数字图像处理(MATLAB版) ppt课件

合集下载

数字图像处理(MATLAB版)-课件Chapter6_2

数字图像处理(MATLAB版)-课件Chapter6_2
thres%显示所用阈值
· 14 ·
第六章
图像分割
回目录
6.4 区 域 分 割
上述程序的运行结果如图 6.11 所示.
图 6.11: 迭代选择阈值法的自动阈值分割结果
6.4
区域分割
区域生长法和分裂合并法是基于区域信息的图像分割的主要方法.
· 15 ·
第六章
图像分割
回目录
6.4 区 域 分 割
区域生长法有两种实现方式: 一种是先将图像分割成很多一致性较强的
=
−1
∑︁
=0
=
∑︁
−1
=0
+
−1
∑︁
= 11 + 22.
=
两个区域的总方差为:
2 = 1(1 − )2 + 2(2 − )2 = 12(1 − 2)2.
(6.22)
让 在 [0, − 1] 范围内依次取值, 使 2 最大的 值便是最佳区域
(6.13)
·3·
第六章
图像分割
回目录
6.3 阈 值 分 割
它们的示意图如图 6.9 所示.
图 6.9: 根据直方图谷底确定阈值
此种单阈值分割方法简单、易操作, 但是当两个峰值相差很远时不适
用, 而且, 此种方法比较容易受到噪声的影响, 进而导致阈值选取误差. 此
外, 由于直方图是各灰度的像素统计, 其峰值和谷底特性不一定代表目标
如何获得一个最佳的阈值呢?以下是几种常用的最佳阈值选择方法.
1. 人工经验选择法
根据需要处理的图像的相关先验知识, 对图像中的目标与背景进行
分析. 通过判断和分析像素, 选出阈值所在的区间, 并通过实验进行对比,

数字图象处理及matlab的实现 ppt 课件 第0608章

数字图象处理及matlab的实现 ppt 课件 第0608章

x a b x y c d y mod N
• 保证|ad-bc|=1,如置换矩阵系数设为a=b=1,c=2,d=3, 置换次数n=20,则他们被当作密钥key,用于解密。
n
27
function [outImg]=arnold(inImg,key) %key=[Times,a,b,c,d]; figure(1), imshow(inImg); title('Original'); [iH iW]=size(inImg); outImg=uint8(zeros(iH,iW)); tempImg=inImg; if iH ~= iW error('The cover must be a square !'); return; elseif size(key,2) ~=5; error('The key must be 5 numbers !'); return; elseif (key(2)*key(5)-key(3)*key(4)) ~=1; error('The Arnold Matrix is not valid !'); return; end for i=1:key(1) % iTime for u=1:iH for v=1:iW temp=tempImg(u,v); ax=mod((key(2)*(u-1)+key(3)*(v-1)),iW)+1; ay=mod((key(4)*(u-1)+key(5)*(v-1)),iW)+1; outImg(ax,ay)=temp; end end tempImg=outImg; end outImg=tempImg; figure(2), imshow(outImg); title('Permuted'); imwrite(outImg, 'Encrypted.bmp');

Matlab数字图像处理PPT课件

Matlab数字图像处理PPT课件
Matlab数字图像处理PPT课件
/2、图像的点运算
三、灰度的对数变换
tclo kg s
c为尺度比例常数,s为源灰度值,t为变换后的目标灰 度值。k为常数。灰度的对数变换可以增强一幅图像 中较暗部分的细节,可用来扩展被压缩的高值图像中 的较暗像素。广泛应用于频谱图像的显示中。
Warning:log函数会对输入图像矩阵s中的每个元素进行
1边界选项symmetricreplicatecircular2尺寸选项samefull3模式选项corrconv三滤波器设计4空间域图像增强hfspecialtypeparameters合法取值功能average平均模板disk圆形领域的平均模板gaussian高斯模板laplacian拉普拉斯模板log高斯拉普拉斯模板prewittprewitt水平边缘检测算子sobelsobel水平边缘检测算子parameters为可选项是和所选定的滤波器类型type相关的配置参数如尺寸和标准差等
I=fft2(x);%快速傅里叶变换 I=fft2(x,m,n);
x为输入图像;m和n分别用于将x的第一和第二维规整到指定的长度。 当m和n均为2的整数次幂时算法的执行速度要比m和n均为素数时快。
I1=abs(I);%计算I的幅度谱 I2=angle(I);%计算I的相位谱
W(1,-1) W(1,0) W(1, 1)
f(x-1,y-1) f(x-1,y) f(x-1,y+1)
f(x,y-1) f(x,y)
f(x,y+1)
f(x+1,y-1) f(x+1,y) f(x+1,y+1)
B=imfilter(f,w,option1,option2,…);
f 为要进行滤波操作的图像。 w为滤波操作使用的模板,为一个二维数组,可自己定义。 option1……是可选项,包括: 1、边界选项(’symmetric’、’replicate’、’circular’) 2、尺寸选项(’same’、’full’) 3、模式选项(’corr’、’conv’)

第3章 数字图像处理基础 MATLAB 数字图像处理课件

第3章 数字图像处理基础 MATLAB 数字图像处理课件

影技术。
专家系统,如手术PLANNINC规划
内脏大小形状及异常检查。
的应用。
微循环的分析判断。
生物进化的图像分析。
心肌活动的动态分析。
3.1.4 图像术语
像素(Pixel) 屏幕分辨率 DPI(Dot Per Inch) PPI(Pixel Per Inch) 位(Bit)和颜色(Color) 色图(Colormap)
3.2 图像的读与写
对一幅图像进行处理时,主要涉及以下操作。 (1)查询图像文件的信息。 (2)读取图像文件。 (3)保存图像文件。 (4)图像数据类型的转换。 (5)文件格式的转换。
3.2.1 图像文件的查询
1.Imaqhwinfo函数 可以查询MATLAB的版本信息、图像捕获工具箱的版本信息
3.3.2 灰度图像显示
在MATLAB中,可以调用图像色彩缩放函数imagesc对图像 预处理,然后转换成灰度图像以调整灰度的深浅。也可以 用函数imshow来显示灰度图像。
imagesc函数中的第二个参数确定了灰度范围。灰度范围 中的第一个值(通常是0)对应于色图中的第一个值(颜 色),灰度范围中的第二个值(双精度型是1,8位无符号 整型是255,16位无符号整型是65535)对应于色图中的最 后一个值(颜色)。
imread函数用于图像文件的读取,其调用格式如下。 (1)A = imread(filename, fmt) (2)[X, map] = imread(...) (3)[...] = imread(filename) (4)[...] = imread(URL,...) (5)[...] = imread(...,Param1,Val1,Param2,Val2,...) (6)[...] = imread(..., idx) (7)[...] = imread(..., 'frames', idx) (8)[...] = imread(..., ref) (9)[...] = imread(...,'BackgroundColor',BG) (10)[A, map, alpha] = imread(...)

第3章 数字图像处理基础 MATLAB 数字图像处理课件

第3章 数字图像处理基础 MATLAB 数字图像处理课件
索引图像包括一个数据矩阵X和一个色图矩阵map 。
色图通常和索引图像存在一起。在调用函数 imread时,MATLAB自动将色图与图像同时加载。
调用imshow函数显示索引图像的格式为: imshow(X,map):X为索引图像的数据矩阵,map为
色图(也称调色板)。
【例3-5】调用imshow函数显示索引图像。
第3章 数字图像处理基础
目录
3.1 数字图像处理概述 3.2 图像的读与写 3.3 图像显示 3.4 图像类型的转换 3.5 颜色空间 3.6 纹理贴图
3.1.2 数字图像处理研究的主要内容
(1)图像变换 (2)图像编码压缩 (3)图像增强和复原 (4)图像分割 (5)图像描述 (6)图像分析
【例3-14】将真彩色及彩色色图转换为灰度图像。
(a)真彩色图像
(b)灰度图像
(c)彩色色图
(d)灰度色图
3.4.9 rgb2ind函数
rgb2ind函数用于将真彩色图像转换为索引图像。调用格式 为:
(1)[X,map] = rgb2ind(RGB, n)
表示以最小量化把真彩色图像(RGB)转换成索引图像。其中n必须 不大于65536,map至多n种颜色。
(a)灰度图像
(b)二值图像
3.4.5 ind2gray函数
ind2gray函数用于将索引图像转换为灰度图像。 其调用格式为:
I = ind2gray(X,map):表示把索引图像X(色图 map)转换成灰度图像。ind2gray函数其实就是从 输入图像中删除色彩和位置信息,只保留亮度。
【例3-11】将索引图像转换为灰度图像。
红、白血球分析计数。

虫卵及组织切片的分析。 癌细胞识别。

数字图像处理ch01(MATLAB)-课件

数字图像处理ch01(MATLAB)-课件

2024/10/12
第一章 绪论
17
2024/10/12
第一章 绪论
18
2024/10/12
第一章 绪论
19
2024/10/12
第一章 绪论
20
<2>几何处理
放大、缩小、旋转,配准,几何校正,面积、周长计算。
请计算台湾的陆地面积
2024/10/12
第一章 绪论
21
<3>图象复原
由图象的退化模型,求出原始图象
图像处理是指按照一定的目标,用一系列的操 作来“改造”图像的方法.
2024/10/12
第一章 绪论
7
➢图象处理技术的分类(从方法上进行分类)[2]
1.模拟图象处理(光学图像处理等)
用光学、电子等方法对模拟信号组成的图像,用光学器 件、电子器件进行光学变换等处理得到所需结果(哈哈 镜、望远镜,放大镜,电视等).
2024/10/12
第一章 绪论
22
<4>图象重建[3]
[3]此图像来自罗立民,脑成像,
2024/10/12
第一章 绪论
23
/zhlshb/ct/lx.htm
2024/10/12
第一章 绪论
图形用户界面,动画,网页制作等
2024/10/12象处理的基本概念,和基 本问题,以及一些典型的应用。
2024/10/12
第一章 绪论
33
提问
摄像头(机),扫描仪,CT成像装置,其他图象成像装置
2)图象的存储
各种图象存储压缩格式(JPEG,MPEG等),海量图象数据库技术
3)图象的传输
内部传输(DirectMemoryAccess),外部传输(主要是网络)

Matlab数字图像处理-02-PPT课件

Matlab数字图像处理-02-PPT课件

可选参数’nothinning’,指定时可以通过跳过边缘细化算法来加快算法 运行的速度。默认是’thinning’,即进行边缘细化。 2)、基于高斯-拉普拉斯算子的边缘检测
BW=edge(I,’log’,thresh,sigma)
sigma指定生成高斯滤波器所使用的标准差。默认时,标准差为2。滤 镜大小n*n,n的计算方法为:n=ceil(sigma*3)*2+1。
/5、频率域图像增强 一、傅里叶变换
I=fft2(x);%快速傅里叶变换 I=fft2(x,m,n);
x为输入图像;m和n分别用于将x的第一和第二维规整到指定的长度。 当m和n均为2的整数次幂时算法的执行速度要比m和n均为素数时快。
I1=abs(I);%计算I的幅度谱 I2=angle(I);%计算I的相位谱 Y=fftshift(I);%频谱平移
高斯低通
function out = imgaussflpf(I,sigma) %imgaussflpf函数 构造高斯频域低通滤波器 [M,N] = size(I); out = ones(M,N); for i=1:M forj=1:N out(i,j) = exp(-((i-M/2)^2+(j-N/2)^2)/2/sigma^2); end end
R 1 C G 1 M B 1 Y

cmy=imcomplement(rgb);%rgb转成cmy rgb=imcomplement(cmy);cmy转成rgb
HSI模型
HIS模型是从人的视觉系统出发,直接使用颜色三要素色调 (Hue)、饱和度(Saturation)和亮度(Intensity)来描述 颜色。
桥接有单个像素缝隙分割的前景像素 清楚孤立的前景像素 围绕对角线相连的前景像素进行填充 填充单个像素的孔洞

基于MATLAB的数字图像处理_毕业设计PPT

基于MATLAB的数字图像处理_毕业设计PPT

二值图像分析
1.膨胀 膨胀是使区域从四周向 外扩大,给图像中的对象边 界添加像素。 2.腐蚀 腐蚀则是使区域从四周 同时向内缩小,删除对象边 界某些像素。
二值图像分析
3.综合应用 (1)噪声滤除 开运算:开运算是先对图像进行腐蚀,然后再进行膨胀的结果。 闭运算:闭运算是先对图像进行膨胀,然后再进行腐蚀的结果。 将开启运算和闭合运算结合起来可构成噪声滤除器。 MATLAB中还提供了预定义的形态函数bwmorph。 代码: I3=imnoise(I2,'salt & pepper'); I4=bwmorph(I3,'open'); I5=bwmorph(I4,'close');
图像复原
原始图像
模糊后的图像
加噪后的图像
恢复后的图像
ቤተ መጻሕፍቲ ባይዱ
运行后:
图像增强
空域滤波增强:
1.线性平滑滤波器 线性低通滤波器是最常用的线性平滑滤波器。这种滤波器的所有系数
都是正的。对3*3的模板来说,最简单的操作是取所有系数都为1。为保证输
出图像仍在原来的灰度范围内,在计算R后要将其除以9再进行赋值。这种 方法称为邻域平均法。
代码:I=imread('saturn.tif'); J=imnoise(I,'salt & pepper',0.02); imshow(I) figure,imshow(J) K1=filter2(fspecial('average',3),J)/255; figure,imshow(K1) ` title('3*3的均值滤波器')
MATLAB新特点: 1.数据类型和面向对象编程技术 2.控制流和函数类型 3.大量引入图形用户界面 4.引入了全方位帮助系统 5. M 文件编辑、调试 的集成环境和性能剖析 6.MATLAB 环境可运行文件的多样化

数字图像处理MATLAB图像处理PPT课件

数字图像处理MATLAB图像处理PPT课件
C(x, y) A(x, y) B(x, y) 差值图像提供了图像间的差值信息,能用于指导动态监测、 运动目标的检测和跟踪、图像背景的消除及目标识别等。
主要应用举例: ➢ 差影法(检测同一场景两幅图像之间的变化) ➢ 混合图像的分离
第17页/共41页
(1)检测同一场景两幅图像之间的变化
设:时刻1的图像为 T1(x,y), 时刻2的图像为 T2(x,y) g(x,y) = T2 (x,y) - T1(x,y)
第25页/共41页
除法运算(Division)
4、除法运算
C(x, y) A(x, y) B(x, y)
简单的除法运算可用于改变图像的灰度级, 常用于遥感图像处理中。
在四种算术运算中,减法与加法在图像增强 处理中最为有用。
第26页/共41页
几何变换
1)简单变换 • 问题描述:图像的平移、放缩和旋转。 • 解题思路:从易到难。工具:线性代数中的齐次坐标。
x


y1
填y



f(x1,y1) (x1,y1)非整型
f(x,y) (x,y)整型
第32页/共41页
图像的缩放
• 两种映射方法的对比 • 对于向前映射:每个输出图像的灰度要经过多次运算; • 对于向后映射:每个输出图像的灰度只要经过一次运算。
实际应用中,更经常采用向后映射法。 其中,根据四个相邻像素灰度值计算某位置的像素灰度
1、加法运算
C(x, y) A(x, y) B(x, y)
主要应用举例: ➢ 去除“叠加性”随机噪音 ➢ 生成图像叠加效果
第12页/共41页
(1)去除“叠加性”噪音
对于原图象f(x,y),有一个噪音图像集 { g i (x ,y) } 其中:g i (x ,y) = f(x,y) + ei(x,y)

数字图像处理及MATLAB实现PPT课件

数字图像处理及MATLAB实现PPT课件
第12页/共69页
8.3.2梯度图像二值化
• 如果用适中的阈值对一幅梯度图像进行二值化,Kirsch的分割法利用了这种现象。 • 算法步骤 • 用一个中偏低的灰度阈值对梯度图像进行二值化从而检测出物体和背景,物体与背景被处于阈值之上的边
界点带分开。随着阈值逐渐提高,就引起物体和背景的同时增长。当它们接触上而又不至于合并时,可用 接触点来定义边界。这是分水岭算法在梯度图像中的应用。
OTSU算法定义:该算法是在灰度直方图的基础上用最小二乘法原理推导出来的, 具有统计意义上的最佳分割阈值。
第8页/共69页
• OTSU基本原理:以最佳阈值将图像的灰度直方图分割成两部分,是两部分之 间的方差取最大值,即分离性最大。
第9页/共69页
3. 迭代法求阈值
原理:图像中前景与背景之间的灰度分布为相互不重叠,在该前提下,实现对 两类对象的阈值分割方法。
除非图像中的物体有陡峭的边沿,否则灰度阈值的取值对所抽取物体的边界的 定位和整体的尺寸有很大的影响。这意味着后续的尺寸(特别是面积)的测量 对于灰度阈值的选择很敏感。由于这个原因,我们需要一个最佳的,或至少是 具有一致性的方法确定阈值。
第5页/共69页
1.直方图技术
• 含有一个与背景明显对比的物体的图像其有包含双峰的灰度直方图
第21页/共69页
Sobel边缘算子图
第22页/共69页
Prewitt边缘算子
Prewitr边缘算子 第23页/共69页
Kirsch边缘算子
图像中的每个点均与这8个模板进行卷积,每个掩模对某个特定边缘方向作出最大响应。所有8个方向中的 最大值作为边缘幅度图像的输出。最大响应掩模的序号构成了对边缘方向的编码。 Kirsch算子的梯度幅度值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
rgb2gray;从RGB图创建灰度图,存储类型不变。 im2uint8 将图像转换成uint8类型
im2double 将图像转换成double类型
/2、图像的点运算
一、图像直方图
灰度直方图描述了一副图像的灰度级统计信息,主要应用于图像分 割和图像灰度变换等处理过程中。从数学角度来说,图像直方图描述图 像各个灰度级的统计特性,它是图像灰度值的函数,统计一幅图像中各 个灰度级出现的次数或概率。归一化直方图可以直接反映不同灰度级出 现的比率。横坐标为图像中各个像素点的灰度级别,纵坐标表示具有各 个灰度级别的像素在图像中出现的次数或概率。
/2、图像的点运算
二、灰度的线性变换
D B fD A fA D A fB
Fa>1时,输出图像的对比度将增大;Fa<1时,输出图像对比度将减小。 Fa=1且Fb非零时,所有像素的灰度值上移或下移,使整个图像更暗或 更亮。Fa<0,暗区变亮,亮区变暗。
/2、图像的点运算
三、灰度的对数变换
figure;%创建一个新的窗口
figure;subplot(m,n,p);imshow(I);
Subplot(m,n,p)含义为:打开一个有m行n列图像位置的窗口, 并将焦点位于第p个位置上。
/1、图像的读取和显示 四、图像的格式转换
im2bw(I,LEVEL);
阈值法从灰度图、RGB图创建二值图。LEVEL为指定的阈值;(0,1)。
/2、图像的点运算
三、灰度的Gamma变换
yxesp
其中,x、y的取值范围为[0,1]。esp为补偿系数,r则为Gamma系数。 Gamma变换是根据r的不同取值选择性的增强低灰度区域的对比度 或者高灰度区域的对比度。
J=imadjust(I,[low_in high_in],[low_out high_out],gamma)
t clo kg s
c为尺度比例常数,s为源灰度值,t为变换后的目标灰 度值。k为常数。灰度的对数变换可以增强一幅图像 中较暗部分的细节,可用来扩展被压缩的高值图像中 的较暗像素。广泛应用于频谱图像的显示中。
Warning:log函数会对输入图像矩阵s中的每个元素进行
操作,但仅能处理double类型的矩阵。而从图像文件中得到的 图像矩阵大多是uint8类型的,故需先进行im2double数据类型 转换。
图像直方图归一化
imhist(I);%灰度直方图
I=imread(‘red.bmp’);%读入图像 figure;%打开新窗口 [M,N]=size(I);%计算图像大小 [counts,x]=imhist(I,32);%计算有32个小区间的灰度直方图 counts=counts/M/N;%计算归一化灰度直方图各区间的值 stem(x,counts);%绘制归一化直方图
imwrite(A,)
参数指定文件名。FMT为保存文件采用的格式。 imwrite(I6,œ);
/1、图像的读取和显示
三、图像的显示
imshow(I,[low high])
I为要显示的图像矩阵。[low high]为指定显示灰度图像的灰度范围。 高于high的像素被显示成白色;低于low的像素被显示成黑色;介于 High和low之间的像素被按比例拉伸后显示为各种等级的灰色。 figure;imshow(I6);title('The Main Pass Part of TTC10373');
I=imread('nir.bmp'); figure;imshow(imadjust(I,[],[],0.75)); %gamma=0.5 title('Gamma 0.5');
原 图 像
NIR
Gamma 0.5
Gamma 1.5
四、灰度阈值变换及二值化
f x 2055x x T T
T为指定阈值
数字图像处理
浙江大学
/1、图像的读取和显示 /2、图像的点运算 /3、图像的几何变换 /4、空间域图像增强 /5、频率域图像增强 /6、彩色图像处理 /7、形态学图像处理 /8、图像分割 /9、特征提取
/1、图像的读取和显示
一、图像的读取
A=imread()
指定图像文件的完整路径和文件名。如果在work工作目录下 只需提供文件名。FMT为图像文件的格式对应的标准扩展名。 I_1=imread('D:\10.06.08nir\TTC10377.BMP');%读入图像 二、图像的写入
kittlerMet : 表示kittler 最小分类错误(minimum error thresholding)全局二 值化算法。









0.25
算 法
算 法 算 法




OTSU
Niblack
KittlerMet
Kapur






/2、图像的点运算
五、直方图均衡化
DBf DA D A M 0 aiD x A 0Hi
[J,T]=histeq(I);%J为输出图像,T为变换矩阵
图像易受光照、视角、方位、噪声等的影响。使得同一类图像的不同变形 体之间的差距有时大于该类图像与另一类图像之间的差距,影响图像识别、 分类。图像归一化就是将图像转换到唯一的标准形式以抵抗各种变换,从 而消除同类图像不同变形体之间的外观差异。也称为图像灰度归一化。
I=imread('nir.bmp');%读入图像
F=fft2(im2double(I));%FFT F=fftshift(F);%FFT频谱平移
F=abs(F); T=log(F+1);%频谱对数变换 figure;imshow(F,[]);title('未经变换的频谱'); figure;imshow(T,[]);title('对数变换后');
BW=im2bw(I,level);%level为人工设定阈值范围为[0 ,1]
thresh=graythresh(I);%自动设定所需的最优化阈值
OTSU算法:最大类间方差法自动单阈值分割。
Kapur算法:一维直方图熵阈值算法
niblack算法:局部阈值分割 阈值的计算公式是T = m + k*v,其中m为以该像素点为中心的区域的平 均灰度值,v是该区域的标准差,k是一个系数。
相关文档
最新文档