2012年四川省达州市中考数学试卷及解析

合集下载

(中考精品卷)四川省达州市中考数学真题(原卷版)

(中考精品卷)四川省达州市中考数学真题(原卷版)

达州市2022年高中阶段学校招生统一考试暨初中学业水平考试数学本考试为闭卷考试,考试时间120分钟,本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.温馨提示:1.答题前,考生需用0.5毫米黑色签字笔将自己的姓名、准考证号、座位号正确填写在答题卡对应位置.待监考老师粘贴条形码后,再认真核对条形码上的信息与自己的准考证上的信息是否一致.2.选择题必须使用2B 铅笔在答题卡相应位置规范填涂.如需改动,用橡皮擦擦干净后,再选涂其他答案标号;非选择题用0.5毫米黑色签字笔作答,答案必须写在答题卡对应的框内,超出答题区答案无效;在草稿纸、试题卷上作答无效.3.保持答题卡整洁,不要折叠、弄破、弄皱,不得使用涂改液、修正带、刮纸刀.4.考试结束后,将试卷及答题卡一并交回.第Ⅰ卷(选择题)一、单项选择题1. 下列四个数中,最小的数是( )A. 0B. -2C. 1D. 2. 在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是( )A. B. C. D.3. 2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为( )A. 82.66210⨯元B. 90.266210⨯元C. 92.66210⨯元D.1026.6210⨯元4. 如图,AB CD ∥,直线EF 分别交AB ,CD 于点M ,N ,将一个含有45°角的直角三角尺按如图所示的方式摆放,若80EMB ∠=︒,则PNM ∠等于( )A. 15°B. 25°C. 35°D. 45° 5. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位);马二匹、牛五头,共价三十八两,阀马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A. 46382548x y x y +=⎧⎨+=⎩B. 46482538x y x y +=⎧⎨+=⎩C. 46485238x y x y +=⎧⎨+=⎩D. 46482538y x y x +=⎧⎨+=⎩6. 下列命题是真命题的是( )A. 相等的两个角是对顶角B. 相等的圆周角所对的弧相等C. 若a b <,则22ac bc <D. 在一个不透明箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是137. 如图,在ABC 中,点D ,E 分别是AB ,BC 边的中点,点F 在DE 的延长线上.添加一个条件,使得四边形ADFC 为平行四边形,则这个条件可以是( )A. B F ∠=∠B. DE EF =C. AC CF =D. AD CF =的8. 如图,点E 在矩形ABCD AB 边上,将ADE 沿DE 翻折,点A 恰好落在BC 边上的点F 处,若3CD BF =,4BE =,则AD 的长为( )A. 9B. 12C. 15D. 18 9. 如图所示的曲边三角形可按下述方法作出:作等边ABC ,分别以点A ,B ,C 为圆心,以AB 长为半径作 BC , AC , AB ,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为( )A. 2π-B. 2π-C. 2πD. π10. 二次函数2y ax bx c =++部分图象如图所示,与y 轴交于(0,1)-,对称轴为直线1x =.以下结论:①0abc >;②13a >;③对于任意实数m ,都有()m amb a b +>+成立;④若()12,y -,21,2y ⎛⎫ ⎪⎝⎭,()3在该函数图象上,则321y y y <<;⑤方程2ax bx c k ++=(0k …,k 为常数)的所有根的和为4.其中正确结论有( )的的A. 2B. 3C. 4D. 5第Ⅱ卷(非选择题)二、填空题11. 计算:23a a +=______.12. 如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则CAD ∠的度数为_____.13. 如图,菱形ABCD 的对角线AC 与BD 相交于点O ,24AC =,10BD =,则菱形ABCD 的周长是________.14. 关于x 的不等式组23112x a x x -+<⎧⎪⎨-+⎪⎩…恰有3个整数解,则a 的取值范围是_______. 15.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______. 16. 如图,在边长为2的正方形ABCD 中,点E ,F 分别为AD ,CD 边上的动点(不与端点重合),连接BE ,BF ,分别交对角线AC 于点P ,Q .点E ,F 在运动过程中,始终保持45EBF ∠=︒,连接EF ,PF ,PD .以下结论:①PB PD =;②2EFD FBC ∠=∠;③PQ PA CQ =+;④BPF △为等腰直角三角形;⑤若过点B 作BH EF ⊥,垂足为H ,连接DH ,则DH的最小值为2.其中所有正确结论的序号是____.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤17. 计算:020221(1)|2|2tan 452︒⎛⎫-+--- ⎪⎝⎭. 18. 化简求值:222112111a a a a a a a ⎛⎫-+÷+ ⎪-+--⎝⎭,其中1a =-. 19. “防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x 表示,共分成四组:A .8085x <…,B .8590x <…,C .9095x <…,D .95100x ……),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96. 八年级10名学生的竞赛成绩在C 组中的数据是:92,92,94,94.七、八年级抽取学生竞赛成绩统计表 年级七年级 八年级 平均数92 92 中位数96 m 众数b 98 方差 28.6 28八年级抽取的学生竞赛成绩扇形统计图根据以上信息,解答下列问题:(1)上述图表中=a __________=__________,m =__________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(95x …)的学生人数是多少?20. 某老年活动中心欲在一房前3m 高的前墙(AB )上安装一遮阳篷BC ,使正午时刻房前能有2m 宽的阴影处(AD )以供纳凉,假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC 与水平面的夹角为10°,如图为侧面示意图,请你求出此遮阳篷BC的长度(结果精确到0.1m ).(参考数据:sin100.17︒≈,cos100.98︒≈,tan100.18︒≈;sin 63.40.89︒≈,cos 63.40.45︒≈,tan 63.4 2.00︒≈)的21. 某商场进货员预测一种应季T 恤衫能畅销市场,就用4000元购进一批这种T 恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T 恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T 恤衫每件进价分别是多少元?(2)如果两批T 恤衫按相同的标价销售,最后缺码的40件T 恤衫按七折优惠售出,要使两批T 恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T 恤衫的标价至少是多少元?22. 如图,一次函数1y x =+与反比例函数k y x=的图象相交于(,2)A m ,B 两点,分别连接OA ,OB .(1)求这个反比例函数的表达式;(2)求AOB 的面积;(3)在平面内是否存在一点P ,使以点O ,B ,A ,P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.23. 如图,在Rt ABC 中,90C ∠=︒,点O 为AB 边上一点,以OA 为半径的⊙O 与BC 相切于点D ,分别交AB ,AC 边于点E ,F .的(1)求证:AD 平分BAC ∠;(2)若3BD =,1tan 2CAD ∠=,求⊙O 的半径. 24. 某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC 和等腰直角三角形CDE ,按如图1的方式摆放,90ACB ECD ∠=∠=︒,随后保持ABC 不动,将CDE △绕点C 按逆时针方向旋转α(090α︒<<︒),连接AE ,BD ,延长BD 交AE 于点F ,连接CF .该数学兴趣小组进行如下探究,请你帮忙解答:(1)【初步探究】如图2,当ED BC ∥时,则α=_____;(2)【初步探究】如图3,当点E ,F 重合时,请直接写出AF ,BF ,CF 之间的数量关系:_________;(3)【深入探究】如图4,当点E ,F 不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.(4)【拓展延伸】如图5,在ABC 与CDE △中,90ACB DCE ∠=∠=︒,若BC mAC =,CD mCE =(m 为常数).保持ABC 不动,将CDE △绕点C 按逆时针方向旋转α(090α︒<<︒),连接AE ,BD ,延长BD 交AE 于点F ,连接CF ,如图6.试探究AF ,BF ,CF 之间的数量关系,并说明理由.25. 如图1,在平面直角坐标系中,已知二次函数22y ax bx =++的图象经过点(1,0)A -,(3,0)B ,与y 轴交于点C .(1)求该二次函数的表达式;(2)连接BC ,在该二次函数图象上是否存在点P ,使PCB ABC ∠=∠?若存在,请求出点P 的坐标:若不存在,请说明理由;(3)如图2,直线l 为该二次函数图象的对称轴,交x 轴于点E .若点Q 为x 轴上方二次函数图象上一动点,过点Q 作直线AQ ,BQ 分别交直线l 于点M ,N ,在点Q 的运动过程中,EM EN +的值是否为定值?若是,请求出该定值;若不是,请说明理由。

2012年中考数学精析系列——德阳卷

2012年中考数学精析系列——德阳卷

2012年中考数学精析系列——德阳卷(本试卷满分120分,考试时间120分钟)一、选择题(本大题共12个小题,每小题3分,共36分)⒊ (2012四川德阳3分)使代数式x 2x 1-有意义的x 的取值范围是【 】 A.x 0≥ B.1x 2≠ C.x 0≥且1x 2≠ D.一切实数 【答案】C 。

【考点】二次根式和分式有意义的条件。

【分析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使x 2x 1-在实数范围内有意义,必须x 0x 012x 10x 2≥⎧≥⎧⎪⇒⎨⎨-≠≠⎩⎪⎩。

故选C 。

⒋ (2012四川德阳3分)某物体的侧面展开图如图所示,那么它的左视图为【 】【答案】B 。

【考点】几何体的展开图,简单几何体的三视图。

【分析】∵物体的侧面展开图是扇形,∴此物体是圆锥。

∴圆锥的左视图是等腰三角形。

故选B 。

⒌ (2012四川德阳3分)已知AB 、CD 是⊙O 的两条直径,∠ABC=30°,那么∠BAD=【 】A.45°B. 60°C.90°D. 30°【答案】D 。

【考点】圆周角定理,等腰三角形的性质。

【分析】∵∠ADC 与∠ABC 所对的弧相同,∴∠ADC=∠ABC=30°。

∵OA=OD ,∴∠BAD =∠ADC 30°,故选D 。

⒍ (2012四川德阳3分)某时刻海上点P 处有一客轮,测得灯塔A 位于客轮P 的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏听偏西60°方向航行32小时到达B 处,那么tan ∠ABP=【 】 A.21 B.2 C.55 D.552 【答案】A 。

【考点】解直角三角形的应用(方向角问题),锐角三角函数定义,特殊角的三角函数值。

【分析】∵灯塔A 位于客轮P 的北偏东30°方向,且相距20海里,∴PA=20。

∵客轮以60海里/小时的速度沿北偏西60°方向航行23小时到达B 处, ∴∠APB=90° ,BP=60×23=40。

2012年中考数学试题(解析版)-2

2012年中考数学试题(解析版)-2

湖北省潜江市、仙桃市、天门市、江汉油田2012年中考数学试题(解析版)一、选择题(共10个小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分1.2012的绝对值是()A.2012 B.﹣2012 C.D.﹣考点:绝对值。

专题:计算题。

分析:根据绝对值的性质直接解答即可.解答:解:∵2012是正数,∴|2012|=2012,故选A.点评:本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.某种零件模型如图所示,该几何体(空心圆柱)的俯视图是()A.B.C.D.考点:简单组合体的三视图。

分析:找到从上面看所得到的图形即可.解答:解:空心圆柱由上向下看,看到的是一个圆环.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.3.吸烟有害健康.据中央电视台2012年5月30日报道,全世界每因吸烟引起的疾病致死的人数A.0.6×107B.6×106C.60×105D.6×105考点:科学记数法—表示较大的数。

分析:首先把600万化为6000000,再用科学记数法表示,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:600万=6000000=6×106,故选:B.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组。

(中考精品卷)四川省达州市中考数学真题(解析版)

(中考精品卷)四川省达州市中考数学真题(解析版)

达州市2022年高中阶段学校招生统一考试暨初中学业水平考试数学本考试为闭卷考试,考试时间120分钟,本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.温馨提示:1.答题前,考生需用0.5毫米黑色签字笔将自己的姓名、准考证号、座位号正确填写在答题卡对应位置.待监考老师粘贴条形码后,再认真核对条形码上的信息与自己的准考证上的信息是否一致.2.选择题必须使用2B铅笔在答题卡相应位置规范填涂.如需改动,用橡皮擦擦干净后,再选涂其他答案标号;非选择题用0.5毫米黑色签字笔作答,答案必须写在答题卡对应的框内,超出答题区答案无效;在草稿纸、试题卷上作答无效.3.保持答题卡整洁,不要折叠、弄破、弄皱,不得使用涂改液、修正带、刮纸刀.4.考试结束后,将试卷及答题卡一并交回.第Ⅰ卷(选择题)一、单项选择题1. 下列四个数中,最小的数是()A. 0B. -2C. 1D.【答案】B【解析】【分析】根据实数的大小比较即可求解.【详解】解:∵201-<<<∴最小的数是2-,故选B.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.2. 在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,逐个分析即可求解.【详解】解:A.是轴对称图形,故该选项符合题意;B.不是轴对称图形,故该选项不符合题意;C.不是轴对称图形,故该选项不符合题意;D.不是轴对称图形,故该选项不符合题意;故选A【点睛】本题主要考查了轴对称图形的识别,解题的关键在于能够熟练掌握轴对称图形的定义.3. 2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为( )A. 82.66210⨯元B. 90.266210⨯元C. 92.66210⨯元D. 1026.6210⨯元【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中11|0|a ≤<,n 为整数.【详解】解:26.62亿92662000000 2.66210==⨯.故选C .【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.4. 如图,AB CD ∥,直线EF 分别交AB ,CD 于点M ,N ,将一个含有45°角的直角三角尺按如图所示的方式摆放,若80EMB ∠=︒,则PNM ∠等于( )A. 15°B. 25°C. 35°D. 45°【答案】C【解析】 【分析】根据平行线的性质得到∠DNM =∠BME =80°,由等腰直角三角形的性质得到∠PND =45°,即可得到结论.【详解】解:∵AB ∥CD ,∴∠DNM =∠BME =80°,∵∠PND =45°,∴∠PNM =∠DNM -∠DNP =35°,故选:C .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(‘两’为我国古代货币单位);马二匹、牛五头,共价三十八两,阀马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A. 46382548x y x y +=⎧⎨+=⎩B. 46482538y x y +=⎧⎨+=⎩C. 46485238x y x y +=⎧⎨+=⎩D.46482538y x y x +=⎧⎨+=⎩【答案】B【解析】 【分析】设马每匹x 两,牛每头y 两,由“马四匹、牛六头,共价四十八两”可得4648x y +=,根据“马二匹、牛五头,共价三十八两,”可得2538x y +=,即可求解.【详解】解:设马每匹x 两,牛每头y 两,根据题意可得46482538x y x y +=⎧⎨+=⎩ 故选B【点睛】本题考查了列二元一次方程组,理解题意列出方程组是解题关键.的6. 下列命题是真命题的是( )A. 相等的两个角是对顶角B. 相等的圆周角所对的弧相等C. 若a b <,则22ac bc <D. 在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13 【答案】D【解析】【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A 选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B 选项错误,不符合题意; 若a b <,则22ac bc ≤,故C 选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D 选项正确,符合题意; 故选:D .【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.7. 如图,在ABC 中,点D ,E 分别是AB ,BC 边的中点,点F 在DE 的延长线上.添加一个条件,使得四边形ADFC 为平行四边形,则这个条件可以是( )A. B F ∠=∠B. DE EF =C. AC CF =D. AD CF =【答案】B【解析】【分析】利用三角形中位线定理得到DE ∥AC 且DE =12AC ,结合平行四边形的判定定理进行选择.【详解】解:∵在△ABC 中,D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AC 且DE =12AC ,A 、根据∠B =∠F 不能判定CF ∥AD ,即不能判定四边形ADFC 为平行四边形,故本选项错误.B 、根据DE =EF 可以判定DF =AC ,由“一组对边平行且相等的四边形是平行四边形”得到四边形ADFC 为平行四边形,故本选项正确.C 、根据AC =CF 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.D 、根据AD =CF ,FD ∥AC 不能判定四边形ADFC 为平行四边形,故本选项错误. 故选:B .【点睛】本题主要考查了三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.8. 如图,点E 在矩形ABCD 的AB 边上,将ADE 沿DE 翻折,点A 恰好落在BC 边上的点F 处,若3CD BF =,4BE =,则AD 的长为( )A. 9B. 12C. 15D. 18【答案】C【解析】 【分析】根据折叠的性质可得,AE EF AD FD ==,设BE x =,则3CD x =,则34AE AB BE CD BE x =-=-=-,在Rt BEF △中勾股定理建列方程,求得x ,进而求得CD ,根据BEF DFC ∠=∠,可得tan tan BEF DFC ∠=∠,即BF CD BE FC =,求得12FC =,在Rt FCD △中,勾股定理即可求解.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,90B C ∠=∠=︒,将ADE 沿DE 翻折,点A 恰好落在BC 边上的点F 处,,FD AD EF AE ∴==,90EFD A ∠=∠=︒,3CD BF =,4BE =,设BF x =,则3CD x =,34AE AB BE CD BE x =-=-=-,在Rt BEF △中222BE BF EF +=,即()222434x x +=-,解得3x =, ∴3,9BF CD ==,90EFD A ∠=∠=︒ ,90B C ∠=∠=︒,∴90BEF BFE DFC ∠=︒-∠=∠,∴tan tan BEF DFC ∠=∠, ∴BF CD BE FC=, 39=4FC∴, 12FC ∴=,在Rt FCD △中,15FD ==,15AD FD ∴==.故选C .【点睛】本题考查了矩形与折叠的性质,正切的定义,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.9. 如图所示的曲边三角形可按下述方法作出:作等边ABC ,分别以点A ,B ,C 为圆心,以AB 长为半径作 BC , AC , AB ,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为( )A. 2π-B. 2πC. 2πD.π【答案】A【解析】【分析】根据此三角形是由三段弧组成,所以根据弧长公式可得半径,即正三角形的边长,根据曲边三角形的面积等于三角形的面积与三个弓形的面积和,边长为a 的等边三角【详解】解:设等边三角形ABC 的边长为r ,6012,1803r ππ∴⋅⋅=⨯ 解得2r =,即正三角形的边长为2,∴2226022322360ππ⎛⎫⨯+⨯=- ⎪ ⎪⎝⎭故选A【点睛】本题考查了扇形面积的计算.此题的关键是明确曲边三角形的面积等于三角形的面积与三个弓形的面积和,然后再根据所给的曲线三角形的周长求出三角形的边长. 10. 二次函数2y ax bx c =++的部分图象如图所示,与y 轴交于(0,1)-,对称轴为直线1x =.以下结论:①0abc >;②13a >;③对于任意实数m ,都有()m amb a b +>+成立;④若()12,y -,21,2y ⎛⎫ ⎪⎝⎭,()32,y 在该函数图象上,则321y y y <<;⑤方程2ax bx c k ++=(0k …,k 为常数)的所有根的和为4.其中正确结论有( )A. 2B. 3C. 4D. 5【答案】A【解析】【分析】根据图象可判断0,1,0a c b >=-<,即可判断①正确;令2210y ax ax =--=,解得1x ==±110-<<,再由顶点坐标的纵坐标的范围即可求出a 的范围,即可判断②错误;由2b a =-代入变形计算即可判断③错误;由抛物线的增减性和对称性即可判断④错误;分类讨论当20ax bx c ++>时,当20ax bx c ++<时,再根据一元二次方程根与系数的关系进行求解即可判断⑤正确.【详解】 二次函数2y ax bx c =++的部分图象与y 轴交于(0,1)-,对称轴为直线1x =,抛物线开头向上,0,1,12b a c a∴>=--=, 20b a ∴=-<, 0abc ∴>,故①正确;令2210y ax ax =--=,解得1x ==,由图得,110-<<, 解得13a >, 抛物线的顶点坐标为(1,1)a --,由图得,211a -<--<-,解得01a <<,113a ∴<<,故②错误; 2b a =- ,()m am b a b +>+∴可化为(2)2m am a a a ->-,即(2)1m m ->-,2(1)0m ∴->,若()m am b a b +>+成立,则1m ≠,故③错误;当1x <时,y 随x 的增大而减小,122-< , 12y y ∴>,对称轴为直线1x =,2x ∴=时与0x =时所对应的y 值相等,231y y y ∴<<,故④错误;2ax bx c k ++=,当20ax bx c ++>时,20ax bx c k ++-=,1222b a x x a a-∴+=-=-=, 当20ax bx c ++<时,20ax bx c k +++=,3422b a x x a a-∴+=-=-=, 12344x x x x ∴+++=,故⑤正确;综上,正确的个数为2,故选:A .【点睛】本题考查了二次函数图象和性质,一元二次方程求根公式,根与系数的关系等,熟练掌握知识点,能够运用数形结合的思想是解题的关键.第Ⅱ卷(非选择题)二、填空题11. 计算:23a a +=______.【答案】5a【解析】【分析】直接运用合并同类项法则进行计算即可得到答案.【详解】解: 23a a +(23)a =+5a =.故答案为:5a .【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键. 12. 如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则CAD ∠的度数为_____.【答案】50︒##50度【解析】【分析】根据作图可知DA DB =,20DAB B ∠=∠=︒,根据直角三角形两个锐角互余,可得70CAB ∠=︒,根据CAD CAB DAB ∠=∠-∠即可求解.【详解】解:∵在Rt ABC 中,90C ∠=︒,20B ∠=︒,∴70CAB ∠=︒,由作图可知MN 是AB 的垂直平分线,DA DB ∴=,∴20DAB B ∠=∠=︒,∴CAD CAB DAB ∠=∠-∠702050︒-︒=︒,故答案为:50︒.【点睛】本题考查了基本作图,垂直平分线的性质,等边对等角,直角三角形的两锐角互余,根据题意分析得出MN 是AB 的垂直平分线,是解题的关键.13. 如图,菱形ABCD 的对角线AC 与BD 相交于点O ,24AC =,10BD =,则菱形ABCD 的周长是________.【答案】52【解析】【分析】根据菱形对角线互相垂直平分的性质,可以求得BO =OD ,AO =OC ,在Rt △AOD 中,根据勾股定理可以求得AB 的长,即可求菱形ABCD 的周长.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =12AC =12,OB =12BD =5,∴AB13=,∴菱形ABCD 的周长为:4×13=52.故答案为:52【点睛】本题考查了菱形周长的计算,考查了勾股定理在直角三角形中的运用,考查了菱形的性质,本题中根据勾股定理计算AB 的长是解题的关键.14. 关于x 不等式组23112x a x x -+<⎧⎪⎨-+⎪⎩…恰有3个整数解,则a 的取值范围是_______. 【答案】23a ≤<【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围 【详解】解:23112x a x x -+<⎧⎪⎨-+⎪⎩①②… 解不等式①得:2x a >-,解不等式②得:3x ≤,不等式组有解,∴不等式组的解集为: 23a x -<≤,不等式组23112x a x x -+<⎧⎪⎨-+⎪⎩…恰有31,2,3 021a ∴≤-<,解得23a ≤<.故答案为:23a ≤<.【点睛】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题要根据整数解的取值情况分情况讨论结果,取出合理的答案.15.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______. 的【答案】5050【解析】【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: a =,b =1ab ==∴, 1112211112a b a b a b b b a bS a a ++++=+===+++++++ , 222222222222222222221112a b a b S a b a b a b a b++++=+=⨯=⨯=+++++++, …,10101001001001010101010010011100100111a b S a b a b a b+++=+=⨯=+++++ ∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.16. 如图,在边长为2的正方形ABCD 中,点E ,F 分别为AD ,CD 边上的动点(不与端点重合),连接BE ,BF ,分别交对角线AC 于点P ,Q .点E ,F 在运动过程中,始终保持45EBF ∠=︒,连接EF ,PD .以下结论:①PB PD =;②2EFD FBC ∠=∠;③PQ PA CQ =+;④BPF △为等腰直角三角形;⑤若过点B 作BH EF ⊥,垂足为H ,连接DH ,则DH 的最小值为2.其中所有正确结论的序号是____.【答案】①②④⑤【解析】【分析】连接BD ,延长DA 到M ,使AM =CF ,连接BM ,根据正方形的性质及线段垂直平分线的性质定理即可判断①正确;通过证明()BCF BAM SAS ≅ ,()EBF EBM SAS ≅ ,可证明②正确;作CBN ABP ∠=∠,交AC 的延长线于K ,在BK 上截取BN =BP ,连接CN ,通过证明ABP CBN ≅△△,可判断③错误;通过证明BQP CQF ,BCQ PFQ ,利用相似三角形的性质即可证明④正确;当点B 、H 、D 三点共线时,DH 的值最小,分别求解即可判断⑤正确.【详解】如图1,连接BD ,延长DA 到M ,使AM =CF ,连接BM ,四边形ABCD 是正方形,AC ∴垂直平分BD ,,90BA BC BCF BAD ABC =∠=︒=∠=∠,PB PD =∴,BCF BAM ∠=∠,90FBC BFC ∠=︒-∠,故①正确;()BCF BAM SAS ∴≅ ,,,CBF ABM BF BM M BFC ∴∠=∠=∠=∠,45EBF ∠=︒ ,45ABE CBF ︒∴∠+∠=,45ABE ABM ∴∠+∠=︒,即EBM EBF ∠=∠,BE BE = ,()EBF EBM SAS ∴≅ ,,M EFB MEB FEB ∴∠=∠∠=∠,EFB CFB ∴∠=∠,180()1802EFD EFB CFB BFC ∴∠=︒-∠+∠=︒-∠,∴2EFD FBC ∠=∠,故②正确;如图2,作CBN ABP ∠=∠,交AC 的延长线于K ,在BK 上截取BN =BP ,连接CN , ABP CBN ∴≅ ,45BAP BCN ∴∠=∠=︒,45ACB =︒∠ ,90NCK ∴∠=︒,CNK K ∴∠≠∠,即CN CK ≠,PQ PA CQ ≠+∴,故③错误;如图1,四边形ABCD 正方形,45EBF BCP FCP ∴∠=∠=∠=︒,BQP CQF ∠=∠ ,BQP CQF ∴ ,BQ PQ CQ FQ∴=, BQC PQF ∠=∠ ,BCQ PFQ ∴ ,45BCQ PFQ ∴∠=∠=︒,45PBF PFB ∴∠=∠=︒,90BPF ∴∠=︒,∴BPF △为等腰直角三角形,故④正确;如图1,当点B 、H 、D 三点共线时,DH 的值最小,BD ∴==90,BAE BHE BE BE ∠=∠=︒= ,()BAE BHE AAS ∴≅ ,是2BA BH ∴==,2DH BD BH ∴=-=,故⑤正确;故答案:①②④⑤.【点睛】本题考查了正方形的性质,线段垂直平分线的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握知识点并准确作出辅助线是解题的关键.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤17. 计算:020221(1)|2|2tan 452︒⎛⎫-+--- ⎪⎝⎭. 【答案】0【解析】【分析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键. 18. 化简求值:222112111a a a a a a a ⎛⎫-+÷+ ⎪-+--⎝⎭,其中1a =-. 【答案】11a +【解析】【分析】先将分子因式分解,再进行通分,然后根据分式减法法则进行计算,最后再根据分式除法法则计算即可化简,再把a 的值代入计算即可求值. 【详解】解:原式=()()()2211111a a a a a a a -+++÷+-- ()()()()2211111a a a a a +--=⋅-+ 1=1a +;当1a -=. 【点睛】本题考查了分式的化简求值,分母有理化,熟练掌握分式的运算法则以及正确的为计算是解题的关键.19. “防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x 表示,共分成四组:A .8085x <…,B .8590x <…,C .9095x <…,D .95100x ……),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96. 八年级10名学生的竞赛成绩在C 组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表 年级七年级 八年级 平均数92 92 中位数96 m 众数b 98 方差 28.6 28八年级抽取的学生竞赛成绩扇形统计图根据以上信息,解答下列问题:(1)上述图表中=a __________,b =__________,m =__________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(95x …)的学生人数是多少?【答案】(1)30,96,93(2)七年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但七年级的中位数高于八年级(3)估计参加此次竞赛活动成绩优秀(x ≥95)的学生人数是540人【解析】【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据七年级的中位数高于八年级,于是得到七年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【小问1详解】 解:120%10%10030104a ⎛⎫---⨯= ⎪⎝⎭=, ∵在七年级10名学生的竞赛成绩中96出现的次数最多,∴96b = ;∵八年级10名学生的竞赛成绩在A 组中有2个,在B 组有1个,∴八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,∴()9294293m ÷==+,故答案为:30,96,93;【小问2详解】七年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但七年级的中位数高于八年级.【小问3详解】七年级在95x ≥的人数有6人,八年级在95x ≥的人数有3人,估计参加此次竞赛活动成绩优秀(x ≥95)的学生人数为:63120054020+⨯=(人), 答:估计参加此次竞赛活动成绩优秀(x ≥95)的学生人数是540人.【点睛】本题考查读扇形统计图的能力和利用统计图获取信息的能力以及中位数,众数和平均数,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20. 某老年活动中心欲在一房前3m 高的前墙(AB )上安装一遮阳篷BC ,使正午时刻房前能有2m 宽的阴影处(AD )以供纳凉,假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC 与水平面的夹角为10°,如图为侧面示意图,请你求出此遮阳篷BC 的长度(结果精确到0.1m ).(参考数据:sin100.17︒≈,cos100.98︒≈,tan100.18︒≈;sin 63.40.89︒≈,cos 63.40.45︒≈,tan 63.4 2.00︒≈)【答案】遮阳篷BC 的长度约为3.4米【解析】【分析】过点C 作CF AD ⊥于点F ,则四边形AFCE 是矩形,则,AE CF EC AF ==,设2CF x =,则2AE CF x ==,32BE x =-,解直角三角形求得DF ,进而求得,EC BE ,解Rt BEC △,求得x ,进而求得BE 的长,根据sin BE BEC BC∠=即可求解. 【详解】如图,过点C 作CF AD ⊥于点F ,则四边形AFCE 是矩形,设2CF x =,则2AE CF x ==,32BE x =-,在Rt CDF △中tan =tan 63.42CF CDF DF∠=︒≈, DF x ∴=,2EC AF AD DF x ∴==+=+,在Rt BEC △中,tan =tan100.18BE BEC EC∠=︒≈, 320.182x x-∴≈+, 解得: 1.21x =,经检验,x 是方程的解,且符合题意,320.58BE x ∴=-=,sin 0.17BE BEC BC ∠=≈ , 0.58 3.40.170.17BE BC ∴==≈. 答:遮阳篷BC 的长度约为3.4米.【点睛】本题考查了解直角三角形的应用,掌握三角形的三边关系是解题的关键. 21. 某商场进货员预测一种应季T 恤衫能畅销市场,就用4000元购进一批这种T 恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T 恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T 恤衫每件的进价分别是多少元?(2)如果两批T 恤衫按相同的标价销售,最后缺码的40件T 恤衫按七折优惠售出,要使两批T 恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T 恤衫的标价至少是多少元?【答案】(1)该商场购进第一批每件的进价为40元,第二批T 恤衫每件的进价为44元 (2)每件T 恤衫的标价至少是80元【解析】【分析】(1)设该商场购进第一批每件的进价为x 元,第二批T 恤衫每件的进价为(4)x +元,根据“所购数量是第一批购进量的2倍”列分式方程求解检验即可;(2)设每件T 恤衫的标价是y 元,根据“两批T 恤衫全部售完后利润率不低于80%”列不等式,求解即可.【小问1详解】设该商场购进第一批每件的进价为x 元,第二批T 恤衫每件的进价为(4)x +元, 由题意得,4000880024x x ⨯=+, 解得40x =,经检验,40x =是原方程的解且符合题意,444x +=,所以,该商场购进第一批每件的进价为40元,第二批T 恤衫每件的进价为44元;【小问2详解】两批T 恤衫的数量为4000330040⨯=(件), 设每件T 恤衫的标价是y 元,由题意得:(30040)400.7(40008800)(180%)y y -+⨯≥+⨯+,解得80y ≥所以,每件T 恤衫的标价至少是80元.【点睛】本题考查了列分式方程解决实际问题,列不等式解决实际问题,准确理解题意,找准数量关系是解题的关键.22. 如图,一次函数1y x =+与反比例函数k y x=的图象相交于(,2)A m ,B 两点,分别连接OA ,OB .(1)求这个反比例函数的表达式;(2)求AOB 的面积;(3)在平面内是否存在一点P ,使以点O ,B ,A ,P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)2y x= (2)32(3)(1,1)P -或(3,3)P --或(3,3)P【解析】【分析】(1)先利用一次函数求出A 点的坐标,再将A 点坐标代入反比例函数解析式即可;(2)先求出B 、C 点坐标,再利用三角形的面积公式求解即可;(3)分三种情况,利用坐标平移的特点,即可得出答案.【小问1详解】解:把(,2)A m 代入一次函数1y x =+,得21m =+,解得1m =,(1,2)A ∴,把(1,2)A 代入反比例函数k y x=,得21k =, 2k ∴=, ∴反比例函数的表达式为2y x =; 【小问2详解】 解:令21x x =+,解得1x =或2x =-,当2x =-时,1y =-,即(2,1)B --,当0x =时,1y =,1OC ∴=, ∴11113()1(21)22222AOB OCA OCB B A B A S S S OC x OC x OC x x =+=⋅⋅+⋅⋅=⋅⋅+=⨯⨯+= ;【小问3详解】解:存在,理由如下: 当OA 与OB 为邻边时,点(0,0)O 先向左平移2个单位再向下平移1个单位到点(2,1)B --,则点(1,2)A 也先向左平移2个单位再向下平移1个单位到点P ,即(1,1)P -; 当AB 与AO 为邻边时,点(1,2)A 先向左平移3个单位再向下平移3个单位到点(2,1)B --,则点(0,0)O 也先向左平移3个单位再向下平移3个单位到点P ,即(3,3)P --;当BA 与BO 为邻边时,点(2,1)B --先向右平移3个单位再向上平移3个单位到点(1,2)A ,则点(0,0)O 也先向右平移3个单位再向上平移3个单位到点P ,即(3,3)P ; 综上,P 点坐标为(1,1)P -或(3,3)P --或(3,3)P .【点睛】本题考查了反比例函数与特殊四边形的综合题目,涉及求反比例函数解析式,三角形的面积公式,反比例函数与一次函数的交点问题,平移的性质,熟练掌握知识点并运用分类讨论的思想是解题的关键.23. 如图,在Rt ABC 中,90C ∠=︒,点O 为AB 边上一点,以OA 为半径的⊙O 与BC 相切于点D ,分别交AB ,AC 边于点E ,F .(1)求证:AD 平分BAC ∠;(2)若3BD =,1tan 2CAD ∠=,求⊙O 的半径.【答案】(1)见解析(2)94【解析】 【分析】(1)连接OD ,根据切线的性质得到90C ODB ∠=∠=︒,继而证明AC OD ∥,再根据等腰三角形的性质,进而得出CAD OAD ∠=∠,即可得出结论; (2)连接DE ,根据直径所对圆周角是直角可得90ADE ∠=︒,继而证明BED BDA ,根据相似三角形的性质及锐角三角函数即可求解.【小问1详解】连接OD ,90C ∠=︒,以OA 为半径的⊙O 与BC 相切于点D ,90C ODB ∴∠=∠=︒,AC OD ∴∥,CAD ODA ∴∠=∠,OA OD = ,ODA OAD ∴∠=∠,CAD OAD ∴∠=∠,∴AD 平分BAC ∠;【小问2详解】的连接DE ,AE 是直径,90ADE ∴∠=︒,1,,,tan 2BED ADE OAD BDA C CAD CAD OAD CAD ∠=∠+∠∠=∠+∠∠=∠∠= , 1,tan tan 2DE BED BDA CAD OAD AD∴∠=∠∠===, BED BDA ∴ , 12BD BE DE AB BD AD ∴===, 3BD = ,6AB ∴=,6132BE AB AE AE BD BD --∴===, 解得92AE =, 94OA ∴=, ∴⊙O 的半径为94. 【点睛】本题考查了切线的性质,等腰三角形的性质,角平分线的判定,圆周角定理,相似三角形的判定和性质及锐角三角函数,熟练掌握知识点并准确作出辅助线是解题的关键.24. 某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC 和等腰直角三角形CDE ,按如图1的方式摆放,90ACB ECD ∠=∠=︒,随后保持ABC 不动,将CDE △绕点C 按逆时针方向旋转α(090α︒<<︒),连接AE ,BD ,延长BD 交AE 于点F ,连接CF .该数学兴趣小组进行如下探究,请你帮忙解答:(1)【初步探究】如图2,当ED BC ∥时,则α=_____;(2)【初步探究】如图3,当点E ,F 重合时,请直接写出AF ,BF ,CF 之间的数量关系:_________;(3)【深入探究】如图4,当点E ,F 不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.(4)【拓展延伸】如图5,在ABC 与CDE △中,90ACB DCE ∠=∠=︒,若BC mAC =,CD mCE =(m 为常数).保持ABC 不动,将CDE △绕点C 按逆时针方向旋转α(090α︒<<︒),连接AE ,BD ,延长BD 交AE 于点F ,连接CF ,如图6.试探究AF ,BF ,CF 之间的数量关系,并说明理由.【答案】(1)45︒(2)BF AF =+(3)BF AF =+仍然成立,理由见解析(4)BF mAF =+【解析】【分析】(1)根据等腰直角三角形的性质,可得AC BC ⊥,根据题意可得AC ED ⊥,根据等原三角形的性质可得AC 平分ECD ∠,即可得45ACE ∠=︒,根据旋转的性质可知ECA α∠=;(2)证明ACE ≌BCD △,可得AE DB =,根据等腰直角三角形可得ED =,由BE BD ED =+,即可即可得出BF AF =+; (3)同(2)可得ACE ≌BCD △,过点C ,作CH FC ⊥,交BF 于点H ,证明FEC HDC ≌,AFC △≌BHC △,可得BH AF =,即可得出BF AF =+;(4)过点C 作CG CF ⊥,交BF 于点G ,证明ACE BCD △∽△,可得BG mAF =,GC mFC =,在Rt FCG中,勾股定理可得FG =,即可得出BF mAF =+.【小问1详解】等腰直角三角形ABC 和等腰直角三角形CDE ,90ECD ∴∠=︒,AC BC ⊥ED BC ∥ED AC ∴⊥45ACE α∴∠==︒故答案为:45︒【小问2详解】90∠=∠=︒ ACB ECDACE ACD ACD BCD ∴∠+∠=∠+∠ACE BCD ∴∠=∠在ACE 与BCD △中,AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩ACE ≌BCD △∴AE DB =BE BD ED ∴=+又ED =BE AE ∴=+,E F 重合,BF AF ∴=+故答案为:BF AF =+【小问3详解】同(2)可得ACE ≌BCD △AE DB ∴=,EAC DBC ∠=∠过点C ,作CH FC ⊥,交BF 于点H ,则90ECF FCD FCD DCH ∠+∠=∠+∠=︒,∴ECF DCH ∠=∠,在FEC 与HDC △中,FEC HDC EC CDECF DCH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴FEC HDC ≌,FC CH ∴=,CFH ∴ 是等腰直角三角形,FH ∴=,CH FC =,90,90FCH ACF ACH ACB BCH ACH ∴∠=∠+∠=︒∠=∠+∠=︒,ACF BCH ∴∠=∠,在AFC △与BHC △中,FC HC ACF BCH AC BC =⎧⎪∠=∠⎨⎪=⎩,∴AFC △≌BHC △,BH AF ∴=,BF FH BH AF ∴=+=+,即BF AF =+,【小问4详解】过点C 作CG CF ⊥,交BF 于点G ,BC mAC =,CD mCE =,BC CD AC CE∴=, AC BC EC DC ∴=, ACE BCD α∠=∠= ,ACE BCD ∴△△∽,CBG CAF ∴∠=∠,FCA ACG GCB ACG ∠+∠=∠+∠,∴FCA GCB ∠=∠,AFC BGC ∴ ∽,BG GC BC AF FC AC∴==m =, BG mAF ∴=,GC mFC =,Rt FCG 中,FG ==,∴BF FG GB mAF =+=+,即BF mAF =+.【点睛】本题考查了等腰直角三角形的性质,旋转的性质,全等三角形的性质与判定,相似三角形的性质与判定,掌握全等三角形的性质与判定,相似三角形的性质与判定是解题的关键.25. 如图1,在平面直角坐标系中,已知二次函数22y ax bx =++的图象经过点(1,0)A -,(3,0)B ,与y 轴交于点C .(1)求该二次函数的表达式;(2)连接BC ,在该二次函数图象上是否存在点P ,使PCB ABC ∠=∠?若存在,请求出点P 的坐标:若不存在,请说明理由;(3)如图2,直线l 为该二次函数图象的对称轴,交x 轴于点E .若点Q 为x 轴上方二次函数图象上一动点,过点Q 作直线AQ ,BQ 分别交直线l 于点M ,N ,在点Q 的运动过程中,EM EN +的值是否为定值?若是,请求出该定值;若不是,请说明理由.【答案】(1)224233y x x =-++ (2)()2,2P 或28286,525⎛⎫-⎪⎝⎭ (3)163【解析】【分析】(1)待定系数法求解析式即可求解;(2)根据题意,分情况讨论,①过点C 作关于1x =的对称点P ,即可求P 的坐标,②x 轴上取一点D ,使得DC DB =,则DCB ABC ∠=∠,设(),0D d ,根据勾股定理求得,CD BD ,建列方程,解方程求解即可;(3)设224,233Q t t t ⎛⎫-++ ⎪⎝⎭,13t -<<,过点Q 作QF x ⊥轴于点F ,则(),0F t ,证明,AME AQF BNE BQF ∽∽,根据相似三角形的性质列出比例式求得EM EN +,即可求解.【小问1详解】解:∵由二次函数22y ax bx =++,令0x =,则2y =,()0,2C ∴,过点(1,0)A -,(3,0)B ,设二次函数的表达式为()()13y a x x =+-()2=23a x x --, 将点()0,2C 代入得,23a =-, 解得23a =-, 224233y x x ∴=-++, 【小问2详解】二次函数22y ax bx =++的图象经过点(1,0)A -,(3,0)B ,∴抛物线的对称轴为1x =,①如图,过点C 作关于1x =的对称点P ,CP AB ∴∥,PCB ABC ∴∠=∠,。

2012年达州市中考语文试题与参考答案及评分意见

2012年达州市中考语文试题与参考答案及评分意见

达州市2012年高中阶段教育学校招生统一考试语 文注意事项:1.本试卷题卷合一,答题时请用蓝黑墨水笔将答案直接写在试题作答处。

2.全卷共12页,分为“基础〃阅读部分”(1~8页)和“作文部分”(9~12页)。

答题前请将第1页和第9页“密封线”内各项目填写清楚。

3.全卷满分100分,考试时间120分钟。

基础·阅读部分题号 一 二总分 总分人 (一) (二) (三) 得分一、积累·运用(20分)1.下列词语中加点字注音有错的一组是( )(2分)A. 角.色(ju é) 襁.(qi ǎng)褓 静谧.(m ì) 断壁残垣.(yu án ) B .惬.意(qi è) 挫.折(cu ō) 桑梓.(z ǐ) 妄自菲.(f ěi)薄 C .社稷. (j ì) 遐.(xi á)想 埋.怨(m án ) 强聒.(gu ō)不舍 D. 馈.赠(ku ì) 亵渎(xi è) 留滞(zh ì) 妇孺.皆知(r ú) 2.下列词语中,没有错别字的一项是 ( )(2分) A. 叱咤风云 谈笑风生 消声匿迹 戛然而止 B. 张慌失措 周道如砥 本色当行 任劳任怨 C. 重蹈复辙 精神矍烁 孜孜不倦 妙手回春 D. 风声鹤唳 相形见绌 脍炙人口 风雪载途 3.下列加点成语使用正确的一项是( )( 2分 ) A.这一别具匠心....的设计,赢得了评委的一致好评。

B.面对越来越高的求职门槛,许多大学生叹为观止....。

得分 评卷人C.在晚会上,同学们看到精彩的表演,忍俊不禁....地大笑起来。

D.为了让学生中考能取得更好的成绩,老师们处心积虑....为他们辅导。

4.下列各句中,没有语病的一句是() (2分)A.在备战中考的过程中,我们不能缺乏的,一是自信心不足,二是学习方法不当。

B.在学习过程中,我们应该注意培养自己解决、分析、观察问题的能力。

2012年达州市中考数学试题与参考答案及评分意见

2012年达州市中考数学试题与参考答案及评分意见

达州市2012年高中阶段教育学校招生统一考试数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至10页.考试时间100分钟,满分100分.第Ⅰ卷(选择题 共24分)1.答第Ⅰ卷前,考生务必将姓名、准考证号、考试科目按要求填涂在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题号的答案标号涂黑,不能将答案答在试题卷上.3.考试结束,将本试卷和答题卡一并交回.一、选择题:(本题8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-2的倒数是A 、2B 、-2C 、21 D 、21- 2.下列几何图形中,对称性与其它图形不同的是3.如图,⊙O 是△ABC 的外接圆,连结OB 、OC ,若OB=BC ,则∠BAC 等于A 、60°B 、45°C 、30°D 、20° 4.今年我市参加中考的学生人数约为41001.6⨯人.对于这个 近似数,下列说法正确的是A 、精确到百分位,有3个有效数字B 、精确到百位,有3个有效数字C 、精确到十位,有4个有效数字D 、精确到个位,有5个有效数字5.2011年达州市各县(市、区)的户籍人口统计表如下:则达州市各县(市、区)人口数的极差和中位数分别是 A 、145万人 130万人 B 、103万人 130万人 C 、42万人 112万人 D 、103万人 112万人6.一次函数)0(1≠+=k b kx y 与反比例函数)0(2≠=m xmy , 在同一直角坐标系中的图象如图所示,若1y ﹥2y ,则x 的取值 范围是A 、-2﹤x ﹤0或x ﹥1B 、x ﹤-2或0﹤x ﹤1C 、x ﹥1D 、-2﹤x ﹤17.为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,由题意列出的方程是 A 、141401101+=-+-x x x B 、141401101-=+++x x x C 、141401101-=+-+x x x D 、401141101-=++-x x x 8.如图,在梯形ABCD 中,AD ∥BC ,E 、F 分别是AB 、CD 的中点,则下列结论: ①EF ∥AD ; ②S △ABO =S △DCO ;③△OGH 是等腰三角形;④BG=DG ;⑤EG=HF.其中正确的个数是A 、1个B 、2个C 、3个D 、4个达州市2012年高中阶段教育学校招生统一考试数 学注意事项:1.用蓝黑色钢笔或蓝黑色圆珠笔直接答在试题卷上.第Ⅱ卷(非选择题 共76分)二、填空题(本题7个小题,每小题3分,共21分)把最后答案直接填在题中的横线上.9. 写一个比-3小的整数 . 10.实数m 、n 在数轴上的位置如右图所示,化简:n m -= .11.已知圆锥的底面半径为4,母线长为6,则它的侧面积是 .(不取近似值) 12.如右图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车....经过该路口都向右转的概率为 .13.若关于x 、y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +﹥1,则k 的取值范围是 .14.将矩形纸片ABCD ,按如图所示的方式折叠,点A 、点C 恰好落在对角线BD 上,得到菱形BEDF.若BC=6,则AB 的长为 .15.将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 .三、解答题:(55分)解答时应写出必要的文字说明、证明过程或演算步骤. (一)(本题2个小题,共9分)16.(4分)计算:-+-8)2012(04sin 1)21(45-+17.(5分)先化简,再求值:624)373(+-÷+--a a a a ,其中1-=a(二)(本题2个小题,共12分)18.(6分)今年5月31日是世界卫生组织发起的第25个“世界无烟日”.为了更好地宣传吸烟的危害,某中学八年级一班数学兴趣小组设计了如下调查问卷,在达城中心广场随机调查了部分吸烟人群,并将调查结果绘制成统计图.根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整.(2)在扇形统计图中, C选项的人数百分比是,E选项所在扇形的圆心角的度数是 .(3)若通川区约有烟民14万人,试估计对吸烟有害持“无所谓”态度的约有多少人?你对这部分人群有何建议?19.(6分)大学生王强积极响应“自主创业”的号召,准备投资销售一种进价为每件40元的小家电.通过试营销发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.(1)求y与x的函数关系式.(2)设王强每月获得的利润为p(元),求p与x之间的函数关系式;如果王强想要每月获得2400元的利润,那么销售单价应定为多少元?(三)(本题2个小题,共15分)20.(7分)数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)21.(8分) 问题背景若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x ,面积为s ,则s 与x 的函数关系式为: x x x s (212+-=﹥0),利用函数的图象或通过配方均可求得该函数的最大值. 提出新问题若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少? 分析问题若设该矩形的一边长为x ,周长为y ,则y 与x 的函数关系式为:)1(2xx y += (x ﹥0),问题就转化为研究该函数的最大(小)值了. 解决问题借鉴我们已有的研究函数的经验,探索函数)1(2xx y +=(x ﹥0)的最大(小)值. (1)实践操作:填写下表,并用描点法 画出函数)1(2xx y +=(x ﹥0)的图象:(2)观察猜想:观察该函数的图象,猜想当x = 时,函数)1(2xx y +=(x ﹥0)有最 值(填“大”或“小”),是 .(3)推理论证:问题背景中提到,通过配方可求二次函数x x x s (212+-=﹥0)的最 大值,请你尝试通过配方求函数)1(2xx y +=(x ﹥0)的最大(小)值,以证明你的 猜想. 〔提示:当x >0时,2)(x x =〕(四)(本题2个小题,共19分)22.(7分)如图,C 是以AB 为直径的⊙O 上一点,过O 作OE ⊥AC 于点E ,过点A 作⊙O 的切线交OE 的延长线于点F ,连结CF 并延长交BA 的延长线于点P.(1)求证:PC 是⊙O 的切线.(2)若AF=1,OA=22,求PC 的长.23.(12分)如图1,在直角坐标系中,已知点A (0,2)、点B (-2,0),过点B 和线段OA 的中点C 作直线BC ,以线段BC 为边向上作正方形BCDE. (1)填空:点D 的坐标为( ),点E 的坐标为( ).(2)若抛物线)0(2≠++=a c bx ax y 经过A 、D 、E 三点,求该抛物线的解析式. (3)若正方形和抛物线均以每秒5个单位长度的速度沿射线BC 同时向上平移,直至正方形的顶点E 落在y 轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y 轴右侧部分的面积为s ,求s 关于平移时间t (秒)的函数关系式,并写出相应自变量t 的取值范围.②运动停止时,求抛物线的顶点坐标.达州市2012年高中阶段教育学校招生统一考试数学参考答案及评分意见一、选择题(本题8个小题. 每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.D2.A3.C4.B5.D6.A7.B8.D 二、填空题:(本题7个小题.每小题3分,共21分)把最后答案直接填在题中的横线上.9.-2(答案不唯一) 10.n-m 11.24π 12. 9113.k >2 14.32 15.210三、解答题:(55分)解答时应写出必要的文字说明、证明过程或演算步骤 16.解:原式=2224221+⨯-+………………………………………………..(2分) =222221+-+………………………………………………………………….(3分) =3………………………………………………………………………………………..(4分)17.解:原式=)3(243162+-÷+-a a a a ……………………………………………………(1分)=4)3(23)4)(4(-+∙+-+a a a a a ……………………………………………………………(2分) =2(a +4)=2a +8…………………………………………………………………………………….(3分)当a=-1时,原式=2×(-1)+8…………………………………………………………….(4分) =6……………………………………………………………………….(5分) 18.(1)300(1分) 补全统计图如下:…………………………………………………………..(2分)(2)26%……………………………………………….(3分) 36°………………………………………………….(4分)(3)解:A 选项的百分比为:30012×100%=4% 对吸烟有害持“无所谓” 态度的人数为:14×4%=0.56(万)………(5分)建议:只要答案合理均可得分………………………………………………..(6分) 19.解(1)设y 与x 的函数关系式为:)0(≠+=k b kx y 由题意得⎩⎨⎧=+=+1006516050b k b k …………………………………………………………………………..(1分) 解得⎩⎨⎧=-=3604b k ………………………………………………………………………….(2分).∴3604+-=x y (40≤x ≤90)……………………………………………………(3分) (2)由题意得,p 与x 的函数关系式为: )3604)(40(+--=x x p=1440052042-+-x x ………………………………………………………………..(4分) 当P=2400时24001440052042=-+-x x …………………………………………………………(5分)解得601=x , 702=x∴销售单价应定为60元或70元……………………………………………………..(6分)20.(1)SSS ………………………………………………………………………………(1分) (2)解:小聪的作法正确. 理由:∵PM ⊥OM , PN ⊥ON∴∠OMP=∠ONP=90° 在Rt △OMP 和Rt △ONP 中 ∵OP=OP , OM=ON∴Rt △OMP ≌Rt △ONP (HL )……………………………………………………….(3分) ∴∠MOP=∠NOP∴OP 平分∠AOB ………………………………………………………………………(4分) (3)解:如图所示. …………………………………………………………………..(6分)步骤:①利用刻度尺在OA 、OB 上分别截取OG=OH. ②连结GH ,利用刻度尺作出GH 的中点Q.③作射线OQ.则OQ 为∠AOB 的平分线. ………………………………………(7分)20.(1)…………………………………………..(1分)………………………………………….(3分)(2)1、小、4………………………………………………………………………..(5分)(3)证明:⎥⎦⎤⎢⎣⎡+=22)(1)(2x x y ⎥⎦⎤⎢⎣⎡++-=2)(12)(222x x =4)1(22+-xx ………………………………………………(7分)当01=-xx 时,y 的最小值是4即x =1时,y 的最小值是4………………………………………………………..(8分)22.(1)证明:连结OC∵OE ⊥AC ∴AE=CE ∴FA=FC∴∠FAC=∠FCA ∵OA=OC∴∠OAC=∠OCA∴∠OAC+∠FAC=∠OCA+∠FCA即∠FAO=∠FCO ………………………………………………………………….(2分) ∵FA 与⊙O 相切,且AB 是⊙O 的直径 ∴FA ⊥AB∴∠FCO=∠FAO=90°∴PC 是⊙O 的切线………………………………………………………………..(3分) (2)∵PC 是⊙O 的切线 ∴∠PCO=90° 而∠FPA=∠OPC ∠PAF=90°∴△PAF ∽△PCO …………………………………………………………………..(4分) ∴COAFPC PA =∵CO=OA=22,AF=1∴PC=22PA …………………………………………………………………..(5分) 设PA=x ,则PC=x 22 在Rt △PCO 中,由勾股定理得222)22()22()22(+=+x x …………………………………………..(6分)解得:724=x ∴PC 716=……………………………………………………………………….(7分) 23.(1)D (-1,3)、E (-3,2)(2分) (2)抛物线经过(0,2)、(-1,3)、(-3,2),则⎪⎩⎪⎨⎧=+-=+-=23932c b a c b a c ……………………………………………………………….(3分) 解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=23121c b a∴223212+--=x x y ……………………………………………………….(4分) (3)①当点D 运动到y 轴上时,t=12. 当0<t ≤21时,如右图 设D ′C ′交y 轴于点F∵ tan ∠BCO=OCOB=2,又∵∠BCO=∠FCC ′ ∴ tan ∠FCC ′=2, 即C O C F ''=2∵CC ′=5t,∴FC ′=25t.∴S △CC ′F =21CC ′·FC ′=521t ×52t=5 t 2…………………………………(5分) 当点B 运动到点C 时,t=1. 当21<t ≤1时,如右图设D ′E ′交y 轴于点G ,过G 作GH ⊥B ′C ′于H. 在Rt △BOC 中,BC=51222=+∴GH=5,∴CH=21GH=25∵CC ′=5t,∴HC ′=5t-25,∴GD ′=5t-25∴S 梯形CC ′D ′G =21(5t-25+5t) 5=5t-45……………………………(7分)当点E 运动到y 轴上时,t=23.当1<t ≤23时,如右图所示 设D ′E ′、E ′B ′分别交y 轴于点M 、N ∵CC ′=5t ,B ′C ′=5,∴CB ′=5t-5, ∴B ′N=2CB ′=52t-52 ∵B ′E ′=5,∴E ′N=B ′E ′-B ′N=53-52t∴E ′M=21E ′N=21(53-52t) ∴S △MNE ′ =21(53-52t)·21(53-52t)=5t 2-15t+445∴S 五边形B ′C ′D ′MN =S 正方形B ′C ′D ′E ′ -S △MNE ′ =-2)5((5t 2-15t+445)=-5t 2+15t-425综上所述,S 与x 的函数关系式为:当0<t ≤21时, S=52t 当21<t ≤1时,S=5t 45- 当1<t ≤23时,S=-5t 2+15t 425-………………………………………………..(9分)②当点E 运动到点E ′时,运动停止.如下图所示 ∵∠CB ′E ′=∠BOC=90°,∠BCO=∠B ′CE ′∴△BOC ∽△E ′B ′C ∴CE BCE B OB '='' ∵OB=2,B ′E ′=BC=5∴CE '=552 ∴CE ′=25 ∴OE ′=OC+CE ′=1+25=27∴E ′(0,27)…………………………………………………………………..(10分) 由点E (-3,2)运动到点E ′(0,27),可知整条抛物线向右平移了3个单位,向上平移了23个单位.∵223212+--=x x y =825)23(212++-=x y∴原抛物线顶点坐标为(23-,825)……………………………………………(11分)∴运动停止时,抛物线的顶点坐标为(23,837)…………………………(12分)。

2012年全国各地中考数学阅读理解型问题试题(附答案)

2012年全国各地中考数学阅读理解型问题试题(附答案)

2012年全国各地中考数学阅读理解型问题试题(附答案)2012年全国各地中考数学解析汇编39 阅读理解型问题21.(2012四川达州,21,8分)(8分)问题背景若矩形的周长为1,则可求出该矩形面积的值.我们可以设矩形的一边长为,面积为,则与的函数关系式为:﹥0),利用函数的图象或通过配方均可求得该函数的值.提出新问题若矩形的面积为1,则该矩形的周长有无值或最小值?若有,(小)值是多少?分析问题若设该矩形的一边长为,周长为,则与的函数关系式为:(﹥0),问题就转化为研究该函数的(小)值了.解决问题借鉴我们已有的研究函数的经验,探索函数(﹥0)的(小)值.(1)实践操作:填写下表,并用描点法画出函数(﹥0)的图象:(2)观察猜想:观察该函数的图象,猜想当= 时,函数(﹥0)有最值(填“大”或“小”),是 .(3)推理论证:问题背景中提到,通过配方可求二次函数﹥0)的最大值,请你尝试通过配方求函数(﹥0)的(小)值,以证明你的猜想. 〔提示:当>0时,〕解析:对于(1)按照画函数图象的列表、描点、连线三步骤进行即可;对于(2),由结合图表可知有最小值为4;对于(3),可按照提示,用配方法来求出。

答案:(1)…………………………………………..(1分)………………………………………….(3分)(2)1、小、4………………………………………………………………………..(5分)(3)证明:………………………………………………(7分)当时,的最小值是4即 =1时,的最小值是4………………………………………………………..(8分)点评:本题以阅读理解型的形式,考查学生画函数图象的基本步骤及结合图表求函数最值的观察力,考察了学生的模仿能力、配方思想和类比的能力。

28.(2012江苏省淮安市,28,12分)阅读理解如题28-1图,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合.无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如题28-2图,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B 与点C重合;情形二:如题28-3图,沿△ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿∠B1A1C的平分线 A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角? .(填:“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之问的等量关系为.应用提升(3)小丽找到一个三角形,三个角分别为15 ,60 ,l05 ,发现60 和l05 的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4 ,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.【解析】(1)利用三角形外角的性质和折叠对称性即可解决;(2)根据第(1)问的结论继续探索;(3)利用“好角”的定义和三角形内角和列出方程解之.具体过程见以下解答.【答案】解: (1) 由折叠的性质知,∠B=∠AA1B1.因为∠AA1B1=∠A1B1C+∠C,而∠B=2∠C,所以∠A1B1C=∠C,就是说第二次折叠后∠A1B1C与∠C重合,因此∠BAC是△ABC的好角.(2)因为经过三次折叠∠BAC是△ABC的好角,所以第三次折叠的∠A2B2C=∠C.如图12-4所示.图12-4因为∠ABB1=∠AA1B1,∠AA1B1=∠A1B1C+∠C,又∠A1B1C=∠A1A2B2,∠A1A2B2=∠A2B2C+∠C,所以∠ABB1=∠A1B1C+∠C=∠A2B2C+∠C+∠C=3∠C.由上面的探索发现,若∠BAC是△ABC的好角,折叠一次重合,有∠B=∠C;折叠二次重合,有∠B=2∠C;折叠三次重合,有∠B=3∠C;…;由此可猜想若经过n 次折叠∠BAC是△ABC的好角,则∠B=n∠C.(3)因为最小角是4 是△ABC的好角,根据好角定义,则可设另两角分别为4m ,4mn (其中m、n都是正整数).由题意,得4m+4mn+4=180,所以m(n+1)=44.因为m、n都是正整数,所以m与n+1是44的整数因子,因此有:m=1,n+1=44;m=2,n+1=22;m=4,n+1=11;m=11,n+1=4;m=22,n+1=2.所以m=1,n=43;m=2,n=21;m=4,n=10;m=11,n=3;m=22,n=1.所以4m=4,4mn=172;4m=8,4mn=168;4m=16,4mn=160;4m=44,4mn=132;4m=88,4mn=88.所以该三角形的另外两个角的度数分别为:4 ,172 ;8 ,168 ;16 ,160 ;44 ,132 ;88 ,88 .【点评】本题主要考查轴对称图形、等腰三角形、三角形形的内角和定理及因式分解等知识点的理解和掌握,本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.23.(2012湖北咸宁,23,10分)如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且,.理解与作图:(1)在图2、图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.计算与猜想:(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.【解析】(1)根据网格结构,作出相等的角得到反射四边形;(2)图2中,利用勾股定理求出EF=FG=GH=HE的长度,然后可得周长;图3中利用勾股定理求出EF=GH,FG=HE的长度,然后求出周长,得知四边形EFGH 的周长是定值;(3)证法一:延长GH交CB的延长线于点N,再利用“角边角”证明Rt△FCE≌Rt△FCM,根据全等三角形对应边相等可得EF=MF,EC=MC,同理求出NH=EH,NB=EB,从而得到MN=2BC,再证明GM=GN,过点G作GK⊥BC于K,根据等腰三角形三线合一的性质求出MK= MN=8,再利用勾股定理求出GM的长度,然后可求出四边形EFGH的周长;证法二:利用“角边角”证明Rt△FCE≌Rt△FCM,根据全等三角形对应边相等可得EF=MF,EC=MC,再根据角的关系推出∠M=∠HEB,根据同位角相等,两直线平行可得HE∥GF,同理可证GH∥EF,所以四边形EFGH是平行四边形,过点G作GK⊥BC于K,根据边的关系推出MK=BC,再利用勾股定理列式求出GM的长度,然后可求出四边形EFGH的周长.【答案】(1)作图如下: 2分(2)解:在图2中,,∴四边形EFGH的周长为. 3分在图3中,,.∴四边形EFGH的周长为. 4分猜想:矩形ABCD的反射四边形的周长为定值. 5分(3)如图4,证法一:延长GH交CB的延长线于点N.∵ ,,∴ .而,∴Rt△FCE≌Rt△FCM.∴ ,. 6分同理:,.∴ . 7分∵ ,,∴ .∴ . 8分过点G作GK⊥BC于K,则. 9分∴ .∴四边形EFGH的周长为. 10分证法二:∵ ,,∴ .而,∴Rt△FCE≌Rt△FCM.∴ ,. 6分∵ ,,而,∴ .∴HE∥GF.同理:GH∥EF.∴四边形EFGH是平行四边形.∴ .而,∴Rt△FDG≌Rt△HBE.∴ .过点G作GK⊥BC于K,则∴ .∴四边形EFGH的周长为.【点评】本题主要考查了应用与设计作图,全等三角形的判定与性质,勾股定理的应用,矩形的性质,读懂题意理解“反射四边形EFGH”特征是解题的关键.25.(2012贵州黔西南州,25,14分)问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,所以x=y2.把x=y2代入已知方程,得(y2)2+y2-1=0.化简,得:y2+2y-4=0.故所求方程为y2+2y-4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化成一般形式):(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数.(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.【解析】按照题目给出的范例,对于(1)的“根相反”,用“y=-x”作替换;对于(2)的“根是倒数”,用“y=1x”作替换,并且注意有“不等于零的实数根”的限制,要进行讨论.【答案】(1)设所求方程的根为y,则y=-x,所以x=-y.………………(2分) 把x=-y代入已知方程x2+x-2=0,得(-y)2+(-y)-2=0.………………(4分)化简,得:y2-y-2=0.………………(6分)(2)设所求方程的根为y,则y=1x,所以x=1y.………………(8分)把x=1y 代如方程ax2+bx+c=0得.a(1y)2+b 1y+c=0,………………(10分)去分母,得,a+by+cy2=0.……………………(12分)若c=0,有ax2+bx=0,于是方程ax2+bx+c=0有一个根为0,不符合题意.∴c≠0,故所求方程为cy2+by+a=0(c≠0).……………………(14分)【点评】本题属于阅读理解题,读懂题意,理解题目讲述的方法的基础;在实际解题时,还要灵活运用题目提供的方法进行解题,实际上是数学中“转化”思想的运用.八、(本大题16分)26.(2012贵州黔西南州,26,16分)如图11,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0)抛物线的对称轴l与x轴相交于点M.(1)求抛物线对应的函数解析式和对称轴.(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数.请你直接写出点P的坐标.(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积?若存在,请你求出N的坐标;若不存在,请说明理由.【解析】(1)已知抛物线上三点,用“待定系数法”确定解析式;(2)四边形AOMP 中,AO=4,OM=3,过A作x轴的平行线交抛物线于P点,这个P点符合要求“四条边的长度为四个连续的正整数”;(3)使△NAC的面积,AC确定,需要N点离AC的距离,一种方法可以作平行于AC的直线,计算这条直线与抛物线只有一个交点时,这个交点即为N;另一种方法,过AC上任意一点作y轴的平行线交抛物线于N点,这样△NAC被分成两个三角形,建立函数解析式求值.【答案】(1)根据已知条件可设抛物线对应的函数解析式为y=a(x―1)(x―5),………………(1分)把点A(0,4)代入上式,得a=45.………………(2分)∴y=45(x―1)(x―5)=45x2―245x+4=―45(x―3)2―165.………………(3分) ∴抛物线的对称轴是x=3.…………(4分)(2)点P的坐标为(6,4).………………(8分)(3)在直线AC下方的抛物线上存在点N,使△NAC的面积,由题意可设点N的坐标为(t,45t2―245t+4)(0<t<5).………………(9分)如图,过点N作NG∥y轴交AC于点G,连接AN、CN.由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=―45x+4.………………(10分)把x=t代入y=―45x+4得y=―45t+4,则G(t,―45t+4).………………(11分)此时NG=―45t+4―(45t2―245t+4)=―45t2+205t.………………(12分)∴S△NAC=12NG OC=12(-45t2+205t)×5=―2t2+10t=―2(t-52)2+252.………………(13分)又∵0<t<5,∴当t=52时,△CAN的面积,值为252 .………………(14分)t=52时,45 t2-245t+4=-3.………………(15分)∴点N的坐标为(52,-3).……………………(16分)【点评】本题是一道二次函数、一次函数、三角形的综合题,其中第(3)问也是一道具有难度的“存在性”探究问题.本题主要考查二次函数、一次函数的图象与性质的应用.专项十阅读理解题19. (2012山东省临沂市,19,3分)读一读:式子“1+2+3+4+……+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为,这里“ ”是求和符号,通过以上材料的阅读,计算 = . 【解析】式子“1+2+3+4+……+100”的结果是,即 = ;又∵ ,,………,∴ = + +…+ =1- ,∴ = = + +…+ =1- = .【答案】【点评】本题是一道找规律的题目,要求学生的通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.此题重点除首位两项外,其余各项相互抵消的规律.23. (2012浙江省嘉兴市,23,12分)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′ C′ ,即如图①,∠BAB′ =θ, ,我们将这种变换记为.(1)如图①,对△ABC作变换得△AB′ C′ ,则 : =_______;直线BC与直线B′C′所夹的锐角为_______度;(2)如图② ,△ABC中,∠BAC=30° ,∠ACB=90° ,对△ABC作变换得△AB′ C′ ,使点B、C、在同一直线上,且四边形ABB′C′为矩形,求θ和n的值;(3)如图③ ,△ABC中,AB=AC,∠BAC=36° ,BC=1,对△ABC作变换得△AB′C′ ,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.【解析】(1) 由题意知, θ为旋转角, n为位似比.由变换和相似三角形的面积比等于相似比的平方,得 : = 3, 直线BC与直线B′C′所夹的锐角为60°; (2)由已知条件得θ=∠CAC′=∠BAC′-∠BAC=60°.由直角三角形中, 30°锐角所对的直角边等于斜边的一半得n==2.(3) 由已知条件得θ=∠CAC′=∠ACB=72°.再由两角对应相等,证得△ABC∽△B′BA,由相似三角形的性质求得n== .【答案】(1) 3;60°.(2) ∵四边形ABB′C′是矩形,∴∠BAC′=90°.∴θ=∠CAC′=∠BAC′-∠BAC=90°-30°=60°.在Rt△ABB′中,∠ABB′=90°, ∠BAB′=60°,∴n==2.(3) ∵四边形ABB′C′是平行四边形,∴AC′∥BB′,又∵∠BAC=36°∴θ=∠CAC′=∠ACB=72°∴∠C′AB′=∠ABB′=∠BAC=36°,而∠B=∠B,∴△ABC∽△B′BA,∴AB2=CB B′B=CB (BC+CB′),而CB′=AC=AB=B′C′, BC=1, ∴AB2=1 (1+AB)∴AB=,∵AB>0,∴n== .【点评】本题是一道阅读理解题.命题者首先定义了一种变换,要求考生根据这种定义解决相关的问题. 读懂定义是解题的关键所在.本题所涉及的知识点有相似三角形的面积比等于相似比的平方,黄金比等.27.(2011江苏省无锡市,27,8′)对于平面直角坐标系中的任意两点 ,我们把叫做两点间的直角距离,记作 .(1)已知O为坐标原点,动点满足 =1,请写出之间满足的关系式,并在所给的直角坐标系中出所有符合条件的点P所组成的图形;(2)设是一定点,是直线上的动点,我们把的最小值叫做到直线的直角距离,试求点M(2,1)到直线的直角距离。

往年四川省达州市中考数学真题及答案

往年四川省达州市中考数学真题及答案

往年四川省达州市中考数学真题及答案本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页,第II 卷3至10页。

考试时间120分钟,满分120分。

第I 卷(选择题,共30分)温馨提示:1、答第I 卷前,请考生务必将姓名、准考证号、考试科目等按要求填涂在机读卡上。

2、每小题选出正确答案后,请用2B 铅笔把机读卡上对应题号的答案标号涂黑。

3、考试结束后,请将本试卷和机读卡一并交回。

一.选择题:(本题10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2013的绝对值是( )A .2013B .-2013C .±2013D .12013-答案:A解析:负数的绝对值是它的相反数,故选A 。

2.某中学在芦山地震捐款活动中,共捐款二十一万三千元。

这一数据用科学记数法表示为( )A .321310⨯元B .42.1310⨯元C .52.1310⨯元D .60.21310⨯元 答案:C解析:科学记数法写成:10na ⨯形式,其中110a ≤<,二十一万三千元=213000=52.1310⨯元 3.下列图形中,既是轴对称图形,又是中心对称图形的是( )答案:D解析:A 、C 只是轴对称图形,不是中心对称图形;B 是中心对称图形,不是轴对称轴图形,只有D 符合。

4.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。

那么顾客到哪家超市购买这种商品更合算( ) A .甲 B .乙 C .丙 D .一样 答案:C解析:设原价a 元,则降价后,甲为:a (1-20%)(1-10%)=0.72a 元,乙为:(1-15%)2a =0.7225a 元,丙为:(1-30%)a =0.7a 元,所以,丙最便宜。

5.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是( )A .(3)(1)(4)(2)B .(3)(2)(1)(4)C .(3)(4)(1)(2)D .(2)(4)(1)(3) 答案:C解析:因为太阳从东边出来,右边是东,所以,早上的投影在左边,(3)最先,下午的投影在右边,(2)最后,选C 。

2012年达州市中考物理试题与参考答案及评分意见

2012年达州市中考物理试题与参考答案及评分意见

达州市2012年高中阶段教育学校招生统一考试物 理 试 题(考试时间50分钟,满分75分) 第Ⅰ卷(选择题 共24分)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的。

本大题8小题,每小题3分,共24分)9、下列关于光现象的说法,其中正确的是A .雨后天空出现的彩虹是由于光的直线传播B .岸边树木在水中的倒影是光的折射现象C .看到水中的鱼比鱼的实际位置浅是光的反射现象D .从不同的地方看到本身不发光的物体是光的漫反射现象 10、关于温度、热量、和内能,下列说法正确的是 A .温度高的物体内能一定大B .物体的温度越高,所含的热量越多C .内能少的物体也可能将能量传给内能多的物体D .物体的内能与温度有关,只要温度不变,物体的内能就一定不变 11、关于力和运动的关系,下列说法正确的是:A .某物体在水平面向右运动一定受到了水平向右的力B .在空中匀速直线飞行的飞机受到的合力与重力平衡C .只要有力作用在物体上物体就一定运动D .1N的力可能比800N的力产生的效果好12、如图3所示,杠杆在水平位置处于平衡状态,杠杆上每格均匀等距,每个钩码都相同。

下列四项操作中,会使杠杆右端下倾的是 (1)在杠杆两侧同时各减掉一个钩码;(2)在杠杆两侧钩码下同时各加挂一个钩码;(3)将杠杆两侧的钩码同时各向外移动一个小格; (4)将杠杆两侧的钩码同时各向内移动一个小格。

A(1)(3) B(2)(4) C(2)(3) D(1)(4)13、如图4所示,电源电压保持不变。

闭合开关S ,当滑动变阻器的滑片P 向右移动的过程中,电压表 V 1与电流表A示数的比值将A 变小B 不变C 变大D 无法判断14、如图5所示,电源电压和灯L 的电阻不变,灯L 上标有“6V 3W ”字样。

当开关S 闭合,滑片P 移至a 端时,电流表的示数为1.0A ,灯L 正常发光;当开关S 断开,滑片P 移至b 端时,电源电压U 和灯L 消耗的电功率P 为A 6V 1.5WB 6V 0.75WC 3V 1.5WD 3V 0.75W图4 图515、如图6所示,ab 为闭合电路的一部分导体,当ab 在磁场中运动时,能产生感应电流的是A .垂直纸面向里运动B .垂直纸面向外运动C .沿纸面向右运动D .沿纸面竖直向上运动16、两定值电阻甲、乙中的电流与电压关系如图7所示,现将甲和乙并联后接在电压为6V 的电源两端,下列分析正确的是A .乙消耗的电功率为3.6 WB .甲消耗的电功率为3.6WC .甲中的电流小于乙中的电流D .甲的电阻值小于乙的电阻值第Ⅱ卷(非选择题 共51分)五、填空题(本大题7小题,每空1分,共计20分)25、如图10所示,小赵用宽窄不同的橡皮筋制成了一个橡皮 筋吉他。

四川省各市2012年中考数学分类解析专题7:统计与概率

四川省各市2012年中考数学分类解析专题7:统计与概率

四川各市2012年中考数学试题分类解析汇编专题7:统计与概率一、选择题1. (2012四川攀枝花3分)为了了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指【】A. 150 B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.攀枝花市2012年中考数学成绩【答案】C。

【考点】总体、个体、样本、样本容量。

【分析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本:了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.样本是,被抽取的150名考生的中考数学成绩。

故选C。

2. (2012四川宜宾3分)宜宾今年5月某天各区县的最高气温如下表:则这10个区县该天最高气温的众数和中位数分别是【】A.32,31.5 B.32,30 C.30,32 D.32,31【答案】A。

【考点】众数,中位数。

【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是32,故这组数据的众数为32。

中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。

由此将这组数据重新排序为29,30,30,30,31,32,32,32,32,33,处于这组数据中间位置的数是31、32,∴中位数为:31.5。

故选A。

3. (2012四川广安3分)下列说法正确的是【】A.商家卖鞋,最关心的是鞋码的中位数B.365人中必有两人阳历生日相同C.要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D.随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定【答案】C。

【考点】统计量的选择,可能性的大小,调查方法的选择,方差。

【分析】分别利用统计量的选择,可能性的大小,调查方法的选择,方差的知识进行逐项判断即可:A、商家卖鞋,最关心的是卖得最多的鞋码,即鞋码的众数,故本选项错误;B、365天人中可能人人的生日不同,故本选项错误;C、要了解全市人民的低碳生活状况,适宜采用抽样调查的方法,故本选项正确;D、方差越大,越不稳定,故本选项错误。

2012年四川省广安市中考数学试卷及解析

2012年四川省广安市中考数学试卷及解析

2012年四川省广安市中考数学试卷及解析说明:本试卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷满分为100分,第Ⅱ卷满分为50分,共150分,全卷共九大题。

第Ⅰ卷一、选择答案(本题共有18小题,每小题满分2分,共36分)注意:每小题有四个选项,其中有且仅有一项是符合题意的。

所有选择题必须在答案卡上用规定的铅笔作答,选错、不选、多选或涂改不清的,均不给分。

1.5的平方根是( )。

(A )25 (B )25± (C )5 (D )5±2.设甲数是x ,若甲数是乙数的2倍,则乙数是( )。

(A )x 21 (B )x 2 (C )x 31(D )x 3 3.下列函数中,自变量x 的取值范围为x ≥3的是( )。

(A )3+=x y (B )3-=x y (C )31+=x y (D )31-=x y 4.若0<a <1,则点M (a -1,a )在( )。

(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限5.不等式组⎩⎨⎧<-<-133042x x 的解集为( )。

(A )x <1 (B )x >2(C )x <1或x >2 (D )1<x <2 6.已知a >b ,则下列不等式中,正确的是( )。

(A )―3a >―3b (B )3a ->3b-(C )3-a >3-b (D )a -3>b -37.下列运算中,正确的是( )。

(A )()532x x = (B )633x x x =+(C )43x x x =⋅ (D )236x x x =÷8.若数据80,82,79,69,74,78,81,x 的众数是82,则( )。

(A )x =79 (B )x =80 (C )x =81 (D )x =82 9.已知某5个数的和是a ,另6个数的和是b ,则这11个数的平均数是( )。

(A )2b a + (B )11b a + (C )1165b a + (D ))65(21ba +10.函数y=-x 的图象与函数y=x +1的图象的交点在( )。

2012年初中毕业与升学统一考试数学试卷(四川广安市)(详细解析)

2012年初中毕业与升学统一考试数学试卷(四川广安市)(详细解析)

2012年初中毕业与升学统一考试数学试卷(四川广安市)详细解析一、选择题:每小题给出的四个选项中,只有一个是符合题意要求的,请将符合要求的选项的代号填涂在机读卡上(每题3分,共30分)1.﹣8的相反数是()A.8B.﹣8 C.D.﹣考点:相反数。

分析:根据相反数的概念,互为相反数的两个数和为0,即可得出答案.解答:解:根据概念可知﹣8+(﹣8的相反数)=0,所以﹣8的相反数是8.故选A.点评:主要考查相反数概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.2.经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()美元.A.1.5×104B.1.5×105C.1.5×1012D.1.5×1013考点:科学记数法—表示较大的数。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于15000亿有13位,所以可以确定n=13﹣1=12.解答:解:15000亿=1 500 000 000 000=1.5×1012.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.3.下列运算正确的是()A.3a﹣a=3 B.a2•a3=a5C.a15÷a3=a5(a≠0)D.(a3)3=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

专题:计算题。

分析:根据同底数幂的除法法则:底数不变,指数相减,及同类项的合并进行各项的判断,继而可得出答案.解答:解:A、3a﹣a=2a,故本选项错误;B、a2•a3=a5,故本选项正确;C、a15÷a3=a12(a≠0),故本选项错误;D、(a3)3=a9,故本选项错误;故选B.点评:此题考查了同底数幂的除法运算,解答本题要求我们掌握合并同类项的法则、完全平方公式及同底数幂的除法法则.4.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.广D.安考点:专题:正方体相对两个面上的文字。

四川省达州市中考数学试题(含答案)

四川省达州市中考数学试题(含答案)

四川省达州市 2013 年中考数学试卷
一.选择题:(本题 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1. (3 分) (2013•达州)﹣2013 的绝对值是( ) A.2013 B. ﹣2013 C. D.
考点: 绝对值 分析: 根据负数的绝对值等于它的相反数解答. 解答: 解:﹣2013 的绝对值是 2013. 故选 A. 点评: 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相 反数;0 的绝对值是 0. 2. (3 分) (2013•达州)某中学在芦山地震捐款活动中,共捐款二十一万三千元.这一数据 用科学记数法表示为( ) A.213×103 元 B.2.13×104 元 C.2.13×105 元 D.0.213×106 元 考点: 科学记数法—表示较大的数 分析: 科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时, 要看把原数变成 a 时, 小数点移动了多少位, n 的绝对值与小数点移动的位数相同. 当 原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数. 解答: 解:将二十一万三千元用科学记数法表示为 2.13×105. 故选 C.
考点: 概率的意义;全面调查与抽样调查;中位数;众数;方差 分析: 根据概率、方差、众数、中位数的定义对各选项进行判断即可. 解答: A、一个游戏中奖的概率是 ,则做 100 次这样的游戏有可能中奖一次,该说法错 误,故本选项错误; B、为了了解全国中学生的心理健康状况,应采用抽样调查的方式,该说法错误,故 本选项错误; C、这组数据的众数是 1,中位数是 1,故本选项正确;
考点: 中心对称图形;轴对称图形
1

四川省达州市中考数学试题版含答案

四川省达州市中考数学试题版含答案

达州市 2010 年高中阶段教育学校招生一致考试数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1至2页,第Ⅱ卷 3 至 10 页 . 考试时间 100 分钟,满分 100 分 .第Ⅰ卷(选择题共24 分)1.答第Ⅰ卷前,考生务势必姓名、准考据号、考试科目按要求填涂在答题卡上 .2.每题选出答案后,用铅笔把答题卡上对应题号的答案标号涂黑,不可以将答案答在试题卷上 .3.考试结束,将本试卷和答题卡一并交回 .一、选择题:在每题给出的四个选项中,只有一项为哪一项切合题目要求的(此题8 小题,每题 3 分,共 24 分) .1.生活到处皆学识 .如图 1,自行车轮所在两圆的地点关系是A. 外切B. 内切C. 外离D. 内含2. 4 的算术平方根是图 1A. 2B. ±2C. -2D. 23.以下几何体中,正视图、左视图、俯视图完整同样的是A. 圆柱B. 圆锥C. 棱锥D. 球4.1中自变量的取值范围在数轴上表示为函数 yx25.如图 2,在边长为 a 的正方形中,剪去一个边长为 b 的小正方形( a>b),将余下部分拼成一个梯形,依据两个图形暗影部分面积的关系,能够获得一个对于 a、b 的恒等式为A. a b 222ab b2 aB. a b 222ab b2a图 2C. a2b2(a b)( a b)D. a2ab a(a b)6.在平面直角坐标系中,对于平面内任一点( m,n),规定以下两种变换:① f (m, n)( m, n) ,如 f (2,1)(2,1);② g (m, n)( m,n),如 g (2,1)( 2,1) .依据以上变换有:f g 3,4f3,43,4 ,那么 g f3,2 等于A.(3,2)B.(3,-2)C.(-3, 2)D.( -3, -2)7.抛物线图象如图 3 所示,依据图象,抛物线的分析式可能是..A. y x2 2 x3B.y x22x3C.y x2 2 x3图 3D.y x22x38.如图 4,在一块形状为直角梯形的草坪中,修筑了一条由A→M →N→C 的小道( M、N 分别是 AB 、CD 中点) .极少量同学为了走“捷径” ,沿线段 AC 行走,损坏了草坪,实质上他们仅少走了图4A.7米B.6米C.5米D.4米图 4达州市 2010 年高中阶段教育学校招生一致考试数学注意事项:1.用蓝黑色钢笔或圆珠笔挺接答在试题卷上 .2.答卷前将密封线内各项目填写清楚 .第Ⅱ卷(非选择题共76 分)得分评卷人二、填空题:把最后答案直接填在题中的横线上(此题7 小题,每小题 3 分,共 21 分).9. 0 的相反数是.10. 大巴山地道是达陕高速公路中最长的地道,总长约为6000 米,这个数据用科学记数法表示为米.11.在“讲政策、讲法制、讲道德、讲恩德”的演讲竞赛中,五位选手的成绩以下:选手编号12345成绩(分)8592909588这构成绩的极差是分 .12.如图 5,一水库迎水坡 AB 的坡度 i 1︰3,则该坡的坡角 =.图 513. 请写出切合以下两个条件的一个函数分析式.①过点( -2,1),②在第二象限内, y 随 x增大而增大 .14. 如图 6,一个宽为 2 cm 的刻度尺在圆形光盘上挪动,当刻度尺的一边与光盘相切时,另一边与光盘边沿两个交点处的读数恰巧是“ 2”和“ 10”(单位: cm),那么该光盘的直径是cm.15. 如图 7,△ABC 中,CD⊥AB ,垂足为 D.以下条件中,能证明△ ABC 是直角图 6三角形的有(多项选择、错选不得分) .①∠ A+∠ B=90°② AB2AC 2BC 2③ AC CD④ CD2AD BDAB BD三、解答题:解答时应写出必需的文字说明、证明过程或演算步骤(共55 分).图 7得分评卷人(一)(此题 2 小题,共 15 分)16.(8 分)( 1)(4 分)计算:( 1)2010( 21)0.(2)(4 分)对于代数式1和3,你能找到一个适合的 x 值,使它们x2x 12的值相等吗?写出你的解题过程 .17.( 7 分)上海世博会自开幕以来,前去观光的人纷至沓来.柳柳于礼拜六去观光,她决定上午在三个热点馆:中国馆( A ),阿联酋馆( B),英国馆( C)中选择一个观光,下午在两个热点馆:瑞士馆(D)、非洲结合馆( E)中选择一个观光 .请你用画树状图或列表的方法,求出柳柳这天选中中国馆( A)和非洲结合馆(E)观光的概率是多大?(用字母取代馆名)(二)(此题 2 小题,共 11 分)18.( 5 分)如图 8,将一矩形纸片 ABCD 折叠,使点 C 与得分评卷人点 A 重合,点 D 落在点 E 处,折痕为 MN ,图中有全等三角形吗?如有,请找出并证明 .19.(6 分)在一块长 16m,宽 12m 的矩形荒地上,要建筑一个花园,要求花园面积是荒地面积的一半,下边分别是小华与小芳的设计方案.图 8(1)同学们都以为小华的方案是正确的,但对小芳方案能否切合条件有不一样意见,你以为小芳的方案切合条件吗?若不切合,请用方程的方法说明原因.(2)你还有其余的设计方案吗?请在图9-3 中画出你所设计的草图,将花园部分涂上暗影,并加以说明.得分评卷人(三)(此题 2 小题,共 14 分)20.(6 分)已知:如图10,AB 和 DE 是直立在地面上的两根立柱, AB=5 m,某一时辰, AB 在阳光下的投影 BC=4 m.( 1)请你在图中画出此时DE 在阳光下的投影,并简述绘图步骤;(2)在丈量 AB 的投影长时,同时测出 DE 在阳光下的投影长为 6 m,请你计算 DE 的长 .21.(8 分)最近几年来,我国煤矿安全事故屡次发生,此中危害最大的是瓦斯,其主要成分是 CO.在一次矿难事件的检查中发现:从零时起,井内空气中 CO 的浓度达到 4 mg/L ,今后浓度呈直线型增添,在第 7 小时达到最高值 46 mg/L ,发生爆炸;爆炸后,空气中的 CO 浓度成反比率降落 .如图 11,依据题中有关信息回答以下问题:(1)求爆炸前后 空气中 CO 浓度 y 与时间 x 的函数关系式,并写出相应的..图 10自变量取值范围;(2)当空气中的 CO 浓度达到 34 mg/L 时,井下 3 km 的矿工接到自动报警信号,这时他们起码要以多少 km/h 的速度撤退才能在爆炸前逃生?(3)矿工只有在空气中的 CO 浓度降到 4 mg/L 及以下时,才能回到矿井展开生产自救,求矿工起码在爆炸后多少小时才能下井(四)(此题 2 小题,共 15 分)得分评卷人22.(6 分)已知:如图 12,在锐角∠ MAN 的边 AN 上取一点B ,以 AB 为直径的半圆 O 交 AM 于 C ,交∠ MAN 的角均分线于 E ,过点 E 作 ED ⊥ AM ,垂足为 D ,反向延伸 ED 交 AN 于 F.(1)猜想 ED 与⊙ O 的地点关系,并说明原因;若 ∠1,AE= 3 ,求暗影部分的面积 . 图 11(2) cos MAN= 223.(9 分)如图 13,对称轴为 x 3 的抛物线 y ax 22x 与 x 轴订交于点 B 、 O .(1)求抛物线的分析式,并求出极点 A 的坐标;(2)连接 AB ,把 AB 所在的直线平移,使它经过原点O ,获得直线 l.点 P 是l 上一动点 .设以点 A 、B 、O 、 P 为极点的四边形面积为 S ,点 P 的横坐标为 t ,当 0<S ≤18 时,求 t 的取值范围;图 12(3)在( 2)的条件下,当 t 取最大值时, 抛物线上能否存在点 Q ,使△ OP Q 为直角三角形且 OP 为直角边 .若存在 ,直接写出点 Q 的坐标;若不存在,说明原因 .达州市 2010 年高中阶段教育学校招生一致考试数学参照答案及评分建议8 .3241. C2. A3. D4. D5. C6. A7. C8. B7 .3219. 0 10.6 10311. 1012.30°13.y=-2x y=x+3,y=-x2+514. 1015. (1)55 21516. 1=1-13 =0.42.1 = 3 1 x2 2x 12x+1=3 x-2 .2 x=7,3x=71=3 .x 22x 1x=71 3.4x 2 2x 1117.56A E 1AEP=1.7621118., ABNAEM.1ABCD,AB=DC B= C= DAB=90 °. 2NCDM NAEMAE=CD E= D=90° , EAN= C=90° .3 AB=AEB= ED AB= EANBAN+ NAM= EAM+ NAMBAN= EAM.4ABNAEMABNAEM.519.1.1x m(16 2x)(12 2x)112,2 162x12, x212.x2 12, x 2 .32m.42.6214 20.1AC D DF ACBE F EFDE.11. 2 2 ,AC DF.ACB=DFE.ABC= DEF=90° ,ABC DEF.4AB BC,DE EFAB=5m BC=4m,EF=6m,5 4,DE 6DE=(m).621.1y x y k1 x by k1x b0 47 46b4.k16 b ,7k146b4y6x4,x0≤x≤7.(x =0x =7)2y xyk2 . k27,46xyk2x46 .k2322 , 7322xx 7.y4x2y =34y 6x 4 ,6x+4=34x=5 .7-5=2().3÷2=(km/h).6(3) y =4y 322,x ==().x.8215四川省达州市中考数学试题版含答案22. 1DEO. 1OE.AEMAN,1=2.OA=OE,2=3.1=3,OEAD.OEF=ADF=90 °, 2OE DE E.EOEDO.32cos MAN= 1,2MAN=60 °.2= 1MAN= 1×60° =30°,2 2AFD=90° - MAN=90 °-60°=30° . 2= AFDEF=AE=3 .4Rt OEFtan OFE= OEEFtan30°=OE3OE=1.54=MAN=60 °S= SV OEFSS 扇形OEB=31.6 2 623.1BO 0 0x=3,四川省达州市中考数学试题版含答案∴点 B 坐标为( 6,0) .将点 B 坐标代入 y ax 22x 得:36a +12=0, ∴ a =1.31∴抛物线分析式为 yx 2 2x .2 分1 323 当 x =3 时, y233,3∴极点 A 坐标为( 3,3).3 分(说明:可用对称轴为 xb ,求 a 值 ,用极点式求极点 A 坐标 .)2a(2)设直线 AB 分析式为 y=kx+b.∵ A (3,3),B(6,0),∴ 6k b0 解得k1, ∴ yx 6 .3k b3b6∵直线 l ∥ AB 且过点 O,∴直线 l 分析式为 yx .∵点 p 是 l 上一动点且横坐标为 t ,∴点 p 坐标为( t, t ).4 分当 p 在第四象限时( t >0),1=12×6×3+ ×6× t=9+3t .∵0<S ≤18,∴0<9+3t ≤18,∴ -3< t ≤3.又 t >0,∴0< t ≤分当 p 在第二象限时( t < 0) ,作 PM ⊥ x 轴于 M ,设对称轴与 x 轴交点为 N. 则四川省达州市中考数学试题版含答案=-3 t +9.∵0<S≤18,∴0<-3 t +9≤18,∴-3≤t<3.又 t <0,∴-3≤t<分∴t的取值范围是 -3≤t< 0 或 0<t≤3.(3)存在,点Q坐标为( 3,3)或( 6, 0)或( -3, -9).9 分(说明:点 Q坐标答对一个给 1 分)。

【2012中考真题】达州 中考数学试卷(有答案)

【2012中考真题】达州 中考数学试卷(有答案)

达州市2012年高中阶段教育学校招生统一考试数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至10页.考试时间100分钟,满分100分.第Ⅰ卷(选择题 共24分)1.答第Ⅰ卷前,考生务必将姓名、准考证号、考试科目按要求填涂在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题号的答案标号涂黑,不能将答案答在试题卷上.3.考试结束,将本试卷和答题卡一并交回. 一、选择题:(本题8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-2的倒数是A 、2B 、-2C 、21 D 、21- 2.下列几何图形中,对称性与其它图形不同的是3.如图,⊙O是△ABC 的外接圆,连结OB 、OC ,若OB=BC , 则∠BAC 等于A 、60°B 、45°C 、30°D 、20° 4.今年我市参加中考的学生人数约为41001.6⨯人.对于这个 近似数,下列说法正确的是A 、精确到百分位,有3个有效数字B 、精确到百位,有3个有效数字C 、精确到十位,有4个有效数字D 、精确到个位,有5个有效数字5.2011年达州市各县(市、区)的户籍人口统计表如下:A 、145万人 130万人B 、103万人 130万人C 、42万人 112万人D 、103万人 112万人6.一次函数)0(1≠+=k b kx y 与反比例函数)0(2≠=m xmy , 在同一直角坐标系中的图象如图所示,若1y ﹥2y ,则x 的取值 范围是A 、-2﹤x ﹤0或x ﹥1B 、x ﹤-2或0﹤x ﹤1C 、x ﹥1D 、-2﹤x ﹤17.为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,由题意列出的方程是 A 、141401101+=-+-x x x B 、141401101-=+++x x x C 、141401101-=+-+x x x D 、401141101-=++-x x x 8.如图,在梯形ABCD 中,AD ∥BC ,E 、F 分别是AB 、CD 的中点,则下列结论:①EF ∥AD ; ②S △ABO =S △DCO ;③△OGH 是等腰三角形;④BG=DG ;⑤EG=HF.其中正确的个数是 A 、1个 B 、2个 C 、3个 D 、4个达州市2012年高中阶段教育学校招生统一考试数 学注意事项:1.用蓝黑色钢笔或蓝黑色圆珠笔直接答在试题卷上.第Ⅱ卷(非选择题 共76分)二、填空题(本题7个小题,每小题3分,共21分)把最后答案直接填在题中的横线上.9. 写一个比-3小的整数 .10.实数m 、n 在数轴上的位置如右图所示,化简:n m -= .11.已知圆锥的底面半径为4,母线长为6,则它的侧面积是 .(不取近似值) 12.如右图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为. 13.若关于x 、y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +﹥1,则k 的取值范围 是 . 14.将矩形纸片ABCD ,按如图所示的方式折叠,点A 、点C 恰好落在对角线BD 上,得到菱形BEDF.若BC=6,则AB 的长为 .15.将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 .三、解答题:(55分)解答时应写出必要的文字说证明过程或演算步骤. (一)(本题2个小题,共9分)16.(4分)计算:-+-8)2012(04sin 1)21(45-+17.(5分)先化简,再求值:624)373(+-÷+--a a a a ,其中1-=a (二)(本题2个小题,共12分)18.(6分)今年5月31日是世界卫生组织发起的第25个“世界无烟日”.为了更好地宣传吸烟的危害,某中学八年级一班数学兴趣小组设计了如下调查问卷,在达城中心广场随机调查了部分吸烟人群,并将调查结果绘制成统计图.评卷人根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整.(2)在扇形统计图中, C选项的人数百分比是,E选项所在扇形的圆心角的度数是 .(3)若通川区约有烟民14万人,试估计对吸烟有害持“无所谓”态度的约有多少人?你对这部分人群有何建议?19.(6分)大学生王强积极响应“自主创业”的号召,准备投资销售一种进价为每件40元的小家电.通过试营销发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.(1)求y与x的函数关系式.(2)设王强每月获得的利润为p(元),求p与x之间的函数关系式;如果王强想要每月获得2400元的利润,那么销售单价应定为多少元?(三)(本题2个小题,共15分)20.(7分)数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线. 根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________. ②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)21.(8分) 问题背景若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x ,面积为s ,则s 与x 的函数关系式为: x x x s (212+-=﹥0),利用函数的图象或通过配方均可 求得该函数的最大值. 提出新问题若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少? 分析问题若设该矩形的一边长为x ,周长为y ,则y 与x 的函数关系式为:)1(2xx y += (x ﹥0),问题就转化为研究该函数的最大(小)值了. 解决问题借鉴我们已有的研究函数的经验,探索函数)1(2xx y +=(x ﹥0)的最大(小)值. (1)实践操作:填写下表,并用描点法 画出函数)1(2xx y +=(x﹥0)的图象:(2)观察猜想:观察该函数的图象,猜想当x = 时,函数)1(2xx y +=(x ﹥0)有最 值(填“大”或“小”),是 .(3)推理论证:问题背景中提到,通过配方可求二次函数x x x s (212+-=﹥0)的最 大值,请你尝试通过配方求函数)1(2xx y +=(x ﹥0)的最大(小)值,以证明你的 猜想. 〔提示:当x >0时,2)(x x =〕(四)(本题2个小题,共19分)22.(7分)如图,C 是以AB 为直径的⊙O 上一点,过O 作OE ⊥AC 于点E ,过点A 作⊙OF ,连结CF 并延长交BA 的延长线于点P. (1)求证:PC 是⊙O 的切线. (2)若AF=1,OA=22,求PC 的长.23.(12分)如图1,在直角坐标系中,已知点A (0,2)、点B (-2,0),过点B 和线段OA 的中点C 作直线BC ,以线段BC 为边向上作正方形BCDE. (1)填空:点D 的坐标为( ),点E 的坐标为( ). (2)若抛物线)0(2≠++=a c bx ax y 经过A 、D 、E 三点,求该抛物线的解析式.(3)若正方形和抛物线均以每秒5个单位长度的速度沿射线BC 同时向上平移,直至正方形的顶点E 落在y 轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y 轴右侧部分的面积为s ,求s 关于平移时间t (秒)的函数关系式,并写出相应自变量t 的取值范围.②运动停止时,求抛物线的顶点坐标.达州市2012年高中阶段教育学校招生统一考试数学参考答案及评分意见一、选择题(本题8个小题. 每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.D2.A3.C4.B5.D6.A7.B8.D 二、填空题:(本题7个小题.每小题3分,共21分)把最后答案直接填在题中的横线上.9.-2(答案不唯一) 10.n-m 11.24π 12.9113.k >2 14.32 15.210 三、解答题:(55分)解答时应写出必要的文字说明、证明过程或演算步骤 16.解:原式=2224221+⨯-+………………………………………………..(2分) =222221+-+………………………………………………………………….(3分) =3………………………………………………………………………………………..(4分)17.解:原式=)3(243162+-÷+-a a a a ……………………………………………………(1分) =4)3(23)4)(4(-+∙+-+a a a a a ……………………………………………………………(2分)=2(a +4)=2a +8…………………………………………………………………………………….(3分)当a=-1时,原式=2×(-1)+8…………………………………………………………….(4分) =6……………………………………………………………………….(5分)18.(1)300(1分) 补全统计图如下:…………………………………………………………..(2分)(2)26%……………………………………………….(3分)36°………………………………………………….(4分)(3)解:A 选项的百分比为:30012×100%=4% 对吸烟有害持“无所谓” 态度的人数为:14×4%=0.56(万)………(5分)建议:只要答案合理均可得分………………………………………………..(6分) 19.解(1)设y 与x 的函数关系式为:)0(≠+=k b kx y 由题意得⎩⎨⎧=+=+1006516050b k b k …………………………………………………………………………..(1分)解得⎩⎨⎧=-=3604b k ………………………………………………………………………….(2分).∴3604+-=x y (40≤x ≤90)……………………………………………………(3分) (2)由题意得,p 与x 的函数关系式为: )3604)(40(+--=x x p=1440052042-+-x x ………………………………………………………………..(4分)当P=2400时24001440052042=-+-x x …………………………………………………………(5分) 解得601=x , 702=x∴销售单价应定为60元或70元……………………………………………………..(6分) 20.(1)SSS ………………………………………………………………………………(1分) (2)解:小聪的作法正确.理由:∵PM ⊥OM , PN ⊥ON∴∠OMP=∠ONP=90° 在Rt △OMP 和Rt △ONP 中 ∵OP=OP , OM=ON∴Rt △OMP ≌Rt △ONP (HL )……………………………………………………….(3分) ∴∠MOP=∠NOP∴OP 平分∠AOB ………………………………………………………………………(4分) (3)解:如图所示. …………………………………………………………………..(6分)步骤:①利用刻度尺在OA 、OB 上分别截取OG=OH. ②连结GH ,利用刻度尺作出GH 的中点Q. ③作射线OQ.则OQ 为∠AOB 的平分线. ………………………………………(7分)20.(1)…………………………………………..(1分)………………………………………….(3分) (2)1、小、4………………………………………………………………………..(5分)(3)证明:⎥⎦⎤⎢⎣⎡+=22)(1)(2x x y ⎥⎦⎤⎢⎣⎡++-=2)(12)(222x x =4)1(22+-xx ………………………………………………(7分)当01=-xx 时,y 的最小值是4即x =1时,y 的最小值是4………………………………………………………..(8分) 22.(1)证明:连结OC ∵OE ⊥AC ∴AE=CE ∴FA=FC∴∠FAC=∠FCA ∵OA=OC∴∠OAC=∠OCA∴∠OAC+∠FAC=∠OCA+∠FCA即∠FAO=∠FCO ………………………………………………………………….(2分) ∵FA 与⊙O 相切,且AB 是⊙O 的直径 ∴FA ⊥AB∴∠FCO=∠FAO=90°∴PC 是⊙O 的切线………………………………………………………………..(3分) (2)∵PC 是⊙O 的切线 ∴∠PCO=90° 而∠FPA=∠OPC ∠PAF=90°∴△PAF ∽△PCO …………………………………………………………………..(4分)∴COAFPC PA = ∵CO=OA=22,AF=1∴PC=22PA …………………………………………………………………..(5分) 设PA=x ,则PC=x 22在Rt △PCO 中,由勾股定理得222)22()22()22(+=+x x …………………………………………..(6分) 解得:724=x ∴PC 716=……………………………………………………………………….(7分) 23.(1)D (-1,3)、E (-3,2)(2分) (2)抛物线经过(0,2)、(-1,3)、(-3,2),则⎪⎩⎪⎨⎧=+-=+-=23932c b a c b a c ……………………………………………………………….(3分)解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=23121c b a∴223212+--=x x y ……………………………………………………….(4分)(3)①当点D 运动到y 轴上时,t=12. 当0<t ≤21时,如右图 设D ′C ′交y 轴于点F∵ tan ∠BCO=OCOB=2,又∵∠BCO=∠FCC ′ ∴ tan ∠FCC ′=2, 即C O C F ''=2∵CC ′=5t,∴FC ′=25t.∴S △CC ′F =21CC ′·FC ′=521t ×52t=5 t 2…………………………………(5分) 当点B 运动到点C 时,t=1. 当21<t ≤1时,如右图设D ′E ′交y 轴于点G ,过G 作GH ⊥B ′C ′于H. 在Rt △BOC 中,BC=51222=+ ∴GH=5,∴CH=21GH=25 ∵CC ′=5t,∴HC ′=5t-25,∴GD ′=5t-25∴S 梯形CC ′D ′G =21(5t-25+5t) 5=5t-45……………………………(7分)当点E 运动到y 轴上时,t=23.当1<t ≤23时,如右图所示设D ′E ′、E ′B ′分别交y 轴于点M 、N ∵CC ′=5t ,B ′C ′=5,∴CB ′=5t-5, ∴B ′N=2CB ′=52t-52 ∵B ′E ′=5,∴E ′N=B ′E ′-B ′N=53-52t∴E ′M=21E ′N=21(53-52t) ∴S △MNE ′ =21(53-52t)·21(53-52t)=5t 2-15t+445∴S 五边形B ′C ′D ′MN =S 正方形B ′C ′D ′E ′ -S △MNE ′ =-2)5((5t 2-15t+445)=-5t 2+15t-425综上所述,S 与x 的函数关系式为:11 当0<t ≤21时, S=52t 当21<t ≤1时,S=5t 45- 当1<t ≤23时,S =-5t 2+15t 425-………………………………………………..(9分)②当点E 运动到点E ′时,运动停止.如下图所示∵∠CB ′E ′=∠BOC=90°,∠BCO=∠B ′CE ′∴△BOC ∽△E ′B ′C∴CE BC E B OB '='' ∵OB=2,B ′E ′=BC=5∴CE '=552 ∴CE ′=25 ∴OE ′=OC+CE ′=1+25=27 ∴E ′(0,27)…………………………………………………………………..(10分) 由点E (-3,2)运动到点E ′(0,27),可知整条抛物线向右平移了3个单位,向上平移了23个单位. ∵223212+--=x x y =825)23(212++-=x y ∴原抛物线顶点坐标为(23-,825)……………………………………………(11分) ∴运动停止时,抛物线的顶点坐标为(23,837)…………………………(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

达州市2012年高中阶段教育学校招生统一考试数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至10页.考试时间100分钟,满分100分.第Ⅰ卷(选择题 共24分)1.答第Ⅰ卷前,考生务必将姓名、准考证号、考试科目按要求填涂在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题号的答案标号涂黑,不能将答案答在试题卷上.3.考试结束,将本试卷和答题卡一并交回.一、选择题:(本题8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-2的倒数是 A 、2B 、-2C 、21 D 、21- 2.下列几何图形中,对称性与其它图形不同的是3.如图,⊙O 是△ABC 的外接圆,连结OB 、OC,若OB=BC, 则∠BAC 等于A 、60°B 、45°C 、30°D 、20° 4.今年我市参加中考的学生人数约为41001.6⨯人.对于这个 近似数,下列说法正确的是A 、精确到百分位,有3个有效数字B 、精确到百位,有3个有效数字C 、精确到十位,有4个有效数字D 、精确到个位,有5个有效数字5.2011年达州市各县(市、区)的户籍人口统计表如下: 县(市、区) 通川区 达县 开江县 宣汉县 大竹县 渠 县 万源市 人口数(万人)421356013011214559则达州市各县(市、区)人口数的极差和中位数分别是 A 、145万人 130万人 B 、103万人 130万人 C 、42万人 112万人 D 、103万人 112万人 6.一次函数)0(1≠+=k b kx y 与反比例函数)0(2≠=m xmy , 在同一直角坐标系中的图象如图所示,若1y ﹥2y ,则x 的取值 范围是A 、-2﹤x ﹤0或x ﹥1B 、x ﹤-2或0﹤x ﹤1C 、x ﹥1D 、-2﹤x ﹤17.为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,由题意列出的方程是 A 、141401101+=-+-x x x B 、141401101-=+++x x x C 、141401101-=+-+x x x D 、401141101-=++-x x x 8.如图,在梯形ABCD 中,AD ∥BC,E 、F 分别是AB 、CD 的中点,则下列结论:①EF ∥AD ; ②S △ABO =S △DCO ;③△OGH 是等腰三角形;④BG=DG ;⑤EG=HF.其中正确的个数是A 、1个B 、2个C 、3个D 、4个达州市2012年高中阶段教育学校招生统一考试数 学注意事项:1.用蓝黑色钢笔或蓝黑色圆珠笔直接答在试题卷上. 2.答卷前将密封线内各项目填写清楚. 题号 一二总分总分人(一) (二) (三) (四) 得分第Ⅱ卷(非选择题 共76分)二、填空题(本题7个小题,每小题3分,共21分)把最后答案直接填在题中的横线上.9. 写一个比-3小的整数 . 10.实数m 、n 在数轴上的位置如右图所示,化简:n m -= .11.已知圆锥的底面半径为4,母线长为6,则它的侧面积是 .(不取近似值) 12.如右图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车....经过该路口都向右转的概率为 .13.若关于x 、y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +﹥1,则k 的取值范围是 .14.将矩形纸片ABCD,按如图所示的方式折叠,点A 、点C 恰好落在对角线BD 上,得到菱形BEDF.若BC=6,则AB 的长为 .15.将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 .得分 评卷人三、解答题:(55分)解答时应写出必要的文字说明、证明过程或演算步骤. (一)(本题2个小题,共9分)16.(4分)计算:-+-8)2012(04sin 1)21(45-+17.(5分)先化简,再求值:624)373(+-÷+--a a a a ,其中1-=a得分 评卷人得分评卷人(二)(本题2个小题,共12分)18.(6分)今年5月31日是世界卫生组织发起的第25个“世界无烟日”.为了更好地宣传吸烟的危害,某中学八年级一班数学兴趣小组设计了如下调查问卷,在达城中心广场随机调查了部分吸烟人群,并将调查结果绘制成统计图.根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整.(2)在扇形统计图中,C选项的人数百分比是 ,E选项所在扇形的圆心角的度数是 .(3)若通川区约有烟民14万人,试估计对吸烟有害持“无所谓”态度的约有多少人?你对这部分人群有何建议?19.(6分)大学生王强积极响应“自主创业”的号召,准备投资销售一种进价为每件40元的小家电.通过试营销发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.(1)求y与x的函数关系式.(2)设王强每月获得的利润为p(元),求p与x之间的函数关系式;如果王强想要每月获得2400元的利润,那么销售单价应定为多少元?得分评卷人(三)(本题2个小题,共15分)20.(7分)数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下: 小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)21.(8分)问题背景若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s ,则s 与x 的函数关系式为: x x x s (212+-=﹥0),利用函数的图象或通过配方均可 求得该函数的最大值. 提出新问题若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少? 分析问题若设该矩形的一边长为x ,周长为y ,则y 与x 的函数关系式为:)1(2xx y += (x ﹥0),问题就转化为研究该函数的最大(小)值了. 解决问题借鉴我们已有的研究函数的经验,探索函数)1(2xx y +=(x ﹥0)的最大(小)值. (1)实践操作:填写下表,并用描点法画出函数)1(2xx y +=(x ﹥0)的图象:(2)观察猜想:观察该函数的图象,猜想当x = 时,函数)1(2xx y +=(x ﹥0)有最 值(填“大”或“小”),是 .(3)推理论证:问题背景中提到,通过配方可求二次函数x x x s (212+-=﹥0)的最 大值,请你尝试通过配方求函数)1(2xx y +=(x ﹥0)的最大(小)值,以证明你的猜想. 〔提示:当x >0时,2)(x x =〕得分 评卷人(四)(本题2个小题,共19分)22.(7分)如图,C是以AB为直径的⊙O上一点,过O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连结CF并延长交BA的延长线于点P.(1)求证:PC是⊙O的切线.2,求PC的长.(2)若AF=1,OA=223.(12分)如图1,在直角坐标系中,已知点A(0,2)、点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC 为边向上作正方形BCDE. (1)填空:点D 的坐标为( ),点E 的坐标为( ).(2)若抛物线)0(2≠++=a c bx ax y 经过A 、D 、E 三点,求该抛物线的解析式. (3)若正方形和抛物线均以每秒5个单位长度的速度沿射线B C 同时向上平移,直至正方形的顶点E 落在y 轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y 轴右侧部分的面积为s ,求s 关于平移时间t (秒)的函数关系式,并写出相应自变量t 的取值范围. ②运动停止时,求抛物线的顶点坐标.达州市2012年高中阶段教育学校招生统一考试数学参考答案及评分意见一、选择题(本题8个小题. 每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.D2.A3.C4.B5.D6.A7.B8.D二、填空题:(本题7个小题.每小题3分,共21分)把最后答案直接填在题中的横线上.9.-2(答案不唯一) 10.n-m 11.24π 12. 91 13.k >2 14.32 15.210三、解答题:(55分)解答时应写出必要的文字说明、证明过程或演算步骤16.解:原式=2224221+⨯-+………………………………………………..(2分) =222221+-+………………………………………………………………….(3分) =3………………………………………………………………………………………..(4分)17.解:原式=)3(243162+-÷+-a a a a ……………………………………………………(1分) =4)3(23)4)(4(-+•+-+a a a a a ……………………………………………………………(2分) =2(a +4)=2a +8…………………………………………………………………………………….(3分) 当a=-1时,原式=2×(-1)+8…………………………………………………………….(4分) =6……………………………………………………………………….(5分)18.(1)300(1分)补全统计图如下:…………………………………………………………..(2分)(2)26%……………………………………………….(3分)36°………………………………………………….(4分)(3)解:A 选项的百分比为:30012×100%=4% 对吸烟有害持“无所谓”态度的人数为:14×4%=0.56(万)………(5分)建议:只要答案合理均可得分………………………………………………..(6分)19.解(1)设y 与x 的函数关系式为:)0(≠+=k b kx y 由题意得⎩⎨⎧=+=+1006516050b k b k …………………………………………………………………………..(1分) 解得⎩⎨⎧=-=3604b k ………………………………………………………………………….(2分). ∴3604+-=x y (40≤x ≤90)……………………………………………………(3分)(2)由题意得,p 与x 的函数关系式为:)3604)(40(+--=x x p=1440052042-+-x x ………………………………………………………………..(4分) 当P=2400时 24001440052042=-+-x x …………………………………………………………(5分) 解得601=x , 702=x∴销售单价应定为60元或70元……………………………………………………..(6分)20.(1)SSS ………………………………………………………………………………(1分)(2)解:小聪的作法正确.理由:∵PM ⊥OM , PN ⊥ON∴∠OMP=∠ONP=90°在Rt △OMP 和Rt △ONP 中∵OP=OP ,OM=ON∴Rt △OMP ≌Rt △ONP(HL)……………………………………………………….(3分) ∴∠MOP=∠NOP∴OP 平分∠AOB ………………………………………………………………………(4分)(3)解:如图所示. …………………………………………………………………..(6分)步骤:①利用刻度尺在OA 、OB 上分别截取OG=OH.②连结GH,利用刻度尺作出GH 的中点Q.③作射线OQ.则OQ 为∠AOB 的平分线. ………………………………………(7分)20.(1)…………………………………………..(1分)………………………………………….(3分)(2)1、小、4………………………………………………………………………..(5分)(3)证明:⎥⎦⎤⎢⎣⎡+=22)(1)(2x x y ⎥⎦⎤⎢⎣⎡++-=2)(12)(222x x =4)1(22+-x x ………………………………………………(7分) 当01=-x x 时,y 的最小值是4即x =1时,y 的最小值是4………………………………………………………..(8分)22.(1)证明:连结OC∵OE ⊥AC∴AE=CE∴FA=FC∴∠FAC=∠FCA∵OA=OC∴∠OAC=∠OCA∴∠OAC+∠FAC=∠OCA+∠FCA即∠FAO=∠FCO ………………………………………………………………….(2分) ∵FA 与⊙O 相切,且AB 是⊙O 的直径∴FA ⊥AB∴∠FCO=∠FAO=90°∴PC 是⊙O 的切线………………………………………………………………..(3分)(2)∵PC 是⊙O 的切线∴∠PCO=90°而∠FPA=∠OPC∠PAF=90°∴△PAF ∽△PCO …………………………………………………………………..(4分) ∴CO AF PC PA = ∵CO=OA=22,AF=1∴PC=22PA …………………………………………………………………..(5分) 设PA=x ,则PC=x 22在Rt △PCO 中,由勾股定理得222)22()22()22(+=+x x …………………………………………..(6分) 解得:724=x ∴PC 716=……………………………………………………………………….(7分)23.(1)D(-1,3)、E(-3,2)(2分)(2)抛物线经过(0,2)、(-1,3)、(-3,2),则⎪⎩⎪⎨⎧=+-=+-=23932c b a c b a c ……………………………………………………………….(3分)解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=23121c b a ∴223212+--=x x y ……………………………………………………….(4分) (3)①当点D 运动到y 轴上时,t=12. 当0<t ≤21时,如右图 设D ′C ′交y 轴于点F∵tan ∠BCO=OC OB =2,又∵∠BCO=∠FCC ′ ∴tan ∠FCC ′=2, 即C O C F ''=2 ∵CC ′=5t,∴FC ′=25t.∴S △CC ′F =21CC ′·FC ′=521t ×52t=5 t 2…………………………………(5分) 当点B 运动到点C 时,t=1.当21<t ≤1时,如右图 设D ′E ′交y 轴于点G,过G 作GH ⊥B ′C ′于H.在Rt △BOC 中,BC=51222=+∴GH=5,∴CH=21GH=25 ∵CC ′=5t,∴HC ′=5t-25,∴GD ′=5t-25 ∴S 梯形CC ′D ′G =21(5t-25+5t) 5=5t-45……………………………(7分)当点E 运动到y 轴上时,t=23. 当1<t ≤23时,如右图所示 设D ′E ′、E ′B ′分别交y 轴于点M 、N ∵CC ′=5t,B ′C ′=5,∴CB ′=5t-5,∴B ′N=2CB ′=52t-52∵B ′E ′=5,∴E ′N=B ′E ′-B ′N=53-52t∴E ′M=21E ′N=21(53-52t) ∴S △MNE ′=21(53-52t)·21(53-52t)=5t 2-15t+445 ∴S 五边形B ′C ′D ′MN =S 正方形B ′C ′D ′E ′-S △MNE ′=-2)5((5t 2-15t+445)=-5t 2+15t-425 综上所述,S 与x 的函数关系式为:当0<t ≤21时, S=52t 当21<t ≤1时,S=5t 45- 当1<t ≤23时,S =-5t 2+15t 425-………………………………………………..(9分)②当点E 运动到点E ′时,运动停止.如下图所示∵∠CB ′E ′=∠BOC=90°,∠B CO=∠B ′CE ′∴△BOC ∽△E ′B ′C∴CE BC E B OB '='' ∵OB=2,B ′E ′=BC=5∴CE '=552∴CE ′=25 ∴OE ′=OC+CE ′=1+25=27∴E ′(0,27)…………………………………………………………………..(10分) 由点E(-3,2)运动到点E ′(0,27),可知整条抛物线向右平移了3个单位,向上平移了23个单位.∵223212+--=x x y =825)23(212++-=x y ∴原抛物线顶点坐标为(23-,825)……………………………………………(11分) ∴运动停止时,抛物线的顶点坐标为(23,837)…………………………(12分)。

相关文档
最新文档