.x x y x -≤<⎧=⎨≤≤⎩由1750y ≥得,200500x ≤≤, 所以()1750P y ≥=()200500P x ≤≤=0.0030100+0.0025100+0.0015100=0.7⨯⨯⨯ 故估计利润y 不小于1750元的概率为0.7 .【点睛】本题主要考查了频率分布直方图的应用,做此类题的关键是理解题意,属于中档题.22.(1)71510ˆyx =+(2)30 【解析】 【分析】(1)由表中数据计算平均数和回归系数,求出y 关于x 的线性回归方程;(2)利用回归方程令715361ˆ0yx =+≥,求出x 的范围即可. 【详解】(Ⅰ)由题意知,10,22,x y ==()()()()()222221101211223710212ˆ10b-⨯-+⨯+-⨯-+⨯-+⨯==++++则,72210151ˆ0a∴=-⨯=, ∴ y 关于x 的线性回归方程为71510ˆy x =+. (Ⅱ)令715361ˆ0yx =+≥,则30x ≥,即广告投入至少为30(万元). 【点睛】本题考查了线性回归方程的求法与应用问题,是基础题. 23.(Ⅰ)310;(Ⅱ)710. 【解析】 【分析】列举出所有的基本事件,共有20个, (I )从中查出第一次取到二等品,且第二次取到的是一等品的基本事件数共有6个,利用古典概型的概率公式可得结果;(II )事件“至少有一次取到二等品”的对立事件是“取到的全是一等品”,“取到的全是一等品”包括了6个事件,“至少有一次取到二等品”取法有14种, 利用古典概型的概率公式可得结果. 【详解】(I )令3只一等品灯泡分别为,,a b c ;2只二等品灯泡分别为,X Y . 从中取出2只灯泡,所有的取法有20种,分别为:()()()()()()()()(),,,,,,,,,,,,,,,,,a b a c a X a Y b a b c b X b Y c a ,,(),c X ,(),c Y ,(),X a ,(),X b ,(),X c ,(),X Y ,(),Y a ,(),Y b ,(),Y c ,(),Y X第一次取到二等品,且第二次取到的是一等品取法有6种, 分别为()()()()()(),,,,,,,,,,,X a X b X c Y a Y b Y c ,故概率是632010=; (II )事件“至少有一次取到二等品”的对立事件是“取到的全是一等品”, “取到的全是一等品”包括了6种分别为()()()()()(),,,,,,,,,,,a b a c b a b c c a c b , 故“至少有一次取到二等品”取法有14种,事件“至少有一次取到二等品”的概率是1472010=.本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 ,(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先11(,)A B ,12(,)A B …. 1(,)n A B ,再21(,)A B ,22(,)A B …..2(,)n A B 依次31(,)A B 32(,)A B ….3(,)n A B … 这样才能避免多写、漏写现象的发生.24.(1)0.025x=,平均数x 为52,中位数为53.75m =(2)①见解析②35【解析】 【分析】(1)由频率分布直方图各个小矩形的面积之和为1可得x ,用区间中点值代替可计算均值,中位数把频率分布直方图中小矩形面积等分.(2)①分层抽样,是按比例抽取人数;②年龄在[30,40)有2人,在[40,50)有4人,设在[30,40)的是1a ,2a ,在[40,50)的是1234b , b , b , b ,可用列举法列举出选2人的所有可能,然后可计算出概率. 【详解】(1)由频率分布直方图各个小矩形的面积之和为1, 得0.025x=在频率分布直方图中,这100位参赛者年龄的样本平均数为:250.05350.1450.2550.4650.452⨯+⨯+⨯+⨯+⨯=设中位数为m ,由0.050.10.2(50)0.040.5m +++-⨯=,解得53.75m =.(2)①每组应各抽取人数如下表:②根据分层抽样的原理,年龄在有2人,在有4人,设在的是1a ,2a ,在[40,50)的是1234b , b , b , b ,列举选出2人的所有可能如下:()()()()()()()()()()()1211121314212223241213,,,,,,,,,,,,,,,,,,,,,a a a b a b a b a b a b a b a b a b b b b b ,()()()()14232434,,,,,,,b b b b b b b b 共15种情况.设“这2人至少有一人的年龄在区间[30,40)”为事件A ,则包含:()()()()()()()()()121112131422222324,,,,,,,,,,,,,,,,,a a a b a b a b a b a b a b a b a b 共9种情况则93()155P A ==本题考查频率分布直方图,考查样本数据特征、古典概型,属于基础题型. 25.乙生产的零件比甲的质量高 【解析】试题分析:分别利用平均值公式算出甲乙两人生产的零件的平均值,再利用方差公式算出甲乙两人生产的零件的方差,发现甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高.试题解析:甲的平均数()125.4425.4325.4125.3925.3825.415x =⨯++++=甲. 乙的平均数()125.4125.4225.4125.3925.4225.415x =⨯++++=乙. 甲的方差20.00052s =甲,乙的方差20.00012s =乙.∵甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高. 26.(1)400(2)710 (3)0.75【解析】 【分析】 【详解】(1)设该校总人数为n 人,由题意得,5010100300n =+, 所以n=2000.z=2000-100-300-150-450-600=400;(2)设所抽样本中有m 个女生,因为用分层抽样的方法在高一女生中抽取一个容量为5的样本,所以40010005m=, 解得m=2也就是抽取了2名女生,3名男生,分别记作S 1,S 2;B 1 ,B 2,B 3, 则从中任取2人的所有基本事件为(S 1, B 1),(S 1, B 2),(S 1, B 3),(S 2,B 1),(S 2,B 2), (S 2,B 3),(S 1, S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3)共10个, 其中至少有1名女生的基本事件有7个:(S 1, B 1),(S 1, B 2),(S 1, B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1, S 2), 所以从中任取2人,至少有1名女生的概率为710. (3)样本的平均数为1(9.48.69.29.68.79.39.08.2)98x =+++++++=, 那么与样本平均数之差的绝对值不超过0.5的数为9.4, 8.6, 9.2, 8.7, 9.3, 9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为.。
【典型题】高二数学上期末第一次模拟试题(带答案)(1)
【典型题】高二数学上期末第一次模拟试题(带答案)(1)一、选择题1.在如图所示的算法框图中,若()321a x dx =-⎰,程序运行的结果S 为二项式()52x +的展开式中3x 的系数的9倍,那么判断框中应填入的关于k 的判断条件是( )A .3K <B .3K >C .2K <D .2K >2.下面的程序框图表示求式子32×35×311×323×347×395的值, 则判断框内可以填的条件为( )A .90?i ≤B .100?i ≤C .200?i ≤D .300?i ≤3.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( )A.抽样表明,该校有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D.抽样表明,该校有50名学生为阅读霸4.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是().①1月至8月空气合格天数超过20天的月份有5个②第二季度与第一季度相比,空气合格天数的比重下降了③8月是空气质量最好的一个月④6月的空气质量最差A.①②③B.①②④C.①③④D.②③④5.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出m的值为67,则输入a的值为()A.7B.4C.5D.116.执行如图的程序框图,那么输出的S的值是()A .﹣1B .12C .2D .17.下列赋值语句正确的是( ) A .s =a +1 B .a +1=s C .s -1=a D .s -a =18.在长为10cm 的线段AB 上任取一点C ,作一矩形,邻边长分別等于线段AC 、CB 的长,则该矩形面积小于216cm 的概率为( ) A .23B .34C .25D .139.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?10.执行如图的程序框图,如果输出的是a=341,那么判断框( )A .4k <B .5k <C .6k <D .7k <11.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是12,x x ,则下列叙述正确的是( )A .12x x >,乙比甲成绩稳定B .12x x >,甲比乙成绩稳定C .12x x <,乙比甲成绩稳定D .12x x <,甲比乙成绩稳定12.2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是( ) A .25B .35C .23D .15二、填空题13.如图,在半径为1的圆上随机地取两点,B E ,连成一条弦BE ,则弦长超过圆内接正BCD ∆边长的概率是__________.14.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,问一开始输入的x =______斗.遇店添一倍,逢友饮一斗,意思是碰到酒店就把壶里的酒加1倍,碰到朋友就把壶里的酒喝一斗,店友经三处,意思是每次都是遇到店后又遇到朋友,一共是3次.15.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.16.已知某产品连续4个月的广告费i x (千元)与销售额i y (万元)(1,2,3,4i =)满足4115ii x==∑,4112i i y ==∑,若广告费用x 和销售额y 之间具有线性相关关系,且回归直线方程为^y bx a =+,0.6b =,那么广告费用为5千元时,可预测的销售额为___万元. 17.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______.18.取一根长度为3米的绳子,拉直后在任意位置剪断,则剪出的两段的长都不小于1米(记为事件A )的概率为________19.投掷一枚均匀的骰子,则落地时,向上的点数是2的倍数的概率是_________, 20.已知由样本数据点集合(){},|1,2,3,,i ix y i n =L L ,求得的回归直线方程为1.230.08y x Λ=+ ,且4x =。
【压轴卷】高二数学上期末模拟试题(附答案)(1)
【压轴卷】高二数学上期末模拟试题(附答案)(1)一、选择题1.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率分布直方图如图所示则下列说法正确的是()A.频率分布直方图中a的值为 0.040B.样本数据低于130分的频率为 0.3C.总体的中位数(保留1位小数)估计为123.3分D.总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等2.将A,B,C,D,E,F这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A,B,C三个字母连在一起,且B在A与C之间的概率为()A.112B.15C.115D.2153.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出m的值为67,则输入a的值为()A.7B.4C.5D.114.下列赋值语句正确的是()A .s =a +1B .a +1=sC .s -1=aD .s -a =15.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )A .华为的全年销量最大B .苹果第二季度的销量大于第三季度的销量C .华为销量最大的是第四季度D .三星销量最小的是第四季度6.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A .1636B .1736C .12D .19367.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元8.执行如图的程序框图,如果输出的是a=341,那么判断框( )A .4k <B .5k <C .6k <D .7k <9.执行如图所示的程序框图,若输入2x =-,则输出的y =( )A .8-B .4-C .4D .810.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+$,则表中m 的值为( ) x 8 10 1112 14 y2125m2835A .26B .27C .28D .2911.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为( ) A .13B .49C .59D .2312.执行如图所示的程序框图,则输出s 的值为( )A .10B .17C .19D .36二、填空题13.已知实数]9[1x ,,执行如图所示的流程图,则输出的x 不小于55的概率为________.14.某篮球运动员在赛场上罚球命中率为23,那么这名运动员在赛场上的2次罚球中,至少有一次命中的概率为______.15.执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为_____.16.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.17.使用如图所示算法对下面一组数据进行统计处理,则输出的结果为__________.数据:19.3a =,29.6a =,39.3a = 49.4a =,59.4a =,69.3a = 79.3a =,89.7a =,99.2a = 109.5a =,119.3a =,129.6a =18.已知AOB ∆中,60AOB ∠=o ,2OA =,5OB =,在线段OB 上任取一点C ,则AOC ∆为锐角三角形的概率_________.19.如图,曲线sin32xy π=+把边长为4的正方形OABC 分成黑色部分和白色部分.在正方形内随机取一点,则此点取自黑色部分的概率是__________.20.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________.三、解答题21.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率; (Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.22.某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示.(1)求居民月收入在[3000,3500)内的频率; (2)根据频率分布直方图求出样本数据的中位数;(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?23.(1)用秦九韶算法求多项式5432()54323f x x x x x x =++++-当2x =时的值; (2)用辗转相除法或更相减损术求81和135的最大公约数.24.今年4月的“西安奔驰女车主哭诉维权事件”引起了社会的广泛关注,某汽车4S 店为了调研公司的售后服务态度,对5月份到店维修保养的100位客户进行了回访调查,每位客户用10分制对该店的售后服务进行打分.现将打分的情况分成以下几组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到频率分布直方图如图所示.已知第二组的频数为10.(1)求图中实数a,b的值;(2)求所打分值在[6,10]的客户人数;(3)总公司规定,若4S店的客户回访平均得分低于7分,则将勒令其停业整顿.试用频率分布直方图的组中值对总体平均数进行估计,判断该4S店是否需要停业整顿.25.从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束(1)求第一次实验恰好摸到1个红球和1个白球的概率;(2)记实验次数为X,求X的分布列及数学期望.26.口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(Ⅰ)求甲赢且编号的和为6的事件发生的概率;(Ⅱ)这种游戏规则公平吗?试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由频率分布直方图得的性质求出0.030a=;样本数据低于130分的频率为:0.7;[)80,120的频率为0.4,[)120,130的频率为0.3.由此求出总体的中位数(保留1位小数)估计为:0.50.41203123.30.3-+⨯≈分;样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等. 【详解】由频率分布直方图得:()0.0050.0100.0100.0150.0250.005101a ++++++⨯=,解得0.030a =,故A 错误;样本数据低于130分的频率为:()10.0250.005100.7-+⨯=,故B 错误;[)80,120的频率为:()0.0050.0100.0100.015100.4+++⨯=, [)120,130的频率为:0.030100.3⨯=.∴总体的中位数(保留1位小数)估计为:0.50.412010123.30.3-+⨯≈分,故C 正确; 样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等, 总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等,故D 错误.故选C . 【点睛】本题考查命题真假的判断,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.因为条形分布直方图的面积表示的是概率值,中位数是位于最中间的数,故直接找概率为0.5的即可;平均数是每个长方条的中点乘以间距再乘以长方条的高,将每一个数值相加得到.2.C解析:C 【解析】 【分析】将A ,B ,C 三个字捆在一起,利用捆绑法得到答案. 【详解】由捆绑法可得所求概率为242466A A 1A 15P ==.故答案为C 【点睛】本题考查了概率的计算,利用捆绑法可以简化运算.3.C解析:C 【解析】模拟程序框图的运行过程,如下:输入a ,23m a =-,1i =,()223349m a a =--=-;2i =,()2493821m a a =--=-; 3i =,()282131645m a a =--=-;4i =,()2164533293m a a =--=-;输出3293m a =-,结束; 令329367a -=,解得5a =. 故选C.4.A解析:A【解析】赋值语句的格式为“变量=表达式”,“=”的左侧只能是单个变量,B 、C 、D 都不正确.选A.5.A解析:A 【解析】 【分析】根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出A 正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项B ,C ,D 都错误. 【详解】根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大; 每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小;B ∴,C ,D 都错误,故选A . 【点睛】本题主要考查对销量百分比堆积图的理解.6.C解析:C 【解析】 【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率。
【压轴题】高二数学上期末第一次模拟试卷及答案
【压轴题】高二数学上期末第一次模拟试卷及答案一、选择题1.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照 [80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率 分布直方图如图所示则下列说法正确的是( )A .频率分布直方图中a 的值为 0.040B .样本数据低于130分的频率为 0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等2.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .08153.己知某产品的销售额y 与广告费用x 之间的关系如下表:若求得其线性回归方程为 6.5ˆˆyx a =+,其中ˆˆa y bx =-,则预计当广告费用为6万元时的销售额是( ) A .42万元B .45万元C .48万元D .51万元4.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A ,B 两个贫困县各有15名村代表,最终A 县有5人表现突出,B 县有3人表现突出,现分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则B 县选取的人表现不突出的概率是( ) A .13B .47C .23D .565.从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4n mB .2n mC .4mnD .2mn6.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是( ) A .31号 B .32号C .33号D .34号7.设A 为定圆C 圆周上一点,在圆周上等可能地任取一点与A 连接,求弦长超过半径2倍的概率( ) A .34B .35C .13D .128.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元9.我国古代数学著作《九章算术》中,有这样一道题目:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?”下图是源于其思想的一个程序框图,若输出的3S =(单位:升),则输入的k =( )A .9B .10C .11D .1210.执行如图所示的程序框图,若输入2x =-,则输出的y =( )A.8-B.4-C.4D.811.执行如图所示的程序框图,则输出s的值为()A.10 B.17 C.19 D.3612.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A.92,94B.92,86C.99,86D.95,91二、填空题13.我国传统的房屋建筑中,常会出现一些形状不同的窗棂,窗棂上雕刻有各种花纹,构成种类繁多的图案.如图所示的窗棂图案,是将半径为R的圆六等分,分别以各等分点为圆心,以R为半径画圆弧,在圆的内部构成的平面图形.现在向该圆形区域内的随机地投掷一枚飞镖,飞镖落在黑色部分(忽略图中的白线)的概率是__________.14.执行如图所示的程序框图若输人x的值为3,则输出y的值为______.15.执行如图所示的伪代码,若输出的y的值为10,则输入的x的值是________.16.为调查某校学生每天用于课外阅读的时间,现从该校名学生中随机抽取名学生进行问卷调查,所得数据均在区间上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在(单位:分钟)内的学生人数为____.17.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.18.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.19.执行如图所示的程序框图,输出的值为__________.20.执行如图所示的程序框图,输出的S 值为__________.三、解答题21.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n 天监测空气质量指数(AQI ),数据统计如下: 空气质量指数(3/g m )0-50 51-100 101-150 151-200 201-250 空气质量等级 空气优 空气良 轻度污染中度污染 重度污染 天数2040m105(1)根据所给统计表和频率分布直方图中的信息求出,n m 的值,并完成频率分布直方图;(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A “两天空气都为良”发生的概率.22.甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局. (1)若在一局中甲先摸,求甲在该局获胜的概率;(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X 的概率分布及数学期望.23.某校学生会开展了一次关于“垃圾分类”问卷调查的实践活动,组织部分学生干部在几个大型小区随机抽取了共50名居民进行问卷调查.调查结束后,学生会对问卷结果进行了统计,并将其中一个问题“是否知道垃圾分类方法(知道或不知道)”的调查结果统计如下表: 年龄(岁) [10,20)[20,30) [30,40) [40,50)[50,60)[60,70]频数 mn14 12 8 6 知道的人数348732(1)求上表中的,m n 的值,并补全右图所示的的频率直方图;(2)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取1人参加垃圾分类知识讲座,求选中的两人中仅有一人不知道垃圾分类方法的概率.24.设关于x 的一元二次方程2220x bx a -+=,其中,a b 是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率.(1)若随机数,{1,2,3,4}a b∈;(2)若a是从区间[0,4]中任取的一个数,b是从区间[1,3]中任取的一个数.25.一个盒子中有5只同型号的灯泡,其中有3只一等品,2只二等品,现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题:(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;(Ⅱ)求至少有一次取到二等品的概率.26.某学校高一、高二、高三的三个年级学生人数如下表按年级分层抽样的方法评选优秀学生50人,其中高三有10人.(1)求z的值;(2)用分层抽样的方法在高一中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取8人,经检测她们的得分如下:9.4,8.6,9.2, 9.6,8.7,9.3,9.0,8.2,把这8人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由频率分布直方图得的性质求出0.030a=;样本数据低于130分的频率为:0.7;[)80,120的频率为0.4,[)120,130的频率为0.3.由此求出总体的中位数(保留1位小数)估计为:0.50.41203123.30.3-+⨯≈分;样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等. 【详解】由频率分布直方图得:()0.0050.0100.0100.0150.0250.005101a ++++++⨯=,解得0.030a =,故A 错误;样本数据低于130分的频率为:()10.0250.005100.7-+⨯=,故B 错误;[)80,120的频率为:()0.0050.0100.0100.015100.4+++⨯=, [)120,130的频率为:0.030100.3⨯=.∴总体的中位数(保留1位小数)估计为:0.50.412010123.30.3-+⨯≈分,故C 正确; 样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等, 总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等,故D 错误.故选C . 【点睛】本题考查命题真假的判断,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.因为条形分布直方图的面积表示的是概率值,中位数是位于最中间的数,故直接找概率为0.5的即可;平均数是每个长方条的中点乘以间距再乘以长方条的高,将每一个数值相加得到.2.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.3.C解析:C 【解析】 【分析】由已知求得样本点的中心的坐标,代入线性回归方程求得ˆa ,则线性回归方程可求,取6x =求得y 值即可.【详解】()10123425x =++++=,()11015203035225y =++++=, 样本点的中心的坐标为()2,22,代入ˆˆa yb x =-,得22 6.529a =-⨯=.y ∴关于x 得线性回归方程为 6.59y x =+.取6x =,可得6.56948(y =⨯+=万元). 故选:C . 【点睛】本题考查线性回归方程的求法,考查计算能力,是基础题.4.B解析:B 【解析】 【分析】由古典概型及其概率计算公式得:有人表现突出,则B 县选取的人表现不突出的概率是6041057=,得解. 【详解】由已知有分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则共有111115*********C C C C ⋅-⋅=种不同的选法,又已知有人表现突出,且B 县选取的人表现不突出,则共有1151260C C ⋅=种不同的选法,已知有人表现突出,则B 县选取的人表现不突出的概率是6041057=. 故选:B . 【点睛】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系.5.C解析:C 【解析】此题为几何概型.数对(,)i i x y 落在边长为1的正方形内,其中两数的平方和小于1的数落在四分之一圆内,概型为41m P n π==,所以4mnπ=.故选C . 6.C解析:C 【解析】 【分析】根据系统抽样知,组距为604=15÷,即可根据第一组所求编号,求出各组所抽编号.【详解】学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为604=15÷, 已知03号,18号被抽取,所以应该抽取181533+=号, 故选C. 【点睛】本题主要考查了抽样,系统抽样,属于中档题.7.D解析:D 【解析】 【分析】先找出满足条件弦的长度超过2R 的图象的测度,再代入几何概型计算公式求解,即可得到答案. 【详解】根据题意可得,满足条件:“弦的长度超过2R 对应的弧”,其构成的区域为半圆»NP, 则弦长超过半径2倍的概率»12NP P ==圆的周长,【点睛】本题主要考查了几何概型的概率计算中的“几何度量”,对于几何概型的“几何度量”可以线段的长度比、图形的面积比、几何体的体积比等,且这个“几何度量”只与“大小”有关,与形状和位置无关,着重考查了分析问题和解答问题的能力.8.A解析:A 【解析】 【分析】由已知求得 x , y ,进一步求得$ a,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b =$,∴$ 80.78100.2a y bx --⨯===$. ∴$ 0.780.2y x =+.取16x =,得$ 0.78160.212.68y ⨯+==万元,故选A .【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.9.D解析:D 【解析】 【分析】计算出每次循环时各变量的值并与3S =比较后可得对应的k 的值. 【详解】1n =,S k =; 2n =,22k kS k =-=; 3n =,263k k k S =-=; 4n =,33124k k kS =-==,所以12k =. 故选:D. 【点睛】本题以数学文化为背景考虑流程图,此类问题应该根据流程图计算每次循环时各变量的值,从而可得程序终止的条件、输出的结果等,本题属于中档题.10.C解析:C 【解析】 【分析】执行程序框图,可得程序框图的功能是计算并输出分段函数32,0,0x x y x x ⎧>=⎨≤⎩的值,从而计算得解. 【详解】执行程序框图,可得程序框图的功能是计算并输出分段函数32,0,0x x y x x ⎧>=⎨≤⎩的值,由于20x =-<,可得2(2)4y =-=,则输出的y 等于4,故选C. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有读取程序框图的输出的结果,在解题的过程中,需要明确框图的功能,从而求得结果.11.C解析:C 【解析】试题分析:该程序框图所表示的算法功能为:235919S =+++=,故选C . 考点:程序框图. 12.B解析:B 【解析】由茎叶图可知,中位数为92,众数为86. 故选B.二、填空题13.【解析】∵阴影部分面积为∴飞镖落在黑色部分的概率为故答案为点睛:(1)当试验的结果构成的区域为长度面积体积等时应考虑使用几何概型求解;(2)利用几何概型求概率时关键是试验的全部结果构成的区域和事件发解析:2π-【解析】∵阴影部分面积为221112622R R π⎛⎫⨯-= ⎪ ⎪⎝⎭∴飞镖落在黑色部分的概率为2222RR π=故答案为2 点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解;(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域;(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.14.63【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】解:模拟程序的运行可得x=3y=7不满足条件|解析:63 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】解:模拟程序的运行,可得x=3 y=7不满足条件|x-y|>31,执行循环体,x=7,y=15 不满足条件|x-y|>31,执行循环体,x=15,y=31 不满足条件|x-y|>31,执行循环体,x=31,y=63 此时,满足条件|x-y|>31,退出循环,输出y 的值为63. 故答案为63. 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.3【解析】【分析】分析出算法的功能是求分段函数的值根据输出的值为10分别求出当时和当时的值即可【详解】由程序语句知:算法的功能是求的值当时解得(或不合題意舍去);当时解得舍去综上的值为3故答案为3【解析:3 【解析】 【分析】分析出算法的功能是求分段函数22,31,3x x y x x <⎧=⎨+≥⎩的值,根据输出的值为10 ,分别求出当3x <时和当3x ≥时的x 值即可. 【详解】由程序语句知:算法的功能是求22,31,3x x y x x <⎧=⎨+≥⎩的值,当3x ≥时,2110y x =+=,解得3x =(或3- ,不合題意舍去); 当3x <时,210y x ==,解得5x = ,舍去, 综上,x 的值为3,故答案为3 . 【点睛】本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.16.900【解析】【分析】利用频率分布直方图中频率和为1求a 值根据7080)的频率求出在此区间的人数即可【详解】由1﹣005﹣035﹣02﹣01=03故a =003故阅读的时间在7080)(单位:分钟)内 解析:【解析】 【分析】利用频率分布直方图中频率和为1求a值,根据[70,80)的频率求出在此区间的人数即可.【详解】由1﹣0.05﹣0.35﹣0.2﹣0.1=0.3,故a=0.03,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.3×3000=900,故答案为:900.【点睛】本题考查频率分布直方图中的有关性质的应用,考查直方图中频率和频数的求法. 17.【解析】【分析】由题意从甲乙丙丁4位同学中选出2名代表参加学校的会议求得基本事件的总数再由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中求得其包含的基本事件的个数即可求解【详解】由题意从甲乙解析:5 6【解析】【分析】由题意,从甲乙丙丁4位同学中选出2名代表参加学校的会议,求得基本事件的总数,再由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中,求得其包含的基本事件的个数,即可求解.【详解】由题意,从甲乙丙丁4位同学中选出2名代表参加学校的会议,则基本事件的总数为246n C==,又由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中,其包含的基本事件的个数为221m C==,所以甲乙两人至少有一人被选中的概率为151166mpn=-=-=.故答案为56.【点睛】本题主要考查了古典概型及其概率的计算公式,以及对立事件的应用,其中解答中认真审题,合理选择方法,分别求得基本事件的总数和事件所包含的基本事件的个数是解答的关键,着重考查了推理与计算能力,属于基础题.18.80【解析】【分析】本道题一一列举把满足条件的编号一一排除即可【详解】该数可以表示为故该数一定是5的倍数所以5的倍数有5101520253035404550556065707580859095100解析:80【解析】【分析】本道题一一列举,把满足条件的编号一一排除,即可. 【详解】该数可以表示为32,5,73k m n ++,故该数一定是5的倍数,所以5的倍数有5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,该数满足减去3能够被7整除,只有10,45,80,而同时要满足减去2被3整除,所以只有80. 【点睛】本道题考查了列举法计算锁编号问题,难度一般.19.【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到输出的的值【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;第五次循环;第六次循环退出循环输出 解析:42【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的S 的值。
高二上期期末检测数学模拟试题(参考答案)
高二上期期末检测模拟试题数学 试题 参考答案一、单选题(本大题共8小题,共40分。
在每小题列出的选项中,选出符合题目的一项)1、【答案】B2、【答案】D解析:由题意,得存在实数x ,y ,使得AD x AB y AC =+成立,即(5,6,)(2,1,3)(1,4,2)x y λ−=−+−−,所以52,64,32,x y x y x y λ=− −=−+ =− 解得2,1,8,x y λ==− = 故选D. 3、【答案】C解析:由535S S =,且21(21)n n S n a −=−,得()312355a a a a =++,所以120a a +=,设等差数列{}n a 的公差为d ,则()()341248a a a a d +−+==,所以121d a ==−,,所以5147a a d =+=. 4、【答案】A 5、【答案】D解析:()57134a a a a +=+,则4q = ,∴4624a q a ==故选:D 6、【答案】D 7、【答案】C小题,共9、【答案】ACD解析:因为数列是一类特殊的函数,其自变量n +∈N ,故数列的图象是一群孤立的点,A 正确;数列1,0,1,0,…与数列0,1,0,1,…的对应项不一样,故不是同一数列,B 错误; ,…前四项的规律,可知一个通项公式可以是()1nna n n +=∈+N ,C 正确; 10、【答案】ABD解析:当倾斜角为90°时,斜率不存在,故A 选项正确;设(0,2)关于直线1y x =+的对称点为(),m n ,则满足212122n mn m − =−+ =+ ,解得:11m n = = ,故点(0,2)关于直线1y x =+的对称点为(1,1),B 正确;当在x 轴和y 轴上截距都等于0时,此时直线为y x =,故C 错误;直线20x y −−=与两坐标轴的交点坐标为()2,0与()0,2−,故与两坐标轴围成的三角形的面积为12222××=,D 正确. 故选:ABD. 11、【答案】BC解析:因为双曲线22:1169x y C −=,所以5c =,又因为12112102022P P F P F S c y y =⋅=⋅⋅= ,所以4P y =,所以选项A 错误;将其代入22:1169x y C −=得2241169x −=,即20||3x =,由对称性,不妨取P 的坐标为20,43,可知2133PF =, 由双曲线定义可知1213372833PF PF ++ 所以121337|||350|33PF PF +=+=,所以选项B 正确; 由对称性,对于上面点P , 在12PF F 中,12371321033PF c PF =>=>=, 且24012020553PF k −==>−,所以12PF F 为钝角三角形,选项C 正确; 因为122920tan tan 22PF F b S θθ===,所以9πtan tan 2206θ=<=, 即π26θ<,所以12π3F PF θ∠=<,所以选项D 错误(余弦定理也可以解决); 12、【答案】ABD 解析:作出如图所示图形:对A,由抛物线定义及题意得222sin 302M M py py +==− , 即2212MM py p y+= =−,解得3p =,故A 正确; 对B,3p =,则30,2F,当直线l 的斜率不存在时,显然不合题意,设()11,M x y ,()22,N x y ,设直线l 的方程为y kx =22py =得2690x kx −−=,则12126,9x x k x x +==−, 121322MON S x x =×−=△当且仅当0k =时等号成立,故B 正确;对C,121212123322OM ON x x y y x x kx kx ⋅=+=+++ ()()()221212393919162424k x x k x x k k k =++++=−++⋅+故MON ∠钝角,则不存在直线l ,使得90OMF ONF ∠+∠>°,故C 错误; 对D,26x y =,即216y x =,故13y x ′=,1x ,在点N 2x ,为121x x =−,故相切的两条直线互相垂直,故D 正确.故选:ABD.三、填空题(本大题共4小题,共20分) 13、【答案】解析:将2220x y x ++=化为标准式得()2211x y ++=,故半径为1; 圆心()1,0−到直线y kx =,由弦长为1可得1=,解得k =.故答案为:.14、【答案】33,84解析:设00(,)P x y ,则有2200143x y +=,即2200443x y −=.①由题意知12(2,0),(2,0)A A −,设直线1PA 的斜率为1k ,直线2PA 的斜率为2k ,则001200,22y y k k x x ==+−, 所以212204y k k x ⋅=−.② 由①②得1234k k ⋅=−.因为2[2,1]k ∈−−,所以1k 的取值范围为33,84,故选B.15、【答案】21nn + 解析:由题意,11a =,当(,1]x n n ∈+时,{}1x n =+,(22{},21x x n n n n ⋅∈+++ ,{{}}x x ⋅的取值依次为2221,2,,21n n n n n n ++++++ ,…,221n n ++,共1n +个,即11n n a a n +=++,由此可得(1)1211123,22(1)1n n n n a n a n n n n + =++++===− ++, 所以1211121n n a a a n +++=+ . 四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 16、【答案】解析:本题考查抛物线、双曲线的几何性质,直线与抛物线的位置关系.由题意得,02p F,设直线l 的方程为2p x my =+,()11,A x y ,()22,B x y .由22,,2y px p x my = =+消去x 得2220y mpy p −−=,0∆>, 122y y mp ∴+=①,212y y p ⋅=−②.又||(3||AF FB =+,即(3AF FB =+,1122,(3,22p p x y x y∴−−=+−,12(3y y ∴=−+③.将③代入①得21)y mp +=−④,将③代入②得222(3y p +=⑤,再由④⑤解得21m =,故直线l 的斜率1k =±.又抛物线22(0)y px p =>的焦点F 是双曲线22221(0,0)x y a b a b −=>>的右焦点,2p c ∴=.∴直线l 的方程即为()y k x c =−. 由双曲线的左焦点(,0)c −到直线l的距离2d b =>,解得c >,即222c b >.又222b c a =−,()2222c c a ∴>−,即ce a=<, 又1e >,∴双曲线的离心率e ∈. 17、【答案】(1).依题意得()()12111410,28,a d a d a a d +=+=+因为0d ≠,解得12,2.a d ==所以()2122n a n n =+−×=.(2).由(1)得()2222n n n S n n +==+, 所以211111nS n n n n ==−++. 所以11111111223111n n T nn n n =−+−++−=−=+++…. 解析:18、【答案】(解析:(1)1BB ⊥ 平面ABC ,BC ⊂平面ABC , 1BB BC ∴⊥,平面111//A B C 平面ABC , 1BB ∴⊥平面111A B C , 11B C ⊂ 平面111A B C , 111BB B C ∴⊥11111tan B C C BB BB∴∠==1tan B CB ∠==111C BB B CB ∴∠=∠, 1190CBC B CB ∴∠+∠=°, 即11BC B C ⊥,又111A B BB ⊥,1111A B B C ⊥,1111BB B C B = ,1BB ⊂平面11BCC B ,11C B ⊂平面11BCC B , 11A B ∴⊥平面11BCC B , 111A B BC ∴⊥,1111A B B C B = ,1B C ⊂平面11A B C ,11A B ⊂平面11A B C , 1BC ∴⊥平面11A B C , 1A C ⊂ 平面11A B C ,11BC A C ∴⊥.(2)如图,作1A H AC ⊥于H ,在直角梯形11ABB A 中,得1AA =同理可得1CC =在等腰梯形11ACC A 中,()1112AH AC AC =−=则1A H ==1112A AC S AC A H ∴=⋅=△设B 到平面1A AC 的距离为d , 由11A ABC B A AC V V −−=,1113ABC A AC S BB S d ⋅=⋅△△, 则11ABC A AC S BB dS ⋅=△△又1A B =所以直线1A B 与平面1ACC A =.19、【答案】(1)圆C 的方程为22(3)(1)9x y −+−=或22(3)(1)9x y +++= (2)反射光线所在直线的方程为29150x y +−= 解析:(1)设圆222:()()(0)C x a y b r r −+−=>.由题意,得30a b −=①,||r a =②,227r +=③. 由①得3a b =,则3||r b =,代入③得21b =.当1b =时,3a =,3r =,∴圆22:(3)(1)9C x y −+−=;当1b =−时,3a =−,3r =,∴圆22:(3)(1)9C x y +++=.综上所述,圆C 的方程为22(3)(1)9x y −+−=或22(3)(1)9x y +++=. (2) 圆C 与y 轴正半轴相切, ∴圆22:(3)(1)9C x y −+−=. 设(1,2)M −−关于直线4y x =+的对称点为(,)M x y ′, 则21,1214,22y x y x + =− + −− =+ 解得6,3,x y =− = (6,3)M ′∴−,∴反射光线所在直线的斜率1336k −==+∴反射光线所在直线的方程为23(6)9y x −=−+,即29150x y +−=.20、【答案】 解析:解法一:取CD 的中点T ,连接AT ,可得AT CD ⊥, 所以AB AT ⊥,因为PA ⊥平面ABCD ,故以P A ,AB ,AT 所在直线为轴建立空间直角坐标系,如图.可得(,0,0)B a ,1,02C a ,1,02D a −,(0,0,)P b . (1)设平面PBD 的法向量为()111,,x y z =m ,因为(,0,)PB a b =− ,3,02BD a a =−, 所以11110,30,2ax bz ax ay −=−=令1x b =,则(,)b a =m ;设平面P AC 的法向量为()222,,x y z =n ,因为(0,0,)AP b =,1,02AC a =,所以2220,10,2bz ax = = 令21y =,则(n .所以0⋅=m n ,从而平面PBD ⊥平面P AC .(2)易得1,04O a,3,08M a, 设平面OPM 的法向量为()1333,,x y z =n ,因为1,,4OP a b =−,1,08OM a =,所以333331410,8ax ay bz ax −+= 31y =,则1(n ;设平面PMD 的法向量为()2444,,x y z =n ,因为1,2PD a b =−−,7,08MD a =−,所以4444410,270,8ax bz ax −−=−=令47y b =,则2,7)b =n .设二面角O PM D −−的平面角为θ,由tan θ=θ=所以1cos cos ,θ=n =解法二:过点O 作//OT PA ,因为PA ⊥平面ABCD ,所以OT ⊥平面ABCD .因为四边形ABCD 为菱形,所以OC OD ⊥,如图,以OC ,OD ,OT 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,(1,0,0)A −,(1,0,0)C ,(0,B ,D ,(1,0,)P b −.(1)设平面PBD 的法向量为()111,,x y z =m ,因为(1,)PB b =− ,(0,BD =,所以11110,0,x bz −−= = 令11z =,则(,0,1)b =m ;设平面P AC 的法向量为()222,,x y z =n ,因为平面P AC 即为xOz 平面,所以(0,1,0)=n .所以0⋅=m n ,从而平面PBD ⊥平面P AC . (2)易得1,0,02M.设平面OPM 的法向量为()1333,,x y z =n ,因为(1,0,)OP b − ,1,0,02OM=,所以3330,10,2x bz x −+== 可取1(0,1,0)=n ;设平面PMD 的法向量为()2444,,x y z =n ,因为)PD b =− ,12MD=−,所以444440,10,2x bz x +−= −=令4y b =,则2,b =n .设二面角O PM D −−的平面角为θ,则tan θ=θ=所以1cos cos ,θ=n解得b =CD ==12112111222111111113333333222242n n n n n T b b b −−−=−+−++−=−+++++=+++++22、【答案】(1)标准方程为. (2)存在,点(0,0)M .2212x y +=解析:(1)因为椭圆E,所以c a =,所以直线1l 的斜率为-1.如图,设E 的右焦点为F ,右顶点为P ,上顶点为Q ,过点P 作于点D ,则π||14PD PFD ∠=,所以,即1a c c −=−=,解得,则1,b a ==.故椭圆E 的标准方程为.(2)由题意可得点O 是线段AB 的中点. 又||||AC BC =,所以OA OC ⊥.①当直线AC 的斜率存在时,设直线AC 的方程为()()1122,,,,y kx m A x y C x y =+, 由2212x y y kx m+==+ ,得()222214220k x kmx m +++−=, 则()()222(4)421220km k m ∆=−+−>,即22210k m −+>. 由根与系数的关系可得2121222422,2121km m x x x x k k −+=−=++, 由OA OC ⊥可得12120x x y y +=,即()()12120x x kx m kx m +++=, 即()()22121210k x x km x x m++++=,所以()()2222222122402121k m k m m k k +−−+=++, 故22312k m =−. 假设存在点()0,0M x 满足条件,设点M 到直线AC 的距离为d ,则()()2200222213kx m kx m d k m++==+,,a b c 1PD l ⊥|||PF PD =1c =2212x y +=当00x =时,2d 为定值23,即d ②当直线AC 的斜率不存在时,根据椭圆的对称性可得11x y =,所以221112x x +=,故2123x =,点(0,0)到直线AC综上可得,存在点(0,0)M ,使得点M 到直线AC。
【压轴卷】高二数学上期末试题(带答案)
【压轴卷】高二数学上期末试题(带答案)一、选择题1.执行如图的程序框图,若输入1t=-,则输出t的值等于( )A.3B.5C.7D.152.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是()A.116B.18C.38D.3163.执行如图所示的程序框图,若输入8x=,则输出的y值为()A.3B.52C.12D.34-4.我国古代数学著作《九章算术》中,有这样一道题目:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?”下图是源于其思想的一个程序框图,若输出的3S=(单位:升),则输入的k=()A.9B.10C.11D.125.如图,边长为2的正方形有一内切圆.向正方形内随机投入1000粒芝麻,假定这些芝麻全部落入该正方形中,发现有795粒芝麻落入圆内,则用随机模拟的方法得到圆周率π的近似值为()A .3.1B .3.2C .3.3D .3.46.如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π-B .122π- C .2πD .1π7.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .至少有一个白球;红、黑球各一个D .恰有一个白球;一个白球一个黑球8.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为( ) A .13B .49C .59D .239.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.510.执行如图所示的程序框图,则输出s 的值为( )A.10 B.17 C.19 D.3611.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为()A.48B.60C.64D.7212.2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是()A.25B.35C.23D.15二、填空题13.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束,则恰好检测四次停止的概率为_____(用数字作答).14.如图,在半径为1的圆上随机地取两点,B E,连成一条弦BE,则弦长超过圆内接正BCD边长的概率是__________.15.为长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于1的概率为________.16.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________17.已知集合{1,U =2,3,⋯,}n ,集合A 、B 是集合U 的子集,若A B ⊆,则称“集合A 紧跟集合B ”,那么任取集合U 的两个子集A 、B ,“集合A 紧跟集合B ”的概率为______.18.将红、黄、蓝、白、黑5个小球分别放入红、黄、蓝、白、黑5个盒子里,每个盒子里放且只放1个小球,则红球不在红盒内且黄球不在黄盒内的概率是______. 19.向面积为20的ABC ∆内任投一点M ,则使MBC ∆的面积小于5的概率是__________.20.在区间[,]-ππ内随机取出两个数分别记为a 、b ,则函数222()2f x x ax b π=+-+有零点的概率为__________.三、解答题21.某高中为了选拔学生参加“全国高中数学联赛”,先在本校进行初赛(满分150分),随机抽取100名学生的成绩作为样本,并根据他们的初赛成绩得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)根据频率分布直方图,估计这次初赛成绩的平均数、中位数、众数.22.为了减轻家庭困难的高中学生的经济负担,让更多的孩子接受良好的教育,国家施行高中生国家助学金政策,普通高中国家助学金平均资助标准为每生每年1500元,具体标准由各地结合实际在1000元至3000元范围内确定,可以分为两或三档.各学校积极响应政府号召,通过各种形式宣传国家助学金政策.为了解某高中学校对国家助学金政策的宣传情况,拟采用随机抽样的方法抽取部分学生进行采访调查.(1)若该高中学校有2000名在校学生,编号分别为0001,0002,0003,…,2000,请用系统抽样的方法,设计一个从这2000名学生中抽取50名学生的方案.(写出必要的步骤) (2)该校根据助学金政策将助学金分为3档,1档每年3000元,2档每年2000元,3档每年1000元,某班级共评定出3个1档,2个2档,1个3档,若从该班获得助学金的学生中选出2名写感想,求这2名同学不在同一档的概率.23.市政府为了节约用水,调查了100位居民某年的月均用水量(单位:t ),频数分布如下: 分组 [0,0.5) [0.5,1)[1,1.5)[1.5,2)[2,2.5) [2.5,3) [3,3.5)[3.5,4) [4,4.5]频数4815222514642(1)根据所给数据将频率分布直方图补充完整(不必说明理由); (2)根据频率分布直方图估计本市居民月均用水量的中位数;(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).24.近年来,某地大力发展文化旅游创意产业,创意维护一处古寨,几年来,经统计,古寨的使用年限x (年)和所支出的维护费用y (万元)的相关数据如图所示,根据以往资料显示y 对x 呈线性相关关系.(1)求出y 关于x 的回归直线方程y bx a =+$$$;(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?参考公式:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归方程y bx a =+$$$的斜率和截距的最小二乘估计分别为$1221,ni ii x ynx b ay bx xy nx=--==--∑∑$$. 25.从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束(1)求第一次实验恰好摸到1个红球和1个白球的概率; (2)记实验次数为X ,求X 的分布列及数学期望.26.1766年;人类已经发现的太阳系中的行星有金星、地球、火星、木星和土星.德国的一位中学教师戴维一提丢斯在研究了各行星离太阳的距离(单位:AU ,AU 是天文学中计量天体之间距离的一种单位)的排列规律后,预测在火星和木星之间应该还有一颗未被发现的行星存在,并按离太阳的距离从小到大列出了如下表所示的数据:受他的启发,意大利天文学家皮亚齐于1801年终于发现了位于火星和木星之间的谷神星. (1)为了描述行星离太阳的距离y 与行星编号之间的关系,根据表中已有的数据画出散点图,并根据散点图的分布状况,从以下三种模型中选出你认为最符合实际的一种函数模型(直接给出结论即可);①y ax b =+;②(1)xy a b c b =⋅+>;③log (1)b y a x c b =⋅+>.(2)根据你的选择,依表中前几组数据求出函数解析式,并用剩下的数据检验模型的吻合情况;(3)请用你求得的模型,计算谷神星离太阳的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】直接根据程序框图依次计算得到答案. 【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<, 不满足条件0t >,1t =,满足条件()()250t t +-<, 满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7. 故选:C. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.2.B解析:B 【解析】 【分析】设阴影部分正方形的边长为a ,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率. 【详解】如图所示,设阴影部分正方形的边长为a,则七巧板所在正方形的边长为, 由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率()2218a =,故选:B.【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.3.C解析:C 【解析】 【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知该程序的作用是利用循环计算y 值并输出,模拟程序的运行过程,直到达到输出条件即可. 【详解】输入8,第一次执行循环:3y =,此时5y x -=, 不满足退出循环的条件,则3x =,第二次执行循环:12y =,此时52y x -=, 满足退出循环的条件,故输出的y 值为12,故选C . 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4.D解析:D 【解析】 【分析】计算出每次循环时各变量的值并与3S =比较后可得对应的k 的值. 【详解】1n =,S k =; 2n =,22k k S k =-=; 3n =,263k k k S =-=; 4n =,33124k k kS =-==,所以12k =. 故选:D. 【点睛】本题以数学文化为背景考虑流程图,此类问题应该根据流程图计算每次循环时各变量的值,从而可得程序终止的条件、输出的结果等,本题属于中档题.5.B解析:B 【解析】 【分析】由圆的面积公式得:S π=圆,由正方形的面积公式得:4S =正,由几何概型中的面积型结合随机模拟试验可得:7951000S S =圆正,得解. 【详解】由圆的面积公式得:S π=圆, 由正方形的面积公式得:4S =正, 由几何概型中的面积型可得:7951000S S =圆正, 所以79543.21000π⨯=≈, 故选:B .【点睛】本题考查了圆的面积公式、正方形的面积公式及几何概型中的面积型,属简单题.6.A解析:A【解析】试题分析:设扇形OAB半径为,此点取自阴影部分的概率是11-,故选B.2π考点:几何概型.【方法点晴】本题主要考查几何概型,综合性较强,属于较难题型.本题的总体思路较为简单:所求概率值应为阴影部分的面积与扇形的面积之比.但是,本题的难点在于如何求阴影部分的面积,经分析可知阴影部分的面积可由扇形面积减去以为直径的圆的面积,再加上多扣一次的近似“椭圆”面积.求这类图形面积应注意切割分解,“多还少补”.7.C解析:C【解析】【分析】由题意逐一考查所给的事件是否互斥、对立即可求得最终结果.【详解】袋中装有红球3个、白球2个、黑球1个,从中任取2个,逐一分析所给的选项:在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故B不成立;在C中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故C成立;在D中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故D不成立;本题选择C选项.【点睛】“互斥事件”与“对立事件”的区别:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.8.C解析:C【解析】【分析】设小赵到达汽车站的时刻为x,小王到达汽车站的时刻为y,根据条件建立二元一次不等式组,求出对应的区域面积,结合几何概型的概率公式进行计算即可.如图,设小赵到达汽车站的时刻为x ,小王到达汽车站的时刻为y , 则0≤x≤15,0≤y≤15,两人到达汽车站的时刻(x ,y )所对应的区域在平面直角坐标系中画出(如图所示)是大正方形.将2班车到站的时刻在图形中画出,则两人要想乘同一班车, 必须满足{(x ,y )|0505x y ≤≤⎧⎨≤≤⎩,或515515x y ≤⎧⎨≤⎩<<},即(x ,y )必须落在图形中的2个带阴影的小正方形内,则阴影部分的面积S=5×5+10×10=125, 则小赵和小王恰好能搭乘同一班公交车去上学的概率P=1251515⨯=59, 故选:C 【点睛】本题主要考查几何概型的概率公式的应用,根据条件求出对应区域的面积是解决本题的关键.9.A解析:A 【解析】 【分析】计算得到 4.5x =,114t y +=,代入回归方程计算得到答案. 【详解】3456 4.54x +++==, 2.54 4.51144t t y ++++==,中心点(),x y 过ˆ0.70.35yx =+, 即114.50.70.354t +=⨯+,解得3t =. 故选:A . 【点睛】本题考查了回归方程的相关问题,意在考查学生的计算能力.10.C【解析】试题分析:该程序框图所表示的算法功能为:235919S =+++=,故选C . 考点:程序框图. 11.B解析:B 【解析】 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.12.A解析:A 【解析】分析:根据已知中某公共汽车站每隔5分钟有一辆车通过,我们可以计算出两辆车间隔的时间对应的几何量长度为5,然后再计算出乘客候车时间不超过2分钟的几何量的长度,然后代入几何概型公式,即可得到答案 详解::∵公共汽车站每隔5分钟有一辆车通过当乘客在上一辆车开走后3分钟内到达候车时间会超过2分钟 ∴乘客候车时间不超过2分钟的概率为53255P -== . 故选A .点睛:本题考查的知识点是几何概型,其中计算出所有事件和满足条件的事件对应的几何量的值是解答此类问题的关键二、填空题13.【解析】由题意可知2次检测结束的概率为3次检测结束的概率为则恰好检测四次停止的概率为解析:35由题意可知,2次检测结束的概率为22225110ApA==,3次检测结束的概率为31123232335310A C C ApA+==,则恰好检测四次停止的概率为231331110105p p p=--=--=.14.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为解析:13【解析】【分析】取圆内接等边三角形BCD的顶点B为弦的一个端点,当另一端点在劣弧CD上时,BE BC>,求出劣弧CD的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A={弦长超过圆内接等边三角形的边长},如图,取圆内接等边三角形BCD的顶点B为弦的一个端点,当另一端点在劣弧CD上时,BE BC>,设圆的半径为r,劣弧CD的长度是23rπ,圆的周长为2rπ,所以()21323rP Arππ==,故答案为13.【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.15.1-π12【解析】【分析】由题意得长方形的面积为S=3×2=6以O点为原型半径为1作圆此时圆在长方形内部的部分的面积为Sn=π2再由面积比的几何概型即可求解【详解】由题意如图所示可得长方形的面积为S解析:【解析】【分析】由题意,得长方形的面积为,以O点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,再由面积比的几何概型,即可求解.【详解】由题意,如图所示,可得长方形的面积为,以O点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,所以取到的点到的距离大于1的表示圆的外部在矩形内部分部分,所以概率为.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.16.18【解析】【分析】由题意知抽样方法为系统抽样因此若第一组抽取号码为x则第18组抽取的号码为即可解得【详解】因为抽样方法为系统抽样因此若第一组抽取号码为x则第18组抽取的号码为解得【点睛】本题主要考解析:18【解析】【分析】由题意知,抽样方法为系统抽样,因此,若第一组抽取号码为x,则第18组抽取的号码为x+⨯=,即可解得.1725443【详解】因为抽样方法为系统抽样,因此,若第一组抽取号码为x,则第18组抽取的号码为1725443x +⨯=,解得18x =. 【点睛】本题主要考查了系统抽样,属于中档题.17.【解析】【分析】由题意可知集合U 的子集有个然后求出任取集合U 的两个子集AB 的个数m 及时AB 的所有个数n 根据可求结果【详解】解:集合23的子集有个集合AB 是集合U 的子集任取集合U 的两个子集AB 的所有个解析:3()4n【解析】 【分析】由题意可知集合U 的子集有2n 个,然后求出任取集合U 的两个子集A 、B 的个数m ,及A B ⊆时A 、B 的所有个数n ,根据nP m=可求结果. 【详解】解:Q 集合{1,U =2,3,⋯,}n 的子集有2n 个,Q 集合A 、B 是集合U 的子集,∴任取集合U 的两个子集A 、B 的所有个数共有22n n ⨯个,A B ⊆Q ,①若A =∅,则B 有2n 个,②若A 为单元数集,则B 的个数为112n nC -⨯个, ⋯同理可得,若{1,A =2,3}n ⋯,则B =n 只要1个即012n n C =⨯,则A 、B 的所有个数为112202222(12)3n n n n n nn n n C C C --+⨯+⨯+⋯+⨯=+=个,集合A 紧跟集合B ”的概率为33()224n nn n P ==⨯.故答案为3()4n【点睛】本题考查古典概率公式的简单应用,解题的关键是基本事件个数的确定.18.65【解析】设红球不在红盒内且黄球不在黄盒内的概率为再设红球在红盒内的概率为黄球在黄盒内的概率为红球在红盒内且黄球在黄盒内的概率为则红球不在红盒且黄球不在黄盒由古典概型概率公式可得则即故答案为解析:65 【解析】设红球不在红盒内且黄球不在黄盒内的概率为P ,再设红球在红盒内的概率为1P ,黄球在黄盒内的概率为2P ,红球在红盒内且黄球在黄盒内的概率为3P ,则()1231P P P P =-+-:P 红球不在红盒且黄球不在黄盒由古典概型概率公式可得,1234!3!,5!5!P P P ===,则()1234!3!131125!5!20P P P P ⎛⎫=-+-=-⨯-=⎪⎝⎭,即0.65P =,故答案为0.65. 19.【解析】分析:在内任投一点要使的面积小于5根据几何关系求解出它们的比例即可详解:记事件{的面积大于5}基本事件是的面积如图:事件A 的几何度量为图中阴影部分的面积(DE 分别是三角形的边上的四等分点)且 解析:716【解析】分析:在ABC ∆内任投一点M ,要使MBC ∆的面积小于5,根据几何关系求解出它们的比例即可.详解:记事件A ={MBC ∆的面积大于5}, 基本事件是ABC ∆的面积,如图:事件A 的几何度量为图中阴影部分的面积(D 、E 分别是三角形的边上的四等分点),ADE ABC ∆~∆Q ,且相似比为34,239416ADE ABC S S ∆∆⎛⎫∴== ⎪⎝⎭, ()916ADE ABC S P A S ∆∆∴==. ∴MBC ∆的面积小于5的概率是()97111616P A -=-=. 故答案为:716. 点睛:本题考查几何概型,解答此题的关键在于明确测度比是面积比,对于几何概型常见的测度是长度之比、面积之比、体积之比、角度之比,要根据题意合理的判断和选择是哪一种测度进行求解,属于中档题.20.【解析】分析:根据题意求出区间内随机取两个数分别记为以及对应平面区域的面积再求出满足调价使得函数有零点的所对应的平面区域的面积利用面积比的几何概型即可求解详解:由题意使得函数有零点则即在平面直角坐标 解析:14π-【解析】分析:根据题意,求出区间[,]-ππ内随机取两个数分别记为,a b ,以及对应平面区域的面积,再求出满足调价使得函数222()2f x x ax b π=+-+有零点的所对应的平面区域的面积,利用面积比的几何概型,即可求解.详解:由题意,使得函数222()2f x x ax b π=+-+有零点, 则222(2)4()0a b π∆=--+≥,即222a b π+≥,在平面直角坐标系中,a b 的取值范围,所以对应的区域,如图所示, 当,[,]a b ππ∈-对应的面积为边长为2π的正方形,其面积为24π,所以其概率为2324144ππππ-=-.点睛:本题主要考查了几何概型及其概率的计算,对于几何概型概率可以为线段的长度比,区域的面积、几何体的体积比等,其中这个“几何度量”值域大小有关,与形状和位置无关,解决的步骤为:求出满足条件的基本事件对应的“几何度量”,在求出总的事件所对应的“几何度量”,最后根据公式求解,着重考查了分析问题和解答问题的能力.三、解答题21.(1)0.001a =(2)平均数、中位数、众数依次为80,81,80 【解析】 【分析】(1)利用频率分布直方图的性质,列出方程,即可求解;(2)由频率分布直方图,结合平均数、中位数、众数的计算方法,即可求解. 【详解】(1)由频率分布直方图的性质,可得20.0020.0040.0090.0130.0200.05a +++++=,解得0.001a =. (2)由频率分布直方图,结合平均数、中位数、众数的计算方法,可得平均数为:200.02400.08600.18800.41000.261200.041400.0280x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=中位数为x ,则0.020.080.18(70)0.0200.5x +++-⨯=,解得81x =. 根据众数的概念,可得此频率分布直方图的众数为:80, 因此估计这次初赛成绩的平均数、中位数、众数依次为80,81,80. 【点睛】本题主要考查了频率分布直方图的性质,平均数、中位数和众数的求解,其中解答中熟记频率分布直方图的相关知识是解答的关键,着重考查了推理与运算能力,属于基础题. 22.(1)见解析;(2)()1115P A = 【解析】 【分析】(1)第一步编号分组,第二步抽样;(2)先用枚举法确定从6名学生选2名的总事件数,再从中确定2名同学不在同一档的事件数,最后根据古典概型概率公式求结果. 【详解】(1)第一步:分组.将2000名学生分成50组,每组40人,编号是0001~0040的为第1组,编号为0041~0080的为第2组,…,编号为1961~2000为第50组;第二步:抽样.在第1组中用简单随机抽样方法(抓阄)抽取一个编号为m 的学生,则在第k 组抽取编号为()401k m -+的学生.每组抽取一人,共计抽取50名学生.(2)记该班3个1档的学生为1A ,2A ,3A ,2个2档的学生为1B ,2B ,1个3档的学生为1C ,从该班获得助学金的同学中选择2名同学不在同一档为事件A .基本事件:12A A ,13A A ,11A B ,11A B ,11A C ,23A A ,21A B ,22A B ,21A C ,31A B ,32A B ,31A C ,12B B ,11B C ,21B C ,共计15个.事件A 包含的基本事件共有11个,则()1115P A =【点睛】本题考查系统抽样以及古典概型概率公式,考查基本分析求解能力,属基础题. 23.(1)直方图见解析;(2)2.02;(3)2.02. 【解析】分析:(1)根据表格中数据,求出所缺区间的纵坐标,即可将频率分布直方图补充完整;(2)根据直方图可判断中位数应在[)2,2.5组内,设中位数为x ,则()0.4920.500.5x +-⨯=,解得 2.02x =;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和,即可得到本市居民月均用水量的平均数. 详解:(1)频率分布直方图如图所示:(2)∵0.04+0.08+0.15+0.22=0.49<0.5, 0.04+0.08+0.15+0.22+0.25=0.74>0.5, ∴中位数应在[2,2.5)组内,设中位数为x , 则0.49+(x -2)×0.50=0.5, 解得x =2.02.故本市居民月均用水量的中位数的估计值为2.02.(3)0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25 +2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02 =2.02.故本市居民月均用水量的平均数的估计值为2.02.点睛:本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.24.(1)ˆ0.70.35yx =+(2)使用年限至少为14年时,维护费用将超过10万元 【解析】 【分析】(1)由已知图形中的数据求得ˆb与ˆa 的值,则线性回归方程可求;(2)直接由ˆ0.70.3510yx =+>求得x 的范围得答案. 【详解】(1)34564.54x +++==, 2.534 4.5 3.54y +++==, 222223 2.543546 4.54 4.5 3.5ˆ0.73456445b⨯+⨯+⨯+⨯-⨯⨯==+++-⨯g , ˆ 3.50.7 4.50.35a=-⨯=. 故线性回归方程为ˆ0.70.35yx =+; (2)由ˆ0.70.3510yx =+>,解得111314x >. 故使用年限至少为14年时,维护费用将超过10万元. 【点睛】本题考查线性回归方程的求法,考查计算能力,是基础题. 25.(1)37;(2)x 的分布列为 x1234p1328928528128()14E x =【解析】 【分析】 【详解】(I )1126283()7C C P A C == (II )1122622813(1)28C C C P X C +===;2112642222869(2)28C C C C P X C C +==⋅=; 22112642222228645(3)28C C C C C P X C C C +==⋅⋅=;;X 的分布列为 X1234P13289285281281395125()12342828282814E X =⨯+⨯+⨯+⨯= 点评:对于古典概型的问题,主要是理解试验的基本事件空间,以及事件发生的基本事件空间利用比值来求解概率,结合排列组合的知识得到.而分布列的求解关键是对于各个概率值的求解,属于中档题.26.(1)模型②符合题意(2)见解析(3)2.8AU【解析】【分析】(1)画出散点图,根据图形得到答案.(2)将(1,0.7),(2,1),(3,1.6)分别代入x y a b c =⋅+得到解析式,再验证得到答案.(3)取4x =,代入计算得到答案.【详解】(1)散点图如图所示:根据散点图可知,模型②符合题意(2)将(1,0.7),(2,1),(3,1.6)分别代入x y a b c =⋅+得230.711.6a b c a b c a b c ⋅+=⎧⎪⋅+=⎨⎪⋅+=⎩,解得0.15,2,0.4a b c ===,所以()*0.1520.4x y x =⨯+∈N当5x =时,50.1520.4 5.2y =⨯+=.当6x =时,60.1520.410y =⨯+=.与已知表中数据完全吻合.(3)当4x =时,40.1520.4 2.8AU y =⨯+=,即谷神星距太阳的距离为2.8AU 【点睛】本题考查了散点图,函数解析式,意在考查学生的应用能力和计算能力.。
高二数学第一学期期末模拟卷
开始I ← 2S ←S+I 2S ←0输出S结束YNI ←I+2第2题高二数学第一学期期末模拟卷(一)一.填空题:本大题共14小题 :每小题5分 :共70分.1.抛物线22y x =的焦点坐标是 .2.下面的流程图判断框中应填入 :可以计算2222246100++++.“x x R x 21,2≥+∈∀”的否定是 .4.“a>2”是“方程错误!表示的曲线是双曲线” 的 条件(填“充分不必要 :.必要不充分 :充要条件 :既不充分也不必要”).5. 已知变量x 与变量y 之间的一组数据如表 :则y 与x 的线性回归方程y=b x +a 必过点 .6.甲、乙两个总体各抽取一个样本 :若甲样本均值为15 :乙样本均值为17 :甲样本方差为 3 :乙样本方差为2 :则总体 (填写“甲”或“乙”)波动小.7.如果质点A 的位移S 与时间t 满足方程32S t =(位移单位:米 :时间单位:秒) :则质点在3t =时的瞬时速度为 米/秒.8.从[0 :1]之间选出两个数 :这两个数的平方和大于1的概率是 . 9. 设函数()1x af x x -=- :集合M={|()0}x f x < :P='{|()0}x f x > :若M P :则实数a 的取值范围是 .某种矿泉水12瓶 :其中有2瓶不合格 :若质检人员从该纸箱内随机抽出2瓶 :则检测到不合格产品的事件概率是 .11.中心在原点 :长轴长为8 :准线方程为8x =±的椭圆标准方程为 .12.设点P 是曲线)0(ln 2>-=x x x y 上的任意一点 :则点P 到直线2:-=x y l 距离的最小值是 .x 0 1 2 3y 1 3 5 713. P 是双曲线22x y 1916-=的右支上一点 :M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点 :则|PM|-|PN|的最大值为 . 14.有如下四个命题:命题①:方程221(0)mx ny m n +=>>表示焦点在x 轴上的椭圆 :命题②:20a b +=是直线230ax y ++=和直线20x by ++=互相垂直的充要条件 : 命题③:方程221(0)mx ny m n -=>>: 命题④:“全等三角形的面积相等”的否命题.其中真命题的序号是 .(写出所有真命题的序号)二.解答题:本大题共6小题 :每小题15分 :共90分.解答应写出文字说明、证明过程或演 算步骤.15. 已知三点P (5 :2)、1F (-6 :0)、2F (6 :0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【压轴卷】高二数学上期末第一次模拟试卷及答案(1)一、选择题1.气象意义上的春季进入夏季的标志为连续5天的日平均温度不低于022C.现有甲、乙、丙三地连续5天的日平均气温的记录数据(记录数据都是正整数):①甲地:5个数据是中位数为24,众数为22;②乙地:5个数据是中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8则肯定进入夏季的地区有()A.①②③B.①③C.②③D.①2.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为()A.0795B.0780C.0810D.08153.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正n边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出n的值分别为()(参考数据:20sin200.3420,sin()0.11613≈≈)A.1180sin,242S nn=⨯⨯B.1180sin,182S nn=⨯⨯C.1360sin,542S nn=⨯⨯D.1360sin,182S nn=⨯⨯4.日本数学家角谷静夫发现的“31x+猜想”是指:任取一个自然数,如果它是偶数,我们就把它除以2,如果它是奇数我们就把它乘3再加上1,在这样一个变换下,我们就得到了一个新的自然数.如果反复使用这个变换,我们就会得到一串自然数,猜想就是:反复进行上述运算后,最后结果为1,现根据此猜想设计一个程序框图如图所示,执行该程序框图输入的6N ,则输出i值为()A.6B.7C.8D.95.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为1 50;④中部地区学生小张被选中的概率为1 5000A.①④B.①③C.②④D.②③6.执行如图所示的程序框图,输出的S值为()A.1B.-1C.0D.-27.设A为定圆C圆周上一点,在圆周上等可能地任取一点与A连接,求弦长超过半径2倍的概率()A.34B.35C.13D.128.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A.1636B.1736C.12D.19369.执行如图所示的程序框图,如果输入的1a=-,则输出的S=A .2B .3C .4D .510.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化、相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被3sin6y x π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .112D .1911.如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π-B .122π- C .2π D .1π 12.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A.48B.60C.64D.72二、填空题13.若正方形ABCD的边长为4, E为四边形上任意一点,则AE的长度大于5的概率等于______14.如图,在半径为1的圆上随机地取两点,B E,连成一条弦BE,则弦长超过圆内接正BCD∆边长的概率是__________.15.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x=,问一开始输入的x=______斗.遇店添一倍,逢友饮一斗,意思是碰到酒店就把壶里的酒加1倍,碰到朋友就把壶里的酒喝一斗,店友经三处,意思是每次都是遇到店后又遇到朋友,一共是3次.16.某篮球运动员在赛场上罚球命中率为23,那么这名运动员在赛场上的2次罚球中,至少有一次命中的概率为______.17.为调查某校学生每天用于课外阅读的时间,现从该校名学生中随机抽取名学生进行问卷调查,所得数据均在区间上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在(单位:分钟)内的学生人数为____.18.利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程20x x a -+=无实根的概率为______.19.下图是华师一附中数学讲故事大赛7位评委给某位学生的表演打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是____________.20.如图是一个算法流程图,则输出的S 的值为______.三、解答题21.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n 天监测空气质量指数(AQI ),数据统计如下: 空气质量指数(3/g m μ)0-50 51-100 101-150 151-200 201-250 空气质量等级 空气优 空气良 轻度污染中度污染 重度污染 天数2040m105(1)根据所给统计表和频率分布直方图中的信息求出,n m 的值,并完成频率分布直方图;(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A“两天空气都为良”发生的概率.22.某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中40%的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.拥有驾驶证没有驾驶证合计得分优秀得分不优秀25合计100(1)补全上面22⨯的列联表,并判断能否有超过99%的把握认为“安全意识优秀与是否拥有驾驶证”有关?(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.附表及公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.()2P K k≥0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.82823.某单位为了解其后勤部门的服务情况,随机访问了40名其他部门的员工,根据这40名员工对后勤部门的评分情况,绘制了频率分布直方图如图所示,其中样本数据分组区间为[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.(1)求a 的值;(2)估计该单位其他部门的员工对后勤部门的评分的中位数;(3)以评分在[)40,60的受访者中,随机抽取2人,求此2人中至少有1人对后勤部门评分在[)40,50内的概率.24.从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束(1)求第一次实验恰好摸到1个红球和1个白球的概率; (2)记实验次数为X ,求X 的分布列及数学期望.25.随着互联网经济不断发展,网上开店销售农产品的人群越来越多,网上交易额也逐年增加,某一农户农产品连续五年的网银交易额统计表,如下所示: 年份x 20122013201420152016网上交易额y (万元)5 6 7 8 10经研究发现,年份与网银交易额之间呈线性相关关系,为了计算的方便,农户将上表的数据进行了处理,2011,5t x z y =-=-,得到如表: 时间代号t 1 2 3 4 5 z1235(1)求z 关于t 的线性回归方程;(2)通过(1)中的方程.求出y 关于x 的回归方程;并用所求回归方程预测到2020年年底,该农户网店网银交易额可达多少?(附:在线性回归方程ˆˆˆybx a =+中,()()()1122211ˆ()n ni iiii i nniii i x y nx y x x y y b xn x x x ====---==--∑∑∑∑,ˆˆay bx =-) 26.某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图: 组数 分组 低碳族的人数 占本组的频率 第一组 [25,30) 120 0.6第二组 [30,35) 195 p第三组 [35,40) 1000.5 第四组 [40,45) a0.4 第五组 [45,50) 30 0.3 第六组[50,55]150.3(1)补全频率分布直方图并求,,n a p 的值;(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:由统计知识①甲地:5个数据的中位数为24,众数为22可知①符合题意;而②乙地:5个数据的中位数为27,总体均值为24中有可能某一天的气温低于22C o ,故不符合题意,③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8.若由有某一天的气温低于22C o 则总体方差就大于10.8,故满足题意,选C考点:统计初步2.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.3.C解析:C 【解析】分析:在半径为1的圆内作出正n 边形,分成n 个小的等腰三角形,可得正n 边形面积是13602S n sinn=⨯⨯o,按照程序框图规定的运算方法逐次计算,直到达到输出条件即可的结果.详解:在半径为1的圆内作出正n 边形,分成n 个小的等腰三角形,每一个等腰三角形两腰是1,顶角是360n ⎛⎫ ⎪⎝⎭o,所以正n 边形面积是13602S n sin n=⨯⨯o,当6n =时, 2.6S =≈; 当18n =时, 3.08S ≈;当54n =时, 3.13S ≈;符合 3.11S ≥,输出54n =,故选C.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4.D解析:D【解析】分析:由已知中的程序语句可知:该程序的功能是利用循环结构计算n 的值并输出相应的i 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得结论.详解:模拟程序的运行,可得6,1n i ==,不满足条件n 是奇数,3,2n i ==,不满足条件1n =,执行循环体,不满足n 是奇数,10,3n i ==;不满足条件1n =,执行循环体,不满足n 是奇数,可得5,4n i ==,不满足条件1n =,执行循环体,满足条件n 是奇数,16,5n i ==,不满足条件1n =,执行循环体,不满足n 是奇数,8,6n i ==;不满足条件1n =,执行循环体,不满足n 是奇数,4,7n i ==;不满足条件1n =,执行循环体,不满足n 是奇数,2,8n i ==;不满足条件1n =,执行循环体,不满足n 是奇数,1,9n i ==,满足条件1n =,退出循环,输出i 的值为9,故选D.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.5.B解析:B【解析】分析:由题意逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法: ①由分层抽样的概念可知,取东部地区学生2400100240016001000⨯=++48人、 中部地区学生1600100240016001000⨯=++32人、 西部地区学生1000100240016001000⨯=++20人,题中的说法正确; ②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误; ③西部地区学生小刘被选中的概率为100124001600100050=++,题中的说法正确;④中部地区学生小张被选中的概率为100124001600100050=++,题中的说法错误; 综上可得,正确的说法是①③.本题选择B 选项. 点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.6.B解析:B【解析】【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可.【详解】结合流程图可知程序运行过程如下:首先初始化数据:1,2i S ==,此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S =-=-=+=; 此时不满足5i >,执行循环:112,14S i i S =-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-.本题选择B 选项.【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题. 7.D解析:D【解析】【分析】的图象的测度,再代入几何概型计算公式求解,即可得到答案.【详解】对应的弧”,其构成的区域为半圆»NP,则弦长超过半径2倍的概率»12NP P ==圆的周长,【点睛】本题主要考查了几何概型的概率计算中的“几何度量”,对于几何概型的“几何度量”可以线段的长度比、图形的面积比、几何体的体积比等,且这个“几何度量”只与“大小”有关,与形状和位置无关,着重考查了分析问题和解答问题的能力.8.C解析:C【解析】【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率。