直线一级倒立摆的仿真分析

合集下载

(最新整理)倒立摆实验报告

(最新整理)倒立摆实验报告

的维数,若 r=n,则系统能控,能够进行极点配置。
第二步:受控系统中引入状态反馈向量 K, K k1 kn 。引入状态反
馈向量后系统特征多项式为: f (s) sI ( A BK ) sn a1sn1 an1s an
(11)
设期望特征根为 1*, 2*,, n* ,则期望特征多项式为:
==
(5) (6)
x 0 1 0 0 x 0
x
x
0 0
0 0
0 0
0
x
1
1 0
0 0 29.4 0 3
x
y
x
1 0
0 0
0 1
0 0
x
0 0
(7) (8)
(9)
2 、PID 控制器设计与调节 PID 整定说明: (1)比例(P 作用)增大,系统响应快,对提高稳态精度有益,但过大易
图 4 PID 控制器参数设计界面
1.4 PID 控制器设计
使用 SISO 界面的
添加零点和极
点,使补偿器 C 为 PID 形式。
1
KDS2 + KPS + KI
(1 + aS)(1 + bS)
GPID = KP + KIS + KDS =
S
=k∗
S
(13)
使用 SISO 界面的“Analysis”选项框中 Response to Step Command 的命 令即可查看被控对象阶跃响应曲线。通过调整 SISO 界面添加的零点,同时观察 单位阶跃输入时的闭环响应曲线,寻找合适的 P、I、D 参数。设合适的补偿器 下的根轨迹和参数以及响应曲线如图 5 和图 6:
x (x, x, ,)

(完整)倒立摆实验报告

(完整)倒立摆实验报告

专业实验报告摆杆受力和力矩分析θmg VH θX V X H图2 摆杆系统摆杆水平方向受力为:H 摆杆竖直方向受力为:V 由摆杆力矩平衡得方程:cos sin Hl Vl I φφθθπφθφ⎧-=⎪=-⎨⎪=-⎩(1) 代入V 、H ,得到摆杆运动方程。

当0φ→时,cos 1θ=,sin φθ=-,线性化运动方程:2()I ml mgl mlx θθ+-=1.2 传递函数模型以小车加速度为输入、摆杆角度为输出,令,进行拉普拉斯变换得到传递函数:22()()mlG s ml I s mgl=+- (2) 倒立摆系统参数值:M=1.096 % 小车质量 ,kg m=0.109 % 摆杆质量 ,kg0.1β= % 小车摩擦系数g=9.8 % 重力加速度,l=0.25 % 摆杆转动轴心到杆质心的长度,m I= 0.0034 % 摆杆转动惯量,以小车加速度为输入、摆杆角度为输出时,倒立摆系统的传递函数模型为:20.02725()0.01021250.26705G s s =- (3) 1.3 倒立摆系统状态空间模型以小车加速度为输入,摆杆角度、小车位移为输出,选取状态变量:(,,,)x x x θθ= (4)由2()I ml mgl mlx θθ+-=得出状态空间模型001001000000001330044x x x x x g g lμθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦(5) μθθθ'⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001 xx x y (6) 由倒立摆的参数计算出其状态空间模型表达式:(7)010000001000100029.403x x x x x μθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦(8)00x μθθ⎤⎥⎡⎤⎥'+⎢⎥⎥⎣⎦⎥⎥⎦作用)增大,系统响应快,对提高稳态精度有益,但过大易作用)对改善动态性能和抑制超调有利,但过强,即校正装Ax B Cx μ+= 1n x ⎥⎥⎥⎦,1n x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1111n n nn a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ , 1n B b ⎥⎥⎥⎦,]n C c =。

(完整word版)一级倒立摆的Simulink仿真

(完整word版)一级倒立摆的Simulink仿真

单级倒立摆稳定控制直线-级倒立摆系统在忽略了空'(阻力及各种摩擦Z后,町抽象成小车和匀质摆杆组成的系统,如图1所示。

图2控制系统结构假设小车质量M=0.5kg,匀质摆朴质量m=0.2kg,摆朴长度21 =0.6m, x(t)为小车的水半位移,〃为摆杆的角位移,g = 9.8m/s2o控制的目标是通过外力u⑴使得摆直立向上(即&(t) = 0) o该系统的非线性模型为:(J +inl‘)典(nilcos^)&= niglsin^ (ml cos。

)翼(M其中J二一ml+ m)&= (mlsin0)6^ + u一、非线性模型线性化及建立状态空间模型因为在工作点附近(& = 0.必0)对系统进行线竹:•化,所以可以做如下线性化处理: 03 Q1sin0« 0 --------- 、COS&Q 1-----------------3! 2!当e很小时,由COS0V sine的幕级数展开式可知,忽略高次项后, 可得cos0~l, sin0=0, 0Z 2=0:因此模型线性化后如下:(J+nil A2)0r z +mlx z z =mgl0 (a)取系统的状态变量为% = x,x2 =仪X3 = x4=灰输出y = [x OF包扌舌小车位移和摆杆的角位移.由线性化后运动方程组得故空间状态方程如下:■010 0 ■「xT■ ■x2*00-2.6727 0x21 1.8182 x3f =000 1x3+0_x4J|_x40031.1818 0-4.5455uml0f r + (M+m) x''二u (b) 其中J = -ml3■ ■ xl ■ ■Xx2x1 x30 x4&Y=xlx3X1/二x'=x2—沁—册4(M + m) 一3m44(M + m) - 3m u3(M +m)g4(M + m)l 一3ni-34(M + m)l 一311119 1 00 ''xlM00 -3mg0am xl x2‘ _4(M + m) 一3m x2 x3* ~00 01x3x4J00 3(M + m)g0[_x44(M + m)l - 3ml 044(M + m) - 3m 0一34(M + m)l - 3nil二. 通过Matlab 仿真判断系统的可控与可观性,并说明其物理意义。

直线一级倒立摆的PID和LQR控制及其仿真

直线一级倒立摆的PID和LQR控制及其仿真

KEY WORDS: Linear inverted pendulum, Control, PID, LQR, simulation
BY NB GONG
II
华北电力大学毕业设计(论文)


摘 要 ........................................................................................................................................... I ABSTRACT ..................................................................................................................................... II 第 1 章:绪论 .................................................................................................................................. 1 1.1 倒立摆简介......................................................................................................................... 1 1.1.1 倒立摆分类.............................................................................................................. 2 1.1.2 倒立摆的特性......................................................................................................... 2 1.1.3 倒立摆的控制目标................................................................................................. 3 1.1.4 倒立摆的控制方式................................................................................................. 3 1.2 倒立摆控制研究的发展及其现状.................................................................................... 4 1.3 本文的主要内容................................................................................................................ 7 第 2 章:直线一级倒立摆系统数学模型....................................................................................... 8 2.1 直线一级倒立摆系统的物理模型.................................................................................... 8 2.2 直线一级倒立摆系统的数学模型.................................................................................... 9 2.3 直线一级倒立摆系统的系统分析.................................................................................. 12 2.3.1 直线一级倒立摆系统的系统稳定性分析 ........................................................... 12 2.3.2 直线一级倒立摆系统的系统能控性、能观性分析 ........................................... 14 第 3 章:直线一级倒立摆系统的 PID 控制及仿真..................................................................... 16 3.1 PID 控制概述 .................................................................................................................... 16 3.2 PID 的控制规律、原理 .................................................................................................... 17 3.3 PID 参数整定 .................................................................................................................... 17 3.4 直线一级倒立摆双闭环 PID 控制算法 ........................................................................... 18 第 4 章:直线一级倒立摆系统的线性二次最优控制及仿真..................................................... 24 4.1 线性二次最优控制简介.................................................................................................. 24 4.2 直线一级倒立摆 LQR 控制算法及仿真 ......................................................................... 26 结 论 ........................................................................................................................................ 35 参考文献 .......................................................... 36 致 谢 ........................................................................................................................................ 38

一级倒立摆系统仿真及分析

一级倒立摆系统仿真及分析

一级倒立摆系统仿真及分析1.摘要本次课程设计,我们小组选择一级倒立摆系统作为物理模型,首先通过物理分析建立数学模型,得到系统的传递函数,通过对传递函数的极点,根轨迹,单位阶跃响应来分析系统稳定性。

建立状态空间模型,利用matlab进行能控能观性分析,输入阶跃信号,分析系统输出响应。

通过设定初始条件,查看系统稳定性,利用simulink绘制系统状态图。

再对系统进行极点配置,进行状态反馈,使得系统在初始状态下处于稳定状态,并绘制系统状态图。

2.课程设计目的倒立摆系统是一个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。

倒立摆控制理论产生的方法和技术在半导体及精密仪器加工、机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。

因此研究倒立摆系统具有重要的实践意义。

3.课程设计题目描述和要求本次课程设计我们小组选择环节项目三:系统状态响应、输出响应的测量。

环节目的:1.利用MATLAB分析线性定常系统。

2.利用SIMULINK进行系统状态空间控制模型仿真,求取系统的状态响应及输出响应。

环节内容、方法:1.给定系统状态空间方程,对系统进行可控性、可观性分析。

并利用SIMULINK 绘制系统的状态图,求取给定系统输入信号和初始状态时的状态响应及输出响应。

2.给定两个系统的状态空间模型,分别求两个系统的特征值;将两个系统的系统矩阵化为标准型;求出给定系统初始状态时,状态的零输入响应;求两个系统的传递函数并分析仿真结果。

4.课程设计报告内容4.1 数学模型的建立及分析对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。

但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。

下面我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。

在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示图l 直线一级倒立摆系统我们不妨做以下假设:M小车质量、m摆杆质量、b小车摩擦系数、l摆杆转动轴心到杆质心的长度、I 摆杆惯、F加在小车上的力、x 小车位置、φ摆杆与垂直向上方向的夹角、θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)。

直线一级倒立摆的建模及性能分析

直线一级倒立摆的建模及性能分析

直线一级倒立摆的建模及性能分析1 直线一级倒立摆数学模型的建立 (1)2 直线一级倒立摆系统的实际模型 (5)3 直线一级倒立摆系统的性能分析 (6)相关理论的介绍 (6)倒立摆系统的性能分析 (7)1 直线一级倒立摆数学模型的建立所谓系统的数学模型,是指利用数学结构来反映实际系统内部之间、系统内部与外部某些主要相关因素之间的精确的定量表示。

数学模型是分析、设计、预测以及控制一个系统的理论基础。

因此,对于实际系统的数学模型的建立就显得尤为重要。

系统数学模型的构建可以分为两种:实验建模和机理建模。

实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对像并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。

机理建模就是在了解研究对象的运动规律的基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。

对于倒立摆系统,由于其本身是不稳定的系统,无法通过测量频率特性的方法获取其数学模型,实验建模存在一定的困难。

但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统是一个典型的机电一体化系统,其机械部分遵守牛顿运动定律,其电子部分遵守电磁学的基本定律,因此可以通过机理建模得到系统较为精确的数学模型。

为了简单起见,在建模时忽略系统中的一些次要的难以建模的因素,例如空气阻力、伺服电机由于安装而产生的静摩擦力、系统连接处的松弛程度、摆杆连接处质量分布不均匀、传动皮带的弹性、传动齿轮的间隙等。

将小车抽象为质点,摆杆抽象为匀质刚体,摆杆绕转轴转动,这样就可以通过力学原理建立较为精确的数学模型。

我们可以应用牛顿力学的分析方法或者欧拉-拉格朗日原理建立系统的动力学模型。

对于直线一级倒立摆这样比较简单的系统,我们采用通俗易懂的牛顿力学分析法建模。

为了建立直线一级倒立摆的数学模型,采用如下的坐标系:图1直线一级倒立摆的物理模型其中,F 为加在小车上的力,M 为小车质量,m 为摆杆质量,I 为摆杆惯量, l 为摆杆转动轴心到杆质心的长度,x 为小车位移,φ为摆杆与垂直向上方向的夹角,b 为小车在滑轨上所受的摩擦力,N 和P 为摆杆相互作用力的水平和垂直方向的分量。

一阶直线倒立摆双闭环PID控制仿真报告

一阶直线倒立摆双闭环PID控制仿真报告

目录摘要 (2)一、一阶倒立摆系统建模 (3)1、对象模型 (3)2、电动机、驱动器及机械传动装置的模型 (4)二、双闭环PID控制器设计 (5)1、仿真验证 (6)2、内环控制器的设计 (9)3、系统外环控制器设计 (12)三、仿真实验 (15)1、绘图子程序 (15)2、仿真结果 (16)四、结论 (18)摘要本报告旨在借助Matlab 仿真软件,设计基于双闭环PID 控制的一阶倒立摆控制系统。

在如图0.1所示的“一阶倒立摆控制系统”中,通过检测小车的位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC )完成。

图0.1 一阶倒立摆控制系统分析工作原理,可以得出一阶倒立摆系统原理方框图:图0.2 一阶倒立摆控制系统动态结构图本报告将借助于“Simulink 封装技术——子系统”,在模型验证的基础上,采用双闭环PID 控制方案,实现倒立摆位置伺服控制的数字仿真实验。

一、一阶倒立摆系统建模1、对象模型如图1.1所示,设小车的质量为m 0,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向的力为F ,O 1为摆角质心。

θxyOFF xF x F yF yllxO 1图1.1 一阶倒立摆的物理模型根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其中心的转动方程为θθθcos sin y l F l F J x-= (1-1) 2)摆杆重心的水平运动可描述为)sin (22x θl x dtd m F += (1-2)3)摆杆重心在垂直方向上的运动可描述为)cos (22y θl dtd m mg F =- (1-3)4)小车水平方向上的运动可描述为220dtxd m F F x =- (1-4)由式(1-2)和式(1-4)得F ml x m m =⋅-⋅++)sin (cos )(20θθθθ (1-5) 由式(1-1)、(式1-2)和式(1-3)得θθθsin g cos 2ml x ml ml J =⋅++ )( (1-6) 整理式(1-5)和式(1-6),得⎪⎪⎩⎪⎪⎨⎧++-+-⋅+⋅=-++-⋅+++=))((cos sin )(cos sin cos cos ))((cos sin sin )()(x 2022202222220222222m l J m m l m m l m m l m F m l l m m m m l J g l m m l J lm F m l J θθθθθθθθθθθθ(1-7) 以上式1-7为一阶倒立摆精确模型。

一阶倒立摆控制仿真-论文

一阶倒立摆控制仿真-论文

一阶倒立摆控制仿真摘要:倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,研究倒立摆的精确控制对工业复杂对象的控制有着重要的工程应用价值。

本文对仿真的分类、过程、发展、应用及仿真环境等作了简单的介绍,同时也介绍了倒立摆系统的特性、分类、应用、发展等基本情况。

文中采用牛顿-欧拉方法建立一阶倒立摆的数学模型,对精确模型在工作点附件进行线性化和降价处理,利用固高公司的一阶倒立摆参数,计算出传递函数。

在数学模型的基础上进行了PID 控制的理论分析。

利用MATLAB中的Simulink仿真工具对一阶倒立摆的单回路PID控制进行仿真分析,在仿真中整定出合理的PID参数。

仿真证实,单回路PID控制方案能满足对倒立摆摆杆角度的控制要求。

关键词:倒立摆;PID控制;仿真;MATLAB-Simulink---------Simulation of single inverted pendulum Abstract: The inverted pendulum system is characterized as a fast multi-variable nonlinear essentially unsteady system.The research on precise control of the inverted pendulum is of great practical engineering value for control problems of complicated industrial object.In this paper, the classification, process, development, application of simulation and simulation environment are simply introduced. The basic situation include Characteristics, classification application development and so on of the inverted pendulum system is introduced.This text uses the Newton-the Eule method to establishing the mathematical model of single inverted pendulum, carries on the linearization and fall step processing to the precise model nearby the work-point, uses the parameters of googol’s single inverted pendulum, calculate s its transferred functions. And do theoretical analysis of the PID control based on the mathematical model. This text uses the MA TLAB Simulink simulation tools to do simulation analysis of the single inverted pen dulum’s single loop PID control, collated reasonable PID controlled parameters in simulation. Simulation proves that the single loop PID controlled plans can satisfied to the control of the angle of pendulum rod.Keywords:inverted pendulum; PID control; simulation; MATLAB-Simulink目录1 绪论 (1)1.1 仿真技术的简介 (1)1.1.1 仿真概念 (1)1.1.2 仿真分类 (1)1.1.3 仿真过程 (1)1.1.4 系统建模 (2)1.1.5 模型验证 (2)1.2 倒立摆系统介绍 (3)1.2.1 倒立摆的分类 (3)1.2.2 倒立摆的特性 (4)1.2.3 倒立摆的发展 (5)1.2.4 倒立摆的应用 (5)1.3 本论文研究的主要内容 (6)2 一阶倒立摆系统的建模 (7)2.1 一阶倒立摆的物理模型 (7)2.2 一阶倒立摆的数学模型 (7)2.3 一阶倒立摆的实际模型 (11)3 PID控制器简介 (12)3.1 PID控制原理 (12)3.2 PID控制器的参数整定 (13)4 一阶倒立摆PID控制器系统的仿真研究 (16)4.1 MATLAB/SIMULINK仿真环境 (16)4.2 一阶倒立摆的PID控制理论分析 (17)4.3 一阶倒立摆的PID控制仿真分析 (18)5 结论 (23)致谢 (24)参考文献 (25)1 绪论1.1 仿真技术的简介1.1.1仿真概念自动控制系统是由被控对象、测量变送装置、执行器和控制器所组成,当选定测量变送装置和执行器后,对自动控制系统进行设计和分析研究,也就是对被控对象的动态特性进行分析和研究,然后根据被控对象的动态特性进行控制器的设计,以求获得能满足性能指标要求的最优控制系统。

直线一级倒立摆MATLAB仿真报告

直线一级倒立摆MATLAB仿真报告

1便携式倒立摆实验简介倒立摆装置被公认为是自动控制理论中的典型试验设备,是控制理论教学和科研中不可多得的典型物理模型。

本实验基于便携式直线一级倒立摆试验系统研究其稳摆控制原理。

1.1主要实验设备及仪器便携式直线一级倒立摆实验箱一套控制计算机一台便携式直线一级倒立摆实验软件一套1.2便携式倒立摆系统结构及工作原理便携式直线一级倒立摆试验系统总体结构如图1所示:图1 便携式一级倒立摆试验系统总体结构图主体结构包括摆杆、小车、便携支架、导轨、直流伺服电机等。

主体、驱动器、电源和数据采集卡都置于实验箱内,实验箱通过一条USB数据线与上位机进行数据交换,另有一条线接220v交流电源。

便携式直线一级倒立摆的工作原理如图2所示:图2 便携式一级倒立摆工作原理图数据采集卡采集到旋转编码器数据和电机尾部编码器数据,旋转编码器与摆杆同轴,电机与小车通过皮带连接,所以通过计算就可以得到摆杆的角位移以及小车位移,角位移差分得角速度,位移差分可得速度,然后根据自动控制中的各种理论转化的算法计算出控制量。

控制量由计算机通过USB数据线下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现摆杆直立不倒以及自摆起。

2便携式倒立摆控制原理方框图便携式倒立摆是具有反馈功能的闭环系统,其控制目标是实现在静态和动态下的稳摆。

当输入量为理想摆角,即时,偏差为0,控制器不工作;当输入量不为理想摆角时,偏差存在,控制器做出决策,驱动电机,使小车摆杆系统发生相应位移,输出的摆角通过角位移传感器作用于输出量,达到减小偏差的目的。

根据控制原理绘制出控制方框图如图3所示:图3 便携式一级倒立摆控制原理方框图3建立小车-摆杆数学模型便携式倒立摆系统主要由小车、摆杆等组成,它们之间自由连接。

小车可以在导轨上自由移动,摆杆可以在铅垂的平面内自由地摆动。

在忽略了空气阻力和各种摩擦之后,可将便携式倒立摆系统抽象成小车和匀质杆组成的刚体系统,在惯性坐标内应用经典力学理论建立系统的动力学方程,采用力学分析方法建立小车-摆杆的数学模型。

一级倒立摆分析

一级倒立摆分析

一级倒立摆的极点配置及仿真摘要倒立摆系统是一个复杂的、高度非线性的、不稳定的高阶系统,是学习和研究现代控制理论最合适的实验装置。

倒立摆的控制是控制理论应用的一个典型范例,一个稳定的倒立摆系统对于证实状态空间理论的实用性是非常有用的。

本文主要研究的是一级倒立摆,首先应用动力学方程建立一级倒立摆的非线性数学模型,采用小偏差线性化的方法在平衡点附近局部线性化得到线性化的数学模型。

然后通过输入单位阶跃信号分析系统的开环稳定性,由线性化得到的状态方程判断系统的能控性和能观性,结合系统的稳定性条件、调整时间以及超调量找到合适的极点,运用极点的配置方法(Matlab的acker函数)算出状态反馈增益矩阵K,运用状态空间分析方法,采用状态反馈为倒立摆系统建立稳定的控制律,并判断加入反馈矩阵K后的能观性和能控性是否改变。

最后应用Matlab中的Simulink建立相应框图,得到输出变量水平位置和角度随时间的变化曲线,验证加入反馈矩阵K后一级倒立摆系统的稳定性。

关键词:一级倒立摆状态反馈极点配置Matlab Simulink目录1、一级倒立摆系统简介 (2)2、一级倒立摆系统的数学模型 (3)2.1、数学模型的建立 (3)2.2、运动分析 (4)2.2.1、沿水平方向运动(直线运动) (4)2.2.2、绕轴线的转动(旋转运动) (6)3、状态空间极点配置 (8)3.1、系统开环稳定性分析 (8)3.2、开环系统的能控性分析 (10)3.3、开环系统的能观性分析 (11)3.4、系统极点配置 (12)3.5、闭环系统的能控性和能观性分析 (15)4、一级倒立摆系统Matlab仿真 (16)4.1、系统开环Simulink搭建及仿真 (16)4.2、系统极点配置后的Simulink仿真 (19)5、总结 (23)6、参考文献 (24)1、一级倒立摆系统简介倒立摆系统是一种很常见的又和人们的生活密切相关的系统,它深刻揭示了自然界一种基本规律,即自然不稳定的被控对象,通过控制手段可使之具有良好的稳定性。

基于一阶倒立摆的matlab仿真实验

基于一阶倒立摆的matlab仿真实验

成都理工大学工程技术学院基于一阶倒立摆的matlab仿真实验实验人员: --------------学号:-----------------实验日期:20150618摘要本文主要研究的是一级倒立摆的控制问题,并对其参数进行了优化。

倒立摆是典型的快速、多变量、非线性、强耦合、自然不稳定系统。

由于在实际中有很多这样的系统,因此对它的研究在理论上和方法论上均有深远的意义。

本文首先简单的介绍了一下倒立摆以及倒立摆的控制方法,并对其参数优化算法做了分类介绍。

然后,介绍了本文选用的优化参数的状态空间极点的配置和PID控制。

接着建立了一级倒立摆的数学模型,并求出其状态空间描述。

本文着重讲述的是利用状态空间中极点配置实现方法。

最后,用Simulink对系统进行了仿真,得出在实际控制中是两种比较好的控制方法。

目录1 引言 (4)1.1 倒立摆介绍以及应用 (4)1.2 倒立摆的控制方法 (5)2单级倒立摆数学模型的建立 (6)2.1传递函数 (8)2.2状态空间方程 (9)3系统Matlab 仿真和开环响应 (10)4 系统设计 (15)4.1极点配置与控制器的设计 (15)4.2系统仿真: (16)4.3仿真结果 (17)4.4根据传递函数设计第二种控制方法-----PID串级控制 (18)5结论 (19)1 引言1.1 倒立摆介绍以及应用倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。

对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

通过对它的研究不仅可以解决控制中的理论和技术实现问题,还能将控制理论涉及的主要基础学科:力学,数学和计算机科学进行有机的综合应用。

其控制方法和思路无论对理论或实际的过程控制都有很好的启迪,是检验各种控制理论和方法的有效的“试金石”。

一级倒立摆的建模与控制分析

一级倒立摆的建模与控制分析

研究生《现代控制理论及其应用》课程小论文一级倒立摆的建模与控制分析学院:机械工程学院班级:机研131姓名:尹润丰学号: 2013212020162014年6月2日目录1. 问题描述及状态空间表达式建立............................ - 1 -1.1问题描述................................................................. - 1 -1.2状态空间表达式的建立..................................................... - 1 -1.2.1直线一级倒立摆的数学模型........................................... - 1 -1.2.2 直线一级倒立摆系统的状态方程 ...................................... - 5 -2.应用MATLAB分析系统性能.................................. - 6 -2.1直线一级倒立摆闭环系统稳定性分析......................................... - 6 -2.2 系统可控性分析.......................................................... - 7 -2.3 系统可观测性分析........................................................ - 8 -3. 应用matlab进行综合设计................................. - 8 -3.1状态反馈原理............................................................. - 8 -3.2全维状态反馈观测器和simulink仿真........................................ - 9 -4.应用Matlab进行系统最优控制设计......................... - 11 -5.总结.................................................... - 13 -1.问题描述及状态空间表达式建立1.1问题描述倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

一级直线倒立摆的控制策略与仿真分析

一级直线倒立摆的控制策略与仿真分析

一级直线倒立摆的控制策略与仿真分析一、引言倒立摆系统是研究控制理论的一种典型的实验装置,具有成本低廉,结构简单,参数和结构易于调整的优点。

然而倒立摆系统具有高阶次、不稳定、多变量、非线性和强耦合特性,是一个绝对不稳定系统。

倒立摆实物仿真实验是控制领域中用来检验某种控制理论或方法的典型方案,它对一类不稳定系统的控制以及对深入理解反馈控制理论具有重要意义。

倒立摆系统在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果已经应用到航天科技和机器人学等诸多领域。

二、一级直线倒立摆模型的建立图1 一级直线倒立摆物理模型图2 小车和摆杆的受力分析图2.1 传递函数模型图1、2是系统中小车和摆杆的受力分析图。

设小车质量为M,摆杆质量为m,小车摩擦系数为b,摆杆转动轴心到杆质心的长度为l,摆杆的转动惯量为I,根据牛顿第二定律,可以得到系统的两个运动方程:F ml ml x b x m M =-+++∙∙∙∙∙∙θθθθsin cos )(2(1)θθθcos sin )(2∙∙∙∙-=++x m l m gl m l I (2)设φπθ+=, 假设φ与1(单位是弧度)相比很小,即c <<1,则可以进行近似处理:1cos -=θ,φθ-=sin ,0)(2=dtd θ。

用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:2()()I ml mgl ml x M m x b x ml uϕϕϕ∙∙∙∙∙∙∙∙∙+-=++-= (3)假设初始条件为0,对式(3)进行拉普拉斯变换得到:22222()()()()()()()()()I ml s s mgl s mlX s s M m X s s bX s s ml s s U s +Φ-Φ=++-Φ=(4)由于输出为角度φ,求解方程组的第一个方程,可以得到:mgl s ml I mls s X s -+=Φ222)()()((5)令∙∙=x v ,则有:mgls ml I mls V s -+=Φ22)()()((6) 把上式代入方程组的第二个方程,得到:)()()(])([)(])()[(222222s U s s ml s s sg ml ml I b s s s g ml ml I m M =Φ-Φ+++Φ-++(7)整理后得到传递函数:232()()()()mlss qb I ml M m mgl bmgl U s s s s q q qΦ=+++--(8) 其中])())([(22ml ml I m M q -++=。

一阶倒立摆模型建立与正确性分析实验报告

一阶倒立摆模型建立与正确性分析实验报告

一阶倒立摆模型建立与正确性分析【实验目的】学会建立一阶倒立摆模型建立,并结合物理现象与数值结果分析模型的正确性。

【实验设备与软件】MATLAB/Simulink【实验原理】对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难但是经过假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程下面我们采用其中的牛顿欧拉方法建立直线型一阶倒立摆系统的数学模型.微分方程的推导:在忽略了空气阻力和各种摩擦之后,可将直线一阶倒立摆系统抽象成小车和匀质杆组成的系统.图一直线一阶倒立摆系统图取小车质量M=1.096kg,摆杆质量m=0.109kg,摆杆与小车间的摩擦系数b1=0.001N.m.s.,小车水平运动的摩擦系数b2=0.1N.m.s.,摆杆转动轴心到摆杆质心的长度l=0.25m,加在小车上的力F,小车位置X,摆的角度θ摆杆惯量J。

一.忽略摩擦摆杆绕其重心的转动方程为:J=—l (1)摆杆重心的水平运动可描述为:=m(x+) (2)摆杆重心在垂直方向上的运动可描述为:—mg= m(x+l) (3)小车水平方向运动可描述为:F—=M (4)由式(2)和式(4)得到:(M+m )x+ml (—)=F (5)由式(1)式(2)和式(3)得:J+mml=mgl (6)整理式(5)和式(6)得:(7)若只考虑θ=0 在其工作点附近(0*<θ<10)的细微变化,这时可近似认为 , sin θ=θ,cos θ=1,J=由此得到的简化近似模型为:代入数值得本实验中倒立摆的简化模型:二.有摩擦定义逆时针转动为正方向。

设摆杆的重心为(),则(1)根据牛顿定律建立系统垂直和水平运动力学方程:(1) 摆杆绕其重心转动的力学方程为:J=l+l b1 (2)式中,J 为摆杆绕其重心的转动惯量:2312123J mL L ml ==。

这里,杆重力的转动力矩为0,小车运动引起的杆牵连运动的惯性力的转矩也为0。

直线一级倒立摆MATLAB仿真报告

直线一级倒立摆MATLAB仿真报告

1便携式倒立摆实验简介倒立摆装置被公认为是自动控制理论中的典型试验设备,是控制理论教学和科研中不可多得的典型物理模型。

本实验基于便携式直线一级倒立摆试验系统研究其稳摆控制原理。

1.1主要实验设备及仪器便携式直线一级倒立摆实验箱一套控制计算机一台便携式直线一级倒立摆实验软件一套1.2便携式倒立摆系统结构及工作原理便携式直线一级倒立摆试验系统总体结构如图1所示:图1便携式一级倒立摆试验系统总体结构图主体结构包括摆杆、小车、便携支架、导轨、直流伺服电机等。

主体、驱动器、电源和数据采集卡都置于实验箱内,实验箱通过一条USB数据线与上位机进行数据交换,另有一条线接220v交流电源。

便携式直线一级倒立摆的工作原理如图2所示:图2 便携式一级倒立摆工作原理图数据采集卡采集到旋转编码器数据和电机尾部编码器数据,旋转编码器与摆杆同轴,电机与小车通过皮带连接,所以通过计算就可以得到摆杆的角位移以及小车位移,角位移差分得角速度,位移差分可得速度,然后根据自动控制中的各种理论转化的算法计算出控制量。

控制量由计算机通过USB数据线下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现摆杆直立不倒以及自摆起。

2便携式倒立摆控制原理方框图便携式倒立摆是具有反馈功能的闭环系统,其控制目标是实现在静态和动态下的稳摆。

∅g=0当输入量为理想摆角,即时,偏差为0,控制器不工作;当输入量不为理想摆角时,偏差存在,控制器做出决策,驱动电机,使小车摆杆系统发生相应位移,输出的摆角通过角位移传感器作用于输出量,达到减小偏差的目的。

根据控制原理绘制出控制方框图如图3所示:图3 便携式一级倒立摆控制原理方框图3建立小车-摆杆数学模型便携式倒立摆系统主要由小车、摆杆等组成,它们之间自由连接。

小车可以在导轨上自由移动,摆杆可以在铅垂的平面内自由地摆动。

在忽略了空气阻力和各种摩擦之后,可将便携式倒立摆系统抽象成小车和匀质杆组成的刚体系统,在惯性坐标内应用经典力学理论建立系统的动力学方程,采用力学分析方法建立小车-摆杆的数学模型。

直线一级倒立摆模糊控制算法的设计与仿真

直线一级倒立摆模糊控制算法的设计与仿真

模糊控制算法的设计与仿真4.1 模糊控制理论研究的历史、背景与现状模糊理论是由美国著名控制论学者Lotfi A.Zadeh于1965年在名为“模糊集合”(《Fuzzy sets》)(Zadeh【1965】)的开创性文章中创立的。

Zadeh教授早在20世纪60年代初期认为经典控制论过于强调精确性而无法处理复杂的系统,他认为“在处理生物系统时,需要一种彻底不同的数学——关于模糊量的数学,该数学不能用概率分布来描述”。

后来,他将这些思想正式形成文章“模糊集合”。

模糊理论的大多数基本概念都是由Zadeh在02世纪60年代末07年代初提出来的。

他在1965年提出模糊集合后,又在1968年提出模糊算法的概念(Zadeh【1968】),在1970年提出模糊决策(Bellman和Zadeh【1970】),在1971年提出了模糊排序(Zadeh【1971】)。

1973年他发表了另一篇开创性文章《分析复杂系统和决策过程的新方法纲要》,该文建立了研究模糊控制的基础理论,在引入语言变量这一概念的基础上,提出了用模糊IF-THEN 规则来量化人类知识。

20世纪70年代的一个重大事件就是诞生了处理实际系统的模糊控制器。

在1975年,Mamdani和Assilian 创立了模糊控制器的基本框架,并将模糊控制器用于控制蒸汽机。

他们的研究成果发表在文章《带有模糊逻辑控制器的语言合成实验》(Mamdani和Assilian【1975】)中,这是关于模糊理论的另一篇具有开创性的文章。

他们发现模糊控制器非常易于构造且运作效果较好。

后来,在1978年,Holmblad和Ostergaard为整个工业过程开发出了第一个模糊控制器-模糊水泥窑控制器。

1980年,Sugeno。

开创了日本的首次模糊应用——控制一家富士(Fuji)电子水净化工厂。

1983年,他又开始研究模糊机器人,这种机器人能够根据呼唤命令来自动控制汽车的停放(Sugeno和Nishicla[1985])。

倒立摆仿真及实验报告

倒立摆仿真及实验报告

最优控制实验报告二零一五年一月目录第1章一级倒立摆实验 (3)1.1 一级倒立摆动力学建模 (3)1.1.1 一级倒立摆非线性模型建立 (3)1.1.2 一级倒立摆线性模型建立 (5)1.2 一级倒立摆t∞状态调节器仿真 (5)1.3 一级倒立摆t∞状态调节器实验 (10)1.4 一级倒立摆t∞输出调节器仿真 (12)1.5 一级倒立摆t∞输出调节器实验 (14)1.6 一级倒立摆非零给定调节器仿真 (16)1.7 一级倒立摆非零给定调节器实验 (17)第2章二级倒立摆实验 (18)2.1 二级倒立摆动力学模型 (18)2.1.1 二级倒立摆非线性模型建立 (18)2.1.2 二级倒立摆线性模型建立 (19)2.2 二级倒立摆t∞状态调节器仿真 (20)2.3 二级倒立摆t∞状态调节器实验 (23)2.4 二级倒立摆t∞输出调节器仿真 (24)2.5 二级倒立摆t∞输出调节器实验 (24)2.6 二级倒立摆非零给定调节器仿真 (25)2.7 二级倒立摆非零给定调节器实验 (26)第1章一级倒立摆实验1.1一级倒立摆动力学建模在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图所示图1-1 直线一级倒立摆模型M小车质量1.096 kg;m 摆杆质量0.109 kg;b 小车摩擦系数0 .1N/m/sec;l 摆杆转动轴心到杆质心的长度0.25m;I 摆杆惯量0.0034 kg·m2;φ摆杆与垂直向上方向的夹角,规定角度逆时针方向为正;x 小车运动位移,规定向右为正。

1.1.1一级倒立摆非线性模型建立采用拉格朗日方法,系统的拉格朗日方程为:()()()&&&(1.1)=-L q q T q q V q q,,,其中,L 为拉格朗日算子,q 为系统的广义坐标,T 为系统的动能,V 为系统的势能。

拉格朗日方程由广义坐标i q 和L 表示为:i i id L Lf dt q q ∂∂-=∂∂& (1.2)i f 为系统沿该广义坐标方向上的外力,在本系统中,系统的两个广义坐标分别为φ和x 。

直线一级倒立摆系统的建模及仿真

直线一级倒立摆系统的建模及仿真

计算机控制技术课程设计实验:直线一级倒立摆系统的建模及仿真一、已知条件:图1倒立摆简化模型摆杆角度为输出,小车的位移为输入。

导轨中点为坐标轴的中心即零点,右向为坐标值增加的方向,杆偏移其瞬时平衡位置右侧的角度为正值。

二、任务要求:总体任务通过调节PID参数,设计PID控制器实现摆杆在受到干扰的情况下,依然能恢复平衡。

具体包括以下几部分:1. 理论推导包括倒立摆系统的动力学模型,传递函数,离散传递函数,状态空间或差分方程,稳定性分析,PID控制器设计2. 程序实现实现内容:倒立摆系统模型,控制器以及仿真结果的显示。

开发语言和工具:Matlab m 文件或C/C++ (工具:VC++或其它)3. PID控制参数设定及仿真结果。

分别列出不同杆长的仿真结果(例如:L=0.25 和L=0.5)。

4. 将理论推导、程序实现、仿真结果写成实验报告。

具体求解过程如下:一,倒立摆系统动力学模型的建立图1 摆杆的受力分析图以摆杆为研究对象,对其进行受力分析,如图1所示。

根据质点系的达朗贝尔原理得IC I 0F CP mg CP M →→⨯+⨯-= (1)式中,IC F 为杆的惯性力,表达式为()IC C P CP CP IP ICP ICP t n t nF ma m a a a F F F ==++=++,m 为杆的质量,g 为重力加速度,I M 为杆的惯性力偶。

惯性力及惯性力偶的大小分别为2222IP P ICP I c 2221,,3t d x d d F ma m F m m M J mL dt dt dt θθαα======(2)式中,α为杆的角加速度,P a 为小车的加速度,2L 为杆的长度,θ为杆偏离中心位置的角度,x 偏离轨道中心的位移。

对(2)式代入(1)式,并整理可得22224sin cos 3d d x L g dt dt θθθ-=-(3) 当摆动较小时,可以进行近似处理sin ,cos 1θθθ≈≈。

一阶倒立摆系统建模与仿真研究

一阶倒立摆系统建模与仿真研究

一阶倒立摆系统建模与仿真研究一阶倒立摆系统是一种典型的非线性控制系统,具有多种状态和复杂的运动特性。

在实际生活中,倒立摆被广泛应用于许多领域,如机器人平衡控制、航空航天、制造业等。

因此,对一阶倒立摆系统进行建模与仿真研究具有重要的理论价值和实际意义。

ml''(t) + b*l'(t) + k*l(t) = F(t)其中,m为质量,b为阻尼系数,k为弹簧常数,l(t)为摆杆的位移,l'(t)为摆杆的加速度,l''(t)为摆杆的角加速度,F(t)为外界作用力。

在仿真过程中,需要设定摆杆的初始位置和速度。

一般而言,初始位置设为0,初始速度设为0。

边界条件则根据具体实验需求进行设定,如限制摆杆的最大位移、最大速度等。

利用MATLAB/Simulink等仿真软件进行建模和实验,可以方便地通过改变输入信号的参数(如力F)或系统参数(如质量m、阻尼系数b、弹簧常数k)来探究一阶倒立摆系统的性能和反应。

通过仿真实验,我们可以观察到一阶倒立摆系统在受到不同输入信号的作用下,会呈现出不同的运动规律。

在适当的输入信号作用下,摆杆能够达到稳定状态;而在某些特定的输入信号作用下,摆杆可能会出现共振现象。

在仿真过程中,我们可以发现一阶倒立摆系统具有一定的鲁棒性。

在一定范围内,即使输入信号发生变化或系统参数产生偏差,摆杆也能够保持稳定状态。

然而,当输入信号或系统参数超过一定范围时,摆杆可能会出现共振现象,导致系统失稳。

因此,在实际应用中,需要对输入信号和系统参数进行合理控制,以保证系统的稳定性。

为了避免共振现象的发生,可以通过优化系统参数或采用其他控制策略来实现。

例如,适当增加阻尼系数b能够减小系统的振荡幅度,有利于系统尽快达到稳定状态。

可以采用反馈控制策略,根据摆杆的实时运动状态调整输入信号,以抑制系统的共振响应。

本文对一阶倒立摆系统进行了建模与仿真研究,通过观察不同参数设置下的系统性能和反应,对其运动规律、鲁棒性及稳定性进行了分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线一级倒立摆的仿真分析作者黄俊杰摘要:应用牛顿力学定律建立了直线一级倒立摆传递函数、状态空间表达式等数学模型,并分析其稳定性、可控性和可观测性。

【1】在此基础上,分别研究经典控制方法和现代控制方法在一级倒立摆系统中的应用,包括跟PID控制算法、系统轨迹/频率响应分析与校正、线性二次最优控制算法等,并在MATLAB/SIMULINK仿真平台上对这些控制算法的效果进行仿真,可以取得不同的控制效果。

关键词:直线一级倒立摆数学模型经典控制方法现代控制方法MATLAB/SIMULINK引言:倒立摆系统是研究控制理论的一种典型的实验装置,具有成本低廉,结构简单,参数和结构易于调整的优点。

然而倒立摆系统具有高阶次、不稳定、多变量、非线性和强耦合特性,是一个绝对不稳定系统。

倒立摆实物仿真实验是控制领域中用来检验某种控制理论或方法的典型方案,它对一类不稳定系统的控制以及对深入理解反馈控制理论具有重要的意义。

倒立摆系统在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果已经应用到航天科技和机器人学等诸多领域。

【2】伴随着控制理论的不断发展,对倒立摆的控制也出现了采用经典控制理论、现代控制理论和人工智能控制理论等多种控制理论的方案和控制方法。

本文首先建立了直线一级倒立摆的数学模型, PID控制算法、系统轨迹/频率响应分析与校正、线性二次最优控制算法对模型进行仿真分析。

一、牛顿-欧拉方法建模在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1-1所示。

图1 直线一级倒立摆模型图1-2是系统中小车和摆杆的受力分析图。

其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。

图2 小车及摆杆受力分析图分析小车水平方向所受的合力,可以得到以下方程:N xb F x M --= (1) 由摆杆水平方向的受力进行分析可以得到下面等式: )sin (2θl x dtdm N += (2) 即: θθθθsin cos 2 ml ml xm N-+= (3) 把这个等式代入(1)式中,就得到系统的第一个运动方程:F ml ml x b x m M =-+++θθθθsin cos )(2(4) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析, 可以得到下面方程:)cos (2θl dtdmmg P =- (5) θθθθcos sin 2ml mlmg P --=- (6) 力矩平衡方程如下:θθθ I Nl Pl =--cos sin (7) 注意:此方程中力矩的方向,由于θφθφφπθsin sin ,cos cos ,-=-=+=,故等式前面有负号。

合并这两个方程,约去 P 和N ,得到第二个运动方程:θθθcos sin )(2x ml mgl ml I -=++ (8) 设,φπθ+=(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ<<1,则可以进行近似处理:0)(,sin ,1cos 2=-=-=dtd θφθθ 用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:⎪⎩⎪⎨⎧=-++=-+um l x b x m M x m l m gl m l I φφφ)()(2 (9) 对方程组(9)式进行拉普拉斯变换,得到方程组:⎪⎩⎪⎨⎧=Φ-++=Φ-Φ+)()()()()()()()()(2222s U s s m l s s bX s s X m M s s m lX s m gl s s m l I (10) 注意:推导传递函数时假设初始条件为0。

由于输出为角度φ,求解方程组的第一个方程,可以得到:)(])([)(22s sgm l m l I s X Φ-+= (11) 如果令xv= ,则有: )()()(22s V m gls m l I m ls -+=Φ (12) 把上式代入方程组的第二个方程,得到:)()()(])([)(])()[(22222s U s s ml s s sg ml ml I b s s s g ml ml I m M =Φ-Φ+++Φ-++(13)整理后得到传递函数:sqbmgl s q mgl m M s q ml I b s s qml s U s -+-++Φ=23242)()()()((14) 其中 ])())([(22ml ml I m M q-++=设系统状态空间方程为:DuCX y Bu AX X+=+= (15)方程组对φ,x 解代数方程,得到解如下: ⎪⎪⎪⎩⎪⎪⎪⎨⎧++==++==+++++++-++++++++-2222222222)()()()()()()()()(Mml m M I mlu Mml m M I m M mgl Mml m M I x mlb Mml m M I u ml I Mml m M I gl m Mml m M I x b ml I x x xφφφφφ (16)整理后得到以外界作用力(u 来代表被控对象的输入力F )作为输入的系统状态方程:u Mml m M I ml Mml m M I ml I x x Mml m M I m M mgl Mml m M I mlb Mml m M I gl m Mml m M I b ml I x x ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡2222222222)(0)(00)()()(010000)()()(00010φφφφ (17) ux x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=00010001φφφ (18) 由方程组(9)得第一个方程为:x m l m gl m l I =-+φφ)(2 (19) 对于质量均匀分布的摆杆有:231ml I = (20)于是可以得到: x ml mgl ml ml =-+φφ)31(22 (21)化简得到: x llg4343+=φφ (22) 设{}xu x x X ==',,,,φφ,则可以得到以小车加速度作为输入的系统状态方程:'4301004300100000000010u l x x lg x x⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡φφφφ (23) '00010001u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=φφφ (24)以小车加速度为控制量,摆杆角度为被控对象,此时系统的传递函数为:lg s ls G 4343)(2-=(25) 表1.2 便携式直线一级倒立摆实际系统的物理参数将表1.1中的物理参数代入上面的系统状态方程和传递函数中得到系统精确模型。

系统状态空间方程:'9.401003.4800100000000010u x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡φφφφ (26)'00010001u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=φφφ (27) 系统传递函数3.489.4)(2-=s s G (28)二、系统的阶跃响应分析与可控性分析2.1 系统阶跃响应分析上面已经得到系统的状态方程式,对其进行阶跃响应分析,在MATLAB 指令区中键入以下命令:其阶跃响应曲线如图:图3 小车位置和摆杆角度阶跃响应曲线可以看出,在单位阶跃响应作用下,小车位置和摆杆角度都是发散的,即未校正前的系统是不稳定的。

2.2 系统可控性分析由(26)式和(27)式可以得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=03.480100000000010A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=9.4010B ⎥⎦⎤⎢⎣⎡=010001C ⎥⎦⎤⎢⎣⎡=00D在MATLAB中计算对应的秩。

MATLAB计算过程如下:从计算结果可以看出,系统的状态完全可控性矩阵的秩4等于系统的状态变量维数4,系统的输出完全可控性矩阵的秩2等于系统输出向量y的维数2,所以系统是可控的,因此可以对系统进行控制器的设计,使系统稳定。

三、根轨迹校正实验闭环系统瞬态响应的基本特性与闭环极点的位置紧密相关,如果系统具有可变的环路增益,则闭环极点的位置取决于所选择的环路增益,从设计的观点来看,对于有些系统,通过简单的增益调节就可以将闭环极点移到需要的位置,如果只调节增益不能满足所需要的性能时,就需要设计校正器,常见的校正器有超前校正、滞后校正以及超前滞后校正等。

当系统的性能指标以时域形式提出时,通常用根轨迹法对系统进行校正。

【3】基于根轨迹法校正的基本思想是:假设系统的动态性能指标可由靠近虚轴的一对共轭闭环主导极点来表征,因此,可把对系统提出的时域性能指标的要求转化为一对期望闭环主导极点。

确定这对闭环主导极点的位置后,首先根据绘制根轨迹的相角条件判断一下它们是否位于校正前系统的根轨迹上。

如果这对闭环主导极点正好落在校正前系统的根轨迹上,则无需校正,只需调整系统的根轨迹增益即可;否则,可在系统中串联一个超前校正装置:)1(11)(>++=a TsaTss G c (29)通过引入新的开环零点 和新的开环极点来改变系统原根轨迹的走向,使校正后系统的根轨迹经过这对期望闭环主导极点。

3.1 根轨迹分析前面我们已经得到了直线一级倒立摆系统的开环传递函数,输入为小车的加速度,输出为倒立摆系统摆杆的角度,被控对象的传递函数为: 3.489.4)(2-=s s G 可知系统没有零点,有两个极点9498.6,9498.621-==λλ。

画出系统传递函数的根轨迹如图1-8所示,可以看出传递函数的一个极点位于右半平面,并且有一条根轨迹起始于该极点,并沿着实轴向左到位于原点的零点处,然后沿着虚轴向上,这意味着无论增益如何变化,这条根轨迹总是位于右半平面,即系统总是不稳定的。

MATLAB 绘制未校正前的系统根轨迹程序如下:其根轨迹如图:1c z a T =-1c p T=-图4 未校正前的系统开环根轨迹MATLAB 绘制未校正前的闭环系统阶跃响应曲线程序如下:3.2 根轨迹校正器设计及仿真直线一级倒立摆的根轨迹校正可以转化为如下的问题【11】:对于传递函数为:3.489.4)(2-=s s G的系统,设计控制器使得校正后系统的性能指标如下:1.调节时间s t s 5.0=;2.最大超调量0010≤p M ; 根轨迹设计步骤【5】如下:1. 确定闭环期望极点d s 的位置,由最大超调量:(30)可以得到,取,由得rad ,其中为位于第二象限的极点和原点的连线与实轴负方向的夹角。

相关文档
最新文档