新人教版九年级数学上册课时作业圆的有关性质复习
九年级数学上册 圆的有关性质以及相关练习 人教新课标版
九年级数学上册圆的有关性质以及相关练习人教新课标版本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.重点、热点垂径定理及推论;圆心角、弧、弦、弦心距之间的关系定理. 运用圆内接四边形的性质解有关计算和证明题.【典型例析】例1.(1)如图7.1-1.OE、OF分别是⊙O的弦AB、CD的弦心距,若OE=OF,则(只需写出一个正确的结论).(2)如图7.1-2.已知,AB为⊙O的直径,D为弦AC的中点,BC=6cm,则OD= .[特色] 以上几道中考题均为直接运用圆的有关性质解题.[解答](1)AB=CD或 AB=CD或AD=BC,直接运用圆心角、弧、弦、弦心距之间的关系定理.1BC(2)由三角形的中位线定理知OD=2[拓展]复习中要加强对圆的有关性质的理解、运用.例2.(1)下列命题中真命题是().A.平分弦的直径垂直于弦B.圆的半径垂直于圆的切线C.到圆心的距离大于半径的点在圆内 D.等弧所对的圆心角相等(2)如图7.1-3.AB是⊙O的直径,CD是⊙O弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为().A.12cmB.10cmC.8cmD.6cm(3)已知如图7.1-4圆心角∠BOC=100 ,则圆周角∠BAC的度数是().A. 50B.100C.130D.200[特色]着眼于基本知识的考查和辨析思维的评价.[解答] (1) D (考查对基本性质的理解).1CD=4,(2)D (过O作OM⊥CD,连结OC,由垂径定理得CM=2由勾股定理得OM=3,而AB两点到CD的距离和等于OM的2倍)(3)A (由圆周角定理可得)[拓展] 第(2)题中,涉及圆的弦一般作弦心距.例3.圆内接四边形ABCD,∠A、∠B、∠C的度数的比是1∶2∶3,则这个四边形的最大角是 .[特色]运用圆内接四边形的性质进行简单计算.[解答]设A=x,则∠B=2x,∠C=3x . ∵∠A+∠C=180 ,∴x+3x=180 ,∴ x=45 .∴∠A=45 ,∠ B=90 ,∠C=135 ,∠ D=90 .∴最大角为135 .[拓展]此题着眼于基本性质、基本方法的考查.设未知数,列方程求解是解此类题的基本方法.例4.已知,如图7.1-5 BC为半圆O的直径,F是半圆上异于BC的点,A是BF的中点,AD⊥BC于点D,BF交AD于点E.(1)求证:BE•BF=BD•BC(2)试比较线段BD与AE的大小,并说明道理.[特色] 此题是教材中的习题变形而来,它立意于考查分析、观察、比较、归纳等能力.[解答] (1)连结FC,则BF⊥FC.在△BDF和△BCF中,∵∠BFC=∠EDB=90 ,∠ FBC=∠EBD,∴△BDE∽△BFC,∴ BE∶BC=BD∶BF.即 BF•BE=BD•BC.(2) AE>BD , 连结AC、AB 则∠BAC=90 .∵AF AB , ∴∠1=∠2.又∵∠2+∠ABC=90 ,∠3+∠ABD=90 ,∴∠2=∠3,∠1=∠3,∴ AE=BE.在Rt△EBD中, BE>BD,∴AE>BD.[拓展] 若AC交BE于G,请想一想,在什么情况下线段BE、BG、FG 有相等关系?例5.如图7.4-1,矩形ABCD,AD=8,DC=6,在对角线AC上取一点O,以OC为半径的圆切AD于E,交BC于F,交CD于G.(1)求⊙O的半径R;(2)设∠BFE=α,∠GED=β,请写出α、β、90 三者之间的关系式(只需写出一个),并证明你的结论.[特色]此题第二问设计为开放性问题,它立意考查学生分析、观察、比较、归纳能力.[解答] (1)连结OE,则OE⊥AD.∵四边形是矩形,∴∠D=90 , OE∥CD,∴AC=22DC AD +=2268+=10.∵△AOE ∽△ACD , ∴ OE ∶CD=AO ∶AC , ∴R ∶6=(10-R) ∶10,解之得: R=415. (2)∵四边形是圆的内接四边形,∴∠EFB=∠EGC , ∵∠EGC=90 +β,∴α =90 +β 或 ∵ β<90 , α =∠EGC>90 , ∴ β < 90 < α.[拓展]比较角的大小时,要善于发现角与角之间的关系,判断角是锐角还是直角、钝角.。
人教版九年级数学第24章 圆的有关性质 知识点精讲精练(含答案)
第二十四章 圆的有关性质知识点思维导图能力培养:符号意识、几何直观、推理能力、运算能力 【实战篇】知识点一:圆的有关概念 1. 圆的定义(1)描述性定义:如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆. 其固定的端点O 叫做圆心,线段OA 叫做半径.(2)集合性定义:圆可以看成是所有到定点(圆心)的距离等于定长(半径)的点的集合. 2. 圆的表示方法:以点O 为圆心的圆,记作⊙O ,读作“圆O ”. 3. 圆具有的特性(1)圆上各点到定点(圆心O )的距离都等于定长(半径r ); (2)到定点的距离等于定长的点都在同一个圆上.注意:(1)确定一个圆取决于两个因素:圆心和半径. 圆心确定圆的位置,半径确定圆的大小.(2)同一个圆中的所有半径都相等,所以圆上任意两点和圆心(三点不共线)构成的三角A形都是等腰三角形.4. 圆的有关概念【例1】如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心、CB长为半径的圆恰好经过AB的中点D,则AC的长为______________.【例1】【解析】同一个圆中的所有半径都相等,所以在圆中“连半径”是常用的辅助线,本题先连接CD,根据直角三角形斜边上的中线的性质得出CD=5,所以半径BC=CD=5,又由已知AB=10,利用勾股定理得出AC==【答案】 【巩固】1. 如图,AB 是⊙O 的直径,点C 在圆上,∠ABC =65°,那么∠OCA 的度数是( ) A. 25°B. 35°C. 15°D. 20°2. 如图,在⊙O 中,下列说法不正确的是( ) A. AB 是⊙O 的直径B. 有5条弦C. AD 和BD 都是劣弧,ABD 是优弧D. CO 是圆O 的半径【巩固答案】 1. A 2.B知识点二:垂直于弦的直径CB DAABBA1. 圆的轴对称性圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴. 2. 垂径定理垂直于弦的直径平分弦,并且平分弦所对的两条弧. 符号语言:∵如图,CD 是直径,CD ⊥AB 于点M ,∴AM =BM ,AC =BC ,AD =BD .3. 垂径定理的推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 符号语言:∵如图,CD 是直径,AM =BM (AB 不是直径),∴CD ⊥AB ,AC =BC ,AD =BD .【例2】如图,AB ,BC 是⊙O 的两条弦,AO ⊥BC ,垂足为D ,若⊙O 的半径为5,BC =8,则AB 的长为( ) A. 8B. 10C.34D. 54【例2】【解析】连接OB ,根据垂径定理求出BD =12BC =4,已知半径OB =5,在Rt △OBD中,由勾股定理求出OD3,所以AD =8,在Rt △ABD 中,再由勾股定理求出AB.【答案】D 【巩固】1. 下列说法不正确的是( )A. 圆既是轴对称图形又是中心对称图形B. 圆有无数条对称轴C. 圆的每一条直径都是它的对称轴D. 圆的对称中心是它的圆心2. 如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5 cm ,CD =8 cm ,则AE 的长为( ) A. 8 cmB. 5 cmC. 3 cmD. 2 cm【巩固答案】 1. C 2. A知识点三:弧、弦、圆心角 1. 圆的旋转对称性圆具有旋转不变性,把圆绕圆心旋转任意一个角度,所得的图形都与原图形重合. 因此,圆也是中心对称图形,圆心就是它的对称中心. 2. 圆心角的定义顶点在圆心的角叫做圆心角.如图:∠AOB 是AB 所对的圆心角,AB 是∠AOB 所对的弧. 注意:一条弧所对的圆心角只有一个. 3. 弧、弦、圆心角之间的关系A【例3】如图,点A ,B ,C ,D 在⊙O 上,且AB =CD . 求证:AC =BD .【例3】【解析】根据圆心角、弧、弦的关系,由AB =CD 得到AB =CD ,进而AB +BC =CD +BC ,即AC =BD ,所以AC =BD . 【答案】证明:∵AB =CD ∴AB =CD ,∴AB+BC =CD +BC , 即AC =BD , ∴AC =BD . 【巩固】1. 如图,在⊙O 中,∠AOB =∠COD ,那么AC 和BD 的大小关系是( )A. AC >BDB. AC <BDC. AC =BDD. 无法确定D2. 如图,C 是⊙O 上的点,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,则AC 与BC 的关系是( )A. AC =BCB. AC >BCC. AC <BCD. 不能确定【巩固答案】 1. C 2. A知识点四:圆周角 1. 圆周角的定义顶点在圆上,并且两边都与圆相交的角叫做圆周角.注意:(1)圆周角必须具备两个条件:①顶点在圆上;②两边都与圆相交. (2)同一条弧所对的圆周角有无数个. 2. 圆周角和圆心角的区别和联系3. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半.如图,∠ACB =21∠AOB .4. 圆周角定理的推论推论1 同弧或等弧所对的圆周角相等.推论2 (1)半圆(或直径)所对的圆周角是直角; (2)90°的圆周角所对的弦是直径. 5. “五量关系”定理在同圆或等圆中,如果两个圆心角、两条弧、两条弧所对的圆周角、两条弦、两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.【例4】如图,AB 为⊙O 的直径,C 、D 为⊙O 上两点,∠BCD =40°,则∠ABD 的大小为( ) A. 60°B. 50°C. 40°D. 20°【例4】【解析】本题考查的是圆周角定理的两个推论,根据题意先连接AD ,根据圆周角定理的推论可知,∠A =∠BCD =40°,又由AB 为⊙O 的直径知∠ADB =90°,所以∠ABD =90°-∠A =50°. 故选B.【答案】B 【巩固】1. 如图,点A ,B ,C 在⊙O 上,若∠OAB =54°,则∠C 的度数为( ) A. 54°B. 46°C. 36°D. 27°BAAB2. 如图,点A,B,C,D在⊙O上,BC=CD,∠CAD=30°,∠ACD=50°,则∠ADB =___________.【巩固答案】1.C2.70°知识点五:圆内接多边形1.圆内接多边形的定义如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.2.圆内接四边形的性质圆内接四边形的对角互补.注意:每一个圆都有无数个内接四边形,但并不是所有的四边形都有外接圆,只有对角互补的四边形才有外接圆.拓展:圆内接四边形的每一个外角都等于它的内对角.【例5】如图,四边形ABCD为⊙O的内接四边形,E是BC延长线上的一点,已知∠BOD =130°,则∠DCE的度数为()A. 45°B. 50°C. 65°D. 75°【例5】【解析】根据圆周角定理求出∠A =12∠BOD =65°,再根据圆内接四边形的性质得出∠BCD =180°-∠A =115°,则∠DCE =180°-∠BCD =65°. 故选C. 【答案】C 【巩固】1. 如图,在⊙O 中,∠AOB =120°,P 为劣弧AB 上的一点,则∠APB 的度数是_____________.2. 如图,四边形ABCD 为⊙O 的内接四边形,已知∠C =∠D. 问AB 与CD 有怎样的位置关系,请说明理由.【巩固答案】 1. 120° 2. 解:AB ∥CDB理由如下:∵四边形ABCD为⊙O的内接四边形,∴∠A+∠C=180°,∵∠C=∠D,∴∠A+∠D=180°,∴AB∥CD.。
人教版九年级上册数学 24.1 圆的有关性质 同步课时训练(含答案)
人教版初三数学24.1 圆的有关性质同步课时训练一、选择题1. 已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB 的度数为()A.45°B.35°C.25°D.20°2. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A.AB,AC边上的中线的交点B.AB,AC边上的垂直平分线的交点C.AB,AC边上的高所在直线的交点D.∠BAC与∠ABC的角平分线的交点3. 如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P的所有弦中,最短的弦的长为()A.4 B.5 C.8 D.104. 如图,著名水乡乌镇的一圆拱桥的拱顶到水面的距离CD为8 m,水面宽AB 为8 m,则拱桥的半径OC为()A .4 mB .5 mC .6 mD .8 m5. 如图,AD 是⊙O的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB相交于点P ,下列结论错误的是( )A .AP =2OPB .CD =2OPC .OB ⊥ACD .AC 平分OB6. 2019·聊城如图,BC 是半圆O 的直径,D ,E 是BC ︵上的两点,连接BD ,CE并延长交于点A ,连接OD ,OE .如果∠A =70°,那么∠DOE 的度数为( )A .35°B .38°C .40°D .42°7. 如图,从A 地到B 地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A 地到B 地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是( )A .猫先到达B 地 B .老鼠先到达B 地C .猫和老鼠同时到达B 地D .无法确定8. 如图,A ,B ,C ,D是⊙O 上的四个点,B 是AC ︵的中点,M 是半径OD 上任意一点.若∠BDC =40°,则∠AMB 的度数不可能是( )A .45°B .60°C .75°D .85°二、填空题9. 如图,AB为⊙O 的直径,CD ⊥AB.若AB =10,CD =8,则圆心O 到弦CD的距离为________.10. 如图,以△ABC 的边BC 为直径的⊙O 分别交AB ,AC 于点D ,E ,连接OD ,OE .若∠A =65°,则∠DOE =________°.11. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.12. 如图0,A ,B 是⊙O 上的两点,AB =10,P 是⊙O 上的动点(点P 与A ,B两点不重合),连接AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=________.13. 如图,平面直角坐标系xOy中,点M的坐标为(3,0),⊙M的半径为2,过点M的直线与⊙M的交点分别为A,B,则△AOB的面积的最大值为________,此时A,B两点所在直线与x轴的夹角等于________°.14. 如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=________°.15. 如图,半径为5的⊙P与y轴交于点M(0,-4),N(0,-10),则圆心P的坐标为________.16. 如图,定长弦CD在以AB为直径的⊙O上滑动(点C,D与点A,B不重合),M是CD的中点,过点C作CP⊥AB于点P.若CD=3,AB=8,PM=l,则l的最大值是________.三、解答题17. 如图所示,AB ,CD 是⊙O 的两条直径,弦BE =BD.求证:AC ︵=BE ︵.18. 已知:如图5,在⊙O 中,M ,N 分别为弦AB ,CD 的中点,AB =CD ,AB不平行于CD.求证:∠AMN =∠CNM.19. 如图,点E 是△ABC 的内心,线段AE 的延长线交BC 于点F (∠AFC ≠90°),交△ABC 的外接圆于点D .(1)求点F 与△ABC 的内切圆⊙E 的位置关系; (2)求证:ED =BD ;(3)若∠BAC =90°,△ABC 的外接圆的直径是6,求BD 的长;(4)B ,C ,E 三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.20. 如图,四边形OBCD中的三个顶点在⊙O上,A是优弧BAD上的一个动点(不与点B,D重合).(1)当圆心O在∠BAD的内部时,若∠BOD=120°,则∠OBA+∠ODA=________°.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.人教版初三数学24.1 圆的有关性质同步课时训练-答案一、选择题1. 【答案】A2. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B.3. 【答案】C[解析] 过点P作弦AB⊥OP,连接OB,如图.则PB =AP ,∴AB =2BP =2 OB2-OP2.再过点P 任作一条弦MN ,过点O 作OG ⊥MN 于点G ,连接ON . 则MN =2GN =2ON2-OG2.∵OP >OG ,OB =ON ,∴MN >AB , ∴AB 是⊙O 中的过点P 最短的弦.在Rt △OPB 中,PO =3,OB =5,由勾股定理,得PB =4,则AB =2PB =8.4. 【答案】B[解析] 如图,连接BO.由题意可得AD =BD =4 m.设⊙O 的半径OC =x m ,则DO =(8-x)m. 由勾股定理可得x2=(8-x)2+42,解得x =5. 故拱桥的半径OC 为5 m.5. 【答案】A[解析] ∵AD 是⊙O 的直径,∴∠ACD =90°.∵四边形OBCD 是平行四边形, ∴CD ∥OB ,CD =OB ,∴∠CPO =90°, 即OB ⊥AC ,∴选项C 正确; ∴CP =AP.又∵OA =OD , ∴OP 是△ACD 的中位线, ∴CD =2OP ,∴选项B 正确;∴CD =OB =2OP ,即P 是OB 的中点, ∴AC 平分OB ,∴选项D 正确.6. 【答案】C7. 【答案】C8. 【答案】D[解析] 连接AD ,OA ,OB .∵B 是AC ︵的中点,∴∠ADB =∠BDC=40°,∴∠AOB=2∠ADB=80°.又∵M是OD上一点,∴∠ADB≤∠AMB≤∠AOB,即40°≤∠AMB≤80°,则不符合条件的只有85°.二、填空题9. 【答案】310. 【答案】50[解析] 由三角形的内角和定理,得∠B+∠C=180°-∠A.再由OB=OD=OC=OE,得到∠BDO=∠B,∠CEO=∠C.在等腰三角形BOD和等腰三角形COE中,∠DOB+∠EOC=180°-2∠B+180°-2∠C=360°-2(∠B+∠C)=360°-2(180°-∠A)=2∠A,所以∠DOE=180°-2∠A=50°.11. 【答案】8[解析] 由题意可得A,P,B,C在同一个圆上,所以当BP为圆的直径时,BP最大,此时∠P AB=90°.过点C作CD⊥AB于点D,可求得AB =4 3,进而可求得BP的最大值为8.12. 【答案】5[解析] ∵OE过圆心且与PA垂直,∴PE=EA.同理PF=FB,∴EF是△PAB的中位线,∴EF=12AB=5.13. 【答案】690[解析] ∵AB为⊙M的直径,∴AB=4.当点O到AB的距离最大时,△AOB的面积最大,此时AB⊥x轴于点M,∴△AOB的面积的最大值为12×4×3=6,∠AMO=90°.即此时A,B两点所在直线与x轴的夹角等于90°.14. 【答案】215[解析] 连接CE,则∠B+∠AEC=180°,∠DEC=∠CAD=35°,∴∠B+∠AED=(∠B+∠AEC)+∠DEC=180°+35°=215°.15. 【答案】(-4,-7)[解析] 过点P作PH⊥MN于点H,连接PM,则MH=12MN =3,OH =OM +MH =7.由勾股定理,得PH =4,∴圆心P 的坐标为(-4,-7).16. 【答案】34 [解析] 如图,当CD ∥AB 时,PM 的长最大,连接OM ,OC .∵CD ∥AB ,CP ⊥AB , ∴CP ⊥CD .∵M 为CD 的中点,OM 过点O , ∴OM ⊥CD ,∴∠OMC =∠PCD =∠CPO =90°, ∴四边形CPOM 是矩形, ∴PM =OC .∵⊙O 的直径AB =8, ∴半径OC =4,∴PM =4. 三、解答题17. 【答案】证明:∵AB ,CD 是⊙O 的两条直径, ∴∠AOC =∠BOD ,∴AC =BD. 又∵BE =BD , ∴AC =BE ,∴AC ︵=BE ︵.18. 【答案】证明:连接OM ,ON ,OA ,OC ,如图所示.∵M ,N 分别为AB ,CD 的中点,∴OM ⊥AB ,ON ⊥CD ,AM =12AB ,CN =12CD. 又∵AB =CD ,∴AM =CN. 在Rt △AOM 和Rt △CON 中, ⎩⎨⎧OA =OC ,AM =CN ,∴Rt △AOM ≌Rt △CON(HL), ∴OM =ON ,∴∠OMN =∠ONM , ∴∠AMO +∠OMN =∠CNO +∠ONM , 即∠AMN =∠CNM.19. 【答案】解:(1)设⊙E 切BC 于点M ,连接EM ,则EM ⊥BC .又线段AE 的延长线交BC 于点F ,∠AFC ≠90°,∴EF >EM ,∴点F 在△ABC 的内切圆⊙E 外. (2)证明:∵点E 是△ABC 的内心, ∴∠BAD =∠CAD ,∠ABE =∠CBE . ∵∠CBD =∠CAD ,∴∠BAD =∠CBD . ∵∠BED =∠ABE +∠BAD ,∠EBD =∠CBE + ∠CBD ,∴∠BED =∠EBD ,∴ED =BD . (3)如图①,连接CD . 设△ABC 的外接圆为⊙O .∵∠BAC =90°,∴BC 是⊙O 的直径, ∴∠BDC =90°.∵⊙O 的直径是6,∴BC =6. ∵E 为△ABC 的内切圆的圆心, ∴∠BAD =∠CAD ,∴BD =CD .又∵BD 2+CD 2=BC 2,∴BD =CD =3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.20. 【答案】52解:(1)60(2)①如图(a).∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC.又∵∠BAD+∠BCD=180°,∠BAD=12∠BOD,∴12∠BOD+∠BOD=180°,解得∠BOD=120°,∴∠BAD=12∠BOD=12×120°=60°,∠OBC=∠ODC=180°-∠BOD=180°-120°=60°.又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=∠ABC+∠ADC-(∠OBC+∠ODC)=180°-(60°+60°)=60°.②如图(b)所示,连接AO.∵OA=OB,∴∠OBA=∠OAB.∵OA=OD,∴∠OAD=∠ODA.∵∠OAB=∠OAD+∠BAD,∴∠OBA=∠ODA+∠BAD=∠ODA+60°. 如图(c),同理可得∠ODA=∠OBA+60°.。
人教版数学九年级上学期课时练习-圆及有关概念(知识讲解)(人教版)
专题24.1 圆及有关概念(知识讲解)【学习目标】1.理解圆的本质属性;经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系;2.了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;【要点梳理】要点一、圆的定义第一定义:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.特别说明:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.第二定义:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合. 特别说明:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.1.点和圆的三种位置关系:由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.特别说明:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆; 优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.特别说明:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.特别说明:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.类型一、圆的定义1.如图,已知O 的圆心原点()0,0O ,半径长为(10,8),A a 是O 上的在第一象限的点,求a 的值.【答案】6【分析】根据圆的基本性质,可得OA =10,再由(),8A a ,可得AB =8,然后由勾股定理,求出OB =6,即可求解.解:如图,过点B 作AB ⊥x 轴于点B ,连接OA ,⊥O 的半径长为10,⊥OA =10,⊥(),8A a ,⊥AB =8,在Rt AOB 中,由勾股定理得:6OB = ,⊥(),8A a 在第一象限内,⊥0a > ,⊥6a =.【点拨】本题主要考查了圆的基本性质,勾股定理,点的坐标,熟练掌握圆的基本性质,勾股定理是解题的关键.举一反三:【变式1】 ABC 中,90C ∠=︒.求证:A B C ,,三点在同一个圆上.【分析】取AB 的中点O ,根据直角三角形的性质得到CO =AO =BO ,故可求解. 解:如图所示,取AB 的中点O ,连接CO在Rt ⊥ABC 中,⊥AO = BO ,⊥ACB = 90°,⊥CO =12AB ,即CO =AO =BO .⊥A ,B ,C 三点在同一个圆上,圆心为点O .【点拨】此题主要考查证明三点共圆,解题的关键是熟知圆的基本性质及直角三角形的特点.【变式2】如图,已知MN 为O 的直径,四边形ABCD ,EFGD 都是正方形,小正方形EFGD 的面积为16,求圆的半径.【答案】r =【分析】连接OC ,OF ,设O 的半径为r ,2AD x =,则12DO AD x ==,在Rt ⊥COD 和Rt ⊥FOG 中,分别根据勾股定理可得222(2)832x x x x +=++,解方程即可求解.解:如图,连接OC ,OF ,设O 的半径为r ,2AD x =,则12DO AD x ==, ⊥222DO CD CO +=,⊥222(2)x x r +=,⊥正方形EFGD 的面积为16,⊥4DG FG ==,⊥4OG x =+,又⊥222OF OG FG =+,⊥2222(4)4832r x x x =++=++,⊥222(2)832x x x x +=++, 解得14x =,22x =-(不合题意,舍去),⊥2224880r =+=,r =【点拨】本题考查勾股定理的应用圆的认识和性质,解题的关键是熟练掌握在一个直角三角形中两条直角边的平方和等于斜边的平方.类型二、与圆有关的概念3.如图,在O 中,半径有________,直径有________,弦有________,劣弧有________,优弧有________.【答案】OA,OB,OC,OD AB AB,BC AC,BC,BD,CD,AD ADC,BAC,BAD,ACD,DAC【分析】根据圆的基本概念,即可求解.解:在O中,半径有OA,OB,OC,OD;直径有AB;弦有AB,BC;劣弧有AC,BC,BD,CD,AD;优弧有ADC,BAC,BAD,ACD,DAC;故答案为:OA,OB,OC,OD;AB;AB,BC;AC,BC,BD,CD,AD;ADC,BAC,BAD,ACD,DAC.【点拨】本题主要考查了圆的基本概念,熟练掌握圆的半径、直径、弦、弧的概念是解题的关键.举一反三:【变式1】小于半圆的弧(如图中的________)叫做______;大于半圆的弧(用三个字母表示,如图中的_______)叫做______ .【注意】1)弧分为是优弧、劣弧、半圆.2)已知弧的两个起点,不能判断它是优弧还是劣弧,需分情况讨论.【答案】AC劣弧ABC优弧【变式2】如图,以点A为端点的优弧是____________,以点A为端点的劣弧是_____________.【答案】AEC,ADE AE,AC【分析】根据劣弧和优弧的定义求解.解:在⊥O中,以A为端点的优弧有AEC,ADE;以A为端点的劣弧有AE,AC;故答案为:AEC,ADE;AE,AC.【点拨】本题考查了圆的认识:掌握与圆有关的概念,注意:大于半圆的弧是优弧,小于半圆的弧是劣弧,半圆既不是优弧,也不是劣弧.类型三、点和圆的位置关系3.已知⊥O的半径r=5cm,圆心O到直线l的距离d=OD=3cm,在直线l上有P、Q、R三点,且有PD=4cm,QD>4cm,RD<4cm,P、Q、R三点与⊥O位置关系各是怎样的【答案】PD=4cm,点P在⊥O上.QD>4cm,点Q在⊥O外.RD<4cm,点R在⊥O 内.【分析】依题意画出图形(如图所示),计算出P、Q、R三点到圆心的距离与圆的半径比较大小.解:连接PO,QO,RO.⊥PD=4cm,OD=3cm,⊥PO5r==.⊥ 点P 在⊥O 上.5QO r ===,⊥ 点Q 在⊥O 外.5RO r ==,⊥ 点R 在⊥O 内.【点拨】本题主要考查点与圆的位置关系,点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.举一反三:【变式1】已知:如图,△ABC 中,90,2cm,4cm AC C C B ∠==︒=,CM 是中线,以C长为半径画圆,则点A 、B 、M 与⊥C 的关系如何?【答案】点A 在⊥O 内;点B 在⊥C 外;M 点在⊥C 上【分析】点与圆的位置关系由三种情况:设点到圆心的距离为d ,则当d =r 时,点在圆上;当d >r 时,点在圆外;当d <r 时,点在圆内.解:根据勾股定理,有AB =cm );⊥CA =2cm ,⊥点A 在⊥O 内,⊥BC =4cm ,⊥点B 在⊥C 外;由直角三角形的性质得:CM⊥M 点在⊥C 上.【点拨】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.【变式2】画图说明:端点分别在两条互相垂直的直线上,且长度为5 cm的所有线段的中点所组成的图形.【答案】以两条已知直线的交点(垂足)为圆心,2.5 cm长为半径的一个圆.【分析】如图所示,当线段两个端点在O,F时,此时的的中点为B点,同理可知也可在A,G,H点,这些点在已知直线的交点为圆心,2.5 cm长为半径的一个圆上;当线段两个端点在C,D时,其中点为E,根据直角三角形斜边上的中点是斜边的一半知CE=DE=OE,则E点在以O为圆心2.5 cm长为半径的一个圆上;综上即可画出图形.解:如图所示,以两条已知直线的交点(垂足)为圆心,2.5 cm长为半径的一个圆.【点拨】此题主要考查点与圆的关系,解题的关键是正确理解题意,再画出图形.类型四、圆中弦的问题4、已知:线段AB = 4 cm,画图说明:和点A、B的距离都不大于3 cm的所有点组成的图形.【答案】所求图形为阴影部分(包括阴影的边界).【分析】以A,B点为圆心,半径为3作圆,重叠的部分即为所求.解:如图所示,以点A,B为圆心,3cm为半径画圆,两个圆相交的部分为阴影部分,图中阴影部分就是到点A和点B的距离都不大于3 cm的所有点组成的图形.【点拨】此题主要考查点与圆的位置关系,解题的关键是根据题意画出图形,根据所学的点与圆的位置关系的判断方法来解答.举一反三:【变式1】如图所示,AB 为O 的一条弦,点C 为O 上一动点,且30BCA ∠=︒,点E ,F 分别是AC ,BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径为7,求GE FH +的最大值.【答案】GE FH +的最大值为212. 【分析】由GE FH +和EF 组成O 的弦GH ,在O 中,弦GH 最长为直径14,而EF 可求,所以GE FH +的最大值可求.解:连结AO ,BO ,⊥30BCA ∠=︒ ⊥60BOA ∠=︒⊥AOB 为等边三角形,7AB =⊥点E ,F 分别是AC ,BC 的中点 ⊥1722EF AB ==,⊥ GH 为O 的一条弦 ⊥GH 最大值为直径14 ⊥GE FH +的最大值为7211422-=. 【点拨】利用直径是圆中最长的弦,可以解决圆中一些最值问题.【变式2】如图,已知等边⊥ABC 的边长为8,点 P 是 AB 边上的一个动点(与点 A 、B 不重合).直线 l 是经过点 P 的一条直线,把⊥ABC 沿直线 l 折叠,点 B 的对应点是点B '.当 PB =6 时,在直线 l 变化过程中,求⊥ACB'面积的最大值.【答案】【分析】如图,过点P 作PH AC ⊥,当B ',P ,H 共线时,ACB '△的面积最大,求出PH 的长即可解决问题.解:如图,过点P 作PH ⊥AC ,由题可得,B '在以P 为圆心,半径长为6的圆上运动,当HP 的延长线交圆P 于点B '时面积最大,在Rt APH 中,8AB =,6PB =,2PA ∴=, ABC 是等边三角形,60PAH ∴∠=︒,1AH ∴=,PH =6BH ∴=ACB S '∴的最大值为18(6242⨯⨯=. 【点拨】本题考查圆与三角形综合问题,根据题意构造出图形是解题的关键. 类型五、与圆周长和面积有关的问题5、如图所示,求如图正方形中阴影部分的周长.(结果可保留π)【答案】正方形中阴影部分的周长为()2060cm π+【分析】阴影部分的周长=半圆弧长+14圆弧长+正方形边长的3倍,依此计算即可求解. 解:根据题意得:1110(cm)2l d ππ==, 2210(cm 41)r l ππ=⋅=, ()1010602060cm C πππ=++=+.故正方形中阴影部分的周长为()2060cm π+.【点拨】本题主要考查列代数式,解题的关键是掌握圆的周长公式.举一反三:【变式1】如图,长方形的长为a ,宽为b ,在它的内部分别挖去以b 为半径的四分之一圆和以b 为直径的半圆.(1)用含a 、b 的代数式表示阴影部分的面积;(2)当a =8,b =4时,求阴影部分的面积(π取3).【答案】(1)阴影部分的面积=ab ﹣38πb 2;(2)14.【分析】 (1)根据阴影部分面积=矩形面积-14圆的面积-半圆的面积,结合图形14圆的半径、半圆的半径和矩形的宽的关系,并利用它们的面积公式即可求解.(2)将a ,b 的值代入(1)中所求的代数式进行计算.解:(1)14圆的半径即为矩形的宽=b ,半圆的半径为矩形宽的12=12b , 阴影部分面积=矩形面积-14圆的面积-半圆的面积即:阴影部分面积=2221113()4228ab b b ab b πππ--=- (2)因为π取3,将84a b ==,代入(1)所得的代数式得:原式=238434=148⨯-⨯⨯. 【点拨】本题考查求圆的面积的公式及根据题意列代数式,明确阴影部分面积=矩形面积-14圆的面积-半圆的面积是解题的关键. 【变式2】如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).【答案】2(2)4a π-,1.14 【分析】根据对称性用a 表示出阴影的面积,再将a=2代入求解即可.解:由题意可知:S 阴=211442222a a a π⎡⎤⎛⎫-⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 2(2)4a π-= 当2a =时,S 阴=(3.142)4 1.144-⨯=. 【点拨】本题考查列代数式、代数式求值、圆的面积公式、三角形的面积公式,解答的关键是找出面积之间的关系,利用基本图形的面积公式解决问题.类型六、坐标系中圆的问题6、如图,点P 是反比例函数(0)k y x x=<图象上一点,PA x ⊥轴于点A ,点M 在y 轴上,M 过点A ,与y 轴交于B 、D ,已知A 、B 两点的坐标分别为()()6,00,2A B -,,PB 的延长线交M 于另一点C .(1)求M 的半径的长;(2)当45APB ∠=︒时,试求出k 的值;(3)在(2)的条件下,请求出线段PC 的长.【答案】(1) 10 (2) 48- (3) 【分析】(1)设()0,M m ,由题意知,22AM BM =,即()()()2226002m m --+-=-,求出满足要求的m ,求出MB 的长,进而可得半径;(2)由题意,设()6,P n -,设过P B ,的直线的解析式为y ax b =+,交x 轴于E ,将P B ,代入得62a b n b -+=⎧⎨=⎩,可得过P B ,的直线的解析式为226n y x -=+,将0y =代入,求得12,02E n -⎛⎫ ⎪-⎝⎭,由45APB ∠=︒ ,90PAB ∠=︒,可知AP PE =,则()1262n n -=---,求出满足要求的n 值,得到P 点坐标,然后代入反比例函数解析式求k 即可;(3)由(2)可知,过P B ,的直线的解析式为28226y x x -=+=-+,设(),2C a a -+,由题意知,10MC =,则()2222810a a +-++=,求出符合要求的a 值,进而可得C 的坐标,然后利用勾股定理求PC 的值即可.(1)解:设()0,M m ,由题意知,22AM BM =,即()()()2226002m m --+-=-,解得:8m =-,⊥()0,8M -,⊥()2810--=,⊥M 的半径的长为10.(2)解:由题意,设()6,P n -,设过P B ,的直线的解析式为y ax b =+,交x 轴于E ,如图,将P B ,代入得62a b n b -+=⎧⎨=⎩, 解得262n a b -⎧=⎪⎨⎪=⎩, ⊥过P B ,的直线的解析式为226n y x -=+, 将0y =代入得122x n-=-, ⊥12,02E n -⎛⎫ ⎪-⎝⎭, ⊥45APB ∠=︒ ,90PAE ∠=︒,⊥45PEA ∠=︒,⊥AP AE =, ⊥()1262n n-=---, 整理得280n n -=,解得8n =,0n =(不合题意,舍去),⊥()6,8P -,将()6,8P -代入k y x =得,86k =-, 解得48k =-,⊥k 的值为48-.(3)解:由(2)可知,过P B ,的直线的解析式为28226y x x -=+=-+, 设(),2C a a -+,由题意知,10MC =,⊥()2222810a a +-++=,解得10a =, 0a =(不合题意,舍去),⊥()10,8C -,⊥PC =⊥PC 的长为【点拨】本题考查了圆的概念,反比例函数与一次函数的综合,等角对等边,勾股定理等知识.解题的关键在于对知识的熟练掌握与灵活运用.举一反三:【变式1】如图,在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆,其中0a >,0b >.(1)请写出方程22(3)(4)25x y ++-=表示的圆的半径和圆心的坐标;(2)判断原点()0,0和第(1)问中圆的位置关系.【答案】(1)半径为5,圆心()3,4- (2)在圆上【分析】(1)根据题目所给的“在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆”即可直接得出答案;(2)将原点()0,0的坐标代入22(3)(4)25x y ++-=,即可判断出点与圆的位置关系.(1)解:在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆,∴将22(3)(4)25x y ++-=化成()2223(4)5x y --+-=⎡⎤⎣⎦, ∴22(3)(4)25x y ++-=表示的圆的半径为5,圆心的坐标为()3,4-;(2)解:将原点()0,0代入22(3)(4)25x y ++-=,左边2222(03)(04)3491625=++-=+=+==右边,∴原点()0,0在22(3)(4)25x y ++-=表示的圆上.【点拨】此题主要考查对未学知识以新定义形式出现的题型,读懂题意,根据新定义解决问题是本题的关键.【变式2】阅读下列材料:平面上两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离表示为12PP =,称为平面内两点间的距离公式,根据该公式,如图,设P (x ,y )是圆心坐标为C (a ,b )、半径为r 的圆上任意一点,则点P r =,变形可得:(x ﹣a )2+(y ﹣b )2=r 2,我们称其为圆心为C (a ,b ),半径为r 的圆的标准方程.例如:由圆的标准方程(x ﹣1)2+(y ﹣2)2=25可得它的圆心为(1,2),半径为5.根据上述材料,结合你所学的知识,完成下列各题.(1)圆心为C (3,4),半径为2的圆的标准方程为: ;(2)若已知⊥C 的标准方程为:(x ﹣2)2+y 2=22,圆心为C ,请判断点A (3,﹣1)与⊥C 的位置关系.【答案】(1)()()223425x y -+-=;(2)点A 在⊥C 的内部.【分析】(1)先设圆上任意一点的坐标(x ,y ),根据圆的标准方程公式求解即可;(2)先根据圆的标准方程求出圆心坐标,利用两点距离公式求出点A 到圆心的距离d ,然后与半径r 相比较,d >r ,点在圆外,d =r ,点在圆上,d <r ,点在圆内,即可判断点A与圆的位置关系.解:(1)设圆上任意一点的坐标为(x ,y ),⊥()()223425x y -+-=,故答案为()()223425x y -+-=;(2)⊥⊥C 的标准方程为:(x ﹣2)2+y 2=22,⊥圆心坐标为C (2,0),⊥点A (3,﹣1),AC 2 ⊥点A 在⊥C 的内部.【点拨】本题考查两点距离公式的拓展内容,圆的标准方程,正确理解题意、熟练掌握基本知识是解题关键.。
人教版 九年级数学上册 24.1 圆的有关性质 课时训练(含答案)
人教版九年级数学上册24.1 圆的有关性质课时训练一、选择题1. 如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠CC.∠DEB D.∠D2. 如图所示,M是⊙O上的任意一点,则下列结论中正确的有()①以M为端点的弦只有一条;②以M为端点的半径只有一条;③以M为端点的直径只有一条;④以M为端点的弧只有一条.A.1个B.2个C.3个D.4个3. 在半径等于5 cm的圆内有长为5 3 cm的弦,则此弦所对的圆周角为() A.60°或120°B.30°或120°C.60°D.120°4. 如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x 的图象被⊙P截得的弦AB的长为2 3,则a的值是()A.2 B.2+ 2C.2 3 D.2+ 35. (2019•镇江)如图,四边形是半圆的内接四边形,是直径,.若,则的度数等于A.B.C.D.6. 如图,⊙P与x轴交于点A(—5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为()A.13+ 3 B.2 2+ 3C.4 2 D.2 2+27. P为⊙O内一点,若过点P的最长的弦为8 cm,最短的弦为4 cm,则OP的长为()A.2 3 cm B. 3 cm C.3 cm D.2 cm8. 如图,AB是⊙O的直径,点C,D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC =124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°10. 如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .4 2二、填空题11. 如图,C ,D两点在以AB 为直径的圆上,AB =2,∠ACD =30°,则AD =________.12. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.13. 已知:如图,A ,B是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点,则四边形OACB 是________.(填特殊平行四边形的名称)14. 如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上,且∠ADC =30°,则∠AOB 的度数为________.15. 如图2,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨过后,水面宽为80 cm ,则水位上升________cm. 链接听P39例4归纳总结16. 已知⊙O的半径为2,弦BC =2 3,A 是⊙O 上一点,且AB ︵=AC ︵,直线AO 与BC 交于点D ,则AD 的长为________.17. 如图,在⊙O中,弦AB =1,点C 在AB 上移动,连接OC ,过点C 作CD⊥OC 交⊙O 于点D ,则CD 的最大值为________.三、解答题18. 如图,△ABC 的高AD ,BF 相交于点H ,AD 的延长线交△ABC 的外接圆于点E.求证:DH =DE.19. 如图,AB 是⊙O的直径,弦CD 与AB 相交,D 为AB ︵的中点.(1)求∠ABD 的大小;(2)若AC =6,BD =5 2,求BC 的长.20. 如图为一拱形公路桥,圆弧形桥拱的水面跨度AB =80米,桥拱到水面的最大高度为20米. (1)求桥拱的半径;(2)现有一艘宽60米,船舱顶部为长方形并高出水面9米的轮船要经过这里,这艘轮船能顺利通过这座拱桥吗?请说明理由.人教版 九年级数学上册 24.1 圆的有关性质课时训练-答案一、选择题1. 【答案】D2. 【答案】B[解析] 从圆上任意选一点,与点M连接,可以得到圆的一条弦,因此以M为端点的弦有无数条,以M为端点的半径为OM,以M为端点的直径只有一条,以M为端点的弧有无数条.故②③正确.3. 【答案】A4. 【答案】B[解析] 如图,连接PB,过点P作PC⊥AB于点C,过点P作横轴的垂线,垂足为E,交AB于点D,则PB=2,BC= 3.在Rt△PBC中,由勾股定理得PC=1.∵直线y=x平分第一象限的夹角,∴△PCD和△DEO都是等腰直角三角形,∴PD=2,DE=OE=2,∴a=PE=2+ 2.故选B.5. 【答案】A【解析】如图,连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°–∠C=70°,∵,∴∠CAB=∠DAB=35°,∵AB是直径,∴∠ACB=90°,∴∠ABC=90°–∠CAB=55°,故选A.6. 【答案】B[解析] 如图,连接PA,PB,PC,过点P作PD⊥AB于点D,PE ⊥OC于点 E.∵∠ACB =60°,∴∠APB =120°. ∵PA =PB ,∴∠PAB =∠PBA =30°. ∵A(-5,0),B(1,0), ∴AB =6, ∴AD =BD =3,∴PD =3,PA =PB =PC =2 3. ∵PD ⊥AB ,PE ⊥OC ,∠AOC =90°, ∴四边形PEOD 是矩形,∴OE =PD =3,PE =OD =3-1=2, ∴CE =PC2-PE2=12-4=2 2, ∴OC =CE +OE =2 2+3, ∴点C 的纵坐标为2 2+ 3. 故选B.7. 【答案】A[解析] 设⊙O 中过点P 的最长的弦为AB ,最短的弦为CD ,如图所示,则CD ⊥AB 于点P.根据题意,得AB =8 cm ,CD =4 cm ,∴OC =12AB =4 cm. ∵CD ⊥AB , ∴CP =12CD =2 cm.在Rt △OCP 中,根据勾股定理,得OP=OC2-CP2=42-22=2 3(cm).8. 【答案】D[解析] ∵∠BOC=110°,∴∠AOC=70°.∵AD∥OC,∴∠A=∠AOC=70°.∵OA=OD,∴∠D=∠A=70°.在△OAD中,∠AOD=180°-(∠A +∠D)=40°.9. 【答案】C[解析] ∵点I是△ABC的内心,∴∠BAC=2∠IAC,∠ACB=2∠ICA.∵∠AIC=124°,∴∠B=180°-(∠BAC+∠ACB)=180°-2(∠IAC+∠ICA)=180°-2(180°-∠AIC)=68°.又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°.10. 【答案】C[解析] 如图,过点O作OE⊥AB,OF⊥CD,垂足分别为E,F,连接AO.∵OE⊥AB,∴AE=12AB=4.在Rt△OAE中,OA=5,由勾股定理可得OE=3,同理得OF=3.又∵AB⊥CD,∴四边形OEPF是正方形,∴PE=OE=3.在Rt△OPE中,由勾股定理可得OP=3 2.二、填空题11. 【答案】1[解析] ∵AB为⊙O的直径,∴∠ADB=90°.∵∠B=∠ACD=30°,∴AD=12AB=12×2=1.12. 【答案】65[解析] ∵∠C=25°,∴∠A=∠C=25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.13. 【答案】菱形[解析] 连接OC.∵C 是AB ︵的中点, ∴∠AOC =∠COB =60°. 又∵OA =OC =OB ,∴△OAC 和△OCB 都是等边三角形, ∴OA =AC =BC =OB , ∴四边形OACB 是菱形.14. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.15. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm ,到长为80 cm 的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm 或70 cm.16. 【答案】3或1 [解析] 如图所示:∵⊙O 的半径为2,弦BC =2 3,A 是⊙O 上一点,且AB ︵=AC ︵, ∴AO ⊥BC ,垂足为D , 则BD =12BC = 3. 在Rt △OBD 中,∵BD2+OD2=OB2, 即(3)2+OD2=22, 解得OD =1.∴当点A 在如图①所示的位置时,AD =OA -OD =2-1=1; 当点A 在如图②所示的位置时,AD =OA +OD =2+1=3.17. 【答案】12 [解析] 连接OD.因为CD ⊥OC ,所以CD =OD2-OC2,根据题意可知圆的半径一定,故当OC 最小时CD 最大,故当OC ⊥AB 时CD 最大,此时CD =12AB =12.三、解答题18. 【答案】证明:连接BE.∵AD ,BF 是△ABC 的高,∴∠FBC +∠C =90°,∠CAD +∠C =90°, ∴∠FBC =∠CAD.∵∠CBE =∠CAD ,∴∠FBC =∠CBE. 又∵BD =BD ,∠BDH =∠BDE =90°, ∴△BDH ≌△BDE ,∴DH =DE.19. 【答案】解:(1)∵D 为AB ︵的中点, ∴AD ︵=BD ︵.∵AB 是⊙O 的直径, ∴∠ADB =90°, ∴∠ABD =∠DAB =45°.(2)由(1)知AD ︵=BD ︵,∴AD =BD =5 2. 又∵∠ADB =90°, ∴AB =AD2+BD2=10.word 版 初中数学 11 / 11 ∵AB 是⊙O 的直径,∴∠ACB =90°,∴BC =AB2-AC2=102-62=8.20. 【答案】解:(1)如图①,设点E 是桥拱所在圆的圆心,连接AE ,过点E 作EF ⊥AB 于点F ,延长EF 交AB ︵于点D.根据垂径定理知F 是AB 的中点,D 是AB ︵的中点,DF 的长是桥拱到水面的最大高度,∴AF =FB =12AB =40米,EF =DE -DF =AE -DF.由勾股定理,知AE2=AF2+EF2=AF2+(AE -DF)2.设桥拱的半径为r 米,则r2=402+(r -20)2,解得r =50.答:桥拱的半径为50米.(2)这艘轮船能顺利通过这座拱桥.理由如下:如图②,由题意,知DE ⊥MN ,PM =12MN =30米,EF =50-20=30(米).在Rt △PEM 中,PE =EM2-PM2=40米,∴PF =PE -EF =40-30=10(米).∵10米>9米,∴这艘轮船能顺利通过这座拱桥.。
人教版九年级上册数学 24.1圆的有关性质 复习题
人教版九年级上册数学24.1圆的有关性质复习题一、复习(一)圆及垂径定理1.圆:把平面内到距离等于的点的集合称为圆;我们把称为圆心,把称为半径。
2.我们把连接圆上任意的称为弦,经过的弦称为直径;圆上的部分称为弧。
3. 在同一平面内,不在直线上的点确定一个圆。
4. 垂径定理:垂直于弦的平分弦,并且平分弦所对的弧。
5. 圆的对称性:圆既是图形也是图形,对称轴是,有条;对称中心是。
6.垂径定理推论:平分弦(非直径)的直径弦,并且平分弦所对的两条弧。
(二)圆心角、圆周角1. 弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧,所对的弦。
2. 圆心角:我们把在圆心的角称为圆心角.3.圆周角:在圆周上,并且都和圆相交的角叫做圆周角;在同圆或等圆中,圆周角度数等于它所对的弧上的圆心角度数。
4. 在同圆或等圆中,同弧或等弧所对的圆周角_____,相等的圆周角所对的____和____都相等。
5. 相关推论:①半圆或直径所对的圆周角都是_____,都等于____度;②90°的圆周角所对的弦是 .二、引领学习(一)命题判断题1.下列说法正确的是()A.长度相等的弧是等弧;B. 半径相等的弧是等弧;C. 两个半圆是等弧;D.直径是圆中最长的弦;2. 下列语句中,正确的有()①顶点在圆周上的角是圆周角;②相等的圆心角所对的弧也相等;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴。
A.1个B.2个C.3个D.4个3. 以下说法正确的是:()①垂直于弦的直径平分这条弦;②圆既是轴对称图形,又是中心对称图形;③相等圆心角所对的弧相等。
A. ①②B. ①③C. ②③D. ①②③4. 下列说法正确的是 ( )A. 过圆心的线段是直径B. 相等的圆心角所对的弧相等C. 弦是直径D. 半圆是弧5. 下列命题中是真命题的为( )A.三点确定一个圆B. 任何一个三角形有且只有一个外接圆C .任何一个四边形都有一个外接圆 D. 等腰三角形的外心一定在它的外部(二)多解题1. 点A 、B 、C 是⊙O 上不同的三个点,∠AOB=100°,则∠ACB= °. (变式):△ABC 是⊙O 的内接三角形,∠AOB=100°,则∠ACB= °.2. 已知⊙O 的半径为5.(1)弦AB=8cm,弦CD=6cm,且AB ∥CD ,则这两条弦之间的距离为 cm.(2)弦AB=8cm,则该弦所对的弧的中点到弦AB 的距离为 cm.(3)AB 是⊙O 的一条弦,点P 在直线AB 上,PB=3,AB=8,则=PQOQ . 3.在△ABC 中,AB=AC=5,S ABC ∆=12,则△ABC 外接圆的半径为 。
人教版九年级数学上册圆知识点归纳及练习(含答案)
圆圆知识点一圆的定义圆的定义:第一种:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点 A 所形成的图形叫作圆。
固定的端点O 叫作圆心,线段OA 叫作半径。
第二种:圆心为O,半径为 r的圆能够当作是全部到定点O 的距离等于定长r的点的会合。
比较圆的两种定义可知:第一种定义是圆的形成进行描绘的,第二种是运用会合的看法下的定义,可是都说明确立了定点与定长,也就确立了圆。
知识点二圆的有关看法( 1)弦:连结圆上随意两点的线段叫做弦,经过圆心的弦叫作直径。
( 2)弧:圆上随意两点间的部分叫做圆弧,简称弧。
圆的随意一条直径的两个端点把圆分红两条弧,每一条弧都叫做半圆。
(3)等圆:等够重合的两个圆叫做等圆。
( 4)等弧:在同圆或等圆中,能够相互重合的弧叫做等弧。
弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完整重合的弧才是等弧,而不是长度相等的弧。
垂直于弦的直径知识点一圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴。
知识点二垂径定理( 1)垂径定理:垂直于弦的直径均分弦,而且均分弦所对的两条弧。
如下图,直径为CD, AB 是弦,且CD⊥AB,CMA BAM=BM垂足为 M AC =BCAD=BDD垂径定理的推论:均分弦(不是直径)的直径垂直于弦,而且均分弦所对的两条弧如上图所示,直径CD 与非直径弦AB 订交于点M,CD⊥AB AM=BMAC=BC AD=BD注意:由于圆的两条直径一定相互均分,所以垂径定理的推论中,被均分的弦一定不是直径,不然结论不建立。
弧、弦、圆心角知识点弦、弧、圆心角的关系(1)弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
( 2)在同圆或等圆中,假如两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。
(3)注意不可以忽视同圆或等圆这个前提条件,假如扔掉这个条件,即便圆心角相等,所对的弧、弦也不必定相等,比方两个齐心圆中,两个圆心角同样,但此时弧、弦不必定相等。
九年级数学上册第二十四章圆24.1圆的有关性质24.1.3弦弧圆心角课后作业新版新人教版(含答案)
⌒ ⌒
九年级数学上册第二十四章圆:
24.1.3弦、弧、圆心角
1、在同圆或等圆中,相等的圆心角所对的 相等,所对的弦也 .
在同圆或等圆中,如果两条弧相等,那么它们所对的 相等,•所对的弦也 .
在同圆或等圆中,如果两条弦相等,那么它们所对的 相等 ,•所对的 也相等.
2、如果两个圆心角相等,那么( )
A .这两个圆心角所对的弦相等;
B .这两个圆心角所对的弧相等
C .这两个圆心角所对的弦的弦心距相等;
D .以上说法都不对
3、如图7,⊙O 中,如果AB =2AC ,那么( ). A .AB=2AC B .AB=AC C .AB<2AC D .AB>2AC
4、已知⊙O 的半径为2,弦AB 所对的劣弧为圆的3
1,则弦AB 的长为 ,AB
5、如图,在半径为2的⊙O 内有长为32的弦AB, 则此弦所对的圆心角∠AOB= °.
6、如图,在⊙O 中,弦AB=CD 。
求证:(1)DB=AC;(2)∠BOD=∠AOC.
参考答案:
1、 弧,弦,相等;弦,圆心角,相等;圆心角,弧,相等
2、 D
3、 C
4、 32
5、 120°
6、 略
A ⌒ ⌒ _ B。
人教版九年级上册:24.1 圆的有关性质课时训练卷 含答案
24.1 圆的有关性质课时训练卷一.选择题1.下列条件中,能确定圆的是()A.以点O为圆心B.以2cm长为半径C.以点O为圆心,以5cm长为半径D.经过已知点A2.下列说法正确的是()A.直径是弦,弦是直径B.半圆是弧C.无论过圆内哪一点,只能作一条直径D.直径的长度是半径的2倍3.下面四个图中的角,为圆心角的是()A.B.C.D.4.如图中奥迪车商标的长为34cm,宽为10cm,则d的值为()A.14B.16C.18D.205.如图,已知AB是⊙O的直径,D、C是劣弧EB的三等分点,∠BOC=40°,那么∠AOE =()A.40°B.60°C.80°D.120°6.半圆的圆心角()A.大于180°B.等于180°C.在90°~180°之间D.等于90°7.如图,在⊙O中,A,B,P为⊙O上的点,∠AOB=68°,则∠APB的度数是()A.136°B.34°C.22°D.112°8.如图,⊙O的半径为5,OC垂直弦AB于点C,OC=3,则弦AB的长为()A.4B.5C.6D.89.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm10.如图,AB是⊙O的直径,∠CAB=40°,则∠D=()A.20°B.30°C.40°D.50°11.如图,在⊙O中,直径AB⊥CD,∠A=26°,则∠D度数是()A.26°B.38°C.52°D.64°12.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.cm B.cm C.cm D.4cm二.填空题13.如图,已知AB、CD是⊙O的直径,,∠AOE=32°,那么∠COE的度数为度.14.如图,A、B、C三点在⊙O上,连接AB,OC,OA,BC,若∠ABC=23°,则∠AOC 的度数为.15.已知弦AB把圆周分成1:9两部分,则弦AB所对圆心角的度数为.16.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=74°,则∠E =.17.如图,四边形ABCD内接于⊙O,AC平分∠BAD.若∠BDC=40°,则∠BCD的度数为.18.如图,⊙O是一个油罐的截面图.已知⊙O的直径为5m,油的最大深度CD=4m(CD ⊥AB),则油面宽度AB为m.19.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为m.三.解答题20.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠C=40°,求∠E及∠AOC的度数.21.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.22.如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24(1)求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚刚被灌满?23.如图,已知AB,CG是⊙O的两条直径,AB⊥CD于点E,CG⊥AD于点F.(1)求∠AOG的度数;(2)若AB=2,求CD的长.参考答案一.选择题1.解:A、点O为圆心,半径不确定,则不能确定圆;B、2cm长为半径,圆心不确定,则不能确定圆;C、以点O为圆心,以5cm长为半径可确定圆;D、经过点A,则圆心和半径都不能确定,则不能确定圆.故选:C.2.解:A、直径是圆中特殊的弦,但弦不一定是直径,所以错误;B、半圆是特殊的弧,故正确;C、过圆内的点圆心有无数条直径,故错误;D、直径的长度是同一个圆的半径的2倍,故错误.故选:B.3.解:∵圆心角的顶点必须在圆心上∴A、B、C均不对故选:D.4.解:∵宽为10cm,∴圆的直径是10cm,∴圆的重叠部分的宽是(40﹣34)÷3=2cm,∴d=20﹣2=18cm.故选:C.5.解:∵D、C是劣弧EB的三等分点,∠BOC=40°∴∠EOD=∠COD=∠BOC=40°∴∠AOE=60°.故选:B.6.解:∵半圆所对的弦是直径∴半圆所对的圆心角是180度.故选:B.7.解:∵∠AOB=68°,∴∠APB=∠AOB=34°,故选:B.8.解:如图,连接OA,∵OC⊥AB于点C,∴AC=BC,∵⊙O的半径是5,∴OA=5,又OC=3,所以在Rt△AOC中,AC===4,所以AB=2AC=8.故选:D.9.解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.10.解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=90°﹣40°=40°,∴∠D=∠B=50°故选:D.11.解:连接OC,如图,∵∠A=26°,∴∠BOC=2∠A=52°,∵AB⊥CD,∴∠OCD=90°﹣∠BOC=90°﹣52°=38°,∵OC=OD,∴∠D=∠OCD=38°.故选:B.12.解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.二.填空题13.解:∵,(已知)∴∠AOE=∠COA(等弧所对的圆心角相等);又∠AOE=32°,∴∠COA=32°,∴∠COE=∠AOE+∠COA=64°.故答案是:64°.14.解:∵∠AOC=2∠ABC,∠ABC=23°,∴∠AOC=46°,故答案为46°.15.解:∵弦AB把圆周分成1:9两部分,∴弦AB所对圆心角的度数=×360°=36°.故答案为36°.16.解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,∵OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×74°=()°.故答案是:()°.∵∠BDC与∠BAC在BC的同侧,∴∠BAC=40°,∵AC平分∠BAD,∴∠BAD=2∠BAC=80°,∵四边形ABCD内接于⊙O,∴∠BCD+∠BAD=180°;∴∠BCD的度数为100°,故答案为:100°.18.解:连接OA,由题意得,OA=2.5m,OD=1.5m,∵CD⊥AB,∴AD==2m,∴AB=2AD=4m,故答案为:4.19.解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m.故答案为:25.三.解答题20.解:连接OD,∵OC=OD,∠C=40°,∵AB=2DE,OD=AB,∴OD=DE,∵∠ODC是△DOE的外角,∴∠E=∠EOD=∠ODC=20°,∵∠AOC是△COE的外角,∴∠AOC=∠C+∠E=40°+20°=60°.21.(1)证明:过O作OE⊥AB于点E,则CE=DE,AE=BE,∴BE﹣DE=AE﹣CE,即AC=BD;(2)解:由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,∴CE===2,AE===8,∴AC=AE﹣CE=8﹣2.22.解:(1)∵直径AB=26m,∴OD=,∵OE⊥CD,∴,∵OE:CD=5:24,∴OE:ED=5:12,∴设OE=5x,ED=12x,∴在Rt△ODE中(5x)2+(12x)2=132,解得x=1,∴CD=2DE=2×12×1=24m;(2)由(1)得OE=1×5=5m,延长OE交圆O于点F,∴EF=OF﹣OE=13﹣5=8m,∴,即经过2小时桥洞会刚刚被灌满.23.解:(1)连接OD,∵AB⊥CD,∴=,∴∠BOC=∠BOD,由圆周角定理得,∠A=∠BOD,∴∠A=∠BOD,∵∠AOG=∠BOD,∴∠A=∠AOG,∵∠OF A=90°,∴∠AOG=60°;(2)∵∠AOG=60°,∴∠COE=60°,∴∠C=30°,∴OE=OC=,∴CE==,∵AB⊥CD,∴CD=2CE=.。
新人教版九年级数学上册课时作业圆复习
新人教版九年级数学上册课时作业圆复习一、选择题1.如图,点A 、B 、C 是⊙O 上的三点,若∠OBC=50°,则∠A 的度数是( ) A .40° B .50° C .80° D .100°2.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以C 为圆心、CA 为半径的圆与AB 交于点D ,则AD 的长为( ) A . B . C . D .3.如图,在⊙O 中,弦AC=2.点A 是圆上一点,且∠ABC=45°,则⊙O 的半径是( )A .1 B .22 C .2 D .4.如图,四边形ABCD 为⊙O 的内接四边形,点E 在CD 的延长线上,如果∠BOD=120°,那么∠BCE 等于( )A.30°B.60°C.90°D.120°第1题 第2题 第3题5.已知⊙O 的直径为12cm ,圆心到直线L 的距离为6cm ,则直线L 与⊙O 的公共点的个数为( ) A .2 B .1 C .0 D .不确定6.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切7.在Rt △ABC 中,∠C=90°,AC=12,BC=5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是( )A .25πB .65πC .90πD .130π 8.直角△ABC 中,∠C=90°,AC=8,BC=6,两等圆⊙A ,⊙B 外切,那么图中两个扇形(阴影部分)的面积是( ) A :254π B :258π C :2516π D :2532πB(第9题)ACB (第4题)CEO第9题图二、填空题9. 如图,AB 、AC 与⊙O 相切于点B 、C ,∠A=50゜,P 为⊙O 上异于B 、C 的一个动点,则∠BPC 的度数为 。
九年级数学上册 第二十四章 24.1 圆的有关性质课时练 (新版)新人教版
第二十四章 24.1 圆的有关性质学校:姓名:班考号:()A. ∠ABCB. ∠AOBC.∠OAB D. ∠OBC2. 下列命题中,不一定成立的是()A. 圆既是中心对称图形又是轴对称图形B. 弦的垂线经过圆心且平分这条弦所对的弧C. 弧的中点与圆心的连线垂直平分这条弧所对的弦D. 垂直平分弦的直线必过圆心3. 如图所示,在半径为2 cm的圆O内有长为2 cm的弦AB,则此弦所对的圆心角∠AOB为()A. 60°B. 90°C.120° D. 150°4. 如图所示,AB是☉O的直径,点C,D在☉O上,∠BOC=110°,AD∥OC,则∠AOD= ()A. 70°B. 60°C.50° D. 40°5. 如图,四边形ABCD是☉O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A. 88°B. 92°C.106° D. 136°6. 已知☉O的直径CD=10cm,AB是☉O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为().A. 2cmB. 4cmC. 2cm或4cm D. 2cm或4cm2 27. 如图所示,☉O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交☉O 于点E ,连接EC .若AB =8,CD =2,则EC 的长为 ( )A. 2B. 8C.2 D. 28. 如图所示,,AD 为☉O 的弦,∠BAD =50°,则∠AED 等于 ( )A. 50°B. 60°C.70° D. 75°9. 如图,△ ABC 内接于⊙O ,D 为线段AB 的中点,延长OD 交⊙O 于点E ,连接AE ,BE ,则下列五个结论①AB ⊥DE ,②AE =BE ,③OD =DE ,④∠AEO =∠C ,⑤=,正确结论的个数是( )A. 2B. 3C.4 D. 510. 如图,已知点C ,D 是半圆上的三等分点,连接AC ,BC ,CD ,OD ,BC 和OD 相交于点E.则下列结论:①∠CBA=30°;②OD ⊥BC ;③OE=AC ;④四边形AODC 是菱形;正确的个数是( )A. 1B. 2C.D. 4二、填空题O 的直径,C ,D ,E 都是☉O 上的点,则∠1+∠2= .12. 如图所示,☉O 的直径AB ⊥弦CD ,且∠BAC =40°,则∠BOD = .13. 一点到☉O 的最近距离为4 cm,最远距离为9 cm,则该圆的半径是 .14. 圆内接四边形ABCD的内角∠A∶∠B∶∠C=2∶3∶4,则∠D=度.15. 如图5,已知AB是⊙O的弦,半径OA=6 cm,∠AOB=120°,则AB=________cm.16. 如图,已知AB是☉O的直径,D是圆上任意一点(不与点A,B重合),连接BD,并延长到点C,使DC=BD,连接AC,则△ABC的形状是三角形.17. 如图,MN是⊙O的直径,矩形ABCD的顶点A,D在MN上,顶点B,C在⊙O上,若⊙O的半径为5,AB=4,则AD边的长为.三、解答题,A,B是☉O上的两个定点,P是☉O上的动点(点P不与点A,B重合),我们称∠APB是☉O上关于点A,B的滑动角. 已知∠APB是☉O上关于点A,B的滑动角.(1)若AB是☉O的直径,则∠APB=°;(2)连接AB,若☉O的半径是1,AB=,求∠APB的度数.19. 如图所示,AB是☉O的一条弦,OD⊥AB,垂足为C,交☉O于点D,点E在☉O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.34 420. (探究题)如图所示,已知△ABC 是等边三角形,以BC 为直径的☉O 分别交AB ,AC 于点D ,E.(1)求证:△DOE 是等边三角形.(2)如图所示,若∠A =60°,AB ≠AC ,则第1问中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.参考答案1. 【答案】B 【解析】圆心角指顶点在圆心的角,满足此条件的只有B 选项.2. 【答案】B 【解析】弦的垂直平分线经过圆心且平分这条弦所对的弧,而并非是弦的垂线经过圆心且平分这条弦所对的弧.注意:弦的垂线不一定经过弦的中点,它和垂直平分线不同.3. 【答案】C 【解析】半弦长为cm,则垂心距为1cm,垂线与半径夹角为60度,所以弦所对的圆心角为120度.综合利用垂径定理及圆心角定理.4. 【答案】D 【解析】本题考查圆的有关性质,理解各个性质是解题的关键,∵∠BOC =110°,∠BOC +∠AOC =180°,∴∠AOC =70°.∵AD ∥OC ,OD =OA ,∴∠D =∠A =∠AOC =70°.∴∠AOD =180°-2∠A =40°,故选D.5. 【答案】D 【解析】本题考查圆内接四边形的性质、圆心角和圆周角的关系,难度中等,根据圆内接四边形得出∠A+∠C=180°,再根据等弧所对的圆心角和圆周角的关系得出∠A=44°,进而得出∠BCD=136°,故选D .6. 【答案】C 【解析】连接AC ,AO ,如图①.∵☉O 的直径CD =10cm,AB ⊥CD ,AB =8cm,∴AM =AB =×8=4(cm),OD =OC =5(cm),当C 点位置如图①所示时,∵OA =5(cm),AM =4(cm),CD ⊥AB ,∴OM ==3(cm),∴CM =OC +OM =5+3=8(cm),∴AC ==4(cm);当C 点位置如答图②所示时,同理可得OM =3cm,∵OC =5cm,∴MC =5-3=2(cm),在Rt△AMC 中,AC ==2cm.故选C.本题运用了分类讨论思想,先根据题意画出图形,由于点C 的位置不能确定,故应分两种情况进行讨论,容易遗漏其中一种情况而出错.7. 【答案】D 【解析】由题意知AC =BC =4,设☉O 的半径为r ,则OC =r -2,在Rt△AOC 中,∵AO =r ,AC =4,OC =r -2,∴OA 2=AC 2+OC 2,即r 2=42+(r -2)2,解得r =5,∴AE =2r =10,连接BE ,如图, ∵AE 是☉O 的直径,∴∠ABE =90°,在Rt△ABE 中,∵AE =10,AB =8,∴BE ==6,在Rt△BCE 中,∵BE =6,BC =4,∴CE ==2.故选D.8. 【答案】D 【解析】因为,∠BAD =50°,所以劣弧BD 对应50度的角,则劣弧AB,BC,CD 都对应着25度的角.为因此,∠AED 等于75°,故选D.9. 【答案】B【解析】由图可知,连接AO,BO,AO=BO,D为中点,∴DE⊥AB,AE=BD,=,=,故选B10. 【答案】D【解析】连接OC,BD,因为C,D是半圆上的三等分点,所以△AOC,△COD,△BOD都是等边三角形,所以AC=CD=OD=AO,即四边形AODC是菱形,④正确;∠CAO=∠DOB=60°,所以AC∥OD,所以∠OEB=∠ACB,△OBE∽△ABC,所以=,即OE=AC,③正确;又因为AB是直径,所以∠ACB=90°,所以∠OEB=90°,即OD⊥BC,②正确;因为三角形内角和等于180°,所以∠CBA=180°-∠ACB-∠CAB=30°,①正确;所以四个结论均是正确的.故选D.11. 【答案】90°12. 【答案】80°13. 【答案】2.5cm或6.5cm14. 【答案】9015. 【答案】616. 【答案】等腰17. 【答案】618.(1) 【答案】90(2) 【答案】连接OA,OB.在△AOB中,∵OA=OB=1,AB=,∴OA2+OB2=AB2.∴∠AOB=90°.当点P在优弧AB上时,∠APB=∠AOB=45°.当点P在劣弧AB 上时,∠APB=(360°-∠AOB)=135°.综上可知,∠APB的度数为45°或135°.19.(1) 【答案】∵OD⊥AB,∴AD=BD.又∵∠AOD=52°,∴∠DEB=∠AOD=26°.(2) 【答案】∵OD⊥AB,∴AC=BC,在Rt△AOC中,AC==4,∴AB=2AC=8.20.(1) 【答案】由题意知∠B=∠C=60°.∵OB=OC=OE=OD,∴△OBD和△OEC都为等边三角形.∴∠BOD=∠EOC=60°.∴∠DOE=60°.∴△DOE为等边三角形.(2) 【答案】当∠A=60°,AB≠AC时,第1问中的结论仍然成立.证明如下:连接CD.∵BC为☉O的直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.又∵OD=OE,∴△DOE为等边三角形.5。
新人教版九年级上册数学《圆》全套课时作业及答案
第二十四章圆24. 1圆的有关性质第 1 课时圆和垂直于弦的直径1.下列说法正确的是()A.直径是弦,弦是直径B.半圆是弧C.无论过圆内哪一点,只能作一条直径D.长度相等两条弧是等弧2.下列说法错误的有()①经过点 P 的圆有无数个;②以点P 为圆心的圆有无数个;③半径为 3 cm 且经过点P 的圆有无数个;④以点P 为圆心,以 3 cm 为半径的圆有无数个.A.1个B.2 个C.3 个D.4个3.如图 24-1-8,将半径为 2 cm 的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕 AB 的长为()A . 2 cm B. 3 cm C. 2 3 cm D . 2 5 cm图 24-1-8图24-1-94.如图 24-1-9,在⊙ O 中,弦 AB 垂直于直径CD 于点 E,则下列结论:①AE= BE;② AC = BC ;③ AD = BD ;④EO=ED .其中正确的有()A .①②③④B.①②③C.②③④ D .①④5.如图 24-1-10,在⊙ O 中,半径为5,∠ AOB= 60°,则弦长AB= ________.图 24-1-10图24-1-116.如图 24-1-11,是两个同心圆,其中两条直径互相垂直,其大圆的半径是2,则其阴影部分的面积之和________(结果保留π).7.如图 24-1-12, AB 是⊙ O 的直径, BC 是弦, OD⊥ BC 于点 E,交BC于点 D .(1)请写出五个不同类型的正确结论;(2)若 BC= 8, ED= 2,求⊙ O 的半径.图 24-1-128.平面内的点 P 到⊙ O 上点的最近距离是3,最远距离是7,则⊙ O 的面积为 __________ .9.如图 24-1-13,已知在⊙ O 中, AB,CD 两弦互相垂直于点E,AB 被分成 4 cm 和 10 cm 两段.(1)求圆心 O 到 CD 的距离;(2)若⊙ O 半径为 8 cm,求 CD 的长是多少?图 24-1-13已知10.如图 24-1-14,ABAB= 2DE .是⊙ O的直径,CD是⊙O的弦,AB, CD的延长线交于点E,(1)若∠ E=20°,求∠ AOC 的度数;(2)若∠ E=α,求∠ AOC 的度数.图 24-1-14第 2 课时弧、弦、圆心角和圆周角1.下列说法中,正确的是()A .等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等2.如图 24-1-24,已知 CD 为⊙ O的直径,过点 D 的弦DE平行于半径OA,若∠ D的度数是 50°,则∠ C 的度数为 ()A . 50°B .40° C.30° D .25°图 24-1-24图24-1-25 3.如图 24-1-25,已知 AB 是⊙ O 的直径,BC=CD=DE,∠ BOC= 40°,那么∠ AOE =()A . 40°B .50° C.60° D .120 °4.如图 24-1-26 所示, A,B, C,D 是圆上的点,∠1= 68°,∠ A= 40°.则∠ D =______.图 24-1-26图24-1-275.在半径为 5 cm 的⊙ O 中,60°的圆心角所对的弦长为________cm.6.如图 24-1-27, AB 为⊙ O 的直径,点 C,D 在⊙ O 上.若∠ AOD =30°,则∠ BCD 的度数是 ________.7.如图 24-1-28,在⊙ O 中,AB=AC,∠ B=50°.求∠ A 的度数.图 24-1-288.一个圆形人工湖如图24-1-29 所示,弦AB 是湖上的一座桥,已知桥AB 长 100 m,测得圆周角∠ ACB= 45°,则这个人工湖的直径AD 为 ()图 24-1-29A . 50 2 m B. 100 2 mC. 150 2 mD. 200 2 m9.如图 24-1-30,已知 AB 是⊙ O 的直径, AC 是弦,过点 O 作 OD ⊥ AC 于点 D,连接BC.1(1)求证: OD=2BC;(2)若∠ BAC= 40°,求∠ AOC 的度数.图 24-1-3010.如图 24-1-31, AB 是⊙ O 的直径,点 C 是BD的中点, CE ⊥AB 于点 E,BD 交 CE 于点 F.(1)求证: CF = BF;(2)若 CD = 6, AC = 8,求⊙ O 的半径及CE 的长.图 24-1-3124. 2点和圆、直线和圆的位置关系第 1 课时点和圆的位置关系1.已知⊙ O 的半径为5,点 A 为线段 OP 的中点,当OP= 10 时,点 A 与⊙ O 的位置关系是()A .在圆内B .在圆上C.在圆外 D .不能确定2.如图 24-2-2,Rt△ ABC,∠ C= 90°,AC =3 cm,BC= 4 cm,则它的外心与顶点 C 的距离为()图 24-2-2A . 2.5B. 2.5 cmC.3 cm D .4cm3.下列四个命题中,正确的个数是()①经过三点一定可以画圆;②任意一个三角形一定有一个外接圆,而且只有一个外接圆;③任意一个圆一定有一个内接三角形,而且只有一个内接三角形;④三角形的外心到三角形三个顶点的距离都相等.A.4个B.3 个C.2 个D.1 个4.如图 24-2-3,⊙ O 是等边△ ABC 的外接圆,⊙ O 的半径为2,则等边△ ABC 的边长为()图 24-2-3A. 3B. 5C.2 3D.255.经过一点P 可以作 ______个圆;经过两点P,Q 可以作 ________ 个圆,圆心在__________上;经过不在同一直线上的三个点可以作________个圆,圆心是__________的交点.6.如图 24-2-4,在△ ABC 中,已知 AB= AC,点 O 是其外心, BC= 8 cm,点 O 到 BC 的距离 OD =3 cm,求△ ABC 外接圆的半径.图 24-2-47.如图 24-2-5,城市 A 的正北方向50 千米的 B 处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100 千米, AC 是一条直达 C 城的公路,从 A 城发往 C 城的班车速度为60 千米 /时.(1)当班车从 A 城出发开往 C 城时,某人立即打开无线电收音机,班车行驶了0.5 小时的时候,接收信号最强.此时,班车到发射塔的距离是多少千米(离发射塔越近,信号越强 )?(2)班车从 A 城到 C 城共行驶 2 小时,请你判断到 C 城后还能接收到信号吗?请说明理由.图 24-2-58.如图 24-2-6,△ ABC 内接于⊙ O,∠ BAC = 120 °,AB= AC=4, BD 为⊙ O 的直径,则 BD= __________.图 24-2-6图24-2-79.在矩形ABCD 中, AB= 3 cm, BC=4 cm,现以点 A 为圆心作圆,使B, C, D 三点至少有一个在圆内,至少有一个在圆外,则⊙ A 的半径 r 的取值范围是__________.10.如图 24-2-7, AD 是△ ABC 的外角∠ EAC 的平分线, AD 与三角形的外接圆交于点D,连接 BD,交 AC 于点 P,求证: DB= DC .11.阅读下面材料:对于平面图形A,如果存在一个圆,使图形 A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形 A 被这个圆所覆盖.图 24-2-8(1)中的三角形被一个圆所覆盖,图24-2-8(2) 中的四边形被两个圆所覆盖.图24-2-8回答下列问题:(1)边长为 1 cm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是 ________cm;(2)边长为 1 cm 的等边三角形被一个半径为r 的圆所覆盖, r 的最小值是 ________cm;(3)边长为 2 cm,1 cm 的矩形被两个半径都为r 的圆所覆盖,r 的最小值是 ________cm,这两个圆的圆心距是________cm.第2课时直线和圆的位置关系1.已知圆的直径为13 cm,设直线和圆心的距离为d,(1)若 d= 4.5 cm,则直线与圆 ________,直线与圆有 ______ 个公共点;(2)若 d= 6.5 cm,则直线与圆 ________,直线与圆有 ______ 个公共点;(3)若 d= 8 cm,则直线与圆 ________,直线与圆有 ______个公共点.2.直线 l 和⊙ O 有公共点,则直线l 与⊙ O()A.相离B.相切C.相交 D .相切或相交3.如图 24-2-18, PA,PB 是⊙ O 的两条切线,切点是么∠ AOB= ()A, B.如果OA= 4, PO=8,那A.90° B.100° C.110° D.120°4.如图24-2-19,已知图 24-2-18AD 为⊙ O 的切线,⊙O 的直径图 24-2-19AB= 2,弦 AC= 1,则∠ CAD =________.5.⊙A 的直径为6,点 A 的坐标为(- 3,-4),则⊙ A 与x 轴、 y 轴的位置关系分别是______________.6.如图24-2-20,正三角形的内切圆半径为 1 cm,正三角形的边长是________.图 24-2-20图24-2-217.如图 24-2-21,在△ ABC 中, AB= AC,∠ BAC= 120 °,⊙ A 与 BC 相切于点 D,与AB 相交于点 E,则∠ ADE= ______.8.如图 24-2-22,在 Rt△ ABC 中,∠ C=90°,点 D 是 AC 的中点,且∠ A+∠ CDB =90°,过点 A,D 作⊙ O,使圆心 O 在 AB 上,⊙ O 与 AB 交于点 E.求证:直线BD 与⊙ O 相切.图 24-2-229.如图 24-2-23,在平面直角坐标系中,四边形OABC 为正方形,顶点A,C 在坐标轴上,以边 AB 为弦的⊙ M 与 x 轴相切,若点 A 的坐标为 (0,8) ,则圆心 M 的坐标为 ()图 24-2-23A . (4,5)B. (- 5,4)C.( -4,6)D. (- 4,5)10.如图 24-2-24,在 Rt△ABC 中,∠ ACB= 90°,内切圆⊙ I 与 BC 相切于点D,∠ BIC=105°, AB= 8 cm,求:(1)∠ IBA 和∠ A 的度数;(2)BC 和 AC 的长.图 24-2-2411.如图 24-2-25,直线 AB, CD 相交于点O,∠ AOC = 30°,半径为 1 cm 的⊙ P 的圆心在射线 OA 上,开始时, PO= 6 cm,如果⊙ P 以 1 cm/秒的速度沿由 A 向 B 的方向移动,那么当⊙ P 的运动时间t(单位:秒 )满足什么条件时,⊙P 与直线 CD 相交?图 24-2-2524. 3正多边形和圆1.下列命题中,是假命题的是()A .各边相等的圆内接多边形是正多边形B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心D.一个外角小于一个内角的正多边形一定是正五边形2.如图 24-3-3,正六边形螺帽的边长是 2 cm,这个扳手的开口 a 的值应是 ()图 24-3-3A . 2 3 cm B. 3 cm23C. 3cm D . 1 cm3.已知正六边形的边长为10 cm,则它的边心距为 ()3A. 2cm B . 5 cm C. 5 3 cm D. 10 cm4.正六边形的两条平行边之间的距离为1,则它的边长为 ()33233A. 6B. 4C. 3D. 35.正多边形的一个中心角为36°,那么这个正多边形的一个内角等于________.6.某工人师傅需要把一个半径为 6 cm 的圆形铁片加工成边长最大的正六边形铁片,求此正六边形的边长.7.如图 24-3-4,在圆内接正五边形 ABCDE 中,对角线 AC,BD 相交于点 P,求∠ APB 的度数.图 24-3-48.圆的半径为8,那么它的外切正方形的周长为____,内接正方形的周长为________.9.将一块正五边形纸片[图 24-3-5(1)] 做成一个底面仍为正五边形且高相等的无盖纸盒[ 侧面均垂直于底面,见图24-3-5(2)] ,需在每一个顶点处剪去一个四边形,例如图中的四边形 ABCD ,则∠ BAD 的大小是 ________.图 24-3-510.如图 24-3-6,施工工地的水平地面上,有三根外径都是 1 m 的水泥管,两两相切地堆放在一起,求其最高点到地面的距离?图 24-3-611. (1)如图 24-3-7(1) ,在圆内接△ ABC 中, AB= BC= CA, OD, OE 为⊙ O 的半径,1 OD⊥ BC 于点 F,OE ⊥AC 于点 G,求证:阴影部分四边形OFCG 的面积是△ ABC 面积的3;(2)如图 24-3-7(2),若∠ DOE 保持 120 °不变,求证:当∠DOE 绕着点 O 旋转时,由两条半径和△ ABC 的两条边围成的图形 (图中阴影部分 )面积始终是△ ABC 面积的1 . 3(1)(2)图 24-3-724. 4弧长和扇形面积第 1 课时弧长和扇形面积1.如图 24-4-6,已知⊙ O 的半径 OA= 6,∠ AOB= 90°,则∠ AOB 所对的弧AB 的长为()A . 2π B. 3π C. 6π D . 12π2.如图图 24-4-624-4-7, AB 切⊙ O 于点B,OA= 2图3,AB= 3,弦24-4-7BC∥ OA,则劣弧BC的弧长为 ()A.33 π B.32 πC.π3D.2π3.挂钟分针的长是15πA.cm B.15π210 cm,经过cm45 分钟,它的针尖转过的弧长是()75πC. 2 cm D .75π cm4.如图 24-4-8,在以点O 为圆心的两个同心圆中,大圆的弦为切点,且AB =4, OP= 2,连接 OA 交小圆于点E,则PE的长为AB(是小圆的切线,点)P图 24-4-8ππππA. 4B.3C.2D. 85 .已知扇形的圆心角为150 °,它所对应的弧长为__________cm,面积是 ________cm(结果保留π).6.如图 24-4-9,点 A, B,C 在直径为23的⊙ O 积等于 __________( 结果中保留π).20π cm,则此扇形的半径是上,∠ BAC= 45°,则图中阴影的面图24-4-9图24-4-107.如图24-4-10,以O 为圆心的同心圆,大圆的半径OC,OD分别交小圆于A,B.AB 长为 8π,CD长为 12π, AC=12.则小圆半径为________.8.如图 24-4-11,已知 AB 是⊙ O 的直径,弦CD⊥ AB,垂足为E,∠ AOC= 60°, OC =2.(1)求 OE 和 CD 的长;(2)求图中阴影部分的面积.图 24-4-119.如图 24-4-12,直径 AB 为 6 的半圆,绕点 A 逆时针旋转60°,此时点 B 到了点 B′,则图中阴影部分的面积是()A . 3π B. 6π C. 5π D . 4π图 24-4-12图24-4-1310.如图 24-4-13,在 Rt △ABC 中,∠ C= 90°,AC= 8,BC=6,两等圆⊙ A,⊙ B 外切,那么图中两个扇形的面积之和为()25252525A. 4πB. 8πC.16πD. 32π11.如图 24-4-14,在⊙ O 中,弦 BC 垂直于半径 OA ,垂足为点 E,点 D 是优弧BC上一点,连接 BD , AD , OC,∠ ADB = 30°.(1)求∠ AOC 的度数;(2)若弦 BC= 6 cm,求图中阴影部分的面积.图 24-4-14第 2 课时圆锥的侧面积和全面积1. 一圆锥的侧面展开图是半径为 2 的半圆,则该圆锥的全面积是A . 5π B. 4π C. 3π D . 2π2.如图 24-4-18,圆锥形烟囱帽的底面直径为80 cm ,母线长为()50 cm ,则此烟囱帽的侧面积是()A . 4000 π2cm B. 3600 π2cmC.2000 π2cm D. 1000 π2cm3.如图24-4-19图 24-4-18,小红同学要用纸板制作一个高图 24-4-194 cm,底面周长是6πcm 的圆锥形漏斗模型.若不计接缝和损耗,则她所需纸板的面积是()22A . 12π cm B.15π cm22C.18π cm D .24π cm4.已知点 O 为圆锥的顶点,M 为圆锥底面上一点,点P 在出发,绕圆锥侧面爬行,回到点P 时所爬过的最短路线的痕迹如图将圆锥侧面剪开并展开,所得侧面展开图是()OM 上.一只蜗牛从点24-4-20 所示,若沿POM图 24-4-205.已知圆锥的侧面积恰好等于其底面积的 2 倍,则该圆锥侧面展开图所对应扇形圆心角的度数为 ()A . 60°B .90° C.120 ° D. 180 °6.如图 24-4-21,扇形的半径为 6,圆心角θ为 120 °,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为 ________.图 24-4-217.已知圆锥的侧面展开图的圆心角为180 °,底面积为15 cm2,求圆锥的侧面积.8.如图 24-4-22 是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为 10 cm,母线 OE(OF) 长为 10 cm,在母线OF 上的点 A 处有一块爆米花残渣,且FA= 2 cm,一只蚂蚁从杯口的点 E 处沿圆锥表面爬行到 A 点,则此蚂蚁爬行的最短距离为________cm.扇形9.如图 24-4-23ABC.求:,有一半径为 1 m图 24-4-22的圆形铁片,要从中剪出一个最大的圆心角为90°的(1)被剪掉的阴影部分的面积;(2)用所留的扇形铁片围成一个圆锥,该圆锥底面圆的半径是多少?图 24-4-2310.如图 24-4-24,已知点 B 的坐标为 (0 ,- 2),点 A 在 x 轴的正半轴上,将Rt△ AOB绕 y 轴旋转一周,得到一个圆锥,当圆锥的侧面积等于5π时,求 AB 所在直线的解析式.图 24-4-24第二十四章圆24. 1圆的有关性质第 1 课时圆和垂直于弦的直径【课后巩固提升】1. B2. A 解析:①②③正确;③虽然已知半径,但点 P 不是圆心,能作无数个圆;④满足两个条件,只能作一个圆,故④错误.3. C 4.B5. 5 6.2 π7.解: (1) 不同类型的正确结论有:①BE= CE ;②BD=CD;③∠ BED= 90°;④∠ BOD =∠ A;⑤ AC∥ OD ;⑥ AC⊥ BC;⑦OE2+BE 2= OB2;⑧ S△ABC= BC·OE;⑨△ BOD 是等腰三角形等.1(2)∵ OD ⊥ BC,∴ BE=CE =2BC= 4.设⊙ O 的半径为R,则 OE= OD- DE= R-2.在 Rt△OEB 中,222222由勾股定理,得OE +BE =OB ,即 (R-2) +4 =R .解得 R=5.12 8.4π或 25π解析:当点 P 在⊙ O 的外部时,⊙ O 的半径 r =× (7- 3)= 2,∴ S⊙O=πr=4π当.点 P 在⊙ O 的内部时,⊙ O 的半径 r=1× (7+3)= 5,∴ S⊙O=πr2= 25π. 29.解: (1)如图 30,作 OG⊥ CD 于点 G,OF ⊥ AB 于点 F.图 30∵∠ OGE=∠ GEF =∠ OFE= 90°,∴四边形 OGEF 是矩形.∴ OG= EF .1 1∵OF⊥ AB,∴ AF =2AB=2× (4+ 10)= 7(cm) .∴OG= EF =AF -AE=3(cm) .∴点 O 到 CD 的距离为 3 cm.(2)连接 OD,在 Rt△ ODG 中,OD= 8 cm,OG= 3 cm,由勾股定理,得GD=OD 2- OG2=55 (cm).∵ OG⊥ CD,∴ CD = 2GD= 255 cm.10.解: (1) ∵AB= 2DE,又OA=OB=OC=OD ,∴OD=OC=DE .∴∠ DOE=∠ E= 20°.∴∠ CDO =∠ DOE +∠ E= 40°=∠ C.∴∠ AOC =∠ C +∠ E = 60°. (2)由 (1) 可知:∠ DOE =∠ E = α,∠ C =∠ ODC = 2∠ E ,∴∠ AOC =∠ C +∠ E = 3α.第 2 课时 弧、弦、圆心角和圆周角【课后巩固提升】 1. B 2.D 3.C4. 28° 5.5 6.105 °7. 解: ∵ AB = CD ,∴ AB =AC .∴∠ B =∠ C. 又∵∠ B = 50°,∴∠ C =50°. ∵∠ A +∠ B +∠ C = 180°,∴∠ A = 180°- (∠ B +∠ C)= 80°. 8. B9. (1)证明: ∵ OD ⊥ AC ,∴ AD = CD .∵ AB 是⊙ O 的直径,∴ OA =OB.1∴ OD 是△ ABC 的中位线.∴ OD = 2BC.(2) 解:连接 OC ,∵ OA = OC ,∠ BAC = 40°,∴∠ OCA =40°.∴∠ AOC = 180 °- (40 °+40°)= 100 °.10. (1)证明: 如图 D32,∵ AB 是⊙ O 的直径,图 D32∴∠ ACB = 90°.又∵ CE ⊥ AB ,∴∠ CEB = 90°.∴∠ A +∠ B = 90°,∠ 2+∠ B =90°. ∴∠ A =∠ 2.又∵ C 是弧 BD 的中点, ∴∠ 1=∠ A. ∴∠ 1=∠ 2. ∴ CF = BF.(2)解: 由 (1)可知: CD = BC ,∴ CD = BC =6.又∵在 Rt △ ACB 中, AC = 8,∴ AB =10,即⊙ O 的半径为 5.S △ ACB =AC ·BC= CE ·AB ,∴ CE = 24 . 2 2 524. 2 点和圆、直线和圆的位置关系 第 1 课时 点和圆的位置关系【课后巩固提升】1. B 2.B 3.C 4.C5. 无数 无数 线段 PQ 的垂直平分线上一三条线段垂直平分线 16. 解: 连接 OB.∵OD ⊥ BC , BC = 8 cm ,∴ BD = 2BC = 4(cm).又∵ OD = 3 cm ,在 Rt △ OBD 中,由勾股定理,得 OB =5 cm.∴△ ABC外接圆的半径为5 cm.7. 解: (1)如图 D33,过点 B 作 BM ⊥ AC 于点 M ,图 D33设班车行驶了0.5 小时的时候到达M 点.根据此时接受信号最强,则BM ⊥ AC,又 AM =30, AB= 50.所以 BM = 40 千米.答:所以,此时,班车到发射塔的距离是40 千米.(2)AB=50, AC= 60× 2= 120,则 MC= 90.BM2+ MC2=在 Rt△ BMC 中, BM = 40, MC = 90,则 BC =9 700< 10 000,所以班车到车城 C 后还能接收到信号.8.8解析:∵ AB=AC,∠BAC=120°,∴∠ ACB=∠ ABC=30°.∴∠ D=30°.又∠ BAD =90°,故 BD= 2AB= 8.9. 3 cm< r< 5 cm10.证明:∵∠ BAD +∠ BCD= 180 °,∠ BAD +∠ DAE = 180 °,∴∠ BCD=∠ DAE.∵∠ DAC=∠ DBC,∠ DAE=∠ DAC,∴∠ DBC=∠ DAE.∴∠ DBC =∠ BCD.∴DB= DC .2(2)3(3)2111. (1) 232第 2 课时直线和圆的位置关系【课后巩固提升】1. (1) 相交 2 (2)相切1(3) 相离02. D 3.D4. 30° 5.相离、相切 6.2 3 cm7.60 °8.证明:连接 OD ,∵ OA= OD,∴∠ A=∠ ADO.又∵∠ A+∠ CDB = 90°,∴∠ ADO+∠ CDB= 90°.∴∠ ODB= 180°- (∠ADO +∠ CDB )= 90°.∴ BD⊥ OD.∴ BD 是⊙ O 切线.9. D10.解: (1) ∵∠ ACB= 90°, I 为内心,∴∠ ICB = 45°.∵∠ BIC = 105°,∴∠ IBA=∠ IBC= 30°,∠ ABC = 60°.∴∠ A= 30°.(2)∵ AB= 8 cm,∴ BC= 4 cm.∴ AC=AB 2- BC2=82- 42= 43(cm) .11.解:如图 D34,当⊙ P 运动到⊙ P′时,⊙ P′与 CD 相切.作 P′ E⊥ CD 于点 E.∵⊙ P′半径为 1 cm.∴P′ E= 1.又∠ AOC=30°, P′E⊥ CD ,∴ P′O= 2.∴ t =4.P,此时,t= 8.同理,当点P 在 OB 上时,也存在一圆与CD 相切,即圆中的⊙综上所述, 4< t<8.图 D3424. 3正多边形和圆【课后巩固提升】1. D 2.A 3.C4. D 5.144 °6.解:如图 D35,只有当正六边形是圆的内接正六边形时,此正六边形的边长最大,最大边长为 6 cm.图 D35图D367.解:如图 D36,连接 OA, OB.∵五边形 ABCDE 是正五边形,360°∴∠ AOB=5= 72°.∵AB=CD,∴AB=CD .1∴∠ 2=∠ 1=∠ AOB= 36°.∴∠ APB=∠ 1+∠ 2= 72°.8.64 3229. 72°10.解:由于三个圆两两外切,所以圆心距等于半径之和.所以以三个圆心为顶点的三角形是边长为 1 m 的等边三角形,最高点到地面距离是等边三角形的高加上一个直径.因为等边三角形的高是33,故最高点到地面的距离是1+2m. 211.证明: (1) 连接 OA, OC.∵点 O 是等边三角形ABC 的外心,∴Rt△OFC ≌ Rt △OGC ≌Rt△ OGA .∴S 四边形OFCG= 2S△OFC= S△OAC .1∵S△OAC=3S△ABC,1∴S 四边形OFCG=3S△ABC.(2)如图 D37,连接 OA, OB 和 OC.图 D37则△ AOC≌△ COB≌△ BOA,∠ 1=∠ 2.不妨设 OD 交 BC 于点 F,OE 交 AC 于点 G.∵∠ AOC=∠ 3+∠ 4= 120°,∠DOE=∠5+∠4=120°,∴∠ 3=∠ 5.∠ 1=∠ 2,在△ OAG 和△ OCF 中,OA = OC ,∠ 3=∠ 5,∴△ OAG ≌△ OCF .1∴ S四边形OFCG = S △AOC = 3S △ABC .24. 4 弧长和扇形面积第 1 课时 弧长和扇形面积【课后巩固提升】 1. B 2.A3.B4.C 解析:因为 AB 是小圆的切线, 所以 OP ⊥AP ,AP = 2.所以∠ AOP = 45°,因此 PE45π× 2 π的长为 180 = 2.5. 24 240 π3π 36.4-27. 24 解 析 : 设 小 圆 的 半 径 为 r , ∠ COD = n °, 由 题 意 知 R = r + 12. 则12π= n πR =n πr + 12 ,180 180解得 r = 24.n πr8π= 180.18.解: (1)在△ OCE 中,∵∠ CEO =90°,∠ EOC =60°,OC = 2,∴ OE = 2OC = 1.∴ CE3=2OC = 3.∵ OA ⊥ CD ,∴ CE = DE.∴ CD =2 3.1 1 3=2 3,(2)∵ S △ABC = AB ·CE = × 4×2 2 ∴ S = 1 2 -2 3= 2π- 2 3.阴影 2π×29. B62+ 82= 10. A解析: 设两个扇形的圆心角分别为n 1°, n 2°.在 Rt △ ABC 中, AB = 10, n 1+ n 2= 90.∴两个等圆的半径为5.∴ S 阴影=n 1πR 2 n 2πR 2 πR 2 90× 25π 25π+ = (n 1+ n 2)= 360= 4.360 360 36011. 解: (1)∵弦 BC 垂直于半径 OA , ∴ BE = CE , AB = AC .又∵∠ ADB = 30°,∴∠ AOC =60°.1(2)∵ BC = 6,∴ CE =2BC = 3.在 Rt △OCE 中, CE =3,∠ EAC = 60°,∴ OC = 2 3. ∴ OE = OC 2- CE 2= 4× 3- 9= 3. 连接 OB.∵ AB = AC , ∴∠ BOC = 2∠AOC = 120°.∴ S 阴影= S 扇形 OBC - S △OBC=120× π× (2 3)2- 1× 6× 3= 4π- 3 3. 3602 第 2 课时 圆锥的侧面积和全面积【课后巩固提升】1. C 2.C 3.B4.D5. D 解析: S 侧= πrl , S 底= πr 2,由题意知: l =2r.而侧面展开图扇形的弧长为底面圆的周长.有 n π2r = 2πr ,解得 n = 180°.1806. 2R ,则 πr 2= 15,2 πr = πR ,∴ R 7.解: 设圆锥底面半径为r ,侧面展开图的扇形的半径为 =2r = 215, π∴ S 侧= 180 πR 2 = 1πR 2=1π× 4× 15= 30(cm 2 ).360 22 π8.2 41 解析:底圆周长为 2πr = 10π设.圆锥侧面展开图的扇形所对圆心角为 n °.则 2πr =n πR n π× 10, n = 180,如图 D40,连接 EA ,则 EA 长即为所求的最短距离.在180 .即 10π= 180 OE 2+ OA 2= 102+ 82= 2 41. Rt △ OEA 中, FA = 2, OA = 8,∴ EA =图 D409. 解: (1) 连接 BC.∵∠ BAC = 90°,∴ BC 为⊙ O 的直径.∴ AB 2+ AC 2 =BC 2 =22 .∵ AB = AC ,∴ AB = 2,∴ S 扇形 ABC = 90 π(2) 2 1360 = π. 22 1 1 2∴ S 阴影 = S ⊙O -S 扇形 ABC = π× 1 -π= π (m).2 2(2)设圆锥的底面半径为 r ,依题意,得90π× 2= 2πr.∴ r = 2180 4 m.∴被剪掉的阴影部分的面积为 1 2,该圆锥底面圆的半径为 2m.π m 4 210. 解:设点 A 的坐标为 (r,0),则 OA = r.∵ B(0,- 2),∴ OB = 2.在 Rt △AOB 中,由勾股定理,得 AB = OA 2+ OB 2= r 2+4.∴圆锥的侧面积为 πr ·AB =πr r 2+ 4= 5π.∴ r = 1.∴点 A 的坐标为 (1,0) .设直线 AB 的解析式为 y = kx + b ,k +b = 0,k = 2,∴ ∴b =- 2.b =- 2.∴直线 AB 的解析式为 y = 2x - 2.。
人教版九年级数学上册作业课件 第二十四章 圆 圆的有关性质 圆
∠BOE=∠COF,
=OF,又∵OC=OB,∴OC+OE=OB+OF,
即 CE=BF
9.如图,点A,B和点C,D分别在两个同心圆上,且∠AOB=∠COD. 求证:∠C=∠D.
证明:∵∠AOB=∠COD,∴∠AOB+∠AOC =∠COD+∠AOC,即∠BOC=∠AOD.又 OA =OB,OD=OC,∴△AOD≌△BOC,∴∠C =∠D
解:连接 OD.∵AB 为⊙O 的直径,OC,OD 为 半径,AB=2DE,∴OC=OD=DE,∴∠DOE =∠E,∠OCE=∠ODC.又∠ODC=∠DOE+ ∠E,∴∠OCE=∠ODC=2∠E.∵∠E=18°, ∴∠OCE=36°,∴∠AOC=∠OCE+∠E=36 °+18°=54°
15.如图,AB是半圆O的直径,四边形CDEF是正方形,且点D,E在 半圆O上,点C,F分别在半径OA,OB上.
13.如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE =BF,请你找出线段OE与OF的数量关系,并给予证明.
解:OE=OF.证明:连接 OA,OB.∵OA,OB 是⊙O 的半径,∴OA=OB,∴∠OAB=∠OBA. 又∵AE=BF,∴△OAE≌△OBF(SAS),∴OE =OF
14.如图,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于 点E,已知AB=2DE,∠E=18°,求∠AOC的度数.
练习1:确定圆的条件是圆心和半径,其中圆心决定圆的___位__置_____, 半径决定圆的____大__小____.
2.(1)圆上各点到定点(圆心O)的距离都等于___定__长_______(半径r); (2)到定点的距离等于定长的点都在同一个___圆__上__________. 练习2:矩形的四个顶点,都在以____对__角__线__交__点______为圆心的圆上. 3.连接圆上任意两点的线段叫做___弦______.圆上任意两点间的部分 叫做____圆__弧________.直径是经过圆心的弦,是圆中最长的弦.在同圆或 等圆中,能够____互__相__重__合______的弧叫做等弧.
九年级数学上册 第二十四章 圆24.1 圆的有关性质24.1.1 圆作业_1
内容(nèiróng)总结
No 第二十四章 圆。①两个端点能够(nénggòu)重合的弧是等弧。②圆的任意一条弦把圆
分成优弧和劣弧两部分。③半径相等的圆是等圆。B.与线段OB相等的线段有OA,OC, CD。D.AC是弦,AC又是⊙O的直径,所以弦是直径。8.(新县月考)若圆的半径为3,则 圆中的弦AB长度的取值范围是。60
第二十四章 圆 24.1.1 圆
第一页,共二十三页。
第二页,共二十三页。
知识点1:圆的定义 1.平面内已知点P,以点P为圆心,3 cm为半径作圆,这样(zhèyàng)的圆可以作( )
A
A.1个 B.2个 C.3个 D.无数个
第三页,共二十三页。
2.如图,以坐标(zuòbiāo)原点O为圆心的圆与y轴交于点A,B,且OA=1,则点B的坐标
6.如图,点A,B,C在⊙O上,点O在线段AC上,点D在线段AB上,下列(xiàliè)说法正确
的是(
)
C
A.线段AB,AC,CD,OB都是弦
B.与线段OB相等的线段有OA,OC,CD
C.图中的优弧有2条
D.AC是弦,AC又是⊙O的直径,所以弦是直径
第6题图
第八页,共二十三页。
7 . 如 图 , AB 为 ⊙ O 的 直 径 ( z h íj ìn g ) , 点 C 在 ⊙ O 上 , 若 ∠ C = 16° , 则 ∠ BOC 的 度 数 是 ________3.2°
第九页,共二十三页。
第7题图
8.(新县月考)若圆的半径(bànjìng)为3,则圆中的弦AB长度的取值范围是 ____0_<___A_B_≤_6.
第十页,共二十三页。
9.如图,AB,AC为⊙O的弦,连接(liánjiē)CO,BO并延长,分别交弦AB,AC于点E,F,∠B =∠C,求证:CE=BF.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
O
C
A
图 2
O B
C
A C O A
B
新人教版九年级数学上册课时作业圆的有关性质复习
1. 如图,点D 为边AC 上一点,点O 为边AB 上一点,AD =DO . 以O 为圆心,OD 长为半径作半圆,交AC 于另一点E ,交AB 于点F ,G ,连接EF .若∠BAC =22º,则∠EFG =___.
第1题图 第2题图 第3题图
2.如图,AB 为⊙O 的直径,点C 在⊙O 上,若16C ∠=︒,则BOC ∠的度数是( )
A.74︒
B. 48︒
C. 32︒
D. 16︒
3.一条排水管的截面如图所示,已知排水管的截面圆半径10OB =,截面圆圆心
O 到水面的距离OC 是6,则水面宽AB 是( ) A.16 B.10 C.8 D.6
4.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,
则⊙O 的半径是 .
5.如图,⊙O 的弦CD 与直径AB 相交,若∠BAD=50°,则∠ACD=
第4题图 第5题图 第6题图 第7题图 6. 如图,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以
AC 和BC 的长为两根的一元二次方程是 .
7.如图,已知⊙O 是△ABC 的外接圆,且∠C =70°,则∠OAB =__________.
A B
C
E
F
D
A B
C D
E
8.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( ) A . 115° B . 105°
C . 100° D. 95°
9.如图,AD 为ABC ∆外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线
交AD 于点E ,连接BD ,CD . (1) 求证:BD CD =;
(2) 请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.
等级:整洁 正确 日期: 月 日
师生交流:。