2014-2015学年第一学期八年级数学第一次月考试题
广州市八年级上数学月考试题
6.如图 1,△ABC≌△EDF,DF=BC,AB=ED,
AF=20,EC=10,则 AE 的长是(
)
(A)5 (B)8 (C)10
(D)15
E
A
D F
C
图1
B
7.在△ABC 和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍
不一定能保证△ABC≌△A′B′C′,则补充的这个条件是:( )
A、BC=B′C′ B、∠A=∠A′ C、AC=A′C′ D、∠C=∠C′
8.根据下列条件,能判定△ABC≌△A′B′C′的是:( )
A、 AB=A′B′,BC=B′C,∠A=∠A′ B、 ∠A=∠A′,∠B=∠C′,AC= A′C′ C、 ∠A=∠A′,∠B=∠B′,∠C=∠C′
D
C
O
D、AB=A′B′,BC=B′C′ AC= A′C′ A
2014-2015 学年度八年级数学第一学期月考试卷
班级
姓名
考号
一、选择题(每小题 2 分,共 20 分)
1.以下面各组线段为边,能组成三角形的是( ).
A.1cm,2cm,4cm B.8cm,6cm,4cm
C.12cm,5cm,6cm D.2cm,3cm,6cm
2.正多边形的一个内角等于 144°,则该多边形是正(
5.如图, 外角 CAE 等于120 , B = 40 ,则 C 的度数是______ .
第5题
第6题
6.如图 AB // CD , CE 平分 ACD 交 AB 于 E ,A = 118 ,则 AEC 等于______ 度.
7.如图(5),已知 AB=DC,AD=BC,E、F 是 DB 上两点且 BF=DE,
即 AB=
2014-2015学年九年级第一次月考数学试题
2014-2015学年九年级第一次月考数学试题一.选择题:(每题3分)1.(2005·甘肃兰州)已知m 方程012=--x x 的一个根,则代数式m m -2的值等于( )A.—1B.0C.1D.22.(2005·广东深圳)方程x x 22=的解为( )A.x =2B. x 1=2-,x 2=0C. x 1=2,x 2=0D. x =03.解方程)15(3)15(2-=-x x 的适当方法是( )A 、开平方法B 、配方法C 、公式法D 、因式分解法4.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A.9cm 2B.68cm 2C.8cm 2D.64cm 25.若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )A .2±=mB .m=2C .m= —2D .2±≠m6. 函数y=x 2-2x+3的图象的顶点坐标是( )A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)7.一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( )A. 6-B. 1C. 2D. 6-或18. 已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是( )A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<09.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14 且a ≠0D .a >–14且a ≠0 10.对于抛物线21(5)33y x =--+,下列说法正确的是( ) (A )开口向下,顶点坐标(53),(B )开口向上,顶点坐标(53), (C )开口向下,顶点坐标(53)-,(D )开口向上,顶点坐标(53)-,二、填空题(每题3分)11.二次函数23y x bx =++的对称轴是2x =,则 b =_______.12.一元二次方程22310x x -+=的二次项系数为 ,一次项系数为 ,常数项为 ;13.抛物线2y ax bx c =++过点(10)A ,,(30)B ,,则此抛物线的对称轴是直线x = .14.一元二次方程20(0)ax bx c a ++=≠的求根公式为 ; 15.抛物线y=x 2+bx+c, 经过A (-1,0),B(3,0)两点,则这条抛物线的解析式为_____________16.当代数式532++x x 的值等于7时,代数式2932-+x x 的值是 ;17.关于x 的一元二次方程02)12(2=--+x m mx 的根的判别式的值等于4,则 =m ;18.目前甲型H1N1流感病毒在全球已有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x 个人,那么可列方程为 .19.若一个三角形的三边长均满足方程2680x x -+=,则此三角形的周长为 ;20.参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x 人参加同学聚会。
2014-2015年八年级数学上第一次月考试卷含答案
八年级上册数学第一次月考试卷2014、9 一.选择题(共10小题,每小题3分)1.下列学习用具中,其形状不是轴对称图形的是()A.B.C.D.2.下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,113.在△ABC中,∠B=40°,∠C=80°,则∠A的度数为()A.30°B.40°C.50°D.60°4.在数学课上,同学们在练习画边AC上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是()A B C D5.下列命题为假命题的是()A.有两条边和一个角对应相等的两个三角形全等;B.对顶角相等C.等腰三角形的两个底角相等; D.两直线平行,内错角相等6.如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,在下列结论中,不正确的是()A.∠EAB=∠FAC;B.BC=EF;C.∠BAC=∠CAF;D.∠AFE=∠ACB7.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF8.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是()A.13 B.17 C.22 D.17或229.如图,在△ABC中,已知∠B和∠C的平分线相交于点D,过点D作EF∥BC 交AB、AC于点E、F,若△AEF的周长为9,BC=6,则△ABC的周长为()A.18 B.17 C.16 D.1510.小明用19根火柴首尾顺次相接,恰好摆成一个三角形,若要求这个三角形是等腰三角形,则不同的摆法有()A.1种B.4种C.5种D.9种二.填空题(共8小题,每小题3分)11.如图,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD=________度.12.已知△ABC中,AB=AC=2,∠A=60度,则△ABC的周长为_______.13.命题“等腰三角形的两个底角相等.”的逆命题是________________________.14.如图,已知AC=DB,再添加一个适当的条件___________,使△ABC≌△DCB.(只需填写满足要求的一个条件即可).15.如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=________度.16.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD 于点O,连结OC,若∠AOC=125°,则∠ABC=_________.17.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_______.18.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为_________.第11题图第14题图第15题图第16题图11、___________12、__________13、__________14、___________15、___________16、__________17、__________18、___________三、解答题19、(8分)在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF。
八年级数学第一次月考质量分析报告
100 81.4 4312 (%) 92.5
1
八
53 1 15 16 14 3 3 1 0 0 0 0 49
班
48
1
八 (
韦 明
)高
2
八
55 4 19 14 9 4 3 1 0 1 0 0 50
班
100 82.2 4522 90.9
八卢
24 ( 德
)运
2
3
八 56 2 18 17 5 9 4 1 0 0 0 0 51
三、教与学存在的问题 ①学生层面: 对前面(1)(2)(3)(4)(5)(6)班来说还好点,各种表现都较好, 老师也教得很认真负责,但是及格率也还远没有到达 100%,希望实验班的老师 再改进方法,争取更优,你们要再接再厉,努力塑造二中品牌。
对于平行班来说: 1.学生的基础差,严重影响了学生的学习积极性。 2.学生的基础知识掌握不牢,综合分析问题、解决问题的能力差。 3. 整体素质偏低。学生的优秀率、及格率整体偏低。尖子生不突出,换句 话说,这种班级没有尖子生,后进生数量多,严重影响教学质量。 4. 学生整体学习风气不浓,不能做到主动学习和提前学习,大部分同学都 是在教师的监督下进行,并且个别同学缺乏数学学习的兴趣。无心向学的学生 较多,马虎应付学习的学生多,导致学习成绩不好。一部分学生不仅自己不好 好学习,而且还影响其他人,严重影响了良好班风和学风的形成。 5.学生的学习习惯较差。具体表现在:时间抓得不紧,不会合理安排和利 用;布置的作业好多学生不认真写,有的抄作业应付;课后没有养成及时复习 的习惯,对课堂知识的理解和掌握不到位,直接影响到后续知识的学习,导致 知识漏洞越来越大。 ②教师层面: 1.结合平时课堂的反映及考试成绩比较,在课堂上有以下几个问题:一是 课堂无计划性,包括知识目标、能力目标、时间搭配、教学进度、学生的个体 差异不能很好的规划。二是对基础知识课堂落实不到位,缺乏学生良好习惯的 培养。三是课堂练习的实效性差。 2.教师角色转化不到位。教学方式没有发生实际性的变化。仍然把重心放 在教上,忽视了练习的过程,学生被动学习。 3.课后辅导抓得不扎实。 4.教学理念和教学方法有待改进 在新课改的形势下,不主动学习,自身的教学理念和教学方法跟不上新课 改的要求,教学理念和教学方法陈旧。课堂上不能很好地调动学生的积极性, 课堂气氛不活跃、枯燥,导致学生对学习产生厌倦情绪,不想学,怕学,课堂 效率低下。 四、结合本次考试质量分析特提出以下努力措施: 1、转变教学理念,适应课程改革 要提高学生素质,首先要转变教学理念,。认真学习和研究《课程标准》 是转变教学理念的主要途径。在教学过程中,要改变教学方式, 关注学生的学
2014-2015学年滕州市八年级上第一次月考数学试题【北师大版】
一.单选题(3*10=30)1. 在△ABC 中,A B C ∠∠∠,,的对边分别为a b c ,,,且2()()a b a b c +-=,则( ).(A )A ∠为直角 (B )C ∠为直角(C )B ∠为直角 (D )不是直角三角形2.△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,由下列条件不能判定△ABC 为直角三角形的是( )A .∠A +∠B =∠C B .∠A ∶∠B ∶∠C =1∶2∶3C .222a c b =-D .a ∶b ∶c =3∶4∶63.如图所示,以Rt△ABC 的三条边为直径分别向外作半圆,设以BC 为直径的半圆的面积记作S 1,以AC 为直径的半圆的面积记作S 2,以AB 为直径的半圆的面积记作S 3,则S 1、S 2、S 3之间的关系正确的是( )A .S 1+S 2>S 3B .S 1+S 2<S 3C .S 1+S 2=S 3D .无法确定4.由于台风的影响,一棵树在离地面6 m 处折断(如图),树顶落在离树干底部8 m 处,则这棵树在折断前(不包括树根)长度是( )A .8 mB .10 mC .16 mD .18 m5.如果a 有算术平方根,那么a 一定是( )(A )正数 (B )0 (C )非负数 (D )非正数6.已知△ABC 的三边长分别为5,13,12,则△A BC 的面积为( )A .30B .60C .78D .不能确定7.将一个直角三角形两直角边同时扩大到原来的两倍,则斜边扩大到原来的( )A .4倍B .2倍C .不变D .无法确定8、已知x 、y 为正数,且|x 2-4|+(y 2-3)2=0,如果以x 、y 为直角边长作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A .5B .25C .7D .159.下列各组数中互为相反数的是( )(A )2-与2)2(- (B )2-与38- (C )2-与21- (D )2与2- 10.若将三个数3-,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )(A )3- (B )7 (C )11 (D ) 无法确定二、填空题(3*10=30)11.已知等腰三角形的一条腰长为5,底边长是6,则它底边上的高为________.12.在△ABC 中,∠C =90°,若AB =5,则AB 2+AC 2+BC 2=________.13.如图:一个圆柱的底面周长为16cm ,高为6cm ,BC 是上底面的直径,一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,则蚂蚁爬行的最短路程为 cm .14.2)81(-的算术平方根是 ,271的立方根是 。
2014-2015年第一次月考八年级数学试题
2014-2015年第一次月考八年级数学试题(时间:120分钟 总分:150分)注意:本卷所有试题答案都要填在答卷相应位置一、选择题(每小题3分,共30分) 1.16的平方根是( )A .4B .±4C .±2D .2 2.下列说法正确的是( )A .负数没有立方根B .如果一个数有立方根,那么它一定有平方根C .一个数有两个立方根D .一个数的立方根与被开方数同号3.如图,数轴上点P 表示的数可能是( )A .7B .7-C .2.3-D .10-4.在实数 121121112272241053.、、、π、、、-中,无理数的个数为( ) A .1个 B .2个 C .3个 D .4个 5.下列运算中, 正确的个数是( ) ①1251144251=;②74322=+;③981±=;④73433-=- A .1个 B .2个 C .3个 D .4个 6.下列各式计算正确的是( )A .()222b a b a -=-B .()0248≠=÷a a a aC .523632a a a =⋅D .()632a a =- 7.下列计算中可采用平方差公式的是( )A .()()z x y x -+B .()()y x y x 22++-C .()()y x y x +--33D .()()a b b a 3232-+8.若一个正数的两个平方根分别是1-a 和3-a ,则a 的值为 ( )A .-2B .2C .1D .4 9.若()M y xy x y x ++-=-22242,则M 为( )A .xyB .-xyC .3xyD .-3xy10.若改动多项式22129y xy x ++中的某一项,使它变成完全平方式,则改动的办法是( )A .只能改动第一项B .只能改动第二项C .只能改动第三项D .可以改动三项中的任意一项二、填空题(每小题3分,共30分) 11.5的相反数为 . 12.比较大小:215- 21(用“>”、“<”“=”填空) 13.无理数105-的整数部分为 . 14.已知233+-+-=x x y ,则xy = .15.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为 .16.若2=m a ,3=n a ,则n m a 2+的值为 .17.若32-x 与321y -互为相反数,则y x 2-的值为 . 18.如果11=-x x ,那么221xx += . 19.已知实数a 满足0332=++a a a ,那么=++-32a a . 20.已知204=x ,205=y ,则xy y x -+2的值为 .2014年秋初2013级第一次月考数学答题卷(时间:120分钟 总分:150分)一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每小题3分,共30分)11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 三、解答题(共90分) 21.直接写出计算结果(每小题3分,共18分)① ()()()=-÷-⋅-643a a a ②()=-23xy③ =+--)32(32x x x ④()=--22b a⑤()()=-+y x y x 44 ⑥()()=+-56x x22.计算(每小题4分,共24分) (1)()16912823+-+- (2) ()3223xy z x -⋅(3) ()()y x y x 232+- (4) ()()2222x y y x --+(5) ()()1212++-+b a b a (6)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+8422112112112112123.解方程(每小题4分,共8分)(1) ()01253=--x (2) ()()()45312=-+-+x x x 24.(5分)先化简,再求值:()()()1132+--+a a a ,其中3=a .25.(5分)先化简,再求值:()()()2422223y y x x y x y x +---+,其中201411=-=y x ,.26.(5分)已知03=-++b b a ,求b a -的值.27.(5分)已知12-+y x 的算术平方根是4,1+-y x 的立方根是3,求y 、x 的值.28.(6分)若()()n x x m x +-+32的积中不含32x x 、项,求n m 和的值.29.(6分)如图,大小两个正方形边长分别为a 、b . (1)用含a 、b 的代数式阴影部分的面积S ; (2)如果5,7==+ab b a ,求阴影部分的面积. 30.(8分)图①是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的正方形边长为 ;(2)观察图②,三个代数式()()mn n m n m ,,22-+之间的等量关系是 ;(3)观察图③,你能得到怎样的代数恒等式呢? ; (4)试画出一个几何图形,使它的面积能表示()()22232n mn m n m n m ++=++.(画在虚线框内)。
八年级数学
. .2014-2015学年第一学期八年级数学月考试题(总分120分)一. 选择题(共8题,24分)1、在下列各数:-0.333…, 4, 5, π-, 3π, 3.1415, 2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成). 中是无理数的有 ( )A.3个B.4个C. 5个D. 6个 2、下列各式中,正确的是( ) A .()222-=- B .()932=- C .39±= D .39±=±3、25的平方根是( )A 、5B 、5-C 、5±D 、5± 4.下列说法正确的是( )A .一个有理数的平方根有两个,它们互为相反数B .负数没有立方根C .无理数都是开不尽的方根数D .无理数都是无限小数 5、如果一个数的立方根是这个数本身,那么这个数是( ) A 、1 B 、1- C 、1± D 、0,1±6、一直角三角形的三边分别为2、3、x ,那么以x 为边长的正方形的面积为( )A 、13B 、5C 、13或5D 、无法确定7、4的平方的倒数的算术平方根是( )A .4B .18C .-14D .148.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )72425207152024257252024257202415(A)(B)(C)(D)班级 姓名 考密 封 线 内 不 要 答 卷………………………………………………装………………………………订………………………………线………………………………………………二.填空题(共8题,24分)9.如果a 的平方根等于2±,那么_____=a ;10.64 __ ____11-4.2(填 >或< 号)12.若a 、b 互为相反数,c 、d 互为倒数,则______3=++cd b a 。
八上压轴题(201429)
点评:(1)本题中的 2 倍角的问题,可以转化为∠BDC=∠BAC 然后利用“8”字型即可推导 出来;(2)证明角平分线的问题有两种途径,既可以直接证角相等,也可以转证线段相等。本 题可以利用第二种方法证明;(3)线段的和差问题,可以直接思考“截长补短”法。本题可以 根据经验猜想∠BAC 应该是一个特殊角——60°。
考点: 专题: 分析:
全等三角形的判定与性质;坐标与图形性质;三角形的面积;等腰三角形的性质. 几何综合题.
菁优网版 权所有
(1)根据点 B、C 的坐标判断出 y 轴是 BC 的垂直平分线,再根据线段垂直平分线上的点到线段两端点的距离相 可得 AB=AC, PB=PC, 根据等边对等角可得∠ABC=∠ACB, ∠PBC=∠PCB, 然后利用“角边角”证明△BCF 和△C 全等,根据全等三角形对应边相等可得 BE=CF; (2)连接 OF,先求出△AOB 的面积,再根据等高的三角形的面积的比等于底边的比求出△BOF 和△AOF 的面 再根据三角形的面积列式求出点 F 的横坐标与纵坐标的长度,从而得解; (3)设∠BAC=α,根据三角形的面积求出 BE=BA,根据等边对等角可得∠BEA=∠BAE=α,根据等腰三角形三 合一的性质和直角三角形两锐角互余求出∠ACB,再根据三角形的内角和定理求出α<90°,根据三角形的一个外 大于任何一个与它不相邻的内角可得∠AEB>∠ACB, 然后求出α>60°, 然后分α=60°和 90°时求出 m 的值即可得 (1)证明:∵B(﹣3,0),C(3,0), ∴OB=OC, ∴y 轴是 BC 的垂直平分线, 又∵点 A 在 y 轴正半轴上,点 P 在线段 OA 上, ∴AB=AC,PB=PC, ∴∠ABC=∠ACB,∠PBC=∠PCB,
解答:
(1)证明:∵
初二数学第一次月考试卷及答案
( 1)内角和为 2014°,小明为什么不说不可能? ( 2)小华求的是几边形的内角和? ( 3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?
12.如图 6,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原
理是 __________.
13. 如果一个等腰三角形有两边长分别为 4 和 8,那么这个等腰三角形的周长为 __________.
1 4.如图,已知△ ABD≌△CDB,且∠ ABD=4°0 ,∠ CBD=2°0 ,则∠A 的度数为 __________.
三、解答题(本大题共 8 小题,共 66 分) 19.如图, 点 B 在线段 AD上,BC∥DE, AB=ED,BC=DB.求证:∠ A=∠E.
图4
图5
图6
20.一个多边形的外角和是内角和的
,求这个多边形的边数.
[ 来源:Z*xx*]
24.如图, O是△ABC内任意一点,连接 OB、OC. ( 1)求证:∠ BOC>∠A; ( 2)比较 AB+AC与 OB+OC的大小,并说明理由.
26.如图 1,在△ ABC中,∠ BAC=9°0 , AB=AC,AE是过 A 的一条直线,且 B, C 在 AE的异侧, BD⊥ AE于点 D, CE⊥AE 于点 E. ( 1)求证: BD=DE+C;E ( 2)若直线 AE绕点 A 旋转到图 2 位置时( BD< CE),其余条件不变,问 BD与 DE, CE的关系如何,请证明; ( 3)若直线 AE绕点 A 旋转到图 3 时( BD> CE),其余条件不变, BD与 DE,CE的关系怎样?请直接写出结果, 不须证明. ( 4)归纳( 1),( 2),(3),请用简捷的语言表述 BD与 DE, CE的关系.
连云港汇文双语八年级数学试卷第一次月考
八年级数学试题 第1页 共4页 八年级数学试题 第2页 共4页图A BED F C 第14第15题赣榆汇文双语学校2013—2014学年度第一学期第一次质量检测八年级数学试卷命 题:马曼丽审核:吉现斌(考试时间:100分钟,满分值150分)一、选择题. ( 每题4分,本大题共32 分)1. 下列的图形不是轴对称图形的是 ( )2.在下列各组图形中,是全等的图形是( )A 、B 、C 、D 、3.下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
A .4个 B 、3个 C 、2个 D 、1个4.小明不慎将一块三角形的玻璃摔碎成如图1所示的四块(即图中标有 1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带 ( )A .第1块B .第2块 C .第3 块 D .第4块5.下列判断正确的是 ( )A.两个直角三角形必全等B.两个等腰三角形必全等C.顶角相等的两个等腰三角形全等D.有一边相等的两个等边三角形全等6. 在△ABC 和△DEF 中,①AB=DE ,②BC=EF ,③AC=DF ,④∠A=∠D ,⑤∠B=∠E ,⑥∠C=∠F ,则 下列条件组不能保证△ABC ≌△DEF 的是( ) A.①②③ B.①②⑤ C.②④⑤D.①③⑤7. 如图,AD=AE ,补充下列一个条件后,仍不能判定△ABE ≌△ACD 的是( )A.∠B=∠CB.AB=ACC.BE=CDD.∠AEB=∠ADCCE8. 如图,已知AB ∥DC ,AD ∥BC ,BE=DF ,图中全等三角形有( )A.3对B. 4对C.5对D.6对二、填空题(每题4分,本大题共28分)9.下列图形:①角;②线段;③等边三角形;④有一个角为30°的直角三角形中是轴对称图形的有(填序号)________.10.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.11.如图,AB ∥DE ,AB=DE ,要使△ABC ≌△DEF ,应添加条件______________(填一种),根据是________________________12.如图,在ΔADB 与ΔCDB 中,若∠1=∠2,加上条件 ,则有ΔADB ≌ΔCDB 13.在如图所示的4×4正方形网格中, ∠1+∠2+∠3+∠4+∠5+∠6+∠7=14. 在△ABC 中,AB =AC ,AD 是△ABC 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F.则下面结论中正确的有 _____① DA 平分∠EDF; ②AE =AF ,DE =DF; ③DB=DC ;④图中共有3对全等三角形学校____________________ 班级 ____________ 姓名 ____________ 考试号 __________________………………………………密 ………………………………………… 封………………………………………………线…………………………………………… 线……………………………………BDCEA第7题FE DC B A第(11)题 第13题15、如图,在△ABC和△ADE中,有以下四个论断:①AB=AD,②AC=AE,③∠C=∠E,④BC=DE,请以其中三个论断为条件,余下一个论断为结论,写出一个正确的结论(用序号“ ”的形式写出):.三.简答题16.(10分)填空并完成以下证明:已知,如图8,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°证明:∵∠1=∠ACB(已知)∴DE∥BC ()∴∠2=∠DCF()∵∠2=∠3(已知)∴∠3=∠DCF()∴CD∥FG ()∴∠ BDC+∠DGF=180°()17.(10分)如图,AB=AC,AD=AE,BD=CE,△ABD与△ACE全等吗?请说明理由。
常青藤 2014秋 8数 第一学期第一次月考1004
常青藤学校联盟2014~2015学年度第一学期第一次月度联考八年 级 数 学 试 题(考试时间:120分钟,满分:150分) 成绩一.选择题(每题3分,共计18分) 1. 如图,D 、E 分别是AB,AC 上一点,若∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 是 ( ) (A )AD=AE (B )AB=AC (C )BE=CD (D )∠AEB=∠ADC 2. 下列交通标志中有几个是轴对称图形( )3. 如右图中字母A 所代表的正方形的面积为( )A. 4B. 8C. 16D. 64 4. 等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40° C .40° D .80 5. 适合下列条件的△ABC 中, 直角三角形的个数为( )①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320, ∠B=580; ④;25,24,7===c b a ⑤.4,2,2===c b a A. 2个B. 3个C. 4个D. 5个6. 如右图,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD.有下列四个结论:⑴∠PBC=15°;⑵AD ∥BC ;⑶直线PC 与AB 垂直;⑷四边形ABCD 是轴对称图形. 其中正确结论个数是( ) A . 1 B. 2 C. 3 D. 4 二.填空题(每题3分,共计30分)7. 如图, 等腰△ABC 的底边BC 为16, 底边上的高AD 为6, 则腰长AB 的长为____________. 8. 如图,OP 平分,MON PA ON ∠⊥于点A ,点Q 是射线OM上的一个动点,若2PA =,则PQ 的最小值为9. 如图,要测量河岸相对两点A ,B 的距离,可以从AB 的垂线BF 上取两点C ,D.使BC=CD ,过DABCEDA.1B.2C.3D.4学校 班 姓名 学号_________ 试场号_________密 封 线 内 不 要 答 卷……………………………………………………装………………订…………………线…………………………………………………………作DE⊥BF,且A,C,E三点在一直线上,若测得DE=30米,即AB= 米,识别方法是10.如图,Rt△ABC中∠ACB=90°,DE垂直平分AC交AB于E,∠A=300,DE=4,则BE=11. 一个三角形三边满足(a+b)2-c2=2ab, 则这个三角形是三角形.12. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为_____________第8题图第9题图第10题图第12题图13. 如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为.14.如图,在△ABC中,AB=4,BC=6,∠B=60°,将三角形ABC沿着射线BC的方向平移2个单位后,得到三角形△A′B′C′,连接A′C,则△A′B′C的周长为____________。
华师大版八年级数学上册第一次月考试卷【解析】
2014-2015学年山东省潍坊市高密四中文慧学校八年级(上)第一次月考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)1.下列交通标志图案是轴对称图形的是()A.B.C.D.2.下列说法中正确的是()A.全等三角形是指形状相同的三角形B.全等三角形的周长和面积分别相等C.所有的等边三角形是全等三角形D.有两个角对应相等的两个三角形全等3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)4.如图,△ABC≌△BAD,如果AB=6cm,BD=4cm,AD=5cm,那么BC的长是()A.4cm B.5cm C.6cm D.无法确定5.如图,已知:在△ABC和△DEF中,如果AB=DE,BC=EF.在下列条件中不能保证△ABC≌△DEF的是()A.∠B=∠DEF B.AC=DF C.AB∥DE D.∠A=∠D6.娜娜有一个问题请教你,下列图形中对称轴只有两条的是()A.B.C.D.7.下列图形中成轴对称的是()A.B.C.D.8.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变9.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)10.如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD11.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACD B.AF垂直平分EG C.∠B=∠C D.DE=EG12.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙二、填空题(共8个小题,每小题3分,共24分)13.写出一个成轴对称图形的大写英文字母:.14.如图,把两根钢条AC、BD的中点O连在一起,可以做成一个测量工件内槽宽的工具,若测得CD=5cm,则该内槽的宽AB为.15.如图,△ABC与△A′B′C′关于直线l成轴对称,已知∠A=50°,∠C′=30°,则∠B= .16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b= .17.如图,∠1=∠2,BC=EF,需要添加一个条件,才能使△ABC≌△DEF,你添加的条件是(只需添加一个条件即可.)18.如图,在△ABC中,AB=AC,两条高BD、CE相交于点O,则图中全等三角形共有对.19.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.20.如图所示,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠ABE的度数为.三、解答题(共8个小题,共60分)21.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.22.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.23.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)24.如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1.25.已知△ABC,利用直尺和圆规,作一个与△ABC全等的△A′B′C′(保留作图痕迹,不要求写作法).26.在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).(1)小明的这三件文具中,可以看做是轴对称图形的是(填字母代号);(2)请用这三个图形中的两个拼成一个轴对称图案,并画出草图(只须画出一种)27.如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.(1)∠DCA与∠EAB相等吗?说明理由;(2)△ADC与△BEA全等吗?说明理由.28.如图,AB=AC,OB=OC.求证:∠ADC=∠ADB.2014-2015学年山东省潍坊市高密四中文慧学校八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.下列交通标志图案是轴对称图形的是()A.B.C.D.考点:轴对称图形.专题:常规题型.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列说法中正确的是()A.全等三角形是指形状相同的三角形B.全等三角形的周长和面积分别相等C.所有的等边三角形是全等三角形D.有两个角对应相等的两个三角形全等考点:全等图形.分析:根据能够完全重合的两个三角形叫做全等三角形,全等三角形的判定方法:AAS、AAS进行分析即可.解答:解:A、全等三角形是指形状相同的三角形,说法错误;B、全等三角形的周长和面积分别相等,说法正确;C、所有的等边三角形是全等三角形,说法错误;D、有两个角对应相等的两个三角形全等,说法错误;故选:B.点评:此题主要考查了全等三角形,关键是掌握全等三角形形状和大小都相等.3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)考点:关于x轴、y轴对称的点的坐标.分析:根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.解答:解:点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2).故选:A.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.如图,△ABC≌△BAD,如果AB=6cm,BD=4cm,AD=5cm,那么BC的长是()A.4cm B.5cm C.6cm D.无法确定考点:全等三角形的性质.分析:根据全等三角形的性质得出BC=AD,代入求出即可.解答:解:∵△ABC≌△BAD,AD=5cm,∴BC=AD=5cm,故选B.点评:本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.5.如图,已知:在△ABC和△DEF中,如果AB=DE,BC=EF.在下列条件中不能保证△ABC≌△DEF的是()A.∠B=∠DEF B.AC=DF C.AB∥DE D.∠A=∠D考点:全等三角形的判定.分析:已知AB=DE,BC=EF,只需再找一个夹角或者一条边相等,即可判定△ABC≌△DEF.解答:解:A、可根据SAS判定△ABC≌△DEF,故本选项错误;B、可根据SSS判定△ABC≌△DEF,故本选项错误;C、根据AB∥DE,可得∠B=∠DEF,可根据SAS判定△ABC≌△DEF,故本选项错误;D、不能根据SSA判定△ABC≌△DEF,故本选项正确.故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.娜娜有一个问题请教你,下列图形中对称轴只有两条的是()A.B.C.D.考点:轴对称的性质.分析:根据轴对称图形的概念,分别判断出四个图形的对称轴的条数即可.解答:解:A、圆有无数条对称轴,故本选项错误;B、等边三角形有3条对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、等腰梯形有1条对称轴,故本选项错误.故选C.点评:本题考查轴对称图形的概念,解题关键是能够根据轴对称图形的概念正确找出各个图形的对称轴的条数,属于基础题.7.下列图形中成轴对称的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:根据轴对称图形的概念可得:是轴对称图形的是:B.故选:B.点评:考查了轴对称图形,掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.8.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变考点:轴对称的性质.分析:根据轴对称不改变图形的形状与大小解答.解答:解:∵轴对称变换不改变图形的形状与大小,∴与原图形相比,形状没有改变,大小没有改变.故选:A.点评:本题考虑轴对称的性质,是基础题,熟记轴对称变换不改变图形的形状与大小是解题的关键.9.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)考点:全等三角形的判定.专题:作图题.分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:A.点评:本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.10.如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD考点:全等三角形的判定与性质.专题:常规题型.分析:根据题干给出的条件可以证明△ABD≌△CDB,可以求得A、C、D选项正确.解答:解:∵在△ABD和△CDB中,,∴△ABD≌△CDB,∴∠ADB=∠CBD,∠ABD=∠CDB,∠A=∠C∴AD∥BC,AB∥CD,∴A、C、D选项正确.故选B.点评:本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证△ABD≌△CDB是解题的关键.11.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACD B.AF垂直平分EG C.∠B=∠C D.DE=EG考点:轴对称的性质.分析:认真观察图形,根据轴对称图形的性质得选项A、B、C都是正确的,没有理由能够证明△DEG 是等边三角形.解答:解:A、因为此图形是轴对称图形,正确;B、对称轴垂直平分对应点连线,正确;C、由三角形全等可知,∠B=∠C,正确;D、题目中没有60°条件,不能判断是等边三角形,故不能得到DE=EG错误.故选D.点评:本题考查了轴对称的性质;解决此题要注意,不要受图形误导,要找准各选项正误的具体原因是正确解答本题的关键.12.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙考点:全等三角形的判定.分析:全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.解答:解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.二、填空题(共8个小题,每小题3分,共24分)13.写出一个成轴对称图形的大写英文字母:A、B、D、E中的任一个均可.考点:轴对称图形.分析:根据轴对称图形的概念,分析得出可以看成轴对称图形的字母.解答:解:大写字母是轴对称的有:A、B、D、E等.故答案可为:A、B、D、E中的任一个均可.点评:此题考查了轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,难度一般.14.如图,把两根钢条AC、BD的中点O连在一起,可以做成一个测量工件内槽宽的工具,若测得CD=5cm,则该内槽的宽AB为5cm .考点:全等三角形的应用.分析:本题让我们了解测量两点之间的距离,只要符合全等三角形全等的条件之一SAS,得出CD=AB 即可得出答案.解答:解:连接AB,CD,如图,∵点O分别是AC、BD的中点,∴OA=OC,OB=OD.在△AOB和△COD中,∵∴△AOB≌△COD(SAS).∴CD=AB=5cm.故答案为:5cm.点评:本题考查全等三角形的应用.在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.15.如图,△ABC与△A′B′C′关于直线l成轴对称,已知∠A=50°,∠C′=30°,则∠B= 100°.考点:轴对称的性质.分析:由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.解答:解:∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故答案为:100°.点评:主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°这一条件,得到∠C=∠C′=35°是正确解答本题的关键.16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b= 6 .考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a与b的值.解答:解:∵点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),∴a=2,b=4,∴a+b=2+4=6,故答案为:6.点评:此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.17.如图,∠1=∠2,BC=EF,需要添加一个条件,才能使△ABC≌△DEF,你添加的条件是AC=FD (只需添加一个条件即可.)考点:全等三角形的判定.专题:开放型.分析:添加条件:AC=FD,可利用SAS定理判定△ABC≌△DEF.解答:解:添加条件:AC=FD,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故答案为:AC=FD.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.如图,在△ABC中,AB=AC,两条高BD、CE相交于点O,则图中全等三角形共有 3 对.考点:全等三角形的判定.分析:首先证明△ACE≌△ABD可得AD=AE,EC=BD,根据等式的性质可得AB﹣AE=AC﹣AD,即EB=DC;再证明△EBC≌△DCB,△EOB≌△DOC即可.解答:解:△ACE≌△ABD,△EBC≌△DCB,△EOB≌△DOC,∵BD、CE为高,∴∠ADB=∠AEC=,90°,在△AEC和△ADB中,,∴△ACE≌△ABD(ASA);∴AD=AE,EC=BD,∴AB﹣AE=AC﹣AD,即EB=DC,在△EBC和△DCB中,,∴△EBC≌△DCB(SSS),在△EOB和△DOC中,,∴△EOB≌△DOC(AAS).故答案为:3.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出 4 个.考点:作图—复杂作图.分析:能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个解答:解:如图,可以作出这样的三角形4个.点评:本题考查了学生利用基本作图来做三角形的能力.20.如图所示,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠ABE的度数为20°.考点:翻折变换(折叠问题);平行线的性质;矩形的性质.分析:由折叠的性质知:∠EBC′、∠BC′F都是直角,∠BEF=∠DEF,因此BE∥C′F,那么∠EFC ′和∠BEF互补,这样可得出∠BEF的度数,进而可求得∠AEB的度数,则∠ABE可在Rt△ABE中求得.解答:解:由折叠的性质知,∠BEF=∠DEF,∠EBC′=∠D=90°,∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′+∠BEF=180°,又∵∠EFC′=125°,∴∠BEF=∠DEF=55°,在Rt△ABE中,可求得∠ABE=90°﹣∠AEB=20°.故答案为20°.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应角相等.三、解答题(共8个小题,共60分)21.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.考点:全等三角形的判定.专题:证明题.分析:首先根据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.解答:证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:可通过证△ABF≌△DCE,来得出∠A=∠D的结论.解答:证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.点评:此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.23.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)考点:利用轴对称设计图案.专题:作图题.分析:可分别选择不同的直线当对称轴,得到相关图形即可.解答:解:点评:考查利用轴对称设计图案;选择不同的直线当对称轴是解决本题的突破点.24.如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1(﹣1,2)B1(﹣3,1)C1(2,﹣1).考点:作图-轴对称变换;点的坐标.专题:作图题.分析:(1)利用轴对称性质,作出A、B、C关于y轴的对称点A1、B1、C1,顺次连接A1B1、B1C1、C1A1,即得到关于y轴对称的△A1B1C1;(2)根据点关于y轴对称的性质,纵坐标相同,横坐标互为相反数,即可求出A1、B1、C1各点的坐标.解答:解:(1)所作图形如下所示:(2)A1,B1,C1的坐标分别为:(﹣1,2),(﹣3,1),(2,﹣1).故答案为:(﹣1,2),(﹣3,1),(2,﹣1).点评:本题主要考查了轴对称变换作图,难度不大,注意作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.25.已知△ABC,利用直尺和圆规,作一个与△ABC全等的△A′B′C′(保留作图痕迹,不要求写作法).考点:作图—复杂作图;全等三角形的判定.分析:利用圆规作B′C′=BC,A′B′=AB,A′C′=AC即可.解答:解:如图所示:.点评:此题主要考查了复杂作图,关键是掌握三边对应相等的两个三角形全等.26.在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).(1)小明的这三件文具中,可以看做是轴对称图形的是BC (填字母代号);(2)请用这三个图形中的两个拼成一个轴对称图案,并画出草图(只须画出一种)考点:利用轴对称设计图案.专题:常规题型.分析:(1)找到沿某条直线折叠,直线两旁的部分能够互相重合的图形即可;(2)由(1)得到的两个轴对称图形让对称轴重合组合即可.解答:解:(1)B,C.(2)所设计如下:点评:本题考查了轴对称的知识,用到的知识点为:沿某条直线折叠,直线两旁的部分能够互相重合的图形叫轴对称图形;两个图形组成轴对称图形,对称轴需重合.27.如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.(1)∠DCA与∠EAB相等吗?说明理由;(2)△ADC与△BEA全等吗?说明理由.考点:全等三角形的判定与性质.专题:常规题型.分析:(1)根据AB⊥AC和CD⊥DE可以求得∠DCA=∠EAB;(2)根据(1)中的∠DCA=∠EAB和AB=AC可以求证△ADC≌△BEA.解答:解:(1)∵AB⊥AC CD⊥DE∴∠BAE+∠CAD=90°,∠CAD+∠DCA=90°,∴∠DCA=∠EAB;(2)∵CD⊥DE,BE⊥DE,∴在△ADC和△BEA中,,∴△ADC≌△BEA.(AAS)点评:本题考查了全等三角形的判定,熟练运用AAS方法求证三角形全等是解题的关键.28.如图,AB=AC,OB=OC.求证:∠ADC=∠ADB.考点:全等三角形的判定与性质.专题:证明题.分析:易证△OAC≌△OAB,可得∠OAC=∠OAB,可证明△ACD≌△ABD,可得∠ADC=∠ADB.解答:解:∵在△ACD和△ABD中,,∴△OAC≌△OAB,(SSS)∴∠OAC=∠OAB,∵在△ACD和△ABD中,,∴△ACD≌△ABD(SAS),∴∠ADC=∠ADB.点评:本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ACD≌△ABD是解题的关键.初中数学试卷金戈铁骑制作。
2014-2015学年八年级数学月考测试卷
⊙ 班 级: 姓 名: 学 号: 考 场: ⊙⊙……………⊙……………装…⊙……………订……⊙………线………⊙……………装…⊙……………订……⊙………线…………⊙……………⊙许昌县实验中学2014-2015学年第一学期月考八年级数学试卷(满分100分,完卷时间70分钟)一、选择题(每题3分,共30分)则∠E 是( )A. 25°B. 27°C. 30°D. 45°3、如图所示,在△ABC 中,∠ABC=∠C=∠1,∠A=∠3,则∠A 的度数为( ).A .30°B .36°C .45°D .72° 4、下面四个图形中,线段BE 是△ABC 的高的图是( )5、下列对应相等条件中,能作出唯一三角形的是( ) A .已知两边 B .已知两角 C .已知两边一角 D .已知两角和一边7、三角形内角的度数之比为2:3:7,它一定是()三角形A.直角 B.等腰 C.锐角D.钝角8、在△ABC中,∠B=∠C,若与△ABC全等的三角形中有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A. ∠AB. ∠BC. ∠CD. ∠B或∠C9、如图所示,学生多多作业本上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSSB. SASC. AASD. ASA,为折痕,10、将一张长方形纸片按如图所示的方式折叠,BC BD则CBD∠的度数为()二.填空题(每小题3分,共15分.)1、要使五边形木架不变形,则至少要钉上_______根木条.2、三角形的三边长分别为5,1+2x,8,则x的取值范围是________.3、若△ABC ≌△DEF,且△ABC的周长为12,AB = 3,EF = 4,则AC = .4、如图所示,∠A+∠B+∠C+∠D+∠E=________.5、如图所示:从点A出发,沿直线前进10米后向左转40°,再沿直线前进10米,再向左转40°,照这样走下去,他第一次回到出发地A时,一共走了_______米.三.解答题(共55分.)1、已知:AB、CD相交于O,AO=BO,AC∥DB求证:△AOC≌△BOD.(10分)2、如图所示,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°,求:∠BOC的度数。
2014—2015学年度九年级第一次月考数学试题
2014—2015学年度九年级第一次月考数学试题(120分钟 120分)一、选择题(本题有12小题,每小题3分,共36分)1.下面关于x 的方程中①ax 2+bx+c=0;②3(x-9)2-(x+1)2=1;③x+3=1x;④(a 2+a+1)x 2-a=0;④1x +=x-1.一元二次方程的个数是( )A .1B .2C .3D .42.若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( ). A .x =ba-B .x =1C .x =2D .x =33.将方程0362=+-x x 左边配成完全平方式,得到的方程是( ) A.6)3(2=-x B.3)3(2-=-x C.3)3(2=-x D.12)3(2=-x4.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k >-且 0k ≠C .1k <D .1k <且0k ≠5、把二次函数253212++=x x y 的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点是( ) A .(-5,1) B .(1,-5) C .(-1,1)D .(-1,3)6、已知函数4212--=x x y ,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <1 B .x >1 C .x >-2 D .-2<x <47、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A 、%10B 、%15C 、%20D 、%258.把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则 ( ).A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =219. 如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分 种上草坪.要使草坪的面积为2540m ,求道路的宽. 如果设小路宽为x ,根据题意,所列方程正确的是( )A .(20-x )(32-x )= 540B .(20-x )(32-x )=100C .(20+x )(32-x )=540D .(20+x )(32-x )= 54032m20m10、不解方程,01322=-+x x 的两个根的符号为( ) (A )同号 (B )异号 (C )两根都为正 (D )不能确定11.当代数式x 2+2x +5的值为8时,代数式2x 2+4x -2的值是 ( ) A .4 B .0 C .-2 D .-4 12.如图,二次函数的图像与轴正半轴相交,其顶点坐标为(121,),下列结论:①;②;③;④.其中正确结论的个数是 ( )A. 1B. 2C. 3D. 4 二、填空题(本题有5小题,每小题3分,共15分)13. 等腰三角形的两边长分别是方程23740x x -+=的两个根,则此三角形的周长为 . 14.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为 . 15对称轴是x=-1的抛物线过点A (-2,1),B (1,4),该抛物线的解析式为 16、二次函数y =x 2-6x +c 的图象的顶点与原点的距离为5,则c =______.17. 如图,边长为1的正方形ABCO,以A 为顶点,且经过点C 的抛物线与对角线交于点D,则点D 的坐标为 .三、解答题 (共69分。
初二数学月考试题
2014~2015学年第一学期第一次单元检测八年级数学试题(时间120分钟,满分120分)一、选择题(本题共12小题,每题3分,共36分)1.下列各图中,为轴对称图形的是()2.已知点P(-2,1),那么点P关于x轴对称的点M的坐标是()A.(-2,1) B.(-2,-1) C.(-1,2) D.(2, 1)3.下列说法中:①能够完全重合的两个三角形是全等三角形;②一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小没有改变,即平移、翻折、旋转前后的两个图形是全等形;③面积相等的两个三角形是全等三角形;④全等三角形的周长相等;⑤全等三角形的对应边相等,对应角相等.其中正确的个数有()4.如图,将两根钢条'AA、'AA、BB的中点O连在一起,使'BB可以绕着点0自由转动,就做成了一个测量工件,则'A OB的理由是()A B的长等于内槽宽AB,那么判定△AOB≌△''''A.边角边B.角边角C.边边边D.角角边5.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()6.如图所示,在△ABC中,∠C=90°,折叠后,使A、B两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则∠A 等于( )度。
A 30°B 45°C 15°D 60°第5题 第6题 第7题7.如图下列条件中,不能..证明△ABD ≌△ACD 的是( ) A.BD =DC ,AB =AC B.∠ADB =∠ADC,∠BAD =∠CADC.∠B =∠C ,∠BAD =∠CADD.∠B =∠C ,BD =DC8. 小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是( )A 、21:10B 、10:21C 、10:51D 、12:01 9.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A 3B 4C 6D 510.如图,OP 平分∠AOB ,PA ⊥OA ,PB ⊥OB ,垂足分别为A ,B .下列结论中不一定成立的是( )A .PA=PB B .PO 平分∠APBC .OA=OBD .AB 垂直平分OP 11如图所示,在△ABC 中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC交BC 于D ,DE ⊥AB 于E ,则EB 的长是( )A 、3㎝B 、4㎝C 、5㎝D 、不能确定ED CB A第10题 第11题 第12题 12如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连接BF ,CE 、下列说法:①CE=BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A 1个 B 2个C 3个 D 4个二、填空题(本题共5个小题,每小题3分,共15分)13.如图,若△ABC ≌△ADE ,∠EAC=30°,则∠BAD= _________ 度.第13题 第15题 第16题 第17题14.已知△ABC ≌△DEF ,BC=EF=6cm ,△ABC 的面积为18cm 2,则EF 边上的高的长是 _________ cm .15.如图,已知AD=BC .EC ⊥AB .DF ⊥AB ,C .D 为垂足,要使△AFD ≌△BEC ,还需添加一个条件.若以“ASA ”为依据,则添加的条件是______ __16.如图,ΔABC 的三边AB 、BC 、CA 的长分别是40、50、60、其中三条角平分线将ΔABD 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于______.17.如图,△ABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是________三、解答题(本题共8小题,共69分)18.(满分7分)两个城镇A 、B 与两条公路l 1、l 2位置如图所示,电信部门需在C 处修建一座信号发射塔,要求发射塔到两个城镇A 、B 的距离必须相等,到两条公路l 1,l 2的距离也必须相等,那么点C 应选在何处?请在图中,用尺规作图找出所有符合条件的点C .(不写已知、求作、作法,只保留作图痕迹)OB APD E CB A第18题第19题第20题第21题19.(满分8分)如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.求证:∠ACE=∠DBF.20.(满分8分)如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.21(满分8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC 于F,△ABC面积是28cm2,AB=20cm,AC=8cm,求DE的长.第22题第23题第24题第25题22.(满分8分)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.23.(满分8分)如图,△AOB中,OA=OB,∠AOB=90゜,BD平分∠ABO交OA于D,AE⊥BD于E.求证:BD=2AE.24. (满分10分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.25.(满分12分)如图,已知△ABC中,∠BAC=90゜,AB=AC,点P为BC边上一动点(BP<CP),分别过B、C作BE⊥AP于E,CF⊥AP于F.(1)求证:EF=CF-BE.(2)若点P为BC延长线上一点,其它条件不变,则线段BE、CF、EF是否存在某种确定的数量关系?画图并直接写出你的结论.AB CDE。
2014—2015八年级数学上册第一次月考试题(2013-2014)
谷硐中学2014—2015学年度第一学期八年级数学第一次月考试题姓名 班级 得分一、择题(每空4分,共40分)( )1.下列条件中,不能..确定两个三角形全等的条件是 A.三条边对应相等 B. 两角和其中一角的对边对应相等C.两角和它们的夹边对应相等D. 两边和一角对应相等( )2.小冬不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去,能配一块与原来一样大小的三角形?应该带A. 第1块B. 第2块C. 第3块D. 第4块( )3.如图,△ABC ≌△BAD ,点A 和点B ,点C 和点D 是对应点。
如果AB=6厘米,BD=5厘米,AD=4厘米,那么BC 的长是A.4 厘米 B.5厘米 C. 6 厘米 D.无法确定( )4.如图,△ABN ≌△ACM ,AB=AC ,BN=CM ,∠B=50°,∠ANC=120°,则∠MAC 的度数等于A .120° B.70° C.60° D.50°.3题图 4题图( )5. 能把一个任意三角形分成面积相等的两部分是A.角平分线B.中线C.高D.A 、B 、C 都可以( )6.下列长度的三条线段中,能组成三角形的是A 、3cm ,5cm ,8cmB 、8cm ,8cm ,18cmC 、0.1cm ,0.1cm ,0.1cmD 、3cm ,40cm ,8cm( )7.已知,等腰三角形的两边长是5厘米和11厘米,它的周长是A 、21厘米B 、27厘米C 、21厘米或27厘米D 、16厘米( )8.若一个多边形的内角和是1080°,则此多边形的边数是A 、10B 、8C 、6D 、12D CA B第19题图 第21题图 ( )9.如图,AB ⊥BC ,D 为BC 的中点,以下结论正确的个数是。
①△ABD ≌△ACD ②AB=AC ③∠B=∠C ④AD 是△ABC 的角平分线。
2014-2015八年级上第一次月考试题
八年级上册第一次月考试题一、单项选择:(1分/题,共30分)1. — When ________ he ________ to our school? — About half an hour ago.A.does, come B.did, come C.did, came D.does, came2. Let‟s go to the teacher for some _________ .A. advicesB. adviceC. adviseD. Advises3. ______vegetables ______good for you.A. Eat, areB. Eating, areC. Eating, isD. Eat, is4. — What are we going to do on Sunday? —How about _ ?A. to go hikingB. going hikeC. going hikingD. going to hiking5. It‟s good for us______ exercise every day.A. takesB. tookC. to takeD. Taking6. ---I can not speak Chinese well, What should I do? --- make a Chinese friend?A. How aboutB. Why don‟tC. Why notD. Why didn‟t you7. Doming likes cars. He enjoys ______ model cars of all kinds.A. makingB. to makeC. makeD. made8. It‟s not right ______ football in the street.A. playB. to playC.playingD. Played9. I often help my mother ______ the housework on Sundays.A. inB. withC. toD. For10. --_______ ? ---About 13 millionA How much population is this city?B What is the population of this city?C How many population is this city?D How is the population of this city?11. The sun is __________ the earth .A . big thanB . small thanC . bigger thanD . smaller than12. The maths problem was ___________ easier than we had expected .A . moreB . much moreC . muchD . more much13. --- ___________ your winter holiday ? --- Wonderful ! I enjoyed myself very much .A . How isB . What isC . How wasD . What was14. There are many beautiful hills _________ the coast .A . toB . onC . aboutD . with15. It has a population ____ about 118,700. A of B at C on D for16. China is very famous _____ the Great Wall and pandas.A toB asC forD by17. Guangzhou is ______ the south of China. A in B on C to D at18. The white shirt is as ________ as the yellow one.A. cheapB. cheaperC. cheapestD. the cheapest19. There is ______ in to day‟s newspaper.A. something newB. anything newC. new somethingD. new anything20. The earth is getting ________ .A. warm and warmerB. warmer and warmC. warmer and warmerD. warm and warm21. The children are laughing ________. They are very ________.A. happy, happyB. happily, happilyC. happily, happyD. happy, happily22. The young man drives _____ than he did three months ago.A. much carefullyB. much more carefullyC. much carefulD. much more careful23. Britain is ________ island. It‟s never too hot or cold.A.a B.an C.the D./24. This tree is two ________ years old.A.thousand B.thousands C.thousands of D.thousand of25. —I‟m going to Qingdao for the summer holiday. —!A. Thanks a lotB. Have a good timeC. You‟d better notD. Sorry to hear that26. Table tennis is an ________ game for children, but my brother is not ________in it.A.interesting, interesting B.interested, interestedC.interesting, interested D.interested, interesting27. The more you study during the term, _____you have to study the week before exams.A. the lessB. thelittlerC. lessD. the little28. The population of Tianjin is _____ than that of Shanghai.A. moreB. lessC. smallerD. fewer29. Chengdu _____ a population of more than 1000 thousand.A.are B.is C.has D.have30. Which one is ________ , football or basketball?A. more popularB. popularC. popularerD. much popular二、阅读理解:(2分/题,共40分)AArLynn Presser is a 51-year-old woman. She is a writer and she lives in Winnetka, Illinois. ArLynn likes talking with people online (在线的) and she has 325 friends on Facebook. On 31st of December, 2010, she decided to meet all of her 325 Facebook friends in person (亲自). She called her project “Face to Facebook”.She traveled to 13 countries and took 39 flights (航班). She met 292 friends in 2011. ArLynn had been to China, Korea, the Philippines, Italy, Malaysia, England, Germany and six other countries.Meeting her Facebook friends was not always easy. For safety reasons (安全原因), she always had a friend with her, and made sure the meetings were in public.Although she faced many problems, ArLynn did have some great moments. She learned opera singing, trained to be a bodyguard (保镖), climbed a mountain in California—all with her Facebook friends.( )31. What does ArLynn Presser do?A. She is a teacher.B. She is a doctor.C. She is a driver.D. She is a writer. ( )32. When did ArLynn Presser decide to meet her Facebook friends?A. On 21st of Dec, 2010.B. On 21st of Dec, 2012.C. On 31st of Dec, 2010.D. On 31st of Dec, 2011.( )33. How many countries did ArLynn Presser go to in 2011?A. 13.B. 31.C. 32.D. 39.( )34. The underlined phrase “in public”means in Chinese.A. 在酒吧B. 在公众场合C. 在茶馆D. 在操场( )35. Which of the following is TRUE?A. ArLynn Presser has 225 friends on her Facebook.B. ArLynn Presser did not meet her Facebook friends in person.C. In 2010, ArLynn Presser met 292 of her Facebook friends.D. ArLynn once climbed a mountain in California with her Facebook friends.BAs the new term begins, our shop has many kinds of school supplies on sale. Here are just some of them.School supplies Price(yuan)Discount (折扣)Pen 5 9 yuan for two pensPencil 2 3 yuan for two pencilsRuler 2.5 4 yuan for two rulersEraser 2 3 yuan for two erasersNotebook 4 7 yuan for two notebooksOur shop also has a lot of useful books and dictionaries on sale. You can come and buy what you need. Our shop is on the second floor of Shopping Centre at our school. The shop is open from 9:00 am to 7:00 pm every day.( )36. What’s the price of a pen?A. 4.5 yuan.B. 5 yuan.C. 7 yuan.D. 9 yuan.( )37. and have the same price.A. Pencils; rulersB. Rulers; erasersC. Erasers; notebooksD. Pencils; erasers ( )38. If Lucy wants to buy two pencils and one notebook, she should pay yuan.A. fiveB. SixC. sevenD. eight ( )39. You can save yuan if you buy two rulers at a time.A. oneB. TwoC. fourD. five( )40. Which of the following is NOT true?A. There are five kinds of school supplies in the shop.B. The shop also sells some dictionaries.C. The shop is in the Shopping Centre.D. The shop opens for ten hours a day.CJeff Keith has only one leg. When he was 12 years old, Jeff had cancer(癌症). Doctors had to cut off most of his right leg.Every day Jeff puts on an artificial leg(假腿). With the plastic artificial leg Jeff can ride a bicycle, swim, and play soccer. He can also run.Jeff made a plan with his friends who had plastic legs, too. They decided to run across America. When he was 22 years old, Jeff Keith ran across the United States from the east to the west. He started running in Boston. Seven months later, he stopped running in Los Angeles. He ran 3,200 miles. Jeff stopped in cities on the way to Los Angeles. In every city people gave Jeff money. The money was not for Jeff, but for the American Cancer Society.Jeff is disabled, but he can do many things. He is studying to be a lawyer(律师). Jeff says, “People can do anything they want to do. I want people to know that. I ran not only for disabled people. I ran for everybody.”( )41. Jeff‟s right leg was cut off because he had_______.A. TB(肺结核)B. an accidentC. cancerD. a serious injury( )42. From the passage we know that Boston is _______.A. in the westB. between the east and westC. near Los AngelesD. in the east ( )43. It took Jeff _______ to run from Boston to Los Angeles.A. about four and a half monthsB. about seven monthsC. almost twenty-five weeksD. less than half a year( )44. The underlined word “disabled”means _______.A. 优秀的B. 劳累的C. 残疾的D. 无能为力的( )45. The last passage tells us that _______.A. people should give him more moneyB. people can do anything they want to doC. some disabled men will become lawyersD. disabled people also can runDOne of Harry's feet was bigger than the other. “I can never find boots (靴子)and shoes for my feet.” He said to his friend Dick.“Why don't you go to a shoemaker? ” Dick said. “A good one can make you the right shoes.”“I've never been to a shoemaker,” Harry said. “Aren't they very expensive?”“No,” Dick said, “some of them aren't. There's a good one in our village, and he's quitecheap. Here's his address.'”He wrote something on a piece of paper and gave it to Harry. Harry went to the shoemaker in Dick's village a few days later, and the shoemaker made him some shoes.Harry went to the shop again a week later and looked at the shoes. Then he said to the shoemaker angrily, “You're a silly man! I said, Make one shoe bigger than the other;but you've made one smaller than the other!”Which of these sentences are true (T) and which are false (F)?( )46. Harry's feet were not the same size.( )47. Harry has never been to a shoemaker.( )48. The shoemaker was from Harry's village.( )49. Harry went back to the shoemaker two weeks later.( )50. The shoemaker was right.三、综合填空:(10分)Football is one of the world‟s most popular sports. A lot of people play it around the world or w 51 it on TV. A football match has t 52 parts. Each part is forty-five minutes. there is a break after the first forty-five-minute part. There are two t 53 in a football match.Each team has eleven p 54 , including a goalkeeper. When a referee blows his whistle(口哨), the game b 55 .The object(目标)of the game is to s 56 goals against the other team. Score a goal is to kick the ball into the o 57 team‟s net w 58 the player‟s foot or head. The team scores m 59 than the other team and the team will be the winner. If no team scores a goal, the match is called a draw. Only the goalkeeper can touch the ball with hish 60 . The players can‟t let the ball go outside the lines of the field. If it does, the game stops for a short time.四、动词填空:用所给动词的食堂形式填空,必要时可加助动词和情态动词(10分)Once there was an old man in a town, he always 61 (forget) a lot of things. So his wife always had to 62 (say)to him, “Don‟t forget this”.One day he 63 (go) on a long trip alone. Before he left home, his wife said, “Now you 64 (have) all these things. They are what you need for your trip. Take care of your things during the trip. ”He went to the station. He bought a ticket (票)and (get) on the train with it.About an hour later, the conductor(售票员)began 65 (check) the tickets. He came to the old man and said, “Will you please 66 (show) me your ticket?”The old man looked for his ticket in all his pockets, but he could not find it. He was very worried, “I 67 (not find) my ticket. I really bought a ticket before 68 (get) on the train.”said the old man.“I think you are right. I believe you 69 (buy) a ticket. All right. You don't have to buy another ticket.”said the conductor kindly. But the old man still looked worried and said sadly, “You don‟t know why I'm worried. If I can‟t find my ticket. I can't remember my station. Where am I 70 (go)?”五、任务型阅读(10分)There is a bar ( 酒吧) in our town. Its name is“ The White Horse”. It is Mr Webster‟s. Few people went to the bar last year, but things are different now.There was a picture of a white horse on the door of the bar. Then a stranger came in one day, drank something, looked around the bar, and then said to Mr Webster, “ Few people came here. Take down the picture of the white horse and put a picture of a black horse instead.”“But the name of the bar is … The White Horse‟.” Mr Webster said.“ Yes, but do it.” the man said. Then he went out of the bar.Mr Webster went to an artist and said, “ I want a picture of a black horse.”The next day a picture of a black horse was on the door of the bar instead of the white horse. Soon after tha t a man came in and said, “ There‟s a mistake on the door of your bar, and the picture is different 75 the name. ” The man looked , sat down and drank something.Then another man came in and said the same, and then another and another. A lot of peop le came in .They said, “ The picture on your door is wrong.”and they all stopped and drank in Mr Webster‟s bar.71. What …s the name of the bar? _________________________72. 翻译划线部分句子___________ __________________________73. 找出文中的同义句Many people came in.=___________________________________74. 选择填空More and more people came to the bar because___________.A. it had changed its nameB. the black horse was better than the white oneC. the bar had a black horseD. they wanted to show the mistake75. 在本处填上适当的介词________六、完成句子:(5分)76. 如果不知道该怎么办,你为什么不向老师寻求帮助呢?If you don‟t know what to do, go to the teacher for help?77. 请把你的个人信息写在这张纸上。
人教版数学八年级上册第一次月考数学试卷及答案
人教版数学八年级上册第一次月考数学试卷一、选择题(每题3分共36分)1.(3分)要组成一个三角形,三条线段的长度可取()A.1,2,3 B.2,3,5 C.3,4,5 D.3,5,102.(3分)如图,共有多少个三角形?()A.3个 B.4个 C.5个 D.6个3.(3分)下列说法错误的是()A.任意三角形都有三条高线、中线、角平分线B.钝角三角形有两条高线在三角形的外部C.直角三角形只有一条高线D.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点4.(3分)一定在三角形内部的线段是()A.三角形的角平分线、中线、高线B.三角形的角平分线C.三角形的三条高线D.以上都不对5.(3分)多边形的内角和不可能是()A.810°B.360°C.720° D.2160°6.(3分)下列说法不正确的是()A.有两个角和一条边对应相等的两个三角形全等B.有一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角对应相等的两个三角形全等D.有两条直角边对应相等的两个直角三角形全等7.(3分)下列判断不正确的是()A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等8.(3分)已知△ABC≌△DEF,且△ABC中最大角的度数为100度,则△DEF中最大角的度数是()A.100度B.90度C.120度D.150度9.(3分)下面四个图形中,线段AD是△ABC的高的是()A.(1)B.(2)C.(3)D.(4)10.(3分)在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于()A.50°B.75°C.100° D.125°11.(3分)如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°12.(3分)如图,已知CD⊥AB于D,现有四个条件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,那么不能得出△ADC≌△EDB的条件是()A.①③B.②④C.①④D.②③二.填空题(每题3分共24分)13.(3分)如图,小明的爸爸在院子的门板上钉了一个加固板,从数学的角度看,这样做的道理是.14.(3分)一个正十二边形的每个内角为.每个外角为.15.(3分)如图①AD是△ABC的角平分线,则∠=∠=∠,②AE是△ABC的中线,则==,③AF是△ABC的高线,则∠=∠=90°.16.(3分)一个正多边形每个外角都等于36°.则它共有条对角线.17.(3分)三角形的重心是三角形的三条的交点.18.(3分)如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC 的中点,则图中共有全等三角形对.19.(3分)如图,已知AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,则两平行线间AB、CD的距离等于.20.(3分)如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,则∠AB′D=°.三、解答题21.(12分)求下列图形中x的值.22.(4分)若多边形的内角和为2340°,求此多边形的边数.23.(8分)如图:△ABC中,BO、CO平分∠ABC和∠ACB,若∠A=50°,求∠BOC 的度数.24.(8分)已知:如图,AB=CD,AD=BC,求证:∠A=∠C.25.(8分)已知:如图,A、E、F、B四点在同一直线上,AC⊥CE,BD⊥DF,AE=BF,AC=BD.求证:CF=DE.参考答案与试题解析一、选择题(每题3分共36分)1.(3分)(2016秋•独山县校级月考)要组成一个三角形,三条线段的长度可取()A.1,2,3 B.2,3,5 C.3,4,5 D.3,5,10【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.就可以判断.【解答】解:A、1+2=3,不能组成三角形,故此选项错误;B、2+3=5,不能组成三角形,故此选项错误;C、3+4>5,能组成三角形,故此选项正确;D、3+5<10,不能组成三角形,故此选项错误;故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.2.(3分)(2016秋•独山县校级月考)如图,共有多少个三角形?()A.3个 B.4个 C.5个 D.6个【分析】分别找出单个的三角形即可.【解答】解:三角形有△ABE,△DEC,△BEC,△ABC,△BDC,故选C【点评】本题考查了三角形的知识,按照一定的顺序找出三角形是解题的关键.3.(3分)(2016秋•独山县校级月考)下列说法错误的是()A.任意三角形都有三条高线、中线、角平分线B.钝角三角形有两条高线在三角形的外部C.直角三角形只有一条高线D.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点【分析】根据三角形的角平分线、中线和高的定义,逐一分析四个选项的正误,由此可得出结论.【解答】解:A、任意三角形都有三条高线、中线、角平分线,正确;B、钝角三角形有两条高线在三角形的外部,正确;C、∵直角三角形有三条高线,∴直角三角形只有一条高线,错误;D、锐角三角形的三条高线、三条中线、三条角平分线分别交于一点,正确.故选C.【点评】本题考查了三角形的角平分线、中线和高,解题的关键是牢牢掌握三角形的角平分线、中线和高的定义.4.(3分)(2016秋•独山县校级月考)一定在三角形内部的线段是()A.三角形的角平分线、中线、高线B.三角形的角平分线C.三角形的三条高线D.以上都不对【分析】根据三角形的角平分线、中线、高线的定义解答即可.【解答】解:三角形的角平分线、中线一定在三角形的内部,直角三角形的高线有两条是三角形的直角边,钝角三角形的高线有两条在三角形的外部,所以,一定在三角形内部的线段是三角形的角平分线.故选B【点评】本题考查了三角形的角平分线、中线和高,是基础题,熟记概念是解题的关键.5.(3分)(2016秋•独山县校级月考)多边形的内角和不可能是()A.810°B.360°C.720° D.2160°【分析】根据多边形的内角和定理即可作出判断.【解答】解:多边形内角和公式是:(n﹣2)×180°,所以多边形的内角和能被180°整除.故选A.【点评】解决本题的关键是掌握多边形内角和公式,并且灵活应用.6.(3分)(2016秋•独山县校级月考)下列说法不正确的是()A.有两个角和一条边对应相等的两个三角形全等B.有一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角对应相等的两个三角形全等D.有两条直角边对应相等的两个直角三角形全等【分析】根据三角形全等的判定定理进行分析即可.【解答】解:A、有两个角和一条边对应相等的两个三角形全等,说法正确;B、有一条边和一个锐角对应相等的两个直角三角形全等,说法正确;C、有两边和其中一边的对角对应相等的两个三角形全等,说法错误;D、有两条直角边对应相等的两个直角三角形全等,说法正确;故选:C【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(3分)(2015春•龙海市期末)下列判断不正确的是()A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等【分析】根据能够完全重合的两个图形叫做全等形,结合各项说法作出判断即可.【解答】解:A、两个形状相同的图形大小不一定相等,故本项错误;根据能够完全重合的两个图形叫做全等形,可得:B、能够完全重合的两个三角形全等正确,故本项错误;C、全等图形的形状和大小都相同正确,故本项错误;D、根据全等三角形的性质可得:全等三角形的对应角相等,故本选项正确;故选:A.【点评】本题考查了全等形的概念和三角形全等的性质:1、能够完全重合的两个图形叫做全等形,2、全等三角形的对应边相等;全等三角形的对应角相等;全等图形的形状和大小都相同,做题时要细心体会.8.(3分)(2016秋•独山县校级月考)已知△ABC≌△DEF,且△ABC中最大角的度数为100度,则△DEF中最大角的度数是()A.100度B.90度C.120度D.150度【分析】根据全等三角形对应角相等可得△ABC中最大角和△DEF中最大角相等都是100°.【解答】解:∵△ABC≌△DEF,∴△ABC中最大角和△DEF中最大角相等,∴△DEF中最大角的度数是100°,故选:A.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.9.(3分)(2016秋•独山县校级月考)下面四个图形中,线段AD是△ABC的高的是()A.(1)B.(2)C.(3)D.(4)【分析】根据三角形高线的定义对各小题分析判断即可得解.【解答】解:根据高线的定义,(1)AD不是△ABC的高,(2)AD不是△ABC的高;(3)AD不是△ABC的高;(4)AD是△ABC的高.故选D.【点评】本题考查了三角形的高线,熟练掌握三角形的高是从三角形的顶点向对边引垂线,顶点和垂足间的线段是解题的关键.10.(3分)(2016秋•老河口市期中)在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于()A.50°B.75°C.100° D.125°【分析】根据三角形内角和定理计算.【解答】解:设∠C=x°,则∠B=x°+25°.根据三角形的内角和定理得x+x+25=180﹣55,x=50.则x+25=75.故选B.【点评】能够用一个未知数表示其中的未知角,然后根据三角形的内角和定理列方程求解.11.(3分)(2014秋•隆化县校级期中)如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°【分析】根据高线的定义可得∠AEC=90°,然后根据∠C=70°,∠ABC=48°求出∠CAB,再根据角平分线的定义求出∠1,然后利用三角形的内角和等于180°列式计算即可得解.【解答】解:∵BE为△ABC的高,∴∠AEB=90°∵∠C=70°,∠ABC=48°,∴∠CAB=62°,∵AF是角平分线,∴∠1=∠CAB=31°,在△AEF中,∠EFA=180°﹣31°﹣90°=59°.∴∠3=∠EFA=59°,故选:A.【点评】本题考查了三角形的内角和定理,角平分线的定义,高线的定义,熟记概念与定理并准确识图是解题的关键.12.(3分)(2016秋•独山县校级月考)如图,已知CD⊥AB于D,现有四个条件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,那么不能得出△ADC≌△EDB的条件是()A.①③B.②④C.①④D.②③【分析】推出∠ADC=∠BDE=90°,根据AAS推出两三角形全等,即可判断A、B;根据HL即可判断C;根据AAA不能判断两三角形全等.【解答】解:A、∵CD⊥AB,∴∠ADC=∠BDE=90°,在△ADC和△EDB中,∵,∴△ADC≌△EDB(AAS),正确,故本选项错误;B、∵CD⊥AB,∴∠ADC=∠BDE=90°,在△ADC和△EDB中,∵,∴△ADC≌△EDB(AAS),正确,故本选项错误;C、∵CD⊥AB,∴∠ADC=∠BDE=90°,在Rt△ADC和Rt△EDB中,∵,∴Rt△ADC≌Rt△EDB(HL),正确,故本选项错误;D、根据三个角对应相等,不能判断两三角形全等,错误,故本选项正确;故选D.【点评】本题考查了全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,在直角三角形中,还有HL定理,如果具备条件SSA和AAA 都不能判断两三角形全等.二.填空题(每题3分共24分)13.(3分)(2010春•个旧市期末)如图,小明的爸爸在院子的门板上钉了一个加固板,从数学的角度看,这样做的道理是三角形的稳定性.【分析】在院子的门板上钉了一个加固板,形成了两个三角形,这种做法根据的是三角形的稳定性.【解答】解:这样做形成了两个三角形,做的道理是:三角形的稳定性.【点评】用数学知识解释身边的现象,学有用的数学.14.(3分)(2016秋•独山县校级月考)一个正十二边形的每个内角为150°.每个外角为30°.【分析】先利用多边形的内角和定理计算出十二边形的内角和,然后除以12即可得到正十二边形的每内角度数,再利用360°除以12得到每个外角的度数.【解答】解:正十二边形的内角和为(12﹣2)×180°=1800°,所以正十二边形的每个内角的度数==150°,每个外角的度数==30°.故答案为150°,30°.【点评】本题考查了多边形内角与外角:多边形内角和定理:(n﹣2)•180 (n ≥3)且n为整数);多边形的外角和等于360度.15.(3分)(2016秋•独山县校级月考)如图①AD是△ABC的角平分线,则∠BAD=∠DAC=∠BAC,②AE是△ABC的中线,则BE=EC=BC,③AF是△ABC的高线,则∠AFB=∠AFC=90°.【分析】根据三角形的中线的概念即可完成填空;根据三角形的角平分线的概念即可完成填空;根据三角形的高的概念即可完成填空.【解答】解:①AD是△ABC的角平分线,则∠BAD=∠DAC=∠BAC,②AE是△ABC的中线,则BE=EC=BC,③AF是△ABC的高线,则∠AFB=∠AFC=90°,故答案为:BAD;DAC;BAC;BE;EC;BC;AFB;AFC【点评】此题考查三角形的角平分线、中线、高问题,能够根据三角形的中线、角平分线和高的概念得到线段、角之间的关系.16.(3分)(2016秋•独山县校级月考)一个正多边形每个外角都等于36°.则它共有35条对角线.【分析】先利用正多边形的外角和为360°可确定正多边形的边数,然后根据n 边形有n(n﹣3)条对角线进行计算.【解答】解:正多边形的边数==10,正十边形的对角线条数为×10×(10﹣3)=35.故答案为35.【点评】本题考查了多边形内角与外角:多边形内角和定理:(n﹣2)•180 (n ≥3)且n为整数);多边形的外角和等于360度.从n边形的一个顶点出发引出(n﹣3)条对角线,共有n(n﹣3)条对角线.17.(3分)(2013春•博白县期末)三角形的重心是三角形的三条中线的交点.【分析】根据三角形的重心的定义解答.【解答】解:三角形的重心是三角形的三条中线的交点.故答案为:中线.【点评】本题考查了三角形的重心,是基础题,熟记概念是解题的关键.18.(3分)(2015秋•岳池县期中)如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形4对.【分析】本题重点是根据已知条件“AB=AC,AD⊥BC交D点,E、F分别是DB、DC的中点”,得出△ABD≌△ACD,然后再由结论推出AB=AC,BE=DE,CF=DF,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AD⊥BC,AB=AC∴D是BC中点∴BD=DC,∵AD=AD,∴△ABD≌△ACD(SSS);E、F分别是DB、DC的中点∴BE=ED=DF=FC∵AD⊥BC,AD=AD,ED=DF∴△ADF≌△ADE(HL);∵∠B=∠C,BE=FC,AB=AC∴△ABE≌△ACF(SAS)∵EC=BF,AB=AC,AE=AF∴△ABF≌△ACE(SSS).∴全等三角形共4对,分别是:△ABD≌△ACD(HL),△ABE≌△ACF(SAS),△ADF≌△ADE(SSS),△ABF≌△ACE(SAS).故答案为4.【点评】本题考查了全等三角形的判定.题目是一道考试常见题,易错点是漏掉△ABE≌△ACD,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.其中△ABE≌△ACD常被忽略.19.(3分)(2016秋•临河区期中)如图,已知AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,则两平行线间AB、CD的距离等于4.【分析】过点O作MN,MN⊥AB于M,求出MN⊥CD,则MN的长度是AB和CD之间的距离;然后根据角平分线的性质,分别求出OM、ON的长度是多少,再把它们求和即可.【解答】解:如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.故答案为:4.【点评】此题主要考查了角平分线的性质和平行线之间的距离的应用,要熟练掌握,解答此题的关键是要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.20.(3分)(2016秋•独山县校级月考)如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,则∠AB′D=35°.【分析】根据旋转的性质,可得知∠ACA′=35°,然后根据等腰三角形的性质即可得到结论.【解答】解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=∠BCB′=35°,BC=B′C,∴∠B=∠BCB′=,∵∠A′B′C=∠B=,∴∠AB′D=180°﹣∠BB′C﹣∠A′B′C=35°,故答案为:35.【点评】此题考查了旋转地性质;图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.解题的关键是正确确定对应角.三、解答题21.(12分)(2016秋•独山县校级月考)求下列图形中x的值.【分析】根据多边形内角和公式即可求出答案.【解答】解:图1:四边形的内角和为:(n﹣2)•180°=360°,°∴2x°+140°+90°=360°,∴x°=65°图2:五边形的内角和为:(n﹣2)•180°=540°,∴3x°+120°+150°+90°=540°,∴x°=60°图3:四边形的内角和为:360°,∴x°的邻补角为:360°﹣75°﹣120°﹣80°=85°,∴x°=180°﹣85°=95°,图4:∵AB∥CD,∴∠B=180°﹣∠C=180°﹣60°=120°,∵五边形的内角和为:540°,∴x°=540°﹣135°﹣120°﹣60°﹣150°=75°【点评】本题考查多边形内角和公式,涉及一元一次方程的解法,属于基础题型.22.(4分)(2016秋•独山县校级月考)若多边形的内角和为2340°,求此多边形的边数.【分析】根据多边形的内角和计算公式作答.【解答】解:设此多边形的边数为n,则(n﹣2)•180°=2340,解得n=15.故此多边形的边数为15.【点评】此题主要考查了多边形的内角和,关键是掌握多边形内角和定理.23.(8分)(2016秋•独山县校级月考)如图:△ABC中,BO、CO平分∠ABC和∠ACB,若∠A=50°,求∠BOC的度数.【分析】先根据角平分线的定义得到∠OBC=∠ABC,∠OCB=∠ACB,再根据三角形内角和定理得到∠BOC=180°﹣(∠OBC+∠OCB),∠ABC+∠ACB=180°﹣∠A,则∠BOC=180°﹣(180°﹣∠A)=90°+∠A,然后把∠A的度数代入计算即可.【解答】解:∵BO、CO分别平分∠ABC和∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠BOC=180°﹣(∠OBC+∠OCB),∴∠BOC=180°﹣(∠ABC+∠ACB),∵∠ABC+∠ACB=180°﹣∠A,∴∠BOC=180°﹣(180°﹣∠A)=90°+∠A,而∠A=40°,∴∠BOC=90°+20°=110°.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.24.(8分)(2016秋•独山县校级月考)已知:如图,AB=CD,AD=BC,求证:∠A=∠C.【分析】连接BD利用“边边边”证明△ABD和△CDB全等,再根据全等三角形对应边\角相等证明即可.【解答】证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠A=∠C【点评】本题考查了全等三角形的判定与性质,是基础题,熟记三角形全等的判定方法是解题的关键.25.(8分)(2009春•青羊区校级期中)已知:如图,A、E、F、B四点在同一直线上,AC⊥CE,BD⊥DF,AE=BF,AC=BD.求证:CF=DE.【分析】根据HL证△ACE与△BDF全等,推出CE=DF,证出CE∥DF,得出平行四边形ECFD,根据平行四边形的性质推出即可.【解答】证明:∵AE=BF,∴AE+EF=BF+EF,即AF=BE.∵AC⊥CE,BD⊥DF,∴∠ACE=∠BDF=90°,在Rt△ACE和Rt△BDF中,∴Rt△ACE≌Rt△BDF,∴CE=DF,∠AEC=∠BFD,∴∠CEF=∠DFE,∴CE∥DF,∴四边形DECF是平行四边形,∴CF=DE.【点评】此题考查全等三角形的判定与性质,平行四边形的性质和判定,平行线的判定,难度中等.证明线段相等,通常证明它们所在的三角形全等.指导学生学习的技能指导学生学习是指在课堂教学中,教师以学生学习的心理过程为依据,为学生的自主学习创设有利环境,发挥学生的主观能动作用,对学生的学习过程进行指导和引导,从而达到教学目标的行为方式。
最新冀教版八年级数学上学期12月份月考综合检测题及答案.docx
八年级上学期月考数学试卷(12月份)一、认真选一选(1-6题每题2分,7-16小题每题3分)1.(2分)下列分式与相等的是()A.B.C.D.2.(2分)现有A、B两个圆,A圆的半径为(a>6),B圆的半径为,则A圆的面积是B圆面积的()A.倍B.倍C.D.3.(2分)已知关于x的分式方程=1,下列说法中正确的是()A.该方程的解是x=2m﹣6 B.m<3时,该方程的解为负数C.m>3时,该方程的解为正数D.m≠3时,该方程无解4.(2分)下列命题中,其逆命题为假命题的是()A.两直线平行,同旁内角互补B.对顶角相等C.若a2=16,则a=4D.若△ABC是钝角三角形,则∠C>90°5.(2分)将下列图形分成两半,不一定能分成两个全等图形的是()A.正方形B.三角形C.线段AB D.半圆6.(2分)如图,AB=CD,AD=BC,O是AC的中点,过点O的直线分别交BA,DC的延长线于E,F两点,则下列说法中不正确的是()A.∠E=∠B B.A E=CF C.∠DAC=∠BCA D. AB ∥CD7.(3分)已知2a+1的平方根是±5,3a﹣b+9的算术平方根是7,则5a﹣b的立方根为()A.4B.﹣4 C.8 D.4或﹣48.(3分)已知a,b,c都是实数,其中a为5+的小数部分,b为5﹣的小数部分,c为比(a+b)大的最小整数,则c的值为()A.1B.﹣1 C. 2 D.﹣29.(3分)2014年6月10日中商情报网报道,6月9日余额宝的万份收益为1.2719元,下列四舍五入法按要求对1.2719分别取近似值,其中不正确的是()A.精确到个位是1 B.精确到十分位是1.3C.精确到0.01是1.27 D.精确到千分位是1.27110.(3分)下列各式中,一定属于二次根式的是()A.B.C.D.11.(3分)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D. m<k<n12.(3分)小凯想用计算器来计算二次根式和乘法,当他以的顺序按键后,显示的结果为()A.0.04 B.0.4 C.0.06 D. 0.6 13.(3分)已知a=+2,b=2﹣,则a2014b2013的值为()A.﹣﹣2 B.﹣+2 C. 1 D.﹣114.(3分)如图,△ABC以直线m为对称轴的轴对称图形,若BC=8,AD=7,则阴影部分的面积是()A.56 B.28 C.14 D.无法确定15.(3分)如图,在△ABC中,AC>AB,DE(点D在△ABC的外部)垂直平分BC,交BC于点E,连接BD,CD,AD,过点D作DF⊥AC于点F,延长BA到点G,使得BG=CF,连接DG,若∠DBC﹣∠GBD=∠BCA,则下列说法中不正确的是()A.∠BGD=90°B.A D平分∠GAC C.∠GDB=∠FDC D.∠BDG=90°16.(3分)如图,在∠AOB中,OC平分∠AOB,OA>OB,∠OAC+∠OBC=180°,则AC 与BC之间的大小关系是()A.A C=BC B.A C>BC C.AC<BC D.无法确定二、仔细填一填(本大题共4个小题,每小题3分,共12分)17.(3分)2014年5月30日中研网报道,4月份全国出入境共检验出5批质量不合格的化妆品,海关对其中甲、乙两国相同数量的进口产品进行入境检验时发现,甲的合格产品有4800件,乙国的合格产品有4500件,甲国进口产品的合格率比乙国的高5%,则甲国进口产品的合格率为.18.(3分)如图,在△ABC中,AD⊥BC于点D,AD=CD=2,过点C作CE⊥AB,交AD 于点F,若BD=DF=2﹣2,CF=2BE,则AC的长为.19.(3分)现有一个长和宽的比为4:3的长方形,此长方形的周长为14cm,则此长方形的面积为.20.(3分)如图,MN是线段AB的中垂线,MN=6,在MN上取C、D两点,连接AD,AC,BC,S△BMN:S△ADN=2:1,S△ADN:S△BCN=4:3,则CD的长度为.三、解答题(共6小题,满分66分)21.(10分)(1)计算:();(2)解方程:﹣=1.22.(10分)如图,已知线段a,b,∠α,按要求完成下列各小题(保留作图痕迹,不要求写作法)(1)求作△ABC,使AB=a,BC=b,∠B=∠α,并在BC上找一点D,使得BD=AB,连接AD;(2)在(1)的基础上,△ABD的内部是否有到∠C的两边距离相等的点?如果有,有几个?(3)在(1)的基础上,△ACD的内部是否有到∠B的两边和∠DAC的两边距离相等的点?如果有,请画出来;如果没有,请说明理由.23.(11分)某加工零件的工人手中有一块长方形铁板和一块正方形铁板,该长方形铁板的长为7.5cm,宽为5cm,而正方形铁板的面积与长方形铁板的面积相等.(1)求正方形铁板的边长;(2)该零件工人能否在长方形铁板上截出两个完整的,且面积分别为8cm2和18cm2的正方形铁板?判断并说明理由.(提示:≈1.414)24.(11分)如图,在面积为3的正方形ABCD中,E,F分别是AB和AD上的点,DE⊥CF于点P,且DF=1,S△DPF=,(1)求BE的长;(2)求阴影部分的面积.25.(11分)2014年5月30日,在哈尔滨银泰城中心隆重举行了“哈尔滨市工商联会员联谊会暨六一儿童节木兰希望小学捐赠仪式”,捐赠仪式上木兰教委代表获赠了来自银泰城提供的价值上万元的体育用品,某中学2014-2015学年八年级的学生也为木兰希望小学奉献爱心,于是组织了捐款,并用所捐的款项为希望小学的学生们买文具,2014-2015学年八年级(1)班和(2)班的班长交流了捐款的情况:2014-2015学年八年级(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人,”2014-2015学年八年级(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”(1)求这两个班级每班的人均捐款的钱数;(2)求这两个班级的总人数.26.(13分)【原题】如图1,在△ABC中,∠BAC的平分线与∠ABC的平分线交于点O,过点O作OD⊥AB,交AB于点D(BD>AD),求证:BC﹣AC=BD﹣AD.【尝试探究】在图1中过点O作OE⊥BC于点E,OF⊥AC于点F,连接OC,因为∠BAC的平分线与∠ABC 的平分线交于点O,所以OD==,所以CO是∠ACB的平分线,BD=所以利用全等三角形的性质可得BD=,AD=,CE=CF,所以BC﹣AC=BD﹣AD【类比延伸】如图2,在四边形ABCD中,各角的平分线交于点O,试判断AB,BC,CD,AD之间的数量关系,并加以证明.参考答案与试题解析一、认真选一选(1-6题每题2分,7-16小题每题3分)1.(2分)下列分式与相等的是()A.B.C.D.考点:分式的基本性质.分析:根据分式的性质:分式的分子分母都乘以或除以同一个不为零的整式,分式的值不变,可得答案.解答:A、分式的分子分母都乘以或除以同一个不为零的整式,分式的值不变,故A错误;B、分子分母乘的整式不同,分式的值变了,故B错误;C、分子分母乘的整式不同,分式的值变了,故C错误;D、分式的分子分母都乘以或除以同一个不为零的整式,分式的值不变,故D正确;故选:D.点评:本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的整式,分式的值不变.2.(2分)现有A、B两个圆,A圆的半径为(a>6),B圆的半径为,则A圆的面积是B圆面积的()A.倍B.倍C.D.考点:分式的乘除法.分析:利用圆的面积公式列式求解即可.解答:解:由题意得π()2÷[π()2]=.故选:B.点评:本题主要考查了分式的乘除法,解题的关键是熟记圆的面积公式.3.(2分)已知关于x的分式方程=1,下列说法中正确的是()A.该方程的解是x=2m﹣6 B.m<3时,该方程的解为负数C.m>3时,该方程的解为正数D.m≠3时,该方程无解考点:分式方程的解.分析:先将分式方程化成整式方程用含m的式子表示x,然后根据x+6≠0进行分析即可.解答:解:=1,去分母化成整式方程得:2m=x+6,所以x=2m﹣6,但是x+6≠0,所以x≠﹣6,即2m﹣6≠﹣6,所以m≠0,所以当m≠0时,该方程的解是x=2m﹣6,故A错误;当m=0时,该方程无解,故D错误;当x>0时,即2m﹣6>0,解得:m>3,即m>3时,该方程的解为正数,故C正确;当x<0时,即2m﹣6<0,解得:m<3,即m<3,且m≠0时,该方程的解为负数,故B错误.故选:C.点评:此题考查了分式方程的解,解题的关键是:考虑增根的问题.4.(2分)下列命题中,其逆命题为假命题的是()A.两直线平行,同旁内角互补B.对顶角相等C.若a2=16,则a=4D.若△ABC是钝角三角形,则∠C>90°考点:命题与定理.分析:先写出各选项的逆命题,然后对各选项分析判断后利用排除法求解.解答:解:A、逆命题为:同旁内角互补,两直线平行,是真命题;B、逆命题为:相等的角为对顶角,错误,是假命题;C、逆命题为:a=4,则a2=16,正确,是真命题;D、逆命题为:若∠C>90°,则△ABC是钝角三角形,正确,为真命题.故选B.点评:本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,本题准确找出各选项的逆命题是解题的关键.5.(2分)将下列图形分成两半,不一定能分成两个全等图形的是()A.正方形B.三角形C.线段AB D.半圆考点:全等图形.分析:根据全等形的概念:能够完全重合的两个图形叫做全等形,再结合图形的形状可得到答案.解答:解:因为正方形、线段AB、半圆是轴对称图形,分别沿它们的对称轴分成两半,一定能分成两个全等图形,而三角形不一定是轴对称图形,所以不一定能分成两个全等的图形.故选B.点评:此题主要考查了全等图形,关键是掌握各种图形的性质,如果将一个轴对称图形分成两半,那么一定能分成两个全等的图形.6.(2分)如图,AB=CD,AD=BC,O是AC的中点,过点O的直线分别交BA,DC的延长线于E,F两点,则下列说法中不正确的是()A.∠E=∠B B.A E=CF C.∠DAC=∠BCA D. AB ∥CD考点:全等三角形的判定与性质.分析:根据平行四边形的判定,可得ABCCD的形状,再根据平行四边的性质,可得∠E 与∠F的关系,可判断A,根据全等三角形的判定与性质,可判断B,根据平行线的性质,可判断C,根据平行四边行的性质,可判断D.解答:解:A、由AB=CD,AD=BC,得四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠F,故A错误;B、由O是AC的中点,得AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),AE=CF,故B正确;C、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,故C正确;D、∵四边形ABCD是平行四边形,∴AB∥CD,故D正确;故选:A.点评:本题考查了全等三角形的判定与性质,利用了平行四边形的判定与性质得出AB与CD的关系,AD与BC的关系,利用全等三角形的判定与性质得出AE与CF的关系.7.(3分)已知2a+1的平方根是±5,3a﹣b+9的算术平方根是7,则5a﹣b的立方根为()A.4B.﹣4 C.8 D.4或﹣4考点:立方根;平方根;算术平方根.专题:计算题.分析:利用平方根及算术平方根的定义求出a与b的值,确定出5a﹣b的立方根即可.解答:解:∵2a+1的平方根是±5,3a﹣b+9的算术平方根是7,∴2a+1=25,3a﹣b+9=49,解得:a=12,b=﹣4,则5a﹣b=64,64的立方根是4.故选A点评:此题考查了立方根,熟练掌握立方根的定义是解本题的关键.8.(3分)已知a,b,c都是实数,其中a为5+的小数部分,b为5﹣的小数部分,c为比(a+b)大的最小整数,则c的值为()A.1B.﹣1 C. 2 D.﹣2考点:估算无理数的大小.分析:首先根据题意得出a,b的值,进而求出c的值.解答:解:∵a为5+的小数部分,∴a=5+﹣8=﹣3,∵b为5﹣的小数部分,∴b=4﹣,∴a+b=﹣3+4﹣=1,∵c为比(a+b)大的最小整数,∴c=2.故选:C.点评:此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.9.(3分)2014年6月10日中商情报网报道,6月9日余额宝的万份收益为1.2719元,下列四舍五入法按要求对1.2719分别取近似值,其中不正确的是()A.精确到个位是1 B.精确到十分位是1.3C.精确到0.01是1.27 D.精确到千分位是1.271考点:近似数和有效数字.分析:根据近似数的精确度分别对各选项进行判断.解答:解:1.2719≈1(精确到个位);1.2719≈1.3(精确到十分位);1.2719≈1.27(精确到0.01);1.2719≈1.272(精确到千分位).故选D.点评:本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.10.(3分)下列各式中,一定属于二次根式的是()A.B.C.D.考点:二次根式的定义.分析:根据形如(a≥0)是二次根式,可得答案.解答:解:A、a<0时,无意义,故A不一定是二次根式;B、是三次根式,故B错误;C、x>﹣1时,无意义,故C不一定是二次根式;D、是二次根式,故D正确;故选:D.点评:本题考查了二次根式,注意二次根式的被开方数一定是非负数.11.(3分)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D. m<k<n考点:二次根式的性质与化简.专题:计算题.分析:根据二次根式的化简公式得到k,m及n的值,即可作出判断.解答:解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D点评:此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.12.(3分)小凯想用计算器来计算二次根式和乘法,当他以的顺序按键后,显示的结果为()A.0.04 B.0.4 C.0.06 D. 0.6考点:计算器—数的开方.分析:根据计算器的运算,可得算术平方根,根据实数的乘法,可得答案.解答:解:当他以的顺序按键后,显示的结果为0.173×0.346=0.059≈0.06,故选:C.点评:本题考查了计算器,正确利用计算器是解题关键,要精确到百分位.13.(3分)已知a=+2,b=2﹣,则a2014b2013的值为()A.﹣﹣2 B.﹣+2 C. 1 D.﹣1考点:二次根式的化简求值.专题:计算题.分析:先计算出ab的值,然后根据积的乘方a2014b2013=(ab)2013•a,然后利用整体代入的方法计算.解答:解:∵a=+2,b=2﹣,∴ab=(2+)(2﹣)=4﹣5=﹣1,∴a2014b2013=a2013b2013•a=(ab)2013•a=(﹣1)2013•(+2)=﹣﹣2.故选A.点评:本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值;二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.14.(3分)如图,△ABC以直线m为对称轴的轴对称图形,若BC=8,AD=7,则阴影部分的面积是()A.56 B.28 C.14 D.无法确定考点:轴对称的性质.分析:由图,根据轴对称图形的性质可知,△ABC是等腰三角形,且AB=AC,△CEF和△BEF的面积相等,所以阴影部分的面积是三角形面积的一半.解答:解:∵△ABC以直线m为对称轴的轴对称图形,∴△ABC是等腰三角形,且AB=AC,△CEF和△BEF的面积相等,∴阴影部分的面积是三角形面积的一半,∵S△ABC=BC•AD=8×7=28,∴阴影部分面积=28÷2=14.故选:C.点评:本题考查了轴对称性质;利用对称发现△CEF和△BEF的面积相等是正确解答本题的关键.15.(3分)如图,在△ABC中,AC>AB,DE(点D在△ABC的外部)垂直平分BC,交BC于点E,连接BD,CD,AD,过点D作DF⊥AC于点F,延长BA到点G,使得BG=CF,连接DG,若∠DBC﹣∠GBD=∠BCA,则下列说法中不正确的是()A.∠BGD=90°B.A D平分∠GAC C.∠GDB=∠FDC D.∠BDG=90°考点:全等三角形的判定与性质;线段垂直平分线的性质.分析:先根据垂直平分线性质和∠DBC﹣∠GBD=∠BCA得出∠GBD=∠FCD,从而得出△GBD ≌△DFC,进而判断各选项即可.解答:解:∵DE垂直平分BC,∴DB=DC,∠DBC=∠DCB,∵∠DBC﹣∠GBD=∠BCA,∵∠DCB﹣∠DCE=∠BCA∴∠GBD=∠FCD在△△GBD和△DFC中,∴△GBD≌△DFC(SAS),∴∠BGD=∠DFC=90°,在△BDG中,∠BGD90°,但∠BDG不能等于90°,故错误的是D故选D点评:此题考查全等三角形的判定和性质问题,根据是选择全等三角形的判定方法.16.(3分)如图,在∠AOB中,OC平分∠AOB,OA>OB,∠OAC+∠OBC=180°,则AC 与BC之间的大小关系是()A.A C=BC B.A C>BC C.AC<BC D.无法确定考点:角平分线的性质;全等三角形的判定与性质.分析:先作CD⊥OA,CE⊥OB,再根据角平分线的性质得出CD=CE,证明△DAC≌△BEC,得出AC=BC即可.解答:解:作CD⊥OA于,垂足为D,CE⊥OB交OB延长线于点E,如图:∵OC平分∠AOB,CD⊥OA,CE⊥OB,∴DC=CE,∵∠OAC+∠OBC=180°,∵∠CBE+∠OBC=180°,∴∠OAC=∠CBE,在△ADC和△EBC中,∴△DAC≌△BEC(AAS),∴AC=BC,故选A.点评:此题考查角平分线的性质,关键是添加辅助线来证明三角形全等.二、仔细填一填(本大题共4个小题,每小题3分,共12分)17.(3分)2014年5月30日中研网报道,4月份全国出入境共检验出5批质量不合格的化妆品,海关对其中甲、乙两国相同数量的进口产品进行入境检验时发现,甲的合格产品有4800件,乙国的合格产品有4500件,甲国进口产品的合格率比乙国的高5%,则甲国进口产品的合格率为80%.考点:分式方程的应用.分析:设海关对其中甲、乙两国检验的进口产品有x件,根据甲国进口产品的合格率比乙国的高5%,列方程求解.解答:解:设海关对其中甲、乙两国检验的进口产品有x件,由题意得,﹣=5%,解得:x=6000,经检验,x=6000是原分式方程的解,且符合题意.则合格率为:4800÷6000=80%.故答案为:80%.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.18.(3分)如图,在△ABC中,AD⊥BC于点D,AD=CD=2,过点C作CE⊥AB,交AD 于点F,若BD=DF=2﹣2,CF=2BE,则AC的长为.考点:全等三角形的判定与性质;等腰三角形的判定与性质.分析:因为AD⊥BC,所以△ADC为直角三角形,AD=CD=2,根据勾股定理,即可解答.解答:解:∵AD⊥BC,∴△ADC为直角三角形,∵AD=CD=2,根据勾股定理,得.故答案为:.点评:本题考查了勾股定理,解决本题的关键是由AD⊥BC,得△ADC为直角三角形,运用勾股定理求出AC即可.19.(3分)现有一个长和宽的比为4:3的长方形,此长方形的周长为14cm,则此长方形的面积为36cm2.考点:二次根式的应用.分析:首先利用矩形的长与宽的比值结合其周长得出长与宽,进而求出面积.解答:解:∵一个长和宽的比为4:3的长方形,∴设长方形的长为4x,宽为3x,则2(4x+3x)=14,解得:x=,则长为4cm,宽为3cm,故此长方形的面积为:4×3=36(cm2).故答案为:36cm2.点评:此题主要考查了二次根式的应用,得出长方形的长与宽是解题关键.20.(3分)如图,MN是线段AB的中垂线,MN=6,在MN上取C、D两点,连接AD,AC,BC,S△BMN:S△ADN=2:1,S△ADN:S△BCN=4:3,则CD的长度为.考点:线段垂直平分线的性质;三角形的面积.分析:连接BD,根据三角形的面积比可得MN=2DN,3DN=4CN,再结合MN=6,可求得CD的长.解答:解:如图,连接BD,∵MN为AB的中垂线,∴AD=BD,AN=BN,∴S△BND=S△AND,∵S△BMN:S△ADN=2:1,S△ADN:S△BCN=4:3,∴S△BMN:S△BND=2:1,S△BND:S△BCN=4:3,∴S△BMN:S△BND:S△BCN=8:4:3,∴MN:ND:NC=8:4:3,∵MN=6,∴ND=3,NC=,∴CD=ND﹣NC=,故答案为:.点评:本题主要考查线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键,在本题中确定出MN:ND:NC=8:4:3是解题的关键.三、解答题(共6小题,满分66分)21.(10分)(1)计算:();(2)解方程:﹣=1.考点:二次根式的混合运算;解分式方程.专题:计算题.分析:(1)先根据二次根式的除法法则得到原式=﹣+,然后把各二次根式化简后合并即可;(2)先把分式方程化为整式方程,解整式方程,然后进行检验即可得到原方程的解.解答:解:(1)原式=﹣+=﹣+=+;(2)去分母得2x(2x+5)﹣2(2x﹣5)=(2x﹣5)(2x+5),解得x=,经检验,x=是原方程的解.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了解分式方程.22.(10分)如图,已知线段a,b,∠α,按要求完成下列各小题(保留作图痕迹,不要求写作法)(1)求作△ABC,使AB=a,BC=b,∠B=∠α,并在BC上找一点D,使得BD=AB,连接AD;(2)在(1)的基础上,△ABD的内部是否有到∠C的两边距离相等的点?如果有,有几个?(3)在(1)的基础上,△ACD的内部是否有到∠B的两边和∠DAC的两边距离相等的点?如果有,请画出来;如果没有,请说明理由.考点:作图—复杂作图;角平分线的性质.分析:(1)①在BG上截取BC=b,②作∠B=∠α,③在∠B的另一边截取AB=a,④连接AC,△ABC就是所求的三角形,在BC截取AB=BD=a,连接AD即可;(2)根据角平分线的性质解答即可;(3)根据角平分线的性质进行解答和画图即可.解答:解:(1)如图;(2)有,有无数个;(3)有,如图,点E即为所求.点评:本题主要考查了尺规作图的一般作法,关键是根据角平分线的定义作图.23.(11分)某加工零件的工人手中有一块长方形铁板和一块正方形铁板,该长方形铁板的长为7.5cm,宽为5cm,而正方形铁板的面积与长方形铁板的面积相等.(1)求正方形铁板的边长;(2)该零件工人能否在长方形铁板上截出两个完整的,且面积分别为8cm2和18cm2的正方形铁板?判断并说明理由.(提示:≈1.414)考点:算术平方根.专题:应用题.分析:(1)长方形的面积的近似值就是正方形的边长解答即可;(2)根据算术平方根的估计值解答判断即可.解答:解:(1)因为正方形铁板的面积与长方形铁板的面积相等,所以可得:正方形的边长为cm;(2)能;因为两个正方形的边长的和约为7.07cm,面积为18cm2的正方形的长约为4.242cm,可得:7.07<7.5,4.242<5,所以能在长方形铁板上截出两个完整的,且面积分别为8cm2和18cm2的正方形铁板.点评:此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.24.(11分)如图,在面积为3的正方形ABCD中,E,F分别是AB和AD上的点,DE⊥CF于点P,且DF=1,S△DPF=,(1)求BE的长;(2)求阴影部分的面积.考点:正方形的性质;全等三角形的判定与性质.分析:(1)先证明△ADE≌△DCF,得出AE=DF,再由面积求出边长AB,即可得出BE;(2)先求出S△ADE=S△DCF=DF•DC,再由正方形的面积减去△ADE和△DCF的面积加上△DCF的面积即为阴影部分的面积.解答:解:∵四边形ABCD是正方形,∴AB=AD=DC,∠A=∠ADC=90°,∴∠AED+∠ADE=90°,∵DE⊥CF,∴∠DPF=90°,∴∠DFC+∠ADE=90°,∴∠AED=∠DFC,在△ADE和△DCF中,,∴△ADE≌△DCF(ASA),∴AE=DF=1,∵S正方形ABCD=AB2=3,∴AB=,∴BE=AB﹣AE=﹣1;(2)∵△ADE≌△DCF,∴S△ADE=S△DCF=DF•DC=×1×=,∴阴影部分的面积=3﹣2S△DCF+S△DPF=3﹣+=3﹣.点评:本题考查了正方形的性质、全等三角形的判定与性质以及阴影面积的求法;证明三角形全等和阴影面积的间接求法是解决问题的关键.25.(11分)2014年5月30日,在哈尔滨银泰城中心隆重举行了“哈尔滨市工商联会员联谊会暨六一儿童节木兰希望小学捐赠仪式”,捐赠仪式上木兰教委代表获赠了来自银泰城提供的价值上万元的体育用品,某中学2014-2015学年八年级的学生也为木兰希望小学奉献爱心,于是组织了捐款,并用所捐的款项为希望小学的学生们买文具,2014-2015学年八年级(1)班和(2)班的班长交流了捐款的情况:2014-2015学年八年级(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人,”2014-2015学年八年级(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”(1)求这两个班级每班的人均捐款的钱数;(2)求这两个班级的总人数.考点:分式方程的应用.分析:(1)首先设2014-2015学年八年级(1)班的人均捐款数为x元,则2014-2015学年八年级(2)班的人均捐款数为(1+20%)x元,然后根据2014-2015学年八年级(1)班人数比2014-2015学年八年级(2)班多8人,即可得方程:﹣=8,解此方程即可求得答案.(2)根据(1)中的每个班级的捐款数计算各种的人数.解答:解:(1)设2014-2015学年八年级(1)班的人均捐款数为x元,则2014-2015学年八年级(2)班的人均捐款数为(1+20%)x元,则:﹣=8,解得:x=25,经检验,x=25是原分式方程的解.2014-2015学年八年级(2)班的人均捐款数为:(1+20%)x=30(元)答:2014-2015学年八年级(1)班人均捐款为25元,2014-2015学年八年级(2)班人均捐款为30元.(2)2014-2015学年八年级(1)班的人数:=48(人).2014-2015学年八年级(2)班人的人数:48﹣8=40(人).则总人数为:48=40=88(人).答:这两个班的总人数是88人.点评:本题考查分式方程的应用.注意分析题意,找到合适的等量关系是解决问题的关键.26.(13分)【原题】如图1,在△ABC中,∠BAC的平分线与∠ABC的平分线交于点O,过点O作OD⊥AB,交AB于点D(BD>AD),求证:BC﹣AC=BD﹣AD.【尝试探究】在图1中过点O作OE⊥BC于点E,OF⊥AC于点F,连接OC,因为∠BAC的平分线与∠ABC 的平分线交于点O,所以OD=OE=OF,所以CO是∠ACB的平分线,BD=所以利用全等三角形的性质可得BD=BE,AD=AF,CE=CF,所以BC﹣AC=BD﹣AD【类比延伸】如图2,在四边形ABCD中,各角的平分线交于点O,试判断AB,BC,CD,AD之间的数量关系,并加以证明.考点:全等三角形的判定与性质.分析:尝试探究:过点O作OE⊥BC于E,OF⊥AC于F,连接OC,由角平分线的性质得到0D=OE=OF,根据全等三角形的性质得到结论;类比延伸;.过O作OE⊥AB于E,OF⊥BC于F,OM⊥CD于M,ON⊥AD于N,由角平分线的性质得到OE=OF,根据全等三角形的性质得到BE=BF,CF=CM,DM=DN,AN=AE,于是得到AB+CD=AD+BC.解答:解:尝试探究:如图1过点O作OE⊥BC于E,OF⊥AC于F,连接OC,∵OD⊥AB,∠BAC的平分线与∠ABC的平分线交于点O,∴0D=OE=OF,CO是∠ACB的平分线,在Rt△ADO与Rt△AFO中,,∴Rt△ADO≌Rt△AFO(HL),∴AD=AF,同理BD=BE,CF=CE,∴BC﹣AC=BE+CE﹣AF﹣CF=BE﹣AF=BD﹣AD;类比延伸;AB+CD=AD+BC.如图2过O作OE⊥AB于E,OF⊥BC于F,OM⊥CD于M,ON⊥AD于N,∵BO平分∠ABC,∴OE=OF,在Rt△BOE与Rt△BOF中,,Rt△BOE≌Rt△BOF(HL),∴BE=BF,同理CF=CM,DM=DN,AN=AE,∴AB+CD=AE+BE+CM+DM,AD+BC=AN+BF+CF+DN,∴AB+CD=AD+BC.点评:本题考查了角平分线的性质,全等三角形的判定与性质,等式的性质,正确的作出辅助线是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年第一学期八年级数学第一次月考试题
一、选择题 (每题3分)
1. 如图1,在①AB=AC ②A D=AE ③∠B=∠C ④BD=CE 四个条件中,能证明△ABD 与△ACE 全等的条件顺序是( )
A. ① ② ③
B. ② ③ ④
C. ① ② ④
D. ③ ② ④
D
C
B A
E
(3图) 2. 下列条件中,能让△ABC ≌△DFE
的条件是(
)
A. AB=DE ,∠A=∠D , BC=EF;
B. AB=BC ,∠B=∠E , BE=EF;
C. AB=EF ,∠A=∠D , AC=DF;
D. BC=EF ,∠C=∠F , AC=DF.
3. 如图,CD ⊥AB,BE ⊥AC,垂足为D 、E ,BE 、CD 相交于O 点,∠1=∠2,图中全等的三角形共有( )
A.1对
B.2对
C. 3对
D.4对
4. 两个直角三角形全等的条件是( )
A.一个锐角对应相等 ;
B.一条对边对应相等;C .两直角边对应相等;D.两个角对应相等
5. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处
D.4处
(7图)
(5图)
6. 在△ABC 和△A ′B ′C ′中,AB =A ′B ′,∠B=∠B ′,补充条件后仍不一定能保证△ABC ≌△A ′B ′C ′,
则补充的这个条件是:( )
A 、BC=
B ′
C ′ B 、∠A=∠A ′ C 、AC=A ′C ′
D 、∠C=∠C ′
7. 如图,OA=OC ,OB=OD ,则图中全等三角形共有( )
D
C B
A
2
1O
E
A
A 、2对
B 、3对
C 、4对
D 、5对
8. 两个三角形有两个角对应相等,正确的说法是( )
A 、两个三角形全等
B 、如果一对等角的角平分线相等,两三角形就全等
C 、两个三角形一定不全等
D 、如果还有一个角相等,两三角形就全等
9. 已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y 轴对称,那么点A 的对应
点A'的坐标为( ).
A .(-4,2)
B .(-4,-2)
C .(4,-2)
D .(4,2)
10. 在△ABC 中,∠B 的平分线与∠C 的平分线相交于O ,且∠BOC=130°,则∠A=[ ]
A 50°
B 60°
C 80°
D 100°
二、填空题 (每题3分)
11. 如图,已知AB =AD ,需要条件_________可得△ABC ≌△ADC ,根据是________.
12. 已知线段AB ,直线CD ⊥AB 于O ,AO =OB ,若点M 在直线CD 上,则MA =____,若NA =NB ,则N 在________
上.
13. 如图,已知∠CAB=∠DBA , 要使△ABC ≌△BAD,只要增加的一个条件是________ (只写一个)。
D
C
B
A
(14图)
14. 如图,AE=AD, ∠B=∠C,BE=6,AD=4,则AC=______ .
D
C
A
E
15. 如图,已知∠DCE=∠A=90°,BE ⊥AC 于B,且DC=EC,BE=8cm,则AD+AB=_____ .
D
C
B A
16. 在ABC △中∠BAC 和∠ABC 的平分线相交于P ,若P 到AB 的距离为10,则它到边AC 和BC 的距离和
为 .
17. 如图,已知AE ∥BF , ∠E =∠F ,要使△ADE ≌△BCF ,可添加的条件是__________.
18. 在直角△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,若CD =4,则点D 到斜边AB 的距离等于
_______________。
19. 若P 关于x 轴的对称点为()1,21+-+a b a P ,关于y 轴对称的点为()2,42+-b b P
,则P 点的坐标为 。
20. 如图,在ABC 和△FDE 中,AD=FC ,AB=EF ,当添加条件 时,就可得到△ABC ≌△FED 。
(只需填
写一个正确条件即可)
F
E
三、证明题 (21—22每题6分,23—26每题7分)
21. 如图,已知AB CD =,AE DF =,CE BF =.
求证:AF DE =.
22. 如图,已知12∠=∠,34∠=∠. 求证:BE CD =.
B
23. 如图,已知A F E B ,,,四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =. 求证:ACF BDE △≌△.
24. 如图,在ABC △中,点E 在BC 上,点D 在AE 上.
已知ABD ACD BDE CDE ∠=∠∠=∠,.求证:BD CD =.
B E
C
A F
D E B C
25. 如图,AB=AC,AD=AG,AE ⊥BG 交BG 的延长线于E ,AF ⊥CD 交CD 的延长线于F.求证:AE=AF.
D
F C
A E G
26. 如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C ∠=∠ ⑤
DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出
一种情况),并加以证明.
A B
参考答案:
一、选择题
1. C
2. D ;
3. D
4. C
5. D
6. C
7. C
8. B
9. D 10. C
二、填空题
11. BC =DC ,SSS . 12. MB , 直线CD 13. AC=BD(答案不唯一) 14. 10
15. 8cm 16. 20, 17. AD=BC 18. 4,提示利用角平分线的性质。
19. ( -9,-3) 提示:()1,21+-+a b a P 与 ()2,42+-b b P 两坐标互为相反数。
20. BC=ED 或∠A ∠F 或AB ∥EF 或∠B=∠E=RT ∠等
三、证明题
21.
BF CE =BF EF CE EF ∴+=+BE CF ∴=又AB CD =,AE DF =,根据“SSS ”证
ABE DCF △≌△.B C ∴∠=∠,又A B C =,BF CE =,根据S A S 证
ABF DCE △≌△AF DE ∴=.
22. 34∠=∠,AD AE ∴=, 又1324∠+∠=∠+∠ 即ADC AEB ∠=∠,
又A A ∠=∠根据ASA 证ABE ACD △≌△, BE CD ∴=.
23. 证明:
AC CE ⊥,BD DF ⊥(已知)
90ACE BDF ∴∠=∠=(垂直的定义)
在Rt ACE △和Rt BDF △中,
()
()AE BF AC BD =⎧⎨
=⎩
已知已知 Rt HL ACE Rt BDF ∴△≌△()
A B ∴∠=∠(全等三角形的对应角相等)
()AE BF =已知
AE EF BF EF ∴-=-(等式性质) 即AF BE =
()()()AF BE ACF BDE A B AC BD =⎧⎪
∠=∠⎨⎪=⎩已证在和中已证已知△△,
SAS ACF BDE ∴△≌△().
24. 提示:证明:ABD ACD △≌△.
25. Rt △ABE ≌ Rt △ECD(AAS)
26. 情况一:已知:AD BC AC BD ==,
求证:CE DE =(或D C ∠=∠或DAB CBA ∠=∠) 情况二:已知:D C DAB CBA ∠=∠∠=∠,
求证:AD BC =(或AC BD =或CE DE =)。