七年级上数学配套问题

合集下载

人教版七年级数学上册:3.4《实际问题与一元一次方程——配套问题》说课稿4

人教版七年级数学上册:3.4《实际问题与一元一次方程——配套问题》说课稿4

人教版七年级数学上册:3.4《实际问题与一元一次方程——配套问题》说课稿4一. 教材分析《实际问题与一元一次方程——配套问题》是人教版七年级数学上册第三章第四节的内容。

本节课的主要任务是通过实际问题引导学生理解一元一次方程的解法,培养学生运用数学知识解决实际问题的能力。

教材中给出了四个配套问题,分别是:购物问题、速度问题、利润问题和工程问题。

这些问题都是日常生活中常见的问题,通过这些问题让学生感受数学与生活的紧密联系,激发学生的学习兴趣。

二. 学情分析七年级的学生已经学习了代数的基础知识,对一元一次方程有一定的了解。

但学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,更不知道如何运用一元一次方程解决问题。

因此,在教学过程中,教师需要引导学生正确地将实际问题转化为数学问题,并运用一元一次方程进行解答。

三. 说教学目标1.知识与技能目标:让学生掌握一元一次方程的解法,能运用一元一次方程解决实际问题。

2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣。

四. 说教学重难点1.教学重点:让学生掌握一元一次方程的解法,能运用一元一次方程解决实际问题。

2.教学难点:如何引导学生将实际问题转化为数学问题,并运用一元一次方程进行解答。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。

2.教学手段:利用多媒体课件、实物模型和教学卡片等辅助教学。

六. 说教学过程1.导入新课:通过一个购物问题引入本节课的内容,激发学生的学习兴趣。

2.知识讲解:讲解一元一次方程的解法,并通过实例让学生理解解法的步骤。

3.案例分析:分析教材中的四个配套问题,引导学生将实际问题转化为数学问题,并运用一元一次方程进行解答。

4.实践环节:让学生分组讨论,选取一个实际问题进行解决,培养学生的动手能力和团队协作能力。

数学人教版七年级上册“配套问题”

数学人教版七年级上册“配套问题”

3.4.1实际问题与一元一次方程(配套问题)【学习目标】【学习重点】会找出配套问题中的相等关系,进一步列出一元一次方程,解决实际问题。

根据已知条件列出一元一次方程解决实际问题。

【学习难点】能找出配套问题中表示相等关系的句子。

【学习过程】一、复习旧知:1、请同学们回忆小学列方程解应用题有哪些步骤?2、注意:(1)、设未知数及作答时若有单位的一定要带单位。

(2)、方程中数量单位要统一。

二、探究新知活动一:抢答 1、有下面的句子你可以得到什么相等的式子? (1)、1个螺钉需要配2个螺母。

(2)、1个A部件和3个B部件配套。

(3)、1件上衣配1条裤子。

(4)、1个桌面配4个桌腿。

2、你还能举出其他的实例吗?与老师和同学分享一下吧!___________________________________________________________活动二:例1:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?分析:1、问题求的什么?你可以怎么设未知数?2、哪句话中隐含等量关系?怎么理解配套的意思?3、怎么列方程?螺钉数为个,生产的螺母数为个,螺母数= 螺钉数。

完整过程为:解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母. 依题意得:解方程,得:答:应安排名工人生产螺钉,名工人生产螺母.活动三:以上这个问题聪明的你一定还有其他的方法?与老师和同学分享一下吧!三、合作与尝试1、某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,应分配多少人生产螺栓,多少人生产螺帽,才能使生产出的螺栓和螺帽刚好配套(每一个螺栓要配两个螺帽)?2、一套仪器由一个A部件和三个B部件构成,用1 m3钢材可以做40个A部件或240个B部件。

现要用6 m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?3、某家具厂生产一种方桌,设计时1立方米的木材可做50个桌面,或300条桌腿,现有10立方米的木材,怎样分配生产桌面和桌腿,使用的木材使桌面、桌腿刚好配套,并指出共可生产多少张方桌?(一个桌面四条桌腿)四、课堂小结你学到了什么?(先想一想,然后再与老师和同学交流)____________________________________________________________________________________________________ ________________________________________________________________________________________________________ ________________________________________________________________________________________________________ ________________________________________________________________五、课外作业与提高(1)、必做题:教材P106 习题3.4:2,3题。

人教版七年级数学上册5.3第1课时配套问题与工程问题课件

人教版七年级数学上册5.3第1课时配套问题与工程问题课件

解析 设甲工程队每天掘进x米,则乙工程队每天掘进(x-2)米,
由题意,得2x+(x+x-2)=26,
解得x=7,则x-2=5,
所以甲工程队每天掘进7米,乙工程队每天掘进5米,
146=1206(天).
75
答:甲、乙两个工程队还需联合工作10天.
9.(2023山东潍坊昌邑期末,24,★★☆)一项工程,甲队单独完 成需30天,乙队单独完成需45天. (1)现甲队先单独做20天,之后两队合作,甲、乙两队合作多 少天才能把该工程完成? (2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工 程款2万元,则由甲、乙两队全程合作完成该工程,需付多少 工程款?
们一起做4小时,正好完成这项工作的 3,假设每人的工作效率
4
相同,那么应该安排多少人先工作?
解析 解法一(根据总工作量列方程):
设安排x人先工作,
由题意,得4× 1 x+ 1 (x+3)×4= 3,
80 80
4
整理,得 x + x =3 3,
20 20 4
解方程,得x=6.
答:应该安排6人先工作.
2.(易错题)(2024四川绵阳游仙期中)某工厂中秋节前要制作 一批盒装月饼,每盒装4块大月饼和6块小月饼,制作1块大月 饼要用0.05 kg面粉,1块小月饼要用0.02 kg面粉.若制作若干 盒月饼共用了640 kg面粉,请问制作大、小两种月饼各用了 多少面粉?
解析 易错点:易用错配套比.
设用x kg面粉制作大月饼,则用(640-x)kg面粉制作小月饼,由
解析 设A工程队整治河道x米,
由题意得 x +280=2x5,
12 10
解方程,得x=180.

数学人教版七年级上册一元一次方程---配套问题

数学人教版七年级上册一元一次方程---配套问题
创设情景
引入新课 一套茶具由1把茶壶和6只茶杯组成, 请你在表格中填上合适的数据,使茶壶和 茶杯刚好配套. (大家填一填,看谁填的又快又好)
茶壶的 数目(把)
茶杯的 数目(只)
茶壶与茶杯之间配套的 数目关系 茶壶数目︰茶杯数目= 1︰6 茶壶数目︰茶杯数目= 1︰6 茶壶数目︰茶杯数目= 1︰6
1
产品类型
灯罩 栅板
单位产量
铝合金板 ( m2 )
总产量
4 12
x
4x
(11-x)
12(11-x)
3×栅板数目=2×灯罩数目
灯罩数目﹕ 栅板数目=3﹕2
基础训练
巩固应用
2.一套格栅灯具由3个圆弧灯罩和2块栅板间隔组成, 均可用铝合金板 冲压制成.已知1 m2铝合金板可以冲压4个圆弧灯罩或12块栅板. 现用11 m2 铝合金板制作这种格栅灯具,应分配多少平方米铝合金板制作圆弧灯罩, 多少平方米铝合金板制作栅板,恰好配成这种格栅灯具多少套?
15(30-x)=6×5 x
实际问题
一元一次方程
解 方 程
实际问题 的答案
应该安排10名工 艺师生产茶壶,20名 工艺师生产茶杯.
检验
一元一次方程 的解(x=a) x=10 30-x=20
解 一 元 一 次 方 程
代入方程成立 符合实际意义
例题示范
巩固新知
例1变式:生产这套茶具的主要材料是紫砂泥,用1千克紫 砂泥可做4把茶壶或12只茶杯.现要用6千克紫砂泥制作这些茶 具,应用多少千克紫砂泥做茶壶,多少千克紫砂泥做茶杯,恰 好配成这种茶具多少套?(1套茶具中1把茶壶配6只茶杯) 分析:
即 1 5 ( 3 0 x ) 65 x
两边约去15,得

七年级上数学配套问题

七年级上数学配套问题

七年级上数学配套问题应用题练习1、包装厂有人42,每个人平均每小时生产圆片120片,或长方形片80片,将两张圆片与一张长方形片配成一套,问如何安排工人?2、用铝片做听装饮料瓶,每张铝片可制瓶身16个或制瓶底43个,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张制瓶身和多少张制瓶底?3、某工厂计划生产一种新型豆浆机,每台豆浆机需3个A种零件和5个B种零件正好配套已知车间每天能生产A种零件450个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应安排多少天生产甲种零件,多少天生产乙种零件?4、车间有26名工人生产零件甲和零件乙,每人每天平均生产零件甲120个或零件乙180个,为使零件甲和零件乙按3:2配套,则需分配多少工人生产零件甲和零件乙?5、某车间每天能生产甲种零件450个或乙种零件300个,已知3个甲种零件与5个乙种零件刚好配套,现要在21天中使所生产的零件全部配套,那么该如何安排生产?6、敌我两军相距25km/h,敌军以5km/h的速度逃跑,我军同时以8km/h的速度追击,并在相距1km处发生战斗,战斗是在开始追击后几小时发生的?7、小王在静水中的划船速度为12km/h,今往返于某河,逆流时用了10h,顺流时用了6h,求此河的水流速度。

8、姐姐步行速度是75米/分,妹妹步行速度是45米/分。

在妹妹出发20分钟后,姐姐出发去追妹妹。

问:多少分钟后能追上?9、小张和小王,分别从甲乙两地出发步行,1小时30分后,小张走了甲乙两地距离的一半多1.5千米,此时与小王相遇。

小王的速率是3.7千米/小时,那么小张的速率是多少?10、甲乙两车从同一地点出发,沿着同一公路追赶前面的一个骑车人。

甲乙两车分别用10分钟、6分钟追上骑车人。

甲车速率是24千米/小时,乙车速率是30千米/小时,问两车出发时相距多少千米?11、一支军队排成1.2千米队行军,在队尾的张明要与在最前面的营长接洽,他用6分钟时间追上了营长。

七年级上册数学配套问题

七年级上册数学配套问题
根据题意,得
4x+7=5(x-1)+3 或4x+7=5x-2 解这个方程,得x=9 4x+7=4×9+7=43
答;这个车队有9辆车,这批货物共有43吨.
41-x X+ =Biblioteka 0 2解这个方程,得x=19
41-x=41-19=22 答:安排22人抬,19人挑,可使扁担和人数 相配不多不少。
练习2:汽车队运送一批货物,每辆装4吨还 有7吨未装;每辆装5吨,最后一辆车余下2 吨未装满。这个车队有多少辆车?这批货物 共有多少吨? 解;这个车队有x辆车, 则这批货物共有(4x+7)吨
义务教育教科书
第三章 一元一次方程
数学
七年级
上册
3.4 实际问题与一元一次方程(1)
四、课堂练习
练习1:一套仪器由一个A部件和三个B部件构 成. 用1 m3钢材可以做40个A部件或240个B部件. 现要用6 m3钢材制作这种仪器,应用多少钢材做 A部件,多少钢材做B部件,恰好配成这种仪器 多少套?
解:设应用 x m3钢材做A部件,(6-x) m3 钢材 做B部件. 依题意得: 3×40 x=240 (6-x) . 解方程,得: x=4.
答:应用4 m3钢材做A部件,2 m3 钢材做B部件, 配成这种仪器160套.
练习3:41人参加运土劳动,有30根扁担,安排多 少人抬,多少人挑,可使扁担和人数相配不多不少? 解:设有x人挑土,根据题意,得

人教版数学七年级上册《“配套”问题》教案1

人教版数学七年级上册《“配套”问题》教案1

人教版数学七年级上册《“配套”问题》教案1一. 教材分析《“配套”问题》是人教版数学七年级上册的一章内容,主要讲述了配套问题的解法和相关应用。

本章通过实际问题引入配套概念,使学生了解并掌握成套物品的搭配问题。

教材内容由浅入深,从简单到复杂,让学生在解决实际问题的过程中,体会数学的乐趣,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在进入七年级之前,已经学习了初步的数学知识,对于一些基本的运算和数学概念有一定的了解。

但面对实际问题,部分学生可能还缺乏解决问题的思路和方法。

因此,在教学过程中,需要关注学生的个体差异,针对不同层次的学生进行引导和启发,帮助他们建立解决实际问题的信心。

三. 教学目标1.知识与技能:让学生掌握配套问题的解法,能够独立解决简单的配套问题。

2.过程与方法:通过解决实际问题,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极参与数学学习的积极性。

四. 教学重难点1.重点:配套问题的解法及其应用。

2.难点:如何将实际问题转化为数学模型,并运用配套问题的解法进行求解。

五. 教学方法采用问题驱动的教学方法,以学生为主体,教师为主导。

通过引导学生观察、分析、思考、讨论,激发学生的学习兴趣,培养学生的独立解决问题的能力。

六. 教学准备1.教具:黑板、粉笔、多媒体设备。

2.教材:《人教版数学七年级上册》。

3.学具:笔记本、铅笔、橡皮。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如“小明有3红球和2蓝球,他想用这些球组成不同颜色的组合,请问他有多少种组合方式?”引起学生的兴趣,引导学生思考如何解决这类问题。

2.呈现(10分钟)教师引导学生观察问题,并提出解决思路。

让学生尝试用数学语言描述问题,从而引出配套概念。

例如,将红球和蓝球看作两个集合,求解两个集合的组合问题。

3.操练(10分钟)教师给出一些简单的配套问题,让学生独立解决。

人教版七年级上册3.4实际问题与一元一次方程-配套问题(教案)

人教版七年级上册3.4实际问题与一元一次方程-配套问题(教案)
五、教学反思
在这次教学活动中,我尝试了多种方法引导学生学习《实际问题与一元一次方程》这一章节。首先,通过生活中的实例导入新课,让学生感受到数学与生活的紧密联系。在讲授过程中,我注重理论与实践相结合,让学生在实际问题中感受一元一次方程的魅力。
在教学中,我发现有些学生在从实际问题抽象出一元一次方程时存在困难。为了帮助他们突破这个难点,我采用了案例分析、分组讨论等形式,让学生在互动中加深理解。同时,我特别强调了解方程的基本步骤,引导学生通过对比错误解法和正确解法,掌握解题方法。
人教版七年级上册3.4实际问题与一元一次方程-配套问题(教案)
一、教学内容
人教版七年级上册3.4实际问题与一元一次方程-配套问题,主要包括以下内容:
1.理解一元一次方程在解决实际问题中的应用;
2.学会根据实际问题列出一元一次方程;
3.掌握解一元一次方程的方法,如移项、合并同类项、系数化为1等;
4.解决涉及单价、数量、总价等实际问题,如购物问题、行程问题等;
5.通过解决实际问题,提高学生运用养目标
1.提升学生数学抽象、逻辑推理和数学建模的核心素养,使学生能够从实际问题中抽象出一元一次方程,并用方程解决实际问题;
2.培养学生运用数学知识解决实际问题的能力,提高数学应用意识,增强对数学在实际生活中作用的认知;
3.培养学生合作交流、思考问题的习惯,提高学生分析问题、解决问题的能力,培养批判性思维和创新意识;
-难点一:识别实际问题中的关键信息,如购物问题中的单价、数量和总价,学生可能难以把握这些信息之间的关系,需要通过具体实例和图示帮助学生理解。
-难点二:将实际问题转化为方程时,学生可能会对如何选择变量、如何表达数量关系感到困惑。教学中应通过多个示例,指导学生如何进行变量选择和方程构建。

人教版七年级上册数学一元一次方程的应用--配套问题

人教版七年级上册数学一元一次方程的应用--配套问题

人教版七年级上册数学3.4一元一次方程的应用--配套问题一、选择题1.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程( )A.60(28−x)=90x B.60x=90(28−x)C.2×60(28−x)=90x D.60(28−x)=2×90x2.现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为( )A.4x=5(90−x)B.5x=4(90−x)C.x=4(90−x)×5D.4x×5=90−x3.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.22x=16(27−x)B.16x=22(27−x)C.2×16x=22(27−x)D.2×22x=16(27−x)4.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x名,则可列方程为( )A.3×10x=2×16(34−x)B.3×16x=2×10(34−x)C.2×16x=3×10(34−x)D.2×10x=3×16(34−x)5.如图,学校实验室需要向某工厂定制一批三条腿的桌子,已知该工厂有24名工人,每人每天可以生产20块桌面或300条桌腿,1块桌面需要配3条桌腿,为使每天生产的桌面和桌腿刚好配套,设安排x名工人生产桌面,则下面所列方程正确的是( )A.20x=3×300(24−x)B.300x=3×20(24−x)C.3×20x=300(24−x)D.20x=300(24−x)6.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下面所列方程正确的是( )A.2×1000(26−x)=800x B.1000(13−x)=800xC.1000(26−x)=2×800x D.1000(26−x)=800x7.现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为( )A.4x=5(90−x)B.5x=4(90−x)C.x=4(90−x)×5D.4x×5=90−x二、填空题(共4题)8.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得.9.某车间有34名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需配4个螺母,为使每天生产的螺钉与螺母刚好配套,应安排名工人生产螺钉.10.在某公益活动中,参加活动者手上、脖子上需佩戴丝带和丝巾,某工厂的70名工人承接了制作丝带、丝巾的任务.已知每名工人每天平均生产丝带180条或丝巾120条,并且一条丝巾要配两条丝带.为了使每天生产的丝带丝巾刚好配套,设分配x 名工人生产丝带,则根据题意可列方程为.11.某车间有27名工人,每人每天可以生产22个螺母或16个螺栓,1个螺栓配2个螺母,为使每天生产的螺栓和螺母刚好配套,设分配x名工人生产螺栓,则可列方程为.三、解答题(共7题)12.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,一个螺栓需要配两个螺母,要想每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?13.某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排工人使生产的产品刚好成套?14.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?15.某车间每天能制作甲种零件300只,或者制作乙种零件200只,1只甲种零件需要配2只乙种零件.(1) 若制作甲种零件2天,则需要制作乙种零件只,才能刚好配成套.(2) 现要在20天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?16.机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?17.某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1) 现有20块相同的金属原料,问最多能加工多少个这样的零件?(2) 若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3) 若把n块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n所满足的条件.18.小敏和小强假期到某厂参加社会实践.该厂用白板纸做包装盒,设计每张白板纸做盒身2个或做盒盖3个,且1个盒身和2个盒盖恰好做成一个包装盒.为了充分利用材料,要求做成的盒身和盒盖正好配套.(1) 现有14张白板纸,最多可做多少个包装盒?(2) 现有27张白板纸,最多可做多少个包装盒?为了解决这个问题,小敏和小强各设计了一种解决方案:小敏:把这些白板纸分成两部分,一部分做盒身,一部分做盒盖;小强:先把一张白板纸适当套裁出一个盒身和一个盒盖,余下白板纸分成两部分,一部分做盒身,一部分做盒盖.请探究:小敏和小强设计的方案是否可行?若可行,求出最多可做包装盒的个数;若不行,请说明理由.(3) 通过以上两个同题的探究,为不浪费白板纸,请你对该厂就采购白板纸的张数n提一条合理化的建议.答案一、选择题(共7题)1. 【答案】C2. 【答案】A3. 【答案】D4. 【答案】B5. 【答案】C6. 【答案】C7. 【答案】A二、填空题(共4题)8. 【答案】1000(26−x)=2×800x9. 【答案】1010. 【答案】180x=2×120(70−x)11. 【答案】2×16x=22(27−x)三、解答题(共7题)12. 【答案】设生产螺栓的工人有x名,则生产螺母的工人有(28−x)名,根据题意得:12x×2=18(28−x).解得:x=12.28−12=16.答:生产螺栓的工人有12名,则生产螺母的工人有16名,才能使当天生产的螺栓和螺母与第一天生产的刚好配套.13. 【答案】设安排x人生产大齿轮,则安排(85−x)人生产小齿轮,可使生产的产品刚好成套,根据题意得:3×8x=10(85−x).解得:x=25.则85−x=60.答:应安排25个工人生产大齿轮,安排60个工人生产小齿轮才能使生产的产品刚好成套.14. 【答案】设分配x人生产甲种零部件,根据题意,得3×12x=2×15(22−x).解得:x=10.22−x=12.答:分配10人生产甲种零部件,12人乙种零部件.15. 【答案】(1) 1200(2) 设应制作甲种零件x天,则应制作乙种零件(20−x)天,依题意,得:2×300x=200(20−x),解得:x=5,∴20−x=15.答:应制作甲种零件5天,乙种零件15天.16. 【答案】设需安排x名工人加工大齿轮,则安排(27−x)名工人加工小齿轮.依题意得12×(27−x)3=10x2,解得x=12,则27−x=15.答:安排12名工人加工大齿轮,安排15名工人加工小齿轮.17. 【答案】(1) 设用x块金属原料加工螺栓,则用(20−x)块金属原料加工螺帽.由题意,可得2×3x=4(20−x),解得x=8,则3×8=24.答:最多能加工24个这样的零件;(2) 若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套.理由如下:设用y块金属原料加工螺栓,则用(26−y)块金属原料加工螺帽.由题意,可得2×3y=4(26−y),解得y=10.4.由于10.4不是整数,不合题意舍去,所以若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套;(3) 设用a块金属原料加工螺栓,则用(n−a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.由题意,可得2×3a=4(n−a),解得a=25n,则n−a=35n,即n所满足的条件是:n是5的正整数倍的数.18. 【答案】(1) 设x张做盒身,则2x×2=3(14−x),解得x=6.可做盒子6×2=12(个).(2) 小敏方案不行:设x张做盒身,则2x×2=3(27−x),解得x=817,不合题意.小强方案可行:设余下的纸板x张做盒身,则(2x+1)×2=3(26−x)+1,解得x=11,可做盒子11×2+1=23(个).(3) n为7的正整数倍.。

5.3 实际问题与一元一次方程(2)——配套问题 七年级上册

5.3 实际问题与一元一次方程(2)——配套问题    七年级上册
由题意得 x + x +5=45, 解得 x =20, x +5=25(人), 答:七年级(2)班有男生有20人,女生有25人;
1
2
3
4
5
6
7
8
9 10 11 12
5.3 实际问题与一元一次方程(2)——配套问题 分层检测
(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒 底,那么男生应向女生支援多少人时,才能使每小时剪出的筒身与筒底 配套? 解:设男生应向女生支援 y 人,由题意得
1
2
3
4
5
6
7
8
9 10 11 12
5.3 实际问题与一元一次方程(2)——配套问题 分层检测
7. 某品牌电子体温枪由甲、乙两部件各一个组成,加工厂每天能生产 600个甲部件或400个乙部件,现要在30天内生产最多的该种电子体温 枪,则甲、乙两种部件各应生产多少天? 解:设甲部件应生产 x 天,则乙部件应生产(30- x )天,
件,由题意得2×15 x =3×12(22- x ), 解得 x =12,22- x =10(人), 答:分配12名工人生产甲种零部件,10名工人乙种零部件.
1
2
3
4
5
6
7
8
9 10 11 12
5.3 实际问题与一元一次方程(2)——配套问题 分层检测
A基础 5. 口罩厂有26名工人,每人每天可以生产800个口罩面或1 000根口罩耳 绳.1个口罩面需要配2根口罩耳绳,每天生产的口罩刚好配套,设安排 x 名工人生产口罩面,所列方程正确的是( C ) A. 2×1 000(26- x )=800 x B. 1 000(13- x )=800 x C. 1 000(26- x )=2×800 x D. 1 000(26- x )=800 x

七年级上册配套问题应用题及答案

七年级上册配套问题应用题及答案

七年级上册配套问题应用题及答案1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

还要运几次才能完?解:设还要运x次才能完。

29.5-3x4=2.5x17.5=2.5xx=7答:还要运7次才能完。

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?解:设它的高是x米。

x(7+11)=90x218x=180x=10答:它的高是10米。

3、某车间计划四月份生产零件5480个。

生产了9天,生产908个就能完成生产计划,这9天中平均每天生产多少个?解:设这9天中平均每天生产x个。

9x+908=54089x=4500x=500答:这9天中平均每天生产500个。

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米?解:设乙每小时行x千米。

3(45+x)+17=2723(45+x)=25545+x=85x=40答:乙每小时行40千米。

5、某校六年级有两个班,上学期级数学平均成绩是85分。

已知六(1)班40人,平均成绩为87.1分,六(2)班有42人,平均成绩是多少分?解:设平均成绩是x分。

40x87.1+42x=85x823484+42x=697042x=3486x=83答:平均成绩是83分。

6、学校买来10箱粉笔,用法250盒后,还剩下550盒,平均每箱多少盒? 解:设平均每箱x盒。

10x=250+55010x=800x=80答:平均每箱80盒。

7、四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组多少人?解:设平均每组x人。

5x+80=2005x=160x=32答:平均每组32人。

8、食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少千克?解:设食堂运来面粉x千克。

3x-30=1503x=180x=60答:食堂运来面粉60千克。

9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。

人教版七年级上册数学一元一次方程应用题(配套问题)专题训练

人教版七年级上册数学一元一次方程应用题(配套问题)专题训练

人教版七年级上册数学一元一次方程应用题(配套问题)专题训练1.某瓷器厂共有工人120人,每个工人一天能做200只茶杯或50只茶壶.如果8只茶杯和一只茶壶为一套.(1)应安排多少人生产茶杯,可使每天生产的瓷器配套.(2)按(1)中的安排,每天可以生产多少套茶具?2.列方程解应用题:某车间有15个工人,生产水桶、扁担两种商品;已知每人每天平均能生产水桶80个或扁担110个,则应分配多少人生产水桶、多少人生产扁担,才能使每天生产的水桶和扁担刚好配套?(每2个水桶和1个扁担配成一套)3.一个车间加工轴杆和轴承,每人每天平均可以加工轴杆6根或者轴承8个,1根轴杆与2个轴承为一套,该车间共有40人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?4.某服装厂加工一批西服,每1米布料能裁上衣1件或裁裤子2件.现有布料15米,为了使上衣和裤子配套,裁上衣和裤子的布料各几米?5.某校七年级(2)班共有42名学生,在一节科技活动课上作长方体纸盒,已知每名同学一节课可制作盒身20个或盒盖30个,一个盒身和两个盒盖配成一个长方体纸盒.为使一节课制作的盒身、盒盖刚好配套,应安排制作盒身和盒盖的同学各多少名?6.3月12日是植树节,七年级170名学生参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女生各多少人?7.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?8.某车间有94个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?每天能生产成多少套?(列一元一次方程求解)9.某工厂生产茶具,每套茶具有1个茶壶和4只茶杯组成,生产这套茶具的主要材料是紫砂泥,用1千克紫砂泥可做2个茶壶或8只茶杯.现要用6千克紫砂泥制作这些茶具,应用多少千克紫砂泥做茶壶,多少个千克紫砂泥做茶杯,恰好配成这种茶具多少套?10.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库存有布料300m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料227m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)11.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾,为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?12.某车间有技术工人50人,平均每天每人可加工甲种部件18个或乙种部件14个,1个甲种部件和2个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套13.某玩具生产厂家A车间原来有30名工人,B车间原来有20名工人,现将新增25名工人分配到两车间,使A A车间工人总数是B车间工人总数的2倍.(1)新分配到A、B车间各是多少人?(2)A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现要制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人和生产线后比原来提前几天完成任务?14.某校新进了一批课桌椅,七年(2)班的学生利用活动课时间帮助学校搬运部分课桌椅,已知七年(2)班共有学生45人,其中男生的人数比女生人数的2倍少24人,要求每个学生搬运60张桌子或者搬运150张椅子.请解答下列问题:(1)七年(2)班有男生、女生各多少人?(2)一张桌子配两把椅子,为了使搬运的桌子和椅子刚好配套,应该分配多少个学生搬运桌子,多少个学生搬运椅子?15.某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在18天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?16.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库内存有布料180m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料202m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)17.某丝巾厂家70名工人义务承接了2020年上海进博会上志愿者佩戴的手环、丝巾的制作任务.已知每人每天平均生产手环180个或者丝巾120条,一条丝巾要配两个手环.(1)为了使每天生产的丝巾和手环刚好配套,应分配多少名工人生产手环,多少名工人生产丝巾?(2)在(1)的方案中,能配成套.18.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?19.糕点厂中秋节前要制作一批盒装月饼,每盒装2块大月饼和4块小月饼,制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.(1)若制作若干盒月饼共用了450kg面粉,请问制作大小两种月饼各用了多少面粉?(列方程解应用题)(2)在(1)的条件下,该糕点厂将销售价定为每盒108元,测算发现每盒月饼可盈利80%,若该厂按此售价销售完这批月饼,共可盈利多少元?20.在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗如果不配套,那么如何进行人员调配,才能使每小时剪出的筒身与筒底刚好配套?参考答案:1.(1)80人(2)2000(套)2.分配11人生产水桶,4人生产扁担,才能使每天生产的水桶和扁担刚好配套3.安排16人加工轴杆,24人加工轴承4.裁上衣的布料为10米,裁裤子的布料为5米5.18名同学制作盒身,24名同学制作盒盖6.该年级的男生有119人,那么女生有51人7.18个工人生产塑料棒,16个工人生产金属球8.46人生产甲种零件,48人生产乙种零件,每天生产552套9.应用3千克紫砂泥做茶壶,3千克紫砂泥做茶杯,恰好配成这种茶具6套10.(1)做上衣用布料180m,则做裤子用布料120m,可以生成120套衣服(2)最多可以生产90套衣服,余料可以做2条裤子11.应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.12.安排14人加工甲部件,安排36人加工乙部件才能使每天加工的两种部件刚好配套,一共加工了252套13.(1)新分配到A车间20人,分配到B车间5人(2)A车间新增工人和生产线后比原来提前2天完成任务14.(1)七年(2)班有男生22人、女生23人(2)应该分配25名学生搬运桌子,20名学生搬运椅子15.甲种零件生产10天,乙种零件生产8天.16.(1)做上衣用布料108m,则做裤子用布料72m;72套;(2)最多可以生产80套衣服,余料可以做1件上衣或2条裤子.17.(1)应分配40名工人生产手环,30名工人生产丝巾;(2)360018.(1)调入6名工人;(2)10名工人生产螺柱,12名工人生产螺母.19.(1)用了250kg面粉制作大月饼,200kg制作小月饼;(2)120000元.20.(1)七年级2班有男生有24人,女生有26人;(2)男生应向女生支援4人时,才能使每小时剪出的筒身与筒底刚好配套.。

人教版七年级上册数学期末一元一次方程应用题(配套问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(配套问题)专题训练(含答案)

7.(1)七年级 2001 班有男生 20 人,女生 30 人 (2)应该分配 30 人剪筒身,20 人剪筒底
8.(1)裁剪出的侧面个数是 4x ;裁剪出的底面个数是 6x 672 (2)A 方法裁剪 84 张,B 方法裁剪 28 张,能做 84 个盒子
9.应该分配 27 名学生做机身,18 名学生做机翼,每小时能够做出 540 套
(1)请用含 x 的代数式分别表示裁剪出的侧面和底面个数; (2)若裁剪出的侧面和底面恰好全部用完,问 A 方法、B 方法各裁剪几张?能做多少个盒 子?
9.初一年级共 45 名学生参与科技节活动,制作纸飞机模型.每人每小时可做 20 个机 身或 60 个机翼,一个飞机模型要 1 个机身配 2 个机翼,为了使每小时制作的成品刚好 配套,应该分配多少名学生做机身?多少名学生做机翼?在刚好配套的情况下,每小时 能够做出多少套?
5.一套仪器由一个 A 部件和三个 B 部件构成.用1m3 钢材可做 40 个 A 部件或 200 个 B 部件.现要用 8m3 钢材制作这种仪器,应用多少钢材做 A 部件,多少钢材做 B 部件,恰 好配成这种仪器多少套?
6.某瓷器厂共有工人120 人,每个工人一天能做 200 只茶杯或 50只茶壶.如果 8 只茶杯 和一只茶壶为一套. (1)应安排多少人生产茶杯,可使每天生产的瓷器配套. (2)按(1)中的安排,每天可以生产多少套茶具?
17.(1)侧面数:5x+90;底面数:120﹣4x;(2)若裁剪出的侧面和底面恰好全部用完, 能做 32 个盒子. 18.(1)20 立方米 (2)800 元
(1)按 B 种方法剪裁的有______张白板纸;(用含 x 的代数式表示) (2)将 5 32 名工人生产桌子和椅子,每人每天平均生产 15 张桌子或 50 把椅子,一 张桌子要配两把椅子.已知车间每天安排 x 名工人生产桌子. (1)求车间每天生产桌子和椅子各多少?(用含 x 的式子表示) (2)当每天安排多少名工人生产桌子时,生产的桌子和椅子刚好配套?

人教版(2024)数学七年级上册 第五章 一元一次方程 第1课时 配套问题与工程问题

人教版(2024)数学七年级上册 第五章 一元一次方程 第1课时 配套问题与工程问题
解:设应先安排 x 个工程队单独修 6 天.
(+)
根据题意,得 +


=1,解得 x=3.
答:应先安排 3 个工程队单独修 6 天.
6.有一项城市绿化整治任务交给甲、乙两个工程队完成.已知甲单独做
10 天完成,乙单独做 8 天完成,若甲先做 1 天,然后甲、乙合作 x 天后,共
同完成任务,则可列方程为( B )
由题意,可得
30x=20(50-x),解得x=20,
答:应安排20名工人加工甲种零件.
(2)若一辆轿车需要甲种零件7个和乙种零件 2个使每天能配套生产轿
车,若加工一件甲种零件加工费为10元,加工一件乙种零件加工费为12
元,若50名工人正好使得每天加工零件能配套生产轿车,则这50名工人
一天所得加工费一共多少元?
人均效率×人数×时间 ”的关系考虑问题.
3.用一元一次方程分析和解决实际问题的基本步骤
(1)审:审题,分析题中已知什么,求什么,明确各数量之间的关系;
(2)找:找出能够表示实际问题全部含义的相等关系;
(3)设:设未知数(一般求什么,就设什么);
(4)列:根据这个相等关系列出方程;
(5)解:解所列出的方程,求出未知数的值;
(6)答:检验所求解的正确性与合理性,写出答案(包括单位名称).
分层精练
知识点1
配套问题
1.骑自行车作为一种健康自然的运动方式,越来越受到人们的青睐.某
变速自行车厂有408名工人,每人每天能生产车架15个或车圈21个.已
知2个车圈配1个车架,则应分配
240 名工人生产车圈, 168
人生产车架,才能使每天生产的车架和车圈配套.
A.
C.

人教版七年级数学上册知识讲义-3 配套问题与工程问题

人教版七年级数学上册知识讲义-3 配套问题与工程问题

精讲精练1. 配套问题等量关系:各种物品的总数量比等于一套组合中各部分的数量比。

比如:螺栓与螺母的配套、盒身与盒底的配套,桌子与椅子的配套等等。

2. 工程问题。

等量关系:(1)工作量=工作效率×工作时间(2)合作效率=甲工作效率+乙工作效率(3)总工作量=甲工作量+乙工作量注意:(1)我们常把总工作量看作1,此时工作效率可以用工作时间的倒数来表示,即;(2)多个人(或单位)合作时,合作效率=多个人(或单位)效率之和;(3)有时还会利用“工作量=工作效率×工作时间×工作人数”的关系列方程。

例题1 (西安月考)某种仪器由1个A部件和1个B部件配套构成,每个工人每天可以加工A部件1000个或加工B部件600个。

现有工人16人,应该怎样安排人力,才能使每天生产的A部件和B部件配套?思路分析:找准要配套物品之间的数量关系是关键。

本题中的相等关系是“每天生产A 部件的数量=每天生产B部件的数量”。

题中的数量列表如下:答案:设安排x人生产A部件,安排(16-x)人生产B部件根据题意,得1000x=600(16-x),解得x=6,所以16-x=16-6=10。

答:应安排6人生产A部件,10人生产B部件,才能使每天生产的A部件和B部件配套。

例题2 (江门期末)某制衣厂接受一批服装订货任务,按计划天数进行生产。

如果每天平均生产20套服装,就比订货任务少生产100套;如果每天平均生产23套服装,就可超过订货任务20套。

问这批服装的订货任务是多少套?原计划多少天完成?思路分析:设这批服装任务为x套,可以利用计划天数不变找等量关系,由第一个条件可以表示计划天数为,由第二个条件可以表示计划天数为,这两个天数相等列出方程。

答案:设这批服装的订货任务为x套。

由题意,得去分母,得23(x-100)=20(x+20),去括号,得23x-2300=20x+400,移项,得23x-20x=400+2300,系数化为1,得x=900,所以。

人教版七年级上册数学第三章一元一次方程应用题——配套问题

人教版七年级上册数学第三章一元一次方程应用题——配套问题

人教版七年级上册数学第三章一元一次方程应用题——配套问题1.某工厂甲、乙两个车间共有22名工人,每人每天可以生产1200个螺钉或2000个螺母.(1)如果甲车间的人数比乙车间的人数多4人,那么两个车间各有多少人?(2)如果1个螺钉需配2个螺母,为使每天生产的螺钉和螺母刚好匹配,工厂应安排其中多少人生产螺母?2.制作一张桌子要用一个桌面和4条桌腿,1m3木材可制作15个桌面,或者制作300条桌腿,现有12m3木材,应怎样计划用料才能制作尽可能多的桌子?最多能制作多少张桌子?3.一张桌子有一张桌面和四条桌腿,做一张桌面需要木材0.03m3,做一条桌腿需要木材0.002m3.现做一批这样的桌子,恰好用去木材3.8m3,共做了多少张桌子?4.某中学有住宿生若干人,若每个房间住8人,则有3人无处住;若每个房间住9人则有两张空床位,问该中学有宿舍多少间,住宿生有多少人?5.在预防新型冠状病毒期间,电子体温枪成为最重要的抗疫资源之一.某品牌电子体温枪由甲、乙两部件各一个组成,加工厂每天能生产甲部件600个,或者生产乙部件400个,现要在30天内生产最多的该种电子体温枪,则甲、乙两种部件各应生产多少天?6.某车间有84名工人,每人每天可以生产16个大齿轮或10个小齿轮,已知1个大齿轮和2个小齿轮配成一套,为使每天生产的大齿轮和小齿轮刚好配套,应安排生产大齿轮和小齿轮的工人各多少名?一共可以配成多少套?7.某车间有技术工人58人,平均每天每人可加工甲种部件16个或乙种部件10个,1个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?8.某车间每天能生产甲种零件150个,或乙种零件100个,甲、乙两种零件分别取3个、1个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?9.东方红机械厂加工车间有90名工人,平均每人每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天可以生产多少套这样成套的产品?10.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知二个大齿轮和三个小齿轮配成一套,问应如何安排劳力使生产的产品刚好成套?11.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?12.某车间有75个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件15个或乙种零件20个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?13.机械厂加工车间有68名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?14.某车间每天能制作甲种零件500个,或者制作乙种零件250个,甲乙两种零件各一个配成一套产品,现要在30天内制作最多的成套产品,则甲种零件制作多少天?15.某班统计数学考试成绩,平均成绩是84.3分:后来发现莉莉的成绩是97分,而被错误地统计为79分.重新计算后,平均成绩是84.7分.这个班有多少名学生?16.配制一种黑色火药,硫磺、硝、木炭的比为1:2:3,要配火药1218千克,各需多少千克硫磺、硝、木炭?(设未知数,只列方程)17.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元,求钢笔和毛笔的单价各为多少元?18.某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套,要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?19.制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面或者制作400条桌腿,现有24立方米木材,要使桌面和桌腿正好配套,应分别计划用多少立方米木材制作桌面和桌腿?20.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件,几个工人加工乙种零件?。

七年级上册数学配套问题

七年级上册数学配套问题

七年级上册数学配套问题
以下是七年级上册数学配套问题的示例:
1. 某班学生计划做100件衣服,实际上交的作品中,男生做的衣服占60%,女生做的衣服占40%,结果总数少于计划的10件,那么男生做的衣服最多比女生少多少件?
2. 甲、乙两地相距30千米,A、B、C、D四人同时从甲地出发前往乙地,每人所带物品数相等,共计90件,他们带物品不带物品的速度是带物品速
度的一半,不带物品走15千米,带物品走30千米,问这四个人各带了物
品多少件?
若您想要了解更加详细的信息,建议前往教育资源类网站获取答案。

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)1、某车间可以制作甲种零件和乙种零件,每天甲种零件可以制作500只,乙种零件可以制作250只。

一套产品需要一只甲种零件和一只乙种零件。

现在需要在30天内制作尽可能多的成套产品,问甲、乙两种零件各应制作多少天?解:设甲种零件制作x天,那么乙种零件制作(30-x)天。

因为总数量相等,所以有500x=250(30-x),解得x=10,即甲种零件制作10天,乙种零件制作20天。

2、制作一张桌子需要一个桌面和四条桌腿,现在有12立方米的立方木材,1立方米木材可以制作20个桌面或400条桌腿。

问如何计划用料才能制作尽可能多的桌子?解:设用x立方米木材制作桌面,那么用(12-x)立方米木材制作桌腿。

因为总数量相等,所以有20x=400(12-x),解得x=2.4,即用2.4立方米木材制作桌面,用9.6立方米木材制作桌腿。

3、某车间有22名工人,每人每天平均可以生产1200个螺钉或2000个螺母。

一只螺钉需要配两只螺母。

为了使每天的产品刚好配套,问应该分配多少名工人生产螺钉?多少名工人生产螺母?解:设生产螺钉的工人数为x,那么生产螺母的工人数为(22-x)。

因为总数量相等,所以有1200x=2000(22-x),解得x=12,即应该安排12名工人生产螺钉,10名工人生产螺母。

4、一套仪器由一个A部件和三个B部件构成。

现在有6立方米的钢材,1立方米钢材可以制作40个A部件或240个B部件。

问应该用多少钢材制作A、B两种部件,才能恰好配成这种仪器多少套?解:设用x立方米钢材制作A部件,那么用(6-x)立方米钢材制作B部件。

因为总数量相等,所以有40x=240(6-x),解得x=1,即用1立方米钢材制作A部件,用5立方米钢材制作B部件。

因为每套仪器需要一个A部件和三个B部件,所以可以制作1个A部件和15个B部件,即可以制作5套仪器。

5、机械厂加工车间有85名工人,平均每人每天可以加工16个大齿轮或10个小齿轮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上数学配套问题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
七年级上数学配套问题
包装厂有人42,每个人平均每小时生产圆片120片,或长方形片80片,将两张圆片与一张长方形片配成一套,问如何安排工人?
分析:1.设安排生产圆片工人为()人,则安排长方片( )人
2.生产圆片的总数为()片,生产长方片的总数为()片
3.如何配套圆片总数:长方片总数=():()
4.列式:
用铝片做听装饮料瓶,每张铝片可制瓶身16个或制瓶底43个,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张制瓶身和多少张制瓶底?
分析:1.设生产瓶身用铝片()张,则生产瓶底用铝片()张
2.生产瓶身总数为()个,生产瓶身总数为()个
3.如何配套瓶身总数:瓶底总数=():()
4,。

列式
某工厂计划生产一种新型豆浆机,每台豆浆机需3个A种零件和5个B种零件正好配套已知车间每天能生产A种零件450个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应安排多少天生产A零件,多少天生产B 零件?
分析:1.设用()天生产A零件,用()天生产B零件
2生产A零件总数()个,生产B零件总数()个
3.如何配套 A零件总数:B零件总数=():()
4.列式
车间有26名工人生产零件甲和零件乙,每人每天平均生产零件甲120个或零件乙180个,为使零件甲和零件乙按3:2配套,则需分配多少工人生产零件甲和零件乙?
分析:设分配生产甲零件()人,分配生产乙零件()人
生产甲零件总数()个,生产乙零件总数()个
如何配套甲零件总数:乙零件总数=():()
列式:
敌我两军相距25km,敌军以5km/h的速度逃跑,我军同时以8km/h的速度追击,并在相距1km处发生战斗,战斗是在开始追击后几小时发生的
分析:设()小时发生战斗
当发生战斗时我军行进了()千米,敌军行进了()千米
针对行程问题,画出行程图:
列式:
小王在静水中的划船速度为12km/h,今往返于某河,逆流时用了10h,顺流时用了6h,求此河的水流速度。

分析:1设此河水流速度为()km/h,顺流时速度为()km/h,逆流时速度为()km/h
2.顺流时总共所走的路程为()km,逆流时总共所走的路程为()km
3.等量关系:
4.列式:
姐姐步行速度是75米/分,妹妹步行速度是45米/分。

在妹妹出发20分钟后,姐姐出发去追妹妹。

问:多少分钟后能追上
分析:1.设()分钟后追上
2.当追上时妹妹总共步行了()米,姐姐总共步行()米
3.等量关系:
4.列式:
小张和小王,分别从甲乙两地出发步行,1小时30分后,小张走了甲乙两地距离的一半多1.5千米,此时与小王相遇。

小王的速度是3.7千米/小时,那么小张的速度是多少
分析: .小王所走的路程为()千米,半程为()千米,则小张的路程为()千米,此时可求小张的速度()千米每小时
列式:
一支部队排成1.2千米队行军,在队尾的张明要与在最前面的营长联系,他用6分钟时间追上了营长。

为了回到队尾,在追上营长的地方等待了18分钟。

如果他从最前头跑步回到队尾,那么用多少时间
分析:1.设所用时间为()分钟
2.由路程和时间可以求出张明的速度为()千米每分钟,部队行军的速度为()千米每小时
3.从最前头跑到最尾,张明所走的路程加部队所走的路程就是部队的长度
4.列式
6.家离图书馆4.8千米,弟弟从家出发以60米/分速度步行去图书馆。

15分钟后,哥哥骑自行车从家出发去追赶弟弟,自行车的速度是240米/分。

问:(1)哥哥在离家多远处追上弟弟
(2)哥哥追上弟弟后不久到达图书馆,又马上折回,过不久与弟弟相遇,那么相遇处离图书馆多少千米?
甲, 乙两地间河流长为90千米,A, B两艘客船同时启航,如果相向而行3小时相遇,同向而行15小时A船追上B船,求船在静水中的速度。

一只船的燃料最多用6小时,去时顺水,速度每小时15千米,回来时逆流,速度每小时12千米,这只船最多行出多少千米就需要往回开?
甲乙两车分别从两地同时相向开出。

甲车经过6小时到达A地,甲车经过10小时到达B地。

(1)相遇时,乙车行了360千米。

求两地距离。

(2)相遇时,乙离目的地还有360千米。

求两地距离。

(3)相遇时,乙比甲多行360千米。

求两地距离。

(4)两车在离中点处360千米相遇,求两地距离。

(5)5分钟后两车又相距360千米。

求两地距离。

相关文档
最新文档