七年级数学上册 全册单元测试卷测试卷附答案

合集下载

七年级上册数学全册单元试卷综合测试卷(word含答案)

七年级上册数学全册单元试卷综合测试卷(word含答案)

七年级上册数学全册单元试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.2.如图,直线AB、CD相交于点O,已知,OE把分成两个角,且::3(1)求的度数;(2)过点O作射线,求的度数.【答案】(1)解:,,::3,;(2)解:,,,OF在的内部时,,,,OF在的内部时,,,,综上所述或【解析】【分析】(1)根据对顶角相等得出,然后根据::3 即可算出∠BOE的度数;(2)根据角的和差,由算出∠DOE的度数,根据垂直的定义得出∠EOF=90°;当OF在的内部时,根据,算出答案;OF在的内部时,根据,算出但,综上所述即可得出答案。

七年级数学上册 全册单元测试卷检测题(WORD版含答案)

七年级数学上册 全册单元测试卷检测题(WORD版含答案)

七年级数学上册全册单元测试卷检测题(WORD版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图1,若∠COD= ∠AOB,则∠COD是∠AOB的内半角.(1)如图1,已知∠AOB=70°,∠AOC=25°,∠COD是∠AOB的内半角,则∠BOD=________.(2)如图2,已知∠AOB=60°,将∠AOB绕点O按顺时针方向旋转一个角度口(0<a<60°)至∠COD,当旋转的角度a为何值时,∠COB是∠AOD的内半角.(3)已知∠AOB=30°,把一块含有30°角的三角板如图3叠放,将三角板绕顶点O以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA,OB,OC,OD 能否构成内半角,若能,请求出旋转的时间;若不能,请说明理由.【答案】(1)10°(2)解:∵∠AOB绕点O按顺时针方向旋转一个角度口(0<a<60°)至∠COD,∴∠AOB=∠COD=60°∴∠AOC=∠BOD=a∴a+∠COB=60°∵∠COB是∠AOD的内半角∴∠COB=∠AOD∴2∠COB=∠COB+2a∴∠COB=2a∴a+2a=60°解之:a=20°即当旋转的角度a为20°时,∠COB是∠AOD的内半角。

(3)解:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角,理由:设按顺时针方向旋转一个角度α,旋转的时间为t如图1∵∠BOC是∠AOD的内半角,∠AOC=∠BOD=α∴∠AOD=30°+α,∠BOC=∠AOD=30°-α∴(30°+α)=30°-α解之:α=10°∴t=s;如图2∵∠BOC是∠AOD的内半角,∠AOC=∠BOD=α∴∠AOD=30°+α,∠BOC=∠AOD=α-30°∴(30°+α)=α-30°解之:α=90°∴t==30s;如图3∵∠AOD是∠BOC的内半角,∠AOC=∠BOD=360°-α∴∠BOC=360°+30°-α,∠AOD=∠BOC=360°-α-30°∴(360°+30°-α)=360°-α-30°解之:α=330°∴t==110s;如图4∵∠AOD是∠BOC的内半角,∠AOC=∠BOD=360°-α∴∠BOC=360°+30°-α,∴(360°+30°-α)=30°+30°-(360°+30°-α)解之:α=350°∴t=s;综上所述,当旋转的时间为s或30s或110s或s时,射线OA,OB,OC,OD能构成内半角。

人教版七年级数学上册单元测试题全套含答案

人教版七年级数学上册单元测试题全套含答案

输入 x ―→ ×(-3) ―→ -2 ―→ 输出 16.太阳的半径为 696000 千米,用科学记数法表示为________千米;把 210400 精确到万位是________. 17.已知(a-3)2 与|b-1|互为相反数,则式子 a2+b2 的值为________. 18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出 a+b+c=________.
-1 A.3 个 B.4 个 C.5 个 D.6 个 7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是 1cm),刻度尺上的“0cm”和“8cm”分别对应 数轴上的-3.6 和 x,则 x 的值为( )
A.4.2 B.4.3 C.4.4 D.4.5 8.有理数 a,b 在数轴上的位置如图所示,下列各式成立的是( )
A.b>0 B.|a|>-b C.a+b>0 D.ab<0 9.若|a|=5,b=-3,则 a-b 的值为( ) A.2 或 8 B.-2 或 8 C.2 或-8 D.-2 或-8
10.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发
5
3
___________________.
13.绝对值大于 4 而小于 7 的所有整数之和是________.
14.点 A,B 表示数轴上互为相反数的两个数,且点 A 向左平移 8 个单位到达点 B,则这两点所表示
的数分别是________和________.
15.如图是一个简单的数值运算程序.当输入 x 的值为-1 时,则输出的数值为________.
现的规律得出 22016 的末位数字是( )
A.2 B.4 C.6 D.8
二、填空题(每小题 3 分,共 24 分)

新人教版七年级数学上册第一单元测试卷(含答案)

新人教版七年级数学上册第一单元测试卷(含答案)

新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。

13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册最新人教版七年级数学上册单元测试题及答案全册第一章有理数末章综合检测时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.4D.-42.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10104.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A.3℃B.-3℃C.4℃D.-2℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.(-3)的倒数是()A.3B.-2C.3D.27.下列运算错误的是()A.-8×2×6=-96B.(-1)2014+(-1)2015=0C.-(-3)2=-9D.2÷4÷3×3=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b0 D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____。

华师大版七年级上册数学单元测试题全套(含答案)

华师大版七年级上册数学单元测试题全套(含答案)

华师大版七年级上册数学单元测试题全套(含答案)(含期中期末试题) 第1、2章测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷一、选择题(每小题3分,共24分)1.如果向右走5步记为+5,那么向左走3步记为( B ) A .+3B .-3C .+13D .-132.下列说法正确的是( A ) A .不存在既是正数又是负数的数 B .最小的整数是零C .一个有理数不是正数就是负数D .有理数可分为整数、分数和零三类 3.下列各式中,成立的是( A ) A .22=(-2)2 B .23=(-2)3 C .-22=|-2|2D .(-2)3=|(-2)3|4.A 为数轴上表示-1的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为(A)A .-3B .3C .1D .1或-35.身份证号码告诉我们很多信息,某人的身份证号码是130503************,其中13,05,03是此人所属的省(市、自治区)、市、县(市、区)的编码,1967、04、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是321084************的人的生日是( C )A .8月10日B .10月12日C .1月20日D .12月8日6.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为( B )A .44×108B .4.4×109C .4.4×108D .4.4×10107.下列运算正确的是( D ) A .(-6)+4=-10B .(-4)-(-6)=-2C .(-6)×[-(-4)]=24D .(-4)÷(-6)=238.已知实数a ,b 在数轴上的位置如下图所示,下列结论错误的是( A )A .|a|<1<|b|B .1<-a<bC .1<|a|<bD .-b<a<1第Ⅱ卷二、填空题(每小题3分,共24分)9.-3的倒数是 -13 ,相反数是 3 .10.在下列各数14,10%,-π3,2.5,0,-0.35·,7,214中,属于正有理数的有 14,10%,2.5,7,214.11.数轴上-3.4与2.1之间表示整数的点有 6 个.12.一套运动装标价200元,按标价的八折销售,则这套运动装的实际售价为 160 元. 13.一个数加7,再乘以3,然后减去12,再除以6,最后得到8,则这个数是 13 . 14.若x ,y为有理数,且|x +2|+(y -2)2=0,则⎝⎛⎭⎫x y 2 018= 1 .15.计算25-3×[32+2×(-3)]+5的结果为 21 . 16.观察下面一列数,按某种规律在横线上填上适当的数: 13,-215,335,-463, 599 , -6143. 三、解答题(要求写出必要的解题过程;共8题,17题15分,18题6分,19题-22题个9分,23题6分,24题9分,共72分)17.计算题:(1)⎝⎛⎭⎫-12-⎝⎛⎭⎫-16+⎝⎛⎭⎫-45-⎪⎪⎪⎪-23; 解:原式=-12+16-45-23=-1530+530-2430-2030=-5430=-1.8 .(2)⎝⎛⎭⎫14+16-12×(-12);解:原式=14×(-12)+16×(-12)-12×(-12)=-3-2+6=1.(3)(-6)÷(-4)÷⎝⎛⎭⎫-65; 解:原式=32×⎝⎛⎭⎫-56=-54 .(4)⎝⎛⎭⎫-95×⎝⎛⎭⎫-532+⎝⎛⎭⎫-38÷⎣⎡⎦⎤⎝⎛⎭⎫-12-14. 解:原式=⎝⎛⎭⎫-95×259+⎝⎛⎭⎫-38÷⎝⎛⎭⎫-34=-5+12=-92 .18.把下列各数填在相应的大括号里:+8,+34,0.275,2,0,-1.04,227,-9,-100,-16.(1)正整数集:{ +8,2 …}; (2)负整数集:{ -9,-100 …}; (3)正分数集:{ +34,0.275,227 …};(4)负分数集:{ -1.04,-16…};(5)整数集:{ +8,2,0,-9,-100 …};19.已知a 的相反数为-2,b 的倒数为-12,c 的绝对值为2,求a +b +c 2的值.解:因为a 的相反数为-2,b 的倒数为-12,c 的绝对值为2,所以a =2,b =-2,c=±2,所以a +b +c 2=2+(-2)+(±2)2=2-2+4=4.20.(1)请你在数轴上表示下列有理数:-12,|-2.5|,0,-22,-(-4);(2)将上列各数用“<”号连接起来. 解:(1)数轴表示如下:(2)由(1)中的数轴可得 -22<-12<0<|-2.5|<-(-4).21.商人小周于上周日买进某农产品10 000 kg ,每千克2.4元,进入批发市场后共占5个摊位,每个摊位最多能容纳2 000 kg 该品种的农产品,每个摊位的市场管理价为每天20元.下表为本周内该农产品每天的批发价格比前一天的涨跌情况.(涨记为正,跌记为负)(1)星期四该农产品价格为每千克多少元?(2)本周内该农产品的最高价格为每千克多少元?最低价格为每千克多少元? (3)小周在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.解:(1)2.4+0.3-0.1+0.25+0.2=3.05(元). (2)星期一的价格是:2.4+0.3=2.7(元); 星期二的价格是:2.7-0.1=2.6(元); 星期三的价格是:2.6+0.25=2.85(元); 星期四的价格是:2.85+0.2=3.05(元); 星期五的价格是:3.05-0.5=2.55(元).因而最高价格为每千克3.05元,最低价格为每千克2.55元.(3)盈利为(2 500×2.7-5×20)+(2 000×2.6-4×20)+(3 000×2.85-3×20)+(1 500×3.05-2×20)+(1 000×2.55-20)-10 000×2.4=6 650+5 120+8 490+4 535+2 530-24 000=27 325-24 000=3 325(元).所以他在本周的买卖中共赚了3 325元.22.有关资料表明:某地区高度每增加100米,气温降低0.6℃,小明和小红想出一个测量山峰高度的办法,小红在山脚,小明在山顶,他们同时在上午9时测得山脚温度是3.6℃,山顶温度是-2.4℃.请你求出山峰的高度.解:由题意得[3.6-(-2.4)]÷0.6×100=6÷0.6×100=1 000(米). 答:山峰的高度为1 000米.23.已知|x|=4,|y|=12,且x +y<0,求xy的值.解:因为|x|=4,|y|=12,所以x =±4,y =±12,又因为x +y<0,所以x =4不合题意,故当x =-4,y =12时,xy=-8,当x =-4,y =-12时,xy =8.24.已知数轴上两点A ,B 对应的数分别为-1,3,点P 为数轴上一动点,其对应的数为x.(1)若点P 到点A ,点B 的距离相等,求点P 对应的数;(2)数轴上是否存在点P ,使点P 到点A ,点B 的距离之和为6?若存在,请求出x 的值;若不存在,说明理由;(3)点A ,点B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以6个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间,求当点A 与点B 重合时,点P 所经过的总路程是多少?解:(1)点P 对应的数是1.(2)因为-2-(-1)=-1,-1的绝对值是1,-2-3=-5,-5的绝对值是5,1+5=6.因为4-(-1)=5,5的绝对值是5,4-3=1,1的绝对值是1,5+1=6,故点P 对应的数为-2或4.(3)设经过x 分钟点A 与点B 重合,根据题意得2x =4+x ,解得x =4.所以6x =24. 答:点P 所经过的总路程是24个单位长度.华师大版七年级数学上册第3章测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷一、选择题(每小题3分,共24分)1.用代数式表示“a 的3倍与b 的差的平方”,正确的是( A ) A .(3a -b)2 B .3(a -b)2 C .3a -b 2D .(a -3b)22.下列各组中不是同类项的是( C ) A.12abc 与13abc B .0.2ab 2与0.5b 2a C .23与b 3D.12m 3n 2与-n 2m 3 3.把多项式5x -3x 3-5+x 2按字母x 的降幂排列后,第二项是( D ) A .5xB .-3x 3C .-5D .x 24.化简m -n -(m +n)的结果是(C) A .0B .2mC .-2nD .2m -2n5.若家庭电话月租金为21元,每次市内通话费平均0.3元,每次长途通话费平均0.7元,若半年内打市内电话m 次,打长途电话n 次,则半年内应付话费( D )A .(0.3m +0.7n)元B .(21+0.3m +0.7n)元C .21mn 元D .(21×6+0.3m +0.7n)元6.下列四个判断,其中错误的是( C ) A .数字0也是单项式B .单项式a 的系数与次数都是1 C.12x 2y 2是二次单项式 D .-2ab 3的系数是-237.下面去括号错误的是( A ) A .3(a -b)=3a -bB .a +(b -c)=a +b -cC .a -(b +c)=a -b -cD .-(a -2b)=-a +2b8.若a<0,ab<0,则|b -a +1|-|a -b -4|的值( B ) A .3B .-3C .2b -2a +5D .不能确定第Ⅱ卷二、填空题(每小题3分,共24分)9.在代数式-2xy ,-1,x 2+1,x +3y ,-m 2n ,1x,4-x 2,ab 2中,多项式有 3 个.10.多项式x 2-x +5减去3x 2+3的结果为 -2x 2-x +2 .11.对于有理数a ,b ,定义a ⊙b =3a +2b ,则(x +y)⊙(x -y)化简后得 5x +y . 12.已知一个三角形三边的长分别为(2x +1)cm ,(x 2-2)cm ,(x 2-2x +1)cm ,则该三角形的周长为 2x 2 cm.13.当2a -3b -2=0,则7-a +32b 的值为 6 .14.已知a ,b 在数轴上的位置如图所示,化简|a|+|b -a|-2|a +b|= 3b .第14题图第16题图15.一个多项式的2倍减去5mn -4得-3mn +2,则这个多项式是 mn -1 . 16.当n 等于1,2,3,…,时,由白色小正方形和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于 n 2+4n .(用n 表示,n 是正整数)三、解答题(要求写出必要的解题过程;共8题,17题-22题每题8分,23题、24题每题12分,共72分)17.化简:(1)(3x 2-2)-2(2x 2-4x +1)+3(x 2-4x); 解:原式=3x 2-2-4x 2+8x -2+3x 2-12x = (3x 2-4x 2+3x 2)+(8x -12x)+(-2-2) = 2x 2-4x -4.(2)-2(ab -3a 2)-[2b 2-(5ab +a 2)+2ab]. 解:原式=-2ab +6a 2-(2b 2-5ab -a 2+2ab) = -2ab +6a 2-2b 2+5ab +a 2-2ab = (-2ab +5ab -2ab)+(6a 2+a 2)-2b 2 = ab +7a 2-2b 2.18.先化简,再求值:(1)2(3x 2-2xy +4y 2)-3(2x 2-xy +2y 2),其中x =2,y =1. 解:原式=6x 2-4xy +8y 2-6x 2+3xy -6y 2=-xy +2y 2.当x =2,y =1时,原式=-2+2=0.(2)2[ab +(-3a)]-3(2b -ab),其中a +b =-2,ab =3. 解:原式=2ab -6a -6b +3ab =5ab -6(b +a). 当a +b =-2,ab =3时,原式=15-6×(-2)=27.19.已知:A =3a 2-2a +1,B =5a 2-3a +2,求(1)2A -3B ;(2)13A -12B.解:(1)2A -3B =2(3a 2-2a +1)-3(5a 2-3a +2) =-9a 2+5a -4.(2)13A -12B =13(3a 2-2a +1)-12(5a 2-3a +2) =a 2-23a +13-52a 2+32a -1=-32a 2+56a -23.20.关于x ,y 的多项式6mx 2+4nxy +2x +2xy -x 2+y +4不含二次项,求6m -2n +2的值.解:因为多项式6mx 2+4nxy +2x +2xy -x 2+y +4=(6m -1)x 2+(4n +2)xy +2x +y +4不含二次项,即二次项系数为0,即6m -1=0,所以m =16,4n +2=0,所以n =-12,把m ,n 的值代入6m -2n +2中,原式=6×16-2×⎝⎛⎭⎫-12+2=4.21.若a ,b ,c 满足13(a -5)2+5|c|=0,且-2x 2y b +1与3x 2y 3是同类项,求(2a 2-3ab +6b 2)-(3a 2-abc +9b 2-4c 2)的值.解:由题意,得a -5=0,b +1=3,c =0,所以a =5,b =2,c =0. 所以原式=2a 2-3ab +6b 2-3a 2+abc -9b 2+4c 2 =-a 2-3ab -3b 2+abc +4c 2=-52-3×5×2-3×22+0+0=-67.22.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节水的目的.如图所示是该市自来水收费价格价目表.(1)填空:若该户居民2月份用水4 m3,则应收水费8 元;(2)若该户居民3月份共用水a m3(其中6<a<10),则应收水费多少元?(用a的整式表示并化简)(3)若该户居民4,5月份共用水15 m3(5月份用水量超过了4月份),设4月份用水x m3,求该户居民4,5月份共交水费多少元?(用x的整式表示并化简)解:(2)根据题意得4(a-6)+6×2=(4a-12)元.(3)由5月份用水量超过了4月份,得到4月份用水量少于7.5 m3,当4月份的用水量少于5 m3时,5月份用水量超过10 m3,则4,5月份共交的水费为2x+8(15-x-10)+4×4+6×2=(-6x+68)元;当4月份用水量不低于5 m3,但不超过6 m3时,5月份用水量不少于9 m3,但不超过10 m3,则4,5月份交的水费为2x+4(15-x-6)+6×2=(-2x+48)元;当4月份用水量超过6 m3,但少于7.5 m3时,5月份用水量超过7.5 m3但少于9 m3,则4,5月份交的水费为4(x-6)+6×2+4(15-x-6)+6×2=36(元).23.如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积(计算结果保留π).解:(1)(ab-πr2)m2;(2)S=400×100-100π=(40 000-100π)m2.24.我国出租车的收费标准因地而异.甲市为起步价6元,3千米后每千米为1.5元;乙市为起步价10元,3千米后每千米为1.2元.(1)试问在甲、乙两市乘坐出租车行驶x(x>3)千米的差价是多少元?(2)如果在甲、乙两市乘坐出租车行驶的路程都为10千米.那么哪个城市的收费标准高一些?高多少?解:(1)在甲市乘坐出租车行驶x(x>3)千米的价格是6+1.5(x-3)=(1.5x+1.5)元.在乙市乘坐出租车行驶x(x>3)千米的价格是10+1.2(x-3)=(1.2x+6.4)元.所以在甲、乙两市乘坐出租车行驶x(x>3)千米的差价是1.5x+1.5-1.2x-6.4=(0.3x-4.9)元.答:在甲、乙两市乘坐出租车行驶x(x>3)千米的差价是(0.3x-4.9)元.(2)当乘坐出租车行驶的路程为10千米时,在甲市收费为1.5×10+1.5=16.5(元),在乙市收费为1.2×10+6.4=18.4(元).因为18.4>16.5,所以在乙市的收费标准高一些.因为18.4-16.5=1.9(元),所以高1.9元.华师大版七年级数学上册第4章测试题(含答案)(考试时间:120分钟满分:120分)第Ⅰ卷一、选择题(每小题3分,共24分)1.下面四个图形哪一个是四棱锥的展开图( C )2.下列四个几何体中,主视图与左视图相同的几何体有( D )A.1个B.2个C.3个D.4个3.下列说法正确的是( D )A.延长直线AB B.延长射线OCC.作直线AB=BC D.延长线段AB4.如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( C )A.60°B.90°C.120°D.150°第4题图第5题图第8题图5.如图,某测绘装置上一枚指针原来指向南偏西50°,把这枚指针按逆时针方向旋转14圆周,则结果指针的指向是( C )A.南偏东50°的方向B.北偏西40°的方向C.南偏东40°的方向D.东南方向6.一个角和它的余角的度数比是1∶2,则这个角的补角的度数是( C )A.120°B.140°C.150°D.160°7.两根木条,一根长20 cm,一根长24 cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( C )A.2 cm B.4 cmC.2 cm或22 cm D.4 cm或44 cm8.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数可能是( D )A.5或6 B.5或7C.4或5或6 D.5或6或7第Ⅱ卷二、填空题(每小题3分,共24分)9.在如下所示的图形中,柱体有①②③⑦,锥体有⑤⑥,球体有④.10.计算:3.76°= 3°45′36″ .20°13′48″= 20.23° .11.从多边形的一个顶点出发,连接这个点和其他顶点,把多边形分割成16个三角形,则这个多边形的边数是 18 .12.把线段MN 延长到点P ,使NP =12MN ,点A 为MN 的中点,点B 为NP 的中点,则AB = 34MN.13.如图所示,OM 平分∠AOB ,∠NOB =13∠AOB ,且∠AOM =60°,则∠MON 的大小为 20° .第13题图第15题图14.如图是一个正方体的展开图,在a ,b ,c 处填上一个适当的数,使得正方体相对的面上的两数互为相反数,则c ab 的值为 -715.15.如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是 22 .16.若∠α和∠β互为余角,∠α和∠γ互为补角,∠β与∠γ的和等于周角的13,则∠α,∠β,∠γ这三个角分别是 75°,15°,105° .三、解答题(要求写出必要的解题过程;共8题,17题12分,18题-23题每题8分,24题12分,共72分)17.计算:(1)153°19′42″-26°40′28″; (2)90°3″-57°21′44″; (3)33°15′16″×5;(4)175°16′30″-47°30′÷6.解:(1)原式=126°39′14″. (2)原式=32°38′19″. (3)原式=166°16′20″. (4)原式=167°21′30″.18.如图,AD =12DB ,点E 是BC 的中点,BE =15AC =2 cm ,求线段DE 的长.解:因为BE =15AC =2 cm ,所以AC =10 cm.因为点E 是BC 的中点,所以BE =EC=2 cm ,BC =2BE =2×2=4 cm ,则AB =AC -BC =10-4=6 cm.又因为AD =12DB ,所以AB =AD +DB =AD +2AD =3AD =6 cm ,所以AD =2 cm ,DB =4 cm ,所以DE =DB +BE =4+2=6 cm.19.一艘客轮沿东北方向OC 行驶,在海上O 处发现灯塔A 在北偏西30°的方向上,灯塔B 在南偏东60°的方向上.(1)在图中画出射线OA ,OB ,OC ;(2)求∠AOC 与∠BOC 的度数,你发现了什么? 解:(1)如图所示;(2)∠AOC =∠BOC =75°,发现OC 为∠AOB 的平分线.20.如图,OE 为∠COA 的平分线,∠AOE =60°,∠AOB =∠COD =16°. (1)求∠BOC 的度数;(2)比较∠AOC 与∠BOD 的大小.解:(1)因为OE平分∠AOC,所以∠COA=2∠AOE=120°,所以∠BOC=∠AOC -∠AOB=120°-16°=104°;(2)因为∠BOD=∠BOC+∠COD=104°+16°=120°,所以∠AOC=∠BOD.21.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示,方格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的正视图和左视图.(2)根据三视图,请你求出这个组合几何体的表面积(包括底面积).解:(1)图形如图所示;(2)几何体的表面积为:(3+4+5)×2=24.22.如图,点O为直线AB上一点,将直角三角板OCD的直角顶点放在点O处.已知∠AOC的度数比∠BOD的度数的3倍多10度.(1)求∠BOD的度数;(2)若OE,OF分别平分∠BOD,∠BOC,求∠EOF的度数.(写出必要的推理过程)解:(1)设∠BOD=x°,∵∠AOC的度数比∠BOD的度数的3倍多10度,且∠COD =90°,∴x+(3x+10)+90=180,解得x=20,∴∠BOD=20°;(2)∵OE,OF分别平分∠BOD,∠BOC,∴∠BOE=12∠BOD,∠BOF=12∠BOC=12(∠BOD+∠COD),∴∠EOF=∠BOF-∠BOE=12∠COD=45°.23.如图是一个食品包装盒的表面展开图. (1)请你写出这个包装盒的几何体名称;(2)根据图中所标尺寸,用a ,b 表示这个几何体的全面积S(侧面积与底面积之和),并计算当a =1,b =4时,S 的值.解:(1)长方体.(2)S =2ab ×2+2×2a ×a +2×a ×b =4ab +4a 2+2ab =6ab +4a 2. 当a =1,b =4时,S =6×1×4+4×12=28.24.如图,点B 是线段AD 上一动点,沿A →D →A 以2 cm/s 的速度往返运动1次,点C 是线段BD 的中点,AD =10 cm ,设点B 运动时间为t 秒(0≤t ≤10).(1)当t =2时,①AB =________cm ;②求线段CD 的长度; (2)用含t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.解:(1)①4;②因为AD =10 cm ,AB =4 cm ,所以BD =10-4=6 cm.因为点C 是线段BD 的中点,所以CD =12BD =12×6=3 cm ;(2)因为点B 是线段AD 上一动点,沿A →D →A 以2 cm/s 的速度往返运动,所以当0≤t ≤5时,AB =2t cm ;当5<t ≤10时,AB =10-(2t -10)=(20-2t)cm ;(3)不变.因为AB 的中点为点E ,点C 是线段BD 的中点,所以EC =12(AB +BD)=12AD=12×10=5 cm.华师大版七年级数学上册第5章测试题(含答案)(考试时间:120分钟满分:120分)第Ⅰ卷一、选择题(每小题3分,共24分)1.如图,直线AB,CD交于点O,下列说法正确的是( B )A.∠AOD=∠BOD B.∠AOC=∠DOBC.∠AOC+∠BOD=180°D.以上都不对第1题图第2题图第3题图2.如图所示,对于∠1和∠2的位置关系,下列说法中正确的是( B )A.对顶角B.同位角C.内错角D.互补的角3.如图,OM⊥NP,ON⊥NP,所以ON与OM重合,理由是( B )A.两点确定一条直线B.经过一点有且只有一条直线与已知直线垂直C.过一点只能作一条直线D.垂线段最短4.如图,在下列条件中,能够判断AD∥BC的是( A )A.∠DAC=∠BCA B.∠DCB+∠ABC=180°C.∠ABD=∠BDC D.∠BAC=∠ACD第4题图第6题图第7题图5.若点A到直线l的距离为7 cm,点B到直线l的距离为3 cm,则线段AB的长度为( D )A.10 cm B.4 cmC.10 cm或4 cm D.至少4 cm6.如图,AB∥CD,FG⊥CD于点N,∠EMB=α,则∠EFG等于( B )A.180°-α B.90°+α C.180°+α D.270°-α7.如图,下列条件:①∠1=∠5;②∠2=∠C;③∠3=∠4;④∠3=∠5;⑤∠4+∠5+∠BDE=180°中,能判断DE∥BC的是(C)A.只有②④B.只有①②C.只有②④⑤D.只有②8.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α-β,③β-α,④360°-α-β,∠AEC的度数可能是( D )A.①②③B.①②④C.①③④D.①②③④第8题图第9题图第10题图第Ⅱ卷二、填空题(每小题3分,共24分)9.如图,∠1和∠3是对顶角;∠1和∠4是内错角;∠2和∠5是同旁内角;∠3和∠4是同位角.10.如图,AB∥DE,FG⊥BC于点F,∠CDE=40°,则∠FGB=50°.11.含30°角的直角三角板与直线l1,l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=60°.第11题图第12题图第13题图12.(随州中考)如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是110°.13.如图,AB∥CD,EF⊥CD于点F,交AB于点E,若∠1=25°,则∠2=65°.14.如图,已知直线AB,CD相交于点O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y+4)°,则∠AOD的度数为110°.第14题图第16题图15.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C 处,则王强两次行进路线的夹角为35°.16.如图,DC∥EF∥AB,EH∥DB,则图中与∠AHE相等的角有∠FEH,∠DGE,∠GDC,∠FGB,∠GBA .三、解答题(要求写出必要的解题过程:共8题,17题-24题每题9分,共72分)17.如图,直线AB,CD相交于点O,∠AOC=70°,OE把∠BOD分成两部分,且∠BOE ∶∠EOD=2 ∶3,求∠AOE的度数.解:因为∠BOD=∠AOC=70°,∠BOE ∶∠EOD=2 ∶3,∠BOE+∠EOD=∠BOD =70°,所以∠BOE=28°,∠EOD=42°,所以∠AOE=180°-∠BOE=152°.18.如图所示,直线AB,CD,EF被MN所截,∠1=∠2,∠1+∠3=180°.试说明:CD∥EF.解:因为∠1=∠2,所以CD∥AB,因为∠1+∠3=180°,所以EF∥AB,所以CD∥EF.19.如图,点P是∠AOB的边OB上的一点.(1)过点P画OA的垂线,垂足为H;过点P画OB的垂线,交OA于点C;(2)线段PH的长度是点P到OA 的距离,线段CP 的长度是点C到直线OB的距离.线段PC,PH,OC这三条线段的大小关系是PH<PC<OC (用“<”号连接).解:如图所示.20.如图所示,已知∠A=70°,点D是∠BAC内的一点,DF⊥AB于点F,DG∥AC 交AB于点G,DE∥AB交AC于点E,求∠GDF,∠DEC的度数.解:因为DG∥AC,所以∠DGF=∠A=70°,又因为DF⊥AB,所以∠GDF=90°-∠DGF=20°,因为DE∥AB,所以∠DEC=∠A=70°.21.如图所示,∠BAP+∠APD=180°,∠1=∠2.试说明:∠E=∠F.解:因为∠BAP+∠APD=180°,所以AB∥CD,所以∠BAP=∠APC,又因为∠1=∠2,所以∠FPA=∠EAP,所以AE∥PF,所以∠E=∠F.22.如图,已知∠1+∠2=180°,∠3=∠B,试猜想∠AED和∠C的关系,并说明理由.解:猜想:∠AED=∠C.理由:因为∠2+∠ADF=180°,∠1+∠2=180°,所以∠1=∠ADF,所以AD∥EF,所以∠3=∠ADE.因为∠3=∠B,所以∠B=∠ADE,所以DE∥BC,所以∠AED=∠C.23.如图①,A,B是人工湖岸上的两点,从点A看点B,测得∠BAC=60°,现在过A ,B 两点有两条互相平行的道路l 1和l 2,从l 1上的点C 经点E 到l 2上的点D 修一条公路,如果∠ACE =150°,∠BDE =100°,求:①②(1)∠ABD 的度数;(2)∠CED 的度数.解:(1)因为l 1∥l 2,所以∠ABD +∠BAC =180°.又因为∠BAC =60°,所以∠ABD =180°-∠BAC =120°. (2)如图②,过点E 作l 1的平行线EF ,则∠FEC +∠ACE =180°.又因为∠ACE =150°,所以∠FEC =180°-∠ACE =30°.因为l 1∥l 2,l 1∥EF ,所以l 2∥EF ,所以∠BDE +∠DEF =180°.又因为∠BDE =100°,所以∠DEF =180°-∠BDE =80°.所以∠CED =∠DEF +∠FEC =80°+30°=110°.24.如图,已知直线CB ∥DA ,∠C =∠DAB =100°,点E ,F 在BC 上,满足∠FDB =∠ADB ,DE 平分∠CDF.(1)求∠EDB 的度数;(2)若平行移动AB ,则∠DBC ∶∠DFC 的值是否发生变化?若变化,找出变化规律;若不变,求其比值.解:(1)因为CB ∥DA ,所以∠ADC =180°-∠C =180°-100°=80°,因为∠FDB =∠ADB ,DE 平分∠CDF ,所以∠EDB =12∠ADC =12×80°=40°.(2)∠DBC ∶∠DFC 的值不会发生变化.因为CB ∥DA ,所以∠DBC =∠ADB ,∠DFC =∠FDA ,因为∠FDB =∠ADB ,所以∠DBC =∠ADB =∠FDB ,所以∠DFC =∠FDA =2∠DBC ,所以∠DBC ∶∠DFC =1∶2.故所求比值为12.华师大版七年级数学上册期中测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷一、选择题(每小题3分,共24分)1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( B ) A .-1B .0C .1D .22.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍,其中350万用科学记数法表示为( C )A .0.35×108B .3.5×107C .3.5×106D .35×1053.下列各式中,不是同类项的是( D ) A.12x 2y 和13x 2yB .-ab 和baC .-37abcx 2和-73x 2abc D.25x 2y 和52xy 24.下列各对数中,相等的一对数是( A ) A .(-2)3与-23B .-22与(-2)2C .-(-3)与-|-3|D.223与⎝⎛⎭⎫2325.下列说法中,正确的是( C ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式6.一个三位数,个位数字是a ,十位数字是b ,百位数字是c ,则这个三位数是( B ) A .abcB .a +10b +100cC .100a +10b +cD .a +b +c7.有理数a ,b 在数轴上的位置如图所示,则下列各式中错误的是( C )A .b<aB .|b|>|a|C .a +b>0D .ab<08.下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,通过观察,用你所发现的规律确定22 018的个位数字是(B)A .2B .4C .6D .8第Ⅱ卷二、填空题(每小题3分,共24分)9.数轴上点A ,B 表示的数分别是5,-3,它们之间的距离是 8 . 10.若规定a*b =5a +2b -1,则(-4)*6的值为 -9 .11.把多项式3xy 2-12x 2y 2-1-x 3按x 的降幂排列为 -x 3-12x 2y 2+3xy 2-1 .12.若a ,b 互为相反数,c ,d 互为倒数,|m|=2,则a +b4m +m 2-3cd = 1 . 13.若M =4x 2-5x +11,N =3x 2-5x +10,则M 与N 的大小关系是 M>N . 14.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m +n =-2,mn =-4,则2(mn -3m)-3(2n -mn)的值为 -8 .15.将四个有理数3,4,-6,10(每个数必用且只用一次)进行加减乘除四则运算,使其结果等于24,请你写出一个符合条件的算式 3×(4-6+10) .16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照下面的规律,摆第(n)图,需用火柴棒的根数为 6n +2 .三、解答题(要求写出必要的解题过程:共8题,17题-18题各10分,19题-23题每题8分,24题12分,共72分)17.计算:(1)(-2)2-|-7|+3-2×⎝⎛⎭⎫-12; 解:原式=4-7+3+1=1.(2)-12×⎣⎡⎦⎤-32×⎝⎛⎭⎫-232-2.解:原式=-12×⎝⎛⎭⎫-9×49-2=-12×(-6)=3.18.用简便方法计算:(1)15×⎝⎛⎭⎫-34-(-15)×32+15×14; 解:原式=15×⎝⎛⎭⎫-34+15×32+15×14=15×⎝⎛⎭⎫-34+32+14=15.(2)⎝⎛⎭⎫-1112+56-79×(-36)+(-5)×(-1)3. 解:原式=33-30+28+5=36.19.先化简,再求值:(3x 2-xy +y)-2(5xy -4x 2+y),其中x =-2,y =13.解:原式=3x 2-xy +y -10xy +8x 2-2y = 3x 2+8x 2-xy -10xy +y -2y = 11x 2-11xy -y.当x =-2,y =13时,原式=44+223-13=51.20.画一条数轴,并在数轴上表示:3.5和它的相反数,-12和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.解:3.5的相反数是-3.5;-12的倒数是-2;绝对值等于3的数为±3;最大的负整数是-1,它的平方是1.如图所示:-3.5<-3<-2<-1<-12<1<3<3.5.21.在计算(-5)-(-5)×110÷110×(-5)时,小明的解法如下:解:原式=-5-⎝⎛⎭⎫-12÷⎝⎛⎭⎫-12 (第一步) =-5-1 (第二步) =-4 (第三步)回答:(1)小明的解法是错误的,主要错在第 一 步,错因是 同级运算没有按照从左到右的顺序依次进行运算 ;(2)请在下面给出正确的解答过程. 解:(-5)-(-5)×110÷110×(-5) =-5-(-5)×110×10×(-5) =-5-25 =-30.22.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数);(1)求生产量最多的一天是多少辆? (2)本周的总生产量是多少辆?(3)若每辆自行车的生产成本为150元,出厂价为每辆280元,求本周自行车的利润. 解:(1)星期五,100+7=107辆;(2)100×7+(-1)+(+3)+(-2)+(+4)+(+7)+(-5)+(-10)=696辆; (3)696×(280-150)=90 480元.23.已知关于x 的多项式(a +b)x 5+(b -2)x 3-2(a -1)x 2-2ax -3中不含x 3和x 2项,试求当x =-1时,这个多项式的值.解:由题意可知b -2=0,a -1=0,解得b =2,a =1. 当a =1,b =2时,原多项式化简为3x 5-2x -3,把x =-1代入,原式=3x 5-2x -3=3×(-1)5-2×(-1)-3=-3+2-3=-4.24.某中学七年级(4)班的3位教师决定带领本班a 名学生在十一期间去北京旅游,A 旅行社的收费标准为教师全价,学生半价;B 旅行社不分教师、学生,一律八折优惠,这两家旅行社的基本价一样,都是每人500元.(1)用整式表示这3位教师和a 名学生分别选择这两家旅行社所需的总费用; (2)如果这个班有55名学生,他们选择哪一家旅行社较为合算?解:(1)选择A 旅行社所需的总费用为3×500+250a =(250a +1 500)元,选择B 旅行社所需的总费用为(3+a)×500×0.8=(400a +1 200)元.(2)当a =55时,选择A 旅行社所需的总费用为250×55+1 500=15 250(元);选择B 旅行社所需的总费用为400×55+1 200=23 200(元),因为15 250<23 200,所以选择A 旅行社较为合算.华师大版七年级数学上册期末测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷一、选择题(每小题3分,共24分)1.今年国庆黄金周期间,四川全省旅游总收入为52 471 000 000元.用科学记数法表示52 471 000 000为( A )A .5.247 1×1010B .5.247 1×109C .52.471×109D .0.524 71×10112.下列说法正确的是( C ) A .-5不是单项式B .2a 2+1a-5是二次三项式C .x 2-2x +3是二次三项式D .-2a 2b 的系数是3 3.如图所示,下列结论中正确的是( B ) A .∠1和∠2是同位角 B .∠2和∠3是同旁内角 C .∠1和∠4是内错角D .∠3和∠4是对顶角第3题图第5题图4.下列各组数中,相等的是( C )A.(-5)2和-52B.|-5|2和-52C.(-7)3与-73D.|-7|3与-735.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( A )A.15°B.30°C.45°D.60°6.4点10分,时针与分针所夹的小于平角的角为( B )A.55°B.65°C.90°D.以上都不对7.有理数a,b,c在数轴上的位置如图,则|a-b|+|c|等于( C )A.a-b+c B.b-a+cC.b-a-c D.-a-b-c8.如图所示,是由一些相同的小正方体搭成的几何体的主视图和左视图,则组成该几何体的小正方体的个数最少是( A )A.4个B.5个C.6个D.7个第8题图第11题图第Ⅱ卷二、填空题(每小题3分,共24分)9.如果把向东走100米,记为+100米,那么向西走80米应记为-80 米.10.把多项式2m3-m2n2+3-5m按字母m的升幂排列是3-5m-m2n2+2m3 .11.如图,正三棱柱底面边长是3 cm,侧棱长为5 cm,则此三棱柱共有 3 个侧面,侧面展开图的面积为 45 cm 2 .12.已知直线AB ,CD 相交于点O ,且∠AOC ∶∠AOD =2∶3,则∠BOD = 72° . 13.两个角的度数之比为6∶4,它们的差为36°,则这两个角的关系是 互补 . 14.定义一种新运算“*”:x*y =2xy -x 2,如3*4=2×3×4-32=15,则2*(-1*2)= -24 .15.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,则2m -2 019(a +b)-cd 的值是 3或-5 .16.(十堰中考)当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b)的值为 -16 . 三、解答题(要求写出必要的解题过程;共8题,17题-24题每题9分,共72分) 17.计算下列各式: (1)(-2)2×5-(-2)3÷4; 解:原式=4×5-(-8)÷4 =22. (2)-32×⎝⎛⎭⎫-132+⎝⎛⎭⎫34+16+38×(-24).解:原式=-9×19-18-4-9=-32.18.化简:(1)3(a 2b -ab 2)-2(6a 2b +ab 2); 解:原式=3a 2b -3ab 2-12a 2b -2ab 2 =-9a 2b -5ab 2.(2)3x 2-12[8x -2(5x -4)-2x 2].解:原式=3x 2-12(8x -10x +8-2x 2)=3x 2-12(-2x +8-2x 2)=3x 2+x -4+x 2=4x 2+x-4.19.先化简,再求值:5(3a 2b -ab 2-1)-(ab 2+3a 2b -5).其中a =-12,b =13.解:原式=15a 2b -5ab 2-5-ab 2-3a 2b +5=12a 2b -6ab 2. 当a =-12,b =13时,原式=12×⎝⎛⎭⎫-122×13-6×⎝⎛⎭⎫-12·⎝⎛⎭⎫132=43 .20.如图,B ,C 两点把线段AD 分成2∶4∶3的三部分,点M 是AD 的中点,CD =6,求线段MC 的长.解:设AB =2x ,则BC =4x ,CD =3x ,所以AD =2x +4x +3x =9x ,因为CD =6,即3x =6,所以x =2,所以AD =9x =18,又因为点M 为AD 的中点,所以MD =12AD =12×18=9,所以MC =MD -CD =9-6=3.21.a 表示十位上的数,b 表示个位上的数. (1)用代数式表示这个两位数;(2)把这个两位数的十位上的数与个位上的数交换位置,计算所得的数与原数的和; (3)这个和能被11整除吗?若能,请说明理由;若不能,请举一个例子. 解:(1)10a +b.(2)交换位置后所得的数为10b +a ,所以(10a +b)+(10b +a)=11a +11b. (3)能,因为11a +11b =11(a +b)且11(a +b)÷11=a +b(a ,b 为正整数), 所以11a +11b 被11整除.22.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入.解:(1)19-[(12-3)+(10-6)+(9-10)+(4-7)]=19-[9+4-1-3]=19-9=10答:本趟公交车在起点站上车的人数是10人.(2)由(1)知起点上车10人,(10+12+10+9+4)×2=45×2=90(元).答:此趟公交车从起点到终点的总收入是90元.23.如图,已知∠HDC+∠ABC=180°,∠HFD=∠BEG,∠H=20°,求∠G的度数.解:因为∠BEG=∠AEF,∠HFD=∠BEG,所以∠HFD=∠AEF.所以DC∥AB.所以∠HDC=∠DAB.因为∠HDC+∠ABC=180°,所以∠DAB+∠ABC=180°.所以AD∥BC.所以∠H=∠G.因为∠H=20°,所以∠G=20°.24.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)求图①中的三角板绕点O逆时针旋转至图②,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠BON的度数.(2)将图①中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为11或47 .(直接写出结果).(3)将图①中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM 与∠NOC的数量关系,并说明理由.解:(1)如图②,因为OM平分∠BOC,所以∠MOC=∠MOB=12∠BOC.又因为∠BOC=110°,所以∠MOB=55°,因为∠MON=90°,所以∠BON=∠MON-∠MOB=35°;(2)分两种情况:①如图②,因为∠BOC=110°,所以∠AOC=70°,当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=35°,所以∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得5t=55°,解得t=11(s);②如图③,当NO平分∠AOC时,∠NOA=35°,所以∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°,由题意得5t=235°,解得t=47(s),综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;故答案为:11或47;(3)∠AOM-∠NOC=20°.理由如下:因为∠MON=90°,∠AOC=70°,所以∠AOM=90°-∠AON,∠NOC=70°-∠AON,所以∠AOM-∠NOC=(90°-∠AON)-(70°-∠AON)=20°,所以∠AOM与∠NOC的数量关系为∠AOM-∠NOC=20°.31。

鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6B.8C.10D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14B.17C.22D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC ,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3D.410.如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成7个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成()个互不重叠的小三角形.A .2nB .2n +1C .2n -1D .2(n +1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是____________.13.如图,E 点为△ABC 的边AC 的中点,∥AB ,若MB =6 cm ,=4 cm ,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.1(AB 18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=2+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C :因为BF ⊥AC 于点F ,所以△ABC 中AC 边上的高是线段BF ,故选C.3.A :因为△ABC ≌△EDF ,所以AC =EF .所以AE =CF .因为AF =20,EC =8,所以AE =CF =6.故选A.4.D5.B :由已知条件AB ∥ED 可得,∠B =∠D ,由CD =BF 可得,BC =DF ,再补充条件AB =ED ,可得△ABC ≌△EDF ,故选B.6.C 7.C 8.B119.B :易得S △ABE =3×12=4,S △ABD =2×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B :△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.60°12.ASA :由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两个三角形全等.13.10 cm :由∥AB ,点E 为AC 的中点,可得∠EAM =∠E ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM ==4 cm.所以AB =AM +MB =4+6=10(cm).14.SSS15.1<c <7;3<m <17:由三角形的三边关系得第三边的取值范围为4-3<c <4+3,即1<c <7.同理,得四边形EFMN 对角线EM 的取值范围为4-3<EM <4+3,即1<EM <7.所以10-7<m <10+7,即3<m <17.16.5:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90°:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65°:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在⎧∠AFC =∠AEC ,△CAF 和△CAE 中,⎨∠CAF =∠CAE ,⎩AC =AC ,1所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =2(AB +AD ),1所以AF =2(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF⎧CF =CE ,=BE .在△FDC 和△EBC 中,所⎨∠CFD =∠CEB ,所以△FDC ≌△EBC (SAS).⎩DF =BE ,以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB⎧∠E =∠C ,=∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎨AE =AC ,所以⎩∠EAM =∠CAN ,△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01B.10:51C.10:21D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6B.7C.8D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以⎧∠C =∠DBF ,BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎨CD =BD ,⎩∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M12.213.1:如图,该球最后将落入1号球袋.14.2∠α15.6:因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF1=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=2S △ABC =6.16.6:过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.11所以S △ADC =2AC ·DE =2×6×2=6.17.108°18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形,即为△A ′B ′C ′.111(2)S △ABC =4×6-2×4×1-2×3×6-2×2×4=9.20.解:如图.点C 1,C 2即为所求作的点.21.解:同意.理由如下:如图,连接OE ,OF .由题意知,BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°.所以∠EOF =60°,∠OEF =60°,∠OFE =60°.所以△OEF 是等边三角形.所以OE =OF =EF =BE =CF .所以E ,F 是BC 的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3B.2,3,4C.4,5,6D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26B.18C.25D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16B.8C.4D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4B.8C.12D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()3 A. 2B.3C.14D.38.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128B.136C.120D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B 7.A 8.C9.A 10.A 二、11.412.90°13.3.2 m 14.1 080 km 15.等腰直角三角形16916.126 cm 2或66 cm 217.150 cm 18.24三、19.解:(1)因为AD ⊥BC ,所以△ABD 和△ACD 均为直角三角形.所以AB 2=AD 2+BD 2,AC 2=AD 2+CD 2.又因为AD =12,BD =16,CD =5,所以AB =20,AC =13.所以△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,因为AB 2+AC 2=202+132=569,BC 2=212=441,所以AB 2+AC 2≠BC 2.所以△ABC 不是直角三角形.20.解:在△ADC 中,因为AD =15,AC =12,DC =9,所以AC 2+DC 2=122+92=152=AD 2.所以△ADC 是直角三角形,且∠C =90°.在Rt △ABC 中,AC 2+1BC 2=AB 2,所以BC =16.所以BD =BC -DC =16-9=7.所以S △ABD =2×7×12=42.21.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形.因为BC+CD =34 cm ,所以CD =(34-x )cm.因为∠ABC =90°,AB =6 cm ,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x )2-576,所以36+x 2=(34-x )2-576.解得x =8.所以当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形.22.解:因为a 2+b 2+c 2+50=6a +8b +10c ,所以a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0.所以a =3,b =4,c =5.因为32+42=52,即a 2+b 2=c 2,所以根据勾股定理的逆定理可判定△ABC 是直角三角形.:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断.23.解:设AB 为3x cm ,则BC 为4x cm ,AC 为5x cm.因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm ,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),11所以S △BPQ =2BP ·BQ =2×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根12据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×ab .所以a +2b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3B.3 C.-3 D.3222.下列4个数:9,7,π,(3)0,其中无理数是()A.922B.7C.πD.(3)03.下列各式中正确的是()A.497=±14412B.-3273-8=-2C.-9=-33D.(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1B.-1C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②C.①②③B.①③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4C.33B.43D.29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()74949147A.2cm2B.4cm2C.8cm2D.2cm210.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为()A.23-1B.1+3C.2+3D.22+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.313.估算比较大小:(1)-10________-3.2;(2)130________5.314.若2x+7=3,(4x+3y)3=-8,则x+y=________.15.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.16.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.17.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72第一次第二次第三次进行如下操作:72――→[72]=8――→[8]=2――→[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-(3)-(-2)+(-2)--82;(4)2+|3-32|-(-5)2.20.求下列各式中未知数的值:(1)|a -2|=5;(2)4x 2=25;(3)(x -0.7)3=0.0272294;(2)132+0.5-8;43|a|-|a+b|+(c-a)2 21.已知a,b,c在数轴上对应点的位置如图所示,化简:+|b-c|.322.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+8c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;33(2)若1-2x与3x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D :A 中正确.4.A 5.B6.C:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.37.C 8.B :64的立方根是4,4的立方根是 4.9.D 10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.-1:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-(2)937=1+4-42=2.3497273=;B 中--144128=2;C 中-9无算术平方根;只有D1132+0.5-8=42+0.5-2=-1.3(3)-(-2)2+(-2)2--82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.20.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.255(2)因为4x 2=25,所以x 2=4.所以x =±2.(3)因为(x -0.7)3=0.027,所以x -0.7=0.3.所以x =1.21.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .322.解:由已知得a +b =0,cd =1,所以原式=0+8=2.23.解:因为a ,b ,c 是△ABC 的三边长,所以a +b +c >0,b +c -a >0,c -b -a <0.所以原式=a +b +c -(b +c -a )+(a +b -c )=3a +b -c .24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,所以x =4,所以1-x =1-2=-1.25.解:(1)当t =16时,d =7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d =35时,t -12=5,即t -12=25,解得t =37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排C.北偏东30°B.北京市四环路D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3)B.(-2,1)C.(-2,-2.5)D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15B.7.5C.6D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A 3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.。

人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)

人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)

人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。

七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文

七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文

精选全文完整版(可编辑修改)七年级数学上册全册单元测试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴(2)解:,设,则,则,(3) s或15s或30s或45s【解析】【解答】(2)解:当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,∠PON= ×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t= 或15;当OI在直线AO的下方时,∠MON═(360°-∠AOB)═ ×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°- )或180°-3t=3( -60°),解得t=30或45,综上所述,满足条件的t的值为 s或15s或30s或45s【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.2.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。

数学七年级上册全册单元试卷测试卷(含答案解析)

数学七年级上册全册单元试卷测试卷(含答案解析)

数学七年级上册全册单元试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.2.把一副三角板放成如图所示.(1)当OD平分∠AOB时,求∠COB;(2)若摆成如图2,OB、OD重合,OM平分∠AOD,ON平分∠AOC,求∠MON;(3)将三角板OCD绕O点旋转,把OD旋转到∠AOB的内部或外部,(2)中的条件不变,试问∠MON的角度是否变化?若不变,求出它的值,并说理由.【答案】(1)解:∵OD平分∠AOB,∠AOB=90°∴∠DOB=∠AOB=45°∵∠DOC=30°∴∠COB=∠DOB-∠DOC=45°-30°=15°(2)解:如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=45°∠AON=∠AOC=(90°+30°)=60°∴∠MON=∠AON-∠AOM=60°-45°=15°(3)解:把OD旋转到∠AOB的内部时,如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(90°-∠BOD)=45°-∠BOD∠AON=∠AOC=(∠AOB+∠COD-∠BOD)=60°-∠BOD∴∠MON=∠AON-∠MOA=15°把OD旋转到∠AOB的外部时,如图,设∠AOC=α,则∠AOD=360°-30°-α=330°-α∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(330°-α)=165°-α∠AON=∠AOC=α∠MON=∠MOA+∠AON=165°-α+α=165°∴∠MON=15°或∠MON=165°【解析】【分析】(1)利用角平分线的定义求出∠DOB的度数,再根据∠COB=∠DOB-∠DOC,就可求出结果。

最新人教版数学七年级上册单元质量评估测试卷及答案(全册)

最新人教版数学七年级上册单元质量评估测试卷及答案(全册)

人教版数学七年级上册第一章质量评估测试卷一、选择题(共12小题,总分36分) 1.(3分)7的相反数是( )A .7B .-7C.17D .-172.(3分)下列四个数中最大的数是( )A .0B .-2C .-4D. -63.(3分)数轴上的点A 到原点的距离是4,则点A 表示的数为( )A .4B .-4C .4或-4D .2或-24.(3分)下列说法正确的是( )A .负数没有倒数B .正数的倒数比自身小C .任何有理数都有倒数D .-1的倒数是-15.(3分)已知:a =-2+(-10),b =-2-(-10),c =-2×(-110),下列判断正确的是( ) A .a >b >cB .b >c >aC .c >b >aD .a >c >b6.(3分)若a =2,|b |=5,则a +b =( )A .-3B .7C .-7D .-3或77.(3分)我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算3+(-4)的过程.按照这种方法,图(2)表示的过程应是在计算( )(第7题) A .(-5)+(-2)B .(-5)+2C .5+(-2)D .5+28.(3分)据探测,月球表面白天阳光垂直照射的地方温度高达127 ℃,而夜晚温度可降低到零下183 ℃.根据以上数据推算,在月球上昼夜温差有( ) A .56 ℃B .-56 ℃C .310 ℃D .-310 ℃9.(3分)据科学家估计,地球的年龄大约是4 600 000 000年,将4 600 000 000用科学记数法表示为( ) A .4.6×108B .46×108C .4.69D .4.6×10910.(3分)如果a +b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <011.(3分)已知某班有40名学生,将他们的身高分成4组,在160~165 cm 区间的有8名学生,那么这个小组的人数占全体的( ) A .10%B .15%C .20%D .25%12.(3分)下列各数|-2|,-(-2)2,-(-2),(-2)3中,负数的个数有( )A .1个B .2个C .3个D .4个二、填空题(共6小题,总分18分)13.(3分)在知识抢答中,如果用+10表示得10分,那么扣20分表示为__ __. 14.(3分)在-42,+0.01,π,0,120这5个数中,正有理数是__ _. 15.(3分)计算⎝ ⎛⎭⎪⎫14-12+23×()-12=__ __. 16.(3分)已知3x -8与2互为相反数,则x = _. 17.(3分)如果|x |=6,则x =_________.18.(3分)若a 、b 互为倒数,则2ab -5=__ _. 三、解答题(共8小题,总分66分)19.(6分)计算:(1)13+(-15)-(-23); (2)-17+(-33)-10-(-16).20.(6分)计算: (1)(-3)×6÷(-2)×12;(2)-14-16×[2-(-3)2].21.(8分)把下列各数填在相应的括号里:-8,0.275,227,0,-1.04,-(-3),-13,|-2|.正数集合{…};负整数集合{ …};分数集合{…};负数集合{…}.22.(8分)有5筐蔬菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?23.(8分)若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+a+bm的值.24.(10分)已知|a|=5,|b|=3,且|a-b|=b-a,求a+b的值.25.(10分)一只小虫沿一根东西方向放着的木杆爬行,小虫从某点A出发在木杆上来回爬行7次,如果向东爬行的路程记为正数,向西爬行的路程记为负数,爬行过的各段路程依次如下(单位:cm):+5,-3,+11,-8,+12,-6,-11.(1)小虫最后是否回到了出发点A?为什么?(2)小虫一共爬行了多少厘米?26.(10分)解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?答案一、1.B 2.A 3.C 4.D 5.B 6.D7.C 8.C 9.D 10.A 11.C 12.B 二、13.-20 14.+0.01,12015.-5 16.2 17.±6 18.-3 三、19.解:(1)原式=13-15+23=21;(2)原式=-17-33-10+16=-60+16 =-44.20.解:(1)原式=(-3)×6×⎝ ⎛⎭⎪⎫-12×12 =3×6×12×12 =92;(2)原式=-1-16×(2-9)=-1-16×(-7)=-1+76 =16. 21.正数集合⎩⎨⎧⎭⎬⎫0.275,227,-(-3),|-2|,…; 负整数集合{}-8,…;分数集合⎩⎨⎧⎭⎬⎫0.275,227,-1.04,-13,…;负数集合⎩⎨⎧⎭⎬⎫-8,-1.04,-13,…. 22.解:与标准重量比较,5筐蔬菜总计超过3+(-6)+(-4)+2+(-1)=-6(千克),5筐蔬菜的总重量=50×5+(-6)=244(千克). 故总计不足6千克,5筐蔬菜的总重量是244千克.23.解:(1)因为a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,所以a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+a+bm=2+1+0=3;当m=-2时,m+cd+a+bm=-2+1+0=-1.24.解:因为|a|=5,|b|=3,所以a=±5,b=±3,因为|a-b|=b-a,所以a=-5时,b=3或-3,所以a+b=-5+3=-2,或a+b=-5+(-3)=-8,所以a+b的值是-2或-8.25.解:(1)小虫最后回到了出发点A,理由是:(+5)+(-3)+(+11)+(-8)+(+12)+(-6)+(-11)=0,即小虫最后回到了出发点A.(2)|+5|+|-3|+|+11|+|-8|+|+12|+|-6|+|-11|=56(cm),答:小虫一共爬行了56 cm.26.解:(1)如答图所示:(第26题答图)(2)根据数轴可知:小明家距小彬家7.5个单位长度,因而是7.5千米;(3)2×10=20(千米).答:货车一共行驶了20千米.(4)20×0.2=4(升).答:这次共耗油4升.第二章质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)在代数式π,x 2+2x +1,x +xy ,3x 2+nx +4,-x ,3,5xy ,yx 中,整式共有( ) A .7个B .6个C .5个D .4个2.(3分)下列关于单项式-3xy 25的说法中,正确的是( )A .系数是-35,次数是2B .系数是35,次数是2C .系数是-35,次数是3 D .系数是-3,次数是3 3.(3分)多项式6x 2y -3x -1的次数和常数项分别是( )A .3和-1B .2和-1C .3和1D .2和14.(3分)下列运算正确的是( )A .a +(b -c )=a -b -cB .a -(b +c )=a -b -cC .m -2(p -q )=m -2p +qD .x 2-(-x +y )=x 2+x +y5.(3分)对于式子:x +2y 2,a 2b ,12,3x 2+5x -2,abc ,0,x +y 2x ,m ,下列说法正确的是( )A .有5个单项式,1个多项式B .有3个单项式,2个多项式C .有4个单项式,2个多项式D .有7个整式6.(3分)下列计算正确的是( )A .3+2ab =5abB .5xy -y =5xC .-5m 2n +5nm 2=0D .x 3-x =x 27.(3分)若单项式x 2y m +2与x n y 的和仍然是一个单项式,则m 、n 的值是( )A .m =2,n =2B .m =-1,n =2C .m =-2,n =2D .m =2,n =-18.(3分)多项式36x 2-3x +5与3x 3+12mx 2-5x +7相加后,不含二次项,则常数m 的值是( ) A .2B .-3C .-2D .-89.(3分)若m -x =2,n +y =3,则(m -n )-(x +y )=( )A .-1B .1C .5D .-510.(3分)一个多项式减去x 2-2y 2等于x 2+y 2,则这个多项式是( )A .-2x 2+y 2B .2x 2-y 2C .x 2-2y 2D .-x 2+2y 211.(3分)李老师做了一个长方形教具,其中一边长为2a +b ,与其相邻的另一边长为a -b ,则该长方形教具的周长为( ) A .6a +bB .6aC .3aD .10a -b12.(3分)两个完全相同的大长方形,长为a ,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是( )(用含a 的代数式表示)(第12题) A.12aB.32aC .aD.54a二、填空题(共6小题,总分18分)13.(3分)请写出一个系数是-2,次数是3的单项式:__ __. 14.(3分)若5m x n 3与-6m 2n y 是同类项,则xy 的值等于__ __.15.(3分)若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是__ __.16.(3分)若多项式2x 2+3x +7的值为10,则多项式6x 2+9x -7的值为__ __. 17.(3分)已知多项式A =ay -1,B =3ay -5y -1,且2A +B 中不含字母y ,则a的值为__ _.18.(3分)观察下面一列单项式:2x ,-4x 2,8x 3,-16x 4,…,根据你发现的规律,第n 个单项式为__ __. 三、解答题(共8小题,总分66分) 19.(8分)化简:(1)3x 2-3x 2-y 2+5y +x 2-5y +y 2; (2)14a 2b -0.4ab 2-12a 2b +25ab 2.20.(8分)先化简,再求值:(1)2xy-12(4xy-8x2y2)+2(3xy-5x2y2),其中x=13,y=-3.(2)-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=1,b=-2.21.(6分)如果x2-x+1的2倍减去一个多项式得到3x2+4x-1,求这个多项式.22.(6分)若3x m y n是含有字母x和y的五次单项式,求m n的最大值.23.(8分)老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a2+4ab+4b2)=a2-4b2(1)求所捂的多项式;(2)当a=-1,b=2时,求所捂的多项式的值.24.(10分)已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-12时,求3A-2B+2的值.25.(10分)已知a2-1=0,求(5a2+2a-1)-2(a+a2)的值.26.(10分)阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).答案一、1.B2.C3.A4.B5.C6.C7.B8.B9.A10.B11.B12.C二、13.-2a3(答案不唯一)14.615.116.217.118.(-1)n+1·2n·x n三、19.解:(1)原式=(3x2-3x2+x2)+(y2-y2)+(5y-5y)=x2.(2)原式=(14a2b-12a2b)+(-0.4a b2+25ab2)=-14a2b.20.解:(1)2xy-12(4xy-8x2y2)+2(3xy-5x2y2)=2xy-2xy+4x2y2+6xy-10x2y2=6xy-6x2y2,当x=13,y=-3时,原式=6×13×(-3)-6×⎝⎛⎭⎪⎫132×(-3)2=-6-6=-12.(2)原式=-a2b+3ab2-a2b-4ab2+2a2b=(-1-1+2)a2b+(3-4)ab2=-ab2,当a=1,b=-2时,原式=-1×(-2)2=-4.21.解:2(x2-x+1)-(3x2+4x-1)=2x2-2x+2-3x2-4x+1=-x2-6x+3.故这个多项式为-x2-6x+3.22.解:因为3x m y n是含有字母x和y的五次单项式,所以m+n=5,且m、n均为正整数.当m=1,n=4时,m n=14=1;当m=2,n=3时,m n=23=8;当m=3,n=2时,m n=32=9;当m=4,n=1时,m n=41=4,故m n的最大值为9.23.解:(1)所捂的多项式为:(a2-4b2)+(a2+4ab+4b2)=a2-4b2+a2+4ab+4b2=2a2+4ab.(2)当a=-1,b=2时,2a2+4ab=2×(-1)2+4×(-1)×2=2-8=-6.24.解:(1)3A-2B+2=3(2a2-a)-2(-5a+1)+2=6a2-3a+10a-2+2=6a2+7a.(2)当a=-12时,3A-2B+2=6×⎝⎛⎭⎪⎫-122+7×⎝⎛⎭⎪⎫-12=-2.25.解:(5a2+2a-1)-2(a+a2)=5a2+2a-1-2a-2a2=3a2-1,因为a2-1=0,所以a2=1,所以原式=3×1-1=2.26.解:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…+100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m) =101a+101m×50=101a+5 050m.期中质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)如果汽车向南行驶5千米记作+5千米,那么汽车向北行驶3千米应记作()A.+3千米B.+2千米C.-3千米D.-2千米2.(3分)某大米包装袋上标注着“净含量:10 kg±150 g”,小华从商店买了2袋这样的大米,这两袋大米相差的克数不可能是()A.100 g B.150 g C.300 g D.400 g 3.(3分)下列说法正确的是()A.一个数前面加上“-”号,这个数就是负数B.零既是正数也是负数C.若a是正数,则-a不一定是负数D.零既不是正数也不是负数4.(3分)如图,数轴上A、B、C三点表示的数分别为a、b、c,下列说法正确的是()(第4题)A.a>0 B.b>c C.b>a D.a>c 5.(3分)-8的相反数是()A.-8 B.18C.8 D.-186.(3分)计算-5+2的结果是()A.-3 B.-1 C.1 D.37.(3分)某地一天的最高气温是8 ℃,最低气温是-2 ℃,则该地这天的温差是()A.6 ℃B.-6 ℃C.10 ℃D.-10 ℃8.(3分)若2x a-1y2与-3x6y2b是同类项,则a、b的值分别为() A.a=7,b=1 B.a=7,b=3 C.a=3,b=1 D.a=1,b=3 9.(3分)下列运算正确的是()A.5a2-3a2=2 B.2x2+3x2=5x4 C.3a+2b=5ab D.7ab-6ba=ab10.(3分)式子1x,2x+y,13a2b,x-yπ,5y4x,0中整式有()A.3个B.4个C.5个D.6个11.(3分)已知某三角形的周长为3m-n,其中两边的和为m+n-4,则此三角形第三边的长为()A.2m-4 B.2m-2n-4 C.2m-2n+4 D.4m-2n+4 12.(3分)已知a、b、c在数轴上对应点的位置如图,则|a+b|+|a+c|-|b-c|=( A )(第12题)A.0 B.2a+2b C.2b-2c D.2a+2c 二、填空题(共6小题,总分18分)13.(3分)计算:|-6|=____.14.(3分)写出-2m3n的一个同类项:____.15.(3分)单项式-3a2bc35的系数是__ _,次数是___.16.(3分)长方形的长是3a,宽是2a-b,则长方形的周长是____.17.(3分)某食品厂从生产的袋装食品中抽出20袋进行称重检查,检测每袋的质量是否符合标准,超过或不足的部分分别用正数、负数来表示,记录如下:若每袋的标准质量为350克,则抽测的总质量是___________克.18.(3分)若“△”表示一种新运算,规定:a△b=a×b-(a+b),则2△[(-4)△(-5)]=__________.三、解答题(共8小题,总分66分)19.(12分)计算:(1)2+(-8)-(-7)-5; (2)312+223+⎝⎛⎭⎪⎫-12-⎝⎛⎭⎪⎫-13;(3)(-3)×6÷(-2)×12; (4)⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12÷⎝ ⎛⎭⎪⎫-214.20.(6分)化简:(1)3x -2x 2+5+3x 2-2x -5; (2)2(2a -3b )+3(2b -3a ).21.(6分)把下列各数填入它所属的集合内:15,-19,-5,215,0,-5.32,2. (1)分数集合:{ …}, (2)整数集合:{ …}, (3)正数集合:{ …}.22.(6分)甲、乙两人同时从某地出发,如果甲向东走250 m 记作+250 m ,那么乙向西走150 m 怎样表示?这时甲、乙两人相距多远?23.(8分)整式A与x2-x-1的和是-3x2-6x+2.(1)求整式A;(2)当x=2时,求整式A的值.24.(8分)若a,b互为相反数,c,d互为倒数,|m|=2,求a-(-b)-mcd的值.25.(10分)某股民在上周星期五买进某种股票1 000股,每股10元,星期六、星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):(1)本周星期五收盘时,每股是多少元?(2)已知买进股票和卖出股票时都需付成交额的1.5‰作为手续费,如果在本周星期五收盘时将全部股票一次性卖出,那么该股民的收益情况如何?(精确到个位数)26.(10分)某出租车驾驶员从公司出发,在南北方向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负):(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这个过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3 km收费10元,超过3 km时,超过的部分按每千米1.8元收费,在这个过程中该驾驶员共收到车费多少元?答案一、1.C 2.D 3.D 4.C 5.C 6.A7.C 8.A 9.D 10.B 11.C 12.A 二、13.6 14.3m 3n (答案不唯一)15.-35;6 16.10a -2b 17.7 024 18.27 三、19.解:(1)原式=2-8+7-5=9-13 =-4.(2)原式=312-12+223+13=3+3 =6.(3)原式=3×6×12×12 =92.(4)原式=⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-49 =-16.20.解:(1)原式=(3x -2x )+(-2x 2+3x 2)+(5-5)=x 2+x .(2)原式=4a -6b +6b -9a=-5a .21.(1)-19,215,-5.32,(2)15,-5,0,2, (3)15,215,2,22.解:乙向西走150 m 表示为-150 m.这时甲、乙两人相距250+150=400(m).23.解:(1)由题意可知:A +(x 2-x -1)=-3x 2-6x +2,所以A =(-3x 2-6x +2)-(x 2-x -1)=-3x2-6x+2-x2+x+1=-4x2-5x+3.(2)当x=2时,原式=-4×22-5×2+3=-16-10+3=-23.24.解:因为a,b互为相反数,c,d互为倒数,所以a+b=0,cd=1.因为|m|=2,所以m=±2.所以a-(-b)-m cd=a+b-m cd=0-m=-m.所以当m=2时,原式=-2;当m=-2时,原式=2.25.解:(1)10+0.3+0.1-0.2-0.5+0.2=9.9(元)答:本周星期五收盘时,每股是9.9元.(2)1 000×9.9-1 000×10-1 000×10×1.5‰-1 000×9.9×1.5‰=9 900-10 000-15-14.85=-129.85≈-130(元).答:该股民亏了约130元.26.解:(1)5+2+(-4)+(-3)+10=10(km)答:接送完第5批客人后,该驾驶员在公司的南边,距离公司10 km.(2)(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.第三章质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)下列方程中是一元一次方程的是( )A .2x +y =3B .3x -1=0C.1x -2=4 D .x 2-4x =12.(3分)方程2x +1=3的解是( )A .x =-1B .x =1C .x =2D .x =-23.(3分)如果a =b ,那么下列式子不一定成立的是( )A .a +c =b +cB .a 2=b 2C .ac =bcD .a -c =c -b4.(3分)已知||m -2+()n -12=0,则关于x 的方程2m +x =n 的解是( )A .x =-4B .x =-3C .x =-2D .x =-15.(3分)关于x 的方程6x -5m =2的解是x =m ,则m 的值是( )A .2B .-2C.211D .-2116.(3分)在解方程2x +13-5x -32=1时,去分母正确的是( )A .2(2x +1)-3(5x -3)=6B .2x +1-5x -3=6C .2(2x +1)-3(5x -3)=1D .2x +1-3(5x -3)=67.(3分)下列式子变形正确的是( )A .如果a =b ,那么a +c =b -cB .如果a =b ,那么a 3=b3C .如果a3=6,那么a =2D .如果a -b +c =0,那么a =b +c8.(3分)若x =-3是关于x 的一元一次方程2x +m +5=0的解,则m 的值为( )A .-1B .0C .1D .119.(3分)若(m -2)x |m |-1=5是关于x 的一元一次方程,则m 的值为( )A .2B .-2C .2或-2D .110.(3分)超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,下列方程正确的是( ) A .0.8x -10=90 B .0.08x -10=90 C .90-0.8x =10D .x -0.8x -10=9011.(3分)阳光中学七(2)班篮球队参加比赛,胜一场得2分,负一场得1分,该队共赛了12场,共得20分,该队胜了多少场?设该队胜了x场,下列方程正确的是()A.2(12-x)+x=20 B.2(12+x)+x=20C.2x+(12-x)=20 D.2x+(12+x)=2012.(3分)若规定:[a]表示小于a的最大整数,例如:[5]=4,[-6.7]=-7,则方程3[-π]-2x=5的解是()A.x=7 B.x=-7 C.x=-172D.x=172二、填空题(共6小题,总分18分)13.(3分)写出一个解是-6的一元一次方程:_____________.14.(3分)当x=___________时,x-1与3-4x互为相反数.15.(3分)30天中,小张长跑路程累计达到45 km,小李长跑路程累计达到x km(x >45),平均每天小李比小张多跑___________k m.16.(3分)规定一种运算“*”,a*b=a-2b,则方程x*3=2*3的解为_________.17.(3分)一项工程,甲单独完成需要20天,乙单独完成需要25天,由甲先做2天,余下的部分甲、乙一起做,余下的部分还要做______天才能完成.18.(3分)公路一侧原有路灯106盏,相邻两盏灯的距离为36米,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54米,则需要节能灯______盏.(两端都安装)三、解答题(共8小题,总分66分)19.(16分)解方程.(1)2x+3=x+5; (2)0.5x-0.7=6.5-1.3x;(3)8x=-2(x+4); (4)3y-14-1=5y-7620.(6分)已知关于x 的方程(m +3)x |m +4|+18=0是一元一次方程,试求: (1)m 的值;(2)2(3m +2)-3(4m -1)的值.21.(6分)将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ac bd ,定义⎪⎪⎪⎪⎪⎪a c bd =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪3 21-x x +1=6,求x 的值.22.(6分)如图,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(第22题)(1)用a 、b 表示阴影部分的面积;(2)当a =2,b =4时,计算阴影部分的面积.23.(6分)在某次羽毛球团体赛中,羽毛球协会组织一些会员到现场观看.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2 700元.请问该协会购买了这两种门票各多少张?24.(8分)某校七年级A班有x人,B班比A班人数的2倍少10人,如果从B 班调出8人到A班.(1)用代数式表示两个班共有多少人;(2)用代数式表示调动后B班人数比A班人数多几人;(3)x等于多少时,调动后两班人数一样多?25.(8分)小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(第25题)(1)用含x的式子表示厨房的面积和卧室的面积.(2)此经济适用房的总面积为多少平方米?(3)已知厨房面积比卫生间面积多2m2,且铺1 m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?26.(10分)根据下面的两种移动电话计费方式表,回答下列问题:(1)月通话时间为150分时,按两种移动电话计费方式各需要交费多少元?300分呢?(2)会出现两种移动电话计费方式收费一样的情况吗?请你说明怎样选择会省钱.答案一、1.B 2.B 3.D 4.B 5.A 6.A 7.B 8.C9.B 10.A 11.C 12.C二、13.x +6=0(答案不唯一)14.23 15.⎝ ⎛⎭⎪⎫x 30-3216.x =2 17.10 18.71 三、19.解:(1)移项,得2x -x =5-3,合并同类项,得x =2.(2)移项,得0.5x +1.3x =6.5+0.7, 合并同类项,得1.8x =7.2, 系数化为1,得x =4. (3)去括号,得8x =-2x -8, 移项、合并同类项,得10x =-8, 系数化为1,得x =-45.(4)去分母,得3(3y -1)-12=2(5y -7), 去括号,得9y -3-12=10y -14, 移项、合并同类项,得-y =1, 系数化为1,得y =-1.20.解:(1)由题意,得|m +4|=1且m +3≠0,解得m =-5.(2)当m =-5时,2(3m +2)-3(4m -1)=2×(-15+2)-3×(-20-1) =-26+63=37.21.解:根据题意中的运算规则,将⎪⎪⎪⎪⎪⎪3 21-x x +1=6 转化为一元一次方程为:3(x +1)-2(1-x )=6,整理可得5x =5, 系数化为1,得x =1.22.解:(1)S 阴影=12a (a +b )+12b 2=12a 2+12ab +12b 2;(2)当a =2,b =4时,原式=12×22+12×2×4+12×42=2+4+8=14.23.解:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,由题意,得300x+400(8-x)=2 700,解得x=5,8-x=3.答:每张300元的门票买了5张,每张400元的门票买了3张.24.解:(1)因为七年级A班有x人,B班比A班人数的2倍少10人,所以B 班有(2x-10)人.x+2x-10=3x-10.因此,两个班共有(3x-10)人.(2)调动后A班人数为(x+8)人,B班人数为2x-10-8=2x-18(人),(2x-18)-(x+8)=x-26.因此,调动后B班人数比A班人数多(x-26)人.(3)令x+8=2x-18,解得x=26.因此,x等于26时,调动后两班人数一样多.25.解:(1)厨房的面积:(6-3)x=3x(m2),卧室的面积:3(2+x)=6+3x(m2).(2)6×2x+(3x+6)+3x+2x=20x+6(m2).(3)由题意得:3x-2x=2,解得x=2,80×(20×2+6)=3 680(元),答:铺地砖的总费用为3 680元.26.解:(1)150×0.3+50=95(元);150×0.5+10=85(元);300×0.3+50=140(元);300×0.5+10=160(元);(2)会出现两种移动电话计费方式收费一样的情况.设通话时间为t分时收费一样,则50+0.3t=10+0.5t,解得t=200,所以通话时间为200分时两种移动电话计费方式收费一样.当通话时间小于200分时,选择方式二省钱,当通话时间大于200分时,选择方式一省钱,当通话时间等于200分时,两种计费方式收费一样.第四章质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)如图,从A到B有①,②,③三条路线,最短的路线是①,其理由是() A.因为它最直B.两点确定一条直线C.两点间的距离的概念D.两点之间,线段最短(第1题) (第2题)2.(3分)如图,O是直线AB上一点,∠AOC=50°,则∠BOC的度数是() A.120°B.130°C.140°D.150°3.(3分)将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()(第3题)4.(3分)如图,在直线l上有A,B,C三点,则图中线段共有()(第4题)A.1条B.2条C.3条D.4条5.(3分)下列各组图形中都是立体图形的是()A.三角形、圆柱、球、圆锥B.正方体、线段、棱锥、棱柱C.三棱柱、圆柱、正方体、球D.点、球、线段、长方体6.(3分)下列关系式正确的是()A.35.5°=35°5′ B.35.5°=35°50′C.35.5°<35°5′ D.35.5°>35°5′7.(3分)如图,学校(记作A)在蕾蕾家(记作B)南偏西20°的方向上,若∠ABC=90°,则超市(记作C)在蕾蕾家的()A.南偏东60°的方向上B.南偏东70°的方向上C.北偏东70°的方向上D.北偏东60°的方向上(第7题) (第8题) (第9题)8.(3分)如图,将一副三角板如图放置,∠COD=20°,则∠AOB的度数为() A.140°B.150°C.160°D.170°9.(3分)如图,点E是AB的中点,点F是BC的中点,AB=4,BC=6,则E,F两点间的距离是()A.10 B.5 C.4 D.210.(3分)如果线段AB=5 cm,BC=4 cm,且A,B,C在同一条直线上,那么A,C两点的距离是()A.1 cm B.9 cmC.1 cm或9 cm D.以上答案都不正确11.(3分)如图,点A,B,O在同一条直线上,∠COE和∠BOE互余,射线OF 和OD分别平分∠COE和∠BOE,则∠AOF+∠BOD与∠DOF的关系是()A.∠AOF+∠BOD=∠DOF B.∠AOF+∠BOD=2∠DOFC.∠AOF+∠BOD=3∠DOF D.∠AOF+∠BOD=4∠DOF(第11题) (第12题)12.(3分)如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为()A.0 B.-1 C.-2 D.1二、填空题(共6小题,总分18分)13.(3分)计算:59°33′+76°27′=________.14.(3分)已知∠A和∠B互为余角,∠A=60°,则∠B的度数是________,∠A 的补角是________.15.(3分)如图所示,点O是直线AB上的点,OC平分∠AOD,∠BOD=30°,则∠AOC=_________°.(第15题) (第16题) (第17题) (第18题) 16.(3分)如图是一个钟面,时针和分针位置如图所示,则分针和时针所成角的度数是_________.17.(3分)如图所示,点C是线段AB上的一点,点M是AC的中点,点N是BC 的中点,若AB=8 cm,则线段MN的长是__________.18.(3分)如图,∠AOB=60°,OC是∠AOB的平分线,OC1是∠AOC的平分线,OC2是∠AOC1的平分线,…,OC n是∠AOC n-1的平分线,则∠AOC n=___________.三、解答题(共8小题,总分66分)19.(6分)计算:(1)48°39′+67°31′;(2)180°-21°17′×5..20.(6分)如图,在平面内有A,B,C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B,C),连接AD;(3)数数看,此时图中线段共有_______条.(第20题) (第21题)21.(6分)如图所示:在无阴影的方格中选出两个画出阴影,使它们与图中的4个有阴影正方形可以一起构成一个正方体的表面展示图.(填出两种答案)22.(8分)如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC =12AB . (1)用含x 的代数式表示线段BC 的长和AC 的长; (2)取线段AC 的中点D ,若DB =3,求x 的值.(第22题)23.(8分)在一个长方形中,长和宽分别为4 cm 、3 cm ,若该长方形绕着它的一边旋转一周,形成的几何体的体积是多少?(结果用π表示)24.(10分)如图,B ,C 两点把线段MN 分成三部分,其比为MB BCCN =,点P 是MN 的中点,P C =2 cm ,求MN 的长.(第24题)25.(10分)如图,点O为直线AB上一点,过点O作射线OC,已知0°<∠AOC <90°,射线OD平分∠AOC,射线OE平分∠BOC,射线OF平分∠DOE.(1)求∠DOE的度数;(2)求∠FOB+∠DOC的度数.(第25题)26.(12分)如图(1),点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).(1)将图(1)中的三角板绕点O旋转一定的角度得图(2),使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由.(2)将图(1)中的三角板绕点O旋转一定的角度得图(3),使边ON在∠BOC的内部,如果∠BOC=60°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.(第26题)答案一、1.D 2.B 3.C 4.C 5.C 6.D7.B 8.C 9.B 10.C 11.C 12.B 二、13.136° 14.30°;120° 15.7516.75° 17.4 cm 18.12n +1×60° 三、19.解:(1)48°39′+67°31′=115°70′=116°10′;(2)180°-21°17′×5=180°-105°85′=180°-106°25′=73°35′.20.解:(1)如图所示;(2)如图所示.(第20题)21.解:如图所示,答案不唯一.(第21题)22.解:(1)因为AB =x ,BC =12AB ,所以BC =12x .因为AC =AB +BC ,所以AC =x +12x =32x .(2)因为AD =DC =12AC ,AC =32x ,所以DC =34x .因为DB =3,BC =12x ,DB =DC -BC ,所以3=34x -12x .所以x =12. 23.解:绕长所在的直线旋转一周得到圆柱体积:π×32×4=36π(cm 3).绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48π(cm 3). 故形成的几何体的体积是36π cm 3或48π cm 3.24.解:因为MBBCCN =,所以设MB =2x cm ,BC =3x cm ,CN =4x cm , 所以MN =MB +BC +CN =2x +3x +4x =9x cm. 因为点P 是MN 的中点,所以P N =12MN =92x cm ,所以P C =P N -CN =92x -4x =2,解得x =4,所以MN =9×4=36(cm).25.解:(1)因为射线OD 平分∠AOC ,所以∠AOD =∠COD =12∠AOC .因为射线OE 平分∠BOC ,所以∠COE =∠BOE =12∠BOC . 因为∠AOC +∠BOC =180°,所以∠DOE =∠DOC +∠EOC =12∠AOC +12∠BOC =12(∠AOC + ∠BOC )=12×180°=90°.(2)因为射线OF 平分∠DOE ,所以∠DOF =∠EOF =12∠DOE =45°. 所以∠FOB +∠DOC =∠BOF +∠AOD =180°-∠DOF =180°-45°=135°.26.解:(1)ON 平分∠AOC .理由如下:因为∠MON =90°,所以∠BOM +∠AON =90°,∠MOC +∠NOC =90°.又因为OM 平分∠BOC ,所以∠BOM =∠MOC ,所以∠AON =∠NOC .所以ON 平分∠AOC . (2)∠BOM =∠NOC +30°.理由如下:因为∠NOC +∠NOB =60°,∠BOM +∠NOB =90°, 所以∠BOM =90°-∠NOB =90°-(60°-∠NOC )=∠NOC +30°. 所以∠BOM 与∠NOC 之间存在的数量关系是:∠BOM =∠NOC +30°.期末质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1 D.平方等于自身的数只有0和12.(3分)如图是一个简单的运算程序:,如果输入的x 值为-2,则输出的结果为()A.6 B.-6 C.14 D.-14 3.(3分)据统计部门发布的信息,广州2016年常住人口14 043 500人,数字14 043 500用科学记数法表示为()A.0.140 435×108 B.1.404 35×107C.14.043 5×106 D.140.435×105 4.(3分)下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5 B.若a=b,则ac=bcC.若x=y,则xa=ya D.若ac=bc(c≠0),则a=b5.(3分)如果单项式x2y m+2与x n y的和仍然是一个单项式,则m,n的值是() A.m=2,n=2 B.m=-1,n=2C.m=-2,n=2 D.m=2,n=-16.(3分)在解方程x-12-2x+33=1时,去分母正确的是()A.3(x-1)-2(2x+3)=1 B.3(x-1)+2(2x+3)=1C.3(x-1)+2(2x+3)=6 D.3(x-1)-2(2x+3)=67.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()(第7题)(第8题) (第9题)8.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是() A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段9.(3分)有理数a,b在数轴上的位置如图所示,则下列各式中错误的是() A.b<a B.|b|>|a| C.a+b>0 D.ab<0 10.(3分)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x名学生,则依题意所列方程正确的是()A.3x-20=4x-25 B.3x+20=4x+25C.3x-20=4x+25 D.3x+20=4x-2511.(3分)如图,图书馆A在蕾蕾家B北偏东30°的方向上,若∠ABC=90°,则超市C在蕾蕾家的()A.南偏东30°的方向上B.南偏东60°的方向上C.北偏东60°的方向上D.北偏东30°的方向上(第11题) (第12题)12.(3分)如图所示,将一张长方形纸的一角斜折过去,使顶点A落在A′处,BC 为折痕,如果BD为∠A′BE的平分线,则∠CBD=()A.80°B.90°C.100°D.70°二、填空题(共6小题,总分18分)13.(3分)-17的相反数是______.14.(3分)计算:a-3a=_______.15.(3分)若|m -2|+(n +1)2=0,则2m +n =_____.16.(3分)如图,把图折叠成一个正方体,如果相对面的值相等,则x ,y 的值是_____________________________________.(第16题) (第17题)17.(3分)如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD =1,则AB =________.18.(3分)观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729……你能从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:32 018的个位数字是___________. 三、解答题(共8小题,总分66分)19.(6分)所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中: -2.5,3.14,-2,+72,-0.6,0.618,0,-0.101 正数集合:{ …}; 负数集合:{ …}; 分数集合:{ …}; 非负数集合:{ …}. 20.(12分)计算:(1)-15+(-8)-(-11)-12; (2)(-312)×(-13)×314÷(-12);(3)⎝ ⎛⎭⎪⎫-136÷⎝ ⎛⎭⎪⎫16-19-13; (4)-23+[(-4)2-(1-32)×3].21.(8分)解方程:(1)2(3x-1)=16;(2)x+14-1=2x+16.22.(6分)先化简,再求值:2(a2b+ab2)-2(a2b-1)-ab2-2.其中a=1,b=-3. .23.(6分)如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(第23题)(1)用a,b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.24.(8分)如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M,N分别是AC,BC的中点.(第24题)(1)求线段MN的长;(2)若C为线段AB上任意一点,满足AC+CB=a cm,其他条件不变,你能猜出线段MN的长度吗?并说明理由.25.(10分)某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩12 m2地面未铺瓷砖;同样时间内6名二级技工铺4个宿舍刚好完成,已知每名一级技工比二级技工一天多铺3 m2瓷砖.(1)求每个宿舍需要铺瓷砖的地板面积.(2)现该学校有20个宿舍的地板和36 m2的走廊需要铺瓷砖,某工程队有4名一级技工和6名二级技工,一开始有4名一级技工来铺瓷砖,3天后,学校根据实际情况要求2天后必须完成剩余的任务,所以决定加入一批二级技工一起工作,问需要再安排多少名二级技工才能按时完成任务.26.(10分)如图,在∠AOB的内部作射线OC,使∠AOC与∠AOB互补.将射线OA,OC同时绕点O分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA,OC分别记为OM,ON,设旋转时间为t秒.已知t<30,∠AOB=114°.(第26题)(1)求∠AOC的度数;(2)在旋转的过程中,当射线OM,ON重合时,求t的值;(3)在旋转的过程中,当∠COM与∠BON互余时,求t的值.答案一、1.C 2.C 3.B 4.C 5.B 6.D7.A 8.C 9.C 10.D 11.B 12.B 二、13.17 14.-2a 15.316.x =6,y =1或x =-1,y =-6 17.4 18.9三、19.正数集合:{3.14,+72,0.618,…};负数集合:{-2.5,-2,-0.6,-0.101,…}; 分数集合:{-2.5,3.14,-0.6,0.618,-0.101,…}; 非负数集合:{3.14,+72,0.618,0,…}.20.解:(1)原式=-15+(-8)+11+(-12)=-35+11=-24;(2)原式=-72×(-13)×314×(-2)=-12;(3)原式=⎝ ⎛⎭⎪⎫-136÷⎝ ⎛⎭⎪⎫318-218-618=⎝ ⎛⎭⎪⎫-136÷⎝ ⎛⎭⎪⎫-518=-136×⎝ ⎛⎭⎪⎫-185=110; (4)原式=-8+[16-(1-9)×3]=-8+[16-(-8)×3]=-8+(16+24)=-8+40=32.21.解:(1)去括号得6x -2=16,移项、合并同类项得6x =18,系数化为1得x=3;(2)去分母得3(x +1)-12=2(2x +1),去括号得3x +3-12=4x +2,移项、合并同类项得-x =11,系数化为1得x =-11.22.解:原式=2a 2b +2ab 2-2a 2b +2-ab 2-2=ab 2,当a =1,b =-3时,原式=1×(-3)2=9.23.解:(1)阴影部分的面积为12b 2+12a (a +b );(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492, 即阴影部分的面积为492.24.解:(1)因为点M ,N 分别是AC ,BC 的中点,AC =8 cm ,CB =6 cm ,所以CM =12AC =12×8=4(cm),CN =12BC =12×6=3(cm ), 所以MN =CM +CN =4+3=7(cm );41 (2)能.MN =12a cm .理由如下:因为点M ,N 分别是AC ,BC 的中点,所以CM =12AC ,CN =12BC ,所以MN =CM +CN =12AC +12BC =12(AC +BC )=12a cm .25.解:(1)设每个宿舍需要铺瓷砖的地板面积为x m 2,则依题意列出方程:4x -124-4x 6=3,解方程得:x =18.所以每个宿舍需要铺瓷砖的地板面积为18 m 2.(2)设需要再安排y 名二级技工才能按时完成任务.因为每名一级技工每天可铺砖面积:4×18-124=15(m 2), 每名二级技工每天可铺砖面积:15-3=12(m 2),所以15×4×5+2×12y =20×18+36.解得:y =4.所以需要再安排4名二级技工才能按时完成任务.26.解:(1)因为∠AOC 与∠AOB 互补,所以∠AOC +∠AOB =180°.因为∠AOB =114°,所以∠AOC =180°-114°=66°.(2)由题意得12t =8t +66.解得t =16.5.所以当t =16.5时,射线OM ,ON重合.(3)当t <5.5时,射线OM 在∠AOC 内部,射线ON 在∠BOC 内部,由题意得66-12t +114-66-8t =90,解得t =1.2;当t >6时,射线ON 在∠BOC 外部,射线OM 在∠AOC 外部,由题意得12t -66+8t-(114-66)=90,解得t =10.2.综上所述,当∠COM 与∠BON 互余时,t 的值为1.2或10.2.。

人教版七年级上册数学全册单元试卷测试题(Word版 含解析)

人教版七年级上册数学全册单元试卷测试题(Word版 含解析)

人教版七年级上册数学全册单元试卷测试题(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.3.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.4.如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.(2)若∠AOD和∠DOE互余,且∠AOD= ∠AOE,请求出∠AOD和∠COE的度数.【答案】(1)解:∠AOD= ×∠AOC= ×60°=30°,∠BOC=180°﹣∠AOC=180°﹣60°=120°(2)解:∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°,∴∠AOD= ∠AOE= ×90°=30°,∴∠AOC=2∠AOD=60°,∴∠COE=90°﹣∠AOC=30°【解析】【分析】(1)①由角平分线的定义可得:∠AOD=∠COD= ∠AOC即可求解;②由邻补角的定义可得:∠BOC+∠AOC= 180°,所以∠BOC= 180° -∠AOC即可求解;(2)①由互为余角的定义和图形可得∠AOE=∠AOD+∠DOE= 90°,所以∠AOD= ∠AOE 可求解;②由①可得∠AOD的度数,由角平分线的定义可得∠AOC=2∠AOD,所以∠COE=∠AOE-∠AOC,把∠AOE和∠AOC的度数代入计算即可求解。

七年级数学上册全册单元测试卷(提升篇)(Word版 含解析)

七年级数学上册全册单元测试卷(提升篇)(Word版 含解析)

七年级数学上册全册单元测试卷(提升篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.3.如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,∠MON=________°;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON的度数;(3)∠COD从图2中的位置绕点O顺时针旋转n°(0<n<120),则n=________时,∠MON=2∠BOC.【答案】(1)100(2)解:①当0<n<60°时,∠AOC=∠AOB-∠BOC=120°-n,∠BOD=60°-n,∴∠MON=∠MOC+∠COB+∠BON= ∠AOC+n+ ∠BOD= (120°-n)+n+ (60°-n)=100°;②当60°<n<120°时,∠AOC=120°-n,∠COD=60°,∠BOD=n-60°,∠MOC= ∠AOC,∠DON= ∠BOD,∴∠MON=∠MOC+∠COD+∠DON= (120°-n)+60°+ (n-60°)=100°.综上所述:∠MON的度数恒为100°(3)解:①当0<n<60°时,∠BOC=n,∠MON=2n,∴∠MON= (120°+n)+60°-(60°+n)=100°;解得:n=50°;②当60°<n<120°时,∠AOC=360°-(120°+n)=240°-n,∠BOD=60°+n,∴∠MON=360°-∠AOM-∠AOB-∠BON=360°-(240°-n)-120°-(60°+n)=140°,解得:n=70°.综上所述:n=50°或70°【解析】【解答】解:(1)∠MON= ∠AOB+ ∠COD=100°;【分析】(1)由∠AOM=∠AOC,∠AOC= ∠AOB,∠AOC=∠AOM+∠MOC得出∠MOC= ∠AOB,又∠BON=∠BOD,从而由∠MON= ∠AOB+ ∠COD即可算出答案;(2)需要分类讨论:①当0<n<60°时,根据旋转的性质得出∠AOC=∠AOB-∠BOC=120°-n,∠BOD=60°-n,由∠MON=∠MOC+∠COB+∠BON整体替换再化简即可得出答案;②当60°<n<120°时,根据旋转的性质得出∠AOC=120°-n,∠COD=60°,∠BOD=n-60°,∠MOC= ∠AOC,∠DON= ∠BOD,由∠MON=∠MOC+∠COD+∠DON整体替换再化简即可得出答案;(3)分类讨论:①当0<n<60°时,∠BOC=n,∠MON=2n,又∠MON=∠MOB+∠BOC-∠NOC = (120°+n)+60°- (60°+n)=100°,从而列出方程,求解得出n的值;②当60°<n<120°时,∠BOC=n,∠MON=2n,∠AOC=360°-(120°+n)=240°-n,∠BOD=60°+n,又∠MON=360°-∠AOM-∠AOB-∠BON,从而整体整体代入化简并列出方程,求解即可。

数学七年级上册全册单元试卷综合测试卷(word含答案)

数学七年级上册全册单元试卷综合测试卷(word含答案)

数学七年级上册全册单元试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间【答案】(1)解:因为,所以2a+4=0,b-6=0,所以a=−2,b=6;所以AB的距离=|b−a|=8;(2)解:设数轴上点C表示的数为c.因为AC=2BC,所以|c−a|=2|c−b|,即|c+2|=2|c−6|.因为AC=2BC>BC,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−2<c<6,得c+2=2(6−c),解得c= ;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c=14.故当AC=2BC时,c= 或c=14;(3)解:①因为甲球运动的路程为:1×t=t,OA=2,所以甲球与原点的距离为:t+2;乙球到原点的距离分两种情况:(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,因为OB=6,乙球运动的路程为:2×t=2t,所以乙球到原点的距离为:6−2t;(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6;②当0<t⩽3时,得t+2=6−2t,解得t= ;当t>3时,得t+2=2t−6,解得t=8.故当t= 秒或t=8秒时,甲乙两小球到原点的距离相等.【解析】【分析】(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.2.已知点O是直线AB上的一点,∠COE=120°,射线OF是∠AOE的一条三等分线,且∠AOF= ∠AOE.(本题所涉及的角指小于平角的角)(1)如图,当射线OC、OE、OF在直线AB的同侧,∠BOE=15°,求∠COF的度数;(2)如图,当射线OC、OE、OF在直线AB的同侧,∠FOE比∠BOE的余角大40°,求∠COF的度数;(3)当射线OE、OF在直线AB上方,射线OC在直线AB下方,∠AOF<30°,其余条件不变,请同学们自己画出符合题意的图形,探究∠FOC与∠BOE确定的数量关系式,请直接给出你的结论.【答案】(1)解:∵∠AOE+∠BOE=180°,∠BOE=15°,∴∠AOE=180°-15°=165°∴∠AOF= ∠AOE=×165°=55°∵∠AOC=∠AOE-∠COE=165°-120°=45°∴∠COF=∠AOF-∠AOC=55°-45°=10°答:∠COF的度数为10°.(2)解:设∠BOE=x,则∠BOE的余角为90°-x.∵∠FOE比∠BOE的余角大40°,∴∠FOE=130°-x∵∠COE=120°,则∠COF=x-10°,∠AOC=60°-x,∴∠AOF=∠AOC+∠COF=50°∵∠AOF= ∠AOE∴∠AOE=150°∴∠BOE=x=180°-150°=30°∴∠COF=x-10°=30°-10°=20°答:∠COF的度数为20°(3)解:∠FOC=∠BOE如图,设∠AOF=x∵∠AOF=∠AOE∴∠AOE=3x∴∠EOF=2x,∠BOE=180°-3x=3(60°-x)∵∠COE=120°∴∠AOC=120°-3x∴∠COF=∠AOC+∠AOF=120°-3x+x=2(60°-x)∴∴∠FOC=∠BOE【解析】【分析】(1)利用邻补角的定义及已知求出∠AOE、∠AOF的度数,再利用∠AOC=∠AOE-∠COE,求出∠AOC的度数,然后根据∠COF=∠AOF-∠AOC,可求得结果。

人教版七年级上册数学试卷全册

人教版七年级上册数学试卷全册

人教版七年级数学上册第一章有理数单元测试题姓名 得分一、精心选一选:(每题2分、计18分)1、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -c<0 a b 0 c 2、若两个有理数的和是正数,那么一定有结论( )(A )两个加数都是正数; (B )两个加数有一个是正数;(C )一个加数正数,另一个加数为零; (D )两个加数不能同为负数 3、654321-+-+-+……+2005-2006的结果不可能是: ( ) A 、奇数 B 、偶数 C 、负数 D 、整数 4、、两个非零有理数的和是0,则它们的商为: ( )A 、0B 、-1C 、+1D 、不能确定5、有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则1000个数的和等于( )(A)1000 (B)1 (C)0 (D)-16每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米 *7.20032004)2(3)2(-⨯+- 的值为( ). A .20032- B .20032C .20042- D .20042*8、已知数轴上的三点A 、B 、C 分别表示有理数a ,1,1-,那么1+a 表示( ). A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和*9.3028864215144321-+-+-+-+-+-+- 等于( ).A .41B .41-C .21D .21-二.填空题:(每题3分、计42分)1、如果数轴上的点A 对应的数为-1.5,那么与A 点相距3个单位长度的点所对应的有理数为_______。

湘教版七年级数学上册单元测试题全套(含答案)

湘教版七年级数学上册单元测试题全套(含答案)

湘教版七年级数学上册单元测试题全套(含答案)第1章章末检测一、选择题(每小题3分,共30分)1.如果将“收入100元”记作“+100元”,那么“支出50元”应记作()A.+50元B.-50元C.+150元D.-150元2.在有理数-4,0,-1,3中,最小的数是()A.-4B.0C.-1D.33.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D4.2016年第一季度,某市“蓝天白云、繁星闪烁”天数持续增加,获得省环境空气质量生态补偿资金408万元.408万用科学记数法表示正确的是()A.408×104B.4.08×104C.4.08×105D.4.08×1065.下列算式正确的是()A.(-14)-5=-9B.0-(-3)=3C.(-3)-(-3)=-6D.|5-3|=-(5-3)6.有理数(-1)2,(-1)3,-12,|-1|,-(-1),-1中,化简结果等于1的个数是()-1A.3个B.4个C.5个D.6个7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x,则x的值为()A.4.2B.4.3C.4.4D.4.58.有理数a,b在数轴上的位置如图所示,下列各式成立的是()A.b>0B.|a|>-b C.a+b>0D.ab<09.若|a|=5,b=-3,则a-b的值为()A.2或8B.-2或8C.2或-8D.-2或-810.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22016的末位数字是()A .2B .4C .6D .8二、填空题(每小题3分,共24分)11.-3的相反数是________,-2018的倒数是________.12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有__________,分数有___________________.13.绝对值大于4而小于7的所有整数之和是________.14.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位到达点B ,则这两点所表示的数分别是________和________.15.如图是一个简单的数值运算程序.当输入x 的值为-1时,则输出的数值为________.输入x ―→×(-3)―→-2―→输出16.太阳的半径为696000千米,用科学记数法表示为________千米;把210400精确到万位是________.17.已知(a -3)2与|b -1|互为相反数,则式子a 2+b 2的值为________.18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出a +b +c =________.三、解答题(共66分)19.(8分)将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来.-112,0,2,-|-3|,-(-3.5).20.(16分)计算:(1)5×(-2)+(-8)÷(-2);(2)2-2÷(3)(-24)123-(4)-14-(1-0×4)÷13×[(-2)2-6].21.(10分)小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?22.(8分)某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?23.(12分)某校七(1)班学生的平均身高是160厘米,下表给出了该班6名学生的身高情况(单位:厘米).学生A B C D E F身高157162159154163165身高与平均身高的差值-3+2-1a+3b(1)列式计算表中的数据a和b;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少?(3)这6名学生的平均身高与全班学生的平均身高相比,在数值上有什么关系?(通过计算回答)24.(12分)下面是按规律排列的一列数:第1个数:1第2个数:2+(-1)231+(-1)34;第3个数:3+(-1)231+(-1)341+(-1)451+(-1)56.(1)分别计算这三个数的结果(直接写答案);(2)写出第2017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案与解析1.B 2.A 3.A 4.D 5.B 6.B7.C8.D9.B10.C11.3-1201812.-4,-0.8,-15,-343,-|-24|+8.3,-0.8,-15,-34313.014.4-415.116.6.96×10521万17.1018.110解析:找规律可得c=6+3=9,a=6+4=10,b=ac+1=91,∴a+b+c=110.19.解:数轴表示如图所示,(5分)由数轴可知-(-3.5)>2>0>-112>-|-3|.(8分)20.解:(1)原式=-10+4=-6.(4分)(2)-4)=-8+5=-3.(8分)(3)原式=-12+40+9=37.(12分)(4)原式=-1-1×3×(-2)=-1+6=5.(16分)21.解:(1)如图所示:(3分)(2)2-(-1)=3(km).答:小彬家与学校之间的距离是3km.(6分)(3)(2+1.5+1)×2=9(km)=9000m ,9000÷250=36(min).答:小明跑步一共用了36min.(10分)22.解:由题意,得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),(5分)所以他卖完这8套儿童服装后是盈利,盈利37元.(8分)23.解:(1)a =154-160=-6,b =165-160=+5.(4分)(2)学生F 最高,学生D 最矮,最高与最矮学生的身高相差11厘米.(8分)(3)-3+2+(-1)+(-6)+3+5=0,所以这6名学生的平均身高与全班学生的平均身高相同,都是160厘米.(12分)24.解:(1)第1个数:12;第2个数:32;第3个数:52.(6分)(2)第2017个数:2017+(-1)231+(-1)34…1+(-1)403240331+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分)第2章章末检测一、选择题(每小题3分,共30分)1.下列式子是单项式的是()A.x+y2B.-12x3yz2 C.5xD.x-y2.在下列单项式与2xy是同类项的是()A.2x2y2B.3yC.xyD.4x3.多项式4xy2-3xy3+12的次数为()A.3B.4C.6D.74.下面计算正确的是()A.6a-5a=1B.a+2a2=3a2C.-(a-b)=-a+bD.2(a+b)=2a+b5.如图所示,三角尺的面积为()A.ab-r2B.12ab-r2C.12ab-πr2 D.ab6.已知一个三角形的周长是3m-n,其中两边长的和为m+n-4,则这个三角形的第三边的长为()A.2m-4B.2m-2n-4C.2m-2n+4D.4m-2n+47.已知P=-2a-1,Q=a+1且2P-Q=0,则a的值为()A.2B.1C.-0.6D.-18.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样9.当1<a<2时,代数式|a-2|+|1-a|的值是()A.-1B.1C.3D.-310.下列图形都是由同样大小的长方形按一定的规律组成的,其中第①个图形的面积为2cm2,第②个图形的面积为8cm2,第③个图形的面积为18cm2……则第⑩个图形的面积为()A.196cm 2B.200cm 2C.216cm 2D.256cm 2二、填空题(每小题3分,共24分)11.单项式-2x 2y5的系数是,次数是W.12.如果手机通话每分钟收费m 元,那么通话n 分钟收费元.13.若多项式的一次项系数是-5,二次项系数是8,常数项是-2,且只含一个字母x ,请写出这个多项式.14.减去-2m 等于m 2+3m +2的多项式是m 2+m +2.15.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为.16.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于4.17.若a -2b =3,则9-2a +4b 的值为W.18.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2016个格子中的整数是-2.-4abc6b-2…三、解答题(共66分)19.(12分)化简:(1)3a 2+5b -2a 2-2a +3a -8b ;(2)(8x -7y )-2(4x -5y );(3)-(3a 2-4ab )+[a 2-2(2a 2+2ab )].20.(8分)先化简再求值:(1)-9y +6x 2+y -23x 2x =2,y =-1;(2)2a 2b -[2a 2+2(a 2b +2ab 2)],其中a =12,b =1.21.(10分)已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的值无关,求x的值.22.(10分)暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,则共需交旅游费多少元(用含字母的式子表示)?并计算当a=300,b=200时的旅游费用.23.(12分)如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为a m,计算:(1)窗户的面积;(2)窗框的总长;(3)若a=1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).参考答案与解析1.B 2.C 3.B 4.C 5.C6.C7.C8.C9.B10.B11.-25312.mn13.8x2-5x-214.m2+m+215.116.417.318.-219.解:(1)原式=3a2-2a2-2a+3a+5b-8b=a2+a-3b.(4分)(2)原式=8x-7y-8x+10y=3y.(8分)(3)原式=-3a2+4ab+a2-4a2-4ab=-6a2.(12分)20.解:(1)原式=-9y+6x2+3y-2x2=4x2-6y.(2分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(4分)(2)原式=2a2b-(2a2+2a2b+4ab2)=2a2b-2a2-2a2b-4ab2=-2a2-4ab2.(6分)当a=12,b=1时,原式=--4×12×1=-52.(8分)21.解:(1)∵A=2x2+xy+3y-1,B=x2-xy,∴A-2B=2x2+xy+3y-1-2x2+2xy=3xy+3y-1.∵(x +2)2+|y-3|=0,∴x=-2,y=3,则A-2B=-18+9-1=-10.(5分)(2)∵A-2B=y(3x+3)-1,A-2B的值与y值无关,∴3x+3=0,解得x=-1.(10分)22.解:共需交旅游费为0.8a×2+0.65b×8=(1.6a+5.2b)(元).(5分)当a=300,b=200时,旅游费用为1.6×300+5.2×200=1520(元).(10分)23.解:(1)窗户的面积为2m2.(4分)(2)窗框的总长为(15+π)a m.(8分)2×25+(15+π)a×20+252π2+(300+20π)×1=400+652π≈502(元).答:制作这种窗户需要的费用约是502元.(12分) 24.解:(1)111432(6分)(2)第n个“T”字形图案共有棋子(3n+2)个.(8分)(3)当n=20时,3n+2=3×20+2=62(个).即第20个“T”字形图案共有棋子62个.(10分)(4)这20个数据是有规律的,第1个与第20个数据的和、第2个与第19个数据的和、第3个与第18个数据的和……都是67,共有10个67.所以前20个“T”字形图案中,棋子的总个数为67×10=670(个).(14分)第3章章末检测一、选择题(每小题3分,共30分)1.下列方程是一元一次方程的是()A.x-2=3B.1+5=6C.x2+x=1D.x-3y=02.方程2x+3=7的解是()A.x=5B.x=4C.x=3.5D.x=23.下列等式变形正确的是()A.若a=b,则a-3=3-bB.若x=y,则xa=yaC.若a=b,则ac=bcD.若ba=dc,则b=d4.把方程3x+2x-13=3-x+12去分母正确的是()A.18x+2(2x-1)=18-3(x+1)B.3x+(2x-1)=3-(x+1)C.18x+(2x-1)=18-(x+1)D.3x+2(2x-1)=3-3(x+1)5.若关于x的方程x m-1+2m+1=0是一元一次方程,则这个方程的解是()A.-5B.-3C.-1D.56.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518-x=2×106C.518-x=2(106+x)D.518+x=2(106-x)7.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x-3)-■=x+1,怎么办呢?他想了想便翻看书后的答案,方程的解是x=9,请问这个被污染的常数是()A.1B.2C.3D.48.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元9.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是()A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为()A.2314B.3638C.42D.44二、填空题(每小题3分,共24分)11.方程3x -3=0的解是.12.若-x n +1与2x 2n -1是同类项,则n =.13.已知多项式9a +20与4a -10的差等于5,则a 的值为.14.若方程x +2m =8与方程2x -13=x +16的解相同,则m =.15.在有理数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =-2a +3b ,如:1⊕5=-2×1+3×5=13,则方程x ⊕4=0的解为.16.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有名学生.17.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是元.18.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm 3.三、解答题(共66分)19.(15分)解下列方程:(1)4x -3(12-x )=6x -2(8-x );(2)2x -13-2x -34=1;(3)12x +54x +1=8+x .20.(8分)已知3+a 2与-13(2a -1)-1互为相反数,求a 的值.21.(9分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?22.(10分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图①所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.23.(12分)为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?24.(12分)把正整数1,2,3,4,…,2017排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x,另三个数用含x的式子表示出来,从大到小依次是,,;(2)当被框住的4个数之和等于416时,x的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x的值;如果不能,请说明理由.参考答案与解析1.A 2.D 3.C 4.A 5.A 6.C7.B8.B9.A10.C解析:设图②中白色区域的面积为8x,灰色区域的面积为3x,由题意,得8x+3x=33,解得x=3.∴灰色部分面积为3×3=9,图①的面积为33+9=42.故选C.11.x=112.213.-514.7215.x=616.3017.150018.100019.解:(1)x=-20.(5分)(2)x=72.(10分)(3)x=3.(15分)20.解:由题意,得3+a2+-13(2a-1)-1=0,(4分)解得a=5.(8分)21.解:设甲种票买了x张,则乙种票买了(35-x)张,(2分)依题意有24x+18(35-x)=750,(6分)解得x=20.则35-x=15.(8分)答:甲种票买了20张,乙种票买了15张.(9分)22.解:(1)第5节套管的长度为50-4×(5-1)=34(cm).(2分)(2)第10节套管的长度为50-4×(10-1)=14(cm),(4分)因为每相邻两节套管间重叠的长度为x cm,根据题意得(50+46+42+…+14)-9x=311,(7分)即320-9x=311,解得x=1.(9分)答:每相邻两节套管间重叠的长度为1cm.(10分)23.解:(1)由题意,得5020-92×40=1340(元).(4分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(5分)(2)设甲班有x名同学准备参加演出(依题意46<x<90),则乙班有(92-x)名.依题意得50x+60(92-x)=5020,解得x=50,92-x=42(名).(11分)答:甲班有50名同学,乙班有42名同学.(12分)24.解:(1)x+8x+7x+1(3分)(2)由题意,得x+x+1+x+7+x+8=416,解得x=100.(7分)(3)不能,(8分)因为当4x+16=622,解得x=15112,不为整数.(12分)第4章章末检测一、选择题(每小题3分,共30分)1.生活中的实物可以抽象出各种各样的几何图形,如图,蛋糕的形状类似于()A.圆柱B.球C.圆D.圆锥第1题图2.下列说法正确的是()A.两点确定一条直线B.两条射线组成的图形叫作角C.两点之间直线最短D.若AB=BC,则点B为AC的中点3.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对4.如图,长度为18cm的线段AB的中点为M,点C是线段MB的一个三等分点,则线段AC的长为()A.3cmB.6cmC.9cmD.12cm第4题图第5题图5.如图,∠AOB为平角,且∠AOC=27∠BOC,则∠BOC的度数是()A.140°B.135°C.120°D.40°6.如图,有一个正方体纸巾盒,它的平面展开图是()7.若一个角的补角的余角是28°,则这个角的度数为()A.62°B.72°C.118°D.128°8.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A,D,B三点在同一直线上,BM为∠ABC 的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A.30°B.45°C.55°D.60°9.两根木条,一根长20cm,一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cmB.4cmC.2cm 或22cmD.4cm 或44cm10.如图,C 、D 在线段BE 上,下列说法:①直线CD 上以B 、C 、D 、E 为端点的线段共有6条;②图中有2对互补的角;③若∠BAE =100°,∠DAC =40°,则以A 为顶点的所有小于平角的角的度数和为360°;④若BC =2,CD =DE =3,点F 是线段BE 上任意一点,则点F 到点B ,C ,D ,E 的距离之和的最大值为15,最小值为11.其中说法正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因.第11题图第12题图12.如图所示的图形中,柱体为(请填写你认为正确物体的序号).13.如图,直线AB ,CD 交于点O ,我们知道∠1=∠2,那么其理由是.第13题图14.已知BD =4,延长BD 到A ,使BA =6,点C 是线段AB 的中点,则CD =.15.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有种不同的票价,需准备种车票.16.如图①所示的∠AOB 纸片,OC 平分∠AOB ,如图②,把∠AOB 沿OC 对折成∠COB (OA 与OB 重合),从O 点引一条射线OE ,使∠BOE =12∠EOC ,再沿OE 把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB =°.第16题图第18题图17.已知A、B、C三点都在数轴上,点A在数轴上对应的数为2,且AB=5,BC=3,则点C在数轴上对应的数为.18.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是cm2.三、解答题(共66分)19.(10分)观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.20.(10分)如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3.求线段CD,AB的长;(2)试说明:AD+AB=2AC.21.(10分)如图,将两块直角三角尺的顶点叠放在一起.(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的关系,并说明理由.22.(12分)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD=AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.23.(12分)如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).24.(12分)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE 的度数之间的关系,说明理由.参考答案与解析1.A 2.A 3.B 4.D 5.A 6.B7.C8.B9.C10.B解析:以B,C,D,E为端点的线段有BC,BD,BE,CE,CD,ED共6条,故①正确;图中互补的角就是分别以C,D为顶点的两对角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故②正确;由∠BAE=100°,∠CAD=40°,根据图形可以求出∠BAC+∠CAE+∠BAE+∠BAD+∠DAE+∠DAC =100°+100°+100°+40°=340°,故③错误;当F在线段CD上时最小,则点F到点B,C,D,E的距离之和为FB+FE+FD+FC=2+3+3+3=11,当F和E重合时最大,则点F到点B、C、D、E的距离之和为FB+FE+FD+FC=8+0+3+6=17,故④错误.故选B.11.两点之间,线段最短12.①②③⑥13.同角的补角相等14.115.102016.12017.-6或0或4或1018.3019.解:图略.(10分)20.解:(1)∵C是线段BD的中点,BC=3,∴CD=BC=3.又∵AB+BC+CD=AD,AD=8,∴AB =8-3-3=2.(5分)(2)∵AD+AB=AC+CD+AB,BC=CD,∴AD+AB=AC+BC+AB=AC+AC=2AC.(10分)21.解:(1)由题意知∠ACD=∠ECB=90°,∴∠ACB=∠ACD+∠DCB=∠ACD+∠ECB-∠ECD=90°+90°-35°=145°.(3分)(2)由(1)知∠ACB=180°-∠ECD,∴∠ECD=180°-∠ACB=40°.(6分)(3)∠ACB+∠DCE=180°.(7分)理由如下:∵∠ACB=∠ACD+∠DCB=90°+90°-∠DCE,∴∠ACB +∠DCE=180°.(10分)22.解:(1)设BC=x cm,则AC=3x cm.又∵AC=AB+BC=(20+x)cm,∴20+x=3x,解得x=10.即BC=10cm.(4分)(2)∵AD=AB=20cm,∴DC=AD+AB+BC=20cm+20cm+10cm=50cm.(8分)(3)∵M为AB的中点,∴AM=1AB=10cm,∴MD=AD+AM=20cm+10cm=30cm.(12分)223.解:(1)图略.(4分)(2)∠BAC =90°-80°+90°-20°=80°.(8分)(3)约2.3cm ,即实际距离约23海里.(12分)24.解:(1)由已知得∠BOC =180°-∠AOC =150°,又∠COD 是直角,OE 平分∠BOC ,∴∠DOE =∠COD -12∠BOC =90°-12×150°=15°.(3分)(2)∠DOE =12a .(6分)解析:由(1)知∠DOE =∠COD -12∠BOC =90°,∴∠DOE =90°-12(180°-∠AOC )=12∠AOC =12α.(3)①∠AOC =2∠DOE .(7分)理由如下:∵∠COD 是直角,OE 平分∠BOC ,∴∠COE =∠BOE =90°-∠DOE ,∴∠AOC =180°-∠BOC =180°-2∠COE =180°-2(90°-∠DOE ),∴∠AOC =2∠DOE .(9分)②4∠DOE -5∠AOF =180°.(10分)理由如下:设∠DOE =x ,∠AOF =y ,∴∠AOC -4∠AOF =2∠DOE -4∠AOF =2x -4y ,2∠BOE +∠AOF =2(90°-x )+y =180°-2x +y ,∴2x -4y =180°-2x +y ,即4x -5y =180°,∴4∠DOE -5∠AOF =180°.(12分)第5章章末检测一、选择题1.以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间 B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况 D.调查某校篮球队员的身高2.下列说法中,正确的是()A.将一组数据中的每一个数据都加同一个正数,方差变大B.为了解全市同学对书法课的喜欢情况,调查了某校所有女生C.“任意画出一个矩形,它是轴对称图形”是必然事件D.为了审核书稿中的错别字,选择抽样调查3.甲校的女生占所有学生的50%,乙校的男生占所有学生的60%,那么()A.甲校的女生人数多B.乙校的女生人数多C.两个学校的女生一样多D.不能判断4.七年级1班的同学最喜欢的球类运动用如图的统计图表示,下面说法正确的是()A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学一学期来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系5.某中学九年级1班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是()A.120°B.108°C.90°D.30°6.数学老师要求每个学生就本班同学上学方式进行一次调查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据图中提供的信息,你认为下列结论中正确的是()A.该班共有30名学生B.骑自行车的人数为10人C.该班骑自行车的人数最多D.“乘车”部分所对应的圆心角的度数为108°7.下列调查方法合适的是()A.为了了解冰箱的使用寿命,采用普查的方式B.为了了解全国中学生的视力状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对“神舟十一号载人飞船”零部件的检查,采用抽样调查的方式8.如图是某市某月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天.则此人在该市停留期间有且仅有1天空气质量重度污染的概率是()A. B. C. D.9.下列调查中,调查方式选择合理的是()A.了解妫水河的水质情况,选择抽样调查B.了解某种型号节能灯的使用寿命,选择全面调查C.了解一架Y﹣8GX7新型战斗机各零部件的质量,选择抽样调查D.了解一批药品是否合格,选择全面调查10.如图的两个统计图,女生人数多的学校是()A.甲校B.乙校C.甲、乙两校女生人数一样多D.无法确定11.观察市统计局公布的苏州市农村居民人均收入每年比上一年增长率的统计图如图,下列说法正确的是()A.2004年农村居民人均收入低于2003年B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时在2005年D.农村居民人均收入每年比上一年的增长率,有大有二、填空题12.今年3月5日,某中学组织六、七年级200位学生参与了“走出校门,服务社会”的活动,该校某数学学习小组的同学对那天参与打扫街道、敬老院服务和社区文艺演出的三组人数进行分别统计,部分数据如图所示:(1)参与社区文艺演出的学生人数是________人,参与敬老院服务的学生人数是________人;(2)该数学学习小组的同学还发现,六、七年级参与打扫街道的学生人数分别比参与敬老院服务的学生人数多了40%和60%,求参与敬老院服务的六、七年级学生分别有________人.13.某校七年级二班在订购本班的班服前,按身高型号进行登记,对女生的记录中,身高150cm以下记为S 号,150〜160cm以下记为M号,160〜170cm以下记为L号.170cm以上记为XL号.若用统计图描述这些数据,合适的统计图是________.14.期末考试后,小红将本班50名学生的数学成绩进行分类统计,得到如图所示的扇形统计图,则优生人数为________.15.在结束了初中阶段数学内容的新课教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制了如图所示的扇形统计图,则唐老师安排复习“统计与概率”内容的时间为________课时.16.2015年1月份,某区体委组织“迎新春长跑活动”,现将报名的男选手分成:青年组、中年组、老年组,各组人数所占比例如图所示,已知青年组120人,则中年组的人数是________.17.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是________18.初一(1)班给出25分钟的时间,要求用多种方法证明某一问题,结果如表所示.用2种办法给出证明的人数最________,占总人数的百分率约为________.0123正确证法种数人数101214619.调查某城市的空气质量,应选择________(填抽样或全面)调查.20.某校八年级(5)班60名学生在一次英语测试中,优秀的占45%,在扇形统计图中,表示这部分同学的扇形圆心角是________度.21.随着我国人口增长速度变缓,小学入学儿童的人数逐年下降,下表显现了某地区小学儿童人数的变化情况,由此估计,从________年起,该地区小学儿童人数将不超过1600人.年份(年)201020112012…小学入学儿童人数(人)252023202120…三、解答题22.某中学为筹备校庆活动,准备印制一批校庆纪念册,该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张,印刷费与印数的关系见下表:印数a(单位:千册)1≤a<55≤a<10彩色(单位:元/张) 2.2 2.0黑白(单位:元/张)0.80.6(1)印制这批纪念册的制版费为多少元;(2)若印制2千册,则共需多少费用?23.某校有学生2000名,为了了解学生在篮球、足球、排球和乒乓球这四项球类运动中最喜爱的一项球类运动情况,对学生开展了随机调查,丙将结果绘制成如下的统计图.请根据以上信息,完成下列问题:(1)本次调查的样本容量是多少?(2)某位同学被抽中的概率是多少?(3)据此估计全校最喜爱篮球运动的学生人数约有多少名?(4)将条形统计图补充完整.24.某中学为了搞好对“传统文化学习”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为________人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在________组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.参考答案一、选择题C CD D B D C D A D D二、填空题12.50;60;3013.条形统计图14.1015.616.4017.72018.多;33.3%19.抽样20.16221.2015三、解答题22.解:(1)印制这批纪念册的制版费是:300×4+50×6=1500(元);(2)印刷费是:(2.2×4+0.6×6)×2000=24800(元),则总费用是:24800+1500=26300(元).答:若印制2千册,则共需26300元的费用.23.解:(1)160÷40%=400(人),即本次调查的样本容量是400.(2)400÷2000=.(3)2000×40%=800(人).(4)乒乓球的人数:400×30%=120(人).如图所示:24.(1)400(2)解:B组人数为:400×35%=140人,E组人数为:400﹣40﹣140﹣120﹣80=20人,条形统计图补充完整如图:。

七年级数学全册单元测试卷试卷(word版含答案)

七年级数学全册单元测试卷试卷(word版含答案)

七年级数学全册单元测试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.2.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若 P 点表示的数是 0,①运动 1 秒后,求 CD 的长度;②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,①当 C=-3 时,CP=4,此时 P=1;②当 C=-1 时,P=3.【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。

人教版七年级数学上册全册单元试卷测试卷(含答案解析)

人教版七年级数学上册全册单元试卷测试卷(含答案解析)
(1)如图 1.则∠ DPC 为多少度? (2)如图 2,若三角板 PAC 的边 PA 从 PN 处开始绕点 P 逆时针旋转的角度为 α,PF 平分 ∠ APD,PE 平分∠ CPD,求∠ EPF 的度数; (3)如图 3,若三角板 PAC 的边 PA 从 PN 处开始绕点 P 逆时针旋转,转速为 3。/秒,同 时三角板 PBD 的边 PB 从 PM 处开始绕点 P 逆时针旋转,转速为 2。/秒,在两个三角板旋 转过程中,当 PC 转到与 PM 重合时,两个三角板都停止转动.设两个三角板旋转时间为 t
∴ ∠ BPN=1800-2t,
∠ CPD=3600-∠ DPB-∠ BPN-∠ NPA-∠ CPA=900-t,
∴ 【解析】【分析】(1)利用含有 30゜、60゜的三角板得出∠ DPC=180°-∠ CPA-∠ DPB,代 入计算即可;
( 2 ) 根 据 角 平 分 线 的 定 义 得 出 ∠ DPF= ∠ APD,∠ DPE= ∠ CPD , 根 据 角 的 和 差 得 出 APD=180°−30°−α=150°−α ,∠ CPD=180°−30°−60°−α=90°−α ,从而得出∠ DPF 及,∠ DPE 的度 数,最后根据 EPF=∠ DPF−∠ DPE 算出结果;
的度数;
(2)过点 O 作射线
,求
的度数.
【答案】 (1)解:



:3,

(2)解:



OF 在
的内部时,



OF 在
的内部时, ,


综上所述

【解析】【分析】(1)根据对顶角相等得出
, 然后根据

:3 即可算出∠ BOE 的度数;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册全册单元测试卷测试卷附答案一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.2.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是点是【A,B】的好点.(1)如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D________【A,B】的好点,但点D________【B,A】的好点.(请在横线上填是或不是)知识运用:(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2.数________所表示的点是【M,N】的好点;(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当经过________秒时,P、A和B中恰有一个点为其余两点的好点?【答案】(1)不是;是(2)0(3)5或10【解析】【解答】解:(1)如图1,∵点D到点A的距离是1,到点B的距离是2,根据好点的定义得:DB=2DA,那么点D不是【A,B】的好点,但点D是【B,A】的好点;⑵如图2,4﹣(﹣2)=6,6÷3×2=4,即距离点M4个单位,距离点N2个单位的点就是所求的好点0;∴数0所表示的点是【M,N】的好点;⑶如图3,由题意得:PB=4t,AB=40+20=60,PA=60﹣4t,点P走完所用的时间为:60÷4=15(秒),当PB=2PA时,即4t=2(60﹣4t),t=10(秒),当PA=2PB时,即2×4t=60﹣4t,t=5(秒),∴当经过5秒或10秒时,P、A和B中恰有一个点为其余两点的好点;故答案:(1)不是,是;(2)0;(3)5或10.【分析】(1)根据定义发现:好点表示的数到【A,B】中,前面的点A是到后面的数B 的距离的2倍,从而得出结论;(2)点M到点N的距离为6,分三等分为份为2,根据定义得:好点所表示的数为0;(3)根据题意得:PB=4t,AB=40+20=60,PA=60﹣4t,由好点的定义可知:分两种情况列式:①PB=2PA;②PA=2PB;可以得出结论.3.将一副直角三角尺按如图所示的方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B =45°,直角顶点C保持重合).(1)①若∠DCE=45°,则∠ACB的度数为________.②若∠ACB=140°,则∠DCE的度数为________.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)将三角尺BCE绕着点C顺时针转动,当∠ACE<180°,且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(并写明此时哪两条边平行,但不必说明理由);若不存在,请说明理由.【答案】(1)135°;40°(2)∠ACB+∠DCE=180°.理由如下:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+∠ECB=90°+90°=180°.(3)(3)存在.当∠ACE=30°时,AD∥BC;当∠ACE=45°时,AC∥BE;当∠ACE=120°时,AD∥CE;当∠ACE=135°时,CD∥BE;当∠ACE=165°时,AD∥BE.【解析】【解答】(1)①∵∠ECB=90°,∠DCE=45°,∴∠DCB=90°-45°=45°,∴∠ACB=∠ACD+∠DCB=90°+45°=135°.②∵∠ACB=140°,∠ACD=90°,∴∠DCB=140°-90°=50°,∴∠DCE=90°-50°=40°.【分析】(1)①根据角的和差,由∠DCB=∠BCE-∠DCE,即可算出∠DCB的度数,进而根据∠ACB=∠ACD+∠DCB即可算出答案;②根据角的和差,由∠DCB=∠ACB-∠ACD算出∠DCB的度数,再根据∠DCE=∠ECB-∠DCB即可算出答案;(2)∠ACB+∠DCE=180°.理由如下:根据角的和差得出∠ACB=∠ACD+∠DCB=90°+∠DCB ,故由∠ACB+∠DCE=90°+∠DCB+∠DCE =90°+∠ECB 即可算出答案;(3)存在.当∠ACE=30°时,根据内错角相等二直线平行得出AD∥BC;当∠ACE=45°时,内错角相等二直线平行得出AC∥BE;当∠ACE=120°时,根据同旁内角互补,二直线平行得出AD∥CE;当∠ACE=135°时,根据内错角相等二直线平行得出CD∥BE;当∠ACE =165°时,根据同旁内角互补,二直线平行得出AD∥BE.4.(1)感知:如图①,若AB∥CD,点P在AB、CD内部,则∠P、∠A、∠C满足的数量关系是________.(2)探究:如图②,若AB∥CD,点P在AB、CD外部,则∠APC、∠A、∠C满足的数量关系是________.请补全以下证明过程:证明:如图③,过点P作PQ∥AB∴∠A=________∵AB∥CD,PQ∥AB∴________∥CD∴∠C=∠________∵∠APC=∠________﹣∠________∴∠APC=________(3)应用:① 如图④,为北斗七星的位置图,如图⑤,将北斗七星分别标为A、B、C、D、E、F、G,其中B、C、D三点在一条直线上,AB∥EF,则∠B、∠D、∠E满足的数量关系是________.② 如图⑥,在(1)问的条件下,延长AB到点M,延长FE到点N,过点B和点E分别作射线BP和EP,交于点P,使得BD平分∠MBP,EN平分∠DEP,若∠MBD=25°,则∠D﹣∠P=________°.【答案】(1)∠P=∠A+∠C(2)∠APC=∠A﹣∠C;∠APQ;PQ;∠CPQ;∠APQ;∠CPQ;∠A﹣∠C(3)解:∠D+∠B﹣∠E=180°;75(1)∠P=∠A+∠C;∠APC=∠A﹣∠C,∠APQ,PQ,∠CPQ,∠APQ,∠CPQ,∠A﹣∠C;∠D+∠B﹣∠E=180°(2)75【解析】【解答】解:(1)如图①,过点P作PQ∥AB∴∠A=∠APQ,∵AB∥CD,PQ∥AB∴PQ∥CD,∴∠C=∠QPC,∴∠APQ+∠QPC=∠A+∠C,∠APC=∠A+∠C.故答案为∠P=∠A+∠C;(2)如图③,过点P作PQ∥AB∴∠A=∠APQ∵AB∥CD,PQ∥AB∴PQ∥CD∴∠C=∠CPQ∵∠APC=∠APQ﹣∠CPQ∴∠APC=∠A﹣∠C.故答案为:∠APC=∠A﹣∠C,∠APQ,PQ,∠CPQ,∠APQ,∠CPQ,∠A﹣∠C.(3)①如图⑤,过点D作DH∥EF,∴∠HDE=∠E,∵AB∥EF,DH∥EF∴AB∥DH,∴∠B+∠BDH=180°,即∠BDH=180°﹣∠B,∴∠HDE+∠BDH=∠E+180°﹣∠B,即∠BDE+∠B﹣∠E=180°,故答案为∠D+∠B﹣∠E=180°,②如图⑥,过点P作PH∥EF,∴∠EPH=∠NEP,∵AB∥EF,PH∥EF,∴AB∥PH,∴∠MBP+∠BPH=180°,∵BD平分∠MBP,∠MBD=25°,∠MBP=2∠MBD=2×25°=50°,∠BPH=180°﹣50°=130°,∵EN平分∠DEP,∴∠NEP=∠DEN∴∠BPE=∠BPH﹣∠EPH=∠BPH﹣∠NEP=∠BPH﹣∠DEN=130°﹣(180°﹣∠DEF)=∠DEF﹣50°由①∠D+∠ABD﹣∠DEF=180°,∵∠MBD=25°,∴∠ABD=155°,∴∠D+∠155°﹣∠DEF=180°,∴∠DEF=∠D﹣25°∴∠BPE=∠DEF﹣50°=∠D﹣25°﹣50°=∠D﹣75°∠D﹣∠BPE=75°即∠D﹣∠P=75°,故答案75.【分析】作平行线利用平行线的性质与角平分线的性质通过角等量关系转化解题即可.5.(1)如图,,,平分,平分,求的度数.(2)如果(1)中,其他条件不变,求的度数.(3)如果(1)中其他条件不变,则的度数为________.(直接写出结果)(4)从(1)、(2)、(3)的结果能看出的规律是:与有什么关系,与哪个角的大小无关?【答案】(1)解:,,,平分,,平分,,;(2)解:,,,平分,,平分,,∴;(3)(4)解:从(1)、(2)、(3)的结果能看出的规律是:,与的大小无关.由前面的推理可得:,与的大小无关.【解析】【解答】解:(3),,,平分,,平分,,.故答案为:;【分析】(1)先求出∠AOC的度数,再根据角平分线的定义依次求出∠COM和∠CON的度数即可求得结果;(2)仿(1)的思路,先求出∠AOC的度数,再根据角平分线的定义依次求出∠COM和∠CON的度数即可求得结果;(3)仿(1)的思路,先求出∠AOC的度数,再根据角平分线的定义依次求出∠COM和∠CON的度数即可求得结果;(4)仿(1)的思路,根据角平分线的定义依次表示出∠COM和∠CON即可得出结论.6.已知点O在直线MN上,过点O作射线OP,使∠MOP=130°,将一块直角三角板的直角顶点始终放在点O处.(1)如图①,当三角板的一边OA在射线OM上,另一边OB在直线MN的上方时,求∠POB的度数;(2)若将三角板绕点O旋转至图②所示的位置,此时OB恰好平分∠PON,求∠BOP和∠AOM 的度数;(3)若将三角板绕点O旋转至图③所示位置,此时OA在∠PON 的内部,若OP所在的直线平分∠MOB,求∠POA 的度数;【答案】(1)解:∠POB=∠MOP-∠AOB=130°-90°=40°.(2)解:∵∠MON是平角,∠MOP=130°,∴∠PON=∠MON-∠MOP=180°-130°=50°∵OB 平分∠PON,∴∠BOP= ∠PON=25°∵∠AOB=90゜,∴∠AOP=∠AOB-∠BOP=90°-25°=65°∴∠MOA=∠MOP-∠AOP=130°-65°=65°;(3)解:如图,OE是PO的延长线,∵∠MOP=130°∴∠MOE=50°∵OE是∠MOB的平分线,∴∠MOB=100°,∴∠BON=80°∵∠AOB=90°∴∠AON=∠AOB-∠BON=90°-80°=10°∴∠POA=∠PON-∠AON=50°-10°=40°【解析】【分析】(1)根据题意,∠POB=∠POA-∠AOB代入数据即可求出结论;(2)根据题意,∠PON=180°-∠POM,又根据角平分线的定义可得∠POB=∠NOB= ,代入已知即可求解;再根据余角定义求出∠POA的度数;(3)从已知条件可得,∠MOE=180°-∠MOP,再根据角平分线的定义得∠MOB=2∠MOE, ∠NOA=180°-∠MOB, ∠AON=90°-∠BON,∠POB=∠PON-∠AON,代入求值即可.7.我们定义:在一个三角形中,如果一个角的度数是另一个角度数的3倍,那么这样的三角形我们称之为“和谐三角形”.如:三个内角分别为105°,40°,35°的三角形是“和谐三角形”概念理解:如图1,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O,B重合)(1)∠ABO的度数为________,△AOB________(填“是”或“不是”)“和谐三角形”;(2)若∠ACB=80°,求证:△AOC是“和谐三角形”.(3)应用拓展:如图2,点D在△ABC的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC上取点F,使∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“和谐三角形”,求∠B 的度数.【答案】(1)30;是(2)证明:∵∠MON=60°,∠ACB=80°,∵∠ACB=∠OAC+∠MON,∴∠OAC=80°-60°=20°,∵∠AOB=60°=3×20°=3∠OAC,∴△AOC是“和谐三角形”;(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“和谐三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B= .【解析】【解答】解:(1)∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°-∠MON=30°,∵∠OAB=3∠ABO,∴△AOB为“和谐三角形”,故答案为:30;是;【分析】(1)根据垂直的定义、三角形内角和定理求出∠ABO的度数,根据“和谐三角形”的概念判断;(2)根据“和谐三角形”的概念证明即可;应用拓展:根据比较的性质得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“和谐三角形”的定义求解即可.8.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.【答案】(1)解:如图1,∵点B对应数是90,∴OB=90.又∵ OA+50=OB,即 OA+50=90,∴OA=120.∴点A所对应的数是﹣120(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M、N之间的距离等于点P、M之间的距离(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0【解析】【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A 所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.9.已知,AB//CD,(1)如图,若E 为DC 延长线上一点,AF、CG 分别为∠BAC、∠ACE 的平分线.(1)求证:AF//CG.(2)若 E 为线段 DC 上一点(E 不与 C 重合),AF、CG 分别为∠BAC、∠ACE的平分线,画出图形,试判断 AF,CG 的位置关系,并证明你的结论.【答案】(1)证明:∵AB//CD∴∠BAC=∠ACE,∵AF、CG 分别为∠BAC、∠ACE的平分线,∴∠CAF= ∠BAC, ∠ACG= ∠ACE,∴∠CAF=∠ACG∴AF//CG.(2)解:AF⊥CG,理由如下:如图,AF、CG 分别为∠BAC、∠ACE的平分线,∴∠1= ∠BAC,∠2= ∠ACD,∵AB//CD,∴∠BAC+∠ACD=180°,∴∠1+∠2= ∠BAC+ ∠ACD= (∠BAC+∠ACD)=90°,∴∠3=180°-(∠1+∠2)=90°,∴AF⊥CG.【解析】【分析】(1)根据二直线平行,内错角相等得出∠BAC=∠ACE,根据角平分线的定义得出∠CAF=∠ACG ,进而根据内错角相等,二直线平行得出AF∥CG;(2)根据题意作出图形,根据角平分线的定义得出∠1= ∠BAC,∠2= ∠ACD, 根据二直线平行,同旁内角互补得出∠BAC+∠ACD=180°,从而即可得出∠1+∠2= 90°,根据三角形的内角和定理得出∠3=90°,进而根据垂直的定义得出AF⊥CG.10.如图,∠AOB=40°,点C在OA上,点P为OB上一动点,∠CPB的角平分线PD交射线OA于D。

相关文档
最新文档