2020年中考数学二模试卷(含答案)

合集下载

苏教版2020年中考数学二模试卷(含答案解析)

苏教版2020年中考数学二模试卷(含答案解析)

2020年中考数学二模试卷一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上.1.(3分)下列四个实数中,最大的实数是()A.|﹣2|B.﹣1C.0D.2.(3分)下列四个图案中,不是中心对称图案的是()A.B.C.D.3.(3分)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3•a2=a6D.(a3)2=a9 4.(3分)关于x的一元二次方程x2﹣(m+2)x+m=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.(3分)在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为()A.10B.15C.20D.246.(3分)如图,△ABC是一块直角三角板,∠C=90°,∠A=30°,现将三角板叠放在一把直尺上,AC与直尺的两边分别交于点D、E,AB与直尺的两边分别交于点F、G,若∠1=40°,则∠2的度数为()A.40°B.50°C.60°D.70°7.(3分)若在实数范围内有意义,则x的取值范围是()A.x>﹣1B.x<﹣1C.x≥﹣1D.x≥﹣1且x≠0 8.(3分)如图,四边形ABCD内接于⊙O,连接OA,OC.若OA∥BC,∠BCO=70°.则∠ABC的度数为()A.110°B.120°C.125°D.135°9.(3分)如图,一艘轮船在A处测得灯塔C在北偏西15°的方向上,该轮船又从A处向正东方向行驶40海里到达B处,测得灯塔C在北偏西60°的方向上,则轮船在B处时与灯塔C之间的距离(即BC的长)为()A.海里B.海里C.80海里D.海里10.(3分)小明骑自行车去上学途中,经过先上坡后下坡的一段路,在这段路上所骑行的路程S(米)与时间(分钟)之间的函数关系如图所示.下列结论:①小明上学途中下坡路的长为1800米;②小明上学途中上坡速度为150米/分,下坡速度为200米/分;③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,则小明返回时经过这段路比上学时多用1分钟;④如果小明放学后按原路返回,返回所用时间与上学所用时间相等,且返回时下坡速度是上坡速度的1.5倍,则返回时上坡速度是160米/分,其中正确的有()A.①④B.②③C.②③④D.②④二、填空题本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应的位置上. 11.(3分)的倒数是.12.(3分)DNA分子的直径只有0.000 000 2cm,将0.000 000 2用科学记数法表示为.13.(3分)已知一组数据:5,x,3,6,4的众数是4,则该组数据的中位数是.14.(3分)因式分解:2x2﹣8=.15.(3分)已知点P(a,b)是一次函数y=x﹣1的图象与反比例函数的图象的一个交点,则a2+b2的值为.16.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为.17.(3分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上一点(点D不与点B,C重合),将△ACD沿AD翻折,点C的对应点是E,AE交BC于点F,若DE∥AB,则DF的长为.18.(3分)如图,四边形ABCD中,∠ABC=∠D=90°,AB=BC=3,CD=3,AC是对角线,以CD为边向四边形内部作正方形CDEF,连接BF,则BF的长为.三、解答题本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)计算:.20.(5分)解不等式组:,并把它的解集在数轴上表示出来.21.(6分)先化简,再求值:,其中.22.(6分)如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.(1)求证:AE=CF;(2)若AE=BC,试探究线段OC与线段DF之间的关系,并说明理由.23.(8分)今年4月22日是第50个世界地球日,某校在八年级5个班中,每班各选拔10名学生参加“环保知识竞赛”并评出了一、二、三等奖各若干名,学校将获奖情况绘成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求本次竞赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)已知甲、乙、丙、丁4位同学获得一等奖,学校将采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”知识竞赛,请求出抽到的2人恰好是甲和乙的概率(用画树状图或列表等方法求解).24.(8分)为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?25.(8分)如图,在平面直角坐标系中,矩形ABCD的顶点B,C在x轴的正半轴上,AB =8,BC=6.对角线AC,BD相交于点E,反比例函数(x>0)的图象经过点E,分别与AB,CD交于点F,G.(1)若OC=8,求k的值;(2)连接EG,若BF﹣BE=2,求△CEG的面积.26.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA 的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求的长(结果保留π);②当时,求线段AF的长.27.(10分)如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B,C重合),点F是线段BA延长线上一动点,连接DE,EF,DF,EF交AD于点G.设BE=x,AF=y,已知y与x之间的函数关系如图②所示.(1)求图②中y与x的函数表达式;(2)求证:DE⊥DF;(3)是否存在x的值,使得△DEG是等腰三角形?如果存在,求出x的值;如果不存在,说明理由.28.(10分)如图1,二次函数y=ax2﹣3ax﹣4a的图象与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C(0,﹣3).(1)求二次函数的表达式及点A、点B的坐标;(2)若点D在二次函数图象上,且,求点D的横坐标;(3)将直线BC向下平移,与二次函数图象交于M,N两点(M在N左侧),如图2,过M作ME∥y轴,与直线BC交于点E,过N作NF∥y轴,与直线BC交于点F,当MN+ME的值最大时,求点M的坐标.答案与解析一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上.1.(3分)下列四个实数中,最大的实数是()A.|﹣2|B.﹣1C.0D.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵|﹣2|>>0>﹣1,∴所给的四个实数中,最大的实数是|﹣2|.故选:A.2.(3分)下列四个图案中,不是中心对称图案的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、B、D是中心对称图形,C不是中心对称图形,故选:C.3.(3分)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3•a2=a6D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、a3与a2不是同类项,不能合并,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.4.(3分)关于x的一元二次方程x2﹣(m+2)x+m=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【分析】表示出根的判别式,判断判别式的正负即可确定出方程根的情况.【解答】解:由关于x的一元二次方程x2﹣(m+2)x+m=0,得到a=1,b=﹣(m+2),c=m,△=(m+2)2﹣4m=m2+4m+4﹣4m=m2+4>0,则方程有两个不相等的实数根,故选:A.5.(3分)在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为()A.10B.15C.20D.24【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.25左右得到比例关系,列出方程求解即可.【解答】解:根据题意得=0.25,解得:a=24,经检验:a=24是分式方程的解,故选:D.6.(3分)如图,△ABC是一块直角三角板,∠C=90°,∠A=30°,现将三角板叠放在一把直尺上,AC与直尺的两边分别交于点D、E,AB与直尺的两边分别交于点F、G,若∠1=40°,则∠2的度数为()A.40°B.50°C.60°D.70°【分析】依据平行线的性质,即可得到∠1=∠DFG=40°,再根据三角形外角性质,即可得到∠2的度数.【解答】解:∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选:D.7.(3分)若在实数范围内有意义,则x的取值范围是()A.x>﹣1B.x<﹣1C.x≥﹣1D.x≥﹣1且x≠0【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:若在实数范围内有意义,则x+1>0,解得:x>﹣1.故选:A.8.(3分)如图,四边形ABCD内接于⊙O,连接OA,OC.若OA∥BC,∠BCO=70°.则∠ABC的度数为()A.110°B.120°C.125°D.135°【分析】根据平行线的性质求出∠AOC,根据圆周角定理求出∠D,根据圆内接四边形的性质计算即可.【解答】解:∵OA∥BC,∴∠AOC=180°﹣∠BCO=110°,由圆周角定理得,∠D=∠AOC=55°,∵四边形ABCD内接于⊙O,∴∠ABC=180°﹣∠D=125°,故选:C.9.(3分)如图,一艘轮船在A处测得灯塔C在北偏西15°的方向上,该轮船又从A处向正东方向行驶40海里到达B处,测得灯塔C在北偏西60°的方向上,则轮船在B处时与灯塔C之间的距离(即BC的长)为()A.海里B.海里C.80海里D.海里【分析】过A作AD⊥BC于D,解直角三角形即可得到结论.【解答】解:过A作AD⊥BC于D,在Rt△ABD中,∠ABD=30°,AB=40,∴AD=AB=20,BD=AB=20,在Rt△ACD中,∵∠C=45°,∴CD=AD=20,∴BC=BD+CD=(20+20)海里,故选:B.10.(3分)小明骑自行车去上学途中,经过先上坡后下坡的一段路,在这段路上所骑行的路程S(米)与时间(分钟)之间的函数关系如图所示.下列结论:①小明上学途中下坡路的长为1800米;②小明上学途中上坡速度为150米/分,下坡速度为200米/分;③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,则小明返回时经过这段路比上学时多用1分钟;④如果小明放学后按原路返回,返回所用时间与上学所用时间相等,且返回时下坡速度是上坡速度的1.5倍,则返回时上坡速度是160米/分,其中正确的有()A.①④B.②③C.②③④D.②④【分析】①根据题意和函数图象可以得到下坡路的长度;②利用路程除以时间求得上坡速度和下坡的速度;③根据“路程除以速度=时间”求解即可;④设上坡速度为x(米/分),根据题意列方程即可求解.【解答】解:①小明上学途中下坡路的长为1800﹣600=1200(米).②小明上学途中上坡速度为:600÷4=150(米/分),下坡速度为:1200÷6=200(米/分).③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,小明返回时经过这段路所用时间为:600÷200+1200÷150=11(分钟),所以小明返回时经过这段路比上学时多用1分钟;④设上坡速度为x(米/分),根据题意得,,解得x=160,经检验,x=160是原方程的解.所以返回时上坡速度是160米/分.综上所述,正确的有②③④.故选:C.二、填空题本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应的位置上. 11.(3分)的倒数是.【分析】根据倒数的定义可知.【解答】解:的倒数是.12.(3分)DNA分子的直径只有0.000 000 2cm,将0.000 000 2用科学记数法表示为2×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0002=2×10﹣7.故答案为:2×10﹣7.13.(3分)已知一组数据:5,x,3,6,4的众数是4,则该组数据的中位数是4.【分析】先根据众数定义求出x,再把这组数据从小到大排列,找出正中间的那个数就是中位数.【解答】解:∵数据5,x,3,6,4的众数是4,∴x=4,则数据重新排列为3,4,4,5,6,所以中位数是4,故答案为:4.14.(3分)因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).15.(3分)已知点P(a,b)是一次函数y=x﹣1的图象与反比例函数的图象的一个交点,则a2+b2的值为5.【分析】一次函数y=x﹣1与反比例函数y=联立,求出a和b的值,代入a2+b2,计算求值即可.【解答】解:根据题意得:,解得:或,即或,则a2+b2=(﹣1)2+(﹣2)2=5或a2+b2=22+12=5,即a2+b2的值为5,故答案为:5.16.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为120°.【分析】设该圆锥侧面展开图所对应扇形圆心角的度数为n°,圆锥的母线长为l,底面圆的半径为r,利用扇形面积公式得到•2πr•l=3•πr2,所以l=3r,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得2πr=,再解关于n的方程即可.【解答】解:设该圆锥侧面展开图所对应扇形圆心角的度数为n,圆锥的母线长为l,底面圆的半径为r,所以•2πr•l=3•πr2,则l=3r,因为2πr=,所以n=120°.故答案为120°.17.(3分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上一点(点D不与点B,C重合),将△ACD沿AD翻折,点C的对应点是E,AE交BC于点F,若DE∥AB,则DF的长为.【分析】由等腰三角形的性质和平行线的性质得出∠B=∠C,∠BAF=∠E,∠B=∠EDF,由折叠的性质得:∠E=∠C,AE=AC=5,ED=CD,得出∠B=∠BAF=∠E=∠EDF,证出AF=BF,EF=DF,得出BD=AB=AC=5,ED=CD=BC﹣BD=3,由平行线得出△EDF∽△ABF,得出比例式,即可得出结果.【解答】解:AB=AC=5,∴∠B=∠C,∵DE∥AB,∴∠BAF=∠E,∠B=∠EDF,由折叠的性质得:∠E=∠C,AE=AC=5,ED=CD,∴∠B=∠BAF=∠E=∠EDF,∴AF=BF,EF=DF,∴BD=AB=AC=5,∴ED=CD=BC﹣BD=3,∵DE∥AB,∴△EDF∽△ABF,∴=,即=,解得:DF=;故答案为:.18.(3分)如图,四边形ABCD中,∠ABC=∠D=90°,AB=BC=3,CD=3,AC是对角线,以CD为边向四边形内部作正方形CDEF,连接BF,则BF的长为3.【分析】连接CE,由等腰直角三角形的性质得出AC=BC=3,∠ACB=45°,由勾股定理得出AD==9,由正方形的性质得出DE=CD=3,∠DCF=90°,∠ECF=45°,CE=CF,求出AE=AD﹣DE=6,证明△BCF∽△ACE,得出==,即可得出结果.【解答】解:连接CE,如图所示:∵∠ABC=90°,AB=BC=3,∴AC=BC=3,∠ACB=45°,∵∠D=90°,CD=3,∴AD===9,∵四边形CDEF是正方形,∴DE=CD=3,∠DCF=90°,∠ECF=45°,CE=CF,∴AE=AD﹣DE=6,∴∠ACB=∠ECF,∴∠BCF=∠ACE,∵==,∴△BCF∽△ACE,∴==,∴BF===3;故答案为:3.三、解答题本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)计算:.【分析】直接利用特殊角的三角函数值和绝对值的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣3×+﹣=1﹣+﹣=.20.(5分)解不等式组:,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【解答】解:,解①得:x>﹣2,解②得:x≤3,故不等式组的解集是:﹣2<x≤3,表示在数轴上如下:21.(6分)先化简,再求值:,其中.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:====,当x=+1时,原式===.22.(6分)如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.(1)求证:AE=CF;(2)若AE=BC,试探究线段OC与线段DF之间的关系,并说明理由.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,得出∠ADB=∠CBD,证明△BOF≌△DOE,得出DE=BF,即可得出结论;(2)证出CF=BC,得出OC是△BDF的中位线,由三角形中位线定理即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵O是对角线BD的中点,∴OB=OD,在△BOF和△DOE中,,∴△BOF≌△DOE(ASA),∴DE=BF,∴DE=AD=BF﹣BC,∴AE=CF;(2)解:OC∥DF,且OC=DF,理由如下:∵AE=BC,AE=CF,∴CF=BC,∵OB=OD,∴OC是△BDF的中位线,∴OC∥DF,且OC=DF.23.(8分)今年4月22日是第50个世界地球日,某校在八年级5个班中,每班各选拔10名学生参加“环保知识竞赛”并评出了一、二、三等奖各若干名,学校将获奖情况绘成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求本次竞赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)已知甲、乙、丙、丁4位同学获得一等奖,学校将采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”知识竞赛,请求出抽到的2人恰好是甲和乙的概率(用画树状图或列表等方法求解).【分析】(1)由一等奖人数及其所占百分比可得总人数,再求出二等奖人数即可补全图形;(2)用360°乘以对应的百分比即可得;(3)利用列举法即可求解即可.【解答】解:(1)本次竞赛获奖的总人数为4÷20%=20(人),补全图形如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数360°×=108°;(3)画树形图得:则P(抽取的两人恰好是甲和乙)=.24.(8分)为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?【分析】(1)设每个甲种型号排球的价格是x元,每个乙种型号排球的价格是y元,根据“一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;购买6个甲种型号排球和5个乙种型号排球,一共需花费780元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种型号排球m个,则购买乙种型号排球(26﹣m)个,根据甲种型号排球的个数多于乙种型号排球且学校购买甲、乙两种型号排球的预算资金不超过1900元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出购买方案的个数.【解答】解:(1)设每个甲种型号排球的价格是x元,每个乙种型号排球的价格是y元,依题意,得:,解得:.答:每个甲种型号排球的价格是80元,每个乙种型号排球的价格是60元.(2)设购买甲种型号排球m个,则购买乙种型号排球(26﹣m)个,依题意,得:,解得:13<m≤17.又∵m为整数,∴m的值为14,15,16,17.答:该学校共有4种购买方案.25.(8分)如图,在平面直角坐标系中,矩形ABCD的顶点B,C在x轴的正半轴上,AB =8,BC=6.对角线AC,BD相交于点E,反比例函数(x>0)的图象经过点E,分别与AB,CD交于点F,G.(1)若OC=8,求k的值;(2)连接EG,若BF﹣BE=2,求△CEG的面积.【分析】(1)先利用矩形的性质和线段中点坐标公式得到E(5,4),然后把E点坐标代入y=可求得k的值;(2)利用勾股定理计算出AC=10,则BE=EC=5,所以BF=7,设OB=t,则F(t,7),E(t+3,4),利用反比例函数图象上点的坐标得到7t=4(t+3),解得t=4,从而得到反比例函数解析式为y=,然后确定G点坐标,最后利用三角形面积公式计算△CEG的面积.【解答】解:(1)∵在矩形ABCD的顶点B,AB=8,BC=6,而OC=8,∴B(2,0),A(2,8),C(8,0),∵对角线AC,BD相交于点E,∴点E为AC的中点,∴E(5,4),把E(5,4)代入y=得k=5×4=20;(2)∵AC==10,∴BE=EC=5,∵BF﹣BE=2,∴BF=7,设OB=t,则F(t,7),E(t+3,4),∵反比例函数(x>0)的图象经过点E、F,∴7t=4(t+3),解得t=4,∴k=7t=28,∴反比例函数解析式为y=,当x=10时,y==,∴G(10,),∴△CEG的面积=×3×=.26.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA 的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求的长(结果保留π);②当时,求线段AF的长.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH ⊥OD,DH是圆O的切线;(2)①根据等腰三角形的性质的∠EAF=∠EAF,设∠B=∠C=α,得到∠EAF=∠EF A =2α,根据三角形的内角和得到∠B=36°,求得∠AOD=72°,根据弧长公式即可得到结论;②连接AD,根据圆周角定理得到∠ADB=∠ADC=90°,解直角三角形得到AD=2,根据相似三角形的性质得到AH=3,于是得到结论.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EAF,设∠B=∠C=α,∴∠EAF=∠EF A=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴的长==;②连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵⊙O的半径为4,∴AB=AC=8,∵,∴=,∴AD=2,∵AD⊥BC,DH⊥AC,∴△ADH∽△ACD,∴=,∴=,∴AH=3,∴CH=5,∵∠B=∠C,∠E=∠B,∴∠E=∠C,∴DE=DC,∵DH⊥AC,∴EH=CH=5,∴AE=2,∵OD∥AC,∴∠EAF=∠FOD,∠E=∠FDO,∴△AEF∽△ODF,∴=,∴=,∴AF=.27.(10分)如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B,C重合),点F是线段BA延长线上一动点,连接DE,EF,DF,EF交AD于点G.设BE=x,AF=y,已知y与x之间的函数关系如图②所示.(1)求图②中y与x的函数表达式;(2)求证:DE⊥DF;(3)是否存在x的值,使得△DEG是等腰三角形?如果存在,求出x的值;如果不存在,说明理由.【分析】(1)利用待定系数法可得y与x的函数表达式;(2)方法一:证明△CDE∽△ADF,得∠ADF=∠CDE,可得结论;方法二:分别表示△DEF三边的长,计算三边的平方,根据勾股定理的逆定理得:△DEF 是直角三角形,从而得:DE⊥DF;(3)分三种情况:①若DE=DG,则∠DGE=∠DEG,②若DE=EG,如图①,作EH∥CD,交AD于H,③若DG=EG,则∠GDE=∠GED,分别列方程计算可得结论.【解答】解:(1)设y=kx+b,由图象得:当x=1时,y=2,当x=0时,y=4,代入得:,,∴y=﹣2x+4(0<x<2);(2)方法一:∵BE=x,BC=2∴CE=2﹣x,∴,,∴,∵四边形ABCD是矩形,∴∠C=∠DAF=90°,∴△CDE∽△ADF,∴∠ADF=∠CDE,∴∠ADF+∠EDG=∠CDE+∠EDG=90°,∴DE⊥DF;方法二:∵四边形ABCD是矩形,∴∠C=∠DAF=∠B=90°,∴根据勾股定理得:在Rt△CDE中,DE2=CD2+CE2=1+(2﹣x)2=x2﹣4x+5,在Rt△ADF中,DF2=AD2+AF2=4+(4﹣2x)2=4x2﹣16x+20,在Rt△BEF中,EF2=BE2+BF2=x2+(5﹣2x)2=5x2﹣20x+25,∴DE2+DF2=EF2,∴△DEF是直角三角形,且∠EDF=90°,∴DE⊥DF;(3)假设存在x的值,使得△DEG是等腰三角形,①若DE=DG,则∠DGE=∠DEG,∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DGE=∠GEB,∴∠DEG=∠BEG,在△DEF和△BEF中,,∴△DEF≌△BEF(AAS),∴DE=BE=x,CE=2﹣x,∴在Rt△CDE中,由勾股定理得:1+(2﹣x)2=x2,x=;②若DE=EG,如图①,作EH∥CD,交AD于H,∵AD∥BC,EH∥CD,∴四边形CDHE是平行四边形,∴∠C=90°,∴四边形CDHE是矩形,∴EH=CD=1,DH=CE=2﹣x,EH⊥DG,∴HG=DH=2﹣x,∴AG=2x﹣2,∵EH∥CD,DC∥AB,∴EH∥AF,∴△EHG∽△F AG,∴,∴,x1=,x2=(舍),③若DG=EG,则∠GDE=∠GED,方法一:∵AD∥BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90°,∴△CDE∽△DFE,∴,∵△CDE∽△ADF,∴=,∴,∴2﹣x=,x=,方法二:∵∠EDF=90°,∴∠FDG+∠GDE=∠DFG+∠DEG=90°,∴∠FDG=∠DFG,∴FG=DG,∴FG=EG,∵AD∥BC,∴∠FGA=∠FEB,∠F AG=∠B,∴△F AG∽△FBE,∴,∴,x=,综上,x=或或.28.(10分)如图1,二次函数y=ax2﹣3ax﹣4a的图象与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C(0,﹣3).(1)求二次函数的表达式及点A、点B的坐标;(2)若点D在二次函数图象上,且,求点D的横坐标;(3)将直线BC向下平移,与二次函数图象交于M,N两点(M在N左侧),如图2,过M作ME∥y轴,与直线BC交于点E,过N作NF∥y轴,与直线BC交于点F,当MN+ME的值最大时,求点M的坐标.【分析】(1)求出a,即可求解;(2)求出直线BC的解析式,过点D作DH∥y轴,与直线BC交于点H,根据三角形面积的关系求解;(3)过点M作MG∥x轴,交FN的延长线于点G,设M(m,m2﹣m﹣3),N(n,n2﹣n﹣3),判断四边形MNFE是平行四边形,根据ME=NF,求出m+n=4,再确定ME+MN=﹣m2+3m+5﹣m=﹣(m﹣)2+,即可求M;【解答】解:(1)y=ax2﹣3ax﹣4a与y轴交于点C(0,﹣3),∴a=,∴y=,与x轴交点A(﹣1,0),B(4,0);(2)设直线BC的解析式为y=kx+b,∴,∴,∴y=x﹣3;过点D作DH∥y轴,与直线BC交于点H,设H(x,x﹣3),D(x,x2﹣x﹣3),∴DH=|x2﹣3x|,∵S△ABC=,∴S△DBC==6,∴S△DBC=2×|x2﹣3x|=6,∴x=2+2,x=2﹣2,x=2;∴D点的横坐标为2+2,2﹣2,2;(3)过点M作MG∥x轴,交FN的延长线于点G,设M(m,m2﹣m﹣3),N(n,n2﹣n﹣3),则E(m,m﹣3),F(n,n﹣3),∴ME=﹣m2+3m,NF=﹣n2+3n,∵EF∥MN,ME∥NF,∴四边形MNFE是平行四边形,∴ME=NF,∴﹣m2+3m=﹣n2+3n,∴m+n=4,∴MG=n﹣m=4﹣2m,∴∠NMG=∠OBC,∴cos∠NMG=cos∠OBC=,∵B(4,0),C(0,﹣3),∴OB=4,OC=3,在Rt△BOC中,BC=5,∴MN=(n﹣m)=(4﹣2m)=5﹣m,∴ME+MN=﹣m2+3m+5﹣m=﹣(m﹣)2+,∵﹣<0,∴当m=时,ME+MN有最大值,∴M(,﹣)。

2020年河北省中考数学二模试卷(含答案解析)

2020年河北省中考数学二模试卷(含答案解析)

2020年河北省中考数学二模试卷一、选择题(本大题共16小题,共42.0分)1.某日,A市的最高气温为12℃,最低气温为−2℃,A市这天的最高气温比最低气温高()A. 10℃B. 14℃C. −10℃D. −14℃2.下列各组数中,数值相等的有()①−27与(−2)7;②−22与(−2)2;③(−1)2018与−1;④455与1625.A. 1组B. 2组C. 3组D. 4组3.下列标志中不是中心对称图形的是()A. B. C. D.4.比较三个数−3,−π,−√10的大小,下列结论正确的是()A. −π>−3>−√10B. −√10>−π>−3C. −√10>−3>−πD. −3>−π>−√105.如图所示,是由几个相同的小正方体搭成的几何体的三视图,则这个几何体的小正方体的个数是()A. 4B. 5C. 6D. 76.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是()A. m+nB. m−nC. n−mD. |m+n|7.如图,一艘补给船从A点出发沿北偏东65°方向航行,给B点处的船补给物品后,向左进行了90°的转弯,然后沿着BC方向航行,则∠DBC的度数为()A. 25°B. 35°C. 45°D. 65°8.化简x2−y2(y−x)2的结果是()A. −1B. 1C. x+yy−x D. x+yx−y9.如图,可以由第一个五角星平移得到的是()A.B.C.D.10.如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A. 12B. 13C. 16D. 2311.如图,两个三角形是全等三角形,x的值是()A. 30B. 45C. 50D. 8512.关于x的一元二次方程(a−1)x2+3x−2=0有实数根,则a的取值范围是()A. a >−18 B. a ≥−18 C. a >−18且a ≠1D. a ≥−18且a ≠113. 在下列二次函数中,其图象对称轴为直线x =−2的是( )A. y =(x +2)2B. y =2x 2−2C. y =−2x 2−2D. y =2(x −2)214. 如图,AB 为⊙O 的直径,P 点在AB 延长线上,PM 切⊙O 于M 点,若OA =a ,PM =√3a ,那么△PMB 的周长为( )A. 2aB. 2√3aC. aD.(2+√3)a15. 如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA 和射线AB 组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省( )A. 1元B. 2元C. 3元D. 4元16. 如图,把菱形ABCD 向右平移至DCEF 的位置,作EG ⊥,垂足为,与相交于点,的延长线交于点,连接,则下列结论:①;②;③;④其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共3小题,共10.0分)17. 分解因式:(1)3m(a −b)+2n(b −a)=______; (2)2a −1−a 2=______.18. 我们规定一种新运算,对于实数a ,b ,c ,d ,有∣∣∣a b cd∣∣∣=ad −bc.若正整数x 满足∣∣∣x +22x −12−3∣∣∣≥−18,则满足条件的x 的值为______.19. 如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF//AD ,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连接DE ,EH ,DH ,FH.下列结论:①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ;④若AEAB =23,则3S △EDH =13S △DHC ,其中结论正确的有______.三、计算题(本大题共1小题,共11.0分)20. 已知某种产品的进价为每件40元,现在的售价为每件59元,每星期可卖出300件,市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x 元(x 为整数),每星期的销售利润为w 元. (1)求w 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求该厂产品销售定价为每件多少元时,每星期的销售利润最大?最大利润是多少元?四、解答题(本大题共6小题,共57.0分)21. 解不等式75x +32>−x10,并把解集在数轴上表示出来.22.某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A,B,C,D四等,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题:(说明:测试总人数的前30%考生为A等级,前30%至前70%为B等级,前70%至前90%为C等级,90%以后为D等级)(1)抽取了______名学生成绩;(2)请把频数分布直方图补充完整;(3)扇形统计图中A等级所在扇形的圆心角度数是_____;(4)若测试总人数前90%为合格,该校初二年级有1050名学生,求全年级生物合格的学生共约多少人.23.如图,点D在△ABC的边CB的延长线上,以AB为直径作⊙O交线段AC于点E,过点E作EF//CD分别交⊙O、AB于点F、G,连接BE、BF,若∠CBE=∠DBF.(1)求证:CD为⊙O的切线;(2)已知AB=18,BE=6,求弦EF的长.(x<0)的图24.如图,一次函数y=k1x+b的图象与反比例函数y=k2x象相交于点A(−1,2)、点B(−4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△PAB的周长最小,求点P的坐标.25.(1)如图①,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD,AE.求证:△BCD≌△BAE.(2)在(1)的条件下,当 BD//AE时,延长CD交AE于点F,如图②,求AF的长.(3)在(2)的条件下,线段BC上是否存在一点P,使得△PBD为等腰三角形?若存在,请直接写出满足△PBD为等腰三角形时,线段PB的长;若不存在,请说明理由.26.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.【答案与解析】1.答案:B解析:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解..解:12−(−2)=14℃.故选B.2.答案:A解析:本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方的计算方法.根据有理数的乘方进行计算,再逐一判断即可.解:①(−2)7=−27,故①−27与(−2)7相等;②−22=−4,(−2)2=4,故②−22与(−2)2不相等;③(−1)2018=1,故③(−1)2018与−1不相等;④455=10245,故④455与1625不相等;相等的有1组.故选:A.3.答案:C解析:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.解:A.是中心对称图形,故A选项错误;B.是中心对称图形,故B选项错误;C.不是中心对称图形,是轴对称图形,故C选项正确;D.是中心对称图形,故D选项错误;故选C.4.答案:D解析:本题考查实数的大小比较,关键是得到对应数的绝对值的大小.由于3<π<√10,再根据负数比较大小的方法:绝对值大的反而小,比较即可求解.解:∵|−3|=3,|−√10|=√10,;又∵3<π<√10,∴−3>−π>−√10,故选D.5.答案:B解析:解:综合三视图可知,这个几何体的底层应该有2+1+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个.故选:B.根据该几何体的俯视图可确定该几何体共有两行三列,再结合主视图,即可得出该几何体的小正方体的个数.本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.6.答案:C解析:本题考查了实数与数轴:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示.用B点表示的数减去A点表示的数即可得到A,B间的距离.解:A,B间的距离=n−m.故选C.7.答案:D解析:解:如图,由AE//BF,可得∠FBG=∠EAB=65°,又∵∠CBG=∠DBF=90°,∴∠DBC=∠FBG=65°,故选:D.由AE//BF,可得∠FBG=∠EAB=65°,再根据∠CBG=∠DBF=90°,即可得出∠DBC=∠FBG=65°.本题考查了方向角,解决本题的关键是利用平行线的性质:两直线平行,同位角相等.8.答案:D解析:本题考查了分式的约分,对分子、分母进行因式分解是约分的关键.先将分子、分母分别因式分解,找出公因式约去即为结果.解:原式=(x+y)(x−y)(x−y)2=x+y.x−y故选D.9.答案:B解析:本题考查了生活中的平移现象,根据平移只改变图形的位置,不改变图形的形状与大小对各选项分析即可.解:可以由第一个五角星平移得到的是,故选B.10.答案:B解析:解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A进入景区并从C,D出口离开的概率是P,∵小红从入口A进入景区并从C,D出口离开的有2种情况,∴P=1.3故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得小红从入口A进入景区并从C,D出口离开的情况,再利用概率公式求解即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.11.答案:A解析:本题考查的是全等三角形的性质,三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.根据三角形内角和定理求出∠A,根据全等三角形的性质解答即可.解:∠A=180°−105°−45°=30°,∵两个三角形是全等三角形,∠D和∠A所对边长都为3,∴∠D=∠A=30°,即x=30,故选A.12.答案:D解析:本题考查了一元二次方程根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.根据一元二次方程的定义和判别式的意义得到a≠1且Δ=32−4(a−1)×(−2)≥0,然后求出两个不等式解集的公共部分即可.解:根据题意得a≠1且Δ=32−4(a−1)×(−2)≥0,且a≠1.解得a≥−18故选D.13.答案:A解析:本题考查的是二次函数的性质,正确求出二次函数图象的对称轴是解题的关键.根据二次函数的性质求出各个函数的对称轴,选出正确的选项.解:A.y=(x+2)2的对称轴为x=−2,A正确;B.y=2x2−2的对称轴为x=0,B错误;C.y=−2x2−2的对称轴为x=0,C错误;D.y=2(x−2)2的对称轴为x=2,D错误.故选A.14.答案:D解析:此题考查了切线的性质以及直角三角形的性质.注意准确作出辅助线是解此题的关键.先连接OM,由PM切⊙O于M点,若OA=a,PM=√3a,可求得OP的长,继而求得BP的长,即可得OB=BP,利用直角三角形斜边上的中线等于斜边的一半,可求得BM的长,则可求得△PMB 的周长.解:连接OM,∵PM切⊙O于M点,∴OM⊥PM,∴∠OMP=90°,∵OM=OA=a,PM=√3a,∴OP=√OM2+PM2=2a,∵OB=OA=a,∴BP=OP−OB=2a−a=a,OP=OM,∴OB=12∴MB=1OP=a,2∴△PMB的周长为:BM+BP+PM=a+a+√3a=(2+√3)a.故选D.15.答案:B解析:本题考查了一次函数的应用,解决本题的关键是分别求出线段OA和射线AB的函数解析式.根据函数图象,分别求出线段OA和射线AB的函数解析式,即可解答.解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:{2k +b =204k +b =36, 解得:{k =8b =4, ∴y =8x +4,当x =3时,y =8×3+4=28.则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元,故选:B .16.答案:C解析:本题考查菱形的性质,平移变换,全等三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是正确寻找全等三角形解决问题.首先证明△ADG≌△FDH ,再利用菱形的性质、直角三角形斜边中线的性质即可判断.解:∵四边形ABCD 和四边形DCEF 是菱形,∴AB//CD//EF ,AD =CD =DF ,∴∠GAD =∠F ,∵∠ADG =∠FDH ,∴△ADG≌△FDH ,∴DG =DH ,AG =FH ,∴BG =AB +AG =AB +HF ,故①正确.∵EG ⊥AB ,∴∠BGE =∠GEF =90°,∴DE =DG =DH ,故②正确,∴∠DHE =∠DEH ,∵∠DEH =12∠CEF ,∠CEF =∠CDF =∠BAD , ∴∠DHE =12∠BAD ,故③正确,∵四边形ABCD 和四边形DCEF 是菱形,∴∠B =∠DCE =∠F ,∵∠DHE >∠F ,∠DHE =∠DEF ,∴∠DEF>∠B,故④错误.故选C.17.答案:(1)(a−b)(3m−2n);(2)−(a−1)2解析:解:(1)3m(a−b)+2n(b−a)=(a−b)(3m−2n);故答案为:(a−b)(3m−2n);(2)2a−1−a2=−(a2−2a+1)=−(a−1)2.故答案为:−(a−1)2.(1)直接提取公因式(a−b),进而分解因式得出即可;(2)直接提取负号,再利用完全平方公式分解因式得出即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.18.答案:1,2解析:此题主要考查了解一元一次不等式,正确得出不等式是解题关键.直接利用已知定义得出一元一次不等式,进而得出答案.解:由题意可得:−3(x+2)−2(2x−1)≥−18,解得:x≤2,满足条件的x的值为:1,2.故答案为1,2.19.答案:①②③④解析:解:①∵四边形ABCD为正方形,EF//AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF−GF,DF=CD−FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=12∠GFC=45°=∠HCD,在△EHF和△DHC中,{EF=DC∠EFH=∠DCH FH=CH,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=12∠GFC=45°=∠HCD,在△EHF和△DHC中,{EF=DC∠EFH=∠DCH FH=CH,∴△EHF≌△DHC(SAS),故③正确;④∵AEAB =23,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,{EG=DF∠EGH=∠HFD GH=FH,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH=√26x,CD=6x,则S△DHC=12×HM×CD=3x2,S△EDH=12×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;故答案为:①②③④.①根据题意可知∠ACD=45°,则GF=FC,则EG=EF−GF=CD−FC=DF;②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=180°;③同②证明△EHF≌△DHC即可;④若AEAB =23,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=√26x,CD=6x,则S△DHC=12×HM×CD=3x2,S△EDH=12×DH2=13x2.本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.20.答案:解:(1)根据题意,w=(59−40−x)(300+20x)=−20x2+80x+5700,由300+20x≤380可得x≤4;所以0≤x≤4,且x为整数;(2)∵w=−20x2+80x+5700=−20(x−2)2+5780,∴当x=2时,w取得最大值,最大值为5780,答:该厂产品销售定价为每件57元时,每星期的销售利润最大,最大利润是5780元.解析:本题主要考查二次函数的应用,解题的关键是理解题意找到题目蕴含的相等关系,据此列出函数解析式.(1)根据“总利润=每件产品的利润×销售量”可得函数解析式;(2)将(1)中所得函数解析式配方成顶点式,利用二次函数的性质求解可得.21.答案:解:去分母得:14x+15>−x,移项得:14x+x>−15,系数化为1得:x>−1..解析:此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,是一道基本题型.先去分母、移项、根据不等式的基本性质把系数化为1即可求出不等式的解集.画出数轴在数轴上表示出来即可.22.答案:解:(1)50;(2)D等级的学生有50−(10+23+12)=5(名),补全直方图,如图所示:(3)72°;(4)根据题意得:1050×90%=945(人),则全年级生物合格的学生共约945人.解析:此题考查了频数分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.(1)根据B等级的人数除以占的百分比确定出学生总数即可;(2)求出D等级的人数,补全频数分布直方图即可;(3)求出A等级的百分比,乘以360即可得到结果;(4)由学生总数乘以90%即可得到结果.解:(1)根据题意得:23÷46%=50(名),则抽取了50名学生成绩;故答案为50;(2)见答案;(3)根据题意得:20%×360°=72°,故答案为72°;(4)见答案.23.答案:证明:(1)∵EF//CD,∴∠EFB=∠DBF,∵BE⏜=BE⏜,∴∠EFB=∠BAC,∴∠DBF=∠BAC,又∵∠CBE=∠DBF,∴∠CBE=∠BAC,∵AB是直径,∴∠AEB=90°,∴∠ABE+∠BAC=90°,∴∠ABE+∠CBE=90°,∴∠ABC=90°,∴CD⊥AB,∴CD为⊙O的切线;(2)解:连接OE,∵CD⊥AB,EF//CD,∴EF⊥AB,又∵AB是直径,∴EG=FG,连接EO,设OG=x,则BG=9−x,由勾股定理可知:OE2−OG2=BE2−BG2=EG2,即92−x2=62−(9−x)2,解得x=7,∴EF=2EG=2√92−72=8√2.解析:(1)求出∠EFB=∠DBF,∠CBE=∠BAC,根据圆周角定理得出∠AEB=90°,求出∠ABE+∠BAC=90°,推出∠ABC=90°,根据切线的判定推出即可;(2)根据垂径定理求出EG=FG,设OG=x,则BG=9−x,由勾股定理得出方程92−x2=62−(9−x)2,求出x =7,即可求出答案.本题考查了圆周角定理,切线的判定,勾股定理,三角形内角和定理,垂径定理的应用,题目比较典型,综合性比较强.24.答案:解:(1)∵反比例y =k 2x (x <0)的图象经过点A(−1,2), ∴k 2=−1×2=−2, ∴反比例函数表达式为:y =−2x ,∵反比例y =−2x 的图象经过点B(−4,n),∴−4n =−2,解得n =12,∴B 点坐标为(−4,12),∵直线y =k 1x +b 经过点A(−1,2),点B(−4,12),∴{−k 1+b =2−4k 1+b =12, 解得:{k 1=12b =52, ∴一次函数表达式为:y =12x +52.(2)设直线AB 与x 轴的交点为C ,如图1,当y =0时,12x +52=0,x =−5;∴C 点坐标(−5,0),∴OC =5.S △AOC =12⋅OC ⋅|y A |=12×5×2=5.S △BOC =12⋅OC ⋅|y B |=12×5×12=54.S △AOB =S △AOC −S △BOC =5−54=154;(3)如图2,作点A 关于x 轴的对称点A′,连接A′B ,交x 轴于点P ,此时△PAB 的周长最小,∵点A′和A(−1,2)关于x 轴对称,∴点A′的坐标为(−1,−2),设直线A′B 的表达式为y =ax +c ,∵经过点A′(−1,−2),点B(−4,12) ∴{−a +c =−2−4a +c =12,解得:{a =−56c =−176, ∴直线A′B 的表达式为:y =−56x −176, 当y =0时,则x =−175,∴P 点坐标为(−175,0).解析:(1)先根据点A 求出k 2值,再根据反比例函数解析式求出n 值,利用待定系数法求一次函数的解析式;(2)利用三角形的面积差求解.S △AOB =S △AOC −S △BOC .(3)作点A 关于x 轴的对称点A′,连接A′B ,交x 轴于点P ,此时△PAB 的周长最小,设直线A′B 的表达式为y =ax +c ,根据待定系数法求得解析式,令y =0,即可求得P 的坐标.主要考查了反比例函数与一次函数的交点.熟练掌握用待定系数法确定函数的解析式是解题的关键. 25.答案:(1)证明:∵∠ABC =∠DBE =90°,∴∠CBD =∠ABE ,在△BCD 和△BAE 中,{BC =BA ∠CBD =∠ABE BD =BE,∴△BCD≌△BAE(SAS);(2)解:如图②中,AB 与CF 交于点O .由(1)可知:△BCD≌△BAE ,∴∠OAF =∠OCB ,CD =AE ,∵∠AOF =∠COB ,∴∠AFO =∠CBO =90°,∴CF⊥AE,∵BD//AE,∴BD⊥CF,在RT△CDB中,∵∠CDB=90°,BC=3,BD=1,∴CD=AE=√BC2−BD2=2√2,∵∠BDF=∠DFE=∠DBE=90°,∴四边形EFDB是矩形,∴EF=BD=1,∴AF=AE−EF=2√2−1;(3)存在.PB的长为1或2.3①当PB=BD=1时,△PBD为等腰三角形,∴PB=1;②当PD=BD=1时,△PBD为等腰三角形,∴PB=2.3解析:本题主要考查全等三角形的判定和性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是灵活运用全等三角形的性质和判定解决问题.(1)根据“即可得△BCD≌△BAE;(2)由△BCD≌△BAE,得到∠OAF=∠OCB,根据“8字型”证明∠AFO=∠CBO=90°,在RT△BDC 中利用勾股定理求出CD,再证明BD=EF即可解决问题;(3)分两种情况:①当PB=BD=1时;②当PD=BD=1时,分别求出PB的长.26.答案:解:(1)证明:∵四边形ABCD是矩形,∴AD//BC,∴∠EAO=∠FCO,∵AC的垂直平分线EF,∴OA=OC,在△AOE和△COF中,{∠EAO=∠FCO OA=OC∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF,∵OA=OC,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.(2)∵四边形AFCE是菱形,∴AF=FC,设AF=xcm,则CF=xcm,BF=(8−x)cm,∵四边形ABCD是矩形,∴∠B=90°,∴在Rt△ABF中,由勾股定理得:42+(8−x)2=x2,解得x=5,即AF=5cm;(3)分为三种情况:第一、P在AF上.∵P的速度是1cm/s,而Q的速度是0.8cm/s,∴Q只能再CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;第二、当P在BF上时,Q在CD或DE上,只有当Q在DE上时,当A、P、C、Q四点为顶点的四边形才有可能是平行四边形,如图,∵AQ=8−(0.8t−4),CP=5+(t−5),∴8−(0.8t−4)=5+(t−5),t=203;第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;∴t=20.3解析:本题考查的是四边形综合题型,主要考查了矩形的性质,全等三角形的判定与性质,翻折变换的性质,菱形的判定与性质,平行四边形的性质.(1)根据全等推出OE=OF,得出平行四边形AFCE,根据菱形判定推出即可;(2)根据菱形性质得出AF=CF,根据勾股定理得出方程,求出方程的解即可;(3)分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可.。

2020年重庆市中考数学二模试卷及解析

2020年重庆市中考数学二模试卷及解析

2020年重庆市中考二模试卷数学试卷一、选择题(本大题共12小题,共48分)1.下列四个数中是无理数的是()A. 3B. 3πC. 3.14159D. √92.图中立体图形的俯视图是()A. B. C. D.3.下列运算正确的是()A. a2+a3=a5B. (2a3)2=2a6C. a3⋅a4=a12D. a5÷a3=a24.下列命题,是真命题的是()A. 菱形的对角线相等B. 若|a|=|b|,那么a=bC. 同位角一定相等D. 函数y=1的自变量的取值范围是x≠−1x+15.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第10个图案由()个▲组成.A. 30B. 31C. 32D. 336.估计√9×√1+√12的运算结果应在哪两个连续自然数之间()3A. 5和6B. 6和7C. 7和8D. 8和97.已知二次函数y=x2−4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A. 1B. 2C. 3D. 48.如图,在菱形ABCD中,E是AB边上一点,若AE:AD=1:3,则S△AEF:S△CDF=()A. 1:2B. 1:3C. 1:4D. 1:99.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A. 60°B. 35°C. 30.5°D. 30°10.某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A. 3×5+3×0.8x ≤27B. 3×5+3×0.8x ≥27C. 3×5+3×0.8(x −5)≤27D. 3×5+3×0.8(x −5)≥2711. 钓鱼是一项特别锻炼心性的运动,如图,小南在江边垂钓,河堤AB 的坡度为1:2.4,AB 长为3.9米,钓竿AC 与水平线的夹角是60°,其长为4.5米,若钓竿AC 与钓鱼线CD 的夹角也是60°,则浮漂D 与河堤下端B 之间的距离约为( )米.(参考数据:√3≈1.732)A. 1.732B. 1.754C. 1.766D. 1.82312. 若数a 使关于x 的不等式组{x−52+1≤x+135x −2a >2x +a至少有3个整数解,且使关于y 的分式方程a−3y−1−21−y =2有非负整数解,则满足条件的所有整数a 的和是( )A. 14B. 15C. 23D. 24二、填空题(本大题共6小题,共24分)13. 截至2019年4月份,全国参加汉语考试的人数约为3500万,将3500万用科学记数法表示为______.14. 在如图所示的电路中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是______. 15. 如图,在△ABC 中,D 为BC 的中点,以D 为圆心,以BD 长为半径画弧交AC 于点E ,若∠A =50°,∠B =110°,BC =3,则扇形BDE 的面积为______.第15题图 第16题图 第17题图 16. 如图,△ABC 为边长是5的等边三角形,点E 在AC 边上,点F 在AB 边上,将△AFE 沿EF 对折,使点A 正好落在BC 边的点D 处,且ED ⊥BC ,则CE 的长是______. 17. 小明和小亮分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C ,小明先到达奶茶店C ,并在C 地休息了一小时,然后按原速度前往B 地,小亮从B 地直达A 地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B 地时,小亮距离A 地______千米.18. 某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为______元.三、计算题(本大题共1小题,共10分)19. 已知函数y =y 1+y 2,其中y 1与x 成反比例,y 2与x −2成正比例,函数的自变量x的取值范围是x ≥12,且当x =1或x =4时,y 的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:______. (2)函数图象探究:(3)结合画出的函数图象,解决问题:①当x =34,214,8时,函数值分别为y 1,y 2,y 3,则y 1,y 2,y 3的大小关系为:______;(用“<”或“=”表示)②若直线y =k 与该函数图象有两个交点,则k 的取值范围是______,此时,x 的取值范围是______.四、解答题(本大题共7小题,共68分)20. (1)(2a −b)2+(a +b)(a −b);(2)(4x+5x−1+x +1)÷x 2+2xx−1.21.如图所示,△ABC中,AB=AC,AD平分∠BAC,点G是BA延长线上一点,点F是AC上一点,AG=AF,连接GF并延长交BC于E.(1)若AB=8,BC=6,求AD的长;(2)求证:GE⊥BC.22.4月23日世界读书日之际,习近平总书记提倡和鼓励大家多读书、读好书.在接受俄罗斯电视台专访时,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”为响应号召,建设书香校园,某初级中学对本校初一、初二两个年级的学生进行了课外阅读知识水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下【收集数据】从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下初一年88604491718897637291级81928585953191897786初二年77828588768769936684级90886788919668975988【整理数据】按如下分段整理样本数据:分段0≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100年级初一年级22376初二年级1a2b5统计量平均数中位数众数方差年级初一年级78.85c91291.53初二年级81.9586d115.25【得出结论】(1)根据统计,表格中a、b、c、d的值分别是______、______、______、______.(2)若该校初一、初二年级的学生人数分别为1000人和1200人,则估计这次考试成绩90分以上的人数为______.(3)可以推断出(填“初一”或“初二”)学生的课外阅读整体水平较高,理由为______.23.某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元.(1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?(2)第二月正好赶上市里开展家具展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a%(a>0)后销售,在展销活动的第一周,该公司的普通a%:实木椅子的销售量比第一椅子销售量比上一月全月普通椅子的销售量多了103月全月实木椅子的销售量多了a%,这一周两种椅子的总销售金额达到了251000元,求a的值.24.如图,在平行四边形ABCD中,AE⊥BD于E.(1)若BC=BD,tan∠ABE=3,DE=16,求BC的长.(2)若∠DBC=45°,对角线AC、BD交于点O,F为AE上一点,且AF=2EO,求证:CF=√2CD.25.我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2−n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.26.如图1,在平面直角坐标系中,抛物线y=−√32x2+2√3x−√3与x轴交于A、B 两点(点A在点B的左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交x轴交于点G.(1)如图1,求直线CE的解析式和顶点D的坐标;(2)如图1,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于x轴的直线l上一点,点N是抛物线对称轴上一点,求FM+ MN+NO的最小值;(3)如图2,过点D作DI⊥DG交x轴于点I,将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,记旋转过程中的△G′D′I′为△G″D′I″,若在整个旋转过程中,直线G″I″分别交x轴和直线GD′于点K、L两点,是否存在这样的K、L,使△GKL为以∠LGK 为底角的等腰三角形?若存在,求此时GL的长.答案和解析1.【答案】B【解析】解:A、3是有理数;B、3π是无理数;C、3.14159是有限小数,属于有理数;D.√9=3是有理数;故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,3π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】B【解析】解:根据图形可得俯视图为:故选:B.根据几何体的三视图,即可解答.本题考查了几何体的三视图,解决本题的关键是画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.3.【答案】D【解析】解:A、a2+a3,无法计算,故此选项错误;B、(2a3)2=4a6,故此选项错误;C、a3⋅a4=a7,故此选项错误;D、a5÷a3=a2,故此选项正确.故选:D.直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.此题主要考查了合并同类项以及同底数幂的乘除运算,正确化简各数是解题关键.4.【答案】D【解析】解:A、菱形的对角线垂直,是假命题;B、若|a|=|b|,那么a=b或a=−b,是假命题;C、两直线平行,同位角相等,是假命题;D、函数y=1的自变量的取值范围是x≠−1,是真命题;x+1故选:D.根据菱形的性质、绝对值、同位角和函数进行判断即可.此题主要考查了命题与定理,正确把握相关定义是解题关键.5.【答案】B【解析】解:观察发现:第一个图形有3×2−3+1=4个三角形;第二个图形有3×3−3+1=7个三角形;第一个图形有3×4−3+1=10个三角形;…第n个图形有3(n+1)−3+1=3n+1个三角形;当n=10时,3n+1=3×10+1=31,故选B.故选:B.仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6.【答案】A【解析】解:√9×√13+√12=3×√33+2√3=3√3,∵5<3√3<6,∴√9×√13+√12的运算结果应在5和6两个连续自然数之间,故选:A.先把各二次根式化为最简二次根式,再进行计算.本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.最后估计无理数的大小.7.【答案】B【解析】解:将点A(1,0)代入y=x2−4x+m,得到m=3,∵y=x2−4x+3与x轴交于A、B两点,∴x2−4x+3=0有两个不等的实数根,解得,x1=1,x2=3,∵A(1,0),∴B(3,0),∴AB=3−1=2故选:B.将点A(1,0)代入y=x2−4x+m,求出m的值,然后解方程方程得出点B的坐标,根据数轴上两点间的距离公式即可求出AB的长.本题考查一元二次函数与一元二次方程的关系;熟练掌握二次函数与一元二次方程的关系是解题关键.8.【答案】D【解析】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB//CD,∵AE:AD=1:3,∴AE:CD=1:3,∵AE//CD,∴△AEF∽△CDF,∴S△AEFS△CDF =(AECD)2=19,故选:D.利用相似三角形的性质即可解决问题.本题考查相似三角形的判定和性质,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】D【解析】解:连接OB,∵点B是AC⏜的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选:D.根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理解答.本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.10.【答案】C【解析】解:设小聪可以购买该种商品x件,根据题意得:3×5+3×0.8(x−5)≤27.故选:C.设小聪可以购买该种商品x件,根据总价=3×5+3×0.8×超出5件的部分结合总价不超过27元,即可得出关于x的一元一次不等式,此题得解.本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.11.【答案】C【解析】解:如图,延长CA交DB延长线与点E,过点A作AF⊥BE于点F,则∠CED=60°,∵AB的坡比为1:2.4,∴AFBF =12.4=512,则设AF=5x,BF=12x,∵AB=3.9米,∴在直角△ABF中,由勾股定理知,3.92=25x2+ 144x2.解得x=310.∴AF=5x=32,BF=12x=185∴EF=AFtan60∘=32√3=√32,AE=AFsin60∘=32√32=√3∵∠C=∠CED=60°,∴△CDE是等边三角形,∵AC=4.5米,∴DE=CE=AC+AE=4.5+√3(米),则BD=DE−EF−BF=4.5+√3−√32−185≈1.766(米),答:浮漂D与河堤下端B之间的距离为1.766米.故选:C.延长CA交DB延长线与点E,过点A作AF⊥BE于点F,利用正切的概念求出AE、EF、BF,判断△CDE为等边三角形,求出DE,计算即可.本题考查的是解直角三角形的应用−坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.12.【答案】A【解析】解:解不等式x−52+1≤x+13,得:x≤11,解不等式5x−2a>2x+a,得:x>a,∵不等式组至少有3个整数解,∴a<9;分式方程两边乘以y−1,得:a−3+2=2(y−1),解得:y=a+12,∵分式方程有非负整数解,∴a取−1,1,3,5,7,9,11,……∵a<9,且y≠1,∴a只能取−1,3,5,7,则所有整数a的和为−1+3+5+7=14,故选:A.先解不等式组,根据不等式组至少有3个整数解,得出a>−1,再解分式方程,根据分式方程有非负整数解,得到a≤4且a≠1,进而得到满足条件的整数a的和.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.本题考查了分式方程的解,利用不等式的解集及方程的解得出a的值是解题关键.13.【答案】3.5×107【解析】解:将3500万用科学记数法表示为3.5×107.故答案为:3.5×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】13【解析】解:画树状图为:共有6种等可能的结果数,其中能让灯泡L1发光的结果数为2,所以能让灯泡L1发光的概率=26=13.故答案为13.画树状图展示所有6种等可能的结果数,找出让灯泡L1发光的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.15.【答案】π4【解析】解:∵∠A=50°,∠B=110°,∴∠C=20°,∵BD=DC=1.5,DE=DB,∴DE=DC=1.5,∴∠DEC=∠C=20°,∴∠BDE=40°,∴扇形BDE的面积=40π×1.52360=π4,故答案为:π4.根据三角形内角和定理求出∠C,根据三角形的外角的性质求出∠BDE,根据扇形面积公式计算.本题考查的是扇形面积计算,三角形内角和定理,等腰三角形的性质,掌握扇形面积公式是解题的关键.16.【答案】20−10√3【解析】解:∵将△AFE沿EF对折,使点A正好落在BC边的点D处∴AE=ED在Rt△EDC中,∠C=60°,ED⊥BC∴ED=√32EC∴CE+ED=(1+√32)EC=5∴CE=20−10√3故答案为:20−10√3根据轴对称的性质可得AE=ED,在Rt△EDC中,利用60度角求得ED=√32EC,列出方程EC+ED=(1+√32)EC=5,解方程即可求解.本题考查翻折变换,等边三角形的性质,熟练运用折叠的性质是本题的关键.17.【答案】90【解析】【分析】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意和函数图象中的数据可以分别求得小明和小亮的速度,从而可以计算出当小明到达B地时,小亮距离A地的距离.【解答】解:设小明的速度为akm/ℎ,小亮的速度为bkm/ℎ, {2ba =3.5−2.5(3.5−2)b +(3.5−2.5)a =210, 解得,{a =120b =60,当小明到达B 地时,小亮距离A 地的距离是:120×(3.5−1)−60×3.5=90(千米), 故答案为:90.18.【答案】6250【解析】解:∵甲产品每袋售价72元,则利润率为20%. 设甲产品的成本价格为b 元, ∴72−b b=20%,∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元, ∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40−x)元,生产甲产品m 袋,乙产品n 袋,根据题意得:{m +n ≤10060m +(2x +40−x)n +500=60m +n(80−2x +x), ∴xn =20n −250,设生产甲乙产品的实际成本为W 元,则有 W =60m +40n +xn ,∴W =60m +40n +20n −250=60(m +n)−250, ∵m +n ≤100, ∴W ≤6250;∴生产甲乙产品的实际成本最多为5750元, 故答案为5750;先求出A 与B 原料的成本和,再设A 种原料成本价格x 元,B 种原料成本价格(40−x)元,生产甲产品m 袋,乙产品n 袋,根据题意列出方程{m +n ≤10060m +(2x +40−x)n +500=60m +n(80−2x +x),得到W =60m +40n +20n +250=60(m +n)+250,即可求解;本题考查一元一次方程和不等式;能够通过题意列出方程是解题的关键.19.【答案】(1)y =2x +12x −1(2)① 1 134②(3)① y 2<y 1<y 3 ②1<k ≤13412≤x ≤8【解析】解:(1)设y 1=k 1x,y 2=k 2(x −2),则y =k 1x+k 2(x −2),由题意得:{k 1−k 2=32k 14+2k 2=32,解得:{k 1=2k 2=12, ∴该函数解析式为y =2x +12x −1, 故答案为:y =2x +12x −1,(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大, ∴y 2<y 1<y 3,故答案为:y 2<y 1<y 3,②观察图象得:x ≥12,图象最低点为(2,1), ∴当直线y =k 与该图象有两个交点时,1<k ≤134,此时x 的范围是:12≤x ≤8. 故答案为:1<k ≤134,12≤x ≤8. 【分析】(1)用待定系数法设y 1=k 1x,y 2=k 2(x −2),则y =k 1x+k 2(x −2),将已知条件代入得关于k 1、k 2方程组,即可求得该函数解析式;(2)选取适当数值填表,在平面直角坐标系中描点,用平滑曲线从左到右顺次连接各点,画出图象;(3)观察图象,得出结论.本题考查了待定系数法求函数解析式,列表,画函数图象,观察函数图象.20.【答案】解:(1)(2a −b)2+(a +b)(a −b)=4a 2+b 2−4ab +a 2−b 2=5a 2−4ab ;(2)(4x +5x −1+x +1)÷x 2+2xx −1 =4x +5+x 2−1x −1×x −1x(x +2) =(x +2)2x −1×x −1x(x +2)=x+2x.【解析】(1)直接利用完全平方公式以及平方差公式分别计算得出答案;(2)直接将括号里面通分,进而利用分式的混合运算法则计算得出答案.此题主要考查了分式的混合运算以及乘法公式,正确掌握运算法则是解题关键. 21.【答案】解:(1)∵AB =AC ,AD 平分∠BAC , ∴AD ⊥BC ,BD =CD =3,在Rt △ABD 中,AD =√AB 2−BD 2=√82−32=√55.(2)∵GA =GF , ∴∠G =∠AFG ,∵∠BAC =∠G +∠AFG =2∠AFG ,∠BAC =2∠CAD , ∴∠AFG =∠CAD , ∴AD//EG , ∵AD ⊥BC , ∴GE ⊥BC .【解析】(1)利用等腰三角形的三线合一的性质证明AD ⊥BC ,BD =CD ,利用勾股定理即可解决问题.(2)想办法证明EG//AD 即可.本题考查等腰三角形的性质,平行线的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 22.【答案】(1)4,8,87,88; (2)800;(3)初二学生的平均分高.【解析】解:(1)由题意a =4,b =8,c =87,d =88, 故答案为:4,8,87,88; (2)1000×620=300(人),1200×512=500(人),300+500=800(人), 故答案为:800人;(3)初二学生的课外阅读整体水平较高,理由是初二学生的平均分高, 故答案为:初二学生的平均分高.【分析】(1)利用收集的数据以及中位数,众数的定义即可解决问题; (2)利用样本估计总体的思想解决问题即可;(3)利用平均数的大小即可判断. 本题考查方差,平均数,中位数,众数,样本估计总体等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.23.【答案】解:(1)设普通椅子销售了x 把,实木椅子销售了y 把, 依题意,得:{x +y =900180x +400y =272000,解得:{x =400y =500.答:普通椅子销售了400把,实木椅子销售了500把; (2)依题意,得:(180−30)×400(1+103a%)+400(1−2a%)×500(1+a%)=251000,整理,得:a 2−225=0,解得:a 1=15,a 2=−15(不合题意,舍去). 答:a 的值为15.【解析】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元二次方程.(1)设普通椅子销售了x 把,实木椅子销售了y 把,根据总价=单价×数量结合900把椅子的总销售金额为272000元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据销售总价=销售单价×销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.24.【答案】解:(1)设BC =x ,则AD =BD =x , ∵DE =16, ∴BE =x −16,∵AE ⊥BD ,tan ∠ABE =3, ∴AE =3(x −16)=3x −48, 在Rt △ADE 中,由勾股定理得, x 2−(3x −48)2=162, 解得,x =20或16, ∴BC =20或16,(2)延长AE 与BC 交于点M ,过点O 作OG//AE ,分别交BC 、CF 于点G 、H ,连接EH ,BF ,并延长BF ,与AD 交于点N ,连接DF ,DG .∵AE ⊥BD , ∴OG ⊥BD , ∵OB =OD , ∴BG =DG , ∵∠DBC =45°,∴∠BDG=45°,∴∠BGD=90°,∵OG//AM,OA=OC,∴OH=12AF=OE,HF=HC,∴∠OEH=∠OHE=45°=∠OBC,∴EH//BC,∴EF=MF,∵BE⊥MF,BF=BF,∴△BEM≌△BEF(SAS),∴∠MBE=∠EBF=45°,BM=BF,∴∠DNB=∠NBG=90°,∴四边形BGDN是正方形,∴DG=DN=BN=BG,∴MG=FN,∵AM//OG,OA=OC,∴MG=CG,∴CG=FN,在△DNF和△DGC中,{DN=DG∠DNF=∠DGC=90°FN=CG,∴△DNF≌△DGC(SAS),∴DF=DC,∠NDF=∠GDC,∴∠FDC=∠NDG=90°,∴CF=√2CD.【解析】(1)设BC=x,根据题意依次表示出AD、BE、AE,再由勾股定理列出x的方程便可求得x的值;(2)延长AE与BC交于点M,过点O作OG//AE,分别交BC、CF于点G、H,连接EH,BF,并延长BF,与AD交于点N,连接DF,DG,先证明四边形BGDN是正方形,再证明△DNF≌△DGC,得△CDF是等腰直角三角形便可.本题是平行四边形的综合题,主要考查了平行四边形的性质,解直角三角形,正方形的性质与判定,全等三角形的性质与判定,等腰直角三角形的性质与判定,勾股定理,第(1)小题的关键是用勾股定理列方程;第(2)小题较难,关键是证明△CDE为等腰直角三角形,突破方法是正确作辅助线,构造全等三角形与正方形.25.【答案】解:(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+ 4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n为正整数,∴a、b、c是一组勾股数;(2)解:∵n=5∴a=12(m2−52),b=5m,c=12(m2+25),∵直角三角形的一边长为37,∴分三种情况讨论,①当a =37时,12(m 2−52)=37, 解得m =±3√11(不合题意,舍去) ②当y =37时,5m =37, 解得m =375(不合题意舍去);③当z =37时,37=12(m 2+n 2),解得m =±7,∵m >n >0,m 、n 是互质的奇数, ∴m =7,把m =7代入①②得,x =12,y =35.综上所述:当n =5时,一边长为37的直角三角形另两边的长分别为12,35.【解析】(1)分别计算出a 2+b 2=4n 4+8n 3+8n 2+4n +1,c 2=4n 4+8n 3+8n 2+4n +1,于是得到a 2+b 2=c 2,即可得到结论;(2)讨论:①当x =37时,利用12(m 2−52)=37计算出m ,然后分别计算出y 和z ;②当y =37时,利用5m =37,解得m =375,不合题意舍去;③当z =37时,利用37=12(m 2+n 2)求出m =±7,从而得到当n =5时,一边长为37的直角三角形另两边的长.此题主要考查了勾股定理与勾股数,关键是根据所给的数据证明a 2+b 2=c 2.26.【答案】解:(1)∵抛物线y =−√32x 2+2√3x −√3与y 轴交于点C ,∴C(0,−√3), ∵y =−√32x 2+2√3x −√3=−√32(x −2)2+√3,∴顶点D(2,√3),对称轴x =2,∴E(2,0),设CE 解析式y =kx +b , ∴{b =−√30=2k +b , 解得:{k =√32b =−√3,∴直线CE 的解析式:y =√32x −√3;(2)∵直线CE 交抛物线于点F(异于点C), ∴√32x −√3=−√32(x −2)2+√3,∴x 1=0,x 2=3, ∴F(3,√32), 过P 作PH ⊥x 轴,交CE 于H ,如图1, 设P(a,−√32a 2+2√3a −√3) 则H(a,√32a −√3), ∴PH =−√32a 2+2√3a −√3−(√32a −√3),=−√32a 2+3√32,∵S △CFP =12PH ×3=−3√34a 2+9√34,∴当a =32时,S △CFP 面积最大, 如图2,作点M 关于对称轴的对称点,过F 点作,FG =1,即G(4,√32),∵M 的横坐标为32,且M 与关于对称轴x =2对称,的横坐标为52,, ,且,是平行四边形, ,,根据两点之间线段最短可知:当O ,N ,,G 四点共线时,的值最短,即 FM +MN +ON 的值最小, ∴FM +MN +ON =OG =(√32)=√672; (3)如图3,设CD 解析式y =mx +n ,则{n =−√3√3=2m +n, 解得:{m =√3n =−√3,∴CD 解析式y =√3x −√3, ∴当y =0时,x =1.即G(1,0), ∴DG =√1+3=2, ∵tan ∠DGI =√31=√3,∴∠DGI =60°, ∵DI ⊥DG ,∴∠GDI =90°,∠GID =30°,∴GI =2DG =4∴I(5,0),∵将△GDI 沿射线GB 方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I 重合,连接,,,是等边三角形, ,,如图4,当与I、K重合,△GKL为以∠LGK为底角的等腰三角形,∠LGK=∠GLK=30°,;如图5,L与重合,△GKL为以∠LGK为底角的等腰三角形,综上,GL的长为4√3或2√3+2.【解析】(1)根据抛物线解析式可得顶点D的坐标,C点坐标,E点解析式,可求CE解析式.(2)过P作PH⊥x轴,交CE于H,设P(a,−√3a2+2√3a−√3),用a表示△PCF的面2积,根据二次函数性质可求a的值,从而可得M的横坐标,作M点关于对称轴对称点,)可得是平行四边形,则可得,作,FG=1,即G(4,√32,由两点之间线段最短可知,当O,N,,G四点共线时,的值最短,即FM+MN+ON的值最小,最小值为OG.(3)如图3,易得CD解析式:y=√3x−√3,则G(1,0),计算DG和GI的长,则I(5,0),将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α< 180°),当旋转到一定度数时,点G′会与点I重合,连接,是等边三角形,得,如图4,当与L重合,可得△LGK是等边三角形,当△GKL为以∠LGK为底角的等腰三角形时,存在两种情况,画图可得结论.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求函数的解析式、二次函数的性质、轴对称图形的性质、平行四边形的性质、等腰三角形的性质、锐角三角函数的定义,将FM+MN+ON转化为OG的长是解答问题(2)的关键,根据题意画出图形是解答问题(3)的关键.。

2020年中考数学二模试卷 (含答案解析)(解析版)

2020年中考数学二模试卷 (含答案解析)(解析版)

2020年中考数学二模试卷一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)24.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣85.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3 6.下列图形中,主视图为图①的是()A.B.C.D.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1968.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为.12.分解因式:9x﹣x3=.13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是.三.解答题(共9小题)15.计算:16.先化简,再求值:,其中,a=﹣1.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.参考答案与试题解析一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±【分析】先化简,再根据平方根的定义即可求解.【解答】解:=,的平方根是±.故选:D.2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、不是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:B.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)2【分析】直接利用提取公因式法以及公式法分解因式进而判断即可.【解答】解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误;B、x2+y2,无法分解因式,故此选项错误;C、a2+2ab﹣4b2,无法分解因式,故此选项错误;D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确.故选:D.4.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000001=1×10﹣7,故选:C.5.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3【分析】先解不等式组求得﹣2<x≤4+a,根据不等式组恰有两个整数解知不等式组的整数解为﹣1、0,据此得0≤4+a<1,解之即可.【解答】解:解不等式1+5x>3(x﹣1),得:x>﹣2,解不等式≤8﹣+2a,得:x≤4+a,则不等式组的解集为﹣2<x≤4+a,∵不等式组恰有两个整数解,∴不等式组的整数解为﹣1、0,则0≤4+a<1,解得﹣4≤a<﹣3,故选:B.6.下列图形中,主视图为图①的是()A.B.C.D.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【解答】解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选:C.8.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选:C.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r【分析】首先求得围成的圆锥的母线长,然后利用勾股定理求得其高即可.【解答】解:∵圆的半径为r,扇形的弧长等于底面圆的周长得出2πr.设圆锥的母线长为R,则=2πr,解得:R=3r.根据勾股定理得圆锥的高为2r,故选:B.10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD =OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【解答】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE﹣AH=BC﹣CD,∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C.二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为20.【分析】根据中位数的定义求解可得.【解答】解:将数据重新排列为15、20、20、25、30,所以这组数据的中位数为20,故答案为:20.12.分解因式:9x﹣x3=x(3+x)(3﹣x).【分析】首先提取公因式x,金进而利用平方差公式分解因式得出答案.【解答】解:原式=x(9﹣x2)=x(3﹣x)(3+x).故答案为:x(3﹣x)(3+x).13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.【分析】过A作AC⊥x轴,过B作BD⊥x轴于D,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S△BDO=,S△AOC=,根据相似三角形的性质得到=()2==5,求得=,根据三角函数的定义即可得到结论.【解答】解:过A作AC⊥x轴,过B作BD⊥x轴于D,则∠BDO=∠ACO=90°,∵顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,∴S△BDO=,S△AOC=,∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC,∴△BDO∽△OCA,∴=()2==5,∴=,∴tan∠BAO==,故答案为:.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是(﹣2,3)或(2,﹣3).【分析】根据位似图形的概念得到矩形OA'B'C'∽矩形OABC,根据相似多边形的性质求出相似比,根据位似图形与坐标的关系计算,得到答案.【解答】解:∵矩形OA'B'C'与矩形OABC关于点O位似,∴矩形OA'B'C'∽矩形OABC,∵矩形OA'B'C'的面积等于矩形OABC面积的,∴矩形OA'B'C'与矩形OABC的相似比为,∵点B的坐标为(﹣4,6),∴点B'的坐标为(﹣4×,6×)或(4×,﹣6×),即(﹣2,3)或(2,﹣3),故答案为:(﹣2,3)或(2,﹣3).三.解答题(共9小题)15.计算:【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:=1+﹣2+(﹣1)﹣×3=﹣216.先化简,再求值:,其中,a=﹣1.【分析】先化简分式,然后将a=﹣1代入求值.【解答】解:原式=,当时,原式=.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)【分析】(1)根据三角形的外角的性质计算;(2)作BE∥AC交CD于E,求出CE=AB=2,根据正弦的定义求出DE,计算即可.【解答】解:(1)由题意得,∠CBD=90°﹣22.5°=67.5°,∠CAD=45°,∴∠ACB=∠CBD﹣∠CAD=22.5°;(2)作BE∥AC交CD于E,则∠EBD=∠CAD=45°,∴DB=DE,∵DA=DC,∴CE=AB=2,∵∠ACD=45°,∠ACB=22.5°,∴∠BCD=22.5°,∴∠CBE=∠BED﹣∠BCD=22.5°,∴∠CBE=∠BCE,∴BE=CE=2,∴DE=BE=,∴CD+DE+CE=2+,答:船C离海岸线l的距离为(2+)km.20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.【分析】(1)①证明DO∥AB,即可求解;②证明CDE∽△CAD,即可求解;(2)证明△OFD、△OF A是等边三角形,S阴影=S扇形DFO,即可求解.【解答】解:(1)①连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,则∠DAB=∠ODA,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE•CA;(2)连接DE、OD、DF、OF,设圆的半径为R,∵点F是劣弧AD的中点,∴是OF是DA中垂线,∴DF=AF,∴∠FDA=∠F AD,∵DO∥AB,∴∠ODA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠F AD,∴AF=DF=OA=OD,∴△OFD、△OF A是等边三角形,则DF∥AC,故S阴影=S扇形DFO,∴∠C=30°,∴OD=OC=(OE+EC),而OE=OD,∴CE=OE=R=3,S阴影=S扇形DFO=×π×32=.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了200名学生;(2)m=52;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【分析】(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树形图方法,利用概率公式即可求解.【解答】解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是=.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.【分析】(1)根据利润=(单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值,然后分别求出A、B方案的最大利润,然后进行比较.【解答】解:(1)由题意得,销售量=150﹣10(x﹣30)=﹣10x+450,则w=(x﹣25)(﹣10x+450)=﹣10x2+700x﹣11250;(2)w=﹣10x2+700x﹣11250=﹣10(x﹣35)2+1000,∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=1000元,故当单价为35元时,该计算器每天的利润最大;(3)B方案利润高.理由如下:A方案中:∵25×24%=6,此时w A=6×(150﹣10)=840元,B方案中:每天的销售量为120件,单价为33元,∴最大利润是120×(33﹣25)=960元,此时w B=960元,∵w B>w A,∴B方案利润更高.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.【分析】(1)如图1中,作CH⊥AB于H.解直角三角形求出CH,证明△CHB是等腰直角三角形即可解决问题.(2)①利用直角三角形斜边中线定理,证明△MEF是等腰直角三角形即可解决问题.②如图2中,由①可知△MEF是等腰直角三角形,当ME的值最小时,△MEF的面积最小,因为ME=BD,推出当BD⊥AC时,ME的值最小,此时BD=.【解答】解:(1)如图1中,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=,tan A==3,∴AH=1,CH=3,∵∠CBH=45°,∠CHB=90°,∴∠HCB=∠CBH=45°,∴CH=BH=3,∴BC=CH=3.(2)①结论:∠EMF=90°不变.理由:如图2中,∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∵DM=MB,∴ME=BD,MF=BD,∴ME=MF=BM,∴∠MBE=∠MEB,∠MBF=∠MFB,∵∠DME=∠MEB+∠MBE,∠DMF=∠MFB+∠MBF,∴∠EMF=∠DME+∠DMF=2(∠MBE+∠MBF)=90°,②如图2中,作CH⊥AB于H,由①可知△MEF是等腰直角三角形,∴当ME的值最小时,△MEF的面积最小,∵ME=BD,∴当BD⊥AC时,ME的值最小,此时BD===,∴EM的最小值=,∴△MEF的面积的最小值=××=.故答案为.。

2020年中考二模数学试题及答案

2020年中考二模数学试题及答案

数学试卷(满分:150分;考试时间:120分钟)说明:1.答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上。

2.选择题每小题选出答案后,请用2B铅笔在答题卡指定区域填涂,如需改动,用橡皮擦干净后,再填涂其它答案。

非选择题请用0.5毫米的黑色签字笔在答题卡指定区域作答,在试卷或草稿纸上作答一律无效。

考试结束后,请将答题卡交回。

3.如有作图需要,可用2B铅笔作答,并请加黑加粗,描写清楚。

一、选择题(本大题共8题,每题3分,共24分.每题的四个选项中,只有一个选项是符合要求的,请将正确选项前的字母代号填写在答题卡相应位置上)1.温家宝总理在十一届全国人大五次会议上的政府工作报告中指出,2011年共有1228万名中西部家庭经济困难学生享受生活补助.1228万可用科学记数法表示为A.1.228×107B.12.28×106C.122.8×105D.1228×1042. 下列运算中,正确的是(第4题)cBA C A .236a a a =÷B .523a a a =⋅C .222)(b a b a +=+D .ab b a 532=+3.如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c ,AB =BC ,如果||a >||c >||b ,那么该数轴的原点O 的位置应该在A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 4.下列图形中,不是三棱柱的表面展开图的是A .B .C .D . 5.一个几何体的主视图和左视图都是边长为2 cm 的正三角形,俯视图是一个圆,那么这个几何体的侧面积是 A .π cm 2 B .2π cm 2 C . 4π cm 2 D .3π cm26.甲、乙两人进行象棋比赛,比赛规则为3局2胜制.如果两人在每局比赛中获胜的机会均等,且比赛开始后,甲先胜了第1局,那么最后甲获胜的概率是A .12B .23C .14D .347.如图,图①、图②、图③分别表示甲、乙、丙三人由A 地到B 地的路线图(箭头表示行进的方向).其中E 为AB 的C50︒ 60︒①ABD E F 50︒60︒70︒ 50︒60︒70︒ ② I 50︒60︒70︒50︒ 60︒70︒J K ③70°B A (第7题)中点,AJ >JB .判断三人行进路线长度的大小关系为A .甲<乙<丙B .乙<丙<甲C .丙<乙<甲D .甲=乙=丙8.定义:直线1l 与2l 相交于点O ,对于平面内任意一点M ,点M到直线1l 、2l 的距离分别为p 、q ,则称有序非负实数对(,)p q 是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是 A .2 B .3 C .4D . 5二、填空题(本大题共10题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 函数2y x =-变量x 的取值范围是 .10.某天我国6个城市的平均气温分别是 -3℃、5℃、 -12℃、16℃、 22℃、 28℃,则这6个城市平均气温的极差是 ℃.11.分解因式:34a a -= . 12.若2()2210x y x y +--+=,则x y += .13.已知方程组⎩⎨⎧-=--=-3232y x y x 的解为⎩⎨⎧=-=11y x ,则函数23y x =+与1322y x =+的交点坐标为 .14.已知点A (1,2)在反比例函数k y x=的图象上,则当1x >时,y 的取值范围是 .15.如图,将正五边形ABCDE 的C 点固定,并依顺时针方向旋转,若要使得新五边形A ´B ´C ´D ´E ´的顶点D ´落在直线BC 上,则至少要旋转 °.16.如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,∠ABC=50°,则∠D= °.17.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A =70°,BC=2,则图中阴影部分面积为 .18.小刚在最近的一次数学测试中考了93分,从而使本学期之前所有的数学测试平均分由73分提高到78分,他要想在下次考试中把本学期平均分提高到80分以上,下次考试他至少要考 分.三、解答题 (本大题共10题,共96分.请在答题卡指定区......域.内作答,解答时应写出必要的文字说明、证明过程或演算步(第16题) ODCBA (第15题)A ´ABCD E B ´ D ´´BOAD E骤)19.(本题满分8分)(1) 计算:0212cos30()12-+-; (2) 化简:35222x x x x -⎛⎫÷+- ⎪--⎝⎭.20.(本题满分8分)(1)解方程:248960x x +-=; (2)解不等式组:3(1)(3)8211132x x x x-+--<⎧⎪+-⎨-≤⎪⎩.21.(本题满分8分)某市实行中考改革,需要根据该市中学生体能的实际状况重新制定中考体育标准. 为此抽取了50名初中毕业的女学生进行一分钟仰卧起坐次数测试,测试情况绘制成表格如下:次数 6 12 15 18 20 25 27 30 32 35 36 人1 1 7 115 2 2 1 1 2数8 0(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市中考女生一分钟仰卧起坐项目测试的合格标准次数较为合适?简要说明理由;(3)如果该市今年有3万名初中毕业女生参加体育中考,根据(2)中你认为合格的标准,试估计该市中考女生一分钟仰卧起坐项目测试的合格人数是多少?22.(本题满分8分)小明和小亮两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点1 2 3 4 5 6数出现的次7 9 6 8 20 10数(1)请计算“3点朝上”的频率和“5点朝上”的频率.。

2020届辽宁省大连市中考数学二模试卷(有答案)(加精)

2020届辽宁省大连市中考数学二模试卷(有答案)(加精)

辽宁省大连市中考数学二模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.在下列实数中,是无理数的为()A.0 B.﹣3.5 C.D.2.据统计,“五一”小长假期间,大连市共接待海内外游客825400余人次,数825100用科学记数法表示为()A.8251×102B.825.1×103C.82.51×104D.8.251×1053.下列几何体中,主视图是三角形的为()A.B.C.D.4.把抛物线y=2x2向上平移5个单位,所得抛物线的解析式为()A.y=2x2+5 B.y=2x2﹣5 C.y=2(x+5)2D.y=2(x﹣5)25.如图,直线y=kx+b与x轴、y轴分别相交于点A(﹣3,0)、B(0,2),则不等式kx+b>0的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<26.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个7.为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为()A.9 B.11 C.13 D.168.一圆锥的底面直径为4cm,高为cm,则此圆锥的侧面积为()A.20πcm2B.10πcm2C.4πcm2D.4πcm2二、填空题(本小题共8小题,每小题3分,共24分)9.因式分解:x2﹣36= .10.在函数y=中,自变量x的取值范围是.11.一个正多边形的每一个内角都等于160°,则这个正多边形的边数是.12.如图,矩形ABCD的对角线AC、BD相交于点O,OA=3,则BD的长为.13.如图,从与旗杆AB相距27m的点C处,用测角仪CD测得旗杆顶端A的仰角为30°,已知测角仪CD的高为1.5米,则旗杆AB的高约为m(精确到0.1m,参考数据≈1.73)14.如图,在平面直角坐标系xOy中,点A在y轴上,点B的坐标为(1,2),将△AOB沿x轴向右平移得到△A′O′B′,点B的对应点B′恰好在函数y=(x>0)的图象上,此时点A移动的距离为.15.在平面直角坐标系xOy中,点A、B的坐标分别为(2,﹣1)、(3,0),以原点O为位似中心,把线段AB放大,点B的对应点B′的坐标为(6,0),则点A的对应点A′的坐标为.16.如图,在平面直角坐标系xOy中,直线y=﹣x+1与x轴、y轴分别相交于点A、B,将△AOB沿直线AB 翻折,点O落在点O′处,则点O′的坐标为.三、解答题(本题共39分)17.计算:(﹣)0+|4﹣|﹣.18.先化简,再求值:m(m﹣2)﹣(m﹣1)2+m,其中m=﹣.19.如图,▱ABCD中,AB=3,BC=5,∠ABC的平分线与AD相交于点E,求DE的长.20.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.分组次数x(个)人数A 0≤x<120 24B 120≤x<130 72C 130≤x<140D x≥140根据以上信息,解答下列问题:(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为%;(2)本次共调查了名学生,其中跳绳次数在130≤x<140范围内的人数为人,跳绳次数在x≥140范围内的人数占被调查人数的百分比为%;(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.四、解答题(本题共28分)21.某车间加工1500个零件后,采用了新工艺,工作效率提高了50%,这样加工同样多的零件就少用10小时,采用新工艺前每小时加工多少个零件?22.某商场销售一种商品,在一段时间内,该商品的销售量y(千克)与每千克的销售价x(元)满足一次函数关系(如图所示),其中30≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品每千克的成本为30元,当每千克的销售价为多少元时,获得的利润为600元?23.如图,四边形ABCD是⊙O的内接四边形,∠ABD=∠CBD=60°,AC与BD相交于点E,过点C作⊙O的切线,与AB的延长线相交于点F.(1)判断△ACD的形状,并加以证明(2)若CF=2,DE=4,求弦CD的长.五、解答题(本题共35分)24.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC∥x轴,∠OBC=45°.(1)求点C的坐标;(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC 相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.25.阅读下面材料:小明遇到这样两个问题:(1)如图1,AB是⊙O的直径,C是⊙O上一点,OD⊥AC,垂足为D,BC=﹣6,求OD的长;(2)如图2△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.对于问题(1),小明发现根据垂径定理,可以得出点D是AC的中点,利用三角形中位线定理可以解决;对于问题(2),小明发现延长AD到E,使DE=AD,连接BE,可以得到全等三角形,通过计算可以解决.请回答:问题(1)中OD长为;问题(2)中AD的取值范围是;参考小明思考问题的方法,解决下面的问题:(3)如图3,△ABC中,∠BAC=90°,点D、E分别在AB、AC上,BE与CD相交于点F,AC=mEC,AB=2EC,AD=nDB.①当n=1时,如图4,在图中找出与CE相等的线段,并加以证明;②直接写出的值(用含m、n的代数式表示).26.如图,抛物线y=a(x﹣1)(x﹣4)与x轴相交于点A、B(点A在点B的左侧),与x轴相交于点C,点D在线段CB上(点D不与B、C重合),过点D作CA的平行线,与抛物线相交于点E,直线BC的解析式为y=kx+2.(1)抛物线的解析式为;(2)求线段DE的最大值;(3)当点D为BC的中点时,判断四边形CAED的形状,并加以证明.辽宁省大连市中考数学二模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.在下列实数中,是无理数的为()A.0 B.﹣3.5 C.D.【考点】26:无理数.【分析】由于无理数就是无限不循环小数.有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是有理数,故A选项错误;B、﹣3.5是有理数,故B选项错误;C、是无理数,故C选项正确;D、=3,是有理数,故D选项错误.故选:C.2.据统计,“五一”小长假期间,大连市共接待海内外游客825400余人次,数825100用科学记数法表示为()A.8251×102B.825.1×103C.82.51×104D.8.251×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:825100=8.251×105,故选D.3.下列几何体中,主视图是三角形的为()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据主视图的观察角度,从物体的正面观察,即可得出答案.【解答】解:A、其三视图是矩形,故此选项错误;B、其三视图是三角形,故此选项正确;C、其三视图是矩形,故此选项错误;D、其三视图是正方形形,故此选项错误;故选:B.4.把抛物线y=2x2向上平移5个单位,所得抛物线的解析式为()A.y=2x2+5 B.y=2x2﹣5 C.y=2(x+5)2D.y=2(x﹣5)2【考点】H6:二次函数图象与几何变换.【分析】只要求得新抛物线的顶点坐标,就可以求得新抛物线的解析式了.【解答】解:原抛物线的顶点为(0,0),向上平移5个单位,那么新抛物线的顶点为(0,5),可设新抛物线的解析式为:y=2(x﹣h)2+k,代入得:y=2x2+5.故选A.5.如图,直线y=kx+b与x轴、y轴分别相交于点A(﹣3,0)、B(0,2),则不等式kx+b>0的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<2【考点】FD:一次函数与一元一次不等式.【分析】根据图象和A的坐标得出即可.【解答】解:∵直线y=kx+b和x轴的交点A的坐标为(﹣3,0),∴不等式kx+b>0的解集是x>﹣3,故选A.6.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个【考点】X8:利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【解答】解:设袋中有黄球x个,由题意得=0.3,解得x=15,则白球可能有50﹣15=35个.故选D.7.为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为()A.9 B.11 C.13 D.16【考点】W4:中位数.【分析】根据中位数的定义即可得.【解答】解:这组数据重新排列为:8、9、10、11、12、14、16、16、16、17,则其中位数为=13,故选:C.8.一圆锥的底面直径为4cm,高为cm,则此圆锥的侧面积为()A.20πcm2B.10πcm2C.4πcm2D.4πcm2【考点】MP:圆锥的计算.【分析】利用勾股定理易得圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥的底面直径为4cm,高为cm,则底面半径=2cm,底面周长=4πcm,由勾股定理得,母线长=5cm,侧面面积=×4π×5=10πcm2.故选B.二、填空题(本小题共8小题,每小题3分,共24分)9.因式分解:x2﹣36= (x+6)(x﹣6).【考点】54:因式分解﹣运用公式法.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).10.在函数y=中,自变量x的取值范围是x≥﹣.【考点】E4:函数自变量的取值范围;72:二次根式有意义的条件.【分析】当函数表达式是二次根式时,被开方数为非负数,即2x+1≥0.【解答】解:依题意,得2x+1≥0,解得x≥﹣.11.一个正多边形的每一个内角都等于160°,则这个正多边形的边数是18 .【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式,可得答案.【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=160°n,解得n=18,故答案为:18.12.如图,矩形ABCD的对角线AC、BD相交于点O,OA=3,则BD的长为 6 .【考点】LB:矩形的性质.【分析】根据矩形的对角线相等且相互平分即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∵OA=3,∴BD=2OA=6,故答案为6.13.如图,从与旗杆AB相距27m的点C处,用测角仪CD测得旗杆顶端A的仰角为30°,已知测角仪CD的高为1.5米,则旗杆AB的高约为17.1 m(精确到0.1m,参考数据≈1.73)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据题意:过点D作DE⊥AB,交AB与E;可得Rt△ADE,解之可得AE的大小;进而根据AB=BE+AE 可得旗杆AB的高.【解答】解:过点D作DE⊥AB,垂足为E.在直角△ADE中,有AE=DE×tan30°=9,那么旗杆AB的高为AE+EB=9+1.5≈17.1(m).故答案为17.114.如图,在平面直角坐标系xOy中,点A在y轴上,点B的坐标为(1,2),将△AOB沿x轴向右平移得到△A′O′B′,点B的对应点B′恰好在函数y=(x>0)的图象上,此时点A移动的距离为 2 .【考点】G6:反比例函数图象上点的坐标特征;Q3:坐标与图形变化﹣平移.【分析】设A点向右移动的距离为a,由点B的坐标为(1,2)可知,B′(1+a,2),由点B′恰好在函数y=(x>0)的图象上求出a的值即可.【解答】解:设A点向右移动的距离为a,∵点B的坐标为(1,2),∴B′(1+a,2).∵点B′恰好在函数y=(x>0)的图象上,∴2(1+a)=6,解得a=2.故答案为:2.15.在平面直角坐标系xOy中,点A、B的坐标分别为(2,﹣1)、(3,0),以原点O为位似中心,把线段AB放大,点B的对应点B′的坐标为(6,0),则点A的对应点A′的坐标为(4,﹣2).【考点】SC:位似变换;D5:坐标与图形性质.【分析】由以原点O为位似中心,相似比为,根据位似图形的性质,即可求得答案.【解答】解:∵以原点O为位似中心,B(3,0)的对应点B′的坐标为(6,0),∴相似比为2,∵A(2,﹣1),∴点A′的对应点坐标为:(4,﹣2),故答案为:(4,﹣2).16.如图,在平面直角坐标系xOy中,直线y=﹣x+1与x轴、y轴分别相交于点A、B,将△AOB沿直线AB 翻折,点O落在点O′处,则点O′的坐标为(,).【考点】F8:一次函数图象上点的坐标特征;PB:翻折变换(折叠问题).【分析】根据已知条件得到OA=2,OB=1,根据折叠的性质得到AO′=AO=2,BO′=BO=1,∠AO′B=90°,延长AC交y轴于C,过O′作O′D⊥OA于D,根据相似三角形的性质得到BC=,CO′=,得到OC=,AC=,根据O′D∥OC,得到△ADO′∽△AOC,根据相似三角形的性质即可得到结论.【解答】解:在y=﹣x+1中,令x=0,得y=1,令y=0,得x=2,∴A(2,0),B(0,1),∴OA=2,OB=1,∵将△AOB沿直线AB翻折,点O落在点O′处,∴AO′=AO=2,BO′=BO=1,∠AO′B=90°,延长AC交y轴于C,过O′作O′D⊥OA于D,∴∠CO′B=∠AOC=90°,∵∠BCO′=∠ACO,∴△BCO′∽△ACO,∴,∴==,∴BC=,CO′=,∴OC=,AC=,∵O′D⊥OA,∴O′D∥OC,∴△ADO′∽△AOC,∴==,即==,∴DO′=,AD=,∴OD=,∴O′(,),故答案为:(,).三、解答题(本题共39分)17.计算:(﹣)0+|4﹣|﹣.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用立方根和二次根式的性质、零指数幂的性质、绝对值的性质分别化简求出答案.【解答】解:原式=1+2﹣4+3=2.18.先化简,再求值:m(m﹣2)﹣(m﹣1)2+m,其中m=﹣.【考点】4J:整式的混合运算—化简求值.【分析】根据单项式乘多项式、完全平方公式和合并同类项可以化简题目中的式子,然后将m的值代入化简后的式子即可解答本题.【解答】解:m(m﹣2)﹣(m﹣1)2+m=m2﹣2m﹣m2+2m﹣1+m=m﹣1,当m═﹣时,原式==.19.如图,▱ABCD中,AB=3,BC=5,∠ABC的平分线与AD相交于点E,求DE的长.【考点】L5:平行四边形的性质.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,∵BC=5,CD=AB=3,∴DE=AD﹣AE=5﹣3=2.20.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.分组次数x(个)人数A 0≤x<120 24B 120≤x<130 72C 130≤x<140D x≥140根据以上信息,解答下列问题:(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为72 人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为12 %;(2)本次共调查了200 名学生,其中跳绳次数在130≤x<140范围内的人数为59 人,跳绳次数在x ≥140范围内的人数占被调查人数的百分比为22.5 %;(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.【考点】V7:频数(率)分布表;V5:用样本估计总体.【分析】(1)根据统计表可得跳绳次数在120≤x<130范围内的人数为72人;根据A组的人数是24,所占的百分比是12%即可求得调查的总人数,然后根据百分比的定义求得跳绳次数在0≤x<120范围内的人数占被调查人数的百分比;(2)利用总人数减去其它组的人数求得绳次数在x≥140范围内的人数占被调查人数的人数;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)根据统计表可得跳绳次数在120≤x<130范围内的人数为72人;调查的总人数是24÷12%=200(人).则跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为=12%;故答案是:71,12;(2)调查的总人数是200人;跳绳次数在130≤x<140范围内的人数为200×29.5%=59(人),绳次数在x≥140范围内的人数占被调查人数的人数是200﹣24﹣72﹣59=45(人),则所长的百分比是=22.5%.故答案是:200,59,22.5;(3)估计该区七年级学生1分钟跳绳的次数不少于130个的人数是:4000×=2080(人).四、解答题(本题共28分)21.某车间加工1500个零件后,采用了新工艺,工作效率提高了50%,这样加工同样多的零件就少用10小时,采用新工艺前每小时加工多少个零件?【考点】B7:分式方程的应用.【分析】设采用新工艺前每时加工x个零件,那么采用新工艺后每时加工 1.5x个零件,根据时间=,以此作为等量关系可列方程求解.【解答】解:设采用新工艺前每时加工x个零件.﹣10=,解得:x=50,经检验:x=50是原分式方程的解,且符合题意,答:采用新工艺之前每小时加工50个.22.某商场销售一种商品,在一段时间内,该商品的销售量y(千克)与每千克的销售价x(元)满足一次函数关系(如图所示),其中30≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品每千克的成本为30元,当每千克的销售价为多少元时,获得的利润为600元?【考点】AD:一元二次方程的应用;FH:一次函数的应用.【分析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于k、b的关系式,求出k、b的值即可;(2)根据每天可获得600元的利润列出方程,解方程即可.【解答】解:(1)当30≤x≤80时,设y与x之间的函数关系式为y=kx+b(k≠0).由所给函数图象可知,,解得,故y与x的函数关系式为y=﹣x+100;(2)∵y=﹣x+100,依题意得∴(x﹣30)(﹣x+100)=600,x2﹣280x+18700=0,解得x1=40,x2=90.∵30≤x≤80,∴取x=40.答:当每千克的销售价为40元时,获得的利润为600元.23.如图,四边形ABCD是⊙O的内接四边形,∠ABD=∠CBD=60°,AC与BD相交于点E,过点C作⊙O的切线,与AB的延长线相交于点F.(1)判断△ACD的形状,并加以证明(2)若CF=2,DE=4,求弦CD的长.【考点】MC:切线的性质;M6:圆内接四边形的性质.【分析】(1)根据圆周角定理即可得到结论;(2)根据全等三角形的性质得到AF=DE=4,CE=CF=2,根据切线的性质得到FC2=FB•AF,求得FB=1根据相似三角形的性质即可得到结论;【解答】解:(1)∵∠ABD=∠CBD=60°,∴∠CAD=∠CBD=60°,∠ACD=∠ABD=60°,∴△ACD是等边三角形;(2)在△ACF与△DCE中,∴△ACF≌△DCE,∴AF=DE=4,CE=CF=2,∵CF是⊙O的切线,∴FC2=FB•AF,∴22=FB•4,∴FB=1∴AB=AF﹣BF=4﹣1=3,∵∠ABE=∠DCE,∠BAE=∠CDE,∴△∠ABE∽∠DCE,∴===,∴=,解得:CD=3.五、解答题(本题共35分)24.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC∥x轴,∠OBC=45°.(1)求点C的坐标;(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC 相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.【考点】FI:一次函数综合题.【分析】(1)作CM⊥x轴于点M,利用等腰直角三角形和矩形的性质可求得OM和CM的长,可求得C点坐标;(2)①当E在线段OB上时,连接OD,利用条件可证得△DOE∽△EBF,利用相似三角形的性质可得到m与n之间的关系;②当点E在线段BO的延长线上时,同样可证得△DOE∽△EBF,可得到m与n之间的关系.【解答】解:(1)作CM⊥x轴于点M,如图1,则∠CMB=∠AOM=90°,∴CM∥AO,∵AC∥x轴,∴四边形AOMC是矩形,∴CM=AO=3,AC=OM,∵∠OBC=45°,∴MB=MC=3,∴OM=7﹣3=4,∴C(4,3);(2)①当点E在线段OB上时,即当0<n<7时,如图2,连接OD,∵CD=1,∴AD=3=AO,∴∠AOD=∠ADO=45°=∠DOB=∠OBC,∵∠OEF=∠EFB+∠EBF,即∠OED+∠DEF=∠EFB+∠EBF,∴∠OED=∠EFB,∴△DOE∽△EBF,∴=,即=,∴m=﹣n2+n;②当点E在线段BO的延长线上时,即n<0时,连接OD,如图3,由(1)知∠DOB=∠OBC,∴∠DOE=∠EBF,∵∠DEF=45°=∠OBC,∴∠DEO+∠BEF=∠BFE+∠BEF,∴∠DEO=∠BFE,∴△DOE∽△EBF,∴=,即=,∴m=n2﹣n;综上可知m与n的函数关系式为m=.25.阅读下面材料:小明遇到这样两个问题:(1)如图1,AB是⊙O的直径,C是⊙O上一点,OD⊥AC,垂足为D,BC=﹣6,求OD的长;(2)如图2△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.对于问题(1),小明发现根据垂径定理,可以得出点D是AC的中点,利用三角形中位线定理可以解决;对于问题(2),小明发现延长AD到E,使DE=AD,连接BE,可以得到全等三角形,通过计算可以解决.请回答:问题(1)中OD长为 3 ;问题(2)中AD的取值范围是1<AD<5 ;参考小明思考问题的方法,解决下面的问题:(3)如图3,△ABC中,∠BAC=90°,点D、E分别在AB、AC上,BE与CD相交于点F,AC=mEC,AB=2EC,AD=nDB.①当n=1时,如图4,在图中找出与CE相等的线段,并加以证明;②直接写出的值(用含m、n的代数式表示).【考点】MR:圆的综合题.【分析】(1)由三角形中位线定理可得OD=BC,由此即可解决问题;(2)如图2中,延长AD到M,使得DM=AD,连接BM,CM.在△ABM中,理由三边关系定理可得6﹣4<AM <6+4,即2<2AD<10,1<AD<5;(3)①结论:EF=CE.如图4中,延长CD到M使得DM=CD,连接BM.由△ADC≌△BDM,推出BM=AC,∠M=∠ACD,由BM∥AC,推出△CEF∽△MBF,可得=,推出==,推出BF=mEF,推出BE=(m+1)EF,在Rt△BAE中,BE===(m+1)EC,推出(m+1)EC=(m+1)EF,由此即可证明;结论: =.如图3中,作BM∥AC交CD的延长线于M.证明方法类似①;【解答】解:(1)如图1中,∵OD⊥AC,∴AD=DC,∵AO=OB,BC=6,∴OD=BC=3.(2)如图2中,延长AD到M,使得DM=AD,连接BM,CM.∵AD=DM,BD=CD,∴四边形ABMC是平行四边形,∴BM=AC=4,∵AB=6,∴6﹣4<AM<6+4,即2<2AD<10,∴1<AD<5.(3)①结论:EF=CE.理由:如图4中,延长CD到M使得DM=CD,连接BM.∵AD=DB,∠ADC=∠BDM,∴△ADC≌△BDM,∴BM=AC,∠M=∠ACD,∴BM∥AC,∴△CEF∽△MBF,∴=,∴==,∴BF=mEF,∴BE=(m+1)EF,在Rt△BAE中,BE===(m+1)EC,∴(m+1)EC=(m+1)EF,∴EF=CE.②结论: =.理由:如图3中,作BM∥AC交CD的延长线于M.由△ADC∽△BDM,可得==n,∴BM=,∵=,∴=,∵AC=mEC,∴BF=EF,∴BE=(1+)EF,在Rt△BAE中,BE===(m+1)EC,∴(m+1)EC=(1+)EF,∴=.26.如图,抛物线y=a(x﹣1)(x﹣4)与x轴相交于点A、B(点A在点B的左侧),与x轴相交于点C,点D在线段CB上(点D不与B、C重合),过点D作CA的平行线,与抛物线相交于点E,直线BC的解析式为y=kx+2.(1)抛物线的解析式为y=x2﹣x+2 ;(2)求线段DE的最大值;(3)当点D为BC的中点时,判断四边形CAED的形状,并加以证明.【考点】HF:二次函数综合题.【分析】(1)先利用一次函数解析式确定C(0,2),然后把C点坐标代入y=a(x﹣1)(x﹣4)中求出a即可;(2)如图1,过点D、E分别作y轴、x轴的平行线,两线相交于点F,先解方程(x﹣1)(x﹣4)=0得A (1,0),B(4,0),再利用待定系数法求出直线BC的解析式为y=﹣x+2,设E(m, m2﹣m+2),EF=n,则D(m﹣n,﹣ m+n+2),则DF=﹣m+n+2﹣(m2﹣m+2)=﹣m2+2m+n,接着证明Rt△OCA∽Rt △FDE,利用相似比得到=2,则﹣m2+2m+n=2n,所以n=﹣m2+m,利用勾股定理得DE=﹣m2+m,然后根据二次函数的性质解决问题;(3)利用两点间的距离公式得到AC=,BC=2,再利用点D为BC的中点得到D(2,1),CD=,易得直线AC的解析式为y=﹣2x+2,接着求出直线DE的解析式为y=﹣2x+5,于是解方程组得E(3,﹣1),所以DE=,然后根据菱形的判定方法可判断四边形CAED为菱形.【解答】解:(1)当x=0时,y=kx+2=2,则C(0,2),把C(0,2)代入y=a(x﹣1)(x﹣4)得a•(﹣1)•(﹣4)=2,解得a=,∴抛物线解析式为y=(x﹣1)(x﹣4),即y=x2﹣x+2;故答案为y=x2﹣x+2;(2)如图1,过点D、E分别作y轴、x轴的平行线,两线相交于点F,当y=0时,(x﹣1)(x﹣4)=0,解得x1=1,x2=4,则A(1,0),B(4,0),设直线BC的解析式为y=kx+b,把C(0,2),B(4,0)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(m, m2﹣m+2),EF=n,则D(m﹣n,﹣ m+n+2),∴DF=﹣m+n+2﹣(m2﹣m+2)=﹣m2+2m+n,∵OC∥DF,∴∠OCB=∠FDB,∵DE∥CA,∴∠ACB=∠EDB,∴∠OCA=∠FDE,∴Rt△OCA∽Rt△FDE,∴=,∴===2,∴﹣m2+2m+n=2n,∴n=﹣m2+m,在Rt△DEF中,DE==EF=n=﹣m2+m,∵DE=﹣(m﹣2)2+,∴当m=2时,DE的长有最大值,最大值为;(3)四边形CAED为菱形.理由如下:AC==,BC==2,∵点D为BC的中点,∴D(2,1),CD=,易得直线AC的解析式为y=﹣2x+2,设直线DE的解析式为y=﹣2x+p,把D(2,1)代入得1=﹣4+p,解得p=4,∴直线DE的解析式为y=﹣2x+5,解方程组得或,则E(3,﹣1),∴DE==,∴AC=DE,而AC∥DE,∴四边形CAED为平行四边形,∵CA=CD,∴四边形CAED为菱形.。

2020年中考二模数学试卷(含答案)

2020年中考二模数学试卷(含答案)

2020年中考数学二模试卷一.选择题(共12小题)1.2020的相反数是()A.2020B.﹣2020C.D.2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10113.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.4.下列运算正确的是()A.a5+a5=a10B.﹣3(a﹣b)=﹣3a﹣3bC.(mn)﹣3=mn﹣3D.a6÷a2=a45.若点A(m﹣4,1﹣2m)在第三象限,那么m的值满足()A.<m<4B.m>C.m<4D.m>46.下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件7.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°8.如图,从圆O外一点P引圆O的两条切线P A,PB,切点分别为A,B.如果∠APB=60°,P A=8,那么弦AB的长是()A.4B.8C.D.9.如图,某风景区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部BD相距900米,则缆车线路AC的长为()A.B.C.D.1800米10.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.1611.已知M,N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x()A.有最小值,且最小值是B.有最大值,且最大值是﹣C.有最大值,且最大值是D.有最小值,且最小值是﹣12.如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.二.填空题(共6小题)13.使分式有意义的x的取值范围.14.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为.15.若△ABC∽△DEF,且相似比为3:1,△ABC的面积为54,则△DEF的面积为.16.如图,AB为圆O的直径,弦CD⊥AB,垂足为E,若∠BCD=22.5°,AB=2cm,则圆O的半径为.17.如图,直线y=kx与双曲线y=交于A、B两点,BC⊥y轴于点C,则△ABC的面积为.18.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△A1B1C1,当C,B1,C1三点共线时,旋转角为α,连接BB1,交于AC于点D,下面结论:①△AC1C为等腰三角形;②CA=CB1;③α=135°;④△AB1D∽△ACB1;⑤=中,正确的结论的序号为.三.解答题(共8小题)19.计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°20.先化简再求值:(3x+2y)(3x﹣2y)﹣5x(x﹣y)﹣(2x﹣y)2,其中x=﹣,y=﹣1.21.为响应“书香学校,书香班级”的建设号召,平顶山市某中学积极行动,学校图书角的新书、好书不断增加.下面是随机抽查该校若干名同学捐书情况统计图:请根据下列统计图中的信息,解答下列问题(1)此次随机调查同学所捐图书数的中位数是,众数是;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度?(3)若该校有在校生1600名学生,估计该校捐4本书的学生约有多少名?22.如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.23.湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?24.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)25.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k(b﹣a),则称此函数为“k型闭函数”.例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3型闭函数”.(1)①已知一次函数y=2x﹣1(1≤x≤5)为“k型闭函数”,则k的值为;②若一次函数y=ax﹣1(1≤x≤5)为“1型闭函数”,则a的值为;(2)反比例函数y=(k>0,.a≤x≤b且0<a<b)是“k型闭函数”,且a+b=,请求a2+b2的值;(3)已知二次函数y=﹣3x2+6ax+a2+2a,当﹣1≤x≤1时,y是“k型闭函数”,求k的取值范围.26.如图,抛物线y=ax2+bx+c(a<0,a、b、c为常数)与x轴交于A、C两点,与y轴交于B点,A(﹣6,0),C(1,0),B(0,).(1)求该抛物线的函数关系式与直线AB的函数关系式;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l,分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰妤是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标:若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.参考答案与试题解析一.选择题(共12小题)1.2020的相反数是()A.2020B.﹣2020C.D.【分析】直接利用相反数的定义得出答案.【解答】解:2020的相反数是:﹣2020.故选:B.2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×1011【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm=100×10﹣9m=1×10﹣7m.故选:C.3.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层是两个小正方形,第二层是三个小正方形,故选:D.4.下列运算正确的是()A.a5+a5=a10B.﹣3(a﹣b)=﹣3a﹣3bC.(mn)﹣3=mn﹣3D.a6÷a2=a4【分析】根据合并同类项的法则,积的乘方,同底数幂的除法即可作出判断.【解答】解:A、a5+a5=2a5,故选项错误;B、﹣3(a﹣b)=﹣3a+3b,故选项错误;C、(mn)﹣3=m﹣3n﹣3,则选项错误;D、正确.故选:D.5.若点A(m﹣4,1﹣2m)在第三象限,那么m的值满足()A.<m<4B.m>C.m<4D.m>4【分析】根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解即可.【解答】解:∵点A(m﹣4,l﹣2m)在第三象限,∴,解不等式①得,m<4,解不等式②得,m>,所以,m的取值范围是<m<4.故选:A.6.下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件【分析】根据普查和抽样调查的意义可判断出A的正误;根据概率的意义可判断出B、C、的正误;根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定D的正误.【解答】解:A、对载人航天器零部件的检查,应采用全面调查的方式,故错误;B、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故错误;C、抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故正确;D、掷一枚骰子,点数3朝上是随机事件,故错误;故选:C.7.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°【分析】根据平行线的性质对各选项分析判断利用排除法求解.【解答】解:A、∵OC与OD不平行,∴∠1=∠3不成立,故本选项错误;B、∵OC与OD不平行,∴∠2+∠3=180°不成立,故本选项错误;C、∵AB∥CD,∴∠2+∠4=180°,故本选项错误;D、∵AB∥CD,∴∠3+∠5=180°,故本选项正确.故选:D.8.如图,从圆O外一点P引圆O的两条切线P A,PB,切点分别为A,B.如果∠APB=60°,P A=8,那么弦AB的长是()A.4B.8C.D.【分析】根据切线长定理知P A=PB,而∠P=60°,所以△P AB是等边三角形,由此求得弦AB的长.【解答】解:∵P A、PB都是⊙O的切线,∴P A=PB,又∵∠P=60°,∴△P AB是等边三角形,即AB=P A=8,故选:B.9.如图,某风景区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部BD相距900米,则缆车线路AC的长为()A.B.C.D.1800米【分析】此题可利用俯角的余弦函数求得缆车线路AC的长,AC=.【解答】解:由于A处测得C处的俯角为30°,两山峰的底部BD相距900米,则AC==600(米).故选:B.10.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.16【分析】由根与系数的关系即可求出答案.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣5=0的两根,∴x1+x2=2,x1x2=﹣5∴原式=(x1+x2)2﹣2x1x2=4+10=14故选:C.11.已知M,N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x()A.有最小值,且最小值是B.有最大值,且最大值是﹣C.有最大值,且最大值是D.有最小值,且最小值是﹣【分析】先用待定系数法求出二次函数的解析式,再根据二次函数图象上点的坐标特点求出其最值即可.【解答】解:因为M,N两点关于y轴对称,所以设点M的坐标为(a,b),则N点的坐标为(﹣a,b),又因为点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,所以,整理得,故二次函数y=abx2+(a+b)x为y=x2+3x,所以二次项系数为>0,故函数有最小值,最小值为y==﹣.故选:D.12.如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.【分析】找到函数图象与x轴、y轴的交点,得出k=8,即可得出答案.【解答】解:抛物线y=﹣x2+3,当y=0时,x=±;当x=0时,y=3,则抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)为(﹣2,1),(﹣1,1),(﹣1,2),(0,1),(0,2),(1,1),(1,2),(2,1);共有8个,∴k=8;故选:C.二.填空题(共6小题)13.使分式有意义的x的取值范围x≠3.【分析】根据分母不为零分式有意义,可得答案.【解答】解:根据题意,得x﹣3≠0,解得x≠3,故答案为:x≠3.14.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:由于共有8个球,其中蓝球有5个,则从袋子中随机摸出一个球,摸出蓝球的概率是,故答案为:.15.若△ABC∽△DEF,且相似比为3:1,△ABC的面积为54,则△DEF的面积为6.【分析】根据相似三角形的面积比等于相似比的平方计算,得到答案.【解答】解:∵△ABC∽△DEF,相似比为3:1,∴=32,即=9,解得,△DEF的面积=6,故答案为:6.16.如图,AB为圆O的直径,弦CD⊥AB,垂足为E,若∠BCD=22.5°,AB=2cm,则圆O的半径为.【分析】连接OB,根据垂径定理以及勾股定理即可求出OB的长度.【解答】解:连接OB,∵OC=OB,∠BCD=22.5°,∴∠EOB=45°,∵CD⊥AB,CD是直径,∴由垂径定理可知:EB=AB=1,∴OE=EB=1,∴由勾股定理可知:OB=,故答案为:17.如图,直线y=kx与双曲线y=交于A、B两点,BC⊥y轴于点C,则△ABC的面积为3.【分析】根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△BOC=1.5,则易得S△ABC=3.【解答】解:∵直线y=kx与双曲线y=交于A,B两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,而S△BOC=×3=1.5,∴S△ABC=2S△BOC=3.故答案为:3.18.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△A1B1C1,当C,B1,C1三点共线时,旋转角为α,连接BB1,交于AC于点D,下面结论:①△AC1C为等腰三角形;②CA=CB1;③α=135°;④△AB1D∽△ACB1;⑤=中,正确的结论的序号为①②④⑤.【分析】首先根据旋转的性质得出AC1=AC,从而结论①可判断;再通过三角形内部角度及旋转角的计算对②③作出判断;通过∠ABD=∠ACB1,∠AB1D=∠BCD=30°,判定△AB1D∽△ACB1;通过证明△ABD∽△B1CD,利用相似三角形的性质列式计算对⑤作出判断.【解答】解:由旋转的性质可知AC1=AC,∴△AC1C为等腰三角形,即①正确;∵∠ACB=30°,∴∠C1=∠ACB1=30°,又∵B1AC1=∠BAC=45°,∴∠AB1C=75°,∴∠CAB1=180°﹣75°﹣30°=75°,∴CA=CB1;∴②正确;∵∠CAC1=∠CAB1+∠B1AC1=120°,∴旋转角α=120°,故③错误;∵∠BAC=45°,∴∠BAB1=45°+75°=120°,∵AB=AB1,∴∠AB1B=∠ABD=30°,在△AB1D与△BCD中,∵∠ABD=∠ACB1,∠AB1D=∠BCD=30°,∴△AB1D∽△ACB1,即④正确;在△ABD与△B1CD中,∵∠ABD=∠ACB1,∠ADB=∠CDB1,∴△ABD∽△B1CD,∴=,如图,过点D作DM⊥B1C,设DM=x,则B1M=x,B1D=x,DC=2x,DC=2x,CM=x,∴AC=B1C=(+1)x,∴AD=AC﹣CD=(﹣1)x,∴===,即⑤正确.故答案为:①②④⑤.三.解答题(共8小题)19.计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°【分析】第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项去绝对值,最后一项利用特殊角的三角函数值计算,最后合并即可得出结论.【解答】解:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°=4+1+﹣1+1=+5.20.先化简再求值:(3x+2y)(3x﹣2y)﹣5x(x﹣y)﹣(2x﹣y)2,其中x=﹣,y=﹣1.【分析】原式利用平方差公式,单项式乘多项式法则,以及完全平方公式计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=9x2﹣4y2﹣5x2+5xy﹣4x2+4xy﹣y2=9xy﹣5y2,当x=﹣,y=﹣1时,原式=3﹣5=﹣2.21.为响应“书香学校,书香班级”的建设号召,平顶山市某中学积极行动,学校图书角的新书、好书不断增加.下面是随机抽查该校若干名同学捐书情况统计图:请根据下列统计图中的信息,解答下列问题(1)此次随机调查同学所捐图书数的中位数是4本,众数是2本;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度?(3)若该校有在校生1600名学生,估计该校捐4本书的学生约有多少名?【分析】(1)根据捐2本的学生所占的百分比和人数可以求得本次调查的学生数,从而可以得到中位数和众数;(2)根据统计图中的数据,可以计算出在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度;(3)根据统计图中的数据可以计算出该校捐4本书的学生约有多少名.【解答】解:(1)本次调查的人数为:15÷30%=50(人),捐书四本的学生有50﹣9﹣15﹣6﹣7=13(人),则此次随机调查同学所捐图书数的中位数是4本,众数是2本,故答案为:4本,2本;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是:360°×=108°;答:捐2本书的人数所占的扇形圆心角是108度.(3)1600×=416(名),答:该校捐4本书的学生约有416名.22.如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.【分析】(1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE =∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于BD•CE=BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF﹣BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.【解答】证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD==5.又∵BD•CE=BC•DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.23.湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?【分析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【解答】解:(1)设温馨提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温馨提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,,∴50≤y≤52,∵y为正整数,∴y为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,费用为50y+150(100﹣y)=﹣100y+15000,当y=52时,所需资金最少,最少是9800元.24.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)【分析】(1)连接AD,如图,根据圆周角定理得到∠ADB=90°,根据切线的性质得到∠BAC=90°,则利用等角的余角相等得到∠DAB=∠C,然后根据圆周角定理和等量代换得到结论;(2)连接OD,如图,利用(1)中结论得到∠BED=∠C=50°,再利用圆周角定理得到∠BOD的度数,然后根据弧长公式计算的长度.【解答】(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵AC切⊙O于点A∴CA⊥AB,∴∠BAC=90°,∴∠C+∠ABD=90°,而∠DAB+∠ABD=90°,∴∠DAB=∠C,∵∠DAB=∠BED,∴∠C=∠BED;(2)解:连接OD,如图,∵∠BED=∠C=50°,∴∠BOD=2∠BED=100°,∴的长度==π.25.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k(b﹣a),则称此函数为“k型闭函数”.例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3型闭函数”.(1)①已知一次函数y=2x﹣1(1≤x≤5)为“k型闭函数”,则k的值为2;②若一次函数y=ax﹣1(1≤x≤5)为“1型闭函数”,则a的值为﹣1;(2)反比例函数y=(k>0,.a≤x≤b且0<a<b)是“k型闭函数”,且a+b=,请求a2+b2的值;(3)已知二次函数y=﹣3x2+6ax+a2+2a,当﹣1≤x≤1时,y是“k型闭函数”,求k的取值范围.【分析】(1)①直接利用“k型闭函数”的定义即可得出结论;②分两种情况:利用“k型闭函数”的定义即可得出结论;(2)先判断出函数的增减性,利用“k型闭函数”的定义得出ab=1,即可得出结论;(3)分四种情况,各自确定出最大值和最小值,最后利用“k型闭函数”的定义即可得出结论;【解答】解:(1)①一次函数y=2x﹣1,当1≤x≤5时,1≤y≤9,∴9﹣1=k(5﹣1),∴k=2,故答案为:2;②当α>0时,∵1≤x≤5,∴a﹣1≤y≤5a﹣1,∵函数y=ax﹣1(1≤x≤5)为“1型闭函数”,∴(5a﹣1)﹣(a﹣1)=5﹣1,∴a=1;当a<0时,(a﹣1)﹣(5a﹣1)=5﹣1,∴a=﹣1;故答案为:﹣1;(2)∵反比例函数y=,∵k>0,∴y随x的增大而减小,当a≤x≤b且1<a<b是“1型闭函数”,∴=k(b﹣a),∴ab=1,∵a+b=,∴a2+b2=(a+b)2﹣2ab=2020﹣2×1=2018;(3)∵二次函数y=﹣3x2+6ax+a2+2a的对称轴为直线x=a,∵当﹣1≤x≤1时,y是“k型闭函数”,∴当x=﹣1时,y=a2﹣4a﹣3,当x=1时,y=a2+8a﹣3,当x=a时,y=4a2+2a,①如图1,当a≤﹣1时,当x=﹣1时,有y max=a2﹣4a﹣3,当x=1时,有y min=a2+8a﹣3∴(a2﹣4a﹣3)﹣(a2+8a﹣3)=2k,∴k=﹣6a,∴k≥6,②如图2,当﹣1<a≤0时,当x=a时,有y max=4a2+2a,当x=1时,有y min=a2+8a﹣3∴(4a2+2a)﹣(a2+8a﹣3)=2k,∴k=(a﹣1)2,∴≤k<6;③如图3,当0<a≤1时,当x=a时,有y max=4a2+2a,当x=﹣1时,有y min=a2﹣4a﹣3∴(4a2+2a)﹣(a2﹣4a﹣3)=2k,∴k=(a+1)2,∴<k≤6,④如图4,当a>1时,当x=1时,有y max=a2+8a﹣3,当x=﹣1时,有y min=a2﹣4a﹣3∴(a2+8a﹣3)﹣(a2﹣4a﹣3)=2k,∴k=﹣6a,∴k>6,即:k的取值范围为k≥.26.如图,抛物线y=ax2+bx+c(a<0,a、b、c为常数)与x轴交于A、C两点,与y轴交于B点,A(﹣6,0),C(1,0),B(0,).(1)求该抛物线的函数关系式与直线AB的函数关系式;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l,分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰妤是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标:若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.【分析】(1)根据已知条件可以设抛物线解析式为y=a(x+6)(x﹣1),然后把点B的坐标代入函数解析式求得系数a的值即可;利用待定系数法求得直线AB的解析式;(2)由点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,得到D(m,m+),当DE为底时,作BG⊥DE于G,根据等腰三角形的性质得到EG=GD=ED,GM=OB=,列方程即可得到结论;(3)i:根据已知条件得到ON=OM′=4,OB=,由∠NOP=∠BON,特殊的当△NOP∽△BON时,根据相似三角形的性质得到===,于是得到结论;ii:根据题意得到N在以O为圆心,4为半径的半圆上,由①知,==,得到NP=NB,于是得到(NA+NB)的最小值=NA+NP,此时N,A,P三点共线,根据勾股定理得到结论.【解答】解:设抛物线解析式为y=a(x+6)(x﹣1),(a≠0).将B(0,)代入,得=a(x+6)(x﹣1),解得a=﹣,∴该抛物线解析式为y=﹣(x+6)(x﹣1)或y=﹣x2﹣x+.设直线AB的解析式为y=kx+n(k≠0).将点A(﹣6,0),B(0,)代入,得,解得,则直线AB的解析式为:y=x+;(2)∵点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,∴D(m,m+),当DE为底时,如图1,作BG⊥DE于G,则EG=GD=ED,GM=OB=,∵DM+DG=GM=OB,∴m++(﹣m2﹣m+﹣m﹣)=,解得:m1=﹣4,m2=0(不合题意,舍去),∴当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;(3)i:存在,如图2.∵ON=OM′=4,OB=,∵∠NOP=∠BON,∴当△NOP∽△BON时,===,∴不变,即OP=ON=×4=3,∴P(0,3);ii:∵N在以O为圆心,4为半径的半圆上,由i知,==,∴NP=NB,∴(NA+NB)的最小值=NA+NP,∴此时N,A,P三点共线,∴(NA+NB)的最小值==3.。

2020年中考二模考试《数学卷》带答案解析

2020年中考二模考试《数学卷》带答案解析

中考数学综合模拟测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数2019的相反数是( )A.2019B.-2019C.12019 D.12019-2.x 的取值范围是( )A. 0x >B. 1x ?C. 1x ³D.1x £3.据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学计数法可表示为( ) A. 60.103110´ B. 71.03110´ C. 81.03110´ D.910.3110´ 4.某个几何体的三视图如图所示,该几何体是( )A .B .C .D .5.从长度分别为2,4,5,6的四条线段中随机取三条,能构成三角形的概率是( ) A.13 B. 14 C. 12 D.346.某班6个合作小组的人数分别是4,6,4,5,7,8,现第4小组调出1人去第2小组, 则调动后各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是( ) A .平均数变小了 B .众数变小了 C .中位数变大了D .方差变大了7.若关于x 的不等式组10233544(1)3x x x a x aì+ï+íï++++î>>恰有三个整数解,则a 的取值范围是( ) A .1≤a <32 B .1<a ≤32 C .1<a <32 D .a ≤1或a >328.如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在»AB 上的点D 处,且 ¼¼:1:3BD AD ⅱ=(¼BD ¢表示»BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:99.(2019德州)在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),一定能使y 2−y 1x 2−x 1<0成立的是( )A .y =3x ﹣1(x <0)B .y =﹣x 2+2x ﹣1(x >0)C .y =−√3x(x >0)D .y =x 2﹣4x +1(x <0)10.4张长为a 、宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a +b )的正方形,图中空白 部分的面积为S 1,阴影部分的面积为S 2.若S 1=2S 2,则a 、b 满足( )A .2a =5bB .2a =3bC .a =3bD .a =2b二、填空题(本大题有6个小题,每小题4分,共24分) 11.分解因式234x y xy -= .12.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%, 结果提前8天完成任务,原来每天制作 件.13.如图,分别以边长为2的等边三角形ABC 的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图 形是一个曲边三角形,已知⊙O 是△ABC 的内切圆,则阴影部分面积为 .第16题14.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为1.5米,她先站在A 处看路灯顶端O 的仰角为35°,再往前走3米站在C 处,看路灯顶端O 的仰角为65°,则路灯顶端O 到地面的距离约为 .(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)15.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)= .16.如图,∠AOB =45°,点M ,N 在边OA 上,OM =x ,ON =x +4,点P 是边OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是 .三、解答题(本小题7个小题,共66分,17题6分,18-19各8分,20-21各10分,22-23各12分,解答应写出文字说明、证明过程或演算步骤)17.(1)先化简,在求值:2(1)(3)(3)x x x +-+-其中x =2. (2)解分式方程:xx−2−1=4x 2−4x+4.18.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.19.某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.20.如图,已知二次函数y=ax2﹣3x+4的图象经过点M(3,4).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=﹣2时,求n的值;②若点Q到x轴的距离等于114,直接写出m的值.21. 2月1日上午,沪苏湖铁路南浔交通枢纽工程在湖州南浔举行开工奠基仪式.意味着以后南浔到上海只要半小时左右,极大的方便了人们的出行,甲、乙两城市之间开通了高速列车,如图,OA 是普通列车离开甲城的路程s (km )与行驶时间t (h )的函数图象,BC 是高速列车离开甲城的路程s (km )与行驶时间t (h )的函数图象.请根据图中的信息,解答 下列问题:(1)根据图象信息,普通列车的速度是 km /h ,高速列车的速度是 km /h ;(2)若高速列车在到达乙城1小时后返回甲城,请在图中画出高速列车返回甲城的路程s (km )与时间t (h )的函数图象;并求出高速列车返回时与普通列车相遇的时间;(3)出于安全考虑,两列列车装有告警装置,当两列列车相距20km 时会发出警报,问在上述过程中装置发出警报的时间范围.22.我们定义:有一组领边相等的四边形叫做“等腰四边形”(1)如图1,在四边形ABCD 中,AD ∥BC ,对角线CA 平分∠BCD ,求证:四边形ABCD 是等腰四边形;(2)如图2,在平面直角坐标系中,点A (0,2),点B (4,2)点C 是x 轴正半轴上的动点,当四边形AOCB 是等腰四边形,求出点C 的坐标.BA(3)如图3,在平面直角坐标系中,点A (0,4),点9(,)2B t (t >0),点C 是x 轴正半轴上的动点,且满足∠OAB 与∠OCB 互补,函数ky x=的图像正好经过点B ,当四边形AOCB 是等腰四边形,求k 的值.23.已知:在矩形ABCD 中,E ,F 分别是边AB ,AD 上的点,过点F 作EF 的垂线交DC 于点H ,以EF 为直径作半圆O .(1)填空:点A (填“在”或“不在”)⊙O 上;当»»AE AF =时,tan ∠AEF 的值是; (2)如图1,在△EFH 中,当FE =FH 时,求证:AD =AE +DH ; (3)如图2,当△EFH 的顶点F 是边AD 的中点时,求证:EH =AE +DH ;(4)如图3,点M 在线段FH 的延长线上,若FM =FE ,连接EM 交DC 于点N ,连接FN ,当AE =AD 时,FN =4,HN =3,求tan ∠AEF 的值.答案与解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数2019的相反数是( )A.2019B.-2019C. 12019D.12019-【答案】B【解析】2019的相反数是-2019 故选:B2.x 的取值范围是( ) A. 0x > B. 1x ? C. 1x ³ D.1x £ 【答案】C【解析】∵10x -?,∴1x ³ 故选:C3.据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学计数法可表示为( ) A. 60.103110´ B. 71.03110´ C. 81.03110´ D.910.3110´ 【答案】B【解析】因为1031万=710310000 1.03110=?, 故选:B4.某个几何体的三视图如图所示,该几何体是( )A .B .C .D .【答案】D 【解析】5.从长度分别为2,4,5,6的四条线段中随机取三条,能构成三角形的概率是()A. 13B.14C.12D.34【答案】D【解析】从2,4,5,6人选三条总可能性有4种,其中能构成三角形的情况为:2,4,6;2,5,6;4,5,6共三种;所以构成三角形的概率为:34 P=故选:D6.某班6个合作小组的人数分别是4,6,4,5,7,8,现第4小组调出1人去第2小组,则调动后各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是()A.平均数变小了B.众数变小了C.中位数变大了D.方差变大了【答案】D【解析】A、调配后的平均数不变,故本选项错误;B、原小组的众数是4,调配后的众数仍然是4,故本选项错误;C、把原数从小到大排列为:4,4,5,6,7,8,则中位数是565.52+=,调配后中位数的中位数是475.52+=,则调配后的中位数不变.故本选项错误;D、原方差是:16[2(4﹣5.5)2+(6﹣5.5)2+(5﹣5.5)2+(7﹣5.5)2+(8﹣5.5)2]=94,调配后的方差是16[3(4﹣5.5)2+2(7﹣5.5)2+(8﹣5.5)2]=3512,则调配后方差变大了,故本选项正确;故选:D.7.若关于x的不等式组1233544(1)3x xx a x aì+ï+íï++++î>>恰有三个整数解,则a的取值范围是()A.1≤a<32B.1<a≤32C.1<a<32D.a≤1或a>32【答案】B【解析】解不等式123x x++>,得:x>25-,解不等式3x+5a+4>4(x+1)+3a,得:x<2a,∵不等式组恰有三个整数解,∴这三个整数解为0、1、2,∴2<2a ≤3, 解得1<a ≤32, 故选:B .8.如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在»AB 上的点D 处,且 ¼¼:1:3BD AD ⅱ=(¼BD ¢表示»BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【答案】D【解析】连接OD 交AC 于M .由折叠的知识可得:OM =12OA ,∠OMA =90°, ∴∠OAM =30°, ∴∠AOM =60°,∵且»»:1:3BDAD =, ∴∠AOB =80°设圆锥的底面半径为r ,母线长为l ,802180l r p p =, ∴r :l =2:9. 故选:D .9.(2019德州)在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),一定能使y 2−y 1x 2−x 1<0成立的是( )A .y =3x ﹣1(x <0)B .y =﹣x 2+2x ﹣1(x >0)C .y =−√3x(x >0)D .y =x 2﹣4x +1(x <0)【答案】D【解析】A 、∵k =3>0∴y 随x 的增大而增大,即当x 1>x 2时,必有y 1>y 2 ∴当x <0时,y 2−y 1x 2−x 1>0,故A 选项不符合;B 、∵对称轴为直线x =1,∴当0<x <1时y 随x 的增大而增大,当x >1时y 随x 的增大而减小, ∴当0<x <1时:当x 1>x 2时,必有y 1>y 2,此时y 2−y 1x 2−x 1>0,故B 选项不符合;C 、当x >0时,y 随x 的增大而增大,即当x 1>x 2时,必有y 1>y 2 此时y 2−y 1x 2−x 1>0,故C 选项不符合;D 、∵对称轴为直线x =2,∴当x <0时y 随x 的增大而减小, 即当x 1>x 2时,必有y 1<y 2 此时y 2−y 1x 2−x 1<0,故D 选项符合; 故选:D .10.4张长为a 、宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a +b )的正方形,图中空白 部分的面积为S 1,阴影部分的面积为S 2.若S 1=2S 2,则a 、b 满足( )A .2a =5bB .2a =3bC .a =3bD .a =2b【答案】D 【解析】222111()22()222S b a b ab a b a b =+??-=+,S 2=(a +b )2﹣S 1=(a +b )2﹣(a 2+2b 2)=2ab ﹣b 2, ∵S 1=2S 2,∴a 2+2b 2=2(2ab ﹣b 2), 整理,得(a ﹣2b )2=0, ∴a ﹣2b =0, ∴a =2b . 故选:D .二、填空题(本大题有6个小题,每小题4分,共24分) 11.分解因式234x y xy -= . 【答案】2(4)xy x y -【解析】2324(4)x y xy xy x y -=- 故答案为:2(4)xy x y -12.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%, 结果提前8天完成任务,原来每天制作 件. 【答案】20【解析】设原来每天制作x 件, 根据题意得:4804808(150%)x x-=+,解得:x =20,经检验x =20是原方程的解, 故答案为20.13.如图,分别以边长为2的等边三角形ABC 的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图 形是一个曲边三角形,已知⊙O 是△ABC 的内切圆,则阴影部分面积为 .第16题【答案】53p -【解析】连接OB ,作OH ⊥BC 于H ,如图, ∵△ABC 为等边三角形,∴AB =BC =AC =2,∠ABC =60°, ∵⊙O 是△ABC 的内切圆,∴OH 为⊙O 的半径,∠OBH =30°, ∵O 点为等边三角形的外心, ∴BH =CH =1,在Rt △OBH 中,33OH BH ==, ∵S 弓形AB =S 扇形ACB ﹣S △ABC , ∴阴影部分面积=3S弓形AB +S △ABC ﹣S ⊙O =3(S扇形ACB ﹣S △ABC )+S △ABC ﹣S ⊙O =3S扇形ACB ﹣2S △ABC ﹣S ⊙O =2226025322(360433p p p 创?创-?-故答案为:53p -14.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为1.5米,她先站在A 处看路灯顶端O 的仰角为35°,再往前走3米站在C 处,看路灯顶端O 的仰角为65°,则路灯顶端O 到地面的距离约为 .(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)【答案】4.7米【解析】过点O 作OE ⊥AC 于点E ,延长BD 交OE 于点F ,设DF =x∵tan65°=OFDF,∴OF=x tan65° ∴BF=3+x ∵tan35°=OFBF,∴OF=(3+x )tan35° ∴2.1x =0,7(3+x ) ∴x =1.5∴OF=1.5×2.1=3.15 ∴OE=3.15+1.5=4.65≈4.7 故答案为:4.7米15.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)= .【答案】√217【解析】给图中各点标上字母,连接DE ,如图所示. 在△ABC 中,∠ABC =120°,BA =BC ,∴∠α=30°. 同理,可得出:∠CDE =∠CED =30°=∠α. 又∵∠AEC =60°,∴∠AED =∠AEC +∠CED =90°.设等边三角形的边长为a ,则AE =2a ,DE =2×sin60°•a =√3a , ∴AD =√AE 2+DE 2=√7a , ∴cos (α+β)=DEAD =√217. 故答案为:√217.16.如图,∠AOB =45°,点M ,N 在边OA 上,OM =x ,ON =x +4,点P 是边OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是 .【答案】x =0或x =或4x << 【解析】分三种情况:①如图1,当M 与O 重合时,即x =0时,点P 恰好有三个;②如图2,以M 为圆心,以4为半径画圆,当⊙M 与OB 相切时,设切点为C ,⊙M 与OA 交于D ,∴MC ⊥OB , ∵∠AOB =45°,∴△MCO 是等腰直角三角形, ∴MC =OC =4,∴OM =当M 与D 重合时,即4x OM DM =-=时,同理可知:点P 恰好有三个;③如图3,取OM =4,以M 为圆心,以OM 为半径画圆,则⊙M 与OB 除了O 外只有一个交点,此时x =4,即以∠PMN 为顶角,MN 为腰,符合条件的点P 有一个,以N 圆心,以MN 为半径画圆,与直线OB 相离,说明此时以∠PNM 为顶角,以MN 为腰,符合条件的点P 不存在,还有一个是以NM 为底边的符合条件的点P ; 点M 沿OA 运动,到M 1时,发现⊙M 1与直线OB 有一个交点;∴当4x <<时,圆M 在移动过程中,则会与OB 除了O 外有两个交点,满足点P 恰好有三个;综上所述,若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是:x =0或x =或4x <<.故答案为:x =0或x =或4x <<.三、解答题(本小题7个小题,共66分,17题6分,18-19各8分,20-21各10分,22-23各12分,解答应写出文字说明、证明过程或演算步骤)17.(1)先化简,在求值:2(1)(3)(3)x x x +-+-其中x =2. (2)解分式方程:xx−2−1=4x 2−4x+4.【解析】(1)原式2221(9)210x x x x =++--=+ 当x =2时,原式=221014?= (2)解:x x−2−1=4x 2−4x+4,方程两边乘(x ﹣2)2得:x (x ﹣2)﹣(x ﹣2)2=4, 解得:x =4,检验:当x =4时,(x ﹣2)2≠0. 所以原方程的解为x =4.18.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.【解析】(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.19.某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.【解析】(1)本次抽样调查的样本容量是55010%=,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50﹣5﹣10﹣12﹣8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为12 36086.450按=?;(4)3000×20%=600名,答:全校有600学生报名参加篮球社团活动.20.如图,已知二次函数y=ax2﹣3x+4的图象经过点M(3,4).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=﹣2时,求n的值;②若点Q到x轴的距离等于114,直接写出m的值.【解析】(1)把点M(3,4)代入y=ax2﹣3x+4中得9a﹣9+4=4,∴a=1,∴y=x2﹣3x+4,∵y=x2﹣3x+4=(x﹣32)2+74,∴顶点坐标为37(,)24;(2)①当m =﹣2时,n =4+6+4=14,②点Q 到x 轴的距离等于114,∴n =114, ∴m 2﹣3m +4=114,解得m =12或52,∴m 的值为12或52.21. 2月1日上午,沪苏湖铁路南浔交通枢纽工程在湖州南浔举行开工奠基仪式.意味着以后南浔到上海只要半小时左右,极大的方便了人们的出行,甲、乙两城市之间开通了高速列车,如图,OA 是普通列车离开甲城的路程s (km )与行驶时间t (h )的函数图象,BC 是高速列车离开甲城的路程s (km )与行驶时间t (h )的函数图象.请根据图中的信息,解答 下列问题:(1)根据图象信息,普通列车的速度是 km /h ,高速列车的速度是 km /h ;(2)若高速列车在到达乙城1小时后返回甲城,请在图中画出高速列车返回甲城的路程s (km )与时间t (h )的函数图象;并求出高速列车返回时与普通列车相遇的时间;(3)出于安全考虑,两列列车装有告警装置,当两列列车相距20km 时会发出警报,问在上述过程中装置发出警报的时间范围.【解析】(1)由图象得:普通列车的速度是 600÷6=100km /h ,高速列车的速度是 600÷(3﹣1)=300km /h .(2)设DE 解析式:y =kx +b ,由题意得:{600406k b k b =+=+,解得:{3001800k b =-=∴DE 解析式y =﹣300x +1800 由题意得:AO 解析式:y =100x ∴{3001800100y x y x =-+=,解得:{4.5450x y == 答:高速列车返回时与普通列车相遇的时间 (3)设BC 解析式y =mx +n 根据题意得:{60030m nm n=+=+解得:{300300m n ==-∴BC 解析式:y =300x ﹣300 根据题意得:{100(300300)2030030010020x x x x --?--?解得:1.4≤x ≤1.6 由题意得:{100(3001800)20300180010020x x x x --+?-+-? 解得:4.45≤x ≤4.55终上所述:装置发出警报的时间范围为1.4≤x ≤1.6和4.45≤x ≤4.5522.我们定义:有一组领边相等的四边形叫做“等腰四边形”(1)如图1,在四边形ABCD 中,AD ∥BC ,对角线CA 平分∠BCD ,求证:四边形ABCD 是等腰四边形;(2)如图2,在平面直角坐标系中,点A (0,2),点B (4,2)点C 是x 轴正半轴上的动点,当四边形AOCB 是等腰四边形,求出点C 的坐标.(3)如图3,在平面直角坐标系中,点A (0,4),点9(,)2B t (t >0),点C 是x 轴正半轴上的动点,且满足∠OAB 与∠OCB 互补,函数ky x=的图像正好经过点B ,当四边形AOCB 是等腰四边形,求k 的值.B【解析】(1)∵CA 平分∠BCD ,∴∠BCA =∠ACD ∵AD ∥BC ,∴∠BCA =∠CAD ∴∠CAD =∠ACD ∴AD =CD∴四边形ABCD 是等腰四边形(2)①OA =OC 时,则OC =2,∴C (2,0)②BA =BC 时,以B 为圆心,AB 为半径画圆,交x 轴于12,C C ,则124BC BC ==∴12C H C H ==∴12(4(4C C -+③OC =BC 时作BH ⊥x 轴,连结OB ,设OC =BC =a 则CH =4-a∴222(4)2a a =-+,解得52a =∴5(,0)2C∴5(2,0),(,0),(42C -+(3)∵∠OAB 与∠OCB 互补,∴A 、O 、C 、B 四点共圆,∵∠AOC =90°,∴∠ABC =90°① AB =BC 时,则△ABC 为等腰直角三角形作BH ⊥y 轴,BG ⊥x 轴,则△BHA ≌△BGC ,∴92BG BH ==,∴99(,)22B ,∴814k =② OA =OC 时,则C (4,0),以AC 为直径画圆,交直线92y =于12,B B , 12AG = 作12BH B B ^则AGB BHC V :V ,92CH =, ∴AG BG BH CH =即12942t t =-,解得2t =?∴94k =?③ OA =AB 时,则AB =4,∴t =,∴4k =∴8194k =? 23.已知:在矩形ABCD 中,E ,F 分别是边AB ,AD 上的点,过点F 作EF 的垂线交DC 于点H ,以EF 为直径作半圆O .(1)填空:点A (填“在”或“不在”)⊙O 上;当»»AE AF =时,tan ∠AEF 的值是; (2)如图1,在△EFH 中,当FE =FH 时,求证:AD =AE +DH ;(3)如图2,当△EFH 的顶点F 是边AD 的中点时,求证:EH =AE +DH ;(4)如图3,点M 在线段FH 的延长线上,若FM =FE ,连接EM 交DC 于点N ,连接FN ,当AE =AD 时,FN =4,HN =3,求tan ∠AEF 的值.【解析】(1)连接AO ,∵∠EAF=90°,O为EF中点,∴AO=12EF,∴点A在⊙O上,当»»AE AF=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF交HD的延长线于点G,∵F分别是边AD上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FH,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M作MQ⊥AD于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=FQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴DQ HM x FQ FM a==,∵DC∥AB∥QM,∴MN QD x EN AD a==,∴MN HM x EN FM a==,∵FE=FM,∴MN HM xEN FE a==,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴34 MN HN xEN FN a===,∴3 tan4AF xAEFAE a?==。

江苏省徐州市2020届中考数学二模试卷(含解析)

江苏省徐州市2020届中考数学二模试卷(含解析)

江苏省徐州市2020届中考二模试卷数学一、选择题(本大题共有8小题,每小题3分,共24分。

在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣的相反数是()A.﹣B.4 C.﹣4 D.【解答】解:﹣的相反数是.故选:D.2.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.(3分)下列运算中,正确的是()A.(﹣3a3)2=9a6;B.a•a4=a4;C.a6÷a3=a2D.3a+2a2=5a3【解答】解:A、(﹣3a3)2=9a6,故此选项正确;B、a•a4=a5,故此选项错误;C、a6÷a3=a3,故此选项错误;D、3a+2a2,无法计算,故此选项错误.故选:A.4.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2的中位数是4【解答】解:A、检测某批次灯泡的使用寿命,适宜用抽样调查,故此选项错误;B、“367人中有2人同月同日生”为必然事件,正确;C、可能性是1%的事件在一次试验中一定不会犮生,发生的概率小,也有可能发生,故此选项错误;D、数据3,5,4,1,﹣2的中位数是3,故此选项错误.故选:B.5.(3分)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=150n,解得n=12,故选:B.6.(3分)如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是()A.70°B.35°C.45°D.60°【解答】解:∵A、B、C、D是⊙O上的四点,OA⊥BC,∴弧AC=弧AB(垂径定理),∴∠ADC=∠AOB(等弧所对的圆周角是圆心角的一半);又∠AOB=70°,∴∠ADC=35°.故选:B.7.(3分)已知点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是()A.B.C.D.【解答】解:∵A(﹣1,1),B(1,1),∴A与B关于y轴对称,故C,D错误;∵B(1,1),C(2,4),当x>0时,y随x的增大而增大,而B(1,1)在直线y=x上,C(2,4)不在直线y=x上,所以图象不会是直线,故A错误;故B正确.故选:B.8.(3分)已知一次函数y=kx+b的图象如图所示,则关于x的不等式k(x﹣4)﹣2b≥0的解集为()A.x≥﹣2 B.x≤3C.x≤﹣2 D.x≥3【解答】解:把(3,0)代入y=kx+b得3k+b=0,则b=﹣3k,所以k(x﹣4)﹣2b≥0化为k(x﹣4)+6k≥0,因为k<0,所以x﹣4+6≤0,所以x≤﹣2.故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)若分式有意义,则x的取值范围为x≠1.【解答】解:依题意得x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.10.(3分)因式分解:ax2﹣ay2= a(x+y)(x﹣y).【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).11.(3分)如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.【解答】解:由题意可得:阴影部分有4个小扇形,总的有10个小扇形,故飞镖落在阴影区域的概率是: =.故答案为:.12.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 2.5×10﹣6.【解答】解:0.0000025用科学记数法表示为2.5×10﹣6,故答案为:2.5×10﹣6.13.(3分)若反比例函数y=﹣的图象经过点A(m,3),则m的值是﹣2 .【解答】解:∵反比例函数y=﹣的图象经过点A(m,3),∴3=﹣,解得m=﹣2.故答案为:﹣2.14.(3分)已知2a﹣3b=7,则8+6b﹣4a= ﹣6 .【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.15.(3分)如图,⊙O的直径垂直于弦CD,垂足为E,∠A=15°,半径为2,则CD的长为2 .【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,在Rt△OCE中,OC=2,∠COE=30°,∴CE=OC=1,(直角三角形中,30度角所对的直角边是斜边的一半)∴CD=2CE=2,故答案为:216.(3分)若某一圆锥的母线长为5cm,高为4cm,则此圆锥的侧面积是15πcm2.【解答】解:∵母线长为5cm,高为4cm,∴底面圆的半径为3cm,圆锥的侧面积=2π×3×5÷2=15π.故答案为:15π.17.(3分)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB= 75 度.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.18.(3分)观察下列的“蜂窝图”则第n个图案中的“”的个数是3n+1 .(用含有n的代数式表示)【解答】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+1三、解答题(本大题共有10小题,共86分。

2020届四川省成都市中考数学二模试卷((有答案))(加精)

2020届四川省成都市中考数学二模试卷((有答案))(加精)

四川省成都市中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>52.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m33.如图,几何体的左视图是()A.B.C.D.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是67.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣38.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠29.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E 与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).28.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.四川省成都市中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).2.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则.3.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3【分析】由平移的规律即可求得答案.【解答】解:将抛物线y=x2向下平移3个单位,则函数解析式变为y=x2﹣3,将y=x2﹣3向左平移1个单位,则函数解析式变为y=(x+1)2﹣3,故选:D.【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可.【解答】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2016的长.【解答】解:根据题意得:l1==,l2==,l3===π,则L2016=,故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l2016的长.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=8.【分析】利用平方差公式分解因式,进而把已知代入求出答案.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=2.【分析】根据翻折变换,可知△ONC≌△AOM,且是Rt△,在△ONC中解得NO.【解答】解:根据翻折变换,可知△ONC≌△AOM,且是Rt△,∵AC=,∠CAB=30°,∴在Rt△ONC,解得ON=1,∴MN=2.故答案为2.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为y=﹣x.【分析】直接利用一次函数图象平移规律进而得出答案.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】(1)解:()﹣1﹣(π﹣2018)0﹣4cos30°=﹣2+2﹣1﹣4×=﹣3;(2)解不等式①得:x≤4解不等式②得:x≤2;∴不等式组的解集为:2≤x≤4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出AC与BC,根据AC﹣BC=AB求出PC的长即可.【解答】解:在Rt△ACP中,tan∠PAC=,即AC=,在Rt△BCP中,tan∠CBP=,即BC=,由AB=AC﹣BC,得到﹣=10000,解得:PC=≈3388,则飞机飞行的高度为3388m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为x,根据等量关系为:2011年的利润×(1+增长率)2=2013年的利润,把相关数值代入即可列出方程.【解答】解:(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=60.5,解得:x=10%,答:这两年平均增长率是10%.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想. 20.(10分)已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点,AD 交BC 于点E ,连接AB . (1)求证:AB 2=AE •AD ;(2)过点D 作⊙O 的切线,与BC 的延长线交于点F ,若AE =2,ED =4,求EF 的长.【分析】(1)点A 是劣弧BC 的中点,即可得∠ABC =∠ADB ,又由∠BAD =∠EAB ,即可证得△ABE ∽△ADB ,根据相似三角形的对应边成比例,即可证得AB 2=AE •AD ;(2)由(1)求得AB 的长,又由BD 为⊙O 的直径,即可得∠A =90°,由DF 是⊙O 的切线,可得∠BDF =90°,在Rt △ABD 中,求得tan ∠ADB 的值,即可求得∠ADB 的度数,即可证得△DEF 是等边三角形,则问题得解.【解答】解:(1)证明:∵点A 是劣弧BC 的中点, ∴∠ABC =∠ADB .(1分) 又∵∠BAD =∠EAB , ∴△ABE ∽△ADB .(2分) ∴.∴AB 2=AE •AD .(2)解:∵AE =2,ED =4, ∵△ABE ∽△ADB ,∴,∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=12.∴AB=2(舍负).(4分)∵BD为⊙O的直径,∴∠A=90°.又∵DF是⊙O的切线,∴DF⊥BD.∴∠BDF=90°.在Rt△ABD中,tan∠ADB=,∴∠ADB=30°.∴∠ABC=∠ADB=30°.∴∠DEF=∠AEB=60°,∠EDF=∠BDF﹣∠ADB=90°﹣30°=60°.∴∠F=180°﹣∠DEF﹣∠EDF=60°.∴△DEF是等边三角形.∴EF=DE=4.(5分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4.【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是9.【分析】把代数式分解因式,然后把数值代入,计算得出答案即可.【解答】解:x2﹣2xy+y2=(x﹣y)2当x=5.4,y=2.4时,原式=(5.4﹣2.4)2=9,故答案为9.【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E 与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为4.【分析】根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.【解答】解:连接CD,当CD⊥AB时,CD取得最小值,∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴AC=4,BC===4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵点E与点D关于AC对称,∴CE=CD,∴∠CED=∠CDE,∵∠EFD+∠CED=90°,∠CDF+∠CDE=90°,∴∠F=∠CDF,∴CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是等腰直角三角形.【分析】根据旋转的性质知:两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,则易证△ACF是等腰直角三角形.【解答】解:在矩形ABCD中,根据勾股定理知AC=,在矩形AEFG中,根据勾股定理知AF=.∵根据旋转的性质知,矩形ABCD和AEFG是两个大小完全相同的矩形,∠CAF=90°,∴AB=AE=GF,BC=AD=AG,∴AC=AF,∴△ACF是等腰直角三角形,故填:等腰直角.【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质.注意,旋转前后的图形全等.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是y3<y2<y1(用“>”“<”或“=”连接).【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y1、y2、y3的大小关系.【解答】解:∵抛物线的对称轴与x轴交于点(﹣1,0),∴抛物线的对称轴为直线x=﹣1,∵点(2,y1)到直线x=﹣1的距离最大,点(0,y3)到直线x=﹣1的距离最小,∴y3<y2<y1.故答案为y3<y2<y1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键.五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=4;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为1﹣cosα(用含α的表达式表示).【分析】(1)先求出BE的长度后发现BE=BD的,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠DEF=60°,可证得△CDF是等边三角形,从而CF=CD=BC﹣BD;(2)证明△EBD∽△DCF,这个模型可称为“一线三等角•相似模型”,根据“AA”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而证明△BDM≌△CDN可得BD=CD;【探索】由已知不能求得C△ABC=AB+BC+AC=2AB+2OB=2(m+m cosα),则需要用m和α是三角函数表示出C△AEF ,C△AEF=AE+EF+AF=AG+AH=2AG;题中直接已知点O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C△AEF=AE+EF+AF=AG+AH=2AG,而AG=AB﹣BO,从而可求得.【解答】(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,。

2020年中考二模检测《数学试题》附答案解析

2020年中考二模检测《数学试题》附答案解析

中考考前综合模拟测试数 学 试 卷(时间:xx 分钟 总分:xx 分)学校________ 班级________ 姓名________ 座号________一、选择题(本大题共10小题,每小题4分,满分40分在每小题给出的选项中,只有一个符合题意,请将正确的一项代号填入下面括号内)1.4的倒数是 ( )A. -4B. 4C. 14-D. 14 2.下列各式计算的结果是5x 的是( )A. 102x x ÷B. 6x x -C. 23x x ⋅D. ()32x 3.某几何体的三视图如下所示,则该几何体可以是( )A. B. C. D. 4.2019年春学期,历时近三年,总投资24.3百万元,建筑面积8218平方米的庐阳中学艺体楼投入使用,进一步提升了我校的办学品质.其中“24.3百万”用科学计数法表示为 ( )A. 624.310-⨯B. 62.4310⨯C. 724.310⨯D. 72.4310⨯5.若分式25626x x x -+-的值等于0,则x 的值为( ) A. 2或3 B. 2 C. 3 D. 无解 6.如图,在平行四边形ABCD 中,100D ∠=︒,DAB∠平分线AE 交DC 于点E ,连接BE ,若AE AB =,则EBC ∠的度数为( )A. 30°B. 40︒C. 60︒D. 80︒7.在体育模拟考试中,某班25名男生的跳绳成绩如下表所示: 成绩/次 160 165 170 175 180 185 190 人数1 2 3 5 8 4 2则这些同学跳绳成绩的中位数,众数分别是( )A. 175,180B. 175,190C. 180,180D. 180,190 8.某种商品售价200元/件,经过两次降价后的价格为128元/件,则平均每次降价的百分率为( )A. 6.4%B. 12.8%C. 16%D. 20% 9.已知二次函数()2y x h =-- (h 为常数),当自变量x 的值满足13x ≤≤时,其对应的函数值y 的最大值为1-,则h 的值为 ( )A. 2或4B. 0或-4C. 2或-4D. 0或410.如图,在矩形ABCD 中,6AB =,4BC =,动点E 从点A 出发,沿A B C→→的路线运动,当点E 到达点C 时停止运动,过点E 作FE AE ⊥,交CD 于点F ,设点E 运动的路程为x ,FC y =.则y 关于x 的图象大致为( )A. B. C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.27-的立方根是________.12.如图,在平面直角坐标系中,点B 在y 上,OA AB =,反比例函数()0k y x x=>的图像经过点A ,若ABO ∆的面积是4,则k 的值为___.13.如图,已知,在O e 中,150AOB ∠=︒ ,E 是优弧AB 上一点,C 、D 是劣弧AB 上不同的两点(不与A 、B 两点重合),则C D ∠+∠的度数为______.14.如图,在菱形ABCD 中,60DAB ∠=︒, 3AB =, 点E 在边AD 上,且1DE =,点F 为线段AB 上一动点(不与点A 重合),将菱形沿直线EF 折叠,点A 的对应点为点'A ,当'A 落在菱形的对角线上时,AF 的长为__________.三、(本大题共2小题,每小题8分,共16分)15.计算:21122sin 452-⎛⎫-+ ⎪⎝⎭o 16.解不等式组21211224x x x x -≥-⎧⎪⎨⎛⎫+>- ⎪⎪⎝⎭⎩,并在数轴上表示它的解集.四、(本大题共2小题,每小题8分,共16分)17.如图,ABC V 的顶点分别为()()()3,4,B 4,2,C 2,1.A(1)请在平面直角坐标系中做出ABC V 绕原点O 逆时针旋转90o 后得到的111A B C △(点,,A B C 的对应点分别为111,,A B C );(2) 画出点A 在旋转过程中所经过的路径,并求出点A 所经过的路径的长18.如图,某景区的两个景点A 、B 处于同一水平地面上,一架无人机在空中飞行至点C 处时,测得景点A 的俯角为45°,景点B 的俯角为知75°,已知点C 与AB 在同铅直平面内,两景点A 、B 间的距离为100米,求无人机与景点A 的距离CA 为多少米?(结果保留根号)五、(本大题共2小题,每小题10分,共20分)19.如图1,观察数表,如何计算数表中所有数的和?方法1:如图1,先求每行数的和:第1行 ()123 123... n n ++++=++++L第2行 ()2462 2 123 n n ++++=++++L L第n 行 ()223 123 n n n n n n ++++=++++L L故表中所有数的和:()()()123212 3 123n n n n ++++++++++++++=+L L L L ;方法2:如图2.依次以第1行每个数为起点,按顺时针方向计算各数的和:第1组 311=第2组 32422++=第3组 3369633++++=…第n 组 222n m n n n ++++++=L L ,用这n 组数计算的结果,表示数表中所有数的和为: ,综合上面两种方法所得的结果可得等式: ;利用上面得到的规律计算:333312320++++L .20.如图,在O e 内接ABC ∆中,AB AC =, D 是O e 上一点,AD 的延长线交BC 的延长线于点E .(1)求证: ACB CDE ∠=∠;(2)若20AB =, 15AD = ,求ED 的长.六、(本题满分12分)21.将正面分别标有数字-1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上.(1)小明从这四张卡片中随机抽取一张, 抽到一张恰好是负数的概率是多少?(2)随机抽出一张,记其数字为b ,不放回,再随机抽出一张, 记其数字为c ,则使关于x 的方程2 =0x bx c ++有实数根的概率是多少?七、(本题满分12分)22.“淮南牛肉汤”是安徽知名地方小吃.某分店经理发现,当每碗牛肉汤的售价为6元时,每天能卖出500碗;当每碗牛肉汤的售价每增加0.5元时,每天就会少卖出20碗,设每碗牛肉汤的售价增加x 元时,一天的营业额为y 元.(1)求y 与x 的函数关系式(不要求写出x 的取值范围);(2)考虑到顾客可接受价格a 元/碗的范围是69a ≤≤,且a 为整数,不考虑其他因素,则该分店的牛肉汤每碗多少元时,每天的牛肉汤营业额最大?最大营业额是多少元?八、(本题满分14分)23.如图,正方形ABCD 边长为2,E 、F 分别是AD 、CD 上两动点,且满足AE DF =, BE 交AF 于点G .(1)如图1,判断线段BE 、AF 的位置关系,并说明理由;(2)在(1)的条件下,连接DG ,直接写出DG 的最小值为 ;(3)如图2,点E 为AD 的中点,连接DG .①求证:GD 平分EGF ∠;②求线段DG 的长度.答案与解析一、选择题(本大题共10小题,每小题4分,满分40分在每小题给出的选项中,只有一个符合题意,请将正确的一项代号填入下面括号内)1.4的倒数是 ( )A. -4B. 4C. 14-D. 14 【答案】D【解析】【分析】当两数的乘积等于1时,我们称这两个数互为倒数.【详解】解:4的倒数是14. 故选:14. 考点:倒数的定义2.下列各式计算的结果是5x 的是( )A. 102x x ÷B. 6x x -C. 23x x ⋅D. ()32x 【答案】C【解析】【分析】 根据同底数幂除法法则、同底数幂相乘法则、幂的乘方法则对各项进行运算验证即可求得.【详解】A .1028x x x =÷,不符合题意B . 6x x -,无法进行运算,不符合题意C . 235x x x ?,符合题意 D . ()326x x =,不符合题意故选:C【点睛】本题考查了同底数幂除法法则、同底数幂相乘法则、幂的乘方法则,应熟练掌握这些法则. 3.某几何体的三视图如下所示,则该几何体可以是( )A. B. C. D.【答案】A【解析】【详解】解:根据主视图、左视图、俯视图的平面图形,可以判断该几何体为A .故选:A4.2019年春学期,历时近三年,总投资24.3百万元,建筑面积8218平方米的庐阳中学艺体楼投入使用,进一步提升了我校的办学品质.其中“24.3百万”用科学计数法表示为 ( )A. 624.310-⨯B. 62.4310⨯C. 724.310⨯D. 72.4310⨯【答案】D【解析】【分析】 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数【详解】24.3百万=724300000=2.4310⨯,故选D.【点睛】此题考查科学记数法一表示较大数,难度不大5.若分式25626x x x -+-的值等于0,则x 的值为( ) A. 2或3B. 2C. 3D. 无解【答案】B【解析】【分析】 根据分式方程的值为0,可得2560x x -+=,260x -≠,即可求解.【详解】∵25626x x x -+-的值为0 ∴2560x x -+=,260x -≠2560x x -+=(2)(3)0x x --=解得x=2或x=3又∵260x -≠,3x ≠∴x=2故选:B【点睛】本题考查了分式方程为0的条件:分式的分子为0,且分母不为0.6.如图,在平行四边形ABCD 中,100D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE ,若AE AB =,则EBC ∠的度数为( )A. 30°B. 40︒C. 60︒D. 80︒【答案】A【解析】【分析】 由平行四边形的性质得出∠ABC=∠D=100°,AB ∥CD ,得出∠BAD=180°-∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC 的度数【详解】//,180,80DC AB D DAB DAB Q ∴∠+∠=︒∴∠=︒,∵∠ABC=∠D=100°,AE 为角平分线,∴40EAB ∠=︒AE AB =Q70EBA ∴∠=︒,1007030EBC ∴∠=︒-︒=︒,故选A.【点睛】此题考查平行四边形的性质,难度不大7.在体育模拟考试中,某班25名男生的跳绳成绩如下表所示:则这些同学跳绳成绩的中位数,众数分别是( )A. 175,180B. 175,190C. 180,180D. 180,190【答案】C【解析】【分析】中位数:是指将所有数从小到大或从大到小排列后,如果总数为奇数个,中位数就是排在最中间的那个数,众数:一组数据中,出现次数最多的数据.【详解】中位数为180,众数为180,故选C.【点睛】此题主要考查中位数、众数的概念,难度不大8.某种商品售价200元/件,经过两次降价后的价格为128元/件,则平均每次降价的百分率为()A. 6.4%B. 12.8%C. 16%D. 20%【答案】D【解析】【分析】设该商品平均每次降价的百分率为x,根据该商品的标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其中小于1的值即可得出结论【详解】设该商品平均每次降价的百分率为x,根据题意得:200(1−x)2=128,解得:x1=0.2=20%,x2=1.8(不合题意,舍去).∴该商品每次降价的百分率为20%.故选:D【点睛】本题考查了一元二次方程的实际应用,根据题意找到等量关系列出一元二次方程是解题的关键.9.已知二次函数()2=-- (h为常数),当自变量x的值满足13y x h≤≤时,其对应的函数值y的最大值x-,则h的值为()为1A. 2或4B. 0或-4C. 2或-4D. 0或4【答案】D【解析】【分析】分h<1、1≤h≤3和h>3三种情况考虑:当h<1时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当1≤h≤3时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>3时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论. 【详解】当h<1时,有−(1−h)2=−1,解得:h 1=0,h 2=2(舍去);当1⩽h ⩽3时,y=−(x−h)2的最大值为0,不符合题意;当h>3时,有−(3−h)2=−1,解得:h 3=2(舍去),h 4=4.综上所述:h 的值为0或4.故选:D .【点睛】本题主要考查了二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键. 10.如图,在矩形ABCD 中,6AB =,4BC =,动点E 从点A 出发,沿A B C →→的路线运动,当点E 到达点C 时停止运动,过点E 作FE AE ⊥,交CD 于点F ,设点E 运动的路程为x ,FC y =.则y 关于x 的图象大致为( )A. B. C. D.【答案】B【解析】【分析】分为两种情况:当E 点在AB 上运动时和当E 点在BC 上运动时,再把x,y 代入得出解析式即可【详解】当E 点在AB 上运动时,06x ≤≤,,AE x FC y ==,6x y +=,即6y x =-+,为一次函数; 当E 点在BC 上运动时,68x <≤,易证ABE EFC ∆∆:,AB EB EC FC ∴=,即6610x x y -=-,化简得()28263x y --=+,即当8x =时,y 有最大值23,故选B.【点睛】此题考查动点问题的函数图象,解题关键在于分情况讨论二、填空题(本大题共4小题,每小题5分,满分20分)11.27-的立方根是________.【答案】-3.【解析】【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.12.如图,在平面直角坐标系中,点B 在y 上,OA AB =,反比例函数()0k y x x=>的图像经过点A ,若ABO ∆的面积是4,则k 的值为___.【答案】4.【解析】【分析】如图,过点A 作AD ⊥y 轴于点D,结合等腰三角形的性质得到△ADO 的面积为2,所以根据反比例函数系数k 的几何意义求得k 的值【详解】如图,过点A 作AD y ⊥轴于点D ,AB AO =Q ,ABO ∆的面积为4,22ADO kS ∆∴==,又反比例函数的图象位于第一象限,0k >,则4k =,故答案为4.【点睛】此题考查反比例函数系数k 的几何意义,解题关键在于算出三角形AOD 的面积13.如图,已知,在O e 中,150AOB ∠=︒ ,E 是优弧AB 上一点,C 、D 是劣弧AB 上不同的两点(不与A 、B 两点重合),则C D ∠+∠的度数为______.【答案】105︒【解析】【分析】根据圆心角与弧的关系及圆周角定理不难求得C D ∠+∠的度数.【详解】∵150AOB ∠=︒∴弧AB 的度数为150︒∴C D ∠+∠=12(»AE 度数+»BE 度数) =1(360150)2⨯︒-︒=105︒ 故答案为:105︒【点睛】本题考查了圆心角与弧的关系,及圆周角定理.14.如图,在菱形ABCD 中,60DAB ∠=︒, 3AB =, 点E 在边AD 上,且1DE =,点F 为线段AB 上一动点(不与点A 重合),将菱形沿直线EF 折叠,点A 的对应点为点'A ,当'A 落在菱形的对角线上时,AF 的长为__________.【答案】2或513-【解析】【分析】分为两种情况:当点'A 在BD 上时和当点'A ;在AC 上时,再利用菱形的性质和等边三角形的性质进行解答.【详解】①当点'A 在BD 上时,如图:则'60EA F A ∠=∠=︒,EA EA '=,FA='A F∴'120EA D FA B '∠+∠=︒∵四边形ABCD 是菱形∴AB=AD=3∵60A ∠=︒∴△ABD 为等边三角形,∴120A FB FA B ''∠+∠=︒∴A FB EA D ''∠=∠∴DEA BA F ''∆∆:∴DA EA DE BF A F BA ''==''∵DE=1∴312EA AE '==-=设AF=FA '=x , DA y '=2BA y '=- 2133y x x y==-- 解得x=513-∴AF=513-②当点'A 在AC 上时,如图:则EF 垂直平分'AA∵四边形ABCD 是蒙形,∠DAB=60°∴∠DAC=∠CBA=30 ,∠AFE=∠DAB=60°∴EAF 是等边三角形,∴AF=AE=2 综上所述:AF=2或513-故答案为:2或513【点睛】本题考查了菱形的性质和等边三角形的性质和判定,分情况讨论是解题的关键,每种情况都不能遗漏.三、(本大题共2小题,每小题8分,共16分)15.计算:21122sin 452-⎛⎫-+ ⎪⎝⎭o 【答案】3.【解析】【分析】根据绝对值,特殊角的三角函数值和负指数幂进行计算即可【详解】原式2-1-2+4 =3【点睛】此题考查绝对值,特殊角的三角函数值和负指数幂,掌握运算法则是解题关键16.解不等式组21211224x x x x -≥-⎧⎪⎨⎛⎫+>- ⎪⎪⎝⎭⎩,并在数轴上表示它的解集. 【答案】11x -≤<,在数轴上表示见解析.【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【详解】21211224x x x x -≥-⎧⎪⎨⎛⎫+>- ⎪⎪⎝⎭⎩解不等式,212x x -≥-,得1x ≥-,解不等式11224x x ⎛⎫+>- ⎪⎝⎭, 得1x <.∴原不等式组的解集为11x -≤<,在数轴上表示为.【点睛】本题考查了不等式组的解法,求出不等式组中每一个不等式的解集,再求出它们的公共部分,即为不等式组的解集.考查了不等式组的解集在数轴上的表示. 四、(本大题共2小题,每小题8分,共16分)17.如图,ABC V 的顶点分别为()()()3,4,B 4,2,C 2,1.A(1)请在平面直角坐标系中做出ABC V 绕原点O 逆时针旋转90o 后得到的111A B C △(点,,A B C 的对应点分别为111,,A B C );(2) 画出点A 在旋转过程中所经过的路径,并求出点A 所经过的路径的长【答案】(1) 111A B C △如图所示见解析;(2) 路径如图所示见解析,路径长为52π 【解析】【分析】(1)在平面直角坐标系中画出A,B,C 的对应点111,,A B C ,然后顺次连接即可;(2)求出AO 的长,根据弧长公式进行计算即可求出点A 所经过的路径长.【详解】(1) 111A B C △如图所示(2) 路径如图所示,则2234=5+路径长为905180π⋅⋅ =52π. 【点睛】此题考查作图-旋转变换,解题关键在于掌握作图法则18.如图,某景区的两个景点A 、B 处于同一水平地面上,一架无人机在空中飞行至点C 处时,测得景点A 的俯角为45°,景点B 的俯角为知75°,已知点C 与AB 在同铅直平面内,两景点A 、B 间的距离为100米,求无人机与景点A 的距离CA 为多少米?(结果保留根号)【答案】无人机与景点A 的距离CA 为(502506)+米. 【解析】 【分析】 过点B 作BE AC ⊥于点E ,根据已知在Rt ABE ∆中,可求出BE ,AE=BE ,在Rt CBE ∆中,求出BC ,利用特殊角三角函数,再求出CE ,CA=CE+AE ,即可求出CA .【详解】过点B 作BE AC ⊥于点E ,根据题意45CAB ∠=︒,754530ACB ∠=︒-︒=︒,在Rt ABE ∆中,sin BE EAB AB ∠=,即sin 45100BE ︒=, ∴502BE =,∴502AE BE ==,在Rt CBE ∆中,21002BC BE ==,tan BE ECB CE ∠=,即502tan 30︒=, ∴506CE =,∴502506CA =+,故答案为:无人机与景点A 的距离CA 为2506)米【点睛】本题考查了解直角三角形的应用—仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形,是数形结合思想的应用.五、(本大题共2小题,每小题10分,共20分)19.如图1,观察数表,如何计算数表中所有数的和?方法1:如图1,先求每行数的和:第1行 ()123 123... n n ++++=++++L第2行 ()2462 2 123 n n ++++=++++L L第n 行 ()223 123 n n n n n n ++++=++++L L 故表中所有数的和:()()()123212 3 123n n n n ++++++++++++++=+L L L L ;方法2:如图2.依次以第1行每个数为起点,按顺时针方向计算各数的和: 第1组 311=第2组 32422++=第3组 3369633++++=…第n 组 222n m n n n ++++++=L L ,用这n 组数计算的结果,表示数表中所有数的和为: ,综合上面两种方法所得结果可得等式: ;利用上面得到的规律计算:333312320++++L .【答案】方法1:()22114n n +;方法2:3n ;3333123n ++++L ; ()223333111234n n n +=++++L ;44100.【解析】【分析】方法1:先提取公因式,然后利用计算公式(1)1232n n n +++++=L ,即可求解. 方法2:根据规律第1组311=,第2组32422++=,第3组3369633++++=可找到规律,2322n m n n n n ++++++=L L根据表中所有数的和相等,将方法1和方法2综合即可得等式.333312320++++L 结合上一问所得等式即可求出解.【详解】方法1:()()()123212 3 123n n n n +++++++++++++++L L L L =2(1)2(1)3(1)(1)2222n n n n n n n n ++++++++L =(1)(123)2n n n +++++L =(1)(1)22n n n n ++g =22(1)4n n + 方法2:222n m n n n ++++++L L=3n用这n 组数计算的结果,表示数表中所有数的和为:3333123n ++++L ;综合上面两种方法所得的结果可得等式:22(1)4n n +3333123n =++++L ; 计算22333320(201)12320441004+++++==L . 【点睛】本题是找规律的一道题目,掌握计算公式(1)1232n n n +++++=L 是解题关键. 20.如图,在O e 的内接ABC ∆中,AB AC =, D 是O e 上一点,AD 的延长线交BC 的延长线于点E .(1)求证: ACB CDE ∠=∠;(2)若20AB =, 15AD = ,求ED 的长.【答案】(1)证明见解析;(2)353. 【解析】【分析】(1)根据圆的内接四边形的任意一个外角等于它的内对角,可得ABC CDE ∠=∠,又因为AB AC =,A ABC CB =∠∠,即可证得 ACB CDE ∠=∠.(2)由(1)结论,可得ADC ACE ∠=∠,又因为CAD CAD ∠=∠,可得ADC ACE ∆∆:,得出相似比,代入已知线段长度,即可求解.【详解】∵内接四边形ABCD ,∴ABC CDE ∠=∠,∵AB AC =,∴A ABC CB =∠∠,∴ACB CDE ∠=∠;(2)由(1)得20AB AC ==,ACB CDE ∠=∠,∴ADC ACE ∠=∠,又∵CAD CAD ∠=∠,∴ ADC ACE ∆∆:, ∴AD AC AC AE =,即152020AE=, ∴803AE =, ∴353DE AE AD =-=. 故答案为:353【点睛】本题考查了圆的内接四边形的任意一个外角等于它的内对角,相似三角形的判定及性质.六、(本题满分12分)21.将正面分别标有数字-1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上.(1)小明从这四张卡片中随机抽取一张, 抽到一张恰好是负数的概率是多少?(2)随机抽出一张,记其数字为b ,不放回,再随机抽出一张, 记其数字为c ,则使关于x 的方程2 =0x bx c ++有实数根的概率是多少?【答案】(1)抽到一张恰好是负数的概率是14;(2)P (方程20x bx c ++=有实数根)12=. 【解析】【分析】(1)小明从这四张卡片中随机抽取一张,共有四种不同的结果,其中这四种结果中,只有一种结果是负数:小明抽到一张恰好是负数的概率是14(2)依题意可知:不放回的抽取两张,出现的结果可以是(-1,2),(-1,3),(-1,4),(2,-1),(2,3),(2,4),(3,-1),(3,2),(3,4),(4,-1),(4,2),(4,3)这12种不同的结果,其中前面的数字是b ,后面的数字是c ,列出树状图,若方程x 2+bx+c=0有实数根,则b 2-4c ≥0得b 2≥4c ,满足此条件的结果只有(2,-1),(3,-1),(3,2),(4,-1),(4,2),(4,3)这6种,使关于x 的方程x 2+bx+c=0有实数根的概率是612【详解】(1)∵小明从这四张卡片中随机抽取一张,共有四种不同的结果,其中这四种结果中,只有一种结果是负数∴小明抽到一张恰好是负数的概率是:14 故答案为:14(2)列出树状图:∵共有12种等可能结果,其中满足方程20x bx c ++=有实数根的结果有6种,∴P (方程20x bx c ++=有实数根)61122==. 故答案为:12【点睛】本题考查了随机事件求概率方法,作树状图或列表时,应按一定的顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分) 22.“淮南牛肉汤”是安徽知名地方小吃.某分店经理发现,当每碗牛肉汤的售价为6元时,每天能卖出500碗;当每碗牛肉汤的售价每增加0.5元时,每天就会少卖出20碗,设每碗牛肉汤的售价增加x 元时,一天的营业额为y 元.(1)求y 与x 的函数关系式(不要求写出x 的取值范围);(2)考虑到顾客可接受价格a 元/碗的范围是69a ≤≤,且a 为整数,不考虑其他因素,则该分店的牛肉汤每碗多少元时,每天的牛肉汤营业额最大?最大营业额是多少元?【答案】(1) 2402603000y x x =-++;(2)售价为9元每碗时,每天的最大营业额为3420元【解析】【分析】(1)根据题意:售价×碗数=一天的营业额=(6+x )(500-20×0.5x ) (2)由(1)可得当 3.25x <时y 随着x 的增大而增大,再结合x 取整数,即可解答,将x=3代入函数关系式可得最大营业额【详解】(1) 2(6)(50040)402603000y x x x x =+-=-++(2) 由(1)得()240 3.253422.5y x =--+,400-<,当 3.25x <时y 随着x 的增大而增大,又69,03a x ≤≤∴≤≤,结合x 为整数,故当3x =,即售价为9元每碗时,每天的最大营业额为3420元【点睛】此题考查二次函数的实际应用,列出方程是解题关键八、(本题满分14分)23.如图,正方形ABCD 边长为2,E 、F 分别是AD 、CD 上两动点,且满足AE DF =, BE 交AF 于点G .(1)如图1,判断线段BE 、AF 的位置关系,并说明理由;(2)在(1)的条件下,连接DG ,直接写出DG 的最小值为 ;(3)如图2,点E 为AD 的中点,连接DG .①求证:GD 平分EGF ∠;②求线段DG 的长度.【答案】(1)BE AF ⊥;理由见解析;(251;(3)①见解析;②2105DG =. 【解析】【分析】(1)证明ABE DAF ∆∆≌,即可解答.(2)取AB 的中点0,连接OG 、OD ,则OG=12AB=1,在Rt △AOD 中,根据勾股定理计算出OD 的值;根据三角形的三边关系,可得OG+DG>OD ,于是当O 、D 、G 三点共线时,DG 的长度最小为OD-OG ,据此解答.(3)①过点D 作DM GE ⊥于M ,DN GF ⊥于N ,可得四边形MGND 为矩形,再证得MDE NDF ∆∆≌,所以DM ND =,又因为DM GE ⊥, DN GF ⊥,可得GD 平分EGF ∠; ②在Rt ADF ∆中,根据1122ADF S AD DF AF DN ∆=⋅=⋅,可求得DN ,在Rt DGN ∆中,45DGN ∠=︒,sin 45DN DG =︒,即可求得DG . 【详解】(1)BE AF ⊥;理由:∵四边形ABCD 为正方形.∴AB AD =,90BAD ADC ∠=∠=︒,∵AB AD BAD ADC AE DF =⎧⎪∠=∠⎨⎪=⎩,∴ABE DAF ∆∆≌,∴ABE DAF ∠=∠,又∵90DAF BAG ∠+∠=︒,∴90ABE BAG ∠+∠=︒,∴90AGB ∠=︒,∴BE AF ⊥;(2)取AB 的中点O,连接OG 、OD ,如图所示:则OG=12AB=1 在Rt △AOD 中,2222125OA AD +=+=根据三角形的三边关系,OG+DG>OD ,当O 、D 、G 三点共线时,DG 的长度最小,最小值51 51(3)①过点D 作DM GE ⊥于M ,DN GF ⊥于N ,∵90EGF M DNG ∠=∠=∠=︒.∴四边形MGND 为矩形,∴90MDN ∠=︒,即90MDE EDN ∠+∠=︒,又∵90FDN EDN ∠+∠=︒,∴MDE FDN ∠=∠,又∵90M DNF ∠=∠=︒,∴ MDE NDF ∆∆≌,∴DM ND =,又∵DM GE ⊥, DN GF ⊥,∴GD 平分EGF ∠;②在Rt ADF ∆中,22125AF =+=,∵1122ADF S AD DF AF DN ∆=⋅=⋅, ∴255DN =, 在Rt DGN ∆中,45DGN ∠=︒,∴210sin 455DN DG ==︒.2105【点睛】此题考查正方形的性质和三角形全等的性质和判定,解题关键在于证明三角形全等。

2020中考数学二模试卷 含解析

2020中考数学二模试卷  含解析

2020中考数学二模试卷含解析一.选择题(共10小题)1.4的算术平方根是()A.±2 B.2 C.﹣2 D.±2.下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6C.a3÷a=a2D.(ab)2=ab2 3.下面是几何体中,主视图是矩形的()A.B.C.D.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6 D.86.二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)7.方程=的解为()A.x=0 B.x=20 C.x=70 D.x=508.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB 的长为()A.B.2C.5 D.109.反比例函数y=的图象过点(2,1),则k值为()A.2 B.3 C.﹣2 D.﹣110.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S (km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二.填空题(共10小题)11.将550000用科学记数法表示是.12.函数y=中x的取值范围是.13.分解因式:a3﹣9a=.14.不等式组的解集为.15.计算﹣=.16.抛物线y=7x2+3向下平移2个单位得到y=7x2+c,则c的值为.17.在一个不透明的口袋中,装有2个黄球,3个红球和5个白球,它们除颜色外其他均相同,从袋中任意摸出一个球,是白球的概率是.18.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.19.正方形ABCD的边长为3,点E为射线AD上一点连接CE,设直线CE与BD交于点F,若AD=2DE,则BF的长为.20.如图,四边形ABCD中,∠BAD=90°,∠ABC+2∠BCD=180°,分别连接AC、BD,且∠BCD=2∠ADB,若AD=3,BC=5,则AC的长度为.三.解答题(共7小题)21.先化简,再求值:(﹣)÷,其中x=2+tan60°,y=4sin30°.22.如图是形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,请在图a、b中分别画出符合要求的图形,所画图形各顶点必须在格点上;(1)画一个底边长为4,面积为8的等腰三角形;(2)画一个面积为10的等腰直角三角形.23.哈十七中学为了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息,回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若九年级共有500名学生,请你估计九年级学生中体能测试结果为D等级的学生有多少名?24.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.25.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?26.已知锐角△ABC内接于圆O,D为弧AC上一点,分别连接AD、BD、CD,且∠ACB=90°﹣∠BAD.(1)如图1,求证:AB=AD;(2)如图2,在CD延长线上取点E,连接AE,使AE=AD,过E作EF垂直BD的延长线于点F,过C作CG⊥EC交EF延长线于点G,设圆O半径为r,求证:EG=2r;(3)如图3,在(2)的条件下,连接DG,若AC=BC,DE=4CD,当△ACD的面积为10时,求DG的长度.27.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2 (1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=(BQ﹣OP),求此时直线PQ的解析式.参考答案与试题解析一.选择题(共10小题)1.4的算术平方根是()A.±2 B.2 C.﹣2 D.±【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选:B.2.下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6C.a3÷a=a2D.(ab)2=ab2【分析】根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.【解答】解:A、错误、7a+a=8a.B、错误.a2•a3=a5.C、正确.a3÷a=a2.D、错误.(ab)2=a2b2故选:C.3.下面是几何体中,主视图是矩形的()A.B.C.D.【分析】先得到相应的几何体,找到从正面看所得到的图形即可.【解答】解:A、圆柱的主视图为矩形,符合题意;B、球体的主视图为圆,不合题意;C、圆锥的主视图为三角形,不合题意;D、圆台的主视图为等腰梯形,不合题意.故选:A.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.5.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6 D.8【分析】根据垂径定理,可得答案.【解答】解:连接OC,由题意,得OE=OA﹣AE=4﹣1=3,CE=ED==,CD=2CE=2,故选:B.6.二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)【分析】根据a>0确定出二次函数开口向上,再将函数解析式整理成顶点式形式,然后写出顶点坐标.【解答】解:∵二次函数y=x2+2x﹣3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4).故选:A.7.方程=的解为()A.x=0 B.x=20 C.x=70 D.x=50【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:700x﹣14000=500x,移项合并得:200x=14000,解得:x=70,经检验x=70是分式方程的解,故选:C.8.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB 的长为()A.B.2C.5 D.10【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.9.反比例函数y=的图象过点(2,1),则k值为()A.2 B.3 C.﹣2 D.﹣1【分析】把点的坐标代入函数表达式计算即可得解.【解答】解:∵反比例函数y=的图象过点(2,1),∴2k﹣2=2×1,解得k=2,故选:A.10.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S (km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮【分析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【解答】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.二.填空题(共10小题)11.将550000用科学记数法表示是 5.5×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将550000用科学记数法表示是5.5×105.故答案为:5.5×105.12.函数y=中x的取值范围是x≠0 .【分析】根据分母不能为零,列出不等式x≠0可得答案.【解答】解:由题意,得x≠0.故答案为:x≠0.13.分解因式:a3﹣9a=a(a+3)(a﹣3).【分析】本题应先提出公因式a,再运用平方差公式分解.【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).14.不等式组的解集为x>3 .【分析】分别解不等式,进而得出不等式组的解集.【解答】解:,解①得:x>2,解②得:x>3,故不等式组的解集为:x>3.故答案为:x>3.15.计算﹣=﹣2.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=2﹣4=﹣2.故答案为:﹣2.16.抛物线y=7x2+3向下平移2个单位得到y=7x2+c,则c的值为 1 .【分析】抛物线y=7x2+3向下平移2个单位,则它的顶点的纵坐标为1,从而得到平移后的抛物线解析式.【解答】解:抛物线y=7x2+3向下平移2个单位,得到的抛物线解析式为抛物线y=7x2+1.当x=0时,y=1,故答案为1.17.在一个不透明的口袋中,装有2个黄球,3个红球和5个白球,它们除颜色外其他均相同,从袋中任意摸出一个球,是白球的概率是.【分析】由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.【解答】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,故答案为18.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是6πcm2.【分析】先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.19.正方形ABCD的边长为3,点E为射线AD上一点连接CE,设直线CE与BD交于点F,若AD=2DE,则BF的长为6或2.【分析】分两种情况:如图1,当DE在AD的延长线上时,②如图2,当DE在线段AD 上时,根据正方形的性质和相似三角形的判定和性质定理即可得到结论.【解答】解:①如图1,当DE在AD的延长线上时,∵四边形ABCD是正方形,∴AB=AD=BC=3,∴BD=AB=3,∵AD=2DE,∴DE=BC,∵DE∥BC,∴△FED∽△FCB,∴==,∴BF=2DF=2BD=6;②如图2,当DE在线段AD上时,∵四边形ABCD是正方形,∴AB=AD=BC=3,∴BD=AB=3,∵AD=2DE,∴DE=BC,∵DE∥BC,∴△FED∽△FCB,∴==,∴BF=2DF=BD=2,综上所述,BF的长为6或2,故答案为:6或2.20.如图,四边形ABCD中,∠BAD=90°,∠ABC+2∠BCD=180°,分别连接AC、BD,且∠BCD=2∠ADB,若AD=3,BC=5,则AC的长度为.【分析】延长CD,交BA的延长线于点E,分别过B,A作DE的垂线,垂足分别为F,H,推出BC=BE=5,设∠ADB=α,则∠BCD=∠E=2α,推出△EDB为等腰三角形,则DE =BE=5,△ADE为“345”直角三角形,通过∠E的正弦函数可分别把AH,BF的长求出来,再利用勾股定理把EH,EF的长度求出来,推出AH的长,在Rt△ACH中利用勾股定理即可求出AC的长.【解答】解:如图,延长CD,交BA的延长线于点E,分别过B,A作DE的垂线,垂足分别为F,H,∵∠ABC+2∠BCD=180°,∠ABC+∠BCD+∠E=180°,∴∠BCD=∠E,∴BC=BE=5,设∠ADB=α,则∠BCD=∠E=2α,在Rt△BAD中,∠ABD=90°﹣α,∴在△BDE中,∠BDE=180°﹣∠ABD﹣∠E=180°﹣(90°﹣α)﹣2α=90°﹣α,∴∠ABD=∠BDE,∴EB=ED=5,∴在Rt△EDA中,AE===4,∵sin∠E====,∴AH=,BF=3,在Rt△BEF中,EF===4,∴CF=EF=4,EC=8,在Rt△EHA中,EH===,∴CH=EC﹣EH=,在Rt△ACH中,AC===,故答案为:.三.解答题(共7小题)21.先化简,再求值:(﹣)÷,其中x=2+tan60°,y=4sin30°.【分析】根据分式的混合运算法则把分式化简,根据特殊角的三角函数值把x、y化简,代入化简后的分式,根据二次根式的混合运算法则计算即可.【解答】解:原式=[﹣]×==,当x=2+tan60°=2+,y=4sin30°=2时,原式==+1.22.如图是形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,请在图a、b中分别画出符合要求的图形,所画图形各顶点必须在格点上;(1)画一个底边长为4,面积为8的等腰三角形;(2)画一个面积为10的等腰直角三角形.【分析】(1)直接利用等腰三角形的性质得出一个符合题意的答案;(2)直接利用等腰直角三角形的性质得出一个符合题意的答案.【解答】解:(1)如图a所示:△ABC即为所求;(2)如图b所示:△ABC即为所求.23.哈十七中学为了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息,回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若九年级共有500名学生,请你估计九年级学生中体能测试结果为D等级的学生有多少名?【分析】(1)根据A等级的人数和所占的百分比可以求得本次抽取的学生数;(2)根据(1)中的结果可以求得C等级的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得九年级学生中体能测试结果为D等级的学生有多少名.【解答】解:(1)10÷20%=50(名),即本次抽样调查共抽取了50名学生;(2)C等级的人数为:50﹣10﹣20﹣4=16,补全的条形统计图如右图所示;(3)500×=40(名),答:九年级学生中体能测试结果为D等级的学生有40名.24.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.【分析】(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO ≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,即可列方程求得.【解答】解:(1)∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形;(2)∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,答:MD长为5.25.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【分析】(1)首先设A种型号计算器的销售价格是x元,A种型号计算器的销售价格是y元,根据题意可等量关系:①5台A型号和1台B型号计算器,可获利润76元;②销售6台A型号和3台B型号计算器,可获利润120元,根据等量关系列出方程组,再解即可;(2)根据题意表示出所用成本,进而得出不等式求出即可.【解答】解:(1)设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y元,由题意得:,解得:;答:A种型号计算器的销售价格是42元,B种型号计算器的销售价格是56元;(2)设购进A型计算器a台,则购进B型计算器:(70﹣a)台,则30a+40(70﹣a)≤2500,解得:a≥30,答:最少需要购进A型号的计算器30台.26.已知锐角△ABC内接于圆O,D为弧AC上一点,分别连接AD、BD、CD,且∠ACB=90°﹣∠BAD.(1)如图1,求证:AB=AD;(2)如图2,在CD延长线上取点E,连接AE,使AE=AD,过E作EF垂直BD的延长线于点F,过C作CG⊥EC交EF延长线于点G,设圆O半径为r,求证:EG=2r;(3)如图3,在(2)的条件下,连接DG,若AC=BC,DE=4CD,当△ACD的面积为10时,求DG的长度.【分析】(1)欲证明AB=AD,只要证明∠ABD=∠ADB即可.(2)如图2中,连接BE交AC于L,连接AO,延长AO交BD于J,交BE于T,连接CO,延长CO交⊙O于K,连接BK.想办法证明△CBK≌△ECG(AAS)可得结论.(3)如图3中,在图2的基础上作AH⊥DE于H.假设CD=k,DE=4k,则CE=CB=CA =5k,利用勾股定理求出AH,再利用三角形的面积公式求出K的值,再求出EG,CG即可解决问题.【解答】(1)证明:如图1中,∵∠∠ADB=∠ACB,∠ACB=90°﹣∠BAD,∴∠ADB=90°﹣BAD,∵∠ABD=180°﹣∠BAD﹣(90°﹣∠BAD)=90°﹣∠BAD,∴∠ABD=∠ADB,∴AB=AD.(2)证明:如图2中,连接BE交AC于L,连接AO,延长AO交BD于J,交BE于T,连接CO,延长CO交⊙O于K,连接BK.∵AE=AD,∴∠ADE=∠AED,∵∠ADE+∠ADC=180°,∠ADC+∠ABC=180°,∴∠ADE=∠ABC=∠AED,∵AB=AD,∴=,∴∠ACB=∠ACE,AJ⊥BD,∵AC=AC,∴△ACB≌△ACE(AAS),∴CB=CE,∵AB=AE,∴AC⊥BE,∴∠ALB=∠AJB=90°,∵∠ATL=∠BTJ,∴∠TAL=∠TBJ,∵AB=AD=AE,∴∠BED=∠BAD=∠BAJ,∵∠EDF=∠DBE+∠DEB,∴∠EDF=∠BAC,∵∠K=∠BAC,∴∠K=∠EDF,∵CG⊥CE.EG⊥BF,∴∠DFE=∠GCG=90°,∵∠DEF+∠EDF=90°,∠DEF+∠G=90°,∴∠G=∠EDF=∠K,∵∠CBK=∠GCE=90°,∴△CBK≌△ECG(AAS),∴EG=CK=2r,(3)解:如图3中,在图2的基础上作AH⊥DE于H.∵DE=4CD,∴可以假设CD=k,DE=4k,则CE=CB=CA=5k,∵AE=AD,AH⊥DE,∴DH=EH=2k,CH=CD+DH=3k,∴AH===4k,AD===2k,∵S△ACD=•CD•AH=•k•4k=10,∴k=(负根已经舍弃),∴CD=,AC=BC=EC=5,AD=AB=10,设CK交AB于J,OA=OC=r,则BJ=AJ=5,CJ===10,在Rt△AOJ中,则有r2=52+(10﹣r)2,解得r=,∴EG=2r=,∴CG===,∴DG===.27.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2 (1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=(BQ﹣OP),求此时直线PQ的解析式.【分析】(1)求出点B的坐标即可解决问题.(2)分两种情形①当0<t<时,②当t>时,根据S=OQ•P y,分别求解即可.(3)根据已知条件构建方程求出t,推出点P,Q的坐标即可解决问题.【解答】解:(1)对于直线y=kx+k,令y=0,可得x=﹣1,∴A(﹣1,0),∴OA=1,∵AB=2,∴OB==,∴k=.(2)如图,∵tan∠BAO==,∴∠BAO=60°,∵PQ⊥AB,∴∠APQ=90°,∴∠AQP=30°,∴AQ=2AP=2t,当0<t<时,S=•OQ•P y=(1﹣2t)•t=﹣t2+t.当t>时,S=OQ•P y=(2t﹣1)•t=t2﹣t.(3)∵OQ+AB=(BQ﹣OP),∴2t﹣1+2=(﹣),∴2t+1=•,∴4t2+4t+1=7t2﹣7t+7,∴3t2﹣11t+6=0,解得t=3或(舍弃),∴P(,),Q(5,0),设直线PQ的解析式为y=kx+b,则有,解得,∴直线PQ的解析式为y=﹣x+.。

2020年中考数学二模试卷(含解析)

2020年中考数学二模试卷(含解析)

2020年中考数学二模试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有一个.1.(2分)数轴上的点A表示的数是a,当点A在数轴上向右平移了6个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a是()A.6B.﹣6C.3D.﹣32.(2分)如图,在△ABC中,BC边上的高是()A.AF B.BH C.CD D.EC3.(2分)如图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.(2分)任意掷一枚骰子,下列情况出现的可能性比较大的是()A.面朝上的点数是6B.面朝上的点数是偶数C.面朝上的点数大于2D.面朝上的点数小于25.(2分)下列是一组log o设计的图片(不考虑颜色),其中不是中心对称图形的是()A.B.C.D.6.(2分)一个正方形的面积是12,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间7.(2分)某商场一名业务员12个月的销售额(单位:万元)如下表:月份(月)123456789101112销售额(万元) 6.29.89.87.87.2 6.49.8879.8107.5则这组数据的众数和中位数分别是()A.10,8B.9.8,9.8C.9.8,7.9D.9.8,8.18.(2分)甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t (单位:秒)之间的函数图象分别为线段OA和折线OBCD.则下列说法正确的是()A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时,甲、乙两人相距最远D.乙在跑前300米时,速度最慢二、填空题(本题共16分,每小题2分)9.(2分)分解因式:x3﹣2x2+x=.10.(2分)若分式的值为0,则x=.11.(2分)已知,一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:.12.(2分)某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x人,依题意,可列方程为.13.(2分)若2x2+3y2﹣5=1,则代数式6x2+9y2﹣5的值为.14.(2分)如图,在平面直角坐标系xOy中,点A、B的坐标分别为(﹣4,1)、(﹣1,3),在经过两次变化(平移、轴对称、旋转)得到对应点A''、B''的坐标分别为(1,0)、(3,﹣3),则由线段AB得到线段A'B'的过程是:,由线段A'B'得到线段A''B''的过程是:.15.(2分)如图,⊙O的半径为2,切线AB的长为,点P是⊙O上的动点,则AP的长的取值范围是.16.(2分)在平面直角坐标系xOy中,点A(﹣2,m)绕坐标原点O顺时针旋转90°后,恰好落在图中阴影区域(包括边界)内,则m的取值范围是.三、解答题(本题共68分,第17-20题,每小题8分;第21-24题,每小题8分).解答应写出文字说明,演算步骤或证明过程.17.(8分)计算:()﹣1+﹣tan60°﹣|﹣2|.18.(8分)解不等式﹣≥1,并把它的解集在数轴上表示出来.19.(8分)已知关于x的一元二次方程x2+2x+m=0.(1)当m为何非负整数时,方程有两个不相等的实数根;(2)在(1)的条件下,求方程的根.20.(8分)在平面直角坐标系xOy中,直线l1:y=﹣2x+b与x轴,y轴分别交于点,B,与反比例函数图象的一个交点为M(a,3).(1)求反比例函数的表达式;(2)设直线l2:y=﹣2x+m与x轴,y轴分别交于点C,D,且S△OCD=3S△OAB,直接写出m的值.21.(9分)如图,在△ABC中,∠C=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,与边BC交于点F,过点E作EH⊥AB于点H,连接BE.(1)求证:EH=EC;(2)若BC=4,sin A=,求AD的长.22.(9分)在平面直角坐标系xOy中,抛物线y=ax2+4x+c(a≠0)经过点A(3,﹣4)和B(0,2).(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿直线x=3翻折,得到图象N.若过点C(9,4)的直线y=kx+b与图象M、图象N都相交,且只有两个交点,求b的取值范围.23.(9分)在△ABC中,∠ABC=90°,AB=BC=4,点M是线段BC的中点,点N在射线MB上,连接AN,平移△ABN,使点N移动到点M,得到△DEM(点D与点A对应,点E与点B对应),DM交AC于点P.(1)若点N是线段MB的中点,如图1.①依题意补全图1;②求DP的长;(2)若点N在线段MB的延长线上,射线DM与射线AB交于点Q,若MQ=DP,求CE的长.24.(9分)对某一个函数给出如下定义:若存在实数k,对于函数图象上横坐标之差为1的任意两点(a,b1),(a+1,b2),b2﹣b1≥k都成立,则称这个函数是限减函数,在所有满足条件的k中,其最大值称为这个函数的限减系数.例如,函数y=﹣x+2,当x取值a和a+1时,函数值分别为b1=﹣a+2,b2=﹣a+1,故b2﹣b1=﹣1≥k,因此函数y =﹣x+2是限减函数,它的限减系数为﹣1.(1)写出函数y=2x﹣1的限减系数;(2)m>0,已知(﹣1≤x≤m,x≠0)是限减函数,且限减系数k=4,求m的取值范围.(3)已知函数y=﹣x2的图象上一点P,过点P作直线l垂直于y轴,将函数y=﹣x2的图象在点P右侧的部分关于直线l翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数k≥﹣1,直接写出P点横坐标n的取值范围.参考答案一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有一个.1.【解答】解:由题意可得:B点对应的数是:a+6,∵点A和点B表示的数恰好互为相反数,∴a+a+6=0,解得:a=﹣3.故选:D.2.【解答】解:根据高的定义,AF为△ABC中BC边上的高.故选:A.3.【解答】解:观察图形可知,这个几何体是四棱锥.故选:B.4.【解答】解:∵抛掷一枚骰子共有1、2、3、4、5、6这6种等可能结果,∴A、面朝上的点数是6的概率为;B、面朝上的点数是偶数的概率为=;C、面朝上的点数大于2的概率为=;D、面朝上的点数小于2的概率为;故选:C.5.【解答】解:A、不是中心对称图形,故此选项正确;B、是中心对称图形,故此选项错误;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:A.6.【解答】解:设正方形的边长等于a,∵正方形的面积是12,∴a==2,∵9<12<16,∴3<<4,即3<a<4.故选:B.7.【解答】解:从小到大排列此数据为:6.2、6.4、7、7.2、7.5、7.8、8、9.8、9.8、9.8、9.8、10,数据9.8出现了4次最多为众数,处在第6、7位的是7.8、8,中位数为(7.8+8)÷2=7.9.故选:C.8.【解答】解:A、两人从起跑线同时出发,甲先到达终点,错误;B、跑步过程中,两人相遇两次,错误;C、起跑后160秒时,甲、乙两人相距最远,正确;D、乙在跑后200米时,速度最慢,错误;故选:C.二、填空题(本题共16分,每小题2分)9.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.10.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,x+2≠0,当x=﹣2时,x+2=0.∴当x=2时,分式的值是0.故答案为:2.11.【解答】解:∵y随x的增大而减小∴k<0∴可选取﹣1,那么一次函数的解析式可表示为:y=﹣x+b把点(0,2)代入得:b=2∴要求的函数解析式为:y=﹣x+2.12.【解答】解:设到植物园的人数为x人,则到野生动物园的人数为(2x﹣30)人,根据题意得:x+(2x﹣30)=600.故答案为:x+(2x﹣30)=600.13.【解答】解:∵2x2+3y2﹣5=1,∴2x2+3y2=6,把2x2+3y2=6代入6x2+9y2﹣5=18﹣5=13,故答案为:1314.【解答】解:如图所示,点A、B的坐标分别为(﹣4,1)、(﹣1,3),点A''、B''的坐标分别为(1,0)、(3,﹣3),∴由线段AB得到线段A'B'的过程是向右平移4个单位长度;连接A'A“,B'B“,作这两条线段的垂直平分线,交于点O,∠A'OA“=90°,则由线段A'B'得到线段A''B''的过程是:绕原点O顺时针旋转90°;故答案为:向右平移4个单位长度;绕原点顺时针旋转90°.15.【解答】解:连接OB,∵AB是⊙O的切线,∴∠OBA=90°,∴OA==4,当点P在线段AO上时,AP最小为2,当点P在线段AO的延长线上时,AP最大为6,∴AP的长的取值范围是2≤AP≤6,故答案为:2≤AP≤6.16.【解答】解:如图,将阴影区域绕着点O逆时针旋转90°,与直线x=﹣2交于C,D 两点,则点A(﹣2,m)在线段CD上,又∵点D的纵坐标为2.5,点C的纵坐标为3,∴m的取值范围是2.5≤m≤3,故答案为:2.5≤m≤3.三、解答题(本题共68分,第17-20题,每小题8分;第21-24题,每小题8分).解答应写出文字说明,演算步骤或证明过程.17.【解答】解:原式=2+﹣+﹣2=.18.【解答】解:去分母,得3(x+2)﹣(4x﹣1)≥6,去括号,得3x+6﹣4x+1≥6,移项,合并同类项:﹣x≥﹣1,系数化为1:x≤1,把解集表示在数轴上:19.【解答】解:(1)∵方程有两个不相等的实数根,∴△=4﹣4m>0,解得m<1又m为非负整数,∴m=0;(2)当m=0时,方程变形为x2+2x=0,解得x1=0,x2=﹣2.20.【解答】解:(1)∵一次函数y=﹣2x+b的图象过点,∴.∴解得,b=1.∴一次函数的表达式为y=﹣2x+1.∵一次函数的图象与反比例函数图象交于点M(a,3),∴3=﹣2a+1,解得,a=﹣1.由反比例函数图象过点M(﹣1,3),得k=﹣1×3=﹣3,∴反比例函数的表达式为.(2)由一次函数的表达式为y=﹣2x+1,可得A(0,1),即OA=1,∵直线l2:y=﹣2x+m与直线l1:y=﹣2x+1互相平行,∴△AOB∽△COD,又∵S△OCD=3S△OAB,∴==,即OD=,又∵D(0,m),∴|m|=,∴m的值为.故答案为:.21.【解答】(1)证明:连接OE,∵⊙O与边AC相切,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠OEB=∠CBE∵OB=OE,∴∠OEB=∠OBE,∴∠OBE=∠CBE,又∵EH⊥AB,∠C=90°,∴EH=EC;(2)解:在Rt△ABC中,BC=4,,∴AB=6,∵OE∥BC,∴,即,解得,,∴.22.【解答】解:(1)∵抛物线y=ax2+4x+c(a≠0)经过点A(3,﹣4)和B(0,2),可得:解得:∴抛物线的表达式为y=﹣2x2+4x+2.∵y=﹣2x2+4x+2=﹣2(x﹣1)2+4,∴顶点坐标为(1,4);(2)设点B(0,2)关于x=3的对称点为B’,则点B’(6,2).若直线y=kx+b经过点C(9,4)和B'(6,2),可得b=﹣2.若直线y=kx+b经过点C(9,4)和A(3,﹣4),可得b=﹣8.直线y=kx+b平行x轴时,b=4.综上,﹣8<b<﹣2或b=4.23.【解答】解:(1)①如图1,补全图形②连接AD,如图1.在Rt△ABN中,∵∠B=90°,AB=4,BN=1,∴AN=∵线段AN平移得到线段DM,∴DM=AN=,AD=NM=1,AD∥MC,∴△ADP∽△CMP.∴∴DP=(2)连接NQ,由平移知:AN∥DM,且AN=DM.∵MQ=DP,∴PQ=DM.∴AN∥PQ,且AN=PQ.∴四边形ANQP是平行四边形.∴NQ∥AP.∴∠BQN=∠BAC=45°.又∵∠NBQ=∠ABC=90°,∴BN=BQ.∵AN∥MQ,∴.又∵M是BC的中点,且AB=BC=4,∴.∴(负数舍去).∴.∴24.【解答】解:(1)当x取值a和a+1时,函数值分别为b1=2a﹣1,b2=2a+1,故b2﹣b1=2≥k,因此函数y=2x﹣1是限减函数,它的限减系数为2.(2)若m>1,则m﹣1>0,(m﹣1,)和(m,)是函数图象上两点,,与函数的限减系数k=4不符,且m=1不符合题意,∴m<1.若,(t﹣1,)和(t,)是函数图象上横坐标之差为1的任意两点,则0<t≤m,,∵﹣t(t﹣1)>0,且,∴,与函数的限减系数k=4不符.∴.若≤m<1,(t﹣1,)和(t,)是函数图象上横坐标之差为1的任意两点,则0<t≤m,,∵﹣t(t﹣1)>0,且,∴,当时,等号成立,故函数的限减系数k=4.∴m的取值范围是≤m<1.(3)设P(n,﹣n2),则翻折后的抛物线的解析式为y=x2﹣2n2,对于抛物线y=﹣x2,(m﹣1,﹣(m﹣1)2),(m,﹣m2)是抛物线图象上两点,由题意:﹣m2+m2﹣2m+1≥﹣1,解得m≤1,对于抛物线y=x2﹣2n2,(m,m2﹣2n2),(m+1,(m+1)2﹣2n2)是抛物线图象上两点,由题意:(m+1)2﹣2n2﹣(m2﹣2n2)≥﹣1,解得m≥﹣1,∴满足条件的P点横坐标n的取值范围:﹣1≤n≤1.。

2020年中考二模测试《数学试题》含答案解析

2020年中考二模测试《数学试题》含答案解析

中 考 模 拟 测 试 数 学 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列实数中,无理数为( ). A. 0B.23C.3 D. 2-2.下列立体图形中,侧面展开图是扇形的是()A. B.C.D.3.如图所示,AB ∥CD,BC 平分∠ABD,若∠C=40°,则∠D 的度数为 ( )A. 90°B. 100°C. 110°D. 120°4.下列运算正确的是( ) A. 2333a a a += B. ()3252?2a aa-=C. 623422a a a ÷=D. ()22238a a a --=5.直线y kx =过点(,)A m n ,(34)B m n -+,,则k 的值是( ) A.43B. 43-C.34D. 34-6.如图,在Rt ABC V 中,90ACB ∠=︒,点D 是AC 上一点,连接BD ,P 点是BD 的中点,若D A BA ∠=∠,8AD =,则CP 的长为( ).A. 8B. 4C. 16D. 67.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图,在菱形ABCD 中,对角线AC 与BD 相交于点,8,6,O AC BD OE BC ==⊥,垂足为点E ,则OE =( )A.245B. 5C.125D. 49.如图,O e 是ABC V 的外接圆,AD 是O e 的直径,若O e 的半径是4,1sin 4B =,则线段AC 的长是( ).A. 2B. 4C.32D. 610.若二次函数y =(k+1)x 2﹣2x+k 的最高点在x 轴上,则k 的值为( ) A. 1B. 2C. ﹣1D. ﹣2二、填空题(共4小题,每小题3分,计12分)11.14-的绝对值是__________.12.如图,平面上两个正方形与正五边形都有一条公共边,则∠α等于 °.13.已知点()1,A x a -,()2,B x a 在反比例函数()0ky k x=≠图象上,则12x x +=______. 14.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.三、解答题(共11小题,计78分.解答应写出过程)15.计算:1112(6)|22|4-⎛⎫⨯---+- ⎪⎝⎭.16.解方程:24142xx x-=-- 17.如图,AC 是矩形ABCD 的一条对角线.利用尺规在AD 上作一点E ,使得AE 与点E 到点C 的距离相等.(保留作图痕迹,不要求写作法)18.如图,点E 、F 在AB 上,且AF BE =,AC BD =,AC BD P .求证:C D ∠=∠.19.中国飞人苏炳添以6秒47获得2019年国际田联伯明翰室内赛男子60米冠军,苏炳添夺冠掀起跑步热潮某校为了解该校八年级男生短跑水平,全校八年级男生中随机抽取了部分男生,对他们的短跑水平进行测试,并将测试成绩(满分10分)绘制成如下不完整的统计图表: 组别成绩/分人数/人A 5 36B 6 32C 7 15D 8 8E 9 5F 10 m请你根据统计图表中的信息,解答下列问题:(1)填空:m=_____,n=_____;(2)所抽取的八年级男生短跑成绩的众数是_____分,扇形统计图中E组的扇形圆心角的度数为____°;(3)求所抽取的八年级男生短跑的平均成绩.20.汉江是长江最长的支流,在历史上占居重要地位,陕西省境内的汉江为汉江上游段.李琳利用热气球探测器测量汉江某段河宽,如图,探测器在A处观测到正前方汉江两岸岸边的B、C两点,并测得B、C两点的俯角分别为45°,30°已知A处离地面的高度为80m,河平面BC与地面在同一水平面上,请你求出汉江该段河宽BC.(结果保留根号)21.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,两种型号的机器人的工作效率和价格如表:型号甲乙每台每小时分拣快递件数(件)1000800每台价格(万元) 53该公司计划购买这两种型号的机器人共10台,并且使这10台机器人每小时分拣快递件数总和不少于8500件(1)设购买甲种型号的机器人x 台,购买这10台机器人所花的费用为y 万元,求y 与x 之间的关系式; (2)购买几台甲种型号的机器人,能使购买这10台机器人所花总费用最少?最少费用是多少?22.赵黎将中国的清华大学、北京大学及英国的剑桥大学、牛津大学的图片分别贴在4张完全相同的不透明的硬纸板上,制成名校卡片,如图,赵黎将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,洗匀,再随机抽取一张卡片.(1)赵黎第一次抽取的卡片上的图片是国内大学的概率是多少?(2)请你用列表法或画树状图法,帮助赵黎求出两次抽取的卡片上的图片一个是国内大学,一个是国外大学的概率.A .B .C .D .23.如图,已知MN 是O e 的直径,直线PQ 与O e 相切于P 点,NP 平分MNQ ∠. (1)求证:NQ PQ ⊥;(2)若O e 的半径3R =,33NP =,求NQ 的长.24.如图,已知拋物线21:4C y x =-+,将抛物线1C 沿x 轴翻折,得到拋物线2C .(1)求出抛物线2C 的函数表达式;(2)现将抛物线1C 向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线2C 向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.25.(1)如图1,A 、B 是O e 上的两个点,点P 在O e 上,且APB △是直角三角形,O e 的半径为1. ①请在图1中画出点P 的位置; ②当1AB =时,APB ∠= ︒;(2)如图2,O e 的半径为5,A 、B 为O e 外固定两点(O 、A 、B 三点不在同一直线上),且9OA =,P 为O e 上的一个动点(点P 不在直线AB 上),以PA 和AB 为邻边作平行四边形PABC ,求BC 最小值并确定此时点P 的位置; (3)如图3,A 、B 是O e 上的两个点,过A 点作射线AM AB ⊥,AM 交O e 于点C ,若3AB =,4AC =,点D 是平面内的一个动点,且2CD =,E 为BD 的中点,在点D 的运动过程中,求线段AE 长度的最大值与最小值.答案与解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列实数中,无理数为().A. 0B. 23C. 3D. 2-【答案】C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可作出判断.【详解】A、0是有理数,此选项错误;B、23是有理数,此选项错误;C、3是无理数,此选项正确;D、2-是有理数,此选项错误;故选:C.【点睛】此题考查了无理数的定义,关键要掌握无理数的三种形式,要求我们熟练记忆.2.下列立体图形中,侧面展开图是扇形的是()A. B. C.D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B .3.如图所示,AB ∥CD,BC 平分∠ABD,若∠C=40°,则∠D 的度数为 ( )A. 90°B. 100°C. 110°D. 120°【答案】B 【解析】∵AB//CD ,∠C=40°, ∴∠ABC=∠C=40°, ∵BC 平分∠ABD , ∴∠DBC=∠ABC=40°,∴∠D=180°-∠C-∠DBC=180°-40°-40°=100°. 故选B.4.下列运算正确的是( ) A. 2333a a a += B. ()3252?2a aa-=C. 623422a a a ÷=D. ()22238a a a --=【答案】D 【解析】【详解】解:A 、不是同类项,无法进行加法计算,计算错误; B 、原式=52a -,计算错误;C 、不是同类项,无法进行加法计算,计算错误;D 、原式=22298a a a -=,计算正确. 故选D .5.直线y kx =过点(,)A m n ,(34)B m n -+,,则k值是( )A.43B. 43-C.34D. 34-【答案】B 【解析】 【分析】分别将点()A m n ,,(34)B m n -+,代入即可计算解答. 【详解】解:分别将点()A m n ,,(34)B m n -+,代入y kx =,得:(3)4mk n m k n =⎧⎨-=+⎩,解得43k =-,故答案为:B .【点睛】本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键. 6.如图,在Rt ABC V 中,90ACB ∠=︒,点D 是AC 上一点,连接BD ,P 点是BD 的中点,若D A BA ∠=∠,8AD =,则CP 的长为( ).A. 8B. 4C. 16D. 6【答案】B 【解析】 【分析】由题意推出BD =AD ,然后在Rt △BCD 中,CP =12BD ,即可推出CP 的长度. 【详解】∵D A BA ∠=∠, ∴BD =AD=8,∵P 点是BD 的中点,90ACB ∠=︒ ∴CP =12BD =4, 故选:B .【点睛】本题主要考查等腰三角形的判定和性质、直角三角形斜边上的中线的性质,关键在于根据已知推出BD =AD ,求出BD 的长度.7.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】C 【解析】 【分析】y 随x 的增大而减小,可得一次函数y=kx+b 单调递减,k <0,又满足kb<0,可得b>0,由此即可得出答案. 【详解】∵y 随x 的增大而减小,∴一次函数y=kx+b 单调递减, ∴k <0, ∵kb<0, ∴b>0,∴直线经过第二、一、四象限,不经过第三象限, 故选C .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k 、b 是常数)的图象和性质是解题的关键.8.如图,在菱形ABCD 中,对角线AC 与BD 相交于点,8,6,O AC BD OE BC ==⊥,垂足为点E ,则OE =( )A.245B. 5C.125D. 4【答案】C 【解析】 【分析】直接利用菱形的性质得出BO =3,CO =4,AC ⊥BD ,进而利用勾股定理以及直角三角形面积求法得出答案. 【详解】解:∵在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,BD =6,∴BO =3,CO =4,AC ⊥BD , ∴BC =22345+=, ∵OE ⊥BC ,∴12EO×BC =12BO×CO , ∴EO =125BO CO BC =g . 故选:C .【点睛】此题主要考查了菱形的性质以及勾股定理,正确掌握菱形的性质是解题关键. 9.如图,O e 是ABC V 的外接圆,AD 是O e 的直径,若O e 的半径是4,1sin 4B =,则线段AC 的长是( ).A. 2B. 4C.32D. 6【答案】A 【解析】 【分析】连结CD 如图,根据圆周角定理得到∠ACD =90︒,∠D =∠B ,则sinD =sinB =14,然后在Rt △ACD 中利用∠D 的正弦可计算出AC 的长. 【详解】连结CD ,如图, ∵AD 是⊙O 的直径, ∴∠ACD =90︒, ∵∠D =∠B , ∴sinD =sinB =14, 在Rt △ACD 中,∵sinD =AC AD =14, ∴AC =14AD =14×8=2. 故选A .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.10.若二次函数y =(k+1)x 2﹣2x+k 的最高点在x 轴上,则k 的值为( ) A. 1 B. 2C. ﹣1D. ﹣2【答案】D 【解析】 【分析】直接利用二次函数的性质得出△=b 2﹣4ac =0,进而得出答案.【详解】∵二次函数y =(k+1)x 2﹣2x+k 的最高点在x 轴上, ∴△=b 2﹣4ac =0,即8﹣4k (k+1)=0, 解得:k 1=1,k 2=﹣2,当k =1时,k+1>0,此时图象有最低点,不合题意舍去, 则k 的值为:﹣2. 故选D .【点睛】此题主要考查了二次函数的最值,正确掌握二次函数的性质是解题关键.对于二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0),当a >0时,抛物线开口向上,此时函数有最小值;当a <0时,抛物线开口向下,此时函数有最大值.二、填空题(共4小题,每小题3分,计12分)11.14-的绝对值是__________. 【答案】14【解析】 【分析】根据绝对值的定义计算即可.【详解】解:1144-= 故答案为:14. 【点睛】此题考查的是求一个数的绝对值,掌握绝对值的定义是解决此题的关键. 12.如图,平面上两个正方形与正五边形都有一条公共边,则∠α等于 °.【答案】72 【解析】 【分析】先分别求出正五边形的一个内角为108°,正方形的每个内角是90°,再根据圆周角是360度求解即可. 【详解】正五边形的一个内角为108°,正方形的每个内角是90°, 所以∠α=360°-108°-90°-90°=72°, 故答案为72.【点睛】本题考查了多边形的内角和,熟练掌握多边形内角和公式:(n-2)•180°是解题的关键. 13.已知点()1,A x a -,()2,B x a 在反比例函数()0ky k x=≠图象上,则12x x +=______. 【答案】0 【解析】 【分析】将点A ,点B 坐标代入解析式可得﹣a ×x 1=a ×x 2=k ,可得x 1=﹣x 2,即可求得到结论. 【详解】∵点A (x 1,﹣a ),B (x 2,a )在反比例函数y kx=(k ≠0)图象上,∴﹣a ×x 1=a ×x 2=k ,∴x 1=﹣x 2,∴x 1+x 2=0. 故答案为0.【点睛】本题考查了反比例函数图象上点的坐标特征,掌握图象上点的坐标满足图象解析式是本题的关键. 14.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.【答案】4:9 【解析】 【分析】设DP =DN =m ,则PN 2m ,PC =2m ,AD =CD =3m ,再求出FG=CF=12BC=32m ,分别求出两个阴影部分的面积即可解决问题.【详解】根据图形的特点设DP =DN =m ,则PN 22m m +2m , ∴2m=MC ,22PM MC +, ∴BC =CD =PC+DP=3m , ∵四边形HMPN 是正方形, ∴GF ⊥BC ∵∠ACB =45︒,∴△FGC 是等腰直角三角形, ∴FG=CF=12BC=32m , ∴S 1=12DN×DP=12m 2,S 2=12FG×CF=98m 2, ∴12:S S =12m 2: 98m 2=4:9, 故答案为4:9.【点睛】本题考查正方形的性质,勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.三、解答题(共11小题,计78分.解答应写出过程)15.1112(6)|22|4-⎛⎫--+- ⎪⎝⎭.【答案】526-. 【解析】 【分析】根据二次根式与实数的性质即可化简求解.【详解】解:11 12(6)|22|4-⎛⎫⨯---+-⎪⎝⎭62(22)(4)=---+-62224=--+-526=--.【点睛】此题主要考查二次根式与实数的混合运算,解题的关键是熟知其运算法则.16.解方程:24142xx x-=--【答案】x=-4【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】24142xx x-=--4+x(x+2)=x2-44+x2+2x=x2-4x=-4当x=-4时,24x-≠0,所以x=-4是方程的解.【点睛】考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.如图,AC是矩形ABCD的一条对角线.利用尺规在AD上作一点E,使得AE与点E到点C的距离相等.(保留作图痕迹,不要求写作法)【答案】见解析.【解析】【分析】根据题意作AC的垂直平分线,与AD的角度即为E点.【详解】解:点E如图所示:【点睛】此题主要考查垂直平分线的应用,解题的关键是熟知垂直平分线上的点到线段两个端点距离相等. 18.如图,点E 、F 在AB 上,且AF BE =,AC BD =,AC BD P .求证:C D ∠=∠.【答案】见解析. 【解析】 【分析】根据题意证明ACF BDE △≌△即可求解. 【详解】证明:∵AC BD P , ∴A B ∠=∠. 在ACF V 和BDE V 中,AC BD A B AF BE =⎧⎪∠=∠⎨⎪=⎩, ∴()ACF BDE SAS △≌△, ∴C D ∠=∠.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.19.中国飞人苏炳添以6秒47获得2019年国际田联伯明翰室内赛男子60米冠军,苏炳添夺冠掀起跑步热潮某校为了解该校八年级男生的短跑水平,全校八年级男生中随机抽取了部分男生,对他们的短跑水平进行测试,并将测试成绩(满分10分)绘制成如下不完整的统计图表: 组别 成绩/分 人数/人 A536B 6 32C 7 15D 8 8E 9 5F 10 m请你根据统计图表中的信息,解答下列问题:(1)填空:m=_____,n=_____;(2)所抽取的八年级男生短跑成绩的众数是_____分,扇形统计图中E组的扇形圆心角的度数为____°;(3)求所抽取的八年级男生短跑的平均成绩.【答案】(1)4,15(2)5,18(3)6.26【解析】【分析】(1)根据B组32人占总人数的32%求得总人数即可求得m,然后求得C组所占的百分比即可求得n的值;(2)利用众数的定义求得众数即可;求得E组所占的百分比即可求得所在扇形的圆心角的度数;(3)利用加权平均数的求法直接计算即可.【详解】解:(1)∵B组的有32人,占32%,∴被调查人数为32÷32%=100人,∴m=100﹣36﹣32﹣15﹣8﹣5=4,15÷100=15%,∴n=15,故答案为4,15;(2)成绩为5分的有36人,最多,所以众数为5分;5÷100×360°=18°,∴扇形统计图中E组的扇形圆心角的度数为18°,故答案为5,18;(3)所抽取的八年级男生短跑的平均成绩为:5366327158895104363215854⨯+⨯+⨯+⨯+⨯+⨯+++++=6.26(分).【点睛】本题考查扇形统计图、统计表、加权平均数的计算,解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用统计表中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.20.汉江是长江最长的支流,在历史上占居重要地位,陕西省境内的汉江为汉江上游段.李琳利用热气球探测器测量汉江某段河宽,如图,探测器在A处观测到正前方汉江两岸岸边的B、C两点,并测得B、C两点的俯角分别为45°,30°已知A处离地面的高度为80m,河平面BC与地面在同一水平面上,请你求出汉江该段河宽BC.(结果保留根号)【答案】(803﹣80)米【解析】【分析】过A作AD⊥BD于点D,在Rt△ACD中,根据正切的概念求出CD的值,进而可求出BC的值.【详解】解:过A作AD⊥BD于点D,在Rt△ADB中,∠ABD=45°∴BD=AD=80,在Rt△ACD中,∠ACD=30°∴tan ∠ACD =ADCD, ∴CD =80tan 30tan 30AD ︒︒=803=÷=∴BC =CD ﹣BD =80∴汉江该段河宽BC 为(80)米.【点睛】本题考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的定义是解题的关键,解答时注意正确作出辅助线构造直角三角形. 21.快递公司为提高快递分拣速度,决定购买机器人来代替人工分拣,两种型号的机器人的工作效率和价格如表:该公司计划购买这两种型号的机器人共10台,并且使这10台机器人每小时分拣快递件数总和不少于8500件(1)设购买甲种型号的机器人x 台,购买这10台机器人所花的费用为y 万元,求y 与x 之间的关系式; (2)购买几台甲种型号的机器人,能使购买这10台机器人所花总费用最少?最少费用是多少?【答案】(1)y =2x+30(2)购买3台甲种型号的机器人,能使购买这10台机器人所花总费用最少,最少费用为36万元 【解析】 【分析】(1)根据总费用=甲种型号机器人的费用+乙种机器人的费用,求出y 与x 的关系式即可;(2)根据这10台机器人每小时分拣快递件数总和不少于8500件,列出不等式,求得x 的取值范围,再利用(1)中函数,求出y 的最小值即可. 【详解】解:(1)y 与x 之间的函数关系式为: y =5x+3(10﹣x )=2x+30;(2)由题可得:1000x+800(10﹣x )≥8500,解得52x≥,∵2>0,∴y随x的增大而增大,∴当x=3时,y取得最小值,∴y最小=2×3+30=36,∴购买3台甲种型号的机器人,能使购买这10台机器人所花总费用最少,最少费用为36万元.【点睛】本题主要考查了一次函数的应用,解决此题的关键是熟练掌握函数的性质.对于一次函数y=kx+b (k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.22.赵黎将中国的清华大学、北京大学及英国的剑桥大学、牛津大学的图片分别贴在4张完全相同的不透明的硬纸板上,制成名校卡片,如图,赵黎将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,洗匀,再随机抽取一张卡片.(1)赵黎第一次抽取的卡片上的图片是国内大学的概率是多少?(2)请你用列表法或画树状图法,帮助赵黎求出两次抽取的卡片上的图片一个是国内大学,一个是国外大学的概率.A.B.C.D.【答案】(1)12; (2)23.【解析】【分析】(1)直接根据概率公式求解;(2)先画树状图展示所有12种等可能的结果数,两次抽取的卡片上的图片一个是国内大学,一个是国外大学的情况有8种,,然后根据概率公式求解.【详解】解:(1)P(卡片上的图片是国内大学)21 42 ==.(2)画树状图如图所示:由图可得共有12种等可能的结果,两次抽取的卡片上的图片一个是国内大学,一个是国外大学的情况有8种,∴P (两次抽取的卡片上的图片一个是国内大学,一个是国外大学)82123==. 【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.23.如图,已知MN 是O e 的直径,直线PQ 与O e 相切于P 点,NP 平分MNQ ∠.(1)求证:NQ PQ ⊥;(2)若O e 的半径3R =,33NP =,求NQ 的长.【答案】(1)见解析;(2)92. 【解析】【分析】 (1)连接OP ,根据NP 平分MNQ ∠证明OP NQ ∥,即可证明NQ PQ ⊥;(2)连接MP ,根据三角函数知识求出30MNP ∠=︒,从而求出NQ 长.【详解】解:(1)证明:连接OP ,∵直线PQ 与O e 相切于P 点,∴OP PQ ⊥,∵OP ON =,∴OPN ONP ∠=∠,又NP 平分MNQ ∠,ONP PNQ ∴∠=∠ONP PNQ ∴∠=∠∴OPN PNQ ∠=∠,∴OP NQ ∥,∴NQ PQ ⊥;(2)连接MP ,∵MN 是直径,∴90MPN ∠=︒, ∴333cos NP MNP MN ∠===, ∴30MNP ∠=︒,∴30PNQ ∠=︒,∴在Rt PNQ △中,39cos303322NQ NP =⋅︒=⨯=.【点睛】本题是对圆知识的综合考查,熟练掌握切线及三角函数知识是解决本题的关键.24.如图,已知拋物线21:4C y x =-+,将抛物线1C 沿x 轴翻折,得到拋物线2C .(1)求出抛物线2C 的函数表达式;(2)现将抛物线1C 向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线2C 向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【答案】(1)24y x =-;(2)存在.当3m =时,以点A ,N ,E ,M 为顶点的四边形是矩形.【解析】【分析】(1)抛物线翻折前后顶点关于x 轴对称,a 互为相反数;(2)连接AN ,NE ,EM ,MA ,M ,N 关于原点O 对称OM =ON ,A ,E 关于原点O 对称OA =OE ,判断四边形ANEM 为平行四边形;若AM 2+ME 2=AE 2,解得m =3,即可求解.【详解】解:(1)∵拋物线1C 的顶点为(0,4),∴沿x 轴翻折后顶点的坐标为(0,4)-.∴抛物线2C 的函数表达式为24y x =-.(2)存在.理由:连接AN ,NE ,EM ,MA .依题意可得:(,4)M m -,(,4)N m -.∴M ,N 关于原点O 对称,∴OM ON =.原1C 、2C 抛物线与x 轴的两个交点分别为(2,0)-,(2,0).∴(2,0)A m --,(2,0)E m +,∴A ,E 关于原点O 对称,∴OA OE =.∴四边形ANEM 为平行四边形.2222420AM =+=,2222(2)44820ME m m m m =+++=++,222(22)41616AE m m m m =+++=++,若222AM ME AE +=,则2220482041616m m m m +++=++,解得3m =.此时AME △是直角三角形,且90AME ∠=︒.∴当3m =时,以点A ,N ,E ,M 为顶点的四边形是矩形.【点睛】本题考查二次函数关于x 轴对称,平行四边形的判定,矩形的性质.找准二次函数图象变化后对应的点是解决翻折后函数图象的关键;能够在平面直角坐标系中,通过坐标点的特点判定平行四边形,利用勾股定理判定矩形是解决本题的关键.25.(1)如图1,A 、B 是O e 上的两个点,点P 在O e 上,且APB △是直角三角形,O e 的半径为1. ①请在图1中画出点P 的位置;②当1AB =时,APB ∠= ︒;(2)如图2,O e 的半径为5,A 、B 为O e 外固定两点(O 、A 、B 三点不在同一直线上),且9OA =,P 为O e 上的一个动点(点P 不在直线AB 上),以PA 和AB 为邻边作平行四边形PABC ,求BC 最小值并确定此时点P 的位置;(3)如图3,A 、B 是O e 上的两个点,过A 点作射线AM AB ⊥,AM 交O e 于点C ,若3AB =,4AC =,点D 是平面内的一个动点,且2CD =,E 为BD 的中点,在点D 的运动过程中,求线段AE 长度的最大值与最小值.【答案】(1)见解析;(2)4.(3)AE 的最小值是32AO OE +=,最大值是72AO OE -=. 【解析】【分析】(1)①根据圆周角定理作图;②根据直角三角形的性质解答; (2)根据平行四边形的性质得到BC =AP ,根据线段的性质计算;(3)连接BC ,根据勾股定理求出BC ,根据直角三角形的性质求出OA ,根据三角形中位线定理求出OE ,根据三角形的三边关系解答即可.【详解】解:(1)①如图:P 点为所求;(2)∵四边形PABC 是平行四边形,∴BC AP =.∴BC 的最小值即AP 的最小值.∵当P 为OA 与O e 的交点时AP 最小. ∴AP 的最小值为954-=,即BC 的最小值为4.(3)连接BC ,∵AM AB ⊥,∴90CAB ∠=︒,∴BC 是O e 的直径.∵点D 是平面内的一个动点,且2CD =, ∴点D 的运动路径为以C 为圆心,以2为半径的圆, ∵BC 是O e 的直径,∴O 是BC 的中点.在直角ABC V 中,2222435BC AC AB =+=+=. ∵O 是直角ABC V 斜边BC 上的中点, ∴1522AO BC ==. ∵E 是BD 的中点,O 是BC 的中点, ∴112OE CD ==. ∴AE 的最小值是32AO OE +=,最大值是72AO OE -=. 【点睛】本题考查的是圆的知识,掌握平行四边形的性质、圆周角定理、三角形的三边关系是解题的关键。

2020年中考数学二模试卷(附答案)

2020年中考数学二模试卷(附答案)

2020年中考数学二模试卷(附答案)一、选择题(共36分)(共12题;共36分)1.在、0、1、﹣2这四个数中,最小的数是()A. B. 0 C. 1 D. ﹣22.下列运算正确的是()A. x2+x2=x4B. (a﹣b)2=a2﹣b2C. (﹣a2)3=﹣a6D. 3a2•2a3=6a63.下列命题中的真命题是()A. 全等的两个图形是中心对称图形B. 关于中心对称的两个图形全等C. 中心对称图形都是轴对称图形D. 轴对称图形都是中心对称图形4.“宁安”高铁接通后,某市交通通行和转换能力成倍增长,极大地方便了广大市民出行,该工程投资预算930000万元,这一数据用科学记数法表示为( )A. 9.3×105B. 9.3×106C. 0.93×106D. 9.3×1045.如图,AB∥CD,AD平分∠BAC,且∠D=72°,则∠C的度数为()A. 36°B. 72°C. 108°D. 144°6.如图所示的几何体的主视图是()A. B. C. D.7.一组数据:1,3,3,5,若添加一个数据3,则发生变化的统计量是()A. 平均数B. 众数C. 中位数D. 方差8.制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本的百分率为()A. B. C. D.9.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A,C,E三点在同一水平直线上,则旗杆AB的高度为()A. 4.5mB. 4.8mC. 5.5mD. 6 m10.如图,在△ABC中,∠C=90°,∠B=15°,AC=1,分别以点A,B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则AD的长为( )A. 1.5B.C. 2D.11.已知二次函数y=ax2+bx+c(a>0)的图象的对称轴为直线x=1,且(x1,y1),(x2,y2)为其图象上的两点,()A. 若x1>x2>1,则(y1-y2)+2a(x1-x2)<0B. 若1>x1>x2,则(y1-y2)+2a(x1-x2)<0C. 若x1>x2>1,则(y1-y2)+a(x1-x2)>0D. 若1>x1>x2,则(y1-y2)+a(x1-x2)>012.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论①∠DCF= ∠BCD,②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF中一定成立的是()A. ①②B. ①②④C. ①③④D. ①②③④二、填空题(共12分)(共4题;共12分)13.分解因式(x﹣1)2﹣2(x﹣1)+1的结果是________.14.掷一枚质地均匀的正方体骰子,骰子的六个面分别标有1到6的点数,向上的一面出现的点数是2的倍数的概率是________.15.如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为________.16题16.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=10,则CE=________.三、解答题(共52分)(共7题;共52分)17.计算:-tan60°++| -2|.18.先化简,再求值:,请你选取一个使原分式有意义的a的值代入求值.19.随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五一”长假期间旅游情况统图,根据以下信息解答下列问题:(1)2017年“五一”期间,该市共接待游客________人,扇形统计图中A景点所对应的圆心角的度数是________°.(2)补全条形统计图;(3)根据近几年到该市旅游人数增长趋势,预计2018年“五一”节将有80万游客选择来该市旅游,请估计有多少万人会选择去E景点旅游?20.如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.21.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B市位于点P的北偏东75°方向上,距离P点480千米.(1)说明本次台风是否会影响B市;(2)若这次台风会影响B市,求B市受台风影响的时间.22.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长.23.某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?答案一、选择题(共36分)1.D2.C3.B4. A5. A6.A7.D8. B9. D 10. C 11. C 12.B二、填空题(共12分)13. (x﹣2)214. 15.144°16. 5三、解答题(共52分)17. 解:原式=4--2+2-=4-2 .18. 解:原式= ,当a=2时,原式= =-219.(1)50(万人);108(2)解:补全条形统计图如下:(3)解:∵E景点接待游客数所占的百分比为:×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人)20. (1)证明: ∵AD平分∠BAC,∠C=90, DE⊥AB∴CD=ED∵在Rt△CDF和Rt△EDB中,BD=DF,CD=ED∴Rt△CDF≌Rt△EDB(HL)∴CF=EB(2)证明: 又∵在Rt△ADE和Rt△ADC中,AD=AD ,CD=ED∴Rt△ADE≌Rt△ADC(HL)∴AC=AE∴AB=AE+EB=AF+CF+EB 即AB=AF+2EB21. (1)解:作BH⊥PQ于点H.在Rt△BHP中,由条件知,PB=480,∠BPQ=75°﹣45°=30°,∴BH=480sin30°=240<260,∴本次台风会影响B市.(2)解:如图,若台风中心移动到P1时,台风开始影响B市,台风中心移动到P2时,台风影响结束.由(1)得BH=240,由条件得BP1=BP2=260,∴P1P2=2 =200,∴台风影响的时间t= =5(小时).故B市受台风影响的时间为5小时.22.(1)证明:连接CD. ∵AD是⊙O 的直径,∴∠ACD=90°,∴∠CAD+∠ADC=90°. 又∵∠PAC=∠PBA,∵弧AC=弧AC ∴∠ADC=∠PBA,∴∠PAC=∠ADC,∴∠CAD+∠PAC=90°.∴PA⊥OA,OA是半径∴PA是⊙O的切线。

2020年中考数学二模试卷含答案

2020年中考数学二模试卷含答案

2020年中考数学二模试卷一.选择题(共12小题,满分48分,每小题4分)1.﹣的倒数是()A.B.2C.﹣D.﹣22.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A.B.C.D.3.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A.4.995×1011B.49.95×1010C.0.4995×1011D.4.995×10104.下列运算正确的是()A.5ab﹣4ab=4B.+=C.a6÷a2=a4D.(a2b)3=a5b35.在下列计算中,正确的是()A.b3•b3=b6B.x4•x4=x16C.(﹣2x2)2=﹣4x4D.3x2•4x2=12x26.下列各数中,能使有意义的是()A.0B.2C.4D.67.化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1C.a2D.﹣18.小明在解方程x2﹣4x﹣15=0时,他是这样求解的:移项得x2﹣4x=15,两边同时加4得x2﹣4x+4=19,∴(x﹣2)2=19,∴x﹣2=±,∴x﹣2=±,∴x1=2+,x2=2﹣,这种解方程的方法称为()A.待定系数法B.配方法C.公式法D.因式分解法9.如图,AB是圆锥的母线,BC为底面直径,已知BC=6cm,圆锥的侧面积为15πcm2,则sin∠ABC 的值为()A.B.C.D.10.已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6B.8C.10D.8或1011.用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n个“口”字需要用棋子()A.(4n﹣4)枚B.4n枚C.(4n+4)枚D.n2枚12.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=182二.填空题(共6小题,满分24分,每小题4分)13.(π﹣3.14)0+tan60°=.14.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是.15.在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为.16.关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是.17.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cos B=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是.18.设a1,a2,a3……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1﹣1)2﹣(a n﹣1)2,则a2018=.三.解答题(共7小题,满分78分)19.(8分)(1)计算:+(π﹣3)0|+2cos45°.(2)先化简,再求值:÷,其中a=﹣2.20.(10分)(1)计算:|﹣2|﹣4sin45°+(3﹣π)0﹣()﹣2;(2)解不等式组:,并在数轴上表示它的解集.21.(10分)某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.22.(12分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=100千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)23.(12分)阅读解答:题目:已知方程x2+3x+1=0的两根为a,b,求+的值.解:①∵△=b2﹣4ac=32﹣4×1×1=5>0∴a≠b②由一元二次方程根与系数关系得:a+b=﹣3,ab=1;③∴+=+===﹣3问题:上面的解题过程是否正确?若不正确,指出错在哪一步?写出正确的解题过程.24.(12分)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A15957000B101668000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25.(14分)为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1、根据乘积为1的两个数互为倒数,直接解答即可.解:∵﹣×(﹣2)=1,∴﹣的倒数是﹣2,故选:D.本题主要考查倒数的定义,解决此类题目时,只要找到一个数与这个数的积为1,那么此数就是这个数的倒数,特别要注意:正数的倒数也一定是正数,负数的倒数也一定是负数.2、俯视图就是从物体的上面看物体,从而得到的图形.解:由立体图形可得其俯视图为:.故选:C.此题主要考查了简单组合体的三视图,正确把握三视图的观察角度是解题关键.3、科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.解:将499.5亿用科学记数法表示为:4.995×1010.故选:D.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、由合并同类项得出选项A错误;由分式的加法法则得出选项B错误;由同底数幂的除法法则得出选项C正确;由积的乘方法则和幂的乘方法则得出选项D错误.解:∵5ab﹣4ab=ab,∴选项A错误;∵=,∴选项B错误;∵a6÷a2=a4,∴选项C正确;∵(a2b)3=a6b3,∴选项D错误.本题考查了分式的加减法法则、合并同类项、同底数幂的除法法则、积的乘方法则和幂的乘方法则;熟练掌握有关法则是解决问题的关键.5、根据单项式乘单项式、同底数幂的乘法和积的乘方进行解答.解:A、b3•b3=b6,正确;B、x4•x4=x8,错误;C、(﹣2x2)2=4x4,错误;D、3x2•4x2=12x4,错误;故选:A.此题考查单项式乘单项式、同底数幂的乘法和积的乘方,关键是根据单项式乘单项式、同底数幂的乘法和积的乘方法则解答.6、根据二次根式有意义的条件列出不等式,解不等式即可.解:若有意义,则x﹣5≥0,所以x≥5,故选:D.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.7、根据分式的混合运算顺序和运算法则计算可得.解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.8、根据配方法解方程的步骤即可得.解:根据题意知这种解方程的方法称为配方法,故选:B.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法是解题的关键.9、先根据扇形的面积公式S=L•R求出母线长,再根据锐角三角函数的定义解答即可.解:设圆锥的母线长为R,由题意得15π=π×3×R,解得R=5.∴圆锥的高为4,∴sin∠ABC==,故选:C.本题考查圆锥侧面积公式的运用,注意一个角的正弦值等于这个角的对边与斜边之比.10、先利用一元二次方程解的定义把x=2代入方程x2﹣(m+4)x+4m=0得m=2,则方程化为x2﹣6x+8=0,然后解方程后利用三角形三边的关系确定三角形的三边,最后就是三角形的周长.解:把x=2代入方程x2﹣(m+4)x+4m=0得4﹣2(m+4)+4m=0,解得m=2,方程化为x2﹣6x+8=0,解得x1=4,x2=2,因为2+2=4,所以三角形三边为4、4、2,所以△ABC的周长为10.故选:C.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.11、首先根据图形得到规律是:每增加一个数就增加四个棋子,然后根据规律解题即可.解:n=1时,棋子个数为4=1×4;n=2时,棋子个数为8=2×4;n=3时,棋子个数为12=3×4;…;n=n时,棋子个数为n×4=4n.故选:B.本题考查了图形的变化类问题,主要培养学生的观察能力和空间想象能力,找出其中的规律是解题的关键.12、设该厂八、九月份平均每月生产零件的增长率均为x,根据该机械厂七月份及整个第三季度生产零件的数量,即可得出关于x的一元二次方程,此题得解.解:设该厂八、九月份平均每月生产零件的增长率均为x,根据题意得:50+50(1+x)+50(1+x)2=182.故选:D.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共6小题,满分24分,每小题4分)13、直接利用零指数幂的性质和特殊角的三角函数值分别化简得出答案.解:原式=1+.故答案为:1+.此题主要考查了实数运算,正确化简各数是解题关键.14、根据正方体的展开图面的特点,两个面隔一个面是对面,可得答案.解:正方体中与“建”字所在的面相对的面上标的字是棱.故答案为:棱.本题考查了正方体相对面上的文字,正方体展开图的面中,两个面相隔一个面,这两隔面是对面.15、由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论.解:∵关于x的方程x2﹣4x+b=0有两个相等的实数根,∴△=16﹣4b=0,∴AC=b=4,∵BC=2,AB=2,∴BC2+AB2=AC2,∴△ABC是直角三角形,AC是斜边,∴AC边上的中线长=AC=2;故答案为:2.本题考查了根的判别式,勾股定理的逆定理,直角三角形斜边上的中线性质;证明△ABC是直角三角形是解决问题的关键.16、若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=4﹣8(m﹣5)≥0,且m﹣5≠0,解得m≤5.5,且m≠5,则m的最大整数解是m=4.故答案为:m=4.考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17、设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x﹣2,解直角△ABE即可求得x的值,即可求得BE、AE的值,根据AB、PE的值和△ABE的面积,即可求得PE的最小值.解:设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x﹣2,因为AE⊥BC于E,所以在Rt△ABE中,cos B=,又cos B=,于是,解得x=10,即AB=10.所以易求BE=8,AE=6,当EP⊥AB时,PE取得最小值.故由三角形面积公式有:AB•PE=BE•AE,求得PE的最小值为4.8.故答案为4.8.本题考查了余弦函数在直角三角形中的运用、三角形面积的计算和最小值的求值问题,求PE的值是解题的关键.18、由4a n=(a n+1﹣1)2﹣(a n﹣1)2,可得(a n+1﹣1)2=(a n﹣1)2+4a n=(a n+1)2,根据a1,a2,a3……是一列正整数,得出a n+1=a n+2,根据a1=1,分别求出a2=3,a3=5,a4=7,a5=9,进而发现规律a n=2n﹣1,即可求出a2018=4035.解:∵4a n=(a n+1﹣1)2﹣(a n﹣1)2,∴(a n+1﹣1)2=(a n﹣1)2+4a n=(a n+1)2,∵a1,a2,a3……是一列正整数,∴a n+1﹣1=a n+1,∴a n+1=a n+2,∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n﹣1,∴a2018=4035.故答案为4035.本题是一道找规律的题目,要求学生通过计算,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出式子a n+1=a n+2.三.解答题(共7小题,满分78分)19、(1)原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.解:(1)原式=﹣4+1+2﹣2+=﹣1﹣;(2)原式=•=,∵a=﹣2,∴原式==﹣.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20、(1)先计算绝对值、代入三角函数值、计算零指数幂和负整数指数幂,再依次计算乘法和加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:(1)原式=2﹣4×+1﹣9=2﹣2﹣8=﹣8;(2)解不等式x﹣3(x﹣2)≥4,得:x≤1,解不等式<,得:x>﹣1,则不等式组的解集为﹣1<x≤1,将解集表示在数轴上如下:本题考查的是实数的混合运算与解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21、(1)设第一次购书的进价为x元/本,根据“第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本”列出方程,求出方程的解即可得到结果;(2)根据题意列出关于m与n的方程,由m与n为正整数,且n的范围确定出m与n的值即可.解:(1)设第一次购书的进价为x元/本,根据题意得:+100=,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7﹣6)+(2500﹣2000)×(﹣6)=100m,整理得:7n=2m+20,即2m=7n﹣20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.此题考查了分式方程的应用,以及二元一次方程的应用,找出题中的等量关系是解本题的关键.22、(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出答案.解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=100千米,∴CD=BC•sin30°=100×=50(千米),AC==50(千米),AC+BC=(100+50)千米,答:开通隧道前,汽车从A地到B地要走(100+50)千米;(2)∵cos30°=,BC=100(千米),∴BD=BC•cos30°=100×=50(千米),CD=BC=50(千米),∵tan45°=,∴AD==50(千米),∴AB=AD+BD=(50+50)千米,∴AC+BC﹣AB=100+50﹣(50+50)=(50+50﹣50)千米答:开通隧道后,汽车从A地到B地可以少走(50+50﹣50)千米.本题考查了解直角三角形的应用,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23、由②中a+b=﹣3、ab=1可得出a<0、b<0,进而即可得出+=+=,再代入a+b=﹣3、ab=1即可得出结论.解:上面的解题过程不正确,错在③,正确的解题过程如下:①∵△=b2﹣4ac=32﹣4×1×1=5>0,∴a≠b;②由一元二次方程根与系数关系得:a+b=﹣3,ab=1,∴a<0,b<0;③∴+=+===3.本题考查了根的判别式以及根与系数的关系,由两根之和、两根之积的符号确定a<0、b<0是解题的关键.24、(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.解:(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据题意,得:,解得:,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:,解得:18≤m<20,∵m为整数,∴m=18或m=19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.25、根据题意先判断出参加的人数在30人以上,设共有x名同学参加了研学游活动,再根据等量关系:(100﹣在30人基础上降低的人数×2)×参加人数=3150,列出方程,然后求解即可得出答案.解:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设共有x名同学参加了研学游活动,由题意得:x[100﹣2(x﹣30)]=3150,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意;当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:共有35名同学参加了研学游活动.此题考查一元二次方程的应用;得到人均付费是解决本题的易错点,得到总费用的等量关系是解决本题的关键.。

2020中考二模考试《数学试题》含答案解析

2020中考二模考试《数学试题》含答案解析

中考数学仿真模拟测试题一、单选题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·滨州)下列各数中,负数是( ) A .-(-2)B .2--C .(-2)2D .(-2)02.(2019·滨州)若8x m y 与6x 3y n 的和是单项式,则(m +n )3的平方根为( ) A .4B .8C .±4D .±83.(2019·益阳)下列几何体中,其侧面展开图为扇形的是()A. B. C. D.4.(2019·河北)一次抽奖活动特等奖的中奖率为50001,把50001用科学记数法表示为( ) A.B.C.D.5.(2019·衡阳)如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx(m 为常数且m ≠0)的图象,都经过A (-1,2),B (2,-1),结合图象,则不等式kx +b >mx的解集是( ). A. x <-1 B. -1<x <0 C. x <-1或0<x <2 D.-1<x <0或x >2x y -122-1BAO6. (2019·聊城)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示,这些成绩的中位数和众数分别是 A.96分,98分B.97分,98分C.98分,96分D.97分,96分7.(2019·海南) 如图,在 ABCD 中,将△ADC 沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处,若∠B =60°,AB =3,则△ADE 的周长为( )A.12B.15C.18D.218.(2019·达州)某公司今年4月的营业额为2500万元,按计划第2季度的总营业额要达到9100万元,设该公司5,6两月的营业额的月平均增长率为x ,根据题意列方程,则下列方程正确的是( )A. 9100125002=+)(xB. 9100125002=+﹪)(xC. 910012500125002=+++)()(x xD. 2500+ 910012500125002=+++)()(x x9.(2019·泰安) 如图,△ABC 是e O 的内接三角形,∠A =119°,过点C 的圆的切线交BO 于点P,则∠P 的度数为A.32 °B.31°C.29°D.61°10.(2019·烟台)已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:x -1 0 2 3 4y 5 0 -4 -3 0下列结论:①抛物线的开口向上;②抛物线的对称轴为直线2x =;③当04x <<时,0y >;④抛物线与x 轴的两个交点间的距离是4;⑤若1(,2)A x ,2(,3)B x 是抛物线上两点,则12x x <. 其中正确的个数是( ).A .2B .3C .4D .5 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 11.(2019·临沂)计算:tan45°= .12.(2019·陇南)因式分解:xy 2﹣4x = .13.(2019·大庆)如图,在△ABC 中,D,E 分别是BC,AC 的中点,AD 与BE 相交于点G,若DG =1,则AD =________.14.(2019·安顺)如图,在Rt △ABC 中,∠BAC =90°,AB =3,AC =4,点D 为斜边BC 上的一个动点,过D 分别作DM ⊥AB 于点M ,作DN ⊥AC 于点N ,连接MN ,则线段MN 的最小值为 .三、解答题:(本大题共2小题,每小题8分,共16分)15.(2019·株洲)先化简,再求值:221(1)a a a a a -+--,其中a =12. 16.(2019•黄石)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题: (1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?四、(本大题共2小题,每小题8分,共16分)17.[2019·绥化]如图T6-6,已知△ABC 三个顶点的坐标分别为A (-2,-4),B (0,-4),C (1,-1). (1)请在网格中画出线段BC 关于原点对称的线段B 1C 1;(2)请在网格中过点C 画一直线CD ,将△ABC 分成面积相等的两部分,与线段AB 相交于点D ,写出点D 的坐标;(3)若有另一点P (-3,-3),连接PC ,则tan ∠BCP= .图T6-618.(2019•河北)已知:整式A =(n 2-1)2+(2n )2,整式B >0.尝试化简整式A . 发现A =B 2,求整式B .联想由上可知,B 2=(n 2-1)2+(2n )2,当n >1时,n 2-1,2n ,B 为直角三角形的三边长,如图.填写下表中B 的值:直角三角形三边 n 2-1 2n B 勾股数组Ⅰ / 8 __________ 勾股数组Ⅱ35/__________五、(本大题共2小题,每小题10分,共20分)19.(2019·张家界)天门山索道是世界最长的高山客运索道,位于张家界天门山.在一次检修维护中,检修人员从索道上A 处开始,沿A —B —C 路线对索道进行检修维护.如图:已知500=AB 米,800=BC 米,AB 与水平线1AA 的夹角是︒30,BC 与水平线1BB 的夹角是︒60.求:本次检修中,检修人员上升的垂直高度CA 1是多少米?(结果精确到1米)20.(2019 · 常州)如图,把平行四边形纸片ABCD 沿BD 折叠,点C 落在C '处,BC '与AD 相交于点E .(1)连接AC ',则AC '与BD 的位置关系是_________; (2)EB 与ED 相等吗?证明你的结论.21.(2019·随州)“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:扇形统计图基本了解非常了解不了解了解很少Om 41630人数了解很少基本了解50%了解了解程度条形统计图(1)接受问卷调查的学生共有人,条形统计图中m 的值为; (2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图法的方法求恰好抽到1名男生和1名女生的概率.第20题图六、(本题满分12分)22.(2019·武威)如图,在ABCe经过点A和点B且∆中,AB AC∠=︒,点D在BC边上,D=,120BAC与BC边相交于点E.e的切线;(1)求证:AC是De的半径.(2)若23CE=,求D七、(本题满分14分)23.(2019·鄂州)如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若△AOC与△BMN相似,请直接写出t的值;②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.答案与解析一、单选题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·滨州)下列各数中,负数是( ) A .-(-2) B .2--C .(-2)2D .(-2)0【答案】B【解析】∵-(-2)=2,2--=-2,(-2)2=4,(-2)0=1,∴负数是2--.故选B . 2.(2019·滨州)若8x m y 与6x 3y n 的和是单项式,则(m +n )3的平方根为( ) A .4 B .8C .±4D .±8【答案】D【解析】∵8x m y 与6x 3y n 的和是单项式,∴m=3,n=1,∴(m+n )3=43=64,∵(±8)2=64,∴(m+n )3的平方根为±8.故选D . 3.(2019·益阳)下列几何体中,其侧面展开图为扇形的是()A. B. C. D.【答案】C【解析】∵圆柱的侧面展开图是长方形、三棱柱的侧面展开图是长方形、圆锥的侧面展开图是扇形、三棱锥的侧面展开图是三块三角形,∴选C. 4.(2019·河北)一次抽奖活动特等奖的中奖率为50001,把50001用科学记数法表示为( ) A. B.C.D.【答案】D 【解析】50001=0.00002=.5.(2019·衡阳)如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx(m 为常数且m ≠0)的图象,都经过A (-1,2),B (2,-1),结合图象,则不等式kx +b >mx的解集是( ). A. x <-1 B. -1<x <0 C. x <-1或0<x <2 D.-1<x <0或x >2xy -122-1BAO【答案】C .【解析】由图象得,不等式kx +b >mx的解集是x <-1或0<x <2,故选C . 6. (2019·聊城)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示,这些成绩的中位数和众数分别是 A.96分,98分B.97分,98分C.98分,96分D.97分,96分【答案】A【解析】由统计图可知:按顺序排列,第13名同学的分数为96分,故中位数为96分,得分人数最多的是98分,共9人,故众数为98分,故选A.7.(2019·海南) 如图,在 ABCD 中,将△ADC 沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处,若∠B =60°,AB =3,则△ADE 的周长为( )A.12B.15C.18D.21【答案】C【解析】∵折叠后点D 恰好落在DC 的延长线上的点E 处,∴AC ⊥DE,EC =CD =AB =3,∴ED =6,∵∠B =60°,∴∠D =60°,∴AD =2CD =6,∴AE =6,∴△ADE 的周长=AE+AD+ED =18,故选C. 【知识点】折叠,三角函数,平行四边形8.(2019·达州)某公司今年4月的营业额为2500万元,按计划第2季度的总营业额要达到9100万元,设该公司5,6两月的营业额的月平均增长率为x ,根据题意列方程,则下列方程正确的是( )A. 9100125002=+)(xB. 9100125002=+﹪)(xC. 910012500125002=+++)()(x xD. 2500+ 910012500125002=+++)()(x x【答案】D【解析】第二季度的总营业额应该是三个月营业额之和,应该是910012500125002=+++)()(x x ,故选D.9.(2019·泰安) 如图,△ABC 是e O 的内接三角形,∠A =119°,过点C 的圆的切线交BO 于点P,则∠P 的度数为A.32 °B.31°C.29°D.61°【答案】A【解析】连接CO,CF,∵∠A =119°,∴∠BFC =61°,∴∠BOC =122°,∴∠COP =58°,∵CP 与圆相切于点C,∴OC ⊥CP,∴在Rt △OCP 中,∠P =90°-∠COP =32°,故选A. 10.(2019·烟台)已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:x -1 0 2 3 4 y5-4-3下列结论:①抛物线的开口向上;②抛物线的对称轴为直线2x =;③当04x <<时,0y >;④抛物线与x 轴的两个交点间的距离是4;⑤若1(,2)A x ,2(,3)B x 是抛物线上两点,则12x x <. 其中正确的个数是( ).A .2B .3C .4D .5【答案】B【解题过程】先根据二次函数的部分对应值在坐标系中描点、连线,由图象可以看出抛物线开口向上,所以结论①正确,由图象(或表格)可以看出抛物线与x 轴的两个交点分别为(0,0),(4,0),所以抛物线的对称轴为直线2x =且抛物线与x 轴的两个交点间的距离为4,所以结论②和④正确,有抛物线的图象可以看出当04x <<时,0y <,所以结论③错误,由图象可以看出当抛物线上的点的纵坐标为2或3时,对于的点均有两个,若1(,2)A x ,2(,3)B x 是抛物线上两点,既有可能12x x <,也有可能12x x >,所以结论⑤错误.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 11.(2019·临沂)计算:tan45°= .【答案】1.【解析】tan45°11,故答案为:1.12.(2019·陇南)因式分解:xy 2﹣4x = . 【答案】x (y+2)(y-2).【解析】xy 2-4x=x (y 2-4)=x (y+2)(y-2),故答案为:x (y+2)(y-2).13.(2019·大庆)如图,在△ABC 中,D,E 分别是BC,AC 的中点,AD 与BE 相交于点G,若DG =1,则AD =________.【答案】8【解析】过点D 作DF ∥BE 交AC 于点F,所以1EF BD FC DC ==,因为AE =EC,所以3AF EF =,所以3AD AFDG EF==,因为DG =1,所以AD =3BDMN CA14.(2019·安顺)如图,在Rt △ABC 中,∠BAC =90°,AB =3,AC =4,点D 为斜边BC 上的一个动点,过D 分别作DM ⊥AB 于点M ,作DN ⊥AC 于点N ,连接MN ,则线段MN 的最小值为 . 【答案】512【解析】连接AD ,如图所示:∵DM ⊥AB ,DN ⊥AC ,∴∠AMD =∠AND =90°, 又∵∠BAC =90°,∴四边形AMDN 是矩形; ∴MN =AD .∵∠BAC =90°,AB =3,AC =4, ∴BC =5,当AD ⊥BC 时,AD 最短,此时△ABC 的面积=21BC •AD =21AB •AC , ∴AD 的最小值=512=⋅BC AC AB , ∴线段MN 的最小值为512;三、解答题:(本大题共2小题,每小题8分,共16分)15.(2019·株洲)先化简,再求值:221(1)a a a a a -+--,其中a =12.【解题过程】a =12=2211(1)(1)1(1)(1)(1a a a a a a a a a a a a a a ++--+-=-==---(a-1)a-1),当a =12时,上式= -4. 16.(2019•黄石)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?【答案】(1)当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)走路快的人走500步才能追上走路慢的人.【解析】(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60,∴x=1000,∴1000–600–100=300.答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+60100y,∴y=500.答:走路快的人走500步才能追上走路慢的人.四、(本大题共2小题,每小题8分,共16分)17.[2019·绥化]如图T6-6,已知△ABC三个顶点的坐标分别为A(-2,-4),B(0,-4),C(1,-1).(1)请在网格中画出线段BC关于原点对称的线段B1C1;(2)请在网格中过点C画一直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若有另一点P(-3,-3),连接PC,则tan∠BCP=.图T6-6解:(1)如图,线段B1C1即为所求.(2)如图,画出直线CD ,D 点的坐标为(-1,-4).(3)1 [解析]连接PB ,∵PB 2=BC 2=12+32=10,PC 2=22+42=20,∴PB 2+BC 2=PC 2,∴△PBC 为等腰直角三角形, ∴∠PCB=45°,∴tan ∠BCP=1. 18.(2019•河北)已知:整式A =(n 2-1)2+(2n )2,整式B >0.尝试化简整式A . 发现A =B 2,求整式B .联想由上可知,B 2=(n 2-1)2+(2n )2,当n >1时,n 2-1,2n ,B 为直角三角形的三边长,如图.填写下表中B 的值:直角三角形三边 n 2-1 2n B 勾股数组Ⅰ / 8 __________ 勾股数组Ⅱ35/__________【解析】A =(n 2-1)2+(2n )2=n 4-2n 2+1+4n 2=n 4+2n 2+1=(n 2+1)2, ∵A =B 2,B >0, ∴B =n 2+1,当2n =8时,n =4,∴n 2+1=42+1=15; 当n 2-1=35时,n 2+1=37. 故答案为:15;37.八、(本大题共2小题,每小题10分,共20分)19.(2019·张家界)天门山索道是世界最长的高山客运索道,位于张家界天门山.在一次检修维护中,检修人员从索道上A 处开始,沿A —B —C 路线对索道进行检修维护.如图:已知500=AB 米,800=BC 米,AB 与水平线1AA 的夹角是︒30,BC 与水平线1BB 的夹角是︒60.求:本次检修中,检修人员上升的垂直高度CA 1是多少米?(结果精确到1米)【分析】本题考查了解直角三角形的实际应用.过点B 作BD ⊥AA 1于D,BE ⊥CA 1于E,构造矩形,在Rt △ABD 和Rt △BCE 中分别求出BD,CE,最后利用线段和差求解.【解析】过点B 作BD ⊥AA 1于D,BE ⊥CA 1于E,则四边形DBEA 1是矩形,∴BD=A 1E,在Rt △ABD 中,∵∠A=300,∴BD=21AB=250,在Rt △BCE 中,∵sin600=BC CE ,∴CE=800340023=⨯,∴CA 1=CE+A 1E=4003+250≈943(米).20.(2019 · 常州)如图,把平行四边形纸片ABCD 沿BD 折叠,点C 落在C '处,BC '与AD 相交于点E .(1)连接AC ',则AC '与BD 的位置关系是_________; (2)EB 与ED 相等吗?证明你的结论.【解析】(1)AC '∥BD ;(2)EB =ED .理由如下:由折叠可知∠CBD =∠EBD , ∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∴∠CBD =∠EDB .第20题答图第20题图∴∠EBD =∠EDB . ∴EB =ED .九、(本题满分12分)21.(2019·随州)“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:扇形统计图了解非常了解不了解了解很少4很少基本了解50%了解条形统计图(1)接受问卷调查的学生共有人,条形统计图中m 的值为; (2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图法的方法求恰好抽到1名男生和1名女生的概率. 【解析】(1)30÷50%=60(人);60-30-16-4=10(2)1660×360°=96; (3)(3)1800×43060=1020(人);(4)设两名男生分别用1A 、2A 表示,两名女生分别用1B 、2B 表示,用树状图表示如下:B 1A 2A 1B 2A 2A 1B 2B 1A 1B 2B 1A 2B 2B 1A 2A 1共有12种结果:(1A 2A )(1A 1B )(1A 2B )(2A 1A )(2A 1B )(2A 2B )(1B 1A )(2A 1B )(1B 2B )(2B 1A )(2B 2A )(2B 1B )其中符合要求的有8种,∴82123P (恰好选中一男一女)==. 十、(本题满分12分)22.(2019·武威)如图,在ABC ∆中,AB AC =,120BAC ∠=︒,点D 在BC 边上,D e 经过点A 和点B 且与BC 边相交于点E .(1)求证:AC 是D e 的切线; (2)若23CE =,求D e 的半径.【解析】(1)证明:连接AD , AB AC =Q ,120BAC ∠=︒, 30B C ∴∠=∠=︒,AD BD =Q ,30BAD B ∴∠=∠=︒, 60ADC ∴∠=︒,180603090DAC ∴∠=︒-︒-︒=︒, AC ∴是D e 的切线;(2)解:连接AE ,AD DE =Q ,60ADE ∠=︒, ADE ∴∆是等边三角形, AE DE ∴=,60AED ∠=︒,30EAC AED C ∴∠=∠-∠=︒, EAC C ∴∠=∠, 23AE CE ∴==D ∴e 的半径23AD =十一、(本题满分14分)23.(2019·鄂州)如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若△AOC与△BMN相似,请直接写出t的值;②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.【解析】(1))∵点A、B关于直线x=1对称,AB=4,∴A(﹣1,0),B(3,0),代入y=﹣x2+bx+c中,得:,解得,∴抛物线的解析式为y=﹣x2+2x+3,∴C点坐标为(0,3);(2)设直线BC的解析式为y=mx+n,则有:,解得,∴直线BC的解析式为y=﹣x+3,∵点E、F关于直线x=1对称,又E到对称轴的距离为1,∴EF=2,∴F点的横坐标为2,将x=2代入y=﹣x+3中,得:y=﹣2+3=1,∴F(2,1);(3)①如下图,MN=﹣4t2+4t+3,MB=3﹣2t,△AOC与△BMN相似,则,即:,解得:t或或3或1(舍去、、3),故:t=1;②∵M(2t,0),MN⊥x轴,∴Q(2t,3﹣2t),∵△BOQ为等腰三角形,∴分三种情况讨论,第一种,当OQ=BQ时,∵QM⊥OB∴OM=MB∴2t=3﹣2t∴t;第二种,当BO=BQ时,在Rt△BMQ中∵∠OBQ=45°,∴BQ,∴BO,即3,∴t;第三种,当OQ=OB时,则点Q、C重合,此时t=0而t>0,故不符合题意综上述,当t或秒时,△BOQ为等腰三角形。

2020年浙江省中考数学二模试卷附解析

2020年浙江省中考数学二模试卷附解析

2020年浙江省中考数学二模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,已知锐角α的顶点在原点,始边在x 轴的正半轴上,终边上一点p 坐标为(1,3),那么tan α的值等于 ( )A .13B .3C .1010D .310102.如图,为了绿化环境,在矩形空地的四个角划出四个半径为1•的扇形空地进行绿化,则绿化的总面积是( )A .2πB .πC .2πD .4π3. 如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥的母线长为4,高线长为 3,则圆柱的侧面积为( )A . 30πB .67πC .20πD .47π4.函数k y x =-中,3x =y =-4,则 h 等于( )A 3B .43-C .43D 43-5.下列三条线段的长不能构成直角三角形的一组是 ( )A .32,42,52 B 345C .3k ,4k ,5k D .1236.下列各不等式中,变形正确的是( )A .36102x x +>+变形得54x >B .121163x x -+<,变形得612(21)x x --<+ C .3214x x -<+变形得3x <- D .733x x +>-,变形得5x <7.关于200920091()22⨯计算正确的是( )A . 0B .1C .-1D .2 8.七年级某班60名同学为“四川灾区”捐款,共捐款700无,捐款情况如下: 捐款(元)5 10 20 50 人数(人) 303 表格中捐款10元和20元的人数不小心被墨水污染已看不清楚. 若设捐款 10元的有x 名同学,捐款20元的有y 名同学,根据题意,可得方程组( )A .271020400x y x y +=⎧⎨+=⎩ B . 271020700x y x y +=⎧⎨+=⎩ C . 272010400x y x y +=⎧⎨+=⎩ D . 272010700x y x y +=⎧⎨+=⎩9.如果M 是3次多项式,N 是3次多项式,则M+N 一定是( )A .6次多项式B .次数不高于 3的整式C .3次多项式D .次数不低于 3的多项式二、填空题10.如图,△ABC 内接于⊙O ,点D 是CA 的延长线上一点,若∠BOC= 120°,则∠BAD 等于 .11.有一边长为3的等腰三角形, 它的两边长是方程x 2-4x +k =0的两根,则k 的值为 .12.在12x x --中,字母x 的取值范围是 . 13.解方程(组): (1)()1812=+x (2)⎪⎩⎪⎨⎧=-=+135435y x y x 14.已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是 .15.三角形中,和顶角相邻的外角的平分线和底边的位置关系是 .16.如图,△ABC 是等边三角形,中线BD 、CE 相交于点0,则∠BOC= .17.如图,若∠1 =∠2,则1l ∥2l ( ),所以∠3 =∠4( ).18.在括号里填上适当的代数式,使等式成立: (1)21664x x ++=( )2;(2)21025p p -+=( )2;(3)229124a ab b -+=( )2;(4)214t t -+=( )2; (5)2244ab a b ++=( )2;(6)222()()m m m n m n +-+-=( )219.A 表示一个多项式,若()23A a b a b ÷-=+,则A= .20.如图,A ,B 两点分别位于一个池塘的两端,小明想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接达到A ,B 的点C ,•找到AC ,BC 的中点D ,E ,并且测出DE 的长为15m ,则A ,B 两点间的距离为_____m .三、解答题21.已知抛物线y =x 2―2x ―3与x 轴的右交点为A ,与y 轴的交点为B ,求经过A 、B 两点的直线的解析式.y =x ―3.22.已知抛物线2y ax = 经过点A(12,-2) (1)求a 的值,并写出这个二次函数的解析式;(2)说出这个二次函数的顶点坐标、对称轴、开口方向.23.如图所示,在梯形ABCD中,AD∥BC,AB=DC,∠D=120°.对角线CA平分∠BCD,且梯形的周长为20,求AC的长及梯形的面积.24.如图,若用 (0,0)表示点A 的位置,试在方格纸上标出点 B(2,4),C(3,0),D(4,4),E(6,0),并顺次连结 ABCDE 得到一个图形,你觉得它是哪一个英文字母?25.如图所示,△ABC≌△ADE,试说明BE=CD的理由.26.通过对某区2005年至2007年旅游景点发展情况的调查,制成了该区旅游景点个数情况的条形统计图和每年旅游景点游客人数平均数情况的条形统计图,利用这两张统计图提供的信息,解答下列问题.(1)这三年接待游客最多的年份是哪一年?(2)这三年中平均每年接待游客多少人?27.利用计算器比较下列各数的大小,并用<”号连结:35,3,310,π33<<<5310π28.对于任何实数a,2a一定等于a吗?29.若 a-1 的相反数是 2,b 的绝对值是 3,求a-b的值.30.如图,已知在方格纸中的每个小方格是边长为 1 的正方形,A、B 两点在小方格的顶点位置如图所示,请在小方格的顶点上确定一点C,使的面积为 2.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.B4.C5.B6.D7.B8.A9.B二、填空题10.60 度3或412.1x ≥且2x ≠13.⑴ 2;⑵ ⎪⎩⎪⎨⎧==2523x y . 14.y=6x-2 15.平行16.120°17.内错角相等,两直线平行;两直线平行,内错角相等 18.(1)8x +;(2)5p -;(3)32a b -;(4)12t -;(5)2a b +;(6)2m n - 19.2223a ab b +-20.30三、解答题21.22.(1)把点(12,-2) 的坐标代入2y ax =得212()2a -= ∴a =—8.∴这个二次函数的解析式28y x =-(2)顶点为 (0,0),对称抽为 y 轴.因为a=-8<0,所以开口向下. 23.AC=S 梯形24.M略26.(1)2007年;(2)215)5605.450340(31=⨯+⨯+⨯万人 27.335310π<<<28. 不一定29.-4或230.如图中的点 C 1、C 2、C 3、C 4、C 5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学二模试卷一.选择题(共12小题)1.2020的相反数是()A.2020B.﹣2020C.D.2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10113.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.4.下列运算正确的是()A.a5+a5=a10B.﹣3(a﹣b)=﹣3a﹣3bC.(mn)﹣3=mn﹣3D.a6÷a2=a45.若点A(m﹣4,1﹣2m)在第三象限,那么m的值满足()A.<m<4B.m>C.m<4D.m>46.下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件7.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°8.如图,从圆O外一点P引圆O的两条切线P A,PB,切点分别为A,B.如果∠APB=60°,P A=8,那么弦AB的长是()A.4B.8C.D.9.如图,某风景区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部BD相距900米,则缆车线路AC的长为()A.B.C.D.1800米10.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.1611.已知M,N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x()A.有最小值,且最小值是B.有最大值,且最大值是﹣C.有最大值,且最大值是D.有最小值,且最小值是﹣12.如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.二.填空题(共6小题)13.使分式有意义的x的取值范围.14.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为.15.若△ABC∽△DEF,且相似比为3:1,△ABC的面积为54,则△DEF的面积为.16.如图,AB为圆O的直径,弦CD⊥AB,垂足为E,若∠BCD=22.5°,AB=2cm,则圆O的半径为.17.如图,直线y=kx与双曲线y=交于A、B两点,BC⊥y轴于点C,则△ABC的面积为.18.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△A1B1C1,当C,B1,C1三点共线时,旋转角为α,连接BB1,交于AC于点D,下面结论:①△AC1C为等腰三角形;②CA=CB1;③α=135°;④△AB1D∽△ACB1;⑤=中,正确的结论的序号为.三.解答题(共8小题)19.计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°20.先化简再求值:(3x+2y)(3x﹣2y)﹣5x(x﹣y)﹣(2x﹣y)2,其中x=﹣,y=﹣1.21.为响应“书香学校,书香班级”的建设号召,平顶山市某中学积极行动,学校图书角的新书、好书不断增加.下面是随机抽查该校若干名同学捐书情况统计图:请根据下列统计图中的信息,解答下列问题(1)此次随机调查同学所捐图书数的中位数是,众数是;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度?(3)若该校有在校生1600名学生,估计该校捐4本书的学生约有多少名?22.如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.23.湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?24.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)25.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k(b﹣a),则称此函数为“k型闭函数”.例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3型闭函数”.(1)①已知一次函数y=2x﹣1(1≤x≤5)为“k型闭函数”,则k的值为;②若一次函数y=ax﹣1(1≤x≤5)为“1型闭函数”,则a的值为;(2)反比例函数y=(k>0,.a≤x≤b且0<a<b)是“k型闭函数”,且a+b=,请求a2+b2的值;(3)已知二次函数y=﹣3x2+6ax+a2+2a,当﹣1≤x≤1时,y是“k型闭函数”,求k的取值范围.26.如图,抛物线y=ax2+bx+c(a<0,a、b、c为常数)与x轴交于A、C两点,与y轴交于B点,A(﹣6,0),C(1,0),B(0,).(1)求该抛物线的函数关系式与直线AB的函数关系式;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l,分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰妤是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标:若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.参考答案与试题解析一.选择题(共12小题)1.2020的相反数是()A.2020B.﹣2020C.D.【分析】直接利用相反数的定义得出答案.【解答】解:2020的相反数是:﹣2020.故选:B.2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×1011【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm=100×10﹣9m=1×10﹣7m.故选:C.3.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层是两个小正方形,第二层是三个小正方形,故选:D.4.下列运算正确的是()A.a5+a5=a10B.﹣3(a﹣b)=﹣3a﹣3bC.(mn)﹣3=mn﹣3D.a6÷a2=a4【分析】根据合并同类项的法则,积的乘方,同底数幂的除法即可作出判断.【解答】解:A、a5+a5=2a5,故选项错误;B、﹣3(a﹣b)=﹣3a+3b,故选项错误;C、(mn)﹣3=m﹣3n﹣3,则选项错误;D、正确.故选:D.5.若点A(m﹣4,1﹣2m)在第三象限,那么m的值满足()A.<m<4B.m>C.m<4D.m>4【分析】根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解即可.【解答】解:∵点A(m﹣4,l﹣2m)在第三象限,∴,解不等式①得,m<4,解不等式②得,m>,所以,m的取值范围是<m<4.故选:A.6.下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件【分析】根据普查和抽样调查的意义可判断出A的正误;根据概率的意义可判断出B、C、的正误;根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定D的正误.【解答】解:A、对载人航天器零部件的检查,应采用全面调查的方式,故错误;B、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故错误;C、抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故正确;D、掷一枚骰子,点数3朝上是随机事件,故错误;故选:C.7.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°【分析】根据平行线的性质对各选项分析判断利用排除法求解.【解答】解:A、∵OC与OD不平行,∴∠1=∠3不成立,故本选项错误;B、∵OC与OD不平行,∴∠2+∠3=180°不成立,故本选项错误;C、∵AB∥CD,∴∠2+∠4=180°,故本选项错误;D、∵AB∥CD,∴∠3+∠5=180°,故本选项正确.故选:D.8.如图,从圆O外一点P引圆O的两条切线P A,PB,切点分别为A,B.如果∠APB=60°,P A=8,那么弦AB的长是()A.4B.8C.D.【分析】根据切线长定理知P A=PB,而∠P=60°,所以△P AB是等边三角形,由此求得弦AB的长.【解答】解:∵P A、PB都是⊙O的切线,∴P A=PB,又∵∠P=60°,∴△P AB是等边三角形,即AB=P A=8,故选:B.9.如图,某风景区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部BD相距900米,则缆车线路AC的长为()A.B.C.D.1800米【分析】此题可利用俯角的余弦函数求得缆车线路AC的长,AC=.【解答】解:由于A处测得C处的俯角为30°,两山峰的底部BD相距900米,则AC==600(米).故选:B.10.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.16【分析】由根与系数的关系即可求出答案.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣5=0的两根,∴x1+x2=2,x1x2=﹣5∴原式=(x1+x2)2﹣2x1x2=4+10=14故选:C.11.已知M,N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x()A.有最小值,且最小值是B.有最大值,且最大值是﹣C.有最大值,且最大值是D.有最小值,且最小值是﹣【分析】先用待定系数法求出二次函数的解析式,再根据二次函数图象上点的坐标特点求出其最值即可.【解答】解:因为M,N两点关于y轴对称,所以设点M的坐标为(a,b),则N点的坐标为(﹣a,b),又因为点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,所以,整理得,故二次函数y=abx2+(a+b)x为y=x2+3x,所以二次项系数为>0,故函数有最小值,最小值为y==﹣.故选:D.12.如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.【分析】找到函数图象与x轴、y轴的交点,得出k=8,即可得出答案.【解答】解:抛物线y=﹣x2+3,当y=0时,x=±;当x=0时,y=3,则抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)为(﹣2,1),(﹣1,1),(﹣1,2),(0,1),(0,2),(1,1),(1,2),(2,1);共有8个,∴k=8;故选:C.二.填空题(共6小题)13.使分式有意义的x的取值范围x≠3.【分析】根据分母不为零分式有意义,可得答案.【解答】解:根据题意,得x﹣3≠0,解得x≠3,故答案为:x≠3.14.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:由于共有8个球,其中蓝球有5个,则从袋子中随机摸出一个球,摸出蓝球的概率是,故答案为:.15.若△ABC∽△DEF,且相似比为3:1,△ABC的面积为54,则△DEF的面积为6.【分析】根据相似三角形的面积比等于相似比的平方计算,得到答案.【解答】解:∵△ABC∽△DEF,相似比为3:1,∴=32,即=9,解得,△DEF的面积=6,故答案为:6.16.如图,AB为圆O的直径,弦CD⊥AB,垂足为E,若∠BCD=22.5°,AB=2cm,则圆O的半径为.【分析】连接OB,根据垂径定理以及勾股定理即可求出OB的长度.【解答】解:连接OB,∵OC=OB,∠BCD=22.5°,∴∠EOB=45°,∵CD⊥AB,CD是直径,∴由垂径定理可知:EB=AB=1,∴OE=EB=1,∴由勾股定理可知:OB=,故答案为:17.如图,直线y=kx与双曲线y=交于A、B两点,BC⊥y轴于点C,则△ABC的面积为3.【分析】根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△BOC=1.5,则易得S△ABC=3.【解答】解:∵直线y=kx与双曲线y=交于A,B两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,而S△BOC=×3=1.5,∴S△ABC=2S△BOC=3.故答案为:3.18.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△A1B1C1,当C,B1,C1三点共线时,旋转角为α,连接BB1,交于AC于点D,下面结论:①△AC1C为等腰三角形;②CA=CB1;③α=135°;④△AB1D∽△ACB1;⑤=中,正确的结论的序号为①②④⑤.【分析】首先根据旋转的性质得出AC1=AC,从而结论①可判断;再通过三角形内部角度及旋转角的计算对②③作出判断;通过∠ABD=∠ACB1,∠AB1D=∠BCD=30°,判定△AB1D∽△ACB1;通过证明△ABD∽△B1CD,利用相似三角形的性质列式计算对⑤作出判断.【解答】解:由旋转的性质可知AC1=AC,∴△AC1C为等腰三角形,即①正确;∵∠ACB=30°,∴∠C1=∠ACB1=30°,又∵B1AC1=∠BAC=45°,∴∠AB1C=75°,∴∠CAB1=180°﹣75°﹣30°=75°,∴CA=CB1;∴②正确;∵∠CAC1=∠CAB1+∠B1AC1=120°,∴旋转角α=120°,故③错误;∵∠BAC=45°,∴∠BAB1=45°+75°=120°,∵AB=AB1,∴∠AB1B=∠ABD=30°,在△AB1D与△BCD中,∵∠ABD=∠ACB1,∠AB1D=∠BCD=30°,∴△AB1D∽△ACB1,即④正确;在△ABD与△B1CD中,∵∠ABD=∠ACB1,∠ADB=∠CDB1,∴△ABD∽△B1CD,∴=,如图,过点D作DM⊥B1C,设DM=x,则B1M=x,B1D=x,DC=2x,DC=2x,CM=x,∴AC=B1C=(+1)x,∴AD=AC﹣CD=(﹣1)x,∴===,即⑤正确.故答案为:①②④⑤.三.解答题(共8小题)19.计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°【分析】第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项去绝对值,最后一项利用特殊角的三角函数值计算,最后合并即可得出结论.【解答】解:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°=4+1+﹣1+1=+5.20.先化简再求值:(3x+2y)(3x﹣2y)﹣5x(x﹣y)﹣(2x﹣y)2,其中x=﹣,y=﹣1.【分析】原式利用平方差公式,单项式乘多项式法则,以及完全平方公式计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=9x2﹣4y2﹣5x2+5xy﹣4x2+4xy﹣y2=9xy﹣5y2,当x=﹣,y=﹣1时,原式=3﹣5=﹣2.21.为响应“书香学校,书香班级”的建设号召,平顶山市某中学积极行动,学校图书角的新书、好书不断增加.下面是随机抽查该校若干名同学捐书情况统计图:请根据下列统计图中的信息,解答下列问题(1)此次随机调查同学所捐图书数的中位数是4本,众数是2本;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度?(3)若该校有在校生1600名学生,估计该校捐4本书的学生约有多少名?【分析】(1)根据捐2本的学生所占的百分比和人数可以求得本次调查的学生数,从而可以得到中位数和众数;(2)根据统计图中的数据,可以计算出在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度;(3)根据统计图中的数据可以计算出该校捐4本书的学生约有多少名.【解答】解:(1)本次调查的人数为:15÷30%=50(人),捐书四本的学生有50﹣9﹣15﹣6﹣7=13(人),则此次随机调查同学所捐图书数的中位数是4本,众数是2本,故答案为:4本,2本;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是:360°×=108°;答:捐2本书的人数所占的扇形圆心角是108度.(3)1600×=416(名),答:该校捐4本书的学生约有416名.22.如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.【分析】(1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE =∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于BD•CE=BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF﹣BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.【解答】证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD==5.又∵BD•CE=BC•DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.23.湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?【分析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【解答】解:(1)设温馨提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温馨提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,,∴50≤y≤52,∵y为正整数,∴y为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,费用为50y+150(100﹣y)=﹣100y+15000,当y=52时,所需资金最少,最少是9800元.24.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)【分析】(1)连接AD,如图,根据圆周角定理得到∠ADB=90°,根据切线的性质得到∠BAC=90°,则利用等角的余角相等得到∠DAB=∠C,然后根据圆周角定理和等量代换得到结论;(2)连接OD,如图,利用(1)中结论得到∠BED=∠C=50°,再利用圆周角定理得到∠BOD的度数,然后根据弧长公式计算的长度.【解答】(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵AC切⊙O于点A∴CA⊥AB,∴∠BAC=90°,∴∠C+∠ABD=90°,而∠DAB+∠ABD=90°,∴∠DAB=∠C,∵∠DAB=∠BED,∴∠C=∠BED;(2)解:连接OD,如图,∵∠BED=∠C=50°,∴∠BOD=2∠BED=100°,∴的长度==π.25.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k(b﹣a),则称此函数为“k型闭函数”.例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3型闭函数”.(1)①已知一次函数y=2x﹣1(1≤x≤5)为“k型闭函数”,则k的值为2;②若一次函数y=ax﹣1(1≤x≤5)为“1型闭函数”,则a的值为﹣1;(2)反比例函数y=(k>0,.a≤x≤b且0<a<b)是“k型闭函数”,且a+b=,请求a2+b2的值;(3)已知二次函数y=﹣3x2+6ax+a2+2a,当﹣1≤x≤1时,y是“k型闭函数”,求k的取值范围.【分析】(1)①直接利用“k型闭函数”的定义即可得出结论;②分两种情况:利用“k型闭函数”的定义即可得出结论;(2)先判断出函数的增减性,利用“k型闭函数”的定义得出ab=1,即可得出结论;(3)分四种情况,各自确定出最大值和最小值,最后利用“k型闭函数”的定义即可得出结论;【解答】解:(1)①一次函数y=2x﹣1,当1≤x≤5时,1≤y≤9,∴9﹣1=k(5﹣1),∴k=2,故答案为:2;②当α>0时,∵1≤x≤5,∴a﹣1≤y≤5a﹣1,∵函数y=ax﹣1(1≤x≤5)为“1型闭函数”,∴(5a﹣1)﹣(a﹣1)=5﹣1,∴a=1;当a<0时,(a﹣1)﹣(5a﹣1)=5﹣1,∴a=﹣1;故答案为:﹣1;(2)∵反比例函数y=,∵k>0,∴y随x的增大而减小,当a≤x≤b且1<a<b是“1型闭函数”,∴=k(b﹣a),∴ab=1,∵a+b=,∴a2+b2=(a+b)2﹣2ab=2020﹣2×1=2018;(3)∵二次函数y=﹣3x2+6ax+a2+2a的对称轴为直线x=a,∵当﹣1≤x≤1时,y是“k型闭函数”,∴当x=﹣1时,y=a2﹣4a﹣3,当x=1时,y=a2+8a﹣3,当x=a时,y=4a2+2a,①如图1,当a≤﹣1时,当x=﹣1时,有y max=a2﹣4a﹣3,当x=1时,有y min=a2+8a﹣3∴(a2﹣4a﹣3)﹣(a2+8a﹣3)=2k,∴k=﹣6a,∴k≥6,②如图2,当﹣1<a≤0时,当x=a时,有y max=4a2+2a,当x=1时,有y min=a2+8a﹣3∴(4a2+2a)﹣(a2+8a﹣3)=2k,∴k=(a﹣1)2,∴≤k<6;③如图3,当0<a≤1时,当x=a时,有y max=4a2+2a,当x=﹣1时,有y min=a2﹣4a﹣3∴(4a2+2a)﹣(a2﹣4a﹣3)=2k,∴k=(a+1)2,∴<k≤6,④如图4,当a>1时,当x=1时,有y max=a2+8a﹣3,当x=﹣1时,有y min=a2﹣4a﹣3∴(a2+8a﹣3)﹣(a2﹣4a﹣3)=2k,∴k=﹣6a,∴k>6,即:k的取值范围为k≥.26.如图,抛物线y=ax2+bx+c(a<0,a、b、c为常数)与x轴交于A、C两点,与y轴交于B点,A(﹣6,0),C(1,0),B(0,).(1)求该抛物线的函数关系式与直线AB的函数关系式;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l,分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰妤是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标:若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.【分析】(1)根据已知条件可以设抛物线解析式为y=a(x+6)(x﹣1),然后把点B的坐标代入函数解析式求得系数a的值即可;利用待定系数法求得直线AB的解析式;(2)由点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,得到D(m,m+),当DE为底时,作BG⊥DE于G,根据等腰三角形的性质得到EG=GD=ED,GM=OB=,列方程即可得到结论;(3)i:根据已知条件得到ON=OM′=4,OB=,由∠NOP=∠BON,特殊的当△NOP∽△BON时,根据相似三角形的性质得到===,于是得到结论;ii:根据题意得到N在以O为圆心,4为半径的半圆上,由①知,==,得到NP=NB,于是得到(NA+NB)的最小值=NA+NP,此时N,A,P三点共线,根据勾股定理得到结论.【解答】解:设抛物线解析式为y=a(x+6)(x﹣1),(a≠0).将B(0,)代入,得=a(x+6)(x﹣1),解得a=﹣,∴该抛物线解析式为y=﹣(x+6)(x﹣1)或y=﹣x2﹣x+.设直线AB的解析式为y=kx+n(k≠0).将点A(﹣6,0),B(0,)代入,得,解得,则直线AB的解析式为:y=x+;(2)∵点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,∴D(m,m+),当DE为底时,如图1,作BG⊥DE于G,则EG=GD=ED,GM=OB=,∵DM+DG=GM=OB,∴m++(﹣m2﹣m+﹣m﹣)=,解得:m1=﹣4,m2=0(不合题意,舍去),∴当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;(3)i:存在,如图2.∵ON=OM′=4,OB=,∵∠NOP=∠BON,∴当△NOP∽△BON时,===,∴不变,即OP=ON=×4=3,∴P(0,3);ii:∵N在以O为圆心,4为半径的半圆上,由i知,==,∴NP=NB,∴(NA+NB)的最小值=NA+NP,∴此时N,A,P三点共线,∴(NA+NB)的最小值==3.。

相关文档
最新文档