二元一次方程组与实际应用题型归纳
二元一次方程组应用题经典题及答案
实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩类型四:列二元一次方程组解决——银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。
(完整版)二元一次方程组知识点及典型例题
二元一次方程组小结与复习一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。
2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。
任何一个二元一次方程都有无数个解。
3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。
(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。
4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。
(二)二元一次方程组的解法: 1.代入消元法 2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。
二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成0=++c by ax (a,b,c 为已知数,且a ≠0,b ≠0)的形式,这种形式叫二元一次方程的一般形式。
练习1、下列方程,哪些是二元一次方程,哪些不是?12).().(711)(6526)(=++-=++=-y x xy D y x C yx B x z x A练习2、若方程的值。
的二元一次方程,求、是关于)(n n mm y x y xm 43195=+--练习3、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。
(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例题、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)⎩⎨⎧=+=-1023724y x y x(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩(三)、选择适当的方法解下列方程组 (1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---=题型三:代数式的变形 1、在方程=5中,用含的代数式表示为:= ,当=3时,= 。
二元一次方程组题型归纳
二元一次方程组题型总结题型一:二元一次方程的概念及求解例1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.2.二元一次方程3x +2y =15的正整数解为_______________.3.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.4.2x -3y =4x -y =5的解为_______________.题型二:方程组有解的情况。
(方程组有唯一解、无解或无数解的情况)方程组⎩⎨⎧=+=+222111c y b x a c y b x a 满足 条件时,有唯一解;满足 条件时,有无数解;满足 条件时,无解。
例1.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m2二元一次方程组23x y mx ny -=⎧⎨+=-⎩ 有无数解,则m= ,n= 。
类型三:方程组的解与待定系数例1.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.2.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______. 3:若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为 。
4 若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a = ,b= 。
5.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为6.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是7:如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,下列各式中成立的是 ( )A 、a +4c =2B 、4a +c =2C 、a +4c +2=0D 、4a +c +2=0题型四:涉及三个未知数的方程,求出相关量。
二元一次方程组的12种应用题型归纳(可编辑修改word版)
二元一次方程组的 12 种应用题型归纳类型一:行程问题【例 1】甲、乙两人相距 36 千米,相向而行,如果甲比乙先走 2 小时,那么他们在乙出发2.5 小时后相遇;如果乙比甲先走 2 小时,那么他们在甲出发 3 小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为 x 千米/时,乙的速度为 y 千米/时。
(2.5 + 2)x + 2.5y = 36 3x + (3 + 2)y = 36 x = 6 y = 3.6答:甲的速度为 6 千米/时,乙的速度为 3.6 千米/时。
【例 2】两地相距 280 千米,一艘船在其间航行,顺流用 14 小时,逆流用 20 小时,求这艘船在静水中的速度和水流速度。
解:设这艘船在静水中的速度为 x 千米/时,水流速度为 y 千米/时。
14(x + y ) = 280 20(x ‒ y ) = 280 x = 17 y = 3答:这艘船在静水中的速度为 17 千米/时,水流速度为 3 千米/时。
类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作 6 周完成,需工钱 5.2 万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需 9 周完成,需工钱 4.8 万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
{解得{ {解得{{ y = { b = 解:设甲公司每周的工作效率为 x ,乙公司每周的工作效率为 y 。
x = 1 6x + 6y = 1 4x + 9y = 110 1 解得 151 1 ∴1÷10=10(周) 1÷15=15(周)∴甲公司单独完成这项工程需 10 周,乙公司单独完成这项工程需 15 周。
设甲公司每周的工钱为 a 万元,乙公司每周的工钱为 b 万元。
a = 3 6a + 6b = 5.2 4a + 9b = 4.8 5 4 解得 15此时 10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。
二元一次方程组【四大题型】—2024年中考数学高频考点精讲(全国通用)(解析版)
二元一次方程组【四大题型】一、解二元一次方程组【高频考点精讲】1.用“代入法”解二元一次方程组的一般步骤(1)从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来; (2)将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求出x (或y )的值;(4)将求得未知数的值代入变形后的关系式,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。
2.用“加减法”解二元一次方程组的一般步骤(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求得x (或y )的值;(4)将求得未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。
【热点题型精练】1.(2023•无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( ) A .{x =1y =2B .{x =2y =0C .{x =0.5y =3D .{x =−2y =4解:A 、把x =1,y =2代入方程,左边=2+2=右边,所以是方程的解; B 、把x =2,y =0代入方程,左边=右边=4,所以是方程的解; C 、把x =0.5,y =3代入方程,左边=4=右边,所以是方程的解; D 、把x =﹣2,y =4代入方程,左边=0≠右边,所以不是方程的解. 答案:D .2.(2023•南通)若实数x ,y ,m 满足x +y +m =6,3x ﹣y +m =4,则代数式﹣2xy +1的值可以是( ) A .3B .52C .2D .32解:由题意可得{x +y =6−m 3x −y =4−m,解得:{x =5−m 2y =7−m 2, 则﹣2xy +1=﹣2×5−m 2×7−m2+1=−(5−m)(7−m)2+1 =−m 2−12m+352+1=−(m 2−12m+36)−12+1=−(m−6)22+32≤32,∵3>52>2>32,∴A ,B ,C 不符合题意,D 符合题意, 答案:D .3.(2023•眉山)已知关于x ,y 的二元一次方程组{3x −y =4m +1x +y =2m −5的解满足x ﹣y =4,则m 的值为( )A .0B .1C .2D .3解:∵关于x 、y 的二元一次方程组为{3x −y =4m +1①x +y =2m −5②,①﹣②,得:2x ﹣2y =2m +6, ∴x ﹣y =m +3, ∵x ﹣y =4, ∴m +3=4, ∴m =1. 答案:B .4.(2022•株洲)对于二元一次方程组{y =x −1①x +2y =7②,将①式代入②式,消去y 可以得到( )A .x +2x ﹣1=7B .x +2x ﹣2=7C .x +x ﹣1=7D .x +2x +2=7解:{y =x −1①x +2y =7②,将①式代入②式,得x +2(x ﹣1)=7, ∴x +2x ﹣2=7, 答案:B .5.(2022•雅安)已知{x =1y =2是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 .解:把{x =1y =2代入ax +by =3得:a +2b =3,则原式=2(a +2b )﹣5=2×3﹣5=6﹣5=1. 答案:1.6.(2023•杭州二模)已知二元一次方程x +3y =14,请写出该方程的一组整数解 . 解:x +3y =14, x =14﹣3y , 当y =1时,x =11,则方程的一组整数解为{x =11y =1.答案:{x =11y =1(答案不唯一).7.(2023•苏州一模)若一个二元一次方程的一个解为{x =2y =−1,则这个方程可能是 .解:这个方程可能是:x +y =1,答案不唯一. 答案:x +y =1,答案不唯一. 8.(2023•连云港)解方程组{3x +y =8①2x −y =7②.解:{3x +y =8①2x −y =7②,①+②得:5x =15, 解得:x =3,将x =3代入①得:3×3+y =8, 解得:y =﹣1,故原方程组的解为:{x =3y =−1.二、由实际问题抽象出二元一次方程组【高频考点精讲】1.由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系;2.一般来说,有几个未知量就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相符。
(完整版)二元一次方程组应用题的常见类型
(二元一次方程组实际应用〔1〕(列方程解应用题的根本关系量(〔1〕行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆(水速度=静水速度—水流速度(2〕工程问题:工作效率×工作时间=工作量(3〕浓度问题:溶液×浓度=溶质(4〕银行利率问题:免税利息=本金×利率×时间(二元一次方程组解决实际问题的根本步骤(1、审题,搞清量和待求量,分析数量关系.〔审题,寻找等量关系〕(2、考虑如何根据等量关系设元,列出方程组.〔设未知数,列方程组〕(3、列出方程组并求解,得到答案.〔解方程组〕(4、检查和反思解题过程,检验答案的正确性以及是否符合题意.〔检验,答〕(列方程组解应用题的常见题型(1〕和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量(2〕产品配套问题:加工总量成比例(3〕速度问题:速度×时间=路程(4〕航速问题:此类问题分为水中航速和风中航速两类(1.顺流〔风〕:航速=静水〔无风〕中的速度+水〔风〕速(2.逆流〔风〕:航速=静水〔无风〕中的速度--水〔风〕速(5〕工程问题:工作量=工作效率×工作时间(一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问(题(6〕增长率问题:原量×〔1+增长率〕=增长后的量,原量×〔1+减少率〕(=减少后的量(7〕浓度问题:溶液×浓度=溶质(8〕银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率(9〕利润问题:利润=售价—进价,利润率=〔售价—进价〕÷进价×100%(10〕盈亏问题:关键从盈〔过剩〕、亏〔缺乏〕两个角度把握事物的总量(11〕数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示(12〕几何问题:必须掌握几何图形的性质、周长、面积等计算公式(13〕年龄问题:抓住人与人的岁数是同时增长的【典题精析】例1〔南京市〕某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x辆,小型汽车有y辆.由题意,得x y 50,6x4y230.x15,解得,35.y故中型汽车有15辆,小型汽车有35辆.例2〔四川省眉山市〕某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:销售方式直接销售粗加工后销售精加工后销售每吨获利〔元〕100250450现在该公司收购了140吨蔬菜,该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨〔两种加工不能同时进行〕.〔1〕如果要求在18天内全部销售完这140吨蔬菜,请完成以下表格:销售方式全部直接全部粗加工尽量精加工,剩余局部销售后销售直接销售获利〔元〕〔2〕如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,那么应如何分配加工时间?解:〔1〕全部直接销售获利为:100×140=14000〔元〕;全部粗加工后销售获利为:250×140=35000〔元〕;尽量精加工,剩余局部直接销售获利为:450×〔6×18〕+100×〔140-6×18〕=51800〔元〕.〔2〕设应安排x天进行精加工,y天进行粗加工.由题意,得x y15,6x16y140.x10,解得,y 5.故应安排10天进行精加工,5天进行粗加工.1、小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的3、〔分配问题〕某幼儿园分萍果,假设每人3个,那么剩2个,假设每人4个,邮票各买了多小?解;设共买x枚10分邮票,y枚20分邮票那么有一个少1个,问幼儿园有几个小朋友?解:设幼儿园有x个小朋友,题中的两个相等关系:萍果有y个=总枚数1、10分邮票的枚数可列方程为:+20分邮票的枚数题中的两个相等关系:1、萍果总数可列方程为:2、萍果总数=每人分=3个+2、10分邮票的总价+=全可列方程为:部邮票的总价可列方程为:10X+=4、〔金融分配问题〕需要用多少每千克售元的糖果才能与每千克售元的糖果混合成每千克售糖果为x千克,每千克售元的杂拌糖200千克?解:设每千克售元的糖果为y千克元的2、小兰在玩具工厂劳动,做题中的两个相等关系:4个小狗、7个小汽车用去3小时42分,做5个元的糖果销售总价+=1、每千克售小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时可列方程为:间?2、每千克售元的糖果重量+=题中的两个相等关系:可列方程为:1、做4个小狗的时间+=3时42分可列方程为:2、+做6个小汽车的时间=3时37分可列方程为:二元一次方程组实际应用〔1〕〔李老师〕姓名:一、和差倍分例1、甲乙两盒中各有一些小球,如果从甲盒中拿出10个放入乙盒,那么乙盒球就是甲盒球数的6倍,假设从乙盒中拿出10个放入甲盒,乙盒球数就是甲盒球数的3倍多10个,求甲乙两盒原来的球数各是多少?例2、我区某学校原方案向内蒙察右旗地区的学生捐赠3500册图书,实际共捐赠了4125册,其中初中学生捐赠了原方案的120%,高中学生捐赠了原方案的115%,问初中学生和高中学生各比原方案多捐赠了图书多少册?例3、(2021年浙江省宁波市)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表〞生活用水阶梯式计费价格表的一局部信息:小王家2021年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元,求a,b的值自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a超过17吨不超过30吨的局部b超过30吨的局部例4、为满足市民对优质教育的需求,某中学决定改变办学条件,方案撤除一局部旧校舍,建造新校舍,撤除旧校舍每平方米需80元,建新校舍每平方米需700元.方案在年内撤除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了方案的80%,而撤除旧校舍那么超过了方案的10%,结果恰好完成了原方案的拆、建总面积.1〕求:原方案拆、建面积各是多少平方米?2〕假设绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?同步练习:1、班上有男女同学32人,女生人数的一半比男生总数少10人,假设设男生人数为x人,女生人数为y人,那么可列方程组为2、甲乙两数的和为10,其差为2,假设设甲数为x,乙数为y,那么可列方程组为3、某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y所满足的方程为4、学校购置35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,那么列方程组,方程组的解是5、一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x米,另一段为y,那么列的二元一次方程组为6、〔2021广东肇庆〕顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,那么到两地旅游的人数各分别为7、〔2021湖北咸宁〕某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,那么入住单人间和双人间各5个共需元.8、在一次足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分.某队在足球比赛的4场比赛中得6分,那么这个队胜了场,平了场,负了场。
二元一次方程组应用题类型大全
根据题意, 得 x+y =22
2×1200x=2000y
解得 x=10
Y =12
所以为了使每天生产的产品刚好配套,应安排10人生产螺 钉,12人生产螺母
例2.某工地需雪派48人去挖土和运土,如果 每人每天平均挖土5方或运土3方,那么应该 怎样安排人员,正好能使挖的土能及时运走?
每天挖的土等于每天运的土
分析题意:1、有鲜奶9吨,
2.若在市场上直接销售鲜奶,每吨可获利润500元,
3.若制成酸奶销售,每吨可获利润1200元,
4.若制成奶片销售,每吨可获利润2000元.
5.每天可加工3吨酸奶或1吨奶片, 两种方式不能同时进行.
6.受季节的限制,这批牛奶必须在4天内加工并销售完毕.
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
例:某牛奶加工厂现有鲜奶9吨,若在市场上直接 销售鲜奶,每吨可获利润500元,若制成酸奶销售, 每吨可获利润1200元,若制成奶片销售,每吨可获 利润2000元.该厂生产能力如下:每天可加工3吨酸 奶或1吨奶片,受人员和季节的限制,两种方式不能 同时进行.受季节的限制,这批牛奶必须在4天内加 工并销售完毕,为此该厂制定了两套方案:
160千米 甲
汽车行驶1小时20分的路程
汽车行驶半小时的路程
乙 拖拉机行驶1小时 20分的路程
拖拉机行驶1个半小时 行驶的路程
1、同时同地相向而行第一次相遇(相当 于相遇问题):
甲的路程 + 乙的路程 = 跑道一圈长
2、同时同地同向而行第一次相遇(相当于 追击问题):
快者的路程 - 慢者的路程 = 跑道一圈长
解之得
X=77 Y=8
答:这批零件有77个,按计划需8 小时完成
二元一次方程组经典应用题及答案
实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决 ------ 行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发 2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x, y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由解:设甲.乙两公司毎周完成工程的爼和^则1 L丄H X +得! 10故1 + 1=10(1)11^—= UH 』n ’ I 1 10 15即甲、乙完成这项工程分别需山周[沾周又设需忖甲、乙毎周的工犠分别为击元,右万元则出较知■从节约开支轴度考虑I选乙公司划宜三:列二元一次方程组解决一一商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价一进价)求该商场购进A、B两种商品各多少件; 解:设购进A的数量为x件、购进B的数量为y件,依据题意列方程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200,y=120答:略四:列二元一次方程组解决 ----- 银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息 2.25%;第二种,三年期整存整取,这种存款银行年利率为 2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25 % * 3 + Y * 2.7 % * 3 = 303.75解得:X = 1500,Y = 2500。
完整版)二元一次方程组题型总结
完整版)二元一次方程组题型总结二元一次方程组题型总结类型一:二元一次方程的概念及求解例(1)已知(a-2)x-by=5是关于x、y的二元一次方程,则a=2,b=-1.2)二元一次方程3x+2y=15的正整数解为(3,3)。
类型二:二元一次方程组的求解例(3)若|2a+3b-7|与(2a+5b-1)互为相反数,则a=1,b=2.4)2x-3y=4,x-y=5的解为(-1,-6)。
类型三:已知方程组的解,而求待定系数。
例(5)已知3mx-2y=1,4x+ny+7=2,x=-2,y=1是方程组的解,则m-n的值为-1.6)若满足方程组kx+(2k-1)y=6的x、y的值相等,则k=2.练:若方程组2x-y=3,2kx+(k+1)y=10的解互为相反数,则k的值为-3/2.类型四:涉及三个未知数的方程,求出相关量。
例(7)已知abc/123=4/12,且a+b-c=1,则a=4,b=8,c=1.8)解方程组x+3y=2,3y+z=4,z+3x=6,得x=2,y=0,z=-2.练:若2a+5b+4c=10,3a+b-7c=-2,则a+b-c=0.由方程组x-2y+3z=2,2x-3y+4z=3可得,x∶y∶z是1∶2∶1.类型五:列方程组求待定字母系数是常用的解题方法。
例(9)若x=1,y=-2,y=-3都是关于x、y的方程|a|x+by=6的解,则a+b的值为-2.10)关于x,y的二元一次方程ax+b=y的两个解是(2,-1)和(1,1),则这个二元一次方程是y=-x+3.练:如果方程组x=-1y=2ax+by=zbx-cy=1中的{x,y}是解,下列哪个式子成立?A。
a+4c=2B。
4a+c=2C。
a+4c+2=0D。
4a+c+2=0解析:由{x=-1,y=2}可知,代入方程组中得a+2b=zb-2c=1又因为{x,y}是解,所以代入方程组中得a+2b=0b-2c=0解得a=4c,代入选项可知只有选项C成立。
二元一次方程(组)应用题专题讲解及练习(附答案)
实际问题与二元一次方程组(一) 要点一.常见的一些等量关系 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价. 要点二.实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数; 列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 验:检验求得的值是否正确和符合实际情形; 答:写出答案.例题讲解题型一.和差倍分问题例1.电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【跟踪训练】根据如图提供的信息,可知一个热水瓶的价格是( )A .7元B .35元C .45元D .50元题型二.配套问题例2. 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?【跟踪训练】某家具厂生产一种方桌,设计时13m的木材可做50个桌面或300条桌腿.现有103m的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(提示:一张方桌有一个桌面,4条桌腿). 题型三.工程问题例3.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问:两人每天各做多少个零件?题型4.利润问题例4.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【跟踪训练】王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗专题练习(一)一、选择题1.有一些苹果箱,若每只装苹果25 kg,则剩余40 kg无处装;若每只装30 kg,则还有20个空箱,这些苹果箱有( ) .A.12只 B.6只 C.112只 D.128只2.幸福中学七年级学生到礼堂开会,若每条长椅坐5人,则少10条长椅,若每条长椅坐6人,则又多余2条长椅,设学生有x人,长椅有y条,依题意得方程组 ( ) .A.5105662x yx y=+⨯⎧⎨=-⨯⎩B.51062x yx y=-⎧⎨=+⎩C.5105662x yx y=-⨯⎧⎨=+⨯⎩D.51062x yx y=+⎧⎨=-⎩3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?()A.300元 B.310元 C.320元 D.330元4.王力在一天内以每件80元的价格卖了两件上衣,其中一件赢利20%,一件赔了20%,则在这次买卖中他( ) .A.赔了10元 B.赚了10元C.赔了约7元 D.赚了约7元5.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺帽和生产螺栓的数分别为()A.50人,40人 B.30人,60人C.40人,50人 D.60人,30人6.某校七年级(2)班40名同学为四川地震灾区捐款,共捐了100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( ) .A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题7.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,列出的方程组是________.8.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.9.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.10.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则100个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票张儿童票张。
初一数学:二元一次方程组实际应用:调配问题汇总
1. 工程问题等量关系:工作效率×工作时间=工作总量说明:这一类型题目中往往会出现两种工作效率,两种工作时间,以及两种工作总量,根据题意列出两个等式即可解决问题。
2. 浓度问题等量关系:溶质=溶液×浓度溶液=溶质+溶剂题型:(1)稀释问题(2)浓缩问题(3)不同浓度的液体混合后求混合后液体的浓度注意:稀释后液体质量会增大,溶解在液体中的物质质量不变浓缩后液体质量会减小,溶解在液体中的物质质量不变3. 调运问题等量关系:A车数目×A车费用+B车数目×B车费用=总费用A车数目×A车运货量×运货次数+B车数目×B车运货量×运货次数=货物总量说明:这类问题以运货的形式出现,用轮船或卡车运货,题目中会出现不同的运输工具,不同的运货总量,不同的运货时间和费用。
4. 配套问题(1)这类问题涉及的产品一般由A、B两个部件构成,而为了配套,这两个部件必须满足一个比例关系。
例如:生产一件商品需要2个部件A,3个部件B,那么我们生产部件A和部件B的总数之比就是2:3,才能保证生产出的产品配套。
(2)另一方面涉及一种材料做成不同部件的数目不同。
例如:一张铁皮可以做10个部件A或30个部件B。
我们要根据1和2两方面来找等量关系,从而列出两个等式来解决问题。
例题1 有两种药水,一种浓度为60%,另一种浓度为90%,现要配制浓度为70%的药水300克,问每种药水各需多少克?解析:根据两种药水共300克及配置前后溶质的质量不变,可以列出两个方程。
答案:解:设浓度为60%的药水x 克,浓度为90%的药水y 克。
由题意,得609030073000x y x y ⎧⎨+=⨯+=⎩%%%解得:200100x y =⎧⎨=⎩ 答:浓度为60%的药水200克,浓度为90%的药水100克.点拨:抓住浓度问题中的等量关系是解题的关键。
例题2 小兰在玩具厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分。
二元一次方程组应用题-教师用
实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段,用图便于理解与分析。
其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解与分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。
注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。
2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。
②利息:银行付给顾客的酬金叫做利息。
③本息和:本金与利息的和叫做本息和。
④期数:存入银行的时间叫做期数。
⑤利率:每个期数内的利息与本金的比叫做利率。
⑥利息税:利息的税款叫做利息税。
(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金× (1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率。
二元一次方程组解决实际问题典型例题
类型三:列二元一次方程组解决——商品销售利润问题
3.有甲、乙两件商品,甲商品的利润率为5%,乙商 品的利润率为4%,共可获利46元。价格调整后,甲商品 的利润率为4%,乙商品的利润率为5%,共可获利44元, 则两件商品的进价分别是多少元?
【变式】某商场用36万
A
B
元购进A、B两种商品,销 进价(元/ 1200
1000
售完后共获利6万元,其进 件)
பைடு நூலகம்
价和售价如下表:
求该商场购进A、B两种商
售价(元/ 件)
1380
1200
品各多少件;
类型四:列二元一次方程组解决——银行储蓄问题
4.小明的妈妈为了准备小明一年后上高中的费 用,现在以两种方式在银行共存了2000元钱,一种是 年利率为2.25%的教育储蓄,另一种是年利率为2.25 %的一年定期存款,一年后可取出2042.75元,问这 两种储蓄各存了多少钱?(利息所得税=利息金额 ×20%,教育储蓄没有利息所得税)
【变式1】现有190张铁皮做盒子,每张铁皮做8个盒 身或【【2变2变个式式盒23】底】某,一工一张厂个方有盒桌工身由人与1个6两0桌人个面,盒、生底4产配条某成桌种一腿由个组一完成个整, 螺盒如栓子果套,1立两问方个用米螺多木母少料的张可配铁以套皮做产制桌品盒面,身5每,0个人多,每少或天张做生铁桌产皮腿螺制3栓盒001底条4 ,。 个可现或以有螺正5立母好方2制0米个成的,一木应批料分完,配整那多的么少盒用人子多生?少产立螺方栓米,木多料少做人桌生面, 产用螺多母少,立才方能米使木生料产做出桌的腿螺,栓做和出螺的母桌刚面好和配桌套腿。,恰 好配成方桌?能配多少张方桌?
二元一次方程组的12种应用题型归纳
二元一次方程组的12种应用题型归纳类型一:行程问题【例1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为x 千米/时,乙的速度为y 千米/时。
{(2.5+2)x +2.5y =363x +(3+2)y =36解得{x =6y =3.6 答:甲的速度为6千米/时,乙的速度为3.6千米/时。
【例2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求这艘船在静水中的速度和水流速度。
解:设这艘船在静水中的速度为x 千米/时,水流速度为y 千米/时。
{14(x +y)=28020(x −y)=280解得{x =17y =3 答:这艘船在静水中的速度为17千米/时,水流速度为3千米/时。
类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲公司每周的工作效率为x ,乙公司每周的工作效率为y 。
{6x +6y =14x +9y =1 解得{x =110y =115 ∴1÷110=10(周) 1÷115=15(周)∴甲公司单独完成这项工程需10周,乙公司单独完成这项工程需15周。
设甲公司每周的工钱为a 万元,乙公司每周的工钱为b 万元。
{6a +6b =5.24a +9b =4.8 解得{a =35b =415此时10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。
类型三:商品销售利润问题【例1】李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年种植甲、乙蔬菜各多少亩?解:设李大叔去年种植甲蔬菜x 亩,乙蔬菜y 亩。
二元一次方程组的应用题10大题型
类型一:行程问题例:甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【分析】设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解。
类型二:工程问题例:小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8类型三:商品销售利润问题例:李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?分析:由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解类型四:银行储蓄问题例:小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?分析:利用两种方式共计存了4000元钱以及两笔存款三年内共得利息303.75元得出等式求出即可类型五:生产配套问题例:现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?分析:本题的等量关系是:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解类型六:增长率问题例:某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?分析:根据题意可得出的等量关系为:现有的城镇人口+现有的农村人口=42万,计划一年后城镇人口增加的数量+农村人口的增加的数量=全市人口增加的数量,然后列出方程组求解类型七:数字问题例:一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.分析:设这个两位数十位上的数字为x,个位上的数字为y,根据十位数字与个位数字和为6,十位数字比个位数字大4,列方程组求解类型八:几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?分析:设矩形的长为x,宽为y,则可得x-3=y+3,再由矩形的周长为48,可得出2(x+y)=48,联立方程组求解即可类型九:年龄问题例:今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄.分析:通过理解题意可知本题的等量关系,12年之后他爷爷的年龄x1/3=12年之后小李的年龄.根据这两个等量关系,可列出方程,再求解类型十:方案优化问题例:某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.分析:(1)本题的等量关系是:甲乙两种电视的台数和=50台,买甲乙两种电视花去的费用=9万元.依此列出方程求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方。
二元一次方程组应用题题及答案
二元一次方程组应用题题及答案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:+2)x+=363x+(3+2)y=36解得: x=6,y=答:甲的速度是6千米/每小时,乙的速度是千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司请你说明理由. 解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:类型四:列二元一次方程组解决——银行储蓄问题【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息元.已知两种储蓄年利率的和为%,问这两种储蓄的年利率各是百分之几(注:公民应缴利息所得税=利息金额×20%)解:设2000的存款利率是X,则1000的存款利率是%-X,则有:2000*X*(1-20%)+1000*%-X)*(1-20%)=即:1600X+=800X=18X=%%%=%所以,2000的存款利率是%,1000的存款的利息率是%.法二:也可用二元一次方程组解。
二元一次方程组解决生活常见问题的题型及分类
二元一次方程组解决生活常见问题的题型及分类方程是刻画现实世界数量关系的有效模型,生活中许多实际问题都可以转化为方程问题。
在初中数学中二元一次方程组有着广泛的应用,学生要学会从实际问题中找出等量关系,并建立二元一次方程组解决问题,进一步发展模型思想和应用意识。
初中阶段利用二元一次方程解决问题常见类型有:古代童趣问题、利息利润问题、数字问题、里程碑问题等。
如何利用二元一次方程组解决实际问题?下面对常见的几种题型进行分类讨论。
一、古代童趣问题今有雉兔同笼,上有三十五头,下有九十四足,问雉兔个几何?分析:由“上有三十五头,下有九十四足。
”可得等量关系:解:设笼中有鸡x只,兔y只,由题意得方程组:解得这个方程组得:所以笼中有鸡23只,兔12只。
“雉兔同笼”问题是古代童趣问题中,最经典也是最简单的有关二元一次方程组的应用问题,一般可直接从题目中找到两个等量关系,然后根据等量关系列出方程组求解即可。
二、利息利润问题越来越多的人在用微信付款、转账,把微信账户里得钱转到银行卡叫做提现。
自2016年3月1日起,每个微信账户终身享有1000元得免费提现额度。
当累计提现金额超出1000元时,超出部分需支付0.1%得手续费,以后每次提现支付手续费均为提现金额得0.1%小亮自2016年3月1日至今共提现三次,提现金额和手续费如下,那么小亮前两次提现金额分别是多少?分析:由第一次手续费为0,可知a<1000由第二次手续费为0.2,可知a+b>1000,则第二次需要收取手续费的部分为:a+b-1000那么第三次全部提现金额都需要收取手续费。
由此可得等量关:解:由题意得:解这个方程组得:所以小亮第一次提现金额为500,第二次提现金额为700。
本题对一般学生来说,在寻找等量关系时,有一定难度,一般在这类问题中我们会选择列表格来找等量关系,而这道题我们从表格所给信息中找到等量关系就容易多了。
在解决利润利息问题时涉及到的有关公式我们必须要熟知,利息问题常用的公式。
实际问题与二元一次方程组题型归纳
实际问题与二元一次方程组题型一:方案问题
题型二:行程问题
题型三:工程问题
题型四:数字问题
题型五:年龄问题
题型六:分配问题
题型七:销售利润问题
题型八:和差倍分问题
“和差倍分”是用来描述一类数学问题的计算的,通常有以下两种公式表示。
和倍问题:已知两个数的和与两个数的倍数关系,求两个数各是多少的应用题,我们通常叫做和倍问题。
差倍问题:差倍问题即已知两数之差和两数之间的倍数关系,求出两数。
题型九:几何问题
题型十:古代问题
题型十一:表格或图示信息题
题型十二:开放型问题
题型十三:其他问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与二元一次方程组题型归纳
类型一:列二元一次方程组解决——行程问题
1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?
【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?
类型二:列二元一次方程组解决——工程问题
2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:
(1)甲、乙两组工作一天,商店应各付多少元?
(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?
【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.
类型三:列二元一次方程组解决——商品销售利润问题
3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。
价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?
【变式1】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:
(注:获利 = 售价—进价)求该商场购进A、B两种商品各多少件;
类型四:列二元一次方程组解决——优化方案问题:
12.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元. 当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨;如果进行细加工,每天可加工6吨. 但两种加工方式不能同时进行. 受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成
你认为选择哪种方案获利最多?为什么?
举一反三:
【变式】某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。
(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?。