七年级下人教版与三角形有关的角同步测试题C

合集下载

七年级数学下学期三角形的边角关系提优材料 试题

七年级数学下学期三角形的边角关系提优材料  试题

卜人入州八九几市潮王学校长安二零二零—二零二壹七年级下学期数学三角形的边角关系提优材料苏科一、三角形边的关系:1.〔2021〕假设某三角形的两边长分别为3和4,那么以下长度的线段能作为其第三边的是()A.1B.5C.72.〔2021〕以下长度的三条线段,不能组成三角形的是()A.3,8,4B.4,9,6C.15,20,8D.9,15,83.〔2021〕三角形三边长分别为2,x,13,假设x为正整数,那么这样的三角形个数为〔〕A.2B.3 C.5 D.134.〔2021〕三角形的两边长为4,8,那么第三边的长度可以是〔写出一个即可〕.5.〔2021年〕现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为〔〕A.1个B.2个C.3个D.4个6.假设三角形的两边长分别为3和5,那么其周长l的取值范围是.7.等腰三角形的一边等于8cm,一边等于6cm,求它的周长.8.一个等腰三角形的周长为30cm,一边长为6cm,求其它两边的长.二、三角形高、中线、角平分线:1分别画出△ABC的三条高AD、BE、CF.2.:△ABC中,AB=AC,BD是AC边上的中线,假设D点把三角形ABC的周长分为12cm和15cm两局部,求此三角形各边的长3.如图,角平分线BO,CO交于点O,试探究∠BOC与∠A的数量关系:探究:△ABC中,∠ABC的n等分线与∠ACB的n等分线相交于G1、G2、G3,…、G n-1,试猜想:∠BG n-1C与∠A的关系.(其中n≥2的整数)首先得到:当n=2时,如图1,∠BG1C=______,当n=3时,如图2,∠BG2C=______,…………猜想∠BG n-1C=______.图1图2图n4.:如图,在△ABC中,AD、AE分别是△ABC的高和角平分线.(1)假设∠B=30°,∠C=50°,求∠DAE的度数.(2)试问∠DAE与∠C-∠B有怎样的数量关系说明理由.变式::如图,在△ABC中,AD、AE分别是△ABC的高和角平分线.假设∠B=30°,∠ACB=60°,求∠DAE的度数.三、三角形的内、外角:1.△ABC中,假设∠A+∠C=2∠B,那么∠B=______.2.△ABC中,假设∠A∶∠B∶∠C=2∶3∶5,那么∠A=______,∠B=______,∠C=______.3.△ABC中,假设∠A∶∠B∶∠C=1∶2∶3,那么它们的相应邻补角的比为______.4.如图,直线a ∥b ,那么∠A =______度.5.:如图,DE ⊥AB ,∠A =25°,∠D =45°,那么∠ACB =______.6.:如图,∠DAC =∠B ,∠ADC =115°,那么∠BAC =______.7.:如图,△ABC 中,∠ABC =∠C =∠BDC ,∠A =∠ABD ,那么∠A =______8.在△ABC 中,假设∠B -∠A =15°,∠C -∠B =60°,那么∠A =______,∠B =______,∠C =______.9.如图,x =______.10.如图,△ABC 中,点D 在BC 的延长线上,点F 是AB 边上一点,延长CA 到E ,连EF ,那么∠1,∠2,∠3的大小关系是_________.11.如图,在△ABC 中,AE 是角平分线,且∠B =52°,∠C =78°,求∠AEB 的度数.12.一个零件的形状如下列图,按规定∠A 应等于90°,∠B 、∠D 应分别是30°和20°,李叔叔量得∠BCD =142°,就断定这个零件不合格,你能说出道理吗?13.〔1〕如图〔1〕,求出∠A +∠B +∠C +∠D +∠E +∠F 的度数;〔2〕如图〔2〕,求出∠A +∠B +∠C +∠D +∠E +∠F 的度数.〔3〕:如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8____________.14.如下几个图形是五角星和它的变形.〔1〕图甲是一个五角形ABCDE ,你能计算出∠A +∠B +∠C +∠D +∠E 的大小吗? 〔2〕如图乙,假设点B 向右挪动到AC 上时,还能算出∠A +∠EBD +∠C +∠D +∠E •的大小吗?〔3〕如图丙,点B 向右挪动到AC 的另一侧时,〔1〕的结论成立吗?为什么?〔4〕如图丁,点B ,E 挪动到∠CAD 的内部时,结论又如何?第4题第5题第6题第7题第9题第10题第11题15.如图〔1〕,△ABC 是一个三角形的纸片,点D 、E 分别是△ABC 边上的两点,研究〔1〕:假设沿直线DE 折叠,那么∠BDA ′与∠A 的关系是_______。

人教版初中数学三角形经典测试题及答案

人教版初中数学三角形经典测试题及答案

人教版初中数学三角形经典测试题及答案本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March人教版初中数学三角形经典测试题及答案一、选择题1.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标轴为()4,1, 点D 的坐标为()0,1, 则菱形ABCD 的周长等于( )A .5B .43C .45D .20【答案】C【解析】【分析】 如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-= ∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.2.如图,在ABC 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )A .30°B .35°C .40°D .45°【答案】C【解析】【分析】 先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.【详解】∵AB AC =,且30A ∠=︒,∴18030752ACB ∠︒-︒==︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,∴14514530115AED A ∠∠=︒-=︒-︒=︒,∵//a b ,∴2AED ACB ∠∠∠=+,即21157540∠=︒-︒=︒,故选:C .【点睛】本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180 ;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.3.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.4.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()A .50°B .55°C .65°D .70°【答案】B【解析】【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l 2,交∠1的边于一点,∵11∥l 2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B .【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.5.如图,在ABC 中,AB AC =,点E 在AC 上,ED BC ⊥于点D ,DE 的延长线交BA 的延长线于点F ,则下列结论中错误的是( )A .AE CE =B .12DEC BAC ∠=∠ C .AF AE =D .1902B BAC ∠+∠=︒ 【答案】A【解析】【分析】 由题意中点E 的位置即可对A 项进行判断;过点A 作AG ⊥BC 于点G ,如图,由等腰三角形的性质可得∠1=∠2=12BAC ∠,易得ED ∥AG ,然后根据平行线的性质即可判断B 项;根据平行线的性质和等腰三角形的判定即可判断C 项;由直角三角形的性质并结合∠1=12BAC ∠的结论即可判断D 项,进而可得答案. 【详解】解:A 、由于点E 在AC 上,点E 不一定是AC 中点,所以,AE CE 不一定相等,所以本选项结论错误,符合题意;B 、过点A 作AG ⊥BC 于点G ,如图,∵AB =AC ,∴∠1=∠2=12BAC ∠, ∵ED BC ⊥,∴ED ∥AG ,∴122DEC BAC ∠=∠=∠,所以本选项结论正确,不符合题意; C 、∵ED ∥AG ,∴∠1=∠F ,∠2=∠AEF ,∵∠1=∠2,∴∠F =∠AEF ,∴AF AE =,所以本选项结论正确,不符合题意;D 、∵AG ⊥BC ,∴∠1+∠B =90°,即1902B BAC ∠+∠=︒,所以本选项结论正确,不符合题意.故选:A .【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质以及直角三角形的性质等知识,属于基本题型,熟练掌握等腰三角形的判定和性质是解题的关键.6.下列说法不能得到直角三角形的( )A .三个角度之比为 1:2:3 的三角形B .三个边长之比为 3:4:5 的三角形C .三个边长之比为 8:16:17 的三角形D .三个角度之比为 1:1:2 的三角形 【答案】C【解析】【分析】三角形内角和180°,根据比例判断A 、D 选项中是否有90°的角,根据勾股定理的逆定理判断B 、C 选项中边长是否符合直角三角形的关系.【详解】A 中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形; D 中,三个角之比为1:1:2,则这三个角分别为:45°、45°、90°,是直角三角形;B 中,三边之比为3:4:5,设这三条边长为:3x 、4x 、5x ,满足:()()()222345x x x +=,是直角三角形;C 中,三边之比为8:16:17,设这三条边长为:8x 、16x 、17x ,()()()22281617x x x +≠,不满足勾股定理逆定理,不是直角三角形故选:C【点睛】本题考查直角三角形的判定,常见方法有2种;(1)有一个角是直角的三角形;(2)三边长满足勾股定理逆定理.7.如图,□ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①AE=CE;②S△ABC=AB•AC;③S△ABE=2S△AOE;④OE=14BC,成立的个数有()A.1个B.2个C.3个D.4【答案】C【解析】【分析】利用平行四边形的性质可得∠ABC=∠ADC=60°,∠BAD=120°,利用角平分线的性质证明△ABE是等边三角形,然后推出AE=BE=12BC,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∠AEB=60°,∵AB=12BC , ∴AE=BE=12BC , ∴AE=CE ,故①正确;∴∠EAC=∠ACE=30°∴∠BAC=90°,∴S △ABC =12AB•AC ,故②错误; ∵BE=EC ,∴E 为BC 中点,O 为AC 中点,∴S △ABE =S △ACE=2 S △AOE ,故③正确;∵四边形ABCD 是平行四边形,∴AC=CO ,∵AE=CE ,∴EO ⊥AC ,∵∠ACE=30°,∴EO=12EC , ∵EC=12AB , ∴OE=14BC ,故④正确; 故正确的个数为3个,故选:C .【点睛】此题考查平行四边形的性质,等边三角形的判定与性质.注意证得△ABE 是等边三角形是解题关键.8.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB ,则EFGH 的面积是( )A.6 B.8 C.9 D.12【答案】B【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE 22EF,EF2AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF 2 AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE=22EF=22×22AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH=2DE=22,∴EFGH的面积为EH2=(22)2=8,故选:B.【点睛】本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.9.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm【答案】B【解析】【分析】根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【详解】∵BD是∠ABC的平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD是公共边,∴△ABD≌△EBD (AAS),∴AD=ED,AB=BE,∴△DEC的周长是DE+EC+DC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=10 cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.10.如图,正方体的棱长为6cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )A .9B .310C .326+D .12【答案】B【解析】【分析】 将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB=22(36)3310++= .故选:B .【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.11.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.50°【答案】C【解析】∵等腰三角形有一个是50°∴有两种可能①是三个角为50°、50°、80°;②是三个角为50°、65°、65°分情况说明如下:①当三个角为50°、50°、80°时,根据图①,可得其一条腰上的高与底边的夹角∠DAB=40°;②当三个角为50°、65°、65°,根据图②,可得其一条腰上的高与底边的夹角∠DAB=25°故故选:C① ②点睛:本题主要考查三角形内角和定理:三角形内角和为180°.12.如图,在平面直角坐标系中,已知点A(﹣2,0),B(0,3),以点A为圆心,AB 长为半径画弧,交x轴的正半轴于点C,则点C的横坐标介于()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【答案】B【解析】【分析】先根据点A ,B 的坐标求出OA ,OB 的长度,再根据勾股定理求出AB 的长,即可得出OC 的长,再比较无理数的大小确定点C 的横坐标介于哪个区间.【详解】∵点A ,B 的坐标分别为(﹣2,0),(0,3),∴OA =2,OB =3,在Rt △AOB 中,由勾股定理得:AB =∴AC =AB ,∴OC 2,∴点C 2,0),∵34<< ,∴122<< ,即点C 的横坐标介于1和2之间,故选:B .【点睛】本题考查了弧与x 轴的交点问题,掌握勾股定理、无理数大小比较的方法是解题的关键.13.满足下列条件的是直角三角形的是( )A .4BC =,5AC =,6AB =B .13BC =,14AC =,15AB = C .::3:4:5BC AC AB =D .::3:4:5A B C ∠∠∠=【答案】C【解析】【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【详解】A .若BC=4,AC=5,AB=6,则BC 2+AC 2≠AB 2,故△ABC 不是直角三角形;B.若13BC =,14AC =,15AB =,则AC 2+AB 2≠CB 2,故△ABC 不是直角三角形; C .若BC :AC :AB=3:4:5,则BC 2+AC 2=AB 2,故△ABC 是直角三角形;D .若∠A :∠B :∠C=3:4:5,则∠C <90°,故△ABC 不是直角三角形;故答案为:C .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.14.如图,在ABC ∆中,AB 的垂直平分线交AB 于点D ,交BC 于点E .ABC ∆的周长为19,ACE ∆的周长为13,则AB 的长为( )A .3B .6C .12D .16【答案】B【解析】【分析】 根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】∵AB 的垂直平分线交AB 于点D ,∴AE=BE ,∵△ACE 的周长=AC+AE+CE=AC+BC=13,△ABC 的周长=AC+BC+AB=19,∴AB=△ABC 的周长-△ACE 的周长=19-13=6,故答案为:B .【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.15.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】【详解】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.16.如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,要利用“SSS”证明△ABC≌△FDE,还可以添加的一个条件是()A.AD=FB B.DE=BD C.BF=DB D.以上都不对【答案】A【解析】∵AC=FE,BC=DE,∴要利用“SSS”证明△ABC≌△FDE,需添加条件“AB=DF”或“AD=BF”.故选A.17.满足下列条件的两个三角形不一定全等的是()A.有一边相等的两个等边三角形B.有一腰和底边对应相等的两个等腰三角形C.周长相等的两个三角形D.斜边和一条直角边对应相等的两个等腰直角三角形【答案】C【解析】A.根据全等三角形的判定,可知有一边相等的两个等边三角形全等,故选项A不符合;B.根据全等三角形的判定,可知有一腰和底边对应相等的两个等腰三角形全等,故选项B 不符合;C.根据全等三角形的判定,可知周长相等的两个三角形不一定全等,故选项C符合;D.根据全等三角形的判定,可知斜边和直角边对应相等的两个等腰直角三角形全等,故选项B不符合.故本题应选C.18.△ABC中,AB=AC,∠A=36°,∠ABC和∠ACB的平分线BE、CD交于点F,则共有等腰三角形( )A.7个B.8个C.9个D.10个【答案】B【解析】∵等腰三角形有两个角相等,∴只要能判断出有两个角相等就行了,将原图各角标上后显示如左下:因此,所有三角形都是等腰三角形,只要判断出有哪几个三角形就可以了.如右上图,三角形有如下几个:①,②,③;①+②,③+②,①+④,③+④;①+②+③+④;共计8个. 故选:B.点睛:本题考查了等腰三角形的判定与性质、三角形内角和定理以及三角形外角的性质,此题难度不大,解题的关键是求得各角的度数,掌握等角对等边与等边对等角定理的应用.19.如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 的度数为( )A .30°B .45°C .36°D .72°【答案】A【解析】∵AB=AC ,BD=BC=AD ,∴∠ABC=∠C=∠BDC ,∠A=∠ABD ,又∵∠BDC=∠A+∠ABD ,∴∠BDC=∠C=∠ABC=2∠A ,∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,即5∠A=180°,∴∠A=36°.故选A.20.如图,在ABC ∆中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=A .1B .2C .3D .4【答案】D【解析】【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.【详解】题干中作图方法是构造角平分线,①正确;∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线∴∠CAD=∠DAB=30°∴∠ADC=60°,②正确∵∠DAB=∠B=30°∴△ADB 是等腰三角形∴点D 在AB 的垂直平分线上,③正确在Rt △CDA 中,设CD=a ,则AD=2a在△ADB 中,DB=AD=2a ∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确故选:D【点睛】本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.。

(必考题)初中数学七年级数学下册第四单元《三角形》检测题(有答案解析)(1)

(必考题)初中数学七年级数学下册第四单元《三角形》检测题(有答案解析)(1)

一、选择题1.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠D .C D ∠=∠ 2.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .6 3.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80° 4.根据下列条件,能画出唯一ABC 的是( ) A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 5.已知如图,AB=AE ,只需再加一个条件就能证明△ABC ≌△AED ,下列选项是所加条件,请判断哪一个不能判断△ABC ≌△AED ( )A .∠B=∠EB .AC=ADC .∠ADE=∠ACBD .BC=DE 6.如图,点C ,D 分别在线段OA ,OB 上,AD 与BC 相交于点E ,若OC OD =,A B ∠=∠,则图中全等三角形的对数为( )A .5对B .4对C .3对D .2对7.如图,ABC A BC '≌,110A '∠=︒,30ABC ∠=︒,则ACB =∠( )A .40︒B .20︒C .30D .45︒8.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°9.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 10.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20° 11.在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( )A .4cmB .5cmC .9cmD .13cm 12.下列条件不能判定两个直角三角形全等的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个锐角对应相等二、填空题13.如图,已知AD 、AE 分别为ABC 的角平分线、高线,若40B ∠=︒,60C ∠=°,则DAE ∠的度数为__________.14.在非直角三角形ABC 中,∠A =50°,高BD 和高CE 所在的直线相交于点H ,则∠BHC =___.15.如图,CE 是△ABC 外角的平分线,且AB ∥CE ,若∠ACB =36°,则∠A 等于_____度.16.已知ABC 的三边长分别为a ,b ,c ,则a b c b c a c a b --+--+-+=______.17.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.18.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)19.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.20.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.添加的条件是:____.(写出一个即可)三、解答题21.已知:在AOB 和COD △中,OA OB =,OC OD =.如图,若60AOB COD ∠=∠=︒,试探究AC 与BD 的关系,并说明理由22.如图,直线AB 分别与x 轴,y 轴交于A B 、两点,OC 平分∠AOB 交AB 于点C ,点D 为线段AB 上一点,过点D 作//DE C 交y 轴于点E ,已知,AO m BO n ==,且m n 、满足2123620n n n m -++-=.(1)求A B 、两点的坐标;(2)若点D 为AB 中点,延长DE 交x 轴于点F ,在ED 的延长线上取点G ,使DG DF =,连接BG .①BG 与y 轴的位置关系怎样?说明理由;②求OF 的长.23.ABC 中,点D 在直线AB 上,点E 在平面内,点F 在BC 的延长线上,E BDC ∠=∠,AE CD =,180EAB DCF ∠+∠=︒.(问题解决)(1)如图1,若点D 在边BA 的延长线上,求证:AD BC BE +=.(类比探究)(2)如图2,若点D 在线段AB 上,请探究线段AD ,BC 与BE 之间存在怎样的数量关系?并证明.(拓展延伸)(3)如图3,若点D 在线段AB 的延长线上,请直接写出线段AD ,BC 与BE 之间的数量关系.24.已知,如图,AB =AE ,AB ∥DE ,∠D =∠ACB .(1)求证:△ABC ≌△EAD ;(2)已知:DE =3,AB =7,求CE 的长.25.如图所示,△ABC 中,∠ACB=90°,AC=BC ,直线EF 经过点C ,BF ⊥EF 于点F ,AE ⊥EF于点E .(1)求证:△ACE ≌△CBF ;(2)如果AE 长12cm ,BF 长5cm ,求EF 的长.26.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠1=∠2,∠A=∠C ,∠1=∠A+∠D ,∠2=∠B+∠C ,∴∠B=∠D ,∴选项A 、B 正确;∵∠2=∠A+∠D ,∴2D ∠>∠,∴选项C 正确;没有条件说明C D ∠=∠故选:D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.2.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x ,∵三角形两边的长分别是1和4,∴4-1<x <4+1,即3<x <5.故选:B .【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.3.A解析:A【分析】根据题意可证明ABE ACD ≅,即得到B C ∠=∠.再利用三角形外角的性质,可求出DME ∠,继而求出BMD ∠.【详解】根据题意ABE ACD ≅(SAS ),∴30B C ∠=∠=︒∵DME B BDC ∠=∠+∠,BDC C A ∠=∠+∠∴307030130DME B A C ∠=∠+∠+∠=︒+︒+︒=︒∴180********BMD DME ∠=︒-∠=︒-︒=︒故选A .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质.利用三角形外角的性质求出DME B A C ∠=∠+∠+∠是解答本题的关键.4.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】解:A ,AB BC CA +=,不满足三边关系,不能画出三角形,故选项错误; B ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D ,可以利用直角三角形全等判定定理HL 证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.5.D解析:D【分析】根据全等三角形的判定条件结合AE=AB、∠A=∠A逐项判定即可.【详解】解:∵AE=AB、∠A=∠A∴A、补充∠B=∠E,根据ASA可证明△ABC≌△AED,不符合题意;B、补充AC=AD,根据SAS可证明△ABC≌△AED,不符合题意;C、补充∠ADE=∠ACB,根据AAS可证明△ABC≌△AED,不符合题意;D、补充BC=DE,为SSA不能证明△ABC≌△AED,符合题意.故答案为D.【点睛】本题考查了三角形全等的证明,掌握AAA、SSA不能判定普通三角形全等是解答本题的关键.6.B解析:B【分析】由条件可证△AOD≌△BOC,可得OA=OB,则可证明△ACE≌△BDE,可得AE=BE,则可证明△AOE≌△BOE,可得∠COE=∠DOE,可证△COE≌△DOE,可求得答案.【详解】解:在△AOD和△BOC中OC=OD∠AOD=∠BOC∠=∠A B∴△AOD≌△BOC(SAS)∴OA=OB∵OC=OD,OA=OB,∴AC=BD,在△ACE和△BDE中∠A=∠B∠AEC=∠BEDAC=BD∴△ACE≌△BDE(AAS),∴AE=BE∴AE=BE,在△AOE和△BOE中OA=OB∠A=∠B∴△AOE ≌△BOE(SAS),∴∠COE=∠DOE ,在△COE 和△DOE 中OC=OD∠COE=∠DOEOE=OE∴△COE ≌△DOE(SAS),故全等的三角形有4对.故选:B .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AA 和HL .7.A解析:A【分析】根据全等三角形对应角相等即可求解;【详解】∵ABC A BC '∆≅∆ ,∴ ∠A=∠A '=110°,∵∠ABC=30°,∴∠ACB=180°-110°-30°=40°,故选:A .【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应角相等是解题的关键; 8.A解析:A【分析】 根据已知ACB ≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB ≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A .【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.解析:D【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【详解】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;添加BC=EF,利用SAS可得△ABC≌△DEF;添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;=,不符合任何一个全等判定定理,不能证明△ABC≌△DEF;添加AC DF故选:D.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL 是解题的关键.10.B解析:B【分析】根据正方形的性质得到AB=AD,∠BAD=90︒,由旋转的性质推出ADE≌ABF,求出∠FAE=∠BAD=90︒,即可得到答案.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAD=90︒,由旋转得ADE≌ABF,∴∠FAB=∠EAD,∴∠FAB+∠∠BAE=∠EAD+∠BAE,∴∠FAE=∠BAD=90︒,∴旋转角的度数是90︒,故选:B.【点睛】此题考查旋转的性质,全等三角形的性质,熟记全等三角形的性质是解题的关键.11.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x,则9-4<x<4+9即5<x<13,∴当x=7时,能与4cm 、9cm 长的两根木棒钉成一个三角形,故选:C .【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.12.D解析:D【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【详解】解:A 、可以利用边角边判定两三角形全等,故本选项不合题意;B 、可以利用角角边判定两三角形全等,故本选项不合题意;C 、根据斜边直角边定理判定两三角形全等,故本选项不合题意;D 、三个角对应相等不能证明两三角形全等,故本选项符合题意;故选:D .【点睛】本题考查了直角三角形全等的判定方法;本题主要利用三角形全等的判定,运用好有一对相等的直角这一隐含条件是解题的关键.二、填空题13.【分析】先求出∠BAC 的度数再根据角平分线和高求出∠BAE 和∠BAD 即可【详解】解:∵∴∠BAC=180°-40°-60°=80°∵AD 平分∠BAC ∴∠BAD=∠BAC=40°∵AE ⊥BC ∴∠AEB解析:10︒【分析】先求出∠BAC 的度数,再根据角平分线和高求出∠BAE 和∠BAD 即可.【详解】解:∵40B ∠=︒,60C ∠=°,∴∠BAC=180°-40°-60°=80°,∵AD 平分∠BAC ,∴∠BAD=12∠BAC=40°, ∵AE ⊥BC ,∴∠AEB=90°,∴∠BAE=90°-∠B=50°,∠DAE=∠BAE-∠BAD=10°,故答案为:10°.【点睛】本题考查了三角形内角和,三角形的高和角平分线,解题关键是熟练运用角平分线和高的意义求出角的度数.14.50°或130°【分析】①△ABC是锐角三角形时先根据高线的定义求出∠ADB=90°∠BEC=90°然后根据直角三角形两锐角互余求出∠ABD再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行解析:50°或130°.【分析】①△ABC是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②△ABC是钝角三角形时,根据直角三角形等角的余角相等求出∠BHC=∠A,从而得解.【详解】解:①如图1,△ABC是锐角三角形时,∵BD、CE是△ABC的高线,∴∠ADB=90°,∠BEC=90°.在△ABD中,∵∠A=50°,∴∠ABD=90°-50°=40°,∴∠BHC=∠ABD+∠BEC=40°+90°=130°;②如图2,△ABC是钝角三角形时,∵BD、CE是△ABC的高线,∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,∵∠ACE=∠HCD (对顶角相等),∴∠BHC=∠A=50°.综上所述,∠BHC 的度数是130°或50°.故答案为:50°或130°.【点睛】本题主要考查了直角三角形的性质,三角形的外角性质,等角的余角性质,三角形的高线,难点在于要分△ABC 是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.15.【分析】根据平行线的性质和角平分线的定义解答即可【详解】解:∵∠ACB =36°∴∠ACD =180°﹣∠ACB =180°﹣36°=144°∵CE 是△ABC 外角的平分线∴∠ACE =∵AB//CE ∴∠A =解析:【分析】根据平行线的性质和角平分线的定义解答即可.【详解】解:∵∠ACB =36°,∴∠ACD =180°﹣∠ACB =180°﹣36°=144°,∵CE 是△ABC 外角的平分线,∴∠ACE =111447222ACD ∠=⨯︒=︒, ∵AB//CE ,∴∠A =∠ACE =72°,故答案为:72.【点睛】 此题考查三角形外角性质,关键是根据三角形外角性质得出∠ACD 的度数解答. 16.【分析】三角形三边满足的条件是:两边和大于第三边两边的差小于第三边根据此条件来确定绝对值内的式子的正负从而化简计算即可【详解】解:∵△ABC 的三边长分别是abc ∴必须满足两边之和大于第三边两边的差小 解析:3c b a +-【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∵△ABC 的三边长分别是a 、b 、c ,∴必须满足两边之和大于第三边,两边的差小于第三边,∴0,0,0a b c b c a c a b --<--<-+>, ∴a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.17.50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E 先证明∠CBE=∠ACD 从而证明∆ACD ≅∆CBE 进而即可求解【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ∵BE ⊥CE ∴∠BEC=∠CDA=90°解析:50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E ,先证明∠CBE=∠ACD ,从而证明∆ ACD ≅∆ CBE ,进而即可求解.【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ,∵BE ⊥CE ,∴∠BEC=∠CDA=90°,∴∠CBE+∠BCE=90°,又∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠CBE=∠ACD ,在∆ ACD 与∆ CBE 中,∵CBE ACD CEB ADC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ ACD ≅∆ CBE (AAS ),∴BE=CD=10,∴BCD ∆的面积=12CD∙BE=12×10×10=50,故答案是50.【点睛】本题主要考查全等三角形的判定和性质,等腰直角三角形的性质,添加辅助线,构造“一线三垂直”模型,是解题的关键.18.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.19.4cm 【分析】由DE ⊥AB 可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm .【分析】由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.20.AF=CB 或EF=EB 或AE=CE 【分析】根据垂直关系可以判断△AEF 与△CEB 有两对对应角相等就只需要找它们的一对对应边相等就可以了【详解】∵AD ⊥BCCE ⊥AB 垂足分别为DE ∴∠BEC=∠AEC解析:AF=CB 或EF=EB 或AE=CE【分析】根据垂直关系,可以判断△AEF 与△CEB 有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE =90°,∴∠BAD=∠BCE ,所以根据AAS 添加AF=CB 或EF=EB ;根据ASA 添加AE=CE .可证△AEF ≌△CEB .故答案为:AF=CB 或EF=EB 或AE=CE .【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.三、解答题21.AC BD =,AC 与BD 的夹角60APB ∠=︒,理由见解析.【分析】根据已知先证明AOC BOD ∠=∠,再利用三角形全等判定“SAS”证明AOC BOD ≌,则可得结论AC BD =及OAC OBD ∠=∠,现结合图形,利用三角形的外角性质即可求出60APB ∠=︒.【详解】解:AC BD =,AC 与BD 的夹角60APB ∠=︒,理由是:∵60AOB COD ∠=∠=︒,∴AOB BOC COD BOC ∠+∠=∠+∠,∴AOC BOD ∠=∠.在AOC △和BOD 中,AO BO AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴()AOC BOD SAS ≌,∴AC BD =;∵OAC OBD ∠=∠,∴OAC AOB OBD APB ∠+∠=∠+∠,∴AOB APB ∠=∠,∴60APB ∠=︒.【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法并利用全等性质证明线段与角的等量关系是解题的关键.22.(1)A (3,0),B (0,6);(2)①BG ⊥y 轴,理由见解析;②32. 【分析】(1)根据非负性列出关于,m n 的二元一次方程组求解即可;(2)①先证明△BDG ≌△ADF ,得出BG=AF ,∠G=∠DFA ,根据平行线的性质得出∠DFA=45°,∠G=45°,最后根据同角的余角相等及对顶角相等即可得出结论;②利用等腰三角形的性质,建立方程即可得出结论.【详解】解:(1)由n 2﹣12n+36+|n ﹣2m|=0得:(n ﹣6)2+|n ﹣2m|=0 6020n n m -=⎧∴⎨-=⎩解得:63n m =⎧⎨=⎩. ∴A (3,0),B (0,6).(2)①BG ⊥y 轴.在△BDG 与△ADF 中,BD DA BDG FDA DG DF =⎧⎪∠=∠⎨⎪=⎩,∴△BDG ≌△ADF .∴BG =AF ,∠G =∠DFA .∵OC 平分∠AOB ,∴∠COA =45°.∵DE ∥OC ,∴∠DFA =45°,∠G =45°.∵∠FOE =90°,∴∠FEO=45°.∵∠BEG =45°,∴∠EBG =90°.即BG 与y 轴垂直.②由①可知,BG=FA ,△BGE 为等腰直角三角形.∴BG=BE .设OF=x ,则有OE=x ,3+x=6﹣x , 解得32x =. 即:OF=32. 【点睛】本题考查了非负性的性质、全等三角形的性质、等腰三角形的性质,熟练掌握性质定理是解题的关键.23.(1)证明见解析;(2)BC AD BE -=,证明见解析;(3)AD BC BE -=.【分析】(1)先利用互补判断出∠EAB=∠BCD ,进而判断出△EAB ≌△DCB ,得出BE=BD ,AB=BC ,即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法即可得出结论;【详解】解:(1)∵180EAB DCF ∠+∠=︒,180BCD DCF ∠+∠=︒,∴EAB BCD ∠=∠.在△EAB 和△DCB 中EAB BCD AE CDE BDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴EAB DCB ≌△△,∴BE BD =,AB BC =,∵BD AD AB =+,∴AD BC BE +=;(2)线段AD ,BC 与BE 之间的数量关系为:BC AD BE -=.∵180EAB DCF ∠+∠=︒,180BCD DCF ∠+∠=︒,∴EAB BCD ∠=∠.在△EAB 和△DCB 中EAB BCD AE CDE BDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴EAB DCB ≌△△,∴BE BD =,AB BC =,∵BD AB AD =-,∴BC AD BE -=;(3)线段AD ,BC 与BE 之间的数量关系为:AD BC BE -=.∵180EAB DCF ∠+∠=︒,180BCD DCF ∠+∠=︒,∴EAB BCD ∠=∠.在△EAB 和△DCB 中EAB BCD AE CDE BDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴EAB DCB ≌△△,∴BE BD =,AB BC =,∵BD AD AB =-,∴AD BC BE -=.【点睛】此题主要考查了补角的性质,全等三角形的判定和性质,判断出△EAB ≌△DCB 是解本题的关键.24.(1)见解析;(2)4【分析】(1)由“AAS”可证△ABC ≌△EAD ;(2)由全等三角形的性质可得AC=DE=3,AE=AB=7,可求解.【详解】证明:(1)∵AB ∥DE ,∴∠CAB =∠E ,在△ABC 和△EAD 中,ACB D CAB E AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EAD (AAS );(2)∵△ABC ≌△EAD ,∴AC =DE =3,AE =AB =7,∴CE =AE ﹣AC =7﹣3=4.【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是本题的关键. 25.(1)证明见解析;(2)EF=17cm .【分析】(1)根据垂直的定义可得∠AEC=∠CFB=90°,然后求出∠EAC=∠FCB ,再利用“角角边”证明即可;(2)由全等三角形的性质可得:AE=CF ,CE=BF ,再根据线段的和差求解即可.【详解】(1)证明:在Rt △ACB 中,∵∠ACB=90°,∴∠ACE+∠BCF=90°∵AE ⊥EF ,BF ⊥EF∴∠ACE+∠EAC=90°∴∠CAE=∠BCF又∵ AC=CB∴△ACE ≌△CBF(ASA)(2)由△ACE ≌△CBF 可得:AE=CF=12cm , EC=BF=5cm ,∴EF=EC+CF=12+5=17cm .【点睛】本题考查了全等三角形的判定与性质,同角的余角相等的性质,熟练掌握三角形全等的判断方法并找出全等的条件是解题的关键.26.见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE∥BF.【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.。

七年级数学下册(与三角形有关的角)同步练习1 试题

七年级数学下册(与三角形有关的角)同步练习1  试题

币仍仅州斤爪反市希望学校7.2 与三角形有关的角练习一1.:如图,在以下不等式中一定能成立的是〔〕A.∠5>∠3B.∠4>∠3C.∠6>∠2D.∠5>∠62.三角形的一个外角小于与它相邻的内角,这个三角形为〔〕A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形3.锐角三角形中,任意两个锐角的和至少大于〔〕A.90°B.100°C.120°D.60°①三条直线顺次连结所成的图形叫做三角形②三角形的一个外角也就是它的一个内角的邻补角③三角形的高是过顶点和对边垂直的直线④三角形的一个外角等于与它不相邻的两个内角的和A.3B.1C.2D.以上都不对5.在△ABC中①假设∠C=90°,∠A=25°,那么∠B=②假设∠A=∠B=∠C,那么∠B=③假设∠A=65°,∠B=∠C,那么∠C=④∠A=65°40′,∠B=36°25′,那么∠C=6.如图,E为△ABC,BC边上一点,D在BA的延长线上,DE交AC于F点,∠B=45°,∠C=30°,∠EFC=70°,那么∠D=7.,在△ABC中,假设∠A+∠B=135°,∠A-15°=∠B,那么∠A∶∠B∶∠C=8.在△ABC中,∠B=36°,AD平分∠BAC交BC于D,AE⊥BC的延长线于E,假设∠DAE=34°,那么∠ACB=。

9.:如图,在△ABC中,点D在BC上,FD⊥BC于D。

DE⊥AB于E,∠B=∠C,∠AFD=155°求∠EDF的度数。

10.:如图在△ABC中,AE是∠A的平分线,CD⊥AE于D。

求证:∠ACD>∠B参考答案:1、A2、C3、A4、C5、65°,60°,5°,77°55′6、35°7、5∶4∶38、104°9、提示:利用三角形内角定理∠B=∠C=65°,∠EDF=65°10、提示:延长CD交AB于F,∠ACD=AFC>∠B。

(典型题)初中数学七年级数学下册第四单元《三角形》测试题(有答案解析)(1)

(典型题)初中数学七年级数学下册第四单元《三角形》测试题(有答案解析)(1)

一、选择题1.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > 2.已知如图,AB=AE ,只需再加一个条件就能证明△ABC ≌△AED ,下列选项是所加条件,请判断哪一个不能判断△ABC ≌△AED ( )A .∠B=∠EB .AC=ADC .∠ADE=∠ACBD .BC=DE 3.有下列长度的三条线段,能组成三角形的是( ) A .2cm ,3cm ,4cmB .1cm ,4cm ,2cmC .1cm ,2cm ,3cmD .6cm ,2cm ,3cm 4.如图,已知AB =AD ,AC =AE ,若要判定△ABC ≌△ADE ,则下列添加的条件中正确的是( )A .∠1=∠DACB .∠B =∠DC .∠1=∠2D .∠C =∠E 5.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF ,CE ,下列说法:①ABD △和ACD △面积相等;②BAD CAD ∠=∠; ③BDF ≌CDE △;④//BF CE ;⑤CE AE =.其中正确的是( )A .①②B .①③C .①③④D .①④⑤6.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .47.下列四个图形中,线段BE 表示△ABC 的高的是( )A .B .C .D .8.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒ 9.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组10.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 11.下列四个图形中,有两个全等的图形,它们是( )A .①和②B .①和③C .②和④D .③和④ 12.如图,已知ABC ADE △≌△,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .80︒B .70︒C .40︒D .30二、填空题13.如图,将一副直角三角尺按图③放置,使三角尺①的长直角边与三角尺②的某直角边在同一条直线上,则图③中的∠1=______°.14.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.添加的条件是:____.(写出一个即可)15.如图,在ABC 中,D ,E 分别是BC ,AD 的中点,24ABC Scm =,则ABE S 的值是_______.16.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,若∠AOD =70°,则∠AOF =______度.17.连接正方形网格中的格点,得到如图所示的图形,则1234∠+∠+∠+∠=________º.18.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_______________cm . 19.已知三角形ABC 的三边长分别是,,a b c ,化简a b c b a c +----的结果是_________________;20.如图,90C D ∠=∠=︒,请添加一个条件,使Rt ABC ∆与Rt ABD ∆全等.你添加的条件是________(写出一个符合要求的条件即可).三、解答题21.如图,已知点C 是AB 的中点,CD ∥BE ,且CD BE =.(1)求证:△ACD ≌△CBE .(2)若87,32A D ∠=︒∠=︒,求∠B 的度数.22.如图,在△ABC 中,∠ACB =70 °,∠B =65°,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E . (1)求证:AE =CE .(2)求证:△AEF ≌△CEB .23.如图,AB AC =,AE AD =,CAB EAD α∠=∠=.(1)求证:AEC ADB ≅△△;(2)若90α=︒,试判断BD 与CE 的数量及位置关系并证明;(3)若CAB EAD α∠=∠=,求CFA ∠的度数.24.如图,点A ,D ,B ,E 依次在同一条直线上,BC DF =,AD BE =,ABC EDF ∠=∠,求证:A E ∠=∠.25.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.26.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】当x=d时,BC⊥AM,C点唯一;当x≥a时,能构成△ABC的C点唯一,可确定取值范围.【详解】解:若△ABC的形状、大小是唯一确定的,则C点唯一即可,当x=d时,BC⊥AM,C点唯一;当x>a时,以B为圆心,BC为半径的作弧,与射线AM只有一个交点,x=a时,以B为圆心,BC为半径的作弧,与射线AM只有两个交点,一个与A重合,所以,当x≥a时,能构成△ABC的C点唯一,故选为:A.【点睛】本题考查了三角形的画法,根据题意准确作图并且能够分类讨论是解题关键.2.D解析:D【分析】根据全等三角形的判定条件结合AE=AB、∠A=∠A逐项判定即可.【详解】解:∵AE=AB、∠A=∠A∴A、补充∠B=∠E,根据ASA可证明△ABC≌△AED,不符合题意;B、补充AC=AD,根据SAS可证明△ABC≌△AED,不符合题意;C、补充∠ADE=∠ACB,根据AAS可证明△ABC≌△AED,不符合题意;D、补充BC=DE,为SSA不能证明△ABC≌△AED,符合题意.故答案为D.【点睛】本题考查了三角形全等的证明,掌握AAA 、SSA 不能判定普通三角形全等是解答本题的关键.3.A解析:A【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【详解】A 、2+3>4,能围成三角形;B 、1+2<4,所以不能围成三角形;C 、1+2=3,不能围成三角形;D 、2+3<6,所以不能围成三角形;故选:A .【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.C解析:C【分析】根据题目中给出的条件AB AD =,AC AE =,根据全等三角形的判定定理判定即可.【详解】解:AB AD =,AC AE =,则可通过12∠=∠,得到BAC DAE ∠=∠,利用SAS 证明△ABC ≌△ADE ,故选:C .【点睛】 此题主要考查了全等三角形的判定,关键是要熟记判定定理:SSS ,SAS ,AAS ,ASA .5.C解析:C【分析】根据三角形中线的定义可得BD=CD ,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明△BDF 和△CDE 全等,根据全等三角形对应边相等可得CE=BF ,全等三角形对应角相等可得∠F=∠CED ,再根据内错角相等,两直线平行可得BF ∥CE .【详解】解:∵AD 是△ABC 的中线,∴BD=CD ,∴△ABD 和△ACD 面积相等,故①正确;∵AD 为△ABC 的中线,∴BD=CD ,∠BAD 和∠CAD 不一定相等,故②错误;在△BDF 和△CDE 中,BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△CDE (SAS ),故③正确;∴∠F=∠DEC ,∴BF ∥CE ,故④正确;∵△BDF ≌△CDE ,∴CE=BF ,故⑤错误,正确的结论为:①③④,故选:C .【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,熟练掌握三角形全等的判定方法并准确识图是解题的关键.6.B解析:B【分析】根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案.【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意; ①和④不构成三角形全等的条件,故错误;故选:B .【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.7.C解析:C【分析】根据三角形高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是△ABC 的高,再结合图形进行判断.【详解】解:线段BE 是△ABC 的高的图是选项C .故选:C .【点睛】本题考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.8.C解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.9.C解析:C【分析】要使△ABC ≌△DEF 的条件必须满足SSS 、SAS 、ASA 、AAS ,可据此进行判断.【详解】解:第①组满足SSS ,能证明△ABC ≌△DEF .第②组满足SAS ,能证明△ABC ≌△DEF .第③组满足ASA ,能证明△ABC ≌△DEF .第④组只是SSA ,不能证明△ABC ≌△DEF .所以有3组能证明△ABC ≌△DEF .故符合条件的有3组.故选:C .【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.10.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG =⎧⎨=⎩∴ △BEG ≌△BEF ,∴BG=BF,在△CEG和△AFE中EF EG AE CE=⎧⎨=⎩∴△CEG≌△AFE,∴ AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;11.B解析:B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.12.A解析:A【分析】由全等三角形的性质可得到∠BAC=∠EAD,在△ADE中可求得∠EAD,则可求得∠BAC.【详解】解:∵∠E=70°,∠D=30°,∴∠EAD=180°-∠E-∠D=180°-70°-30°=80°,∵△ABC≌△ADE,∴∠BAC=∠EAD=80°,故选:A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.二、填空题13.105【分析】利用三角形外角性质求解【详解】如图∵∠2=∠3=∴∠4=∠2+∠3=∴∠1=故答案为:105【点睛】此题考查三角板的角度计算三角形外角的性质观察图形掌握各角度之间的位置关系是解题的关键解析:105【分析】利用三角形外角性质求解.【详解】如图,∵∠2=30,∠3=45︒,∴∠4=∠2+∠3=75︒,︒-∠=︒,∴∠1=1804105故答案为:105..【点睛】此题考查三角板的角度计算,三角形外角的性质,观察图形掌握各角度之间的位置关系是解题的关键.14.AF=CB或EF=EB或AE=CE【分析】根据垂直关系可以判断△AEF与△CEB有两对对应角相等就只需要找它们的一对对应边相等就可以了【详解】∵AD⊥BCCE⊥AB垂足分别为DE∴∠BEC=∠AEC解析:AF=CB或EF=EB或AE=CE【分析】根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE =90°,∴∠BAD=∠BCE,所以根据AAS添加AF=CB或EF=EB;根据ASA添加AE=CE.可证△AEF≌△CEB.故答案为:AF=CB 或EF=EB 或AE=CE .【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.15.【分析】中线AD 把△ABC 分成面积相等的两个三角形中线BE 又把△ABD 分成面积相等的两个三角形所以△ABE 的面积是△ABC 的面积的【详解】解:∵DE 分别是BCAD 的中点∴△ABD 是△ABC 面积的△A解析:21cm【分析】中线AD 把△ABC 分成面积相等的两个三角形,中线BE 又把△ABD 分成面积相等的两个三角形,所以△ABE 的面积是△ABC 的面积的14. 【详解】解:∵D 、E 分别是BC ,AD 的中点,∴△ABD 是△ABC 面积的12,△ABE 是△ABD 面积的12, ∴△ABE 的面积=4×12×12=21cm . 故答案为:21cm .【点睛】本题考查了三角形的面积计算,解题的关键是熟悉三角形的中线把三角形分成面积相等的两个小三角形.16.145【分析】由已知角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小从而得到∠AOF 的值【详解】解:∵∵OE 平分∠AOC ∴∵OF ⊥OE 于点O ∴∠EOF =90°∴∠AOF =∠AOE+∠EOF =55解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.17.180°【分析】利用网格的特征可分别证明和从而可证得和故可得结论【详解】如图设正方形网格每一格长1个单位∴又故答案为:【点睛】此题主要考查了全等三角形的判定与性质构造直角三角形并证明全等是解答本题的 解析:180°【分析】利用网格的特征可分别证明ABF ADG ≅和AHC CDE ≅,从而可证得1290∠+∠=︒和3490∠+∠=°,故可得结论【详解】如图,设正方形网格每一格长1个单位,∴3AF =,1BF =,3AG =,1GD =,2AH =,2CE =,1HC =,1DE =,又90AFB AGD ∠=∠=︒,90AHC CED ∠=∠=︒ABF ADG ∴≅,AHC CDE ≅2BAF ∴∠=∠,ADG ABF ∠=∠,3DCE ∠=∠,4ACH ∠=∠290ADG ∠︒∠+=,390ACH ∠+∠=︒2190∴∠+∠=︒,3490∠+∠=°12349090180∴∠+∠+∠+∠==︒+︒︒故答案为:180︒【点睛】此题主要考查了全等三角形的判定与性质,构造直角三角形并证明全等是解答本题的关键. 18.26或22【分析】因为等腰三角形的底边和腰不确定6cm 可以为底边也可以为腰长故分两种情况:当6cm 为腰时底边为10cm 先判断三边能否构成三角形若能求出此时的周长;当6cm 为底边时10cm 为腰长先判断解析:26或22【分析】因为等腰三角形的底边和腰不确定,6cm 可以为底边也可以为腰长,故分两种情况:当6cm 为腰时,底边为10cm ,先判断三边能否构成三角形,若能,求出此时的周长;当6cm 为底边时,10cm 为腰长,先判断三边能否构成三角形,若能,求出此时的周长.【详解】解:若6cm 为等腰三角形的腰长,则10cm 为底边的长,6cm ,6cm ,10cm 可以构成三角形,此时等腰三角形的周长=6+6+10=22(cm );若10cm 为等腰三角形的腰长,则6cm 为底边的长,10cm ,10cm ,6cm 可以构成三角形,此时等腰三角形的周长=10+6+10=26(cm );则等腰三角形的周长为26cm 或22cm .故答案为:26或22.【点睛】本题考查了等腰三角形的定义和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.19.【分析】先根据三角形的三边关系定理可得再根据绝对值运算整式的加减即可得【详解】由三角形的三边关系定理得:则故答案为:【点睛】本题考查了三角形的三边关系定理绝对值运算整式的加减熟练掌握三角形的三边关系 解析:22b c -【分析】先根据三角形的三边关系定理可得,a b c a c b +>+>,再根据绝对值运算、整式的加减即可得.【详解】由三角形的三边关系定理得:,a b c a c b +>+>,0,0a b c b a c ∴+->--<, 则()a b c b a c a b c a c b +----=+--+-,a b c a c b =+---+,22b c =-,故答案为:22b c -.【点睛】本题考查了三角形的三边关系定理、绝对值运算、整式的加减,熟练掌握三角形的三边关系定理是解题关键.20.AC=AD 或BC=BD 或∠BAC=∠BAD 或∠ABC=∠ABD (只要写出其中一个即可)【分析】现有条件:公共边AB ∠C=∠D=90°可以考虑添加对应边相等(因为是直角三角形全等的问题可以考虑用HL 判解析:AC=AD 或BC=BD 或∠BAC=∠BAD 或∠ABC=∠ABD (只要写出其中一个即可)现有条件:公共边AB ,∠C=∠D=90°,可以考虑添加对应边相等(因为是直角三角形全等的问题,可以考虑用HL 判定全等),也可以考虑添加角对应相等.【详解】在Rt △ABC 和Rt △ABD 中,已知∠C=∠D=90°,AB=AB ;根据HL 添加AC=AD 或BC=BD ;根据AAS 添加∠BAC=∠BAD 或∠ABC=∠ABD .故答案为:AC=AD 或BC=BD 或∠BAC=∠BAD 或∠ABC=∠ABD .【点睛】本题考查了直角三角形全等的判定,主要看学生对全等三角形几种判断方法的掌握情况,特别是直角三角形的全等,既可以用一般方法,又可以用直角三角形全等的特殊方法,选择面就更广一些.三、解答题21.(1)见解析;(2)61【分析】(1)根据SAS 证明△ACD ≌△CBE ;(2)根据三角形内角和定理求得∠ACD ,再根据三角形全等的性质得到∠B=∠ACD .【详解】(1)∵C 是AB 的中点,∴AC =CB ,∵CD//BE ,∴ACD CBE ∠=∠,在△ACD 和△CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∴ACD CBE ∆≅∆;(2)∵8732A D ︒︒∠=∠=,,∴180180873261ACD A D ︒︒︒︒︒∠=-∠-∠=--=,又∵ACD CBE ∆≅∆,∴61B ACD ︒∠=∠=.【点睛】考查了全等三角形的判定和性质,解题关键是根据SAS 证明△ACD ≌△CBE .22.(1)见解析;(2)见解析【分析】(1)根据已知条件得到∠EAC =45 °,再根据等腰三角形的性质和垂直即可得解; (2)由于AD ⊥BC ,CE ⊥AB ,所以∠BAD =∠ECB =90°- ∠B ,根据已知条件证明即可;(1)∠ACB =70 °,∠B =65°,得∠EAC =45 °,又CE ⊥AB ,得∠ECA =45 °,所以AE =CE ;(2)由于AD ⊥BC ,CE ⊥AB ,所以∠BAD =∠ECB =90°- ∠B ,在△AEF 和△CEB 中,AEC BEC AE ECBAD ECB ∠=∠⎧⎪=⎨⎪∠=∠⎩, 所以△AEF ≌△CEB .【点睛】本题主要考查了全等三角形的判定与性质,结合等腰三角形的性质分析证明是解题的关键.23.(1)见详解;(2)BD=CE ,BD ⊥CE ;(3)902α︒-【分析】(1)根据三角形全等的证明方法SAS 证明两三角形全等即可;(2)由(1)△AEC ≌△ADB 可知CE=BD 且CE ⊥BD ;利用角度的等量代换证明即可; (3)过A 分别做AM ⊥CE ,AN ⊥BD ,易知AF 平分∠DFC ,进而可知∠CFA【详解】(1)∵∠CAB=∠EAD∴∠CAB+∠BAE=∠EAD+∠BAE ,∴ ∠CAE=∠BAD ,∵AB=AC ,AE=AD在△AEC 和△ADB 中 AB AC CAE BAD AE AD =⎧⎪⎨⎪⎩∠=∠= ∴ △AEC ≌△ADB (SAS )(2)CE=BD 且CE ⊥BD ,证明如下:将直线CE 与AB 的交点记为点O ,由(1)可知△AEC ≌△ADB ,∴ CE=BD , ∠ACE=∠ABD ,∵∠BOF=∠AOC ,∠α=90°,∴ ∠BFO=∠CAB=∠α=90°,∴ CE ⊥BD .(3)过A 分别做AM ⊥CE ,AN ⊥BD由(1)知△AEC ≌△ADB ,∴两个三角形面积相等故AM·CE=AN·BD ∴AM=AN∴AF 平分∠DFC由(2)可知∠BFC=∠BAC=α∴∠DFC=180°-α∴∠CFA=12∠DFC=902α︒-【点睛】本题考查了全等三角形的证明,以及全等三角形性质的应用,正确掌握全等三角形的性质是解题的关键;24.证明见解析.【分析】先根据已知条件得出AB ED =,再利用SAS 证明ABC EDF △≌△,最后根据全等三角形的性质即可得出答案.【详解】证明:∵AD BE =,∴AD DB BE DB +=+,∴AB ED =.在ABC 和EDF 中,AB ED ABC EDF BC DF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC EDF SAS △≌△,∴A E ∠=∠.【点睛】本题考查了全等三角形的判定及性质,熟练掌握全等三角形的判定方法是解题的关键. 25.(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F ,BC=EF ,然后根据SAS 可以得到结论;(2)同(1)有∠B=∠F ,再结合已知条件和对顶角相等可以证得ΔABO ≅ΔDFO ,从而得到OB=OF ,所以点O 为BF 中点 .【详解】证明:(1)∵AB//DF ,∴∠B=∠F ,∵BE=CF ,∴BE+CE=CF+CE ,即BC=EF ,∴在ΔABC 和ΔDFE 中,AB DF B F BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ΔABC ≅ΔDFE (SAS );(2)与(1)同理有∠B=∠F ,∴在ΔABO 和ΔDFO 中,AOB DOF B F AB DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO ≅ΔDFO (AAS ),∴OB=OF ,∴点O 为BF 中点 .【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键. 26.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.。

初一数学人教版下册三角形同步测试卷含答案

初一数学人教版下册三角形同步测试卷含答案

七年级数学(下)三角形同步测试卷满分:100分时间:60分钟得分:_________一、选择题(每小题3分,计24分)1.(2009·柳州)如图,图中三角形的个数是( ) A.1 B.2 C.3 D.42.三角形的角平分线是( ) A.直线B.射线C.线段D.以上答案均不对3.(2009·齐齐哈尔)如图,为估计池塘岸边A、B间的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米.则A、B间的距离不可能是( )A.20米B.15米C.10米D.5米4.如图,三角形被遮住的两个角不可能是( ) A.一个锐角和一个钝角B.两个锐角C.一个锐角和一个直角D.两个钝角5.下面四个图形中,线段BE是△ABC的高的是( )6.(2008·陕西)已知一个三角形三个内角的度数之比为2:3:7.则这个三角形是( ) A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形7.(2009·新疆)如图.将三角尺的直角顶点放在直尺的一边上.已知∠1=30°,∠2=50°,则∠3的度数为( )A.50°B.30°C.20°D.15°8.已知一个多边形的内角和等于外角和的2倍,那么这个多边形是( ) A.六边形B.五边形C.四边形D.三角形二、填空题(每小题3分.计24分)9.在△ABC中,∠A=45°,∠B=63°,则∠C=_________.10.木工师傅有两根分别长80 cm、150cm的木条,他要找第三根木条,将它们钉成一个三角形框架.现有70cm、105 cm、200 cm、300cm四根木条.他可以选择长为_______的木条.11.(2008·宁德)如图是用一副三角尺拼成的图案,则∠AEB=_________.12.如图,∠1=100°,∠2=140°,那么∠3=________.13.如图,小亮从A点出发前进10 m,向右转30°,再前进10 m,又向右转30°……这样一直走下去.他第一次回到出发点A时,一共走了_________m.14.如图,国旗上五角星的五个角的度数是相同的,每一个角的度数都是_________.15.(2009·恩施)如图,AB∥ED,∠B=58°,∠C=35°,则∠D的度数为_________.16.(2009·济宁)观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有_________个.三、解答题(本题共6小题,计52分)17.(本题满分5分)请画出△ABC的中线AD、角平分线BE和高CF.18.(本题满分5分)如图.在△ABC中,AD是BC边上的中线,△ADC的周长是8 cm,△ABD的周长是10 cm.AB比AC长多少厘米?19.(本题满分5分)已知一个正多边形每个外角都是45°,求这个正多边形的边数.20.(本题满分6分)下面是小明课后练习中的一道习题:长度为2 cm、6 cm、4 cm的三条线段能否组成三角形,为什么?解:因为2+6>4,所以上述三条线段能组成三角形.小明的解法正确吗?请发表你的观点,并说明理由.21.(本题满分8分)一个零件的形状如图所示,按规定:∠A=90°,∠B和∠C应分别是32°和21°.检验工人量得∠BDC=148°,就断定这个零件不合格.请运用三角形的相关知识说明零件不合格的理由.22.(本题满分8分)在平面内,分别把3根、5根、6根……火柴首尾依次相接,能搭成什火柴数356……示意图形状等边三角形等腰三角形等边三角形…根据上述内容,解答下面的问题:(1)4根火柴能搭成三角形吗?(2)8根、12根火柴分别能搭成几种不同形状的三角形?请画出它们的示意图.23.(本题满分5分)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=n·90°,则n=____________.24.(本题满分8分)如图,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.证明:β=2α.参考答案—、1.C 2.C 3.D 4.D 5.C 6.D 7.C 8.A二、9.72°10.105 cm或200 cm 11.75°12.60°13.12014.36°15.23°16.121三、17.如图18.根据题意,得AB+BD+AD=10 cm,AD+DC+AC=8 cm.又因为BD=CD,所以AB-AC=2(cm)19.设这个正多边形的边数为x,根据题意得45x=360.解得x=820.错误21.延长BD交AC于E(图略),则∠CED=∠A+∠B=122°.所以∠BDC=∠CED+∠C=122°+21°=143°≠148°,所以这个零件不合格22.(1)由4根火柴组成的三条线段只能是1、1、2,因为1+1=2,所以不能搭成三角形(2)8根火柴能搭成等腰三角形,边长分别为3,3,2.12根火柴可以搭成等边三角形、等腰三角形和不等边三角形,三边长分别为4,4,4;5,5,2;3,4,5.图略23.如图,设AF与BG相交于点Q,则∠AQG=∠A+∠D+∠G.于是∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠B+∠C+∠E+∠F+∠AQG=∠B+∠C+∠E+∠F+∠BQF=540°=6×90°.所以n=6.24.提示:如图,过点C作CF∥AB,α=∠A+∠E=180°,由CF∥AB∥DE,得(∠B+∠1)+(∠2+∠D)=360°.故β=2α.。

人教版七年级下数学第七章_三角形_知识点+考点+典型例题(含答案)

人教版七年级下数学第七章_三角形_知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。

②三角形按边分为两类:等腰三角形和不等边三角形。

2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。

注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。

但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。

)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。

(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。

人教版七年级下数学三角形知识点归纳、典型例题及考点分析

人教版七年级下数学三角形知识点归纳、典型例题及考点分析

BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。

A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。

七年级下册数学7.1_与三角形有关的线段学习评价试题

七年级下册数学7.1_与三角形有关的线段学习评价试题

七年级下册数学7.1 与三角形有关的线段学习评价试题一、选择题(每题2分,共24分)1.下列长度的三条线段能组成三角形的是()(A)3cm,4cm,8cm.(B)5cm,6cm,11cm.(C)5cm,6cm,10cm.(D)3cm,8cm,12cm.2.下列说法中正确的是()(A)△ABC中BC边上的高线是过顶点A向对边所引的垂线.(B)△ABC中BC边上的高线是过顶点A向对边所引的垂线段.(C)三角形的角平分线是一条射线.(D)等腰三角形的对称轴和中线、高线和角平分线互相重合.3.有木条6根,长度分别为2cm,2cm,4cm,4cm,6cm,6cm,选其中的三根能组成不同的三角形的组数为()(A)1组.(B)2组.(C)3组.(D)4组.4.给出下列结论:①三角形的角平分线、中线、高线都是线段.②直角三角形只有一条高线.③三角形的中线可能在三角形的外部.④三角形的高线都在三角形的内部,并且相交于一点.其中正确的共有()(A)1个.(B)2个.(C)3个. (D)4个.5.如图,AC为BC的垂线,CD为AB的垂线,DE为BC的垂线,D、E分别在△ABC的AB 和BC边上,则下列说法中错误的为()(A)△ABC中,AC是BC边上的高. (B)△BCD中,DE是BC边上的高.(C)△ABE中,DE是BE边上的高. (D)△ACD中,AD是CD边上的高.(第5题)6.三角形的角平分线、中线、高线()(A)每一条都是线段.(B)角平分线是射线,其余是线段.(C)高线是直线,其余为线段.(D)高线是直线,角平分线是射线,中线是线段.7.已知一个三角形的周长为15cm,且其中两边都等于第三边的2倍,那么这个三角形最短边为()(A)1cm.(B)2cm.(C)3cm.(D)4cm.8.一定在△ABC内部的线段是()(A)锐角三角形的三条高、三条角平分线、三条中线.(B)钝角三角形的三条高、三条中线、一条角平分线.(C)任意三角形的一条中线、二条角平分线、三条高.(D)任意三角形的三条高、三条角平分线、三条中线 .9.若一个三角形的三边长是三个连续的自然数,其周长m满足10<m<22,则这样的三角形有()(A)2个.(B)3个. (C)4个.(D)5个.10.△ABC的三边a,b,c都是正整数,且满足:0<a≤b≤c,如果b=4,那么这样的三角形共有个数为()(A)4.(B)6. (C)8.(D)10.11.已知三条线段的长分别为a,b,c,若线段a+b+c,a+b-c,a+c-b能组成三角形,则一定有()(A)a>b+c. (B)b>a+c. (C)c>a+b. (D)a>b-c.12.如图所示,小明同学把一块三角形的玻璃板打碎成三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()(A)带Ⅰ去.(B)带Ⅱ去.(C)带Ⅲ去.(D)带Ⅰ和Ⅱ去.(第12题)二、填空题(每题2分,共38分)13.在长度分别为1cm、2cm、3cm、4cm的四条线段中,以其中三条线段为边长共可以组成_ ____个三角形.14.已知一个三角形的两边长分别为2和3,且第三边为奇数,那么这个三角形是_______三角形.15.△ABC中,若AB=AC=5,则_____<BC<_____.16.如图,H为△ABC三条高AD、BE、CF的交点,则△HBC中BC边上的高是____,△BHA 中BH边上的高是_____,S△BHC=____=____=____.(第16题)(第17题)17.如图,AD、AE分别为△ABC的中线和角平分线,已知BC=10cm,∠BAC=70°,则BD=____=_____=______,∠BAE=____=_____=______.18.(1)如图,图中共有_______个三角形,它们是________.(2)以AE为边的三角形是_______.(3)∠B分别是△ABD、△ABE中边______的对角.(第18题)(第21题)三、解答题(19-23题,每题6分,24题8分,共38分)19.一个三角形的三边长之比为2:3:4,周长为36cm,求此三角形的三边长.20.已知等腰三角形两边的和与差分别为16cm和8cm,求此等腰三角形的周长.21.如图,AD⊥BC,则AD可以看做哪些三角形的高?22.如图,BM是△ABC的中线,若AB=6cm,BC=8cm,那么△BCM的周长与△ABM的周长之差是多少?(第22题)(第23题)23.如图,已知△ABC,(1)过点A画出中线AD;(2)画出∠C的角平分线CE.24.已知三角形的三边长为整数,2,x-3,4,则共可组成多少个不同形状的三角形?当x为多少时,所组成的三角形的周长最大?答案及提示一、选择题1.C;提示:3+4<8,5+6=11,3+9<12.均不满足“三角形两边之和大于第三边”.2.B;提示:D项答案讲述的不清晰.3.D;提示:2,4,4;4,4,6; 4,6,6;2,6,6.4.A;提示:②直角三角形有三条高线,两直角边高线与两直角边重合;③三角形的中线一定在三角形的内部;④直角三角形高线交点为直角顶点,钝角三角形在三角形的外部. 5.C;提示:在△ABE中,AC是BE边上的高.6.A;提示:三角形的中线、高、角分线都是线段.7.C;提示:由已知可设最短边长为X厘米,则三边为2x,2x,x ,∴2x+x+2x=15,x=3厘米.8.A;提示:任意三角形的中线、角平分线都在三角形内部.9.C;提示:设三个连续自然数为x-1,x,x+1则m=x-1+x+x+1=3x,∵ x是自然数,∴x 可为4,5,6,7;∴三边长是3,4,5;5,6,7;4,5,6;6,7,8.10.D;提示:D;①1,4,4;②2,4,4;③2,4,5;④3,4,4;⑤3,4,5;⑥3,4,6;⑦4,4,4;⑧4,4,5;⑨4,4,6;⑩4,4,7.11.A;提示:由两边之和大于第三边,即(a+b-c)+(a+c-b)>a+b+c解得a>b+c.12.C;提示:由于第三块碎片两边终可相交于一点,可构成完整图形.二、填空题13.1;提示:只有长度为2、3、4的三条线段可以组成三角形.14.等腰;提示:第三边长为3.15.0,10;提示:由三角形三边关系定理AB+AC>BC且AB-AC<BC解得BC<10且BC>0所以0<BC<10;16.HD,AE,BC×DH,BH×CE,CH×BF;17.DC,BC,5cm,∠CAE,∠BAC,35°;提示:由中线和角平分线定义即可得;18.(1)6,△ABD,△ADE,△AEC,△ABE,△ADC,△ABC;(2)△ABE,△ADE,△ACE;(3)AD与AE.三、解答题19.解:由于三边长之比为2:3:4,所以可设三边长分别为:2k,3k,4k.于是有:2k+3k+4k=36cm,∴9k=36cm,∴k=4(cm).故三边长分别为:8cm,12cm,16cm.20.解:设等腰三角形中两已知边长分别是xcm,ycm,x>y.则∴x=12,y=4,∵4+4<12,12+4>12,12+12>4,∴该等腰三角形的三边分别是12cm,12cm,4cm.其周长=12+12+4=28(cm).答:此等腰三角形的周长是28cm.错解分析:4cm,4cm,12cm;12cm,12cm,4cm,忽略了三角形三边关系.21.△ABC、△ABD、△ABE、△AED、△AEC、△ADC.22.解:∵△BCM的周长=BC+BM+CM,△ABM的周长=AB+BM+AM,∵AM=CM,又∵AB=6cm,BC=8cm,∴△BCM的周长 -△ABM的周长=BC-AB=8-6=2(cm) .23.解:(1)取BC的中点D,连接AD,得过点A的中线AD.(2)以C点为圆心,CD长为半径,画弧交AC于D',取DD'的中点O,连CO交AB于E,则CE就是∠C的角平分线.(第23题)24.解:∵2<x-3<2+4=6,又∵边长为整数,∴x-3=3或4或5.∴共可组成3个不同形状的三角形.而当x-3=5,即x=8时,所组成的三角形的周长最长.备注:本套题中,简单题为1——6,8,13,17,21,23——24题,中等难度题为7,11,15——16,18——20题,难题为9——10,12,14,22题,易中难的比例约为5:3:2.。

人教版七年级数学三角形测试试卷及答案解析

人教版七年级数学三角形测试试卷及答案解析

人教版七年级数学三角形测试试卷一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,要测量河两岸相对有两点,的距离,先在的垂线上取两点,,使,再画出的垂线,使,,在一条直线上,可以证明的理由是( ).A. 角角角B. 边边边C. 角边角D. 边角边2、不一定在三角形内部的线段是()A. 三角形的边的垂直平分线B. 三角形的高C. 三角形的中线D. 三角形的角平分线3、已知如图所示、分别是的中线、高,且,,则与的周长之差为 ,与的面积关系为 .A. ,相等B. ,相等C. ,相等D. ,相等4、在和中,已知,直接判定的根据是()A.B.C.D.5、下图中,全等的图形有()A. 对B. 对C. 对D. 对6、如图,用尺规作出了,作图痕迹中,弧是()A. 以为圆心,长为半径的弧B. 以为圆心,长为半径的弧C. 以为圆心,长为半径的弧D. 以为圆心,长为半径的弧7、下列图形中,与已知图形全等的是()A.B.C.D.8、如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A. 三边中线的交点B. 三边垂直平分线的交点C. 三条角平分线的交点D. 三边高的交点9、使两个直角三角形全等的条件是()A. 两条边对应相等B. 一条边对应相等C. 两个锐角对应相等D. 一个锐角对应相等10、下列图形中,不具有稳定性的是()A.B.C.D.11、已知图中的两个三角形全等,则度数是()A.B.C.D.12、已知的底边上的高为,当它的底边从变化到时,的面积()A. 从变化到B. 从变化到C. 从变化到D. 从变化到13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角14、如图,已知,,用尺规作图的方法在上取一点,使得,则下列选项正确的是()A.B.C.D.15、已知一个等腰三角形的两边长分别是和,则该等腰三角形的周长为()A. 或B.C.D. 或二、填空题(本大题共有5小题,每小题5分,共25分)16、"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明相等.17、解决难以测量或无法测量的线段(或角)的关键:构建三角形,得到线段相等或角相等.18、如图所示,在中,,,已知,,,则.19、一个三角形的三边为、、,另一个三角形的三边为、、,若这两个三角形全等,则.20、如图,于,那么图中以为高的三角形有个.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,已知,,求证:.22、如图,在四边形中,,直线与边、分别相交于点、,求的度数.?23、在中,平分,,垂足为,过作,交于,若,求线段的长.参考答案一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,要测量河两岸相对有两点,的距离,先在的垂线上取两点,,使,再画出的垂线,使,,在一条直线上,可以证明的理由是( ).A. 角角角B. 边边边C. 角边角D. 边角边【答案】C【解析】解:,,.,,().故答案应选:角边角.2、不一定在三角形内部的线段是()A. 三角形的边的垂直平分线B. 三角形的高C. 三角形的中线D. 三角形的角平分线【答案】B【解析】解:三角形的角平分线都在三角形的内部,故答案不正确三角形的中线都在三角形的内部,故答案不正确三角形的高有的在形内,有的在形上,有的在形外,故答案正确三角形的边的垂直平分线都在三角形的内部,故答案不正确故正确答案为:三角形的高3、已知如图所示、分别是的中线、高,且,,则与的周长之差为 ,与的面积关系为 .A. ,相等B. ,相等C. ,相等D. ,相等【答案】D【解析】解:、分别是的中线、高,,故答案为:与的周长之差为,的面积等于的面积.4、在和中,已知,直接判定的根据是()A.B.C.D.【答案】B【解析】解:,和分别是、的对边,根据可判定两三角形全等.故正确答案是.5、下图中,全等的图形有()A. 对B. 对C. 对D. 对【答案】C【解析】解:如图,全等图形有对.6、如图,用尺规作出了,作图痕迹中,弧是()A. 以为圆心,长为半径的弧B. 以为圆心,长为半径的弧C. 以为圆心,长为半径的弧D. 以为圆心,长为半径的弧【答案】B【解析】解:以点为圆心,为半径作弧交于,然后以点为圆心,为半径画弧,两弧相交于,则.故正确答案是:以为圆心,长为半径的弧7、下列图形中,与已知图形全等的是()A.B.C.D.【答案】B【解析】解:由已知图形可得:与全等.8、如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A. 三边中线的交点B. 三边垂直平分线的交点C. 三条角平分线的交点D. 三边高的交点【答案】A【解析】解:支撑点应是三角形的重心,三角形的重心是三角形三边中线的交点.9、使两个直角三角形全等的条件是()A. 两条边对应相等B. 一条边对应相等C. 两个锐角对应相等D. 一个锐角对应相等【答案】A【解析】解:一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故错误;两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故错误;一条边对应相等,再加一组直角相等,不能得出两三角形全等,故错误;两条边对应相等,若是两条直角边相等,可利用证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故正确.10、下列图形中,不具有稳定性的是()A.B.C.D.【答案】C【解析】解:可以看成一个三角形和一个四边形,而四边形不具有稳定性,则这个图形一定不具有稳定性.其他三个图形都是有三角形组成,一定具有稳定性.11、已知图中的两个三角形全等,则度数是()A.B.C.D.【答案】D【解析】解:两个三角形全等,.12、已知的底边上的高为,当它的底边从变化到时,的面积()A. 从变化到B. 从变化到C. 从变化到D. 从变化到【答案】C【解析】解:当的底边上的高为,底边时,;底边时,.故从变化到.13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角【答案】B【解析】解:,,,,和互为余角.14、如图,已知,,用尺规作图的方法在上取一点,使得,则下列选项正确的是()A.B.C.D.【答案】A【解析】解:,而,,点在的垂直平分线上,即点为的垂直平分线与的交点.15、已知一个等腰三角形的两边长分别是和,则该等腰三角形的周长为()A. 或B.C.D. 或【答案】B【解析】解:当为腰时,因为,所以不能组成三角形,所以为腰,所以等腰三角形的周长.二、填空题(本大题共有5小题,每小题5分,共25分)16、"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明相等.【答案】全等三角形的对应边【解析】解:"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明全等三角形的对应边相等.故答案为:全等三角形的对应边.17、解决难以测量或无法测量的线段(或角)的关键:构建三角形,得到线段相等或角相等.【答案】全等【解析】解:解决难以测量或无法测量的线段(或角)的关键:构建全等三角形,得到线段相等或角相等.故答案为:全等.18、如图所示,在中,,,已知,,,则.【答案】10/3【解析】解:,,.,,,.故正确答案为:.19、一个三角形的三边为、、,另一个三角形的三边为、、,若这两个三角形全等,则.【答案】16【解析】解:这两个三角形全等,两个三角形中都有,两三角形中长度为的边是一组对应边,与是一组对应边,与是一组对应边,,,.故答案是:.20、如图,于,那么图中以为高的三角形有个.【答案】6【解析】解:于,而图中有一边在直线上,且以为顶点的三角形有个,以为高的三角形有个.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,已知,,求证:.【解析】证明:在和中.,,..22、如图,在四边形中,,直线与边、分别相交于点、,求的度数.?【解析】解:由三角形的内角和定理,得,,,由邻补角的性质,得,,,故答案为:.23、在中,平分,,垂足为,过作,交于,若,求线段的长.【解析】解:平分,,,,,,,,,,,,,.。

新人教数学七年级下第7章(三角形)单元测试试卷(有答案)

新人教数学七年级下第7章(三角形)单元测试试卷(有答案)

七年级数学(下)第三单元自主学习达标检测A卷(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.撑上支撑后的自行车能稳稳地停在地上,是因为三角形具有______性.2.在△ABC中,AD是中线,则△ABD的面积______△ACD的面积.(填“>”,“<”或“=”)3.在△ABC中,若∠A=30°,∠B=60°,则这个三角形为三角形;若∠A:∠B:∠C=1:3:5,这个三角形为三角形.(按角的分类填写)4.一木工师傅有两根长分别为5cm、8cm的木条,他要找第三根木条,将它们钉成一个三角形框架,现有3cm、10cm、20cm三根木条,他可以选择长为cm的木条.5.如图所示的图形中x的值是__ ____.6.过n边形的一个顶点的对角线可以把n边形分成______个三角形.(用含n的式子表示)7边上的高是;(2)在△AEC中,AE边上的高是.8.如图,△ABC≌△AED,∠C=400,∠EAC=300,∠B=300,则∠D= ,∠EAD= .9.如图,已知∠1=∠2,请你添加一个条件使△ABC≌△BAD,你的添加条件是(填一个即可).10.若一个等腰三角形的两边长分别是3 cm和5 cm,则它的周长是____ _ cm.11.图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF= .第5题第14题A.B.C.D.12.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是 .13.如图所示,A 、B 在一水池的两侧,若BE =DE ,∠B =∠D =90°,CD =8 m ,则水池宽AB =m .14.如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,若∠CBA =320,则∠FED = ,∠EFD = . 二、选择题(共4题,每题3分,共12分) 15.如图所示,其中三角形的个数是( )A.2个B.3个C.4个D.5个16.下列各组中的三条线段能组成三角形的是( )A.3,4,8 B.5,6,11 C.5,6,10D.4,4,817.下列图形不具有稳定性的是( )18.一个三角形中直角的个数最多有( )A.3 B.1 C.2 D.0 三、解答题(共60分) 19.(5分)如图,(1)过点A 画高AD ; (2)过点B 画中线BE ;(3)过点C 画角平分线CF .第13题第11题第15题20.(5分)若四边形的两个内角是直角,另外两个内角中一个角比另一个角的2倍少30°,求这两个内角的度数.21.(5分)小颖要制作一个三角形木架,现有两根长度为8m和5m的木棒.如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?22.(6分)如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB.求∠ACD的度数.23.(6分)如图所示,∠BAC=90°,BF平分∠ABC交AC于点F,∠BFC=100°,求∠C的度数.24.(6分)如图所示,已知DF⊥AB于F,∠A=40°,∠D=50°,求∠ACB的度数.25(7分).已知等腰三角形一腰上的中线将三角形的周长分为9cm和15cm两部分,求这个等腰三角形的底边长和腰长.26.(7分)如图,已知△ABC中,∠ABC和∠ACB的平分线BD、CE相交于点O,且∠A=60°,求∠BOC的度数.27.(7分)已知:如图,四边形ABCD中,AD⊥DC,BC⊥AB,AE平分∠BAD,CF平分∠DCB,AE交CD于E,CF交AB于F,问AE与CF是否平行?为什么?28.(1)某多边形的内角和与外角和的总和为2 160°,求此多边形的边数;(2)某多边形的每一个内角都等于150°,求这个多边形的内角和.七年级数学(下)第三单元自主学习达标检测B卷(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为 .2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的 性.3.如图,三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为______.4.如图,已知AB ∥CD ,∠A =55°,∠C =20°,则∠P =___________.5.如图,在△ABC 中,AB =AC ,∠A =50°,BD 为∠ABC 的平分线,则∠BDC = °.6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米. 7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是(写出两种即可) .8.如图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G 的度数为 . 9.如图,△ABC 中,BD 平分∠ABC ,CD 平分∠ACE ,请你写出∠A 与∠D 的关系: .10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为 . 11.在△ABC 中,∠A =55°,高BE 、CF 交于点O ,则∠BOC =______. 12.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.第6题30°30°30°A 第8题GEDCBA第5题DCBA第2题 第3题 第4题第15题第16题13.如图所示,已知点D 是AB 上的一点,点E 是AC 上的一点,BE ,CD 相交于点F ,∠A =50°,∠ACD =40°,∠ABE =28°,则∠CFE 的度数为______.14.任何一个凸多边形的内角中,能否有3个以上的锐角?______(填“能”或“不能”). 二、选择题(共4小题,每题3分,共12分)15.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC ,AB ,BC 于点C ,D ,E ,则下列说法中不正确的是( ) A .AC 是△ABC 和△ABE 的高 B .DE ,DC 都是 △BCD 的高 C .DE 是△DBE 和△ABE 的高 D .AD ,CD 都是 △ACD 的高 16.如图所示,x 的值为( )A .45°B .50°C .55°D .70°17.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A .正方形与正三角形 B .正五边形与正三角形 C .正六边形与正三角形 D .正八边形与正方形18.如果某多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是( ) A .6B .7C .8D .9 三、解答题(共60分) 19.(4分)△ABC 中,∠A =2∠B =3∠C ,则这个三角形中最小的角是多少度?第9题 第12题 第13题EDC BA20.(4分)如图,已知四边形ABCD 中,∠A =∠D ,∠B =∠C ,试判断AD 与BC 的关系,并说明理由.21.(4分)如图,△ABC 的外角∠CBD 、∠BCE 的平分线相交于点F ,若∠A =68°,求∠F 的度数.22.(6分)在△ABC 中,AB =AC ,AC 上的中线BD 把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.23.(6分)如图所示,某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,保留画图痕迹,不写画法) .24.(6分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?C B A C B A25.(6分)一个大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数,来检验模板是否合格?26.(8分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A→C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC +BC >AD +DB ,你能说明其原因吗?27.(8分)如图1,有一个五角星ABCDE ,你能说明∠A +∠B +∠C +∠D +∠E =180吗? 如图2、图3,如果点B 向右移到AC 上,或AC 的另一侧时,上述结论仍然成立吗?请分别说明理由.D C B A28.(8分)在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.。

七年级数学下册_第七章《三角形》综合测试题_

七年级数学下册_第七章《三角形》综合测试题_

凤冈县2011–2012学年第二学期七年级数学(人教版下册)第七章三角形目标检测题时间:120分钟 满分150 陆建东供题一、选择题(每题3分,共30分)1.等腰三角形两边长分别为 3,7,则它的周长为 ( ).A 、 13 .B 、 17 .C 、 13或17 .D 、 不能确定. 2.一个多边形内角和是10800,则这个多边形的边数为 ( ).A 、 6 .B 、 7 .C 、 8 .D 、 9. 3.若三角形三个内角的比为1:2:3,则这个三角形是( ).A 、 锐角三角形.B 、 直角三角形.C 、 等腰三角形.D 、 钝角三角形. 4.下图中有一条公共边三角形的个数为( ).A 、 4个.B 、 6个.C 、 8个.D 、 10个.5.如图在△ABC 中,∠ACB=900,CD 是边AB 上的高。

那么图中与∠A 相等的角是( )A 、 ∠B . B 、 ∠ACD .C 、 ∠BCD.D 、 ∠BDC. 6. 能将三角形面积平分的是三角形的( ).第4题ED CBA第5题DCBAA 、 角平分线.B 、 高.C 、 中线.D 、外角平分线. 7. 在平面直角坐标系中,点A (-3,0),B (5,0),C (0,4)所组成的三角形ABC 的面积是( )A 、32.B 、4.C 、16.D 、8.8. 以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个.B.2个 .C.3个.D.4个.依次观察左边三个图形,并判断照此规律从左向右第四个图形是( ).10. 等腰三角形的底边BC=8 cm ,且|AC -BC|=2 cm ,则腰长AC 为( ) A.10 cm 或6 cm B.10 cm C.6 cm D.8 cm 或6 cm 二、填空(每小题4分,共32分).11.如图,从A 处观测C 处仰角∠CAD=300,从B 处观测C 处的仰角 ∠CBD=450,从C 处观测A、B 两处时视角∠ACB=度.12.已知:如图,CD ∥AB,∠A=400,∠B=600,那么∠1= , ∠2= .13.一个三角形有两条边相等,周长为20㎝,三角形的一边长为5㎝,第(12)题21 DCBA第(11)题DCBA第9题那么其它两边长分别为 .14.填表:用长度相等的火柴棒拼成如图所示的图形:15.如图,∠1=∠2=300,∠3=∠4,∠A=800,则=x ,=y .16.一个多边形的各内角都等于1200,它是 边形。

(必考题)初中数学七年级数学下册第四单元《三角形》测试(含答案解析)

(必考题)初中数学七年级数学下册第四单元《三角形》测试(含答案解析)

一、选择题1.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .20 2.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .11 3.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 4.如图,AC 与DB 相交于E ,且BE CE =,如果添加一个条件还不能判定ABE △≌DCE ,则添加的这个条件是( ).A .AC DB = B .A D ∠=∠C .B C ∠=∠D .AB DC = 5.如图,△ABC 和△AED 共顶点A ,AD =AC ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,甲说:“一定有△ABC ≌△AED .”乙说:“△ABM ≌△AEN .”那么( )A .甲、乙都对B .甲、乙都不对C .甲对、乙不对D .甲不对、乙对 6.如图,已知∠ABC =∠DEF ,AB =DE ,添加以下条件,不能判定△ABC ≌△DEF 的是( )A .∠A =∠DB .∠ACB =∠DFEC .AC =DFD .BE =CF 7.如图,四边形ABCD 是长方形,点F 是DA 长线上一点,G 是CF 上一点,并且ACG AGC ∠=∠,GAF F ∠=∠.若15ECB ∠=︒,则ACF ∠的度数是( )A .15︒B .20︒C .30D .45︒8.直角ABC 、DEF 如图放置,其中90ACB DFE ∠=∠=︒,AB DE =且AB DE ⊥.若DF a =,BC b =,CF c =.则AE 的长为( )A .a c +B .b c +C .a b c +-D .a b c -+ 9.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .①②③C .①②④D .①②③④ 10.如图,若DEF ABC ≅,点B 、E 、C 、F 在同一条直线上,9BF =,5EC =,则CF 的长为( )A .1B .2C .2.5D .311.下列条件不能判定两个直角三角形全等的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个锐角对应相等12.给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ; ②AB=DE ,∠B=∠E .BC=EF ;③∠B=∠E ,AC =DF ,∠C=∠F ; ④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组 二、填空题13.如图,90MON ∠=︒,点A ,B 分别在射线OM ,ON 上,BE 平分NBA ∠,BE 的反向延长线与BAO ∠的平分线交于点C ,则ACB ∠的度数是_______.14.已知12l l //,一个含45︒角的直角三角板按如图所示放置,230∠=︒,则1∠=_____.15.如图,65A ∠=︒,45B ∠=︒,则ACD ∠=________.16.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.17.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)18.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_______________cm . 19.如图,在△ABC 中,点D 在边BC 上,已知点E ,F 分别是AD ,CE 边上的中点,且△BEF 的面积为6,则△ABC 的面积等于_____.20.用12根等长的火柴棒拼成一个等腰三角形,火柴棒不允许剩余、重叠、折断,则能摆出不同的等腰三角形的个数为________个.三、解答题21.如图,点A 、F 、C 、D 在一条直线上,,,AB DE BC EF AF CD ===.(1)求证:ABC DEF △≌△;(2)求证://AB DE .22.如图所示,△ABC 中,∠ACB=90°,AC=BC ,直线EF 经过点C ,BF ⊥EF 于点F ,AE ⊥EF 于点E .(1)求证:△ACE ≌△CBF ;(2)如果AE 长12cm ,BF 长5cm ,求EF 的长.23.如图,点A ,D ,B ,E 依次在同一条直线上,BC DF =,AD BE =,ABC EDF ∠=∠,求证:A E ∠=∠.24.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______.25.如图,Rt ABC 与Rt DEF △的顶点A ,F ,C ,D 共线,AB 与EF 交于点G ,BC 与DE 相交于点H ,90B E ∠=∠=︒,AF CD =,AB DE =.(1)求证:Rt ABC Rt DEF ≌;(2)若1GF =,求线段HC 的长.26.如图,P 为等边ABC 的边BC 延长线上的一动点,以AP 为边向上作等边APD △,连接CD .(1)求证:ABP ACD ≌△△;(2)当PC AC =时,求PDC ∠的度数;(3)PDC ∠与PAC ∠有怎样的数量关系?随着点P 位置的变化,PDC ∠与PAC ∠的数量关系是否会发生变化?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据△ABE ≌△CAF 得出△ACF 与△ABE 的面积相等,可得S △ABE +S △CDF =S △ACD ,即可得出答案.【详解】∵∠BED=∠CFD=∠BAC ,∠BED=∠BAE+∠ABE ,∠BAC=∠BAE+∠CAF ,∠CFD=∠FCA+∠CAF ,∴∠ABE=∠CAF ,∠BAE=∠FCA ,在△ABE和△CAF中,ABE CAFAB ACBAE FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△CAF(ASA),∴S△ABE=S△ACF,∴阴影部分的面积为S△ABE+S△CDF=S△ACD,∵S△ABC=30,BD=12DC,∴S△ACD=20,故选:D.【点睛】本题考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,解题的关键是正确寻找全等三角形解决问题.2.A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项不符合题意;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项不符合题意;C、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠BAE=∠CAD,可得∠DAB=∠EAC,故本选项不符合题意;D、添加DA=DE无法求出∠DAB=∠EAC,故本选项符合题意.故选:D.【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.4.D解析:D【分析】根据全等三角形的判定定理,对每个选项分别分析、解答出即可.【详解】根据题意:BE=CE ,∠AEB=∠DEC ,∴只需要添加对顶角的邻边,即AE=DE (由AC=BD 也可以得到),或任意一组对应角,即∠A=∠D ,∠B=∠C ,∴选项A 、B 、C 可以判定,选项D 不能判定,故选:D .【点睛】此题考查全等三角形的判定定理,熟记判定定理并熟练应用是解题的关键.5.A解析:A【分析】利用AAS 判定△ABC ≌△AED ,则可得到AB=AE ,再利用ASA 判定△ABM ≌△AEN .【详解】∵∠1=∠2,∴∠1+∠MAC =∠2+∠MAC ,∴∠BAC =∠EAD ,在△BAC 和△EAD 中,B E BAC EAD AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△EAD ,∴甲说的正确;∵△BAC ≌△EAD (AAS ),∴AB=AE ,在△BAM 和△EAN 中,12B E AB AE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BAM ≌△EAN (ASA ),∴乙说的正确;故选A .【点睛】本题考查了三角形全等的判定方法,根据题目的特点,补充适当条件,活用判定定理是解题的关键.6.C解析:C【分析】根据全等三角形的判定方法一一判断即可;【详解】A 、根据ASA ,可以推出△ABC ≌△DEF ,本选项不符合题意.B 、根据AAS ,可以推出△ABC ≌△DEF ,本选项不符合题意.C 、SSA ,不能判定三角形全等,本选项符合题意.D 、根据SAS ,可以推出△ABC ≌△DEF ,本选项不符合题意.故选:C .【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法; 7.C解析:C【分析】根据矩形的性质得到AD ∥BC ,∠DCB =90°,根据平行线的性质得到∠F =∠ECB =15°,根据三角形的外角的性质得到∠ACF =∠AGC =∠GAF +∠F =2∠F ,于是得到结论.【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∠DCB =90°,∴∠F =∠ECB =15°,∴∠GAF =∠F =15°,∴∠ACF =∠AGC =∠GAF +∠F =2∠F =30°,故选C .【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.8.C解析:C【分析】先利用AAS 证明ABC DEF ≅,再根据全等三角形的性质进行线段和差计算即可.【详解】解:90ACB ∠=︒,DE AB ⊥,90A B ∴∠+∠=︒,90A E ∠+∠=︒,B E ∴∠=∠,在ABC 与DEF 中90B E ACB DFE AB DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()ABC DEF AAS ∴≅△△;AC DF =∴,BC EF =,∵DF a =,BC b =,CF c =,AE AC EF CF =+-,∴AE a b c =+-故选C .【点睛】本题主要考查了全等三角形的判定与全等三角形的性质,确定用AAS 定理进行证明是关键.9.C解析:C【分析】直接利用当A ,B ,C 在一条直线上,以及当A ,B ,C 不在一条直线上,分别分析得出答案.【详解】解:∵线段AB =8cm ,AC =6cm ,∴如图1,A ,B ,C 在一条直线上,∴BC =AB−AC =8−6=2(cm ),故①正确;如图2,当A ,B ,C 在一条直线上,∴BC =AB +AC =8+6=14(cm ),故②正确;如图3,当A ,B ,C 不在一条直线上,8−6<BC <8+6,故线段BC可能为5或9,故③错误,④正确.故选:C.【点睛】此题主要考查了三角形三边关系,正确分类讨论是解题关键.10.B解析:B【分析】根据全等三角形的对应边相等得到BE=CF,计算即可.【详解】解:∵△DEF≌△ABC,∴BC=EF,∴BE+EC=CF+EC,∴BE=CF,又∵BF=BE+EC+CF=9,EC=5∵CF=12(BF-EC)=12(9-5)=2.故选:B.【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.11.D解析:D【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【详解】解:A、可以利用边角边判定两三角形全等,故本选项不合题意;B、可以利用角角边判定两三角形全等,故本选项不合题意;C、根据斜边直角边定理判定两三角形全等,故本选项不合题意;D、三个角对应相等不能证明两三角形全等,故本选项符合题意;故选:D.【点睛】本题考查了直角三角形全等的判定方法;本题主要利用三角形全等的判定,运用好有一对相等的直角这一隐含条件是解题的关键.12.C解析:C【分析】根据全等三角形的判定方法逐一判断即得答案.【详解】解:①若AB=DE,BC=EF,AC=DF,则根据SSS能使△ABC≌△DEF;②若AB=DE ,∠B=∠E ,BC=EF ,则根据SAS 能使△ABC ≌△DEF ;③若∠B=∠E ,AC =DF ,∠C=∠F ,则根据AAS 能使△ABC ≌△DEF ;④若AB=DE ,AC=DF ,∠B=∠E ,满足有两边及其一边的对角对应相等,不能使△ABC ≌△DEF ;综上,能使△ABC ≌△DEF 的条件共有3组.故选:C .【点睛】本题考查了全等三角形的判定,属于基础题型,熟练掌握判定三角形全等的方法是解题的关键.二、填空题13.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式求出再根据角平分线的定义求出和然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解】解:根据三角形的外角性质可得平分 解析:45︒【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列式求出ABN ∠,再根据角平分线的定义求出ABE ∠和BAC ∠,然后根据三角形的一个外角等于与它不相邻的两个内角的和,列式计算即可得解.【详解】解:根据三角形的外角性质,可得ABN AOB BAO ∠=∠+∠, BE 平分NBA ∠,AC 平分BAO ∠, 12ABE ABN ∴∠=∠,12BAC BAO ∠=∠,C ABE BAC ∴∠=∠-∠,1)2ABN BAO =∠-∠, ()1122AOB BAO BAO =∠+∠-∠,12AOB =∠, 90MON ∠=︒,90AOB ∠=︒∴,190452C ∴∠=⨯︒=︒. 故答案为:45°.【点睛】本题考查了三角形外角的性质,以及角平分线的定义,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.14.75°【分析】利用外角求∠5再根据平行线的性质求∠1【详解】解:由题意可知∠4=45°∠2=∠3=30°∠5=∠2+∠3=75°∵∴∠1=∠5=75°故答案为:75°【点睛】本题考查了三角形外角的性解析:75°.【分析】利用外角求∠5,再根据平行线的性质求∠1.【详解】解:由题意可知∠4=45°,∠2=∠3=30°,∠5=∠2+∠3=75°,∵12l l //,∴∠1=∠5=75°,故答案为:75°.【点睛】本题考查了三角形外角的性质和平行线的性质,解题关键是熟练运用相关知识进行推理计算.15.【分析】根据三角形外角性质计算即可【详解】∵∠ACD 是△ABC 的外角∴∠ACD=∠A+∠B ∵∴∠ACD=故应填【点睛】本题考查了三角形外角的性质熟记三角形外角的性质并准确计算是解题的关键解析:110︒.【分析】根据三角形外角性质计算即可.【详解】∵∠ACD 是△ABC 的外角,∴∠ACD=∠A+∠B ,∵65A ∠=︒,45B ∠=︒,∴∠ACD=110︒.故应填110︒.【点睛】本题考查了三角形外角的性质,熟记三角形外角的性质,并准确计算是解题的关键. 16.【分析】延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 交CE 于点N 根据平行的性质得由得再根据三角形的外角的性质得即可求出和的数量关系【详解】解:如图延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 解析:1483E G ∠=︒-∠【分析】延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,根据平行的性质得G BAG GCD ∠=∠+∠,由3BAF BAG ∠=∠,3DCE DCG ∠=∠,得333G BAG DCG ∠=∠+∠,再根据三角形的外角的性质得E EMA EAF BAF ∠+∠=∠-∠,即可求出E ∠和G ∠的数量关系.【详解】解:如图,延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,∵//AB CD ,∴////BH GN CD ,∴BAG AGN ∠=∠,NGC GCD ∠=∠,EMA ECD ∠=∠,∵G AGN NGC ∠=∠+∠,∴G BAG GCD ∠=∠+∠,∵3BAF BAG ∠=∠,3DCE DCG ∠=∠,∴333G BAG DCG ∠=∠+∠,∵EAB E EMA ∠=∠+∠,EAB EAF BAF ∠=∠-∠,∴E EMA EAF BAF ∠+∠=∠-∠,∴E ECD EAF BAF ∠+∠=∠-∠,∴31483E DCG BAG ∠+∠=︒-∠,∴()14833E BAG DCG ∠=︒-∠+∠,∴1483E G ∠=︒-∠.故答案是:1483E G ∠=︒-∠.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是通过平行线的性质和三角形外角的性质找到角与角之间的数量关系.17.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.18.26或22【分析】因为等腰三角形的底边和腰不确定6cm 可以为底边也可以为腰长故分两种情况:当6cm 为腰时底边为10cm 先判断三边能否构成三角形若能求出此时的周长;当6cm 为底边时10cm 为腰长先判断解析:26或22【分析】因为等腰三角形的底边和腰不确定,6cm 可以为底边也可以为腰长,故分两种情况:当6cm为腰时,底边为10cm,先判断三边能否构成三角形,若能,求出此时的周长;当6cm 为底边时,10cm为腰长,先判断三边能否构成三角形,若能,求出此时的周长.【详解】解:若6cm为等腰三角形的腰长,则10cm为底边的长,6cm,6cm,10cm可以构成三角形,此时等腰三角形的周长=6+6+10=22(cm);若10cm为等腰三角形的腰长,则6cm为底边的长,10cm,10cm,6cm可以构成三角形,此时等腰三角形的周长=10+6+10=26(cm);则等腰三角形的周长为26cm或22cm.故答案为:26或22.【点睛】本题考查了等腰三角形的定义和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.19.24【分析】由EF分别为ADCE的中点可得BECEBF分别为△ABD△ACD△BEC的中线根据中线的性质可知将相应三角形分成面积相等的两部分据此即可解答【详解】解:∵由于EF分别为ADCE的中点∴S解析:24【分析】由E、F分别为AD、CE的中点可得BE、CE、BF分别为△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答.【详解】解:∵由于E、F分别为AD、CE的中点,∴S△ABE=S△DBE,S△DCE=S△AEC,S△BEF=S△BCF,∴S△BEC=2S△BEF=12,∴S△ABC=2S△BEC=24.故答案为:24.【点睛】本题考查了三角形中线的性质,属于常考题型,熟知三角形的中线将相应的三角形分成面积相等的两部分是解题的关键.20.2【分析】本题根据三角形的三边关系定理得到不等式组从而求出三边满足的条件再根据三边长是整数进而求解【详解】设摆出的三角形中相等的两边是x根则第三边是()根根据三角形的三边关系定理得到:则又因为是整数解析:2【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x 根,则第三边是(122x -)根,根据三角形的三边关系定理得到:122122x x x x x x +>-⎧⎨-+>⎩, 则3x >, 6x <,又因为x 是整数,∴x 可以取4或5,因而三边的值可能是:4,4,4或5,5,2;共二种情况,则能摆出不同的等腰三角形的个数为2.故答案为:2.【点睛】本题考查了三角形的三边关系:在组合三角形的时候,注意较小的两边之和应大于最大的边,三角形三边之和等于12. 三、解答题21.(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS 即可判断△ABC ≌△DEF ;(2)利用全等三角形的性质即可证明.【详解】证明:(1)∵点A 、F 、C 、D 在一条直线上,AF CD =,∴AC DF =.在ACE △与BDF 中,,.AB DF BC EF AC DF =⎧⎪=⎨⎪=⎩∴ABC DEF △≌△,()SSS(2)∵△ABC ≌△DEF ,∴∠BCA =∠EFD ,∴A D ∠=∠,∴//AB DE .【点睛】本题考查全等三角形的判定和性质,平行线的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)证明见解析;(2)EF=17cm .【分析】(1)根据垂直的定义可得∠AEC=∠CFB=90°,然后求出∠EAC=∠FCB ,再利用“角角边”证明即可;(2)由全等三角形的性质可得:AE=CF ,CE=BF ,再根据线段的和差求解即可.【详解】(1)证明:在Rt △ACB 中,∵∠ACB=90°,∴∠ACE+∠BCF=90°∵AE ⊥EF ,BF ⊥EF∴∠ACE+∠EAC=90°∴∠CAE=∠BCF又∵ AC=CB∴△ACE ≌△CBF(ASA)(2)由△ACE ≌△CBF 可得:AE=CF=12cm , EC=BF=5cm ,∴EF=EC+CF=12+5=17cm .【点睛】本题考查了全等三角形的判定与性质,同角的余角相等的性质,熟练掌握三角形全等的判断方法并找出全等的条件是解题的关键.23.证明见解析.【分析】先根据已知条件得出AB ED =,再利用SAS 证明ABC EDF △≌△,最后根据全等三角形的性质即可得出答案.【详解】证明:∵AD BE =,∴AD DB BE DB +=+,∴AB ED =.在ABC 和EDF 中,AB ED ABC EDF BC DF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC EDF SAS △≌△,∴A E ∠=∠.【点睛】本题考查了全等三角形的判定及性质,熟练掌握全等三角形的判定方法是解题的关键. 24.(1)PA=PB ;(2)成立证明见解析;(3)OA=BC+OC【分析】(1)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(2)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(3)仿照(2)的解法得出△APD ≌△BPC ,从而得出AD=BC ,再根据HL 得出Rt △OPD ≌△RtOPC ,得出OC=OD ,继而得出结论.【详解】(1)作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=90°,∴∠APB=90°,∠CPD=90°,∴∠APD+∠BPD=90°,∠BPC+∠BPD=90°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(2)(1)中的结论还成立理由如下:如图2,作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=60°,∴∠APB=120°,在四边形OCPD 中,∠CPD=360°-90°-90°-60°=120°,∴∠APD+∠BPD=120°,∠BPC+∠BPD=120°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(3)OA=2BC-OB .理由如下:如图3,作PD ⊥OM 于点D ,同(2),可证△APD ≌△BPC ,∴AD=BC ,点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,在Rt △OPD 和RtOPC 中,PC PD OP OP=⎧⎨=⎩ ∴Rt △OPD ≌△RtOPC ,∴OC=OD ,∴OA-AD=OD=OC ,∴OA-BC=OC ,∴OA=BC+OC .【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、灵活运用类比思想是解题的关键.25.(1)见详解;(2)1【分析】(1)先证明AC=DF ,再根据HL 证明Rt ABC Rt DEF ≌;(2)先证明∠AFG=∠DCH ,从而证明∆AFG ≅∆DCH ,进而即可求解.【详解】(1)∵AF CD =,∴AF+CF=CD+CF ,即AC=DF ,在Rt ABC 与Rt DEF △中,∵AC DF AB DE =⎧⎨=⎩, ∴Rt ABC ≅Rt DEF △(HL );(2)∵Rt ABC ≅Rt DEF △,∴∠A=∠D ,∠EFD=∠BCA ,∵∠AFG=180°-∠EFD ,∠DCH=180°-∠BCA ,∴∠AFG=∠DCH ,又∵AF CD =,∴∆AFG ≅∆DCH ,∴HC=GF =1.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握HL 和ASA 证明三角形全等,是解题的关键.26.1)证明见解析;(2)30PDC ∠=︒;(3)PDC PAC ∠=∠;数量关系不变;理由见解析【分析】(1)先根据等边三角形的性质得出∠BAC =∠PAQ =60°,AB =AC ,AP =AQ ,再由SAS 定理即可得出结论;(2)由∠APC=∠CAP ,∠B=∠BAC ,∠B+∠BAC+∠APC+∠CAP=180°,得∠BAP=90°,再结合ABP ACD ≌△△,进而即可求解;(3)设CD 与AP 交于点O ,由ABP ACD ≌△△,得∠ACD=∠APD ,结合∠AOC=∠DOP ,三角形内角和定理,即可得到结论.【详解】(1)证明:∵△ABC 与△APD 是等边三角形,∴∠BAC =∠PAD =60°,AB =AC ,AP =AD ,∴∠BAP =∠DAC ,在△ABP 与△ACD 中,AB AC BAP CAD AP AD ⎧⎪∠∠⎨⎪⎩===,∴ABP ACD ≌△△(SAS );(2)∵PC AC =,∴∠APC=∠CAP ,∵△ABC 是等边三角形,∴∠B=∠BAC=60°,又∵∠B+∠BAC+∠APC+∠CAP=180°,∴∠BAC+∠CAP=12×180°=90°,即:∠BAP=90°, ∴∠APB=90°-60°=30°,∴∠ADC=∠APB=30°,∵△APD 是等边三角形,∴PDC ∠=60°-∠ADC=60°-30°=30°;(3)PDC ∠=PAC ∠,随着点P 位置的变化,PDC ∠与PAC ∠的数量关系不会发生变化,理由如下:设CD 与AP 交于点O ,∵ABP ACD ≌△△,∴∠ACD=∠ABP=60°,∵∠APD=60°,∴∠ACD=∠APD ,又∵∠AOC=∠DOP ,∠AOC+∠ACD+∠PAC=180°,∠DOP+∠APD+∠PDC=180°, ∴PDC ∠=PAC ∠.【点睛】本题主要考查全等三角形的判定和性质,等边三角形的性质,直角三角形的判定,熟练掌握全等三角形的判定和性质,是解题的关键.。

(必考题)初中数学七年级数学下册第四单元《三角形》检测卷(包含答案解析)(1)

(必考题)初中数学七年级数学下册第四单元《三角形》检测卷(包含答案解析)(1)

一、选择题1.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52αC .2αD .32α 2.如果a 、b 、c 分别是三角形的三条边,那么化简a c b b c a -+++-的结果是( ) A .2c - B .2b C .22a c - D .b c - 3.如图,若MB ND =,MBA NDC ∠=∠,添加下列条件不能直接判定ABM CDN ≌的是( )A .AM CN =B .A NCD ∠=∠C .AB CD = D .M N ∠=∠4.如图,CD AB ⊥,BE AC ⊥,垂足分别为点D ,点E ,BE 、CD 相交于点O ,12∠=∠,则图中全等三角形共有( )A .2对B .3对C .4对D .5对 5.下列长度的三条线段能构成三角形的是( ) A .2cm ,3cm ,5cmB .5cm ,6cm ,11cmC .3cm ,4cm ,8cmD .5cm ,6cm ,10cm 6.有下列长度的三条线段,能组成三角形的是( )A .2cm ,3cm ,4cmB .1cm ,4cm ,2cmC .1cm ,2cm ,3cmD .6cm ,2cm ,3cm 7.如图△ABC ≌△ADE ,若∠B=80°,∠C=30°,∠DAC=25°,则∠EAC 的度数为( )A .45°B .40°C .35°D .25°8.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A.105︒B.115︒C.125︒D.130︒9.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB的边OA,OB上分别取OM=ON,移动直角尺,使直角尺两边相同的刻度分别与M,N重合(即CM=CN).此时过直角尺顶点C的射线OC即是∠AOB的平分线.这种做法的道理是()A.HL B.SAS C.SSS D.ASA10.在自习课上,小红为了检测同学们的学习效果,提出如下四种说法:①三角形有且只有一条中线;②三角形的高一定在三角形内部;③三角形的两边之差大于第三边;④三角形按边分类可分为等腰三角形和不等边三角形.其中错误的说法是()A.①②B.①③C.①②③D.①②③④11.如图,已知AC⊥BD,垂足为O,AO=CO,AB=CD,则可得到△AOB≌△COD,理由是( )A.HL B.SAS C.ASA D.SSS12.如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C为对应顶点,D,E为对应顶点,下列结论不.一定成立的是()A.AC=CD B.BE=CD C.∠ADE=∠AED D.∠BAE=∠CAD 二、填空题13.如图,BF平分∠ABD,CE平分∠ACD,BF与CE交于G,若130,90BDC BGC ∠=︒∠=︒,则∠A 的度数为_________.14.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.15.己知三角形的三边长分别为2,x ﹣1,3,则三角形周长y 的取值范围是__. 16.等腰三角形的底边长为6cm ,一腰上的中线把三角形分成的两部分周长之差为4cm ,则这个等腰三角形周长为_____cm .17.如图,△ABC 中,点D 在边BC 上,DE ⊥AB 于E ,DH ⊥AC 于H ,且满足DE=DH ,F 为AE 的中点,G 为直线AC 上一动点,满足DG =DF ,若AE=4cm ,则AG= _____cm .18.已知一个三角形的三条边长为2、7、x ,则x 的取值范围是_______.19.如图,在线段AB 两侧作ABC 和ABD △,使AC AB =,ABC ABD ∠=∠,E 为BC 边上一点,满足2EAD BAC ∠=∠,P 为直线AE 上的动点,连接BP 、DP .已知3AB =, 2.6AD =,BDE 的周长为3.6,则BP DP +的最小值为______.20.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.三、解答题21.如图,已知:AD =AB ,AE =AC ,AD ⊥AB ,AE ⊥AC .猜想线段CD 与BE 之间的数量关系与位置关系,并证明你的猜想.22.如图,CE AB ⊥于点,E BF AC ⊥于点,F CE 交BF 于点,D 且BD CD =.()1如果已知65BAC ∠=︒,求BDC ∠的度数;()2在图中补全射线,AD 并证明射线AD 是BAC ∠的平分线.23.在数学课上,林老师在黑板上画出如图所示的图形(其中点B 、F 、C 、E 在同一直线上),并写出四个条件:①AB =DE ,②BF =EC ,③∠B =∠E ,④∠1=∠2. 请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明. 题设: ;结论: .(均填写序号)证明:24.(问题情境)(1)如图1,在四边形ABCD 中,AB AD =,90B D ︒∠=∠=,120BAD ︒∠=.点E ,F 分别是BC 和CD 上的点,且60EAF ︒∠=,试探究线段BE ,EF ,DF 之间的关系.小明同学探究此问题的方法是:延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,再证明AEF AGF ≅△△,进而得出EF BE DF =+.你认为他的做法 ;(填“正确”或“错误”).(探索延伸)(2)如图2,在四边形ABCD 中,AB AD =,70B ︒∠=,110D ︒∠=,100BAD ︒∠=,点E ,F 分别是BC 和CD 上的点,且50EAF ︒∠=,上题中的结论依然成立吗?请说明理由.(思维提升)(3)小明通过对前面两题的认真思考后得出:如图3,在四边形ABCD 中,若AB AD =,180B D ︒∠+∠=,12EAF BAD ∠=∠,那么EF BE DF =+.你认为正确吗?请说明理由.25.综合与探究(问题情景)(1)如图1,已知//AB CD ,120PBA ∠=︒,150PCD ∠=︒,求BPC ∠的度数. 小宇同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠的度数为_______.(问题迁移)(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ∠=︒,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在,C D 两点之间运动时,请判断APE ∠与α∠,β∠之间的数量关系,并说明理由.②如图3,当点P 在,B D 两点之间运动时,请直接写出APE ∠与α∠,β∠之间有何数量关系.(拓展应用)(3)如图4,//,//AB CD EF CG ,若38A ∠=︒,32C ∠=︒,请求出E ∠的度数. 26.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.2.B解析:B【分析】根据三角形的三边关系可得a b c +>,b c a +>,从而得出0a c b -+>,0b c a +->,然后根据绝对值的性质化简即可.【详解】解:∵a 、b 、c 分别是三角形的三条边,∴a b c +>,b c a +>,∴0a c b -+>,0b c a +->, ∴a c b b c a -+++-=a c b b c a -+++-=2b故选B .【点睛】此题考查的是三角形三边关系的应用和化简绝对值,掌握三角形的三边关系和绝对值的性质是解题关键.3.A解析:A【分析】根据全等三角形的判定方法:SSS 、SAS 、ASA 、AAS 、HL ,结合选项进行判定,然后选择不能判定全等的选项.【详解】A 、添加条件AM=CN ,仅满足SSA ,不能判定两个三角形全等;B 、添加条件AB=CD ,可用SAS 判定△ABM ≌△CDN ;C 、添加条件∠M=∠N ,可用ASA 判定△ABM ≌△CDN ;D 、添加条件∠A=∠NCD ,可用AAS 判定△ABM ≌△CDN .故选:A .【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.C解析:C【分析】共有四对.分别为ADO≌AEO,ADC≌AEB,ABO≌ACO,BOD≌COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.【详解】解:∵CD⊥AB,BE⊥AC,∴∠ADO=∠AEO=90°,又∵∠1=∠2,AO=AO,∴ADO≌AEO;(AAS)∴OD=OE,AD=AE,∵∠DOB=∠EOC,∠ODB=∠OEC=90°,OD=OE,∴BOD≌COE;(ASA)∴BD=CE,OB=OC,∠B=∠C,∵AE=AD,∠DAC=∠CAB,∠ADC=∠AEB=90°∴ADC≌AEB;(ASA)∵AD=AE,BD=CE,∴AB=AC,∵OB=OC,AO=AO,∴ABO≌ACO.(SSS)所以共有四对全等三角形.故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.D解析:D【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A、2+3=5,不能构成三角形;B、5+6=11,不能构成三角形;C、3+4<8,不能构成三角形;D、5+6>10,能构成三角形.故选:D.【点睛】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数就可以.6.A解析:A【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【详解】A 、2+3>4,能围成三角形;B 、1+2<4,所以不能围成三角形;C 、1+2=3,不能围成三角形;D 、2+3<6,所以不能围成三角形;故选:A .【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.7.A解析:A【解析】∵△ABC ≌△ADE ,∴∠D=∠B=80°,∠E=∠C=30°,∴∠DAE=180°−∠D−∠E=70°,∴∠EAC=∠EAD−∠DAC=45°,故选A.点睛:本题主要考查全等三角形的性质,掌握全等三角形的对应角相等、对应边相等是解题的关键.8.C解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.9.C解析:C【分析】根据题中的已知条件确定有三组边对应相等,由此证明△OMC ≌△ONC(SSS),即可得到结论.【详解】在△OMC 和△ONC 中,OM ON CM CN OC OC =⎧⎪=⎨⎪=⎩, ∴△OMC ≌△ONC(SSS),∴∠MOC=∠NOC ,∴射线OC 即是∠AOB 的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.10.C解析:C【分析】三角形有三条中线对①进行判断;钝角三角形三条高,有两条在三角形外部,对②进行判断;根据三角形三边的关系对③进行判断;根据三角形的分类对④进行判断.【详解】①三角形有三条中线,故①错误;②钝角三角形三条高,有两条在三角形外部,故②错误;③三角形的任意两边之差小于第三边,故③错误;④三角形按边分类可分为等腰三角形、不等边三角形,故④正确;综上,选项①②③错误,故选:C .【点睛】本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别.11.A解析:A【分析】根据三角形全等的判定定理进行判断.【详解】A. AC⊥BD,垂足为O,AO=CO,AB=CD,所以由HL可得到△AOB≌△COD,所以A正确;B.错误;C.错误;D.错误.【点睛】本题考查了三角形全等的判定定理,熟练掌握定理是本题解题的关键.12.A解析:A【详解】∵△ABD≌△ACE,∴∠ADB=∠AEC,∠BAD=∠CAE,BD=CE,∴180°-∠ADB=180°-∠AEC,∠BAD+∠DAE=∠CAE+∠DAE,BD+DE=CE+DE,即∠ADE=∠AED,∠BAE=∠CAD,BE=CD,故B、C、D选项成立,不符合题意;无法证明AC=CD,故A符合题意,故选A.二、填空题13.50°【分析】连接BC根据三角形内角和定理可求得∠DBC+∠DCB的度数再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数即可求得∠A的度数【详解】解:连接BC∵∠BDC=130°解析:50°【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数,即可求得∠A的度数.【详解】解:连接BC,∵∠BDC =130°,∴∠DBC +∠DCB =180°−∠BDC =50°,∵∠BGC =90°,∴∠GBC +∠GCB =180°−∠BGC =90°,∴∠GBD +∠GCD =(∠GBC +∠GCB )−(∠DBC +∠DCB )=40°,∵BF 平分∠ABD ,CE 平分∠ACD ,∴∠ABD +∠ACD =2∠GBD +2∠GCD =80°,∴∠ABC +∠ACB =(∠ABD +∠ACD )+(∠DBC +∠DCB )=130°,∴∠A =180°−(∠ABC +∠ACB )=180°−130°=50°.故答案为:50°.【点睛】本题主要考查了与角平分线有关的三角形内角和问题,根据题意作出辅助线,构造出三角形是解答此题的关键.14.【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ∠A1CD=∠A1+∠A1BC 根据角平分线的定义可得∠A1BC=∠ABC ∠A1CD=∠ACD 整理得到∠A1=∠A 同理可得∠A2=∠A1从而判断 解析:4θ 2nθ 【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案. 【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , ∴∠A 1=12∠A , 同理可得∠A 2=12∠A 1=14∠A , ∵∠A=θ,∴∠A 2=4θ, 同理:∠A 3=12∠A 2=382θθ=,∠A 4=12∠A 3=4162θθ= …… ∴∠A n =2n θ. 故答案为:4θ,2n θ 【点睛】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键. 15.6<y <10【详解】根据三角形的三边关系得3-2<x-1<2+3解得:1<x-1<5所以三角形周长y 的取值范围:1+2+3<y <2+3+5即6<y <10故答案为6<y <10【点睛】本题考查三角形三边解析:6<y <10【详解】根据三角形的三边关系,得3-2<x-1<2+3,解得:1<x-1<5,所以三角形周长y 的取值范围:1+2+3<y <2+3+5,即6<y <10,故答案为6<y <10.【点睛】本题考查三角形三边的关系,解决此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.16.26【分析】首先设腰长为xcm 等腰三角形底边长为6cm 一腰上的中线将其周长分成两部分的差为4cm 可得x ﹣6=4或6﹣x =4继而可求得答案【详解】解:设腰长为xcm 根据题意得:x ﹣6=4或6﹣x =4解解析:26【分析】首先设腰长为xcm ,等腰三角形底边长为6cm ,一腰上的中线将其周长分成两部分的差为4cm ,可得x ﹣6=4或6﹣x =4,继而可求得答案.【详解】解:设腰长为xcm ,根据题意得:x ﹣6=4或6﹣x =4,解得:x =10或x =2(舍去),∴这个等腰三角形的周长为10+10+6=26cm .故答案为:26.【点睛】考核知识点:等腰三角形.理解三角形中线的意义是关键.17.2或6【详解】∵DE⊥ABDH⊥AC∴∠AED=∠AHE=90°在△ADE和△ADH中∵AD=ADDE=DH∴△ADE≌△ADH(HL)∴AH=AE=4cm∵F为AE的中点∴AF=EF=2cm在△F解析:2或6.【详解】∵DE⊥AB,DH⊥AC,∴∠AED=∠AHE=90°.在△ADE和△ADH中,∵AD=AD,DE=DH, ∴△ADE≌△ADH(HL),∴AH=AE=4cm.∵F为AE的中点,∴AF=EF=2cm.在△FDE和△GDH中,∵DF=DG,DE=DH, ∴△FDE≌△GDH(HL),∴GH=EF=2cm.当点G在线段AH上时,AG=AH-GH=4-2=2cm;当点G在线段HC上时,AG=AH+GH=4+2=6cm;故AG的长为2或6.18.5x9【解析】根据三角形的三边关系第三边的长一定大于已知的两边的差而小于两边的和得:7−2<x<7+2即5<x<9解析:5<x<9【解析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和得:7−2<x<7+2,即5<x<9.19.8【分析】在BC上取CD′=BD连接AD′证明△ACD′≌△ABD得到AD′=AD∠CAD′=∠BAD从而证明△AED′≌△AED得到D′E=DE∠AED′=∠AED过A 作AF⊥BCAF与BC交于点解析:8【分析】在BC上取CD′=BD,连接AD′,证明△ACD′≌△ABD,得到AD′=AD,∠CAD′=∠BAD,从而证明△AED′≌△AED,得到D′E=DE,∠AED′=∠AED,过A作AF⊥BC,AF与BC交于点F,从而推断出BP+DP=BP+D′P最小值为P点与E点重合时,BP与D′P共线,BP+D′P=BD′,利用勾股定理求出BD′的长度即可.【详解】解:在BC上取CD′=BD,连接AD′,∵AC=AB,∴∠C=∠ABC,∵∠ABC=∠ABD,∴∠C=∠ABD,又CD′=BD,AC=AB,∴△ACD′≌△ABD(SAS),∴AD′=AD,∠CAD′=∠BAD,∴∠DAD′=∠BAC,∵2∠EAD=∠BAC=∠DAD′,∴∠D′AE=∠DAE,又AD′=AD,AE=AE,∴△AED′≌△AED(SAS),∴D′E=DE,∠AED′=∠AED,∴D′在直线BD上,过A作AF⊥BC,AF与BC交于点F,∵CD′=BD,D′E=DE,∴CD′+D′E+EB=BC=BD+DE+BE=3.6,∵P为AE上的动点,故BP+DP=BP+D′P最小值为P点与E点重合时,BP与D′P共线,BP+D′P=BD′,∵△ABC中,AB=AC=3,BC=3.6,AF⊥BC,AD′=AD=2.6,∴F为BC中点,即CF=BF=12BC=12×3.6=1.8,∴22223 1.8 2.4AC CF--=,∴22222.6 2.41AD AF'--=,∴BD′=BF+D′F=1.8+1=2.8,∴BP+DP的最小值为2.8,故答案为:2.8.【点睛】本题考查了最短路径问题,全等三角形的判定和性质,勾股定理,解题的关键正确作出辅助线,利用全等三角形的性质得到相等线段.20.180°【详解】解:∵AB ∥CD ∴∠1=∠EFD ∵∠2+∠EFC=∠3∠EFD=180°-∠EFC ∴∠1+∠3—∠2=180°故答案为:180°解析:180°【详解】解:∵AB ∥CD∴∠1=∠EFD∵∠2+∠EFC=∠3∠EFD=180°-∠EFC∴∠1+∠3—∠2=180°故答案为:180°三、解答题21.CD =BE ,CD ⊥BE ,证明见解析【分析】证明△ACD ≌△AEB ,根据全等三角形的性质得到CD =BE ,∠ADC =∠ABE ,根据三角形内角和定理得出∠BFD =∠BAD =90°,证明结论.【详解】解:猜想:CD =BE ,CD ⊥BE ,理由如下:∵AD ⊥AB ,AE ⊥AC ,∴∠DAB =∠EAC =90°.∴∠DAB +∠BAC =∠EAC +∠BAC ,即∠CAD =∠EAB ,在△ACD 和△AEB 中,AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△AEB (SAS ),∴CD =BE ,∠ADC =∠ABE ,∵∠AGD =∠FGB ,∴∠BFD =∠BAD =90°,即CD ⊥BE .【点睛】本题考查的是三角形全等的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.22.()1115;()2见解析【分析】(1)先求出25B ∠=︒,再根据垂直计算即可;(2)先证明()∆≅∆BDE CDF AAS ,得到DE DF =,再根据垂直和角平分线的性质计算即可;【详解】解:()1⊥BF AC ,65BAC ∠=︒,25B ∴∠=︒,又CE AB ⊥,115BDC B BED ∴∠=∠+∠=;()2如图,射线AD 即为所求;证明:CE AB ⊥,BF AC ⊥,90BED CFD ∴∠=∠=︒,BDE CDF ∠=∠,DB DC =, ()∴∆≅∆BDE CDF AAS ,DE DF ∴=,DE AB ∵⊥,DF AC ⊥,AD ∴是BAC ∠的平分线.【点睛】本题主要考查了角平分线的性质和全等三角形的判定与性质,准确分析计算是解题的关键.23.①②③;④;证明过程见解析;【分析】根据三个不同的情况进行讨论分析即可;【详解】情况一:题设①②③,结论④;∵BF=EC ,∴BF CF EC CF +=+,即BC EF =,在△ABC 和△DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≅,∴12∠=∠; 情况二:题设①③④,结论③;在△ABC 和△DEF 中,12B E AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≅,∴BC EF =,∴BC FC EF FC -=-,即BF EC =;情况三:题设②③④,结论①;∵BF EC =,∴BF CF EC CF +=+,即BC EF =,在△ABC 和△DEF 中, 12BC EF B E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABC DEF ≅,∴AB DE =; 故答案为:①②③;④.【点睛】本题主要考查了全等三角形的判定与性质,准确分析证明是解题的关键. 24.(1)正确;(2)成立,理由见解析;(3)正确,理由见解析.【分析】(1)延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,可得AE=AG ,再证明AEF AGF ≅△△,可得EF=GF ,进而得出EF BE DF =+.即可解题; (2)成立,证明方法同(1):延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,可得AE=AG ,再证明AEF AGF ≅△△,可得EF=GF ,进而得出EF BE DF =+.即可解题;(3)正确,证明方法同(2):延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,可得AE=AG ,再证明AEF AGF ≅△△,可得EF=GF ,进而得出EF BE DF =+.即可解题.【详解】解:(1)正确.理由:如图1,延长FD 到点G ,使DG BE =,连接AG .∵90B ADF ︒∠=∠=,∴90ADG ADF B ∠=∠=∠=︒,在△ABE 和△ADG 中,∵DG BE AB AD =⎧⎪=⎨⎪=⎩∠B ∠ADG , ∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵120BAD ︒∠=,60EAF ︒∠=,∴∠EAF =12∠BAD , ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF , ∴∠EAF=∠GAF ,在△AEF 和△AGF 中,∵AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠, ∴△AEF ≌△AGF (SAS ),∴EF=GF ,∵GF=DG+DF=BE+DF ,∴EF BE DF =+;(2)(1)题中的结论依然成立;理由:如图2,延长FD 到点G ,使DG BE =,连接AG .∵110ADF ︒∠=,70B ︒∠=,∴18011070ADG B ∠=︒-︒=︒=∠,在△ABE 和△ADG 中,∵DG BE AB AD =⎧⎪=⎨⎪=⎩∠B ∠ADG , ∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵100BAD ∠=︒,50EAF ∠=︒,∴∠EAF =12∠BAD , ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF ,∴∠EAF=∠GAF ,在△AEF 和△AGF 中,∵AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠, ∴△AEF ≌△AGF (SAS ),∴EF=GF ,∵GF=DG+DF=BE+DF ,∴EF BE DF =+;(3)正确,理由:如图3,延长FD 到点G ,使DG BE =,连接AG .∵180B ADF ︒∠+∠=,180ADG ADF ∠+∠=︒,∴ADG B ∠=∠,在△ABE 和△ADG 中,∵DG BE AB AD =⎧⎪=⎨⎪=⎩∠B ∠ADG , ∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵∠EAF =12∠BAD , ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF ,∴∠EAF=∠GAF ,在△AEF 和△AGF 中,∵AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠, ∴△AEF ≌△AGF (SAS ),∴EF=GF ,∵GF=DG+DF=BE+DF ,∴EF BE DF =+.【点睛】本题是三角形的综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.25.(1)90︒;(2)①APE αβ∠=∠+∠,理由见解析;②,APE βα∠=∠-∠理由见解析;(3)70.︒【分析】(1)如图1,过点P 作PG//AB ,利用平行线的性质求解,BPG ∠ 再证明//,PG CD 求解CPG ∠,再利用BPC BPG CPG ∴∠=∠+∠,从而可得答案; (2)①如图2,过P 作//PM CG 交AB 于,M 证明=,APM β∠∠再证明//,PM DF 可得,MPE α∠=∠利用APE APM EPM ∠=∠+∠,从而可得结论;②如图3,过P 作//PM CG ,证明=,APM β∠∠再证明//,PM DF 可得,MPE α∠=∠利用,APE APM EPM ∠=∠-∠从而可得结论;(3)如图4,过D 作//DN CG ,过B 作//BM CG 交AE 于,T 结合//,EF CG 可得//////,BM EF DN CG 证明32ABM C ∠=∠=︒, 再利用三角形的外角的性质求解ATM ∠,再利用//,BM EF 从而可得答案.【详解】解:(1)如图1,过点P 作PG//AB ,120PBA ∠=︒180********,BPG PBA ∴∠=︒-∠=︒-︒=︒//,AB CD//,PG CD ∴180,CPG PCD ∴∠=︒-∠150,PCD ∠=︒18015030CPG ∴∠=︒-︒=︒,603090BPC BPG CPG ∴∠=∠+∠=︒+︒=︒,故答案为:90.︒(2)①如图2,过P 作//PM CG 交AB 于,M=,APM β∴∠∠由题意得://,DF CG//,PM DF ∴,MPE α∴∠=∠.APE APM EPM αβ∴∠=∠+∠=∠+∠②如图3, 过P 作//PM CG ,,APM β∴∠=∠由题意得://,DF CG//,PM DF ∴,EPM α∴∠=∠,APE APM EPM βα∴∠=∠-∠=∠-∠(3)如图4,过D 作//DN CG ,过B 作//BM CG 交AE 于,T//,EF CG//////,BM EF DN CG ∴由(2)①的结论可得:,BDC MBD GCD ∠=∠+∠//,AB CD,BDC ABD ABM MBD ∴∠=∠=∠+∠,MBD GCD ABM MBD ∴∠+∠=∠+∠32C ∠=︒,32ABM C ∴∠=∠=︒,38A ∠=︒,383270ATM A ABM ∴∠=∠+∠=︒+︒=︒,//,BM EF70.E ATM ∴∠=∠=︒【点睛】本题考查的是平行公理的应用,平行线的性质,角的和差关系,三角形的外角的性质,掌握作出适当的辅助平行线,再利用平行线的性质是解题的关键.26.(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F,BC=EF,然后根据SAS可以得到结论;(2)同(1)有∠B=∠F,再结合已知条件和对顶角相等可以证得ΔAB O≅ΔDFO,从而得到OB=OF,所以点O为BF中点.【详解】证明:(1)∵AB//DF,∴∠B=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,∴在ΔABC和ΔDFE 中,AB DFB F BC EF=⎧⎪∠=∠⎨⎪=⎩,∴ΔABC≅ΔDFE (SAS);(2)与(1)同理有∠B=∠F,∴在ΔABO和ΔDFO 中,AOB DOFB FAB DF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO≅ΔDFO(AAS),∴OB=OF,∴点O为BF中点.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键.。

【新】人教版七年级下册数学 三角形章节测试卷 ( 含答案)

【新】人教版七年级下册数学 三角形章节测试卷 ( 含答案)

七年级下册数学三角形全章测试一、选择题:1.已知△ABC 的一个内角是40°,∠A =∠B ,那么∠C 的外角的大小是( ). (A)140°(B)80°或100° (C)100°或140° (D)80°或140°2.如图,在四边形ABCD 中,点E 在BC 上,AB ∥DE ,∠B =78°,∠C =60°,则∠EDC 的度数为( ).(A)42° (B)60° (C)78°(D)80°3.如图,是赛车跑道的一段示意图,其中AB ∥DE ,测得∠B =140°,∠D =120°,则∠C 的度数为( ).(A)120° (B)100° (C)140°(D)90°4.上午9时,一艘船从A 处出发以20海里/时的速度向正北航行,11时到达B 处,若在A 处测得灯塔C 在北偏西34°,且,23BAC ACB ∠=∠则灯塔C 应在B 处的( ). (A)北偏西68° (B)南偏西85° (C)北偏西85°(D)南偏西68°5.在△ABC 中,若AB =3,BC =1-2x ,CA =8,则x 的取值范围是( ). (A)0<x <2 (B)-5<x <-2 (C)-2<x <5(D)x <-5或x >26.在△ABC 中,若∠A ∶∠B =5∶7,∠C -∠A =10°,则∠C 等于( ). (A)75°(B)60°(C)50°(D)40°7.在△ABC 中,若AB =AC ,其周长为12,则AB 的取值范围是( ).(A)AB>6 (B)AB<3(C)4<AB<7 (D)3<AB<68.若一个多边形的内角和是其外角和的二倍,则它的边数是( ).(A)四(B)五(C)六(D)七9.若一个正多边形的每个内角与它相邻的外角的差为100°,则这个正多边形的边数是( )(A)七(B)八(C)九(D)十10.下列命题中,结论正确的是( ).①外角和大于内角和的多边形只有三角形.②一个三角形的内角中,至少有一个不小于60°.③三角形的一个外角大于它的任何一个内角.④多边形的边数增加时,其内角和随着增加,外角和不变.(A)①②③④(B)①②④(C)①③④(D)①④11.在下面四种正多边形中,用同一种图形不能平面镶嵌的是( ).12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( ).(A)∠A=∠1+∠2 (B)2∠A=∠1+∠2(C)3∠A=2∠1+∠2 (D)3∠A=2(∠1+∠2)二、填空题:13.如图,AB∥CD,直线PQ分别交AB、CD于点E、F,EG是∠FED的平分线,交AB于点G.若∠QED=40°,那么∠EGB等于______.14.若一个多边形的每一个外角都等于45°,则这个多边形共有______条对角线.15.把“同角的补角相等”改写成“如果…那么…”的形式是______________________________________________________________________. 16.把一幅三角板按如图方式放置,则两条斜边所形成的钝角=______度.17.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=______.18.下列各命题中:①对顶角一定相等;②两条直线被第三条直线所截,内错角相等;③若∠A=∠B,∠B=∠C,则∠A=∠C,④同角的补角相等;⑤若∠AOB+∠BOC=180°;则∠AOB与∠BOC互为邻补角.其中错误的命题是______(填序号)19.如图,长方形的长和宽分别为2cm和1cm,则图中由弧AB、弧CD和AC、BD围成的阴影部分的面积为_______.20.一个广场面的一部分如图所示,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石地砖拼成.从里往外共12层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米,则第12层的外边界所围成的多边形的周长是______米.三、解答题:21.已知:钝角△ABC.分别画出AC边上的高BD、BC边上的中线AE及△ABC中∠ACB的平分线CF.22.已知:如图,AB∥DE,∠1=∠2,AC平分∠BAD,求证:AD∥BC.23.已知:在△ABC中,BE平分∠ABC交AC于E,CD⊥AC交AB于D,∠BCD=∠A,求∠BEA的度数.24.已知:如图,点E在AC上,点F在AB上,BE,CF交于点O,且∠C-∠B=20°,∠EOF -∠A=70°,求∠C的度数.25.三角形的一条中线把其面积等分,试用这条规律完成下面问题.(1)把一个三角形分成面积相等的4块(至少给出两种方法);(2)在一块均匀的三角形草地上,恰好可放养84只羊,如图,现被两条中线分成4块,则四边形的一块(阴影部分)恰好可放养几只羊?四、探究题26.已知△ABC中,∠ABC的n等分线与∠ACB的n等分线相交于G1、G2、G3,…、G n-1,试猜想:∠BG n-1C与∠A的关系.(其中n≥2的整数)首先得到:当n=2时,如图1,∠BG1C=______,当n=3时,如图2,∠BG2C=______,…………猜想∠BG n-1C=______.图1 图2 图n。

与三角形有关的角试题

与三角形有关的角试题

21B A C M 与三角形有关的角1.三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边.2、三角形的内角和定理定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。

.3.三角形外角的性质 (1)三角形的一个外角等于它不相邻的两个内角之和.(2)三角形的一个角大于与它不相邻的任何一个内角.注意:(1)它不相邻的内角不容忽视;(2)作CM ∥AB 由于B 、C 、D 共线∴∠A=∠1,∠B=∠2.即∠ACD=∠1+∠2=∠A+∠B.那么∠ACD>∠A.∠ACD>∠B 。

例1.如图,已知∠1=20o ,∠2=25o ,∠A=35o ,则∠BDC 的度数为________例2.在△ABC 中,∠A=∠B=∠C ,则此三角形是(??)A .锐角三角形?????B .直角三角形???C .钝角三角形???D .等腰三角形例3、探索发现:.如图,在△ABC 中,∠A=α,△ABC 的内角平分线或外角平分线交于点P ,且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.⑴.β=180°-(∠B+∠C)/2=90°+α/2.⑵.∠B/2+∠C+(180°-∠C)/2+β=180°.α=180°-∠B -∠C.算得β=α/2.⑶β=180°-[(180°-∠B)/2+(180°-∠C)/2]=90°-α/2.例4.如图,在△ABC 中,AD ⊥BC 于D ,AE 平分∠BAC(∠C>∠B),试说明∠EAD=(∠C ?∠B).解:(1)∵∠1=∠2,∴∠1=∠BAC ,又∵∠BAC=180°-(∠B+∠C ),∴∠1=[180°-(∠B+∠C )]=90°-(∠B+∠C ),∴∠EDF=∠B+∠1=∠B+90°-(∠B+∠C )=90°+(∠B-∠C ),又∵EF ⊥BC ,∴∠EFD=90°, ∴∠DEF=90°-∠EDF=90°-[90°+(∠B-∠C )]=(∠C-∠B );(2)当点E 在AD 的延长线上时,其余条件都不变,(1)中探索所得的结论仍成立。

人教版七年级下册第十七章三角形测试卷(含答案解析)

人教版七年级下册第十七章三角形测试卷(含答案解析)

人教版七年级下册第十七章三角形测试卷(含答案解析) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知a,b,c是三角形的三边,那么代数式a2-2ab+b2-c2的值()A.大于零B.等于零C.小于零D.不能确定2.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90∠=,C∠=,90E∠+∠等于()A∠=,则1245∠=,30DA.150B.180C.210D.2703.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°4.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD 的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④5.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°6.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°7.一个正n边形的每一个外角都是36°,则n=()A.7 B.8 C.9 D.108.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10 B.10-2aC.4 D.-49.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cmB.8cm,8cm,15cmC.5cm,5cm,10cmD.6cm,7cm,14cm 10.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n等于()A.11 B.12 C.13 D.14二、填空题11.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B=_____.12.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为________。

七年级(下)三角形测试题

七年级(下)三角形测试题

七年级(下)三角形测试题一、填空题:1、△ABC中,∠B=45º,∠C=72º,那么与∠A相邻的一个外角等于 .2、在△ABC中,∠A+∠B=110º,∠C=2∠A,则∠A= ,∠B= .3、直角三角形中两个锐角的差为20º,则两个锐角的度数分别为 .4、如下图左,AD、AE分别是△ABC的角平分线和高,∠B=50º,∠C=70º,则∠EAD= .E D CB ADCBA5、如上图右,已知∠BDC=142º,∠B =34º,∠C=28º,则∠A= .6、把下列命题“对顶角相等”改写成:如果,那么.7、如下图左,已知DB平分∠ADE,DE∥AB,∠CDE=82º,则∠EDB= ,∠A=.E DCB AGFEDCBA218、如上图右,CD⊥AB于D,EF⊥AB于F,∠DGC=111º,∠BCG=69º,∠1=42º,则∠2= .9、如下图左,DH ∥GE ∥BC ,AC ∥EF ,那么与∠HDC 相等的角有 .MHGFED C BAFEDCBA10、如上图右:△ABC 中,∠B=∠C ,E 是AC 上一点,ED ⊥BC ,DF ⊥AB ,垂足分别为D 、F ,若∠AED=140º,则∠C= ∠A= ∠BDF= . 11、△ABC 中,BP 平分∠B ,CP 平分∠C ,若∠A=60º,则∠BPC= .一、 选择题12、满足下列条件的△ABC 中,不是直角三角形的是( ) A 、∠B+∠A=∠CB 、∠A :∠B :∠C=2:3:5C 、∠A=2∠B=3∠CD 、一个外角等于和它相邻的一个内角13、如图,∠ACB=90º,CD ⊥AB ,垂足为D ,下列结论错误的是( ) A 、 图中有三个直角三角形B 、 B 、∠1=∠2C 、∠1和∠B 都是∠A 的余角D 、∠2=∠A14、三角形的一个外角是锐角,则此三角形的形状是( )21DCBAA 、锐角三角形B 、钝角三角形C 、直角三角形D 、无法确定15、如下图左:∠A+∠B+∠C+∠D+∠E+∠F 等于( ) A 、180ºB 、360ºC 、540ºD 、720ºFEDCBA16、锐角三角形中,最大角α的取值范围是( ) A 、0º<α<90ºB 、60º<α<90ºC 、60º<α<180ºD 、60º≤α<90º17、下列命题中的真命题是( ) A 、锐角大于它的余角 B 、锐角大于它的补角C 、钝角大于它的补角D 、锐角与钝角之和等于平角18、已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线平行;⑤邻补角的平分线互相垂直.其中,正确命题的个数为( ) A 、0B 、1个C 、2个D 、3个19、如上图右:AB ∥CD ,直线HE ⊥MN 交MN 于E ,∠1=130º,则∠2等于( ) A 、50ºB 、40ºC 、30ºD 、60º20、如图,如果AB ∥CD ,则角α、β、γ之间的关系式为( ) A 、α+β+γ=360ºαγβEDCBAB 、 α-β+γ=180ºC 、 α+β+γ=180ºD 、 α+β-γ=180º二、解答题21、如图,BC ⊥ED ,垂足为O , ∠A=27º,∠D=20º,求∠ACB 与∠B 的度数.EODCBA22、如图:∠A=65º ,∠ABD=∠DCE=30º,且CE 平分∠ACB,求∠BEC.EDCB A23、如图:(1) 画△ABC 的外角∠BCD ,再画∠BCD 的平分线CE. (2) 若∠A=∠B ,请完成下面的证明:已知:△ABC 中,∠A=∠B ,CE 是外角∠BCD 的平分线 求证:CE ∥ABCBA24、看图填空:(1) 如下图左,∠A +∠D =180º(已知)∴ ∥ ( ) ∴∠1= ( ) ∵∠1=65º(已知)∴∠C =65º( )1DCB A(2) 如上图右,已知,∠ADC =∠ABC ,BE 、DF 分别平分∠ABC 、∠ADC ,且∠1=∠2,求证:∠A=∠C.证明:∵BE 、DF 分别平分∠ABC 、∠ADC (已知)∴ ∠1=21∠ABC ,∠3=21∠ADC ( )∵∠ABC =∠ADC (已知)∴21∠ABC =21∠ADC ( ) ∴∠1=∠3( ) ∵∠1=∠2(已知)∴∠2=∠3( )∴( )∥( )( )∴∠A +∠ =180º ,∠C +∠ =180º( ) ∴∠A =∠C ( )25、如图:已知CB ⊥AB ,CE 平分∠BCD ,DE 平分∠ADC ,∠1+∠2=90º求证:AB ∥CD21EDCBA26、如图,已知:AC ∥DE ,DC ∥EF ,CD 平分∠BCA求证:EF 平分∠BED.54321ADFCEB27、如图,已知:CF⊥AB于F,ED⊥AB于D,∠1=∠2,求证:FG∥BCA。

七年级下册7.2 与三角形有关的角学习评价试题

七年级下册7.2 与三角形有关的角学习评价试题

七年级下册7.2 与三角形有关的角学习评价试题一、选择题(每题3分,共36分)1.若一个三角形的三个内角互不相等,则它的最小角必小于()(A)45°.(B)60°. (C)30°. (D)1°.2.下列命题中,不正确的为()(A)钝角三角形是斜三角形.(B)在一个三角形中至多有一个内角不小于60°.(C)三角形的没有公共顶点的两个外角的和大于平角.(D)三角形的外角中,最小的一个是钝角,那它一定是锐角三角形.3.以下命题正确的是()(A)三角形三个外角的和是360°.(B)三角形一个外角大于它的两个内角的和.(C)三角形的外角都不大于90°.(D)三角形中的内角没有大于120°的.4.下列说法正确的是()(A)一个钝角三角形一定不是等腰三角形,也不是等边三角形.(B)一个等腰三角形一定是锐角三角形,或直角三角形.(C)一个直角三角形一定不是等腰三角形,也不是等边三角形.(D)一个等边三角形一定不是钝角三角形,也不是直角三角形.5.三角形的三个外角中,钝角的个数最少是()(A)3. B.2. (C)1. (D)0.6.在△ABC中,∠A=60°,∠B,∠C的角平分线相交于点O,则∠BOC的度数是( ) .(A)60°. (B)120°. (C)130°. (D)140°.(第6题)7.已知,在△ABC中,∠A+∠B =∠C,那么△ABC的形状为().(A)直角三角形. (B)钝角三角形. (C)锐角三角形. (D)以上都不对.8.如图,在△ADE中,引线段EB与EC,下列各等式中,正确的是()(A)∠A+∠1+∠7=∠D+∠3+∠6. (B)∠1+∠5=∠2+∠7. (C)∠6+∠A=∠2+∠7. (D)∠A+∠5+∠7=∠2+∠8+∠6.(第8题)9.若一个三角形的三个外角的度数之比为2:3:4,则与之对应的三个内角的度数之比为()(A)4:3:2. B.3:2:4. (C)5:3:1. (D)3:1:5.10.如图,已知∠1=60°,∠A+∠B+∠C+∠D+∠E+∠F=()(A)360°. (B)540°. (C)240°. (D)280°.(第10题)11.a ,b ,c是△ABC的三边长,且(a+b)2=(b+c)2,则△ABC一定是()(A)等腰三角形. (B)直角三角形. (C)锐角三角形. (D)钝角三角形.12.已知等腰三角形周长为20,则腰长x的范围是()(A)0<x<10. B.5<x<10. (C)0<x<5. (D)0<x<20.二、填空题(每题2分,共38分)13.在△ABC中∠A是∠B的2倍,∠B比∠C还大12°,则这个三角形是_________三角形.14.三角形中,最多有________锐角,至少有________个锐角,最多有_______个钝角(或直角),最少有________个钝角(或直角).15.三角形外角中最少有_______个钝角,最多有________个钝角;三角形外角中,最多有________个锐角,最少有_______个锐角.16.若在△ABC中,∠A=2∠B=3∠C,则∠A=______,∠B=_______,∠C=______.此三角形为________三角形.17.在△ABC中,∠A:∠B:∠C=3∶5∶10,则∠B等于________.18.在△ABC中,若∠A+∠C=2∠B,最小角为30°,则最大角为________.三、解答题(共26分)19.如图,已知∠DAC=∠B,求证:∠ADC=∠BAC. (5分)(第19题)(第20题)20.如图,△ABC中,∠A=40°,∠ABC的平分线与∠C的外角∠ACE平分线交于D,求∠D的度数. (7分)21.如图,AB∥CD,∠1=∠F,∠2=∠E,求∠EOF的度数. (6分)(第21题)22.小红画了一个三角形,她对小明说:“我画的三角形∠A是∠B的2倍,是∠C的3倍.”你知道小红画的三角形是锐角三角形、直角三角形还是钝角三角形?说出你的理由.(8分)答案及提示:一、选择题1.B;提示:若最小值不小于60°,则三个内角的和大于60°的三倍大于180°.2.B;提示:例如:∠A=∠B=80°,∠C=20°.3.A;提示:B三角形的一个内角等于和它不相邻的两个内角和, C,D有例子将其否定即可.4.D;提示:举出反例即可,等腰三角形可以是锐角三角形可以是钝角三角形可以是直角三角形.5.B;提示:外角为钝角则与其相邻的内角为锐角,考虑三角形内角中最少有两个锐角,因此,三角形的三个外角中钝角的个数最少是2个.6.B;提示:∠OBC+∠OCB=∠ABC+∠ACB=×120°=60°,所以∠BOC=120°.7.A;8.A;提示:B:∠2+∠7=∠5不等于∠1+∠5;C,D不一定存在等量关系.9.C;提示:设三个内角分别为2k,3k,4k,则2k+3k+4k=360°.解得k=40°,所以外角为80°,120°,160°;内角为100°,60°,20°,所以之比为:5:3:1.10.C;提示:∠A+∠F=180°-∠1=120°,∠B+∠D=∠2,∠C+∠E=∠3,∠2+∠3=180°-∠4=120°,∠A+∠B+∠C+∠D+∠E+∠F=∠2+∠3+120°=240°.11.A;提示:12.B;提示:∵2x<20,∴x<10.∵2x>20-2x,∴x>5(两边之和大于第三边).二、填空题13.钝;提示:∠A=2∠B, ∠C=∠B-12°,∵∠A+∠B+∠C=180°,∴2∠B+∠B+( ∠B-12°)=180°,∴∠B=48°,∠A=96° .∴钝角三角形.14.3,2,1,0.2,3,1,0.15.2,3,1,0.16.,,,钝角;提示:由已知可列式:∠A+∠B+∠C=∠A+∠A+∠A=180°,解得∠A=.17.50°;提示:设3x,5x,12x,则3x+5x+10x=180°, ∴x= 10°,∴∠B=50°.18.90°;提示:∵∠A+∠C=2∠B,∴∠A+∠B+∠C=3∠B=180°,∠B=60°,所以最大角为180°-60°-30°=90°.三、解答题19.证明:∵∠ADC=∠DAB+∠B,而∠DAC=∠B,∵∠ADC=∠DAB+∠DAC,∵∠DAB+∠DAC=∠BAC,∴∠ADC=∠BAC.20.20°;提示:由∠A=40°可知,∠ACE-∠ABC=40°,所以,∠D=∠DCE-∠DBC=(∠ACE-∠ABC)=20°.21.解:∵∠ABE=∠1+∠F,∠DCF=∠2+∠E,∴∠ABE+∠DCF=∠1+∠2+∠F+∠E.∵∠1=∠F,∠2=∠E,∴∠ABE+∠DCF=2(∠E+∠F).∵AB//CD,∴∠ABF=∠DCF,∵∠ABE+∠ABF=180°,∴∠E+∠F=90°,∴∠EOF=180°-(∠E+∠F)=90°.设过O作AB的平行线交EF与G,利用三角形内角和定理更简捷.22.解:设∠A=x,则∠B=x,∠C=x,由∠A+∠B+∠C=180°,即x+x+x=180°,解得x≈98°>90°,∴△ABC是钝角三角形.备注:本套题中简单题为2——5,7,9,11,14,17——19题,中等难度题为1,6,10,12,13,16,22题,难题为8,15,20,21题,易中难的比例约为5:3:2.。

七年级下册数学三角形测试题(含答案)(有代表性测试题)

七年级下册数学三角形测试题(含答案)(有代表性测试题)

第7章三角形一、选择题1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3 B .4 C .5 D .62.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .属于哪一类不能确定 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。

正确的命题有( )A.1个B.2个C.3个D.4个第5题图第6题图二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学:7.1与三角形有关的线段~7.2与三角形有关的角同步测试题C
(人教新课标七年级下)
一、选择题
1.三角形的三个外角之比为2:3:4,则与之相应的三个内角之比为( ) A.2:3:4 B.4:3:2 C.5:3:1 D.1:3:5
2.如图4,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )
A.两点之间直线段最短 B.矩形的稳定性
C.矩形四个角都是直角 D.三角形的稳定性
3.如图5,1∠,2∠,3∠,4∠恒满足的关系式是( )
A.1234+=+∠∠∠∠ B.1243+=-∠∠∠∠
C.1423+=+∠∠∠∠ D.1423+=-∠∠∠∠
4.如图6,123456+++++∠∠∠∠∠∠等于( )
5.如图7,在ABC △中,D 是AB 上的一点,E 是AC 上一点,BE CD ,相交于F ,70A =∠,20ACD =∠,28ABE =∠,则CFE ∠的度数为( )
A.62 B.68 C.78 D.90
6.如图2,以BC 为公共边的三角形的个数是( )
A.2 B.3 C.4 D.5
7.若三条线段中3a =,5b =,c 为奇数,那么由a b c ,,为边组成的三角形共有( )
A.1个 B.3个 C.无数多个 D.无法确定
8.如果线段a b
c ,,能组成三角形,那么它们的长度比可能是( ) A.1:2:4 B.1:3:4 C.3:4:7 D.2:3:4
9.不一定能构成三角形的一组线段的长度为( )
A.3,7,5
B.3x ,4x ,()50x x > C.5,5,()010a a << D.2a ,2b ,()20c a b c >>>
10.已知有长为1,2,3的线段若干条,任取其中3样构造三角形,则最多能构成形状或大小不同的三角形的个数是( )
A.5 B.7 C.8 D.10
二、填空题
11.如图1,ABC ∠的平分线交ACB ∠的平分线于l ,若60A =∠,则BIC =∠_____.
12.一个三角形中最多有_____个内角是钝角,最多可有_____个角是锐角.
13.三角形两个外角的和等于第三个内角的4倍,则第三个内角等于_____.
14.如图2,A B C D E ++++=∠∠∠∠∠_____.
15.如图3,1234+++=∠∠∠∠_____.
16.两根木棒的长分别为7cm 和10cm .要选择第三根木棒,将它们钉成一个三角形框架,那么,第三根木棒长x (cm )的范围是______.
17.如图1,1234+++=∠∠∠∠______.
18.ABC △中,6a =,8b =,则周长P 的取值范围是______.
19.a b c ,,是ABC △中A ∠,B ∠,C ∠的对边,若4a λ=,3b λ=,14c =,则λ的取值范围是______.
20.若a b c ,,为ABC △的三边,则a b c a b c ---+______0(填“>,=,<”).
三、解答题
21. 已知,如图8,点D 是ABC △中AC 边上的一点,点E 是BC 边延长线上一点,说明:ADB CDE >∠∠.
22. 已知,如图9,ABC △中,ABC ∠的平分线与ACE ∠的平分线交于D 点,若80A =∠,求D ∠的度数.
23. 如图10,已知折线ABCDE ,且360B C D ++=∠∠∠.说明:AB CD ∥.
24.已知:如图3,AB CD ∥,45B =∠,78BED =∠,求D ∠的度数.
25.已知,如图4,AB CD ∥,EH AB ⊥,垂足为H ,若150=∠,则E ∠为多少度?
26.已知,如图5,在ABC △中,O 是高AD 和BE 的交点,
观察图形,试猜想C ∠和DOE ∠之间具有怎样的数量关系,并论证你的猜想.
答案
一、选择题
1.C 2.D 3.D 4.B 5.A6.C 7.B 8.D 9.D 10.B
二 、填空题
11.120 12.1,3 13.60 14.180 15.360
16.317x << 17.280 18.1628p << 19.214λ<< 20.<
21.略.
22.40.
23.提示:连结BD 或作BC 的延长线.
24.33 25.40 26.180C DOE +=∠∠.证明略.。

相关文档
最新文档