2011西城区初三二模数学试卷及答案

合集下载

【2011西城二模】北京市西城区2011年高三二模试卷数学文

【2011西城二模】北京市西城区2011年高三二模试卷数学文

北京市西城区2011年高三二模试卷数学(文科) 2011.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{0,1}A =,{1,0,3}B a =-+,且A B ⊆,则a 等于 (A )1(B )0(C )2- (D )3-2.已知i 是虚数单位,则复数2z 12i+3i =+所对应的点落在 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限4.在ABC ∆中,“0AB BC ⋅=”是“ABC ∆为直角三角形”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分又不必要条件5.一个几何体的三视图如图所示,则其体积等于(A )2 (B )1 (C )16(D )23正(主)视图俯视图侧(左)视图6.函数sin ()y x x =π∈R 的部分图象如图所示,设O 为坐标原点,P 是图象的最高点,B 是图象与x 轴的交点,则tan OPB ∠=(A )10(B )8(C )87(D )77.若2a >,则函数3()33f x x ax =-+在区间(0,2)上零点的个数为 (A )0个 (B )1个 (C)2个(D )3个8.已知点(1,0),(1,0)A B -及抛物线22y x =,若抛物线上点P 满足PA m PB =,则m 的最大值为 (A )3(B )2(C (D第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知}{n a 为等差数列,341a a +=,则其前6项之和为_____.10.已知向量(1=a ,+=a b ,设a 与b 的夹角为θ,则θ=_____. 11.在ABC ∆中,若2B A =,:a b =A =_____.12.平面上满足约束条件2,0,60x x y x y ≥⎧⎪+≤⎨⎪--≤⎩的点(,)x y 形成的区域为D ,则区域D 的面积为________;设区域D 关于直线21y x =-对称的区域为E ,则区域D 和区域E 中距离 最近的两点的距离为________.13.定义某种运算⊗,a b ⊗的运算原理如右图所示.则0(1)⊗-=______;设()(0)(2)f x x x x =⊗-⊗.则(1)f =______. 14.数列{}n a 满足11a =,11n n n a a n λ+-=+,其中λ∈R ,12n = ,,.给出下列命题:①λ∃∈R ,对于任意i ∈*N ,0i a >;②λ∃∈R ,对于任意2()i i ≥∈*N ,10i i a a +<;③λ∃∈R ,m ∈*N ,当i m >(i ∈*N )时总有0i a <.其中正确的命题是______.(写出所有正确命题的序号)三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数1)43()sin x f x xπ+-=. (Ⅰ)求函数()f x 的定义域;(Ⅱ)若()2f x =,求s i n 2x 的值.16.(本小题满分13分)如图,菱形ABCD 的边长为6,60BAD ∠=,AC BD O = .将菱形ABCD 沿对角线AC 折起,得到三棱锥B ACD -,点M 是棱BC的中点,DM =(Ⅰ)求证://OM 平面ABD ; (Ⅱ)求证:平面ABC ⊥平面M D O ; (Ⅲ)求三棱锥M A B D -的体积.17.(本小题满分13分)由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取n 个人,已知从“支持”态度的ABCCMOD人中抽取了45人,求n 的值;(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有1人20岁以下的概率;(Ⅲ)在接受调查的人中,有8人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8个人打出的分数看作一个总体,从中任取1个数,求该数与总体平均数之差的绝对值超过0.6的概率.18.(本小题满分14分)设函数()e x f x =,其中e 为自然对数的底数. (Ⅰ)求函数()()e g x f x x =-的单调区间;(Ⅱ)记曲线()y f x =在点00(,())P x f x (其中00x <)处的切线为l ,l 与x 轴、y 轴所围成的三角形面积为S ,求S 的最大值.19.(本小题满分14分)已知椭圆22221x y a b +=(0a b >>)的焦距为2.(Ⅰ)求椭圆方程;(Ⅱ)设过椭圆顶点(0,)B b ,斜率为k 的直线交椭圆于另一点D ,交x 轴于点E ,且,,BD BE DE 成等比数列,求2k 的值.20.(本小题满分13分)若函数)(x f 对任意的x ∈R ,均有)(2)1()1(x f x f x f ≥++-,则称函数)(x f 具有性质P .(Ⅰ)判断下面两个函数是否具有性质P ,并说明理由.①(1)x y a a =>; ②3y x =.(Ⅱ)若函数)(x f 具有性质P ,且(0)()0f f n ==(2,n >n ∈*N ),求证:对任意{1,2,3,,1}i n ∈- 有()0f i ≤;(Ⅲ)在(Ⅱ)的条件下,是否对任意[0,]x n ∈均有0)(≤x f .若成立给出证明,若不成立给出反例.北京市西城区2011年高三二模试卷参考答案及评分标准数学(文科) 2011.5一、选择题:本大题共8小题,每小题5分,共40分.题号 1 2 3 4 56 7 8 答案C B C A DBBC二、填空题:本大题共6小题,每小题5分,共30分.9. 3 10. 120 11. 3012. 1;13. 1;1- 14. ①③注:12、13题第一问2分,第二问3分.14题只选出一个正确的命题给2分,选出错误的命题即得0分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分) 解:解:(Ⅰ)由题意,sin 0x ≠, ……………2分所以,()x k k ≠π∈Z . ……………3分 函数()f x 的定义域为{,}x x k k ≠π∈Z . ……………4分(Ⅱ)因为()2f x =1)2sin 43x x π+-=, ……………5分1)2sin 223x x x +-=, ……………7分 1cos sin 3x x -=, ……………9分 将上式平方,得11sin29x -=, ……………12分所以8sin 29x =. ……………13分16.(本小题满分13分)(Ⅰ)证明:因为点O 是菱形ABCD 的对角线的交点,所以O 是AC 的中点.又点M 是棱BC 的中点,所以OM 是ABC ∆的中位线,//OM AB . ……………2分 因为OM ⊄平面ABD ,AB ⊂平面ABD ,所以//OM 平面ABD . ……………4分 (Ⅱ)证明:由题意,3OM OD ==,因为DM =所以90DOM ∠= ,OD OM ⊥. ……………6分 又因为菱形ABCD ,所以OD AC ⊥. …………7分 因为OM AC O = ,所以OD ⊥平面ABC , ……………8分 因为OD ⊂平面MDO ,所以平面ABC ⊥平面MDO . ……………9分(Ⅲ)解:三棱锥M ABD -的体积等于三棱锥D ABM -的体积. ……………10分由(Ⅱ)知,OD ⊥平面ABC ,所以3OD =为三棱锥D ABM -的高. ……………11分ABM ∆的面积为11sin120632222BA BM ⨯⨯=⨯⨯⨯=, ……………12分所求体积等于132ABM S OD ∆⨯⨯=. ……………13分17.(本小题满分13分) 解:(Ⅰ)由题意得80010080045020010015030045n++++++=, ……………2分所以100n =. ……………3分 (Ⅱ)设所选取的人中,有m 人20岁以下,则2002003005m=+,解得2m =.………5分也就是20岁以下抽取了2人,另一部分抽取了3人,分别记作A 1,A 2;B 1,B 2,B 3, 则从中任取2人的所有基本事件为 (A 1,B 1),(A 1, B 2),(A 1, B 3),(A 2 ,B 1),(A 2 ,B 2),(A 2 ,B 3),(A 1, A 2),(B 1 ,B 2),(B 2 ,B 3),(B 1 ,B 3)共10个. ………7分其中至少有1人20岁以下的基本事件有7个:(A 1, B 1),(A 1, B 2),(A 1, B 3),(A 2 ,B 1),(A 2 ,B 2),(A 2 ,B 3),(A 1, A 2), …………8分所以从中任意抽取2人,至少有1人20岁以下的概率为710. ……………9分 ABCMO D(Ⅲ)总体的平均数为1(9.48.69.29.68.79.39.08.2)98x =+++++++=,………10分 那么与总体平均数之差的绝对值超过0.6的数只有8.2, ……………12分 所以该数与总体平均数之差的绝对值超过0.6的概率为81. ……………13分18.(本小题满分14分)解:(Ⅰ)由已知()e e x g x x =-,所以()e e x g x '=-, ……………2分 由()e e 0x g x '=-=,得1x =, ……………3分 所以,在区间(,1)-∞上,()0g x '<,函数()g x 在区间(,1)-∞上单调递减; ……………4分 在区间(1,)+∞上,()0g x '>,函数()g x 在区间(1,)+∞上单调递增; ……………5分 即函数()g x 的单调递减区间为(,1)-∞,单调递增区间为(1,)+∞. (Ⅱ)因为()e x f x '=,所以曲线()y f x =在点P 处切线为l :000e e ()x xy x x -=-. ……………7分 切线l 与x 轴的交点为0(1,0)x -,与y 轴的交点为000(0,e e )xxx -, ……………9分 因为00x <,所以002000011(1)(1)e (12)e 22x x S x x x x =--=-+, ……………10分 0201e (1)2x S x '=-, ……………12分 在区间(,1)-∞-上,函数0()S x 单调递增,在区间(1,0)-上,函数0()S x 单调递减. ……………13分所以,当01x =-时,S 有最大值,此时2eS =, 所以,S 的最大值为2e. ……………14分 19、(本小题满分14分) 解:(Ⅰ)由已知2c =,c a = ……………2分解得2,a c =, ……………4分 所以2221b a c =-=, 椭圆的方程为2214xy +=. ……………5分(Ⅱ)由(Ⅰ)得过B 点的直线为1y kx =+,由221,41,x y y kx ⎧+=⎪⎨⎪=+⎩得22(41)80k x kx ++=, ……………6分 所以2814D k x k =-+,所以221414D k y k-=+, ……………8分 依题意0k ≠,12k ≠±. 因为,,BD BE DE 成等比数列,所以2BE BD DE =, ……………9分 所以2(1)D D b y y =-,即(1)1D D y y -=, ……………10分当0D y >时,210D D y y -+=,无解, ……………11分 当0D y <时,210D D y y --=,解得D y =, ……………12分所以221414k k -=+2k =所以,当,,BD BE DE成等比数列时,2k =……………14分 20.(本小题满分13分)(Ⅰ)证明:①函数)1()(>=a a x f x具有性质P . ……………1分111(1)(1)2()2(2)x x x x f x f x f x a a a a a a-+-++-=+-=+-,因为1>a ,1(2)0x a a a+->, ……………3分 即)(2)1()1(x f x f x f ≥++-, 此函数为具有性质P .②函数3)(x x f =不具有性质P . ……………4分 例如,当1x =-时,(1)(1)(2)(0)8f x f x f f -++=-+=-,2()2f x =-, ……………5分所以,)1()0()2(-<+-f f f , 此函数不具有性质P .(Ⅱ)假设)(i f 为(1),(2),,(1)f f f n - 中第一个大于0的值, ……………6分 则0)1()(>--i f i f , 因为函数()f x 具有性质P ,所以,对于任意n ∈*N ,均有(1)()()(1)f n f n f n f n +-≥--, 所以0)1()()2()1()1()(>--≥≥---≥--i f i f n f n f n f n f , 所以()[()(1)][(1)()]()0f n f n f n f i f i f i =--+++-+> ,与0)(=n f 矛盾,所以,对任意的{1,2,3,,1}i n ∈- 有()0f i ≤. ……………9分 (Ⅲ)不成立.例如2()()x x n x f x xx -⎧=⎨⎩为有理数,为无理数. ……………10分证明:当x 为有理数时,1,1x x -+均为有理数,222(1)(1)2()(1)(1)2(112)2f x f x f x x x x n x x x -++-=-++---++-=,当x 为无理数时,1,1x x -+均为无理数,22)1()1()(2)1()1(222=-++-=-++-x x x x f x f x f所以,函数)(x f 对任意的x ∈R ,均有)(2)1()1(x f x f x f ≥++-,即函数)(x f 具有性质P . ……………12分 而当],0[n x ∈(2n >)且当x 为无理数时,0)(>x f .所以,在(Ⅱ)的条件下,“对任意[0,]x n ∈均有0)(≤x f ”不成立.……………13分 (其他反例仿此给分. 如()()0()1x x f x ⎧=⎨⎩为有理数为无理数,()()0()1x x f x ⎧=⎨⎩为整数为非整数,2()()0()x x f x x⎧=⎨⎩为整数为非整数,等.)。

北京初三数学2011年各区一模二模12题汇总(含答案)

北京初三数学2011年各区一模二模12题汇总(含答案)

2011年北京市一模、二模第12题汇总12.(11hdym)如图,矩形纸片ABC D 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD 交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O , 则1BO = ,n BO = .(2,12332n n --)…第一次折叠 第二次折叠 第三次折叠 图1 图2 …12.(11dcym) 如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1O B 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2O B 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点4A 的坐标为( , );点n A ( , ).(938,0 1)332(-n ,0)12.(11syym) 将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的BADCBA DC1O 1O 2O 1D 1D 2D 1O 2O 3O B ADCB ADC…① ② ③ ④位置是第 行第 列.(6,121n n +)12.(11fsym)如图,以边长为1的正方形的四边中点为顶点作四边形, 再以所得四边形四边中点为顶点作四边形,......依次作下去, 图中所作的第三个四边形的周长为________;所作的第n个四边形的周长为_________________.(2,42()2n)12.(11yqym)如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n块纸板的周长为n P ,则=-34P P ;1--n n P P = .(81, 121-⎪⎭⎫ ⎝⎛n )12.(11myym) 如图,一个空间几何体的主视图和左视图都是边长为1的正 三角形,俯视图是一个圆,那么这个几何体的侧面积是 . (12π)12.(11dxym).将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为 ,那么第n(n 为正整数)个图中,挖去的所有三角形形的面积和为 (用含n 的代数式表示). ⎪⎭⎫⎝⎛25681)43(4或, n )(431-.(12题图)12.(11sjsym)已知:如图,在平面直角坐标系xOy 中,点1B 、点1C 的坐标分别为()0,1,()31,,将△11C OB绕原点O 逆时针旋转︒60,再将其各边都扩大为原来的m 倍,使12OC OB =,得到△22C OB .将△22C OB 绕原点O 逆时针旋转︒60,再将其各边都扩大为原来的m 倍,使23OC OB =,得到△33C OB ,如此下去,得到△n n C OB . (1)m 的值是_______________;(2)△20112011C OB 中,点2011C 的坐标:_____________.(2;(32,220102010)) 12.(11ysym)已知:点F 在正方形纸片ABCD 的边CD 上,AB=2,∠FBC=30°(如图1);沿BF 折叠纸片,使点C 落在纸片内点C '处(如图2);再继续以BC '为轴折叠纸片,把点A 落在纸片上的位置记作A '(如图3),则点D 和A '之间的距离为_________. (2-6)12.(11mtgym)已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当n = 8时,共向外作出了个小等边三角形; 当n = k 时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用 含k 的式子表示).183(-2)k23(2)k sk-A D A D D C 'F F F A 'B C B B图1 图2 图3n =3n =5……n =4D 4D 1D 2D 3ABCE 3E 2E 112.(11tongzym )已知ABC AB AC m ∆==中,,72A B C ∠=︒,1BB 平分A B C ∠交A C 于1B ,过1B 作12B B //B C 交AB 于2B ,作23B B 平分21A B B ∠,交A C 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .212332n n --12.(11changpem)如图,点E 、D 分别是正三角形ABC 、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的一边延长线和另一边反向延长线上的点,且BE =CD ,DB 的延长线交AE 于点F ,则图1中∠AFB 的度数为 ;若将条件“正三角形、正四边形、正五边形”改为“正n 边形”,其他条件不变,则∠AFB 的度数为 .(用n 的代数式表示,其中,n ≥3,且n 为整数)(0°,2180n n-⋅())图1E FB ADC图2AC DB FEM图3NAC DB F EM12.(11fangsem)如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)联结DE ,作DE 的中垂线,交AD 于点F . (1)若E 为AB 中点,则D F A E=.(2)若E 为AB 的n 等分点(靠近点A),则D FA E = .(251,42n n+) 12. (11fengtem)已知:如图,在R t ABC △中,点1D 是斜边A B 的中点,过点1D 作11D E AC ⊥于点E 1,联结1B E 交1C D 于点2D ;过点2D 作22D E AC ⊥于点2E ,联结2BE交1C D 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点45、D D 、…、n D ,分别记112233△、△、△、BD E BD E BD E …、n nBD E △的面积为123、、、S S S …n S .设△ABC 的面积是1, 则S 1= ,n S = (用含n 的代数式表示)(211,4(1)n +)12. (11huairem)如图7所示,P 1(x 1,y 1)、P 2(x 2,y 2),……P n (x n ,y n )在函数y =x4(x >0)的图象上,⊿OP 1A 1,⊿P 2A 1A 2,⊿P 3A 2A 3……⊿P n A n -1A n ……都是等腰三角形,斜边OA 1,A 1A 2……A n -1A n ,都在x 轴上,则y 1= .y 1+y 2+…y n = . (2, 2n )12.(11shijsem)如图平面内有公共端点的五条射线,,,,,OE OD OC OB OA 从射线OA 开始,在射线上写出数字1,2,3,4,5; 6,7,8,9,10;….按此规律,则“12”在射线 上;“2011”在射线 上.(OC ;OB ) 12.(11yanqem)正方形ABCD 的位置如图所示,点A 的坐标为)0,1(,点D 的坐标为)2,0(. 延长CB 交x 轴于点1A ,作正方形C C B A 111; 延长11B C 交x 轴于点2A ,作正方形1222C C B A … 按这样的规律进行下去,第3个正方形的面积为________; 第n 个正方形的面积为_____________(用含n 的代数式表示).4235)( , 22235-⎪⎭⎫ ⎝⎛nyo xAAAB B B CC CD 第12题图。

2011年北京西城区中考二模数学试题答案

2011年北京西城区中考二模数学试题答案

北京市西城区2011年初三二模试卷数学答案及评分标准 2011.6一、选择题(本题共32分,每小题4分)题号1 2 3 4 56 7 8 答案B A DC BC AA二、填空题(本题共16分,每小题4分)题号 9 10 1112答案()()22-+m m m2≠x32,34()20122011,11+n n三、解答题(本题共30分,每小题5分) 13.解:原式=132122---……………………………………………………………4分=3222-. ……………………………………………………………………5分14.证明: 如图1.在△ACE 和△BDE 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BD AC BED AEC DBE CAE ………………………………3分∴ △ACE ≌△BDE . ……………………………………………………………4分 ∴ AE =BE .………………………………………………………………………5分 15.解:(1)∵ 关于x 的一元二次方程2420x x k ++=有两个不相等的实数根,∴ 16420k ∆=-⨯>. ………………………………………………………1分 解得2k <. ……………………………………………………………………2分 (2)∵2k <,∴ 符合条件的最大整数1k =,此时方程为2420x x ++=. ……………3分 ∴ 142a b c ===,,. ∴ 22444128b ac -=-⨯⨯=.………………………………………………4分 代入求根公式242b b ac x a-±-=,得422222x -±==-±.…………5分∴ 122222x x =-+=--,.16.解:原式=222222x xy y xy y ++--=22x y -.………………………………………2分 ∵ 122=+xy x ①,152=+y xy ②,∴ ①-②,得223x y -=-. ………………………………………………………4分 ∴ 原式=3-. ………………………………………………………………………5分图117.解:(1)∵ 反比例数m y x=()0≠m 的图象经过(3,1)A -,(2,)B n 两点,(如图2) ∴ 313m =-⨯=-,322m n ==-.∴ 反比例函数解析式为3y x=-.………………………1分点B 的坐标为3(2)2B -,.……………………………2分∵ 一次函数y kx b =+()0≠k 的图象经过(3,1)A -,3(2)2B -,两点,∴ 31,32.2k b k b -+=⎧⎪⎨+=-⎪⎩解得 1,21.2k b ⎧=-⎪⎪⎨⎪=-⎪⎩∴ 一次函数的解析式为1122y x =--.……………………………………3分(2)设一次函数1122y x =--的图象与x 轴的交点为C ,则点C 的坐标为(1,0)C -.∴ =AOB ACO COB S S S ∆∆∆+113=11+1222⨯⨯⨯⨯5=4. …………………………5分18.解:(1)50;………………………………………………………………………………1分(2)………………………………………………………………………………3分 (3)3.………………………………………………………………………………5分四、解答题(本题共20分,每小题5分) 19.解:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆.()62402022800y x x x =+-=+.…………………………………………2分(2)依题意得x -20< x .解得x >10.……………………………………………………………………3分∵ 22800y x =+,y 随着x 的增大而增大,x 为整数,∴ 当x=11时,购车费用最省,为22×11+800=1 042(万元). …………4分 此时需购买大型客车11辆,中型客车9辆.……………………………5分答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.图220.解:(1)作DM ⊥AB 于点M ,CN ⊥AB 于点N .(如图3)∵ AB ∥D C ,DM ⊥AB ,CN ⊥AB ,∴ ∠DMN =∠CNM =∠MDC =90︒. ∴ 四边形MNCD 是矩形. ∵4C D =,∴ MN =CD = 4.∵ 在梯形ABC D 中,AB ∥D C ,5AD BC ==, ∴ ∠DAB =∠CBA ,DM=CN . ∴ △ADM ≌△BCN . 又∵10AB =,∴ AM =BN =()11(104)322AB M N -=⨯-=.∴ MB =BN +MN =7.……………………………………………………………2分∵ 在Rt △AMD 中,∠AMD =90︒,AD =5,AM =3, ∴ 224D M AD AM=-=.∴ 4tan 7D M ABD BM∠==.……………………………………………………3分(2)∵ EF AB ⊥,∴ ∠F =90︒.∵∠DMN =90︒, ∴ ∠F =∠DMN .∴ DM ∥EF .∴ △BDM ∽△BEF . ∵ DE BD =,∴12BM BD BFBE==.∴ BF =2BM =14. ……………………………………………………………4分 ∴ AF =BF -AB =14-10=4. …………………………………………………5分21.(1)证明:如图4.∵ 点A 是劣弧BC 的中点,∴ ∠ABC =∠ADB .………………………1分 又∵ ∠BAD =∠EAB ,∴ △ABE ∽△ADB .………………………2分∴ABADAE AB =.∴ 2A B A E A D =⋅.………………………………………………………3分 (2)解:∵ AE =2,ED =4,∴()22612AB AE AD AE AE ED =⋅=+=⨯=.∴23AB =(舍负).………………………………………………………4分∵ BD 为⊙O 的直径,∴ ∠A =90︒.图4ECOFAD B图3又∵ DF 是⊙O 的切线,∴ DF ⊥BD.∴ ∠BDF =90︒.在Rt △ABD 中,233tan 63A B A D B A D∠===,∴ ∠ADB =30︒.∴ ∠ABC =∠ADB =30︒. ∴∠DEF=∠AEB=60︒,903060ED F BD F AD B ∠=∠-∠=︒-︒=︒.∴ ∠F =18060D EF ED F ︒-∠-∠=︒. ∴ △DEF 是等边三角形.∴ EF = DE =4.………………………………………………………………5分22.解:(1)……………………………………………………1分(2)……………………………………………………3分(3)……………………………………………………5分23.解:(1)=,>,<.……………………………………………………………………3分(2)2c a.……………………………………………………………………………4分(3)答:当x =5m +时,代数式2ax bx c ++的值是正数.理由如下:设抛物线2y ax bx c =++(a ≠0),则由题意可知,它经过A (,0)2c a,B (2,0)两点.∵ a >0,c <0,∴ 抛物线2y ax bx c =++开口向上,且2c a<0<2,即点A 在点B 左侧.…………………………………………………………………………5分设点M 的坐标为2(,)M m am bm c ++,点N 的坐标为(5,)N m y +.∵ 代数式2am bm c ++的值小于0,∴ 点M 在抛物线2y ax bx c =++上,且点M 的纵坐标为负数. ∴ 点M 在x 轴下方的抛物线上.(如图5)∴ A M B x x x <<,即22c m a<<. ∴5572c m a+<+<,即572N c x a+<<.以下判断52c a+与B x 的大小关系:∵ 42a b c ++=0,a >b ,a >0, ∴ 66(42)(5)(5)202222B c c a c a a b a b x aaaaa+-+-+-=+-===>.∴B x ac >+52.∴ 52N B c x x a>+>.…………………………………………………………6分∵ B ,N 两点都在抛物线的对称轴的右侧,y 随x 的增大而增大, ∴B N y y >,即y >0.∴ 当x =5m +时,代数式2ax bx c ++的值是正数. ………………………7分24.解:(1)52,265.………………………………………………………………………2分(2)只有点P 在DF 边上运动时,△PDE 才能成为等腰三角形,且PD=PE .(如图6)……………………………………………………………………………3分 ∵ BF=t ,PF=2t ,DF =8, ∴ 82PD D F PF t =-=-.在Rt △PEF 中,2222436PE PF EF t =+=+=2PD.即()2228364t t -=+. 解得 78t =.…………………………………4分 ∴ t 为78时△PDE 为等腰三角形.(3)设当△DEF 和点P 运动的时间是t 时,点P 与点G 重合,此时点P 一定在DE边上,DP= DG . 由已知可得93tan 124AC B BC===,63tan 84EF D D F===.∴.D B ∠=∠∴.90︒=∠=∠BFH DGH∴ 3tan 4FH BF B t =⋅=, 384D H D F F H t =-=-, .5325354438cos +-=⨯⎪⎭⎫ ⎝⎛-=⋅=t t D DH DG ∵ 2D P D F t +=,∴ 28D P t =-.由DP=DG 得3322855t t -=-+.图5解得 7213t =. …………………………………………………………………5分检验:724613<<,此时点P 在DE 边上.∴ t 的值为7213时,点P 与点G 重合.(4)当0<t ≤4时,点P 在DF 边上运动(如图6),ta n 2PFPBF BF∠==.…………………………………………………………………………………6分 当4< t ≤6时,点P 在DE 边上运动(如图7),作PS ⊥BC 于S ,则t a n PS PBF BS∠=.可得10(28)182PE DE DP t t =-=--=-. 此时()5725821854cos cos +-=-=⋅=∠⋅=t t D PE EPS PE PS ,()5545621853sin sin +-=-=⋅=∠⋅=t t D PE EPS PE ES .524511554566-=⎪⎭⎫ ⎝⎛+--+=-+=t t t ES EF BF BS .∴ 728tan 1124PS tPBF BSt -∠==-.………………………………………………7分综上所述,2 (04),tan 728 (46).1124t PBF t t t <≤⎧⎪∠=-⎨≤≤⎪-⎩(以上时间单位均为s ,线段长度单位均为cm )25.解:(1)B 点的坐标为(23,6),………………………………………………………1分 C 点的坐标为(63,2).………………………………………………………3分 (2)当AB =4k ,(0,)A m 时,OA =m ,与(1)同理可得B 点的坐标为(23,2)B k k m +,C 点的坐标为(233,2)C k m k +.如图8,过点B 作y 轴的垂线,垂足为F ,过点C 作x 轴的垂线,垂足为G , 两条垂线的交点为H ,作DM ⊥FH 于点M ,EN ⊥OG 于点N .由三角形中位线的性质可得点D 的坐标为(3,)D k k m +,点E 的坐标为3(3,)2m E k k +.由勾股定理得2237()22m D E mm =+=.∵ DE=27,∴ m=4. ……………………………4分 ∵ D 恰为抛物线2123(21)23(2)k y x x m k k +=-++++的顶点,它的顶点横坐标为3(21)3k +,∴3(21)33k k +=.解得k=1.此时抛物线的解析式2123433y x x =-++.…………………………………5分 此时D ,E 两点的坐标分别为(3,5)D ,(33,1)E .∴ 27OD =,27OE =.∴ OD=OE=DE .∴ 此时△ODE 为等边三角形,cos ∠ODE= cos60°=12.……………………6分(3)E 1,E 3点的坐标分别为13(3,1)2m E +,E 33(33,3)2m+.设直线13E E 的解析式为y ax b =+(a ≠0).则 3(3)1,23(33) 3.2ma b m a b ⎧++=⎪⎪⎨⎪++=⎪⎩解得 3,3.2a m b ⎧=⎪⎪⎨⎪=-⎪⎩∴ 直线13E E 的解析式为332m y x =-. ……………………………………7分可得直线13E E 与y 轴正方向的夹角等于60°.∵ 直线13D D ,13E E 与y 轴正方向的夹角都等于60°, ∴ 13D D ∥13E E .∵ D 1,D 3两点的坐标分别为1(3,1)D m +,3(33,3)D m +, 由勾股定理得13D D =4,13E E =4. ∴ 1313D D E E =.∴ 四边形1331D D E E 为平行四边形.设直线13E E 与y 轴的交点为P ,作AQ ⊥13E E 于Q .(如图9) 可得点P 的坐标为.23,2,0m AP m P =⎪⎭⎫ ⎝⎛-∴.43360sin sin m AP OPQ AP AQ =︒⋅=∠⋅=∴ 133113334334D DE E m S D D AQ m =⨯=⨯=四边形.…………………………8分。

北京市2011中考数学二模数学分类汇编 求值

北京市2011中考数学二模数学分类汇编 求值

2011初三二模数学分类汇编—求值(某某)(西城)8.在平面直角坐标系xOy 中,点P 在由直线3+-=x y ,直线4y =和直线1x =所围成的 区域内或其边界上,点Q 在x 轴上,若点R 的坐标为(2,2)R ,则QP QR +的最小值为 A .17B .25+C .35D .410.函数21-=x y 中,自变量x 的取值X 围是.12.对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n ,B n 两点若n n A B 表示这两点间的距离,则n n A B =(用含n 的代数式表示); 112220112011A B A B A B +++的值为.15.已知:关于x 的一元二次方程2420x x k ++=有两个不相等的实数根. (1)求k 的取值X 围;(2)当k 取最大整数值时,用公式法求该方程的解.16.已知 122=+xy x ,215xy y +=,求代数式()22()x y y x y +-+的值. (丰台) 11.若分式43+-x x 的值为0,则x 的值是. x 2+3x =15,求代数式-2x (x -1)+(2x +1)2的值.23. 已知:关于x 的方程2(23)30+-+-=kx k x k .(1)求证:方程总有实数根;(2)当k 取哪些整数时,关于x 的方程2(23)30+-+-=kx k x k 的两个实数根均为负整数?(顺义)3.若点(,2)M a 与点(3,)N b 关于x 轴对称,则,a b 的值分别是 A A .3,2- B .3,2- C .3,2-- D .3,29. 若分式22123x x x -+-的值为零 , 则x =1-.15. 已知13x x-=,求代数式2(23)(1)(4)x x x --+-的值.15. 解:2(23)(1)(4)x x x --+-=224129(34)x x x x -+--- -------------------------2分 =23913x x -+ --------------------------------------3分GFE DCBA由 13x x -= ,得231x x -= ------------------------4分 原式=23(3)13x x -+=16 ------------------------------5分(延庆)11.若二次函数52++=bx x y 配方后为k x y +-=2)2(,则b 、k 的值分别-4,1 16.先化简:144)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值.16.144)113(2++-÷+-+a a a a a=2)2(1)]1(13[-+⋅--+a a a a =22)2(1)1()2(113-+⋅---+⋅+a a a a a a =222)2()1()2(3----a a a=22)2(4--a a =2)2()2)(2(a a a --+=a a -+22 ∵2,1-≠a∴0=a ∴原式=122.阅读材料:(1)操作发现:如图,矩形ABCD 中,E 是AD 的中点,将△ABE ∆沿BE 折叠后得到GBE ∆,且点 G 在矩形ABCD 内部.小明将BG 延长交DC 于点F , 认为DF GF =,你同意吗?说明理由. (2)问题解决:保持(1)中的条件不变,若DF DC 2=,求AB AD的值;(3)类比探求:保持(1)中条件不变,若nDF DC =,求AB AD的值.22. (1)同意,连接EF ,90D EGF =∠=∠ EF EF ED AE ===,EG ∴EDF Rt EGF Rt ∆≅∆∴DF GF = (2)由(1)知,DF GF =设y AD x GF y BG x ====,,,DF 则有∵DF DC 2=………………1分………………3分………………2分………………4分………………5分………………1分∴x BG AB DC x CF 2,==== ∴x GF BG BF 3=+=在222,222)3(x x y BF CF BC BCF Rt =+=+∆即中, ∴x y 22=∴22==x yAB AD (3)由(1)知,DF GF =,设y AD x GF y BG x ====,,,DF 则有 ∵nDF DC =∴nx BG AB DC === ∴x n CF )1(-=∴x n GF BG BF )1(+=+=在222,222])1[(])1[(x n x n y BF CF BC BCF Rt +=-+=+∆即中, ∴x n y 2=∴n nnx y ABAD 2== (昌平) 9.在函数21y x =-中,自变量x 的取值X 围是x ≠1. 10.若关于x 的一元二次方程m x 2-3x +1=0有实数根,则m 的取值X 围是049≠≤m m 且.(大兴)3.已知()02b 3a 2=++-,则ab 等于AA .-6B .6C .-2D .39.若分式2x 4x 2--的值为0,则x 的值为-210.如果关于x 的方程0522=--x kx 有实数根,那么k 的取值X 围是_51-≥k .且k ≠0_ 14.先化简,再求值: 已知a 2+2a=4,求121111122+-+÷--+a a a a a 的值. 14.解:由a 2+2a =4,得5)1(2=+a ………………………………1分原式=1)1()1)(1(1112+-⋅-+-+a a a a a …………………………2分=2)1(111+--+a a a …………………………………………3分 ………………2分 ………………3分………………4分AD BCFG E RQ P FED BCA=2)1(2+a . ………………………………………………4分∴ 当a 2+2a =4,即5)1(2=+a 时, 原式=52 . ……………………………………………………5分(东城)13. 先化简,再求值:2(21)(2)(2)4(1)x x x x x +++--+,其中x =13.(本小题满分5分)解:原式222441444x x x x x =+++---………………3分23x =- . ………………4分当x =,原式227153344=-=-=⎝⎭. ………………5分(门头沟)9.在函数y =x 的取值X 围是x ≥216.已知20y x -=,求y x yy x y x y xy x x-++-⋅+-2222222的值. 16.解:y x yy x y x y xy x x-++-⋅+-2222222 =yx yy x y x y x y x x-+++-⋅-2))(()(22···················· 2分= 22x y x y x y +-- = 22x y x y+-. ····························· 3分当20y x -=时,x y 2=. ························ 4分原式=242x xx x+-=-6. ·························· 5分(平谷)7.若x y ==xy 的值是 AA .m n -B .m n +C .D .10.已知,2x y ,10y x ==+那么22y x +=16.14.已知06x 3x 2=--,求xx 1x 3x 12++--的值 14.解:xx 1x 3x 12++--⋅++--=)1x (x 1x 3x 1……………………………………………………………….1分 x 13x 1--=………………………………………………………………………2分 )3x (x 3x )3x (x x ----=……………………………………………………………3分 .x3x 32-=…………………………………………………………………………4分 因为 06x 3x 2=--,所以 .6x 3x 2=-所以 原式.21=…………………5分18.已知一元二次方程0k x 4x2=+-有两个不相等的实数根,(1)求k 的取值X 围;(2)如果k 是符合条件的最大整数,且关于x 的方程0k x 4x 2=+-与01mx x 2=--有一个相同的根,求此时m 的值.18.解:(1)0k 4)4(2>--=∆解得 .4k <……………………………………………………………………………….1分 (2)依题意,得 .3k =.........................................................................................................2分把3k =代入方程0k x 4x 2=+-, 得 .0342=+-x x解这个方程,得 3x =或1x =……………………………………………………………3分当3x =时,有01m 332=--,解得.38m =…………………………………………...4分当1x =时,有01m 12=--,解得 .0m =所以 38m =或.0m =…………………………….……………………………………….5分(燕山)6.某平行四边形的对角线长为x 、y, 一边长为6,则x 与y 的值可能是C A. 4和7 B. 5和7 C. 5和8 D. 4和17。

西城区2010 2011度第一学期初三期末数学试题及答案北区

西城区2010 2011度第一学期初三期末数学试题及答案北区

北京市西城区2010——2011学年度第一学期期末试卷(北区)九年级数学2011.11.本试卷共5页,共五道大题,25道小题,满分120分。

考试时间120分钟。

考生2.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

须3.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

知一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的...2??.1. 抛物线)的对称轴为(2x?1y??2??2x??1x??1xx B.直线 D CA.直线.直线.直线,上,若∠C=15°AB为⊙O的直径,点C在⊙O2. 如图,.)则∠BOC =(D.15°C.30°.A60°B.45°×4的矩形网格中,每格小正方形的边长都3. 如图,在8是1,若△ABC的三个顶点在图中相应的格点上,则).∠ACB的值为(tan112.CB.A. 1 D.22322ky?x??6x?11ya(x?h)?.化成)4.用配方法将的形式为(222x?3)?x?3)y?2?(y?( A .B.222?3)??2y?(x(y?x?6) .C.DCAB的三边分别扩大一倍得到△5.如图,将△ABC 111 P点为位似中心的(顶点均在格点上),若它们是以).点的坐标是(位似图形,则P3)?(4,?3)?3,(?.A. B4)(4)?3,?(?4,?.D C.. 某商店购进一种商品,单价为30元.试销中发现这6x x100?2P?. (元)满足关系:P(件)与每件的销售价种商品每天的销售量200元的利润,根据题意,下面所列方程若商店在试销期间每天销售这种商品获得).正确的是(2002x)?x(10030)(100(x??2x)?200? A. B .200?100)?30)(2(x???(30?x)(1002x)200x C.D.12 (共页西城区九年级数学第一学期期末试卷第1 页)AB相切,=30°,⊙O与如图,△OAB中,OA=OB,∠A7. . 两点,连接CD于C,D切点为E,并分别交OA,OB32 ).的面积等于(若CD 等于,则扇形OCED16248 .πDC.πππB.. A 3333 O为圆心,,点P在以如图,OA=4,线段OA的中点为B8.也落在.当点QOB为半径的圆上运动,PA的中点为Q .)上时,cos∠OQB的值等于(⊙O1121 B.A.C.D.2433二、填空题(本题共16分,每小题分)4 E,D分别交AC,BC于点,DE9. 如图,在△ABC 中,∥AB . CDE,=2CD=3,则△与△CAB的周长比为若AD3cm. 两圆的半径分别为和4cm,若圆心距为5cm,则这两圆的位置关系为.10(2,0) ,以OA,为半径作⊙A11. 如图,平面直角坐标系xOy中,点O P的坐标为菱形,则点若点P,B都在⊙O上,且四边形AOPB.为00???a?bca4?b2;(2(a ≠012.抛物线)满足条件:1));(cy?ax?bx?0a?)与(3x轴有两个交点,且两交点间的距离小于2.以下有四个结论:①;cc0c????c0ab?a?,其中所有正确结论的序号是;④.②;③34题分,第题每小题~175186分)分,第三、解答题(本题共31132??3sin606tan30???cos45 .13.计算:20?3axx?4??x有实数根.的方程.若关于14的取值范围;)求(1a为符合条件的最小整数,求此时方程的根.)若2(aABC°,∠=中,∠△Rt.已知:如图,在15ABCC9060°,=3 AB2=延长线上一点,且CB为,AC=DBD.的长.AD求页第西城区九年级数学第一学期期末试卷2 页)12 (共21,0)(? A.右图为抛物线,的一部分,它经过16cy??x??bx(0,3) 两点.B 1)求抛物线的解析式;(个单位,(2)将此抛物线向左平移3个单位,再向下平移1 求平移后的抛物线的解析式.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B17.的俯角为60°,热气球与高的仰角为45°,看这栋高楼底部C 2 AD楼的水平距离为50m,求这栋楼的高度.1.414(,取 3 1.732)取2.18.对于抛物线3?4x?y?x;,顶点坐标为(1)它与x轴交点的坐标为,与y轴交点的坐标为(2)在坐标系中利用描点法画出此抛物线;x ……y ……的一元二次方程(3)利用以上信息解答下列问题:若关于x72的范围内有x<(t为实数)在<0??tx?4x?31?2.解,则t的取值范围是5分)四、解答题(本题共19分,第20题4分,其余每小题,.已知:如图,在△19ABC中,AB=AC= 5,BC= 8E分别为.=∠CBC,AB边上一点,∠ADED,∽△CAD;BDE (1)求证:△BE的长.2)若CD=2,求(,DE所示摆放在直线l上,=2ABCD20.两个长为2,宽为1的矩形和矩形EFGH如图1???90?0??逆时针绕点E)ABCD将矩形绕点D顺时针旋转角(,将矩形EFGH 旋转相同的角度.的DCEC,点到直线=°2C (1)当两个矩形旋转到顶点,F重合时(如图),∠?;°距离等于,=重合部分为正方形时,EFGH3(2)利用图思考:在旋转的过程中,矩形ABCD和矩形?°.=西城区九年级数学第一学期期末试卷第页)12 (共页321.已知:如图,AB是⊙O的直径,AC是弦,OD⊥AC于. D=∠BFCF,连接BF,CF,∠点E,交⊙O于点O的切线;)求证:AD是⊙(11.,求AD 的长tan2)若AC=8,B =( 2.请阅读下面材料:222c??bxy?ax),yA(x),yB(x)上不同的两点,证明直线0,若是抛物线(a ≠0102x?x21?x. 为此抛物线的对称轴 2 有一种方法证明如下:2c??y?axbx)xA(,y)B(x,y ,证明:∵(a 是抛物线≠0)上不同的两点,01022?,?c?ax?bx y ①?110xx ≠. 且∴?12②2,?c?ax?bx y??202220)?x?x?x)?bxa(( .①-②得2211??0?b?(x?x)(x?x)a .∴2211b?x?x?. ∴21ab2c?bx??yax?x?,(a 又∵抛物线≠0)的对称轴为a2xx?21?x. ∴直线为此抛物线的对称轴22c?bxy?ax?)yNM(x,y)(x,,是抛物线a (1)反之,如果≠ 0)上不同的(2121x?x21xx?x时函数值相等为该抛物线的对称轴,那么自变量取两点,直线,122吗?写出你的猜想,并参考上述方法写出证明过程;..2)利用以上结论解答下面问题:(21??bxy?x 求时的函数值相等,已知二次函数时的函数值与= 4x = 2007当x.= 2012时的函数值x12 (共页西城区九年级数学第一学期期末试卷第4 页)五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)2?(m?1)x?2)x?m?0(m.(其中m为实数)已知关于23. x的一元二次方程(1)若此方程的一个非零实数根为k,①当k = m时,求m的值;15??2kkm(?) 的关系式;②若记y与m为y,求k1<m<2)当2时,判断此方程的实数根的个数并说明理由.(42(其中a ≠c且a ≠0). 24已知抛物线.c)x??(a?cy?ax(1)求此抛物线与x轴的交点坐标;(用a,c的代数式表示)a?c,2)若经过此抛物线顶点A的直线与此抛物线的另一个交点为(k?x?y?)?(c,B a 求此抛物线的解析式;(3)点P在(2)中x轴上方的抛物线上,直线与y轴的交点为C,若k?y??x1,求点P的坐标;POCtantan?POB??4(4)若(2)中的二次函数的自变量x在n≤x<(n为正整数)的范围内取值时,1n?记它的整数函数值的个数为N,则N关于n的函数关系式为. ?角C顺时针旋转=30°.将其绕直角顶点含30°角的直角三角板ABC中,∠A25. ??,??1200??边与AB所在直线交于点(D,过点90°),得到Rt△且≠C'B'AC'AD作DE∥交边于点E,连接BE. ''BA'CB?= °B(1)如图1,当边经过点时,;'BA'(2)在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;1S S=EB为半径作⊙E,当以点=,ADx,△BDE的面积为S,E为圆心,BC)(3 设=1ABC?3C'A E 时,求AD的长,并判断此时直线的位置关系.与⊙西城区九年级数学第一学期期末试卷第 5 页(共12 页)北京市西城区2010 —2011学年度第一学期期末试卷(北区)九年级数学参考答案及评分标准2011.1一、选择题(本题共32分,每小题4分)1 2 3 4 5 6 7 8 题号CAACBBDA答案二、填空题(本题共16分,每小题4分)3(?1,3)(?1,?3).(每个,相交.10. . 11.2分)9.512.②,④.(写对一个给2分,每写一个错误答案扣1分,最低0分不倒扣分)三、解答题(本题共31分,第13~17题每小题5分,第18题6分)230??3sin60?6tan?cos45?13.解:332 2……………………………………………………………3 分?3?)?6?(?32232?2??2212. ……………………………………………………………………………5分??222?4(3?a??4)?4?4a.……………………………………………………1.解:14(1)分∵该方程有实数根,4?4a≥0.…………………………………………………………………2∴分?1.……………………………………………………………………≥3分解得a?1.…………………………………4分2)当a为符合条件的最小整数时,a =(2?4x?4?x0x?x??2.…………………,方程的根为此时方程化为5分213 AC=,90°,∠ABC=60°,Rt15.解:在△ABC中,∠C=AC,BC=1.……………………∴2分2?AB?sin60?1图∵D为CB延长线上一点,BD=2AB ,∴BD=4,CD=5.…………………………………………………………………4分22?27?ACAD?CD.……………………………………………………5分∴(?1,0)(0,3)两点,)∵抛物线经过A,B16.解:(1?1?b?c?0,?……………………………………………………………1分∴?c?3.?b?2,?…………………………………………………………………2分解得?3.c??2.……………………………………3 抛物线的解析式为分∴3?y?x?2x?西城区九年级数学第一学期期末试卷第6 页(共12 页)2(1,4) 的顶点坐标为2)∵抛物线,(3??2y??xx2,3)(?∴平移后的抛物线的顶点坐标为.221x?x????(x?2)4?3?y 5分.…………∴平移后的抛物线的解析式为,BDA=90°,∠BAD=45°17.解:在Rt△ABD中,∠…………………………………………2分∴BD=AD=50(m).=60°,在Rt△ACD中,∠ADC=90°,∠CAD3?50CD?3AD 4分∴(m) .………………………………35050?136.6?3?50(?1)分(m)=.……5 ∴BC= BD+CD2图.答:这栋楼约高136.6 m(0,3),0),(3,0)(1,顶点坐标为,与y)它与x轴交点的坐标为轴交点的坐标为18.解:(11)(2,?;………………………………………3分)列表:(24 2 3 x 0 1 ……3 0 3 0 -1 y ……分……………………………4 分……………………………5 图象如图3所示.3图8t??1? 6分(3)t的取值范围是.……………………分)4分,其余每小题519四、解答题(本题共分,第20题,AB=AC19.(1)证明:∵分C.……………………………1 ∠B=∠∴,∠CADADB =∠C+∠∵∠ADE+BDE=∠ 4 图,∠C ∠ADE= 分………………………………………………………2∠CAD.∴∠BDE =3分CAD.………………………………………………………∴△BDE∽△ACDB 4分.…………………………………………………………2 ()解:由(1)得?CDBE ,,CD=2= 5AB=AC,BC= 8 ∵6?BC?CDDB?.∴2?CD6DB?.5 ∴分……………………………………………… 2.4?BE??5AC?3 3分;到直线l的距离等于,…………………= 30 °DCE20.解:(1)∠= 60 °,点C?分………………………………………………………………………4(2)= 45 °.,于点EAC1)证明:∵OD⊥21.(90°.=1+∠2∠∴OEA=90°,∠1,,∠BFC=∠D=∵∠∠BFC .OAD =90°,∠90°2∴∠D +∠=西城区九年级数学第一学期期末试卷第7 页(共12 页)5图∴OA⊥AD于点A.………………………1分∵OA是⊙O的半径,∴AD是⊙O的切线.……………………2分解:∵OD⊥AC于点E,AC是⊙O (2)的弦,AC=8,AC∴.………………………………………………………3分4?AE?EC?21∵,B =,tan∠B=∠C21∴在Rt△CEF中,∠CEF=90°,tanC =.2∴EF?EC?tanC?2.OE?r?2.的半径为r,则设⊙O222222AE??OAOE42)??(rr?.,即OAE中,由勾股定理得在Rt△解得r =5.……………………………………………………………………4分AE4∴在Rt△OAE中,.??tan?2OE3420∴分………………………5OAD中,.在Rt△2?OA?tan?5??AD?33xx时函数值相等.……………………………………1分22.解:(1)结论:自变量取,122?bx??axcy)y(x,)M(x,yN上不同的两点,,证明:∵为抛物线21122?,c??bx y?ax ①?111xx.且≠由题意得?122 y?ax?bx?c,②??222??22b?x)a(xx)?(x?x)?y?y?a(x??x)b(x?.①-②,得2112112212……………………………………………………………2分x?x2?bx??axcy(a ≠0)的对称轴,∵直线是抛物线21?x2x?xb. ∴21???x22ab ∴.?x??x???b0?x)?(xx)?a(x?yy?y?y.………………∴3分,即21212121(阅卷说明:其他代21a数证明方法相应给分;直接利用抛物线的对称性而没有用代数方法进行证明的不给分)2?bxx?1y?当x = 4 (2)∵二次函数时的函数值与x = 2007 时的函数值相等,201121bxxy???.的对称轴为直线由阅读材料可知二次函数∴?x22011b2011?b?,∴ .??222?2011x?x?1y. …………………………………4二次函数的解析式为∴分西城区九年级数学第一学期期末试卷第8 页(共12 页)20112012?(?1),∵?22x??1时的函数值相等x = 2012的函数值与. 由(1)知,当2?2011?(?1)?1(?1)?20111?,当∵x =时的函数值为∴当x = 2012时的函数值为2011. …………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)2?(m?1)x?(m?2)xm?0的实数根,为1)∵k23.解:(2?(m?1)k?m?2)km?0(.※…………………………………………1∴分①当k = m时,∵k为非零实数根,(m?2)m?(m?1)?1?0.,得0,方程※两边都除以m∴m ≠2?3m?2m?0.整理,得解得,. ………………………………………………………2分2m?m?1212?(m?1)x?m?0x(m?2)是关于∵x的一元二次方程,∴m ≠2.∴m= 1.……………………………………………………………………3分(阅卷说明:写对m= 1,但多出其他错误答案扣1分)②∵k为原方程的非零实数根,m.…………………4分将方程※两边都除以k,得∴01)??(m?2)k?(m?k1 . 整理,得1??2k?mm(k?)k1 5分.∴……………………………………………4?)y?m(k??2k?5?mk22.………6分(2)解法一:1m(m?2)?2)??3m?6m?1??3(??[?m?1)](?4mm?1当<m<2时,m>0,<0. 2m?4∴>0,>1>0,Δ>0.1?3m(m?2)?2)?m(m?31∴当<m<2时,此方程有两个不相等的实数根.……………7分412?(m?1)x(m?2)x?my?的图象,时,函数m<2 解法二:直接分析<4∵该函数的图象为抛物线,开口向下,与y轴正半轴相交,∴该抛物线必与x轴有两个不同交点. …………………………6分1∴当<m<2时,此方程有两个不相等的实数根.……………7分4222.…………6分解法三:4m16m???3(?1)?m?2)mm1)]m???[(??4(??3?西城区九年级数学第一学期期末试卷第9 页(共12 页)2关于m的图象可知,(如图结合6)4???3(m?1)?137当<m≤1时,<≤4;?4164.时,1<<m当1<<2?1.>0m<2时,∴当<?41.2时,此方程有两个不相等的实数根当<m<∴4 …………………………………………7分6图2的方程轴交点的横坐标是关于x)抛物线与x24.解:(1c(a?c)x?y?ax?2)的解.a ≠c(其中a ≠0,0axa?(?c)x?c?c. …………………………………………………………1分解得,1x??x12ac(1,0),.………………………………2 抛物线与x轴交点的坐标为分∴,0)(a2)c(a?a?c2.的顶点A的坐标为(2)抛物线c?c)xy?ax?(a?),?(a42aa?c ,经过此抛物线顶点A的直线与此抛物线的另一个交点为∵k?x?y?)c(,?B a①2?cac)?a(?,????k ?a24a?c?a?②,???k ?c?? a ?ca?a?c?③2.?cc)?(a?)?a ?c?(?aa?由③得c=0.……………………………………………………………………3分a1?,??k???将其代入①、②得24??.? 0?1?k?解得.2?a?2.……………………………………4所求抛物线的解析式为分∴x?y??2x2(3)作PE⊥x轴于点E,PF⊥y轴于点F.(如图7)112的顶点A的坐标抛物线,)(,xx?2y??222(1,0)(0,1). C的坐标为点B的坐标为,点(m,n).设点P的坐标为2上,轴上方的抛物线点P在x∵xx2?y??2图712<1,.<,且∴0m m22n??m??n0?2西城区九年级数学第一学期期末试卷第10 页(共12 页)PEnPFm,∴.?POC?tan?POB??tan?nOEmOF1 ∵,POC?tan?tan?POB422n?m4.∴n2??m分………………………………………………或5(舍去).解得m=2n,22. ,得将m=2n代入02mn8n??n??2m3?3.(舍去)解得,0?n?n2183?m?2n. ∴433)(, . 的坐标为…………………………………………………………6分∴点P84 分………………………………………………7 (4)N关于n的函数关系式为N=4n .2为正整数)的范围内取n<(说明:二次函数在的自变量xn≤x1n?x2x2?y??的增大而减小,随x 值,此时y22≤∴,<y n?2nn?2n?2?2222.,…其中的整数有,n?2n??2n??2n2?2n?1?2n222.n4n)2(?n??N?(?2n2?2n)??60 °;…………………………………………分边经过点25.(1)当B时,1= 'BA'=2;m,点D在AB边上时,(2)猜想:①如图8.=4AB,点D在的延长线上时,m ②如图9(阅卷说明:为与后边证明不重复给分,猜想结论不设给分点)??0??90?.)在AB边上(如图8时,点D证明:①当?、的取值范围不扣分)②两种情况没写(阅卷说明:①DE∥,∵''BACECD .∴???CBCA.ACD=,∠∠BCE,由旋转性质可知,CA =CB= ''CBCACECD ∴.?CBCA CBE.……………2分△∴CAD∽△.∠A =∠30°CBE=∴8图CBD=60°,D∵点在AB边上,∠CBE2??CBD?分,即m∴=2. ………………………………………3???12090??.的延长线上(如图在AB9)时,点D当②.∠CBE=30°A =与①同理可得∠??180??CBA?120?CBD?的延长线上,,ABD∵点在CBE?4?CBD? 4m,即=4. ∴……………………………………分.)问用四点共圆方法证明的扣1分)2(阅卷说明:第(BC=1,,A90°中,∠△)解:在(3RtABCACB=,∠=30°(共西城区九年级数学第一学期期末试卷12 页)11 第页9图33?AC. ,,∴AB = 2 ?S ABC 2BEAD. CBE 得由△CAD∽△?BCAC ,=x ∵AD3BEx,. ∴?BEx?313x?AD?2?BD?AB ,,∠DBE=90°.①当点D在AB边上时,AD=x2x3??3x2113x.此时,??S?Sx)?BD??BE?(2BDE 62321.23x2?3x3?时,S = 当?S ABC?66320?x?x1?2 .整理,得10图1?x?x分,即AD 解得=1.…………………521).CBE(如图1060°,∠BCE=30°=∠此时D为AB中点,∠DCB=.EC = EB∴边上,,点E在∵'CB?'?90?A'CB.EB等于⊙E的半径圆心E到的距离EC ∴CA'C'A 分…………………………………………………6E相切∴直线.与⊙2??xBD .9=x,)DBE=90°.(如图,∠②当点D在AB的延长线上时,AD.??S?S2)?x?BD?BE?(BDE 62322x23x3?113x1. =时,当S ?S ABC?66320??1x?2x 整理,得.23233xx?2???12x?x1.解得,(负值,舍去)212?1+AD7分即.………………………………………………………………??????12090=30°,,而,∠CBE此时∠BCE=.BCE ∠CBE<∠∴.的半径EBEC小于⊙E的距离<∴ECEB,即圆心E到CA'C'A分8.∴直线……………………………………………………相交与⊙E西城区九年级数学第一学期期末试卷第12 页(共12 页)。

北京市西城区2011-2012学年度初三数学第一学期期末试题及答案

北京市西城区2011-2012学年度初三数学第一学期期末试题及答案

北京市西城区2011—2012学年度第一学期期末试卷(北区)九年级数学 2012.1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.抛物线2(1)1y x =-+的顶点坐标为A .(1,1)B .(1,1)-C .(1,1)-D .(1,1)--2.若相交两圆的半径分别为4和7,则它们的圆心距可能是 A .2 B .3C . 6D .113.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为A .5B 5C .12D .24.如图,在⊙O 中,直径AB ⊥弦CD 于E ,连接BD ,若∠D =30°, BD =2,则AE 的长为A .2B .3C .4D .55.若正六边形的边长等于4,则它的面积等于A .B .C .D .6.如图,以点D 为位似中心,作△ABC 的一个位似三 角形A 1B 1C 1,A ,B ,C 的对应点分别为A 1,B 1,C 1, DA 1与DA 的比值为k ,若两个三角形的顶点及点D 均在如图所示的格点上,则k 的值和点C 1的坐标分 别为A .2,(2,8)B .4,(2,8)C .2,(2,4)D .2,(4,4)7.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)-,对称轴为1x =,则下列结论中正确的是A .0>aB .当1>x 时,y 随x 的增大而增大C .0<cD .3x =是一元二次方程20ax bx c ++=的一个根8.如图,在平面直角坐标系xOy 中,(2,0)A ,(0,2)B ,⊙C 的圆 心为点(1,0)C -,半径为1.若D 是⊙C 上的一个动点,线段 DA 与y 轴交于点E ,则△ABE 面积的最大值是 A .2 B . 83C .22+ D .22-二、填空题(本题共16分,每小题4分)9.如图,⊙O 是△ABC 的外接圆,若∠OCB =40°,则∠A= °.10.将抛物线2y x =先向下平移1个单位长度后,再向右平移1个单位长度,所得抛物线的解析式是 .11.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4 .以斜边AB 的中点D 为旋转中心,把△ABC 按逆时针方向旋转α角 (0120α︒<<︒),当点A 的对应点与点C 重合时,B ,C 两点 的对应点分别记为E ,F ,EF 与AB 的交点为G ,此时α等于 ° ,△DEG 的面积为 .12.已知二次函数212y x x =-+,(1)它的最大值为 ;(2)若存在实数m ,n 使得当自变量x 的取值范围是m ≤x ≤n 时,函数值y 的取值范围恰好是3m ≤y ≤3n ,则m= ,n= .三、解答题(本题共30分,每小题5分)13.计算:2cos 30602sin 45︒+︒-︒.14.已知关于x 的方程22230x x k -+-=有两个不相等的实数根. (1)求k 的取值范围;(2)若k 为符合条件的最大整数,求此时方程的根.15.已知抛物线245y x x =+-.(1)直接写出它与x 轴、y 轴的交点的坐标;(2)用配方法将245y x x =+-化成2()y a x h k =-+的形式.16.已知:如图,在菱形ABCD 中,E 为BC 边上一点,∠AED =∠B .(1)求证:△ABE ∽△DEA ;(2)若AB =4,求AE DE ⋅的值.17.学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为36米的篱笆恰好围成(如图所示).设矩形 的一边AB 的长为x 米(要求AB <AD ),矩形ABCD 的面 积为S 平方米.(1)求S 与x 之间的函数关系式,并直接写出自变量x 的取值范围; (2)要想使花圃的面积最大,AB 边的长应为多少米?18.如图,在Rt △ABC 中,90C ∠=︒,AB 的垂直平分线与BC ,AB 的交点分别为D ,E .(1)若AD =10,4sin5ADC∠=,求AC 的长和tan B 的值;(2)若AD=1,ADC ∠=α,参考(1)的计算过程直接写 出tan 2α的值(用sin α和cos α的值表示).四、解答题(本题共20分,每小题5分)19.如图所示,在平面直角坐标系xOy 中,正方形PABC 的边长为1,将其沿x 轴的正方向连续滚动,即先以顶点A 为旋转中心将正方形PABC 顺时针旋转90°得到第二个正方形,再以顶点D 为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n 个正方形.设滚动过程中的点P 的坐标为(,)x y .(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P 的坐标; (2)画出点(,)P x y 运动的曲线(0≤x ≤4),并直接写出该曲线与x 轴所围成区域的面积.20.已知函数2y x bx c =++(x ≥ 0),满足当x =1时,1y =-,且当x = 0与x =4时的函数值相等.(1)求函数2y x bx c =++(x ≥ 0)的解析式并画出它的 图象(不要求列表);(2)若()f x 表示自变量x 相对应的函数值,且2 (0),()2 (0),x bx c x f x x ⎧++≥=⎨-<⎩又已知关于x 的方程()f x x k =+有三个不相等的实数根,请利用图象直接写出实数k 的取值范围.21.已知:如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线与 ⊙O 的交点为D ,DE ⊥AC ,与AC 的延长线交于点E . (1)求证:直线DE 是⊙O 的切线; (2)若OE 与AD 交于点F ,4cos 5BAC ∠=,求D F A F的值.22.阅读下列材料:题目:已知实数a ,x 满足a >2且x >2,试判断ax 与a x +的大小关系,并加以说明. 思路:可用“求差法”比较两个数的大小,先列出ax 与a x +的差()y ax a x =-+,再 说明y 的符号即可.现给出如下利用函数解决问题的方法:简解:可将y 的代数式整理成(1)y a x a =--,要判断y 的符号可借助函数(1)y a x a =--的图象和性质解决.参考以上解题思路解决以下问题:已知a ,b ,c 都是非负数,a <5,且 2220a a b c ---=,2230a b c +-+=. (1)分别用含a 的代数式表示4b ,4c ; (2)说明a ,b ,c 之间的大小关系.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知抛物线2(2)2y kx k x =+--(其中0k >).(1)求该抛物线与x 轴的交点坐标及顶点坐标(可以用含k 的代数式表示); (2)若记该抛物线的顶点坐标为(,)P m n ,直接写出n 的最小值; (3)将该抛物线先向右平移12个单位长度,再向上平移1k个单位长度,随着k 的变化,平移后的抛物线的顶点都在某个新函数的图象上,求这个新函数的解析式(不要求写自变量的取值范围).24.已知:如图,正方形ABCD 的边长为a ,BM ,DN 分别平分正方形的两个外角,且满足 45M AN ∠=︒,连结MC ,NC ,MN .(1)填空:与△ABM 相似的三角形是△ ,BM D N ⋅= ;(用含a 的代数式表示)(2)求M C N ∠的度数;(3)猜想线段BM ,DN 和MN 之间的等量关系并证明你的结论.25.已知:在如图1所示的平面直角坐标系xOy中,A,C两点的坐标分别为(2,3)A,C n-(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC(,3)的边上依次沿O—A—B—C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.(1)结合以上信息及图2填空:图2中的m= ;(2)求B,C两点的坐标及图2中OF的长;(3)在图1中,当动点P恰为经过O,B两点的抛物线W的顶点时,①求此抛物线W的解析式;②若点Q在直线1y=-上方的抛物线W上,坐标平面内另有一点R,满足以B,P,Q,R四点为顶点的四边形是菱形,求点Q的坐标.北京市西城区2011 — 2012学年度第一学期期末试卷(北区)九年级数学参考答案及评分标准 2012.1说明:第10题写成2(1)1y x =--不扣分;第11题每空各2分;第12题第(1)问2分, 第(2)问每空各1分.三、解答题(本题共30分,每小题5分)13.解:原式= 2222+-⨯ …………………………………………………3分= 22. ……………………………………………………………………5分14.解:(1)2(2)4(23)8(2)k k ∆=---=-. ……………………………………………1分∵ 该方程有两个不相等的实数根,∴ 8(2)k ->0.……………………………………………………………… 2分 解得2k <.…………………………………………………………………… 3分 (2)当k 为符合条件的最大整数时,1k =.…………………………………… 4分此时方程化为2210x x --=,方程的根为11x =+21x =-.………5分15. 解:(1)抛物线与x 轴的交点的坐标为(5,0) (1,0)-和. ………………………2分抛物线与y 轴的交点的坐标为(05)-,. …………………………………3分(2)245y x x =+-2(44)9x x =++-…………………………………………………………4分2(2)9x =+-. …………………………………………………………5分 16.(1)证明:如图1.∵ 四边形ABCD 是菱形,∴ AD ∥BC .∴ 12∠=∠. …………………………2分又∵ ∠B =∠AED , ∴ △ABE ∽△DEA .…………………3分(2)解:∵ △ABE ∽△DEA ,∴AE AB D AD E=.…………………………………………………………………4分∴ AE DE AB DA ⋅=⋅.∵ 四边形ABCD 是菱形,AB = 4, ∴ AB =DA = 4.∴ 216AE DE AB ⋅==.………………………………………………………5分17.解:(1)∵ 四边形ABCD 是矩形,AB 的长为x 米, ∴ CD=AB=x (米).∵ 矩形除AD 边外的三边总长为36米,∴ 362BC x =-(米).………………………………………………………1分 ∴ 2(362)236S x x x x =-=-+. ……………………………………………3分 自变量x 的取值范围是012x <<. …………………………………………4分 (说明:由0362x x <<-可得012x <<.)(2)∵222362(9)162S x x x =-+=--+,且9x =在012x <<的范围内 ,∴ 当9x =时,S 取最大值.即AB 边的长为9米时,花圃的面积最大.…………………………………5分18.解:(1)在Rt △ACD 中,90C∠=︒,AD =10,4sin AD C ∠=,(如图2)∴ 4sin 1085AC AD AD C =⋅∠=⨯=.……1分图13c o s 1065C D A D A D C =⋅∠=⨯=.∵ DE 垂直平分AB ,∴ 10BD AD ==.……………………………………………………………2分 ∴ 16BC C D BD =+=.………………………………………………………3分 在Rt △ABC 中,90C ∠=︒, ∴ 81tan 162AC B BC===. ……………………………………………………4分(2)sin tan21cos ααα=+.(写成1cos sin αα-也可) ……………………………………5分四、解答题(本题共20分,每小题5分)19.解:(1)第三个和第四个正方形的位置如图3所示.…………………………………………………2分 第三个正方形中的点P 的坐标为(3,1).……3分 (2)点(,)P x y 运动的曲线(0≤x ≤4)如图3所示.…………………………………………………4分它与x 轴所围成区域的面积等于1π+. ……………………………………5分20.解:(1)∵ 函数2y x bx c =++(x ≥0)满足当x =1时,1y =-, 且当x = 0与x =4时的函数值相等,∴ 11,2.2b c b ++=-⎧⎪⎨-=⎪⎩解得 4b =-,2c =.…………………………………………………………2分 ∴ 所求的函数解析式为242y x x =-+(x ≥0). …………………………3分 它的函数图象如图4所示.……………………………………………………4分(2)k 的取值范围是22k -<≤.(如图5)……………………………………………5分 21.(1)证明:连接OD .(如图6) ∵ AD 平分∠BAC ,∴ ∠1=∠2.…………………………………………………………………1分 ∵ OA =OD , ∴ ∠1=∠3. ∴ ∠2=∠3.∴ OD ∥AE .∵ DE ⊥AC , ∴ ∠AED =90°.∴ 18090O D E AED ∠=︒-∠=︒.…………2分 ∴ DE ⊥OD . ∵ OD 是⊙O 的半径,∴ DE 是⊙O 的切线.………………………3分(2)解:作OG ⊥AE 于点G .(如图6) ∴ ∠OGE =90°.∴ ∠ODE =∠DEG =∠OGE =90°. ∴ 四边形OGED 是矩形.∴ OD =GE .……………………………………………………………………4分 在Rt △OAG 中,∠OGA =90°,4cos 5BAC ∠=,设AG =4k ,则OA =5k .∴ GE =OD =5k . ∴ AE =AG +GE =9k . ∵ OD ∥GE , ∴ △ODF ∽△EAF . ∴59D F O D AFAE==.……………………………………………………………5分22.解:(1)∵ 2220a a b c ---=,2230a b c +-+=,∴ 222,22 3.b c a a c b a ⎧+=-⎨-=+⎩消去b 并整理,得 243c a =+.……………1分 消去c 并整理,得2423b a a =--. ………2分(2)∵ 22423(3)(1)(1)4b a a a a a =--=-+=--,将4b 看成a 的函数,由函数24(1)4b a =--的性质结合它的图象(如图7所示),以及a ,b 均为非负数得a ≥3.又 ∵ a <5,∴ 3≤a <5.……………………………………………………………………3分 ∵ 224()63(3)12b a a a a -=--=--,将4()b a -看成a 的函数,由函数24()(3)12b a a -=--的性质结合它的图象(如图8所示)可知,当3≤a <5时,4()0b a -<. ∴ b <a . ……………………………………………4分∵ 24()43(1)(3)c a a a a a -=-+=--,a ≥3, ∴ 4()c a -≥0.∴ c ≥a .∴ b <a ≤c . ………………………………………5分阅卷说明:“b <a ,b <c ,a ≤c ”得到第4分,全写对得到5分.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)令0y =,则 2(2)20kx k x +--=. 整理,得 (1)(2)0x kx +-=. 解得 11x =-,22x k=.∴ 该抛物线与x 轴的交点坐标为(1,0)-,2(,0)k. ………………………2分抛物线2(2)2y kx k x =+--的顶点坐标为2244(,)24k k k kk-++-. ………3分(2)|n |的最小值为 2 . …………………………………………………………4分 (3)平移后抛物线的顶点坐标为214(,)4k k k k+-.…………………………………5分由1,14xkky⎧=⎪⎪⎨⎪=--⎪⎩可得114yx=--.∴所求新函数的解析式为114yx=--.…………………………………7分24.解:(1)与△ABM相似的三角形是△NDA,2BM DN a⋅=;……………………2分(2)由(1)△ABM∽△NDA可得BM ABD A N D=.(如图9)………………3分∵四边形ABCD是正方形,∴AB=DC,DA= BC,90ABC BC D AD C BAD∠=∠=∠=∠=︒.∴BM D C BC N D=.∵BM,DN分别平分正方形ABCD的两个外角,∴45C BM ND C∠=∠=︒.∴△BCM∽△DNC.…………………………………………………………4分∴BC M D N C∠=∠.∴360M C N BC D BC M D C N∠=︒-∠-∠-∠270()270(180)D N C D C N C D N=︒-∠+∠=︒-︒-∠=︒.………5分(3)线段BM,DN和MN之间的等量关系是222BM DN M N+=.(只猜想答案不证明不给分)证法一:如图9,将△AND绕点A顺时针旋转90°得到△ABF,连接MF.则△ABF≌△ADN.…………………………………………………6分∴13∠=∠,AF=AN,BF=DN,AFB AN D∠=∠.∴122345M AF BAD M AN∠=∠+∠=∠+∠=∠-∠=︒.∴M AF M AN∠=∠.又∵AM= AM,∴△AMF≌△AMN.∴MF=MN.可得(1)45(3)4590MBF AFB AND∠=∠+∠+︒=∠+∠+︒=︒.∴在Rt△BMF中,222BM BF FM+=.∴222BM DN MN+=.…………………………………………7分证法二:连接BD ,作ME ∥BD ,与DN 交于点E .(如图10)可知45BD C ∠=︒,90BD N ∠=︒.……………………………………6分 ∵ ME ∥BD ,∴ 18090M EN BD N ∠=︒-∠=︒. ∵ 90D BM D BC C BM ∠=∠+∠=︒, ∴ 四边形BDEM 是矩形. ∴ ME =BD ,BM =DE .在Rt △MEN 中,90M EN ∠=︒,∴ 22222()MN ME EN BD DN DE =+=+-2222)()2()DN BM a DN BM =+-=+-2222()BM DN DN BM BMDN =⋅+-=+.……………………7分25.解:(1)图2中的m .……………………………………………………………1分(2)∵ 图11(原题图2)中四边形ODEF 是等腰梯形,点D 的坐标为(,12)D m ,∴ 12E D y y ==,此时原题图1中点P 运动到与点B 重合, ∵ 点B 在x 轴的正半轴上,∴ 1131222BO C C S O B y O B ∆=⨯⨯=⨯⨯=.解得 8O B =,点B 的坐标为(8,0). ………………………………………2分此时作AM ⊥OB 于点M ,CN ⊥OB 于点N .(如图12).∵ 点C 的坐标为(,3)C n -,∴ 点C 在直线3y =-上.又由图11(原题图2)中四边形ODEF 是等腰梯形可知图12中的点C 在过点O与AB平行的直线l上,∴点C是直线3y=-与直线l的交点,且ABM C O N∠=∠.又∵3A Cy y==,即AM= CN,可得△ABM≌△CON.∴ON=BM=6,点C的坐标为(6,3)C-.……………………………………3分∵图12中AB==∴图11中DE=,2DO F x D E=+=…………………4分(3)①P恰为经过O,B抛物线的顶点时,作于点G.(如图13)∵O,B两点的坐标分别为(0,0)O,(8,0)B,∴由抛物线的对称性可知点P的横坐标为4,即OG=BG=4.由3tan6AM PGABMBM BG∠===可得PG=2.∴点P的坐标为(4,2)P.………………5分设抛物线W的解析式为(8)y ax x=-(a≠0).∵抛物线过点(4,2)P,∴4(48)2a-=.解得18a=-.∴抛物线W的解析式为218y x x=-+.…………………………………6分②如图14.i)当BP为以B,P,Q,R为顶点的菱形的边时,∵点Q在直线1y=-上方的抛物线W上,点P为抛物线W的顶点,结合抛物线的对称性可知点Q只有一种情况,点Q与原点重合,其坐标为1(0,0)Q.……………………………………7分ii)当BP为以B,P,Q,R为顶点的菱形的对角线时,图13可知BP 的中点的坐标为(6,1),BP 的中垂线的解析式为211y x =-. ∴ 点2Q 的横坐标是方程212118x x x -+=-的解.将该方程整理得 28880x x +-=.解得4x =-±.由点Q 在直线1y =-上方的抛物线W 上,结合图14可知点2Q 的横坐标为4.∴ 点2Q 的坐标是24,19)Q . …………………………8分综上所述,符合题意的点Q 的坐标是1(0,0)Q ,24,19)Q -.。

2011西城二模初三数学试卷+答案

2011西城二模初三数学试卷+答案

一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.3-的倒数是A .3B .13-C .3-D .132.2010年,我国国内生产总值(GDP )为58 786亿美元,超过日本,成为世界第二大经济体.58 786用科学记数法表示为A .45.878610⨯B .55.878610⨯C .358.78610⨯D .50.5878610⨯3.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,若圆心距O 1O 2=2 cm ,则这两圆的位置关系是 A .内含 B .外切 C .相交 D .内切4.若一个多边形的内角和是它的外角和的2倍,则这个多边形是 A .四边形 B .五边形 C .六边形 D .八边形5.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是 A .平均数 B .众数C .中位数D .方差6.小明的爷爷每天坚持体育锻炼,一天他步行到离家较远的公园,打了一会儿太极拳后跑步回家.下面的四个函数图象中,能大致反映当天小明的爷爷离家的距离y 与时间x 的函数关系的是7.下图的长方体是由A ,B ,C ,D 四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是8.在平面直角坐标系xOy 中,点P 在由直线3+-=x y,直线4y =和直线1x =所围成的区域内或其边界上,点Q 在x 轴上,若点R 的坐标为(2,2)R ,则QP QR +的最小值为A B .25+ C . D .4二、填空题(本题共16分,每小题4分) 9.分解因式 m 3– 4m = . 10.函数21-=x y 中,自变量x 的取值范围是 .11.如图,两同心圆的圆心为O ,大圆的弦AB 与小圆相切,切点为P .若两圆的半径分别为2和1,则弦长AB =;若用阴影部分围成一个圆锥(OA 与OB 重合),则该圆锥的底面半径长为 . 12.对于每个正整数n ,抛物线2211(1)(1)n n n n n yx x +++=-+与x 轴交于A n ,B n 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);11222011A B A B A B +++ 的值为 .三、解答题(本题共30分,每小题5分) 13.计算:2273181---⎪⎭⎫ ⎝⎛--- .14.已知:如图,直线AB 同侧两点C ,D 满足,,DBC CAD ∠=∠AC =BD ,BC 与AD 相交于点E .求证:AE =BE .15.已知:关于x 的一元二次方程2420x x k ++=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最大整数值时,用公式法求该方程的解.16.已知 122=+xy x ,215xy y +=,求代数式()22()x y y x y +-+的值.17.如图,一次函数y kx b =+()0≠k 的图象与反比例函数 m y x=()0≠m 的图象交于(3,1)A -,(2,)B n 两点.(1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积.18.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有人;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树棵.(保留整数)四、解答题(本题共20分,每小题5分)19.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.20.如图,在梯形ABC D中,AB∥D C,5==,AD BCAB=,4C D=,连结并延长BD到E,使DE BD10=,作EF AB⊥,交BA的延长线于点F.(1)求tan ABD∠的值;(2)求AF的长.21.已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连结AB.(1)求证:2=⋅;A B A E A D(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.22.如图1,若将△AOB绕点O逆时针旋转180°得到△COD,则△AOB≌△COD.此时,我们称△AOB与△COD为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC是锐角三角形且AC>AB,点E为AC中点,F为BC上一点且BF≠FC(F 不与B,C重合),沿EF将其剪开,得到的两块图形恰能拼成一个梯形.请分别按下列要求用直线将图2中的△ABC重新进行分割,画出分割线及拼接后的图形.(1)在图3中将△ABC沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;(2)在图4中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;(3)在图5中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的一块为钝角三角形.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.阅读下列材料:若关于x 的一元二次方程20ax bx c ++=()0≠a 的两个实数根分别为x 1,x 2,则12b x x a+=-,12c x x a⋅=.解决下列问题:已知:a ,b ,c 均为非零实数,且a >b >c ,关于x 的一元二次方程20ax bx c ++=有两个实数根,其中一根为2.(1)填空:42a b c ++ 0,a 0,c 0;(填“>”,“<”或“=”)(2)利用阅读材料中的结论直接写出方程20ax bx c ++=的另一个实数根(用含a ,c 的代数式表示);(3)若实数m 使代数式2am bm c ++的值小于0,问:当x =5m +时,代数式2ax bx c ++的值是否为正数?写出你的结论并说明理由.24.如图1,在Rt △ABC 中,∠C =90°,AC =9cm ,BC =12cm .在Rt △DEF 中,∠DFE =90°,EF =6cm ,DF =8cm .E ,F 两点在BC 边上,DE ,DF 两边分别与AB 边交于G ,H 两点.现固定△ABC 不动,△DEF 从点F 与点B 重合的位置出发,沿BC 以1cm/s 的速度向点C 运动,点P从点F 出发,在折线FD —DE 上以2cm/s 的速度向点E 运动.△DEF 与点P 同时出发,当点E 到达点C 时,△DEF 和点P 同时停止运动.设运动的时间是t (单位:s ),t >0. (1)当t =2时,PH= cm ,DG = cm ; (2)t 为多少秒时△PDE 为等腰三角形?请说明理由; (3)t 为多少秒时点P 与点G 重合?写出计算过程; (4)求tan ∠PBF 的值(可用含t 的代数式表示).25.如图1,在平面直角坐标系xOy 中,以y 轴正半轴上一点(0,)A m (m 为非零常数)为端点,作与y轴正方向夹角为60°的射线l ,在l 上取点B ,使AB =4k (k 为正整数),并在l 下方作∠ABC =120°,BC=2OA ,线段AB ,OC 的中点分别为D ,E . (1)当m =4,k =1时,直接写出B ,C 两点的坐标;(2)若抛物线2123(2)y x m k k =-++++的顶点恰好为D 点,且DE=析式及此时cos ∠ODE 的值;(3)当k =1时,记线段AB ,OC 的中点分别为D 1,E 1,当k =3时,记线段AB ,OC 的中点分别为D 3,E 3,求直线13E E 的解析式及四边形1331D D E E 的面积(用含m 的代数式表示).一、选择题(本题共32分,每小题4分)13.解:原式=112---……………………………………………………………4分=32-. ……………………………………………………………………5分14.证明: 如图1.在△ACE 和△BDE 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BD AC BED AEC DBE CAE ………………………………3分∴ △ACE ≌△BDE . ……………………………………………………………4分 ∴ AE =BE .………………………………………………………………………5分 15.解:(1)∵ 关于x 的一元二次方程2420x x k ++=有两个不相等的实数根,∴ 16420k ∆=-⨯>. ………………………………………………………1分 解得2k <.……………………………………………………………………2分 (2)∵2k <,∴ 符合条件的最大整数1k =,此时方程为2420x x ++=. ……………3分 ∴ 142a b c ===,,. ∴ 22444128b ac -=-⨯⨯=.………………………………………………4分 代入求根公式2x a=,得22x ==-±.…………5分∴ 1222x x =-+=--.16.解:原式=222222x xy y xy y ++--=22x y -.………………………………………2分 ∵ 122=+xy x ①,152=+y xy ②,∴ ①-②,得223x y -=-. ………………………………………………………4分 ∴ 原式=3-. ………………………………………………………………………5分 17.解:(1)∵ 反比例数m y x=()0≠m 的图象经过(3,1)A -,(2,)B n 两点,(如图2)∴ 313m =-⨯=-,322m n ==-.∴ 反比例函数解析式为3y x=-.………………………1分点B 的坐标为3(2)2B -,.……………………………2分 ∵ 一次函数y kx b =+()0≠k 的图象经过(3,1)A -, 3(2)2B -,两点,∴ 31,32.2k b k b -+=⎧⎪⎨+=-⎪⎩解得 1,21.2k b ⎧=-⎪⎪⎨⎪=-⎪⎩∴ 一次函数的解析式为1122y x =--.……………………………………3分(2)设一次函数1122y x =--的图象与x 轴的交点为C ,则点C 的坐标为(1,0)C -.∴ =AOB ACO COB S S S ∆∆∆+113=11+1222⨯⨯⨯⨯5=4. …………………………5分18.解:(1)50;………………………………………………………………………………1分 (2)………………………………………………………………………………3分 (3)3.………………………………………………………………………………5分 四、解答题(本题共20分,每小题5分)19.解:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆.()62402022800y x x x =+-=+.…………………………………………2分(2)依题意得x -20< x .解得x >10.……………………………………………………………………3分∵ 22800y x =+,y 随着x 的增大而增大,x 为整数,∴ 当x=11时,购车费用最省,为22×11+800=1 042(万元). …………4分 此时需购买大型客车11辆,中型客车9辆.……………………………5分答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元. 20.解:(1)作DM ⊥AB 于点M ,CN ⊥AB 于点N .(如图3)∵ AB ∥D C ,DM ⊥AB ,CN ⊥AB ,∴ ∠DMN =∠CNM =∠MDC =90︒. ∴ 四边形MNCD 是矩形. ∵4C D =,∴ MN =CD = 4.∵ 在梯形ABC D 中,AB ∥D C ,5AD BC ==, ∴ ∠DAB =∠CBA ,DM=CN . ∴ △ADM ≌△BCN . 又∵10AB =,∴ AM =BN =()11(104)322AB M N -=⨯-=.∴ MB =BN +MN =7.……………………………………………………………2分∵ 在Rt △AMD 中,∠AMD =90︒,AD =5,AM =3, ∴4D M ==.∴ 4tan 7D M ABD BM∠==.……………………………………………………3分(2)∵ EF AB ⊥,∴ ∠F =90︒.∵∠DMN =90︒,∴ ∠F =∠DMN .∴ DM ∥EF .∴ △BDM ∽△BEF . ∵ DE BD =,∴12BM BD BFBE==.∴ BF =2BM =14. ……………………………………………………………4分 ∴ AF =BF -AB =14-10=4. …………………………………………………5分21.(1)证明:如图4.∵ 点A 是劣弧BC 的中点,∴ ∠ABC =∠ADB .………………………1分 又∵ ∠BAD =∠EAB ,∴ △ABE ∽△ADB .………………………2分∴AB AD AEAB=.∴ 2A B A E A D =⋅(2)解:∵ AE =2,ED =4,∴()22612AB AE AD AE AE ED =⋅=+=⨯=.∴AB =.………………………………………………………4分∵ BD 为⊙O 的直径, ∴ ∠A =90︒.又∵ DF 是⊙O 的切线,∴ DF ⊥BD.∴ ∠BDF =90︒.在Rt △ABD 中,tan 63A B A D B A D∠===,∴ ∠ADB =30︒.∴ ∠ABC =∠ADB =30︒.∴∠DEF=∠AEB=60︒,903060ED F BD F AD B ∠=∠-∠=︒-︒=︒.∴ ∠F =18060D EF ED F ︒-∠-∠=︒. ∴ △DEF 是等边三角形.∴ EF = DE =4.………………………………………………………………5分22.解:(1)……………………………………………………1分(2)……………………………………………………3分(3)……………………………………………………5分23.解:(1)=,>,<.……………………………………………………………………3分(2)2c a.……………………………………………………………………………4分(3)答:当x =5m +时,代数式2ax bx c ++的值是正数.理由如下:设抛物线2y ax bx c =++(a ≠0),则由题意可知,它经过A (,0)2c a,B (2,0)两点.∵ a >0,c <0,∴ 抛物线2y ax bx c =++开口向上,且2c a<0<2,即点A 在点B 左侧.…………………………………………………………………………5分设点M 的坐标为2(,)M m am bm c ++,点N 的坐标为(5,)N m y +.∵ 代数式2am bm c ++的值小于0,∴ 点M 在抛物线2y ax bx c =++上,且点M ∴ 点M 在x 轴下方的抛物线上.(如图5) ∴ A M B x x x <<,即22c m a<<. ∴5572c m a+<+<,即572N c x a+<<.以下判断52c a+与B x 的大小关系:∵ 42a b c ++=0,a >b ,a >0, ∴ 66(42)(5)(5)202222B c c a c a a b a b x aaaaa+-+-+-=+-===>.∴B x ac >+52.∴ 52N B c x x a>+>.…………………………………………………………6分∵ B ,N 两点都在抛物线的对称轴的右侧,y 随x 的增大而增大, ∴B N y y >,即y >0.∴ 当x =5m +时,代数式2ax bx c ++的值是正数. ………………………7分24.解:(1)52,265.………………………………………………………………………2分(2)只有点P 在DF 边上运动时,△PDE 才能成为等腰三角形,且PD=PE .(如 图6)……………………………………………………………………………3分 ∵ BF=t ,PF=2t ,DF =8,∴ 82PD D F PF t =-=-.在Rt △PEF 中,2222436PE PF EF t =+=+=2PD 即()2228364t t -=+. 解得 78t =.…………………………………4分 ∴ t 为78时△PDE 为等腰三角形.(3)设当△DEF 和点P 运动的时间是t 时,点P 与点G 重合,此时点P 一定在DE 边上,DP=DG . 由已知可得93tan 124AC B BC===,63tan 84EF D D F===.∴.D B ∠=∠∴.90︒=∠=∠BFH DGH∴ 3tan 4FH BF B t =⋅=, 384D H D F F H t =-=-, .5325354438cos +-=⨯⎪⎭⎫ ⎝⎛-=⋅=t t D DH DG ∵ 2D P D F t +=,∴ 28D P t =-.由DP=DG 得3322855t t -=-+.解得 7213t =. …………………………………………………………………5分检验:724613<<,此时点P 在DE 边上.∴ t 的值为7213时,点P 与点G 重合.(4)当0<t ≤4时,点P 在DF 边上运动(如图6),t a n 2PFPBF BF∠==.…………………………………………………………………………………6分 当4< t ≤6时,点P 在DE 边上运动(如图7),作PS ⊥BC 于S ,则tan PS PBF BS∠=.可得10(28)182PE DE DP t t =-=--=-. 此时()5725821854cos cos +-=-=⋅=∠⋅=t t D PE EPS PE PS , ()5545621853sin sin +-=-=⋅=∠⋅=t t D PE EPS PE ES .524511554566-=⎪⎭⎫ ⎝⎛+--+=-+=t t t ES EF BF BS .∴ 728tan 1124PS t PBF BSt -∠==-.………………………………………………7分综上所述,2 (04),tan 728 (46).1124t PBF t t t <≤⎧⎪∠=-⎨≤≤⎪-⎩(以上时间单位均为s ,线段长度单位均为cm )25.解:(1)B1分 C点的坐标为2).………………………………………………………3分 (2)当AB =4k ,(0,)A m 时,OA =m ,与(1)同理可得B点的坐标为,2)B k m +, C点的坐标为,2)C k +.如图8,过点B 作y 轴的垂线,垂足为F ,过点C 作x 轴的垂线,垂足为G , 两条垂线的交点为H ,作DM ⊥FH 于点M ,EN ⊥OG 于点N . 由三角形中位线的性质可得点D的坐标为,)D k m +, 点E的坐标为)2E k +.由勾股定理得2D E ==.∵DE= m=4. ……………………………4分 ∵ D恰为抛物线211)23(2)k y x x m k k +=-++++的顶点,它的顶点横坐标为)3,∴)3=.解得k=1.此时抛物线的解析式21433y x x =-++. …………………………………5分此时D ,E两点的坐标分别为5)D,E . ∴OD =OE = ∴ OD=OE=DE .∴ 此时△ODE 为等边三角形,cos ∠ODE= cos60°=12.……………………6分(3)E 1,E 3点的坐标分别为12E +,E33)2+.设直线13E E 的解析式为y ax b =+(a ≠0).则1,2 3.2a b a b ⎧++=⎪⎪⎨⎪++=⎪⎩ 解得3.2a m b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴直线13E E的解析式为32m y =-.………7分可得直线13E E 与y 轴正方向的夹角等于60°.∵ 直线13D D ,13E E 与y 轴正方向的夹角都等于60°, ∴ 13D D ∥13E E . ∵ D 1,D 3两点的坐标分别为11)D m +,33)D m +,由勾股定理得13D D =4,13E E =4.∴ 1313D D E E =.∴ 四边形1331D D E E 为平行四边形. 设直线13E E 与y 轴的交点为P ,作AQ ⊥13E E 于Q .(如图9) 可得点P 的坐标为.23,2,0m AP m P =⎪⎭⎫ ⎝⎛-∴.43360sin sin m AP OPQ AP AQ =︒⋅=∠⋅=∴13311344D DE E S D D AQ =⨯=⨯=四边形.…………………………8分。

全国中考数学模拟汇编二 18二次函数的图象和性质

全国中考数学模拟汇编二 18二次函数的图象和性质

全国中考数学模拟汇编二 18二次函数的图象和性质一 选择题1、(2011朝阳区一模) 已知二次函数y=ax 2+bx 的图象经过点A (-1,1),则ab 有 A .最大值 1 B .最大值2 C .最小值0 D .最小值41-考查内容: 二次函数的最值答案:D2、(2011宁波江北模拟) 如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB 以相同间隔0.2米用5根立柱加固,拱高OC 为0.36米,则立柱EF 的长为( ) A .0.4米 B. 0.16米 C. 0.2米 D.0.24米 考查内容: 答案:C3、(2011宁波江北模拟) 如图,抛物线与两坐标轴的交点分别为(-1,0),(2,0),(0,2),则当2y >时,自变量x 的取值范围是( A .102x << B . 01x <<C .112x << D.12x -<<答案:B4. (南京市浦口区2011年中考一模)二次函数c bx ax y ++=2的图象如图所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是( ▲ )A .21y y <B .21y y =C .21y y >D .不能确定答案:C5.(2011番禺区综合训练)二次函数k x x y ++-=22的部分图象如图5所示,则关于x 的一元二次方程022=++-k x x 的一个解31=x ,另一个解=2x (※).(A )1 (B )1- (C )2-(D )0答案:BA O BCE F图56. (2011萝岗区综合测试一)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( ﹡ ).答案:C7. .(2011增城市综合测试)二次函数2)1(2+-=x y 的顶点坐标是( ) A (-1,2) B (1,2) C (2,1) D (2,-1) 答案:B 二 填空题1、(2011名校联合一模)已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部x … -4 -3 -2 -1 0 … y…3-2-5-6-5…则<-2时,的取值范围是 ▲ . 考查内容:二次函数的图像与性质 图表法答案y >-52、(2011广东化州二模) 抛物线2a ay ax -=开口向下,则a=考查内容: 答案:-13、(2011年徐汇区诊断卷) 抛物线22y x =-向左平移2个单位,向上平移1个单位后的抛物线的解析式是 ▲ . 考查内容:答案:1)2(22++-=x y4. (2011年从化市综合测试) 抛物线32+=x y 的顶点坐标是 * . 答案:(0,3)5. ( 2011年南沙区综合测试一)二次函数2)1(2+-=x y 的图象的顶点坐标是 ﹡﹡﹡ .答案: (1,2)6.(南京市雨花台2011年中考一模)将二次函数的图象向右平移1个单位,再向上平移3yxO23个单位可得二次函数22(1)3y x =+-,则原二次函数的表达式为 ▲ . 答案: 2226yx7.(南京市下关区秦淮区沿江区2011年中考一模)2的取值范围是 ▲ .答案:y >-58.(南京市高淳县2011年中考一模)在二次函数y =-x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 、n 的大小关系为 ▲ .答案:m >n三 解答题1.(2011名校联合一模)在直角坐标平面内,二次函数y =ax 2+bx -3(a ≠0)图象的顶点为A (1,-4). (1)求该二次函数关系式;(2)将该二次函数图象向上平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标. 考查内容:二次函数的图像与性质答案:(1)由题意,得⎩⎪⎨⎪⎧-b 2a =1 ①,-4=a +b -3 ②,……………………2分解得⎩⎨⎧a =1 ①,b =-2 ②,所以,所求函数关系式为 y =(x -1)2-4;……………………4分(2)向上平移3个单位.与x 轴的另一个交点坐标为(2,0).………………6分2、(2011朝阳区一模) 已知关于x 的方程 (m -1) x 2- 2x + 1=0有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为非负整数,求抛物线y =(m -1) x 2- 2x + 1的顶点坐标. 考查内容: 一元二次方程和二次函数答案:解:(1)∵方程 (m-1) x 2- 2x + 1=0有两个不相等的实数根,∴()()01422>---=∆m . ……………………………………………… 1分解得m<2. …………………………………………………………………… 2分∴m 的取值范围是m <2且m≠1. …………………………………………… 3分 (2)由(1)且m 为非负整数,∴m=0. ………………………………………………………………………… 4分∴抛物线为y= -x 2- 2x + 1= -(x+1)2+2.∴顶点(-1,2). (5)分3、(2011海淀一模) 已知关于x 的方程2(3)40x m x m --+-=. (1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m 的取值范围;(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.考查内容: 答案:证明:(1)2224(3)4(4)1025(b ac m m m m m ∆=-=---=-+=-所以方程总有两个实数根..…………………………….……………………………2分 解:(2)由(1)2(5)m ∆=-,根据求根公式可知, 方程的两根为:x =即:11x =,24x m =-,由题意,有448m <-<,即812m <<.……………………….……………………………5分(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知抛物线与x 轴的(备图)交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0,4m -), 由题意,可得:14m -=-或44m m -=-,即3m =或4m =.……….……………………………7分4、(2011宁波江北模拟) (7分)已知二次函数2y x bx c =++的图象过点A (-3,0)和点B (1,0),且与y 轴交于点C ,D 点在抛物线上且横坐标是 -2。

北京市西城区2011年初三二模试卷

北京市西城区2011年初三二模试卷

北京市西城区2011年初三二模试卷物 理2011.6一、单项选择题:下列各小题均有四个选项,其中只有一个选项符合题意。

(共24分,每小题2分) 1.下列物理量中,以科学家的名字帕斯卡作为单位的物理量是A .速度B .密度C .功率D .压强2.图1所示的四种现象中,属于光的直线传播的是3.下列四种机器中,可以把机械能转化为电能的是A .发电机B .电视机C .热机D .电暖器4.图2所示的四个实例中,目的是为了增大压强的是5.下列关于物态变化的说法中,正确的是A .水泥加水后搅拌成泥浆是熔化B .冬天,温暖车厢的车窗模糊是因为车外水蒸气液化C .夏天,冰棍儿周围冒“白气”,是汽化现象D .利用干冰人工降雨,干冰升华吸热,水蒸气先凝华后熔化 6.下列估测与实际情况最接近的是A .一瓶500ml 的饮料重约为500NB .物理课本长度约为26cmC .篮球场上篮筐到地面的距离约为10mD .一个苹果的质量约为1.5kg 7.下列说法中正确的是A .温度一定时,横截面积越大,导体的电阻越小B .正电荷移动的方向为电流方向C .家庭电路中电流过大的原因一定是因为短路D .地磁的北极在地理的南极附近图2ABCD纪念碑的基座建的很宽注射器针头做得很尖坦克装有较宽的履带书包带做得较宽 图1A 廊桥在水面出现“倒影” D 通过凸面镜观察路况C 射击瞄准要“三点一线”B 玻璃砖后的笔杆“错位”8.如图3所示的四个实例中,机械能减小的是9.质量相等的水、酒精和煤油,它们放出相等的热量后,降低的温度分别为∆t 水、∆t 酒和∆t 油。

根据右表中的比热容数据,则∆t 水∶∆t 酒∶∆t 油为A .14∶8∶7B .7∶8∶14C .4∶7∶8D .8∶7∶410.如图4所示电路,电源两端电压保持不变。

闭合开关S ,当滑动变阻器的滑片P 向右滑动时,下列说法中正确的是A .电压表V 1示数和电流表A 示数的比值变小B .电压表V 2示数和电流表A 示数的比值变小C .电压表V 1示数变化量和电流表A 示数变化量的比值I U ∆∆1变大D .电压表V 2示数变化量和电流表A 示数变化量的比值I U ∆∆2不变11.如图5所示电路,电源两端电压为9V ,且保持不变。

北京市西城区(南区)2010–2011学年度第二学期期末考试数学试卷(含答案)

北京市西城区(南区)2010–2011学年度第二学期期末考试数学试卷(含答案)

20.(1)解: x2 − 4x − 7 = 0 a = 1, b = −4 , c = −7 , b2 − 4ac = (−4)2 − 4 ×1× (−7) = 44 . -----------------------------------------1 分
A
D
O
B
C
14.点 A(2,3)在反比例函数 y = k 的图象上,当 1≤ x ≤3 时, y 的取值范围是 x
___________________.
15.菱形 ABCD 中,AB=2,∠ABC=60°,顺次连接菱形 ABCD 各边的中点所得四边形的面积为____________.
16.若关于 x 的方程 x2 + mx −12 = 0 的一个根是 4,则 m =_________,此方程的另
一个根是 _________.
17.如图,矩形纸片 ABCD 中,AB=6cm,BC=10cm,点 E A B'
D
在 AB 边上,将△EBC 沿 EC 所在直线折叠,使点 B 落 E
在 AD 边上的点 B′处,则 AE 的长为_________cm.
B
C
18.正方形网格中,每个小正方形的边长为 1.图 1 所示的矩形是由 4 个全等的直角梯形拼接而成的(图
25.已知:如图,一次函数 y = ax + b 的图象与反比例函数 y = k 的图象交于 x
点 A( m,4 )和点 B( − 4,−2 ).
(1)求一次函数 y = ax + b 和反比例函数 y = k 的解析式; x
(2)求△AOB 的面积;
(3)根据图象,直. 接. 写. 出. 不等式
ax
周老师中考资料室 /

2011年全国中考数学模拟汇编二2实数的运算

2011年全国中考数学模拟汇编二2实数的运算
答案:解:原式=2—1+ ………………………………………………………3分
=1+ .…………………………………………………………4分
9.(南京市建邺区2011年中考一模)计算: .
答案解:原式=1-2+33分
=-1+35分
10.(南京市鼓楼区2011年中考一模)
计算:(-3)-(cos30°-1)0-82×0.1252.
实数的运算
A组
一选择题
1.(2011上海市杨浦区中考模拟)两个连续的正整数的积一定是()
(A)素数;(B)合数;(C)偶数;(D)奇数.
【答案】C
2.(2011上海市杨浦区中考模拟)已知实数a、b在数轴上的位置如图所示,则下列等式成立的是()
(A) ;(B) ;
(C) ;(D) .
【答案】D;
3、(2011双柏县中考模拟)下列运算正确的是()
2.(2011杭州市进化一中模拟)(本小题满分6分)
(1)
【答案】(1)解:原式= = ……………………………2分
3.(2011浙江金衢十一校联考)(6分)
(1)计算: .
【答案】(1)
------------------------2分
=1-------------------------------------------3分
A.1个B.2个C.3个D.4个
答案:B
15、(2011黄冈张榜中学模拟)下列运算正确的是()
A. B. C. D.
考查内容:
答案:D
16、(2011年徐汇区诊断卷)下列运算正确的是(▲)
A. ;B. ( 为实数);
C. ;D. .
考查内容:
答案:C

北京市西城区第二次数学模拟考试-答案.pdf

北京市西城区第二次数学模拟考试-答案.pdf

6
2
2

(Ⅱ)解:cosA+sinC-cosAsinC+ 1 sinAsinC 3
=2cos A + C cos A − C − 1 [cos(A + C) + cos(A − C)] − 1 [cos(A + C) − cos(A − C)]
2
22
6
9分
= 4 cos2 A + C − 1 [2 cos(A + C) + cos(A − C)] 23
7分
8
(Ⅱ)因为 y= ab [−kx2 + 100(1 − k)x + 10000]. 10000
此二次函数开口向下,对称轴为
50(1 − k)
x=
9
k

在适当涨价过程中,销售总金额不断增加,即要求此函数当自变量 x 在{x|x>0}的
学无 止 境
一个子集内增大时,y 也增大.
所以 50(1 − k) >0,解之 0<k<1. k
学无 止 境
=4 cos2 A + C − 1 [2(2 cos2 A + C −1) + 2 cos2 A − C −1]
23
2
2

= 4 cos2 A + C − 1 (4 cos2 A + C + 8cos2 A + C − 3)232来自2=1分
19.解:(Ⅰ)PA⊥平面 ABCD,CD⊥AD,∴PD⊥CD.
13

21.解:依题意,价格上涨 x%后,销售总金额为:
y=a(1+x%)·b(1-kx%)
2

= ab [−kx2 +100(1 − k)x +10000]. .

2011年北京西城初三二模数学试题答案

2011年北京西城初三二模数学试题答案

北京市西城区2011年初三二模试卷数学答案及评分标准 2011.613.解:原式=112- ……………………………………………………………4分 =32. ……………………………………………………………………5分 14.证明: 如图1.在△ACE 和△BDE 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BD AC BED AEC DBE CAE ………………………………3分∴ △ACE ≌△BDE . ……………………………………………………………4分 ∴ AE =BE .………………………………………………………………………5分 15.解:(1)∵ 关于x 的一元二次方程2420x x k ++=有两个不相等的实数根,∴ 16420k ∆=-⨯>. ………………………………………………………1分解得2k <. ……………………………………………………………………2分 (2)∵2k <,∴ 符合条件的最大整数1k =,此时方程为2420x x ++=. ……………3分∴ 142a b c ===,,. ∴ 22444128b ac -=-⨯⨯=.………………………………………………4分代入求根公式x ,得2x ==-±.…………5分 ∴ 1222x x =-+=-.16.解:原式=222222x xy y xy y ++--=22x y -.………………………………………2分 ∵ 122=+xy x ①,152=+y xy ②,∴ ①-②,得223x y -=-. ………………………………………………………4分∴ 原式=3-. ………………………………………………………………………5分17.解:(1)∵ 反比例数my x=()0≠m 的图象经过(3,1)A -,(2,)B n 两点,(如图2) ∴ 313m =-⨯=-,322m n ==-.∴ 反比例函数解析式为3y x =-.………………………1分点B 的坐标为3(2)2B -,.……………………………2分∵ 一次函数y kx b =+()0≠k 的图象经过(3,1)A -,3(2)2B -,两点,∴ 31,32.2k b k b -+=⎧⎪⎨+=-⎪⎩解得 1,21.2k b ⎧=-⎪⎪⎨⎪=-⎪⎩∴ 一次函数的解析式为1122y x =--.……………………………………3分(2)设一次函数1122y x =--的图象与x 轴的交点为C ,则点C 的坐标为(1,0)C -.∴ =AOB ACO COB S S S ∆∆∆+113=11+1222⨯⨯⨯⨯5=4. …………………………5分18.解:(1)50;………………………………………………………………………………1分(2)3分 (3)5分四、解答题(本题共20分,每小题5分) 19.解:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆. ()62402022800y x x x =+-=+.…………………………………………2分 (2)依题意得x -20< x .解得x >10.……………………………………………………………………3分∵ 22800y x =+,y 随着x 的增大而增大,x 为整数,∴ 当x=11时,购车费用最省,为22×11+800=1 042(万元). …………4分 此时需购买大型客车11辆,中型客车9辆.……………………………5分答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元. 20.解:(1)作DM ⊥AB 于点M ,CN ⊥AB 于点N .(如图3)∵ AB ∥DC ,DM ⊥AB ,CN ⊥AB ,∴ ∠DMN =∠CNM =∠MDC =90︒. ∴ 四边形MNCD 是矩形. ∵4CD =, ∴ MN =CD = 4.∵ 在梯形ABCD 中,AB ∥DC ,5AD BC ==, ∴ ∠DAB =∠CBA ,DM=CN . ∴ △ADM ≌△BCN . 又∵10AB =, ∴ AM =BN =()11(104)322AB MN -=⨯-=. ∴ MB =BN +MN =7.……………………………………………………………2分∵ 在Rt △AMD 中,∠AMD =90︒,AD =5,AM =3, ∴4DM =.∴ 4tan 7DM ABD BM ∠==.……………………………………………………3分 (2)∵ EF AB ⊥,∴ ∠F =90︒.∵∠DMN =90︒, ∴ ∠F =∠DMN .∴ DM ∥EF .∴ △BDM ∽△BEF . ∵ DE BD =,∴12BM BD BF BE ==. ∴ BF =2BM =14. ……………………………………………………………4分∴ AF =BF -AB =14-10=4. …………………………………………………5分21.(1)证明:如图4. ∵ 点A 是劣弧BC 的中点,∴ ∠ABC =∠ADB .………………………1分 又∵ ∠BAD =∠EAB ,∴ △ABE ∽△ADB .………………………2分 ∴AB ADAE AB=. ∴ 2AB AE AD =⋅.(2)解:∵ AE =2,ED =4,∴()22612ABAE AD AE AE ED =⋅=+=⨯=.∴AB =.………………………………………………………4分∵ BD 为⊙O 的直径,∴ ∠A =90︒.又∵ DF 是⊙O 的切线,∴ DF ⊥BD.∴ ∠BDF =90︒.在Rt △ABD 中,tan AB ADB AD ∠=∴ ∠ADB =30︒.∴ ∠ABC =∠ADB =30︒. ∴∠DEF=∠AEB=60︒,903060EDF BDF ADB ∠=∠-∠=︒-︒=︒. ∴ ∠F =18060DEF EDF ︒-∠-∠=︒. ∴ △DEF 是等边三角形.∴ EF = DE =4.………………………………………………………………5分22.解:(1)……………………………………………………1分(2)……………………………………………………3分(3)……………………………………………………5分 23.解:(13分(2)2ca.……………………………………………………………………………4分 (3)答:当x =5m +时,代数式2ax bx c ++的值是正数.理由如下:设抛物线2y ax bx c =++(a ≠0),则由题意可知,它经过A (,0)2ca,B (2,0) 两点.∵ a >0,c <0,∴ 抛物线2y ax bx c =++开口向上,且2ca<0<2,即点A 在点B 左侧. …………………………………………………………………………5分设点M 的坐标为2(,)M m am bm c ++,点N 的坐标为(5,)N m y +.∵ 代数式2am bm c ++的值小于0,∴ 点M 在抛物线2y ax bx c =++上,且点M 的纵坐标为负数. ∴ 点M 在x 轴下方的抛物线上.(如图5) ∴A MB x x x <<,即22cm a<<.∴5572c m a +<+<,即572N c x a+<<. 以下判断52ca+与B x 的大小关系:∵ 42a b c ++=0,a >b ,a >0, ∴ 66(42)(5)(5)202222B c c a c a a b a b x a a a a a+-+-+-=+-===>. ∴B x ac>+52. ∴ 52N B cx x a>+>.…………………………………………………………6分 ∵ B ,N 两点都在抛物线的对称轴的右侧,y 随x 的增大而增大, ∴B N y y >,即y >0.∴ 当x =5m +时,代数式2ax bx c ++的值是正数. ………………………7分24.解:(1)52,265.………………………………………………………………………2分 (2)只有点P 在DF 边上运动时,△PDE 才能成为等腰三角形,且PD=PE .(如 图6)……………………………………………………………………………3分 ∵ BF=t ,PF=2t ,DF =8, ∴ 82PD DF PF t =-=-.在Rt △PEF 中,2222436PE PF EF t =+=+=2PD 即()2228364t t -=+.解得 78t =.…………………………………4分 ∴ t 为78时△PDE 为等腰三角形.(3)设当△DEF 和点P 运动的时间是t 时,点P 与点G边上,DP= DG . 由已知可得93tan 124AC B BC ===,63tan 84EF D DF ===. ∴.D B ∠=∠∴.90︒=∠=∠BFH DGH∴ 3tan 4FH BF B t =⋅=, 384D H D F F H t=-=-, .5325354438cos +-=⨯⎪⎭⎫ ⎝⎛-=⋅=t t D DH DG∵ 2DP DF t +=,∴ 28DP t =-.由DP=DG 得3322855t t -=-+. 解得 7213t =. …………………………………………………………………5分检验:724613<<,此时点P 在DE 边上. ∴ t 的值为7213时,点P 与点G 重合.(4)当0<t ≤4时,点P 在DF 边上运动(如图6),tan 2PFPBF BF∠==. …………………………………………………………………………………6分 当4< t ≤6时,点P 在DE 边上运动(如图7),作PS ⊥BC 于S ,则t a n PS PBF BS∠=. 可得10(28)182PE DE DP t t =-=--=-.此时()5725821854cos cos +-=-=⋅=∠⋅=t t D PE EPS PE PS ,()5545621853sin sin +-=-=⋅=∠⋅=t t D PE EPS PE ES .524511554566-=⎪⎭⎫ ⎝⎛+--+=-+=t t t ES EF BF BS .∴ 728tan 1124PS tPBF BS t -∠==-.………………………………………………7分 综上所述, 2 (04),tan 728 (46).1124t PBF t t t <≤⎧⎪∠=-⎨≤≤⎪-⎩(以上时间单位均为s ,线段长度单位均为cm )25.解:(1)B,………………………………………………………1分 C3分 (2)当AB =4k ,(0,)A m 时,OA =m ,与(1)同理可得B点的坐标为,2)B k m +,C点的坐标为,2)C k .如图8,过点B 作y 轴的垂线,垂足为F ,过点C 作x 轴的垂线,垂足为G , 两条垂线的交点为H ,作DM ⊥FH 于点M ,EN ⊥OG 于点N .由三角形中位线的性质可得点D的坐标为,)D k m +,点E的坐标为)E k .由勾股定理得DE . ∵DE=∴ m=4. ……………………………4分 ∵ D恰为抛物线212y xk =-++, ∴=. 解得k=1.此时抛物线的解析式2143y x =-+. …………………………………5分此时D,E两点的坐标分别为D,E.∴OD=OE=∴OD=OE=DE.∴此时△ODE为等边三角形,cos∠ODE= cos60°=12.……………………6分(3)E1,E3点的坐标分别为1E,E3.设直线13E E的解析式为y ax b=+(a≠0)则1,3.a ba b⎧+=⎪⎪⎨⎪+=⎪⎩解得.2amb⎧=⎪⎪⎨⎪=-⎪⎩∴直线13E E的解析式为2my=-.……………………………………7分可得直线13E E与y轴正方向的夹角等于60°.∵直线13D D,13E E与y轴正方向的夹角都等于60°,∴13D D∥13E E.∵D1,D3两点的坐标分别为11)D m+,33)D m+,由勾股定理得13D D=4,13E E=4.∴1313D DE E=.∴四边形1331D DE E为平行四边形.设直线13E E与y轴的交点为P,作AQ⊥13E E于Q.(如图9)可得点P的坐标为.23,2,0mAPmP=⎪⎭⎫⎝⎛-∴.3360sinsin mAPOPQAPAQ=︒⋅=∠⋅=∴1331134D DE ES D D AQ=⨯==四边形.…………………………8分。

【2011西城二模】北京市西城区2011年高三二模试卷数学理

【2011西城二模】北京市西城区2011年高三二模试卷数学理


则有
即:
令 ,则 因为
,所以
.
,所以
平面
.
平面
的法向量与 平行,
所以平面
的法向量为
.
………………7分 ………………8分

因为二面角
是锐角,
所以二面角
的余弦值为 .
……………9分
(Ⅲ)解:因为 是线段 则 所以




上一个动点,设 , ,

, ,即
, ……………10分 ,…………11分
解得


……………12分
8.设点

(A)最小值为
(C)最大值为
http://ask.zhongguoren.me
,如果直线
(B)有2个 (D)不存在 与线段 有一个公共点,那么
(B)最小值为
(D)最大值为
第Ⅱ卷(非选择题 共110分)
二、填空题:本大题共6小题,每小题5分,共30分.
9.在
中,若

,则 _____.
10.在
北 京 市 西 城 区 2011年 高 三 二 模 试 卷 参考答案及评分标准
数学(理科)
2011.5
一、选择题:本大题共8小题,每小题5分,共40分.
资料提供: 爱问知识 爱问
http://ask.zhongguoren.me
题号
1
2
3
4
5
6
7
8
答案
C
C
A
D
C
B
B
A
二、填空题:本大题共6小题,每小题5分,共30分.
.将菱形 ,并证
M

西城区中考二模数学试题答案.doc

西城区中考二模数学试题答案.doc

2010年西城区中考二模数学试题答案 2010.6阅卷须知:1.解答右端所注分数,表示考生正确做到这一步应得的累加分数。

2.若考生的解法与本解法不同,正确者可参照评分参考给分。

三、解答题(本题共30分 ,每小题5分)13.解:把原方程整理,得3331--=-x xx . ········································································· 1分 去分母,得1=3(x -3)-x . ························································································· 2分 去括号,得1=3x -9-x . ··························································································· 3分 解得x =5. ··················································································································· 4分 经检验,x =5 是原方程的解. ················································································ 5分14.解:(1) △=ac b 42-=m 2+8. ····················································································· 1分∵对于任意实数m ,m 2≥0,∴m 2+8>0.∴对于任意的实数m ,方程①总有两个不相等的实数根. ······················· 2分(2)当m =2时,原方程变为0222=--x x . ············································································ 3分∵△=ac b 42-=12, ∴2122±=x .解得x 1=31+, x 2=31-. ····································································· 5分15.证明:在正方形ABCD 中,AD = AB , ………………………………1分 ∠BAD =∠D =∠ABF =90°. ……………2分 ∵EA ⊥AF ,∴∠BAE+∠DAE =∠BAF +∠BAE =90°.∴∠ DAE =∠BAF . ……………………3分AD CF BE第15题图在△DAE 和△BAF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠.,,BAF DAE AB AD ABF D ∴ △DAE ≌△BAF . ·························································································· 4分 ∴ DE = BF . ·········································································································· 5分16.解:2)12()1(4)2)(2(++---+x x x x x .=144444222++++--x x x x x ································································· 3分 =382-+x x ······································································································· 4分 当1582=+x x 时,原式=15-3=12. ···························································· 5分17.解:(1)二次函数321++=bx ax y 的图象经过点A (-3,0),B (1,0).∴⎩⎨⎧=++=+-.03,0339b a b a解得⎩⎨⎧-=-=.2,1b a∴二次函数图象的解析式为3221+--=x x y . ······································· 2分 ∴点D 的坐标为(-2,3). ········································································· 3分(2)12y y >时,x 的取值范围是2-<x 或1>x . ············································ 5分18.解:∵矩形ABCD ,∴∠ABC =∠D =90°,AD =BC , CD =AB =6. ··························································· 1分 在Rt △ABC 中, AB =6,∠BAC =30°,32tan =∠=BAC AB BC . ····················································································· 2分(1)在Rt △ADE 中, AE =4, AD = BC =32,∴DE =222=-AD AE .∴EC =4.∴梯形ABCE 的面积S=BC AB EC ⋅+)(2132)64(21⨯+==310. ························· 3分(2)作BH ⊥AC 于H ,在Rt △ABC 中, AB =6,∠BAC =30°,第18题图321==AB BH . 在Rt △BFH 中, BF BHBFC =∠sin . 在Rt △AED 中, AEADAED =∠sin . ∵∠BFA =∠CEA , ∴∠BFC =∠AED .∴AED BFC ∠=∠sin sin∴AE ADBF BH =. ∴323==AD BH AE BF . ······················································································ 5分四、解答题(本题共20分,第19题6分,第20题5分,第21题5分,第22题4分) 19.解:(1)10%;(1分)(2)150+850=1000,∴交通设施投资1000万元;4000%251000=, ∴民生工程投资4000万元;答案见图;(5分) (3)28571%144000≈,∴投资计划的总额约为28571万元.(6分)20.解:(1)根据题意,得y =(23-20)x +(35-30)(450-x ),即y =-2x +2250. ························································································ 2分自变量x 的取值范围是0≤x ≤450且x 为整数.········································ 3分(2)由题意,得20x +30(450-x )≤10000.解得x ≥350. ·································································································· 4分由(1)得350≤x ≤450. ∵y 随x 的增大而减小, ∴当x =350时,y 值最大.y 最大=-2×350+2250=1550. ∴450-350=100.答:要每天获利最多,企业应每天生产羊公仔350只,狼公仔100只. ······················································································································ 5分第19题图21.证明:(1)连结AD .∵ AB 是⊙O 的直径, ∴∠ADB =∠AEB =90°. ∵ AB =AC , ∴DC=DB .····································································································· 1分 ∵OA =OB ,∴OD ∥AC .∴∠OFB =∠AEB =90°. ∴OD ⊥BE .··············································· 2分解:(2)设AE =x , 由(1)可得∠1=∠2,∴BD = ED=25. ·········································· 3分∵OD ⊥EB ,∴FE=FB .∴OF=AE 21=x 21,DF=OD -OF =x 2145-.在Rt △DFB 中, 22222)2145()25(x DF DB BF --=-=.在Rt △OFB 中, 22222)21()45(x OF OB BF -=-=.∴22)2145()25(x --22)21()45(x -=. 解得23=x ,即23=AE . ·············································································· 5分22.解:参考分法如下图所示(答案不唯一).说明:各图中,只画出一对全等三角形或只画出一对相似直角三角形不得分;两者都画正确每图得2分.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)BA第21题图23.解:(1)将原方程整理,得04)4(2=++-m x m x ,△=2222)4(168)4(4)]4([4-=+-=-+-=-m m m m m ac b >0 ∴ 2)4()4(-±+=m m x .∴m x =或4=x . ··························································································· 2分(2)由(1)知,抛物线c bx x y ++-=2与x 轴的交点分别为(m ,0)、(4,0),∵A 在B 的左侧,40<<m . ∴A (m ,0),B (4,0).则42222222+=+=+=m m OD OA AD ,202422222=+=+=OD OB BD . ∵AD ·BD =10, ∴AD 2·BD 2=100. ∴100)4(202=+m . ························································································· 3分解得1±=m .··································································································· 4分 ∵40<<m , ∴1=m .∴51=+=m b ,44-=-=m c .∴抛物线的解析式为452-+-=x x y .··························································· 5分(3)答:存在含有1y 、y 2、y 3,且与a 无关的等式,如:4)(3213--=y y y (答案不唯一). ·············································· 6分 证明:由题意可得4521-+-=a a y ,410422-+-=a a y ,415923-+-=a a y .∵左边=415923-+-=a a y . 右边=-)(321y y --44)]4104()45[(322--+---+--=a a a a=41592-+-a a .∴左边=右边.∴4)(3213---=y y y 成立. ·························································· 7分24.证明:(1)延长AP 至H , 使得PH = AP ,连结BH 、 HC ,PH .∵BP =PC .∴四边形ABHC 是平行四边形. ∴AB =HC .在△ACH 中, AC HC AH +<. ∴AC AB AP +<2.即)(21AC AB AP +< ············································ 2分(2)①答:BE =2 AP . ·························································· 3分证明: 过B 作BH ∥AE 交DE 于H ,连结CH 、AH .∴∠1=∠BA C=60°. ∵DB =AC ,AB = CE , ∴AD =AE ,∴△AED 是等边三角形, ∴∠D =∠1 =∠2=∠AED =60°.∴△BDH 是等边三角形. ············································································· 4分 ∴BD =DH =BH =AC .∴四边形ABHC 是平行四边形. ∵点P 是BC 的中点,∴AH 、BC 互相平分于点P ,即AH =2AP . 在△ADH 和△EDB 中,⎪⎩⎪⎨⎧=∠=∠=.,,DB DH D D ED AD ∴ △ADH ≌△EDB . ∴ AH = BE=2AP . ·························································································· 5分②证明:分两种情况: ⅰ)当AB =AC 时,∴AB =AC =DB =CE .∴BC =DE 21. ················································ 6分ⅱ)当AB ≠AC 时,以BD 、BC 为一组邻边作平行四边形BDGC (如图4), ∴DB =GC =AC ,∠BAC =∠1,BC =DG . ∵AB =CE .∴ △ABC ≌△CEG . ∴ BC = EG =DG .在△DGE 中, DE GE DG >+. ∴DE BC >2,即DE BC 21>.综上所述,BC ≥DE 21. ············································································· 8分25.解:(1)设直线AB 的解析式为b kx y +=.将直线2343--=x y 与x 轴、y 轴交点分别为E第24题图3DE 第24题图4(-2,0),(0,23-), 沿x 轴翻折,则直线2343--=x y 、直线AB 与x 轴交于同一点(-2,0), ∴A (-2,0). 与y 轴的交点(0,23-)与点B 关于x 轴对称, ∴B (0,23), ∴⎪⎩⎪⎨⎧==+-.23,02b b k 解得43=k ,23=b .∴直线AB 的解析式为 2343+=x y . ··································································· 2分 (2)设平移后的抛物线2C 的顶点为P (h ,0),则抛物线2C 解析式为:2)(32h x y -==22323432h hx x +-.∴D (0,232h ). ∵DF ∥x 轴, ∴点F (2h ,232h ), 又点F 在直线AB 上,∴23)2(43322+⋅=h h . ····························································································· 3分解得 31=h ,432-=h .∴抛物线2C 的解析式为6432)3(3222+-=-=x x x y 或83322++=x x y .······························································································································ 5分(3)过M 作MT ⊥FH 于T ,∴R t △MTF ∽R t △AGF .∴5:4:3::::==FA GA FG FM TM FT设FT =3k ,TM =4k ,FM =5k .则FN =)(21AF HF AH ++-FM =16-5k . ∴24)516(21kk MT FN S MNF -=⋅=∆. ∵8122121⨯⨯=⋅=∆AG FH S AFH=48, 又AFH MNF S S ∆∆=21. ∴2424)516(=-kk .解得56=k 或2=k (舍去). ∴FM =6,FT =518,MT =524,GN =4,TG =512.∴M (56,512)、N (6,-4). ∴直线MN 的解析式为:434+-=x y . ···································································· 7分。

2011中考数学二模整套试题及答案

2011中考数学二模整套试题及答案

2011中考数学二模整套试题及答案考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2.在试卷和答题纸上认真填写学校名称、班级和姓名。

3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。

4.在答题纸上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将本试卷、答题纸和草稿纸一并交回。

一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.16 的算术平方根是 A .4± B .8± C .4 D .4- 2. 如果一个角等于72︒,那么它的补角等于A .18︒B .36︒C .72︒D .108︒ 3.若点(,2)M a 与点(3,)N b 关于x 轴对称,则,a b 的值分别是A .3,2-B .3,2-C .3,2--D .3,2 4. 把多项式2288x x -+分解因式,结果正确的是 A .()222x +B .()222x -C .()224x -D .()224x -5. 下列计算正确的是A .44a a a ÷= B .325(2)4a a = C .223355+= D .1025÷=6.从1~9这九个自然数中任取一个,是3的倍数的概率是 A .13 B .32 C .92 D . 94 7.如图是一个几何体的三视图,已知正视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为A .2πB .3πC .23πD .()123π+8.如图,正方形ABCD 的边长是3cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边AB BC CD DA →→→连续翻转(小正方形起始位置在AB 边上),那么这个小正方形翻转到DA 边的终点位置时,它的方向是DCBAA .B .C .D .二、填空题(本题共16分, 每小题4分)9. 若分式22123x x x -+-的值为零 , 则x = .10.某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:等级 非常了解 比较了解 基本了解 不太了解频数 40 120 36 4 频率0.2m0.180.02本次问卷调查抽取的样本容量为_______,表中m 的值为_______11. 已知两圆内切,圆心距2d = ,一个圆的半径3r =,那么另一个圆的半径为 12. 用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(5)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).三、解答题(本题共30分,每小题5分) 13.计算:011271tan 60( 3.14)()2π---︒+--14.求不等式组32451233x x x -≥-⎧⎪-⎨>-⎪⎩ 的正整数解.15. 已知13x x-=,求代数式2(23)(1)(4)x x x --+-的值. 16. 已知:如图,四边形ABCD 是平行四边形,BE AC ⊥于E ,DF AC ⊥于F .求证:BE DF =.(1) (2) (3)……17. 列方程或方程组解应用题:在“彩虹读书”活动中,某同学对甲、乙两个班学生的读书情况进行了统计:甲班学生人数比乙班学生人数多3人, 甲班学生读书480本,乙班学生读书 360本,乙班平均每人读书的本数是甲班平均每人读书的本数的45倍.求甲、乙两班各有多少人? 18.已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A ,与y 轴的交点为(0,2)C ,与反比例函数在第一象限内的图象交于点(2,)B n ,连结BO ,若S 4AOB ∆=.(1)求直线AB 的解析式和反比例函数的解析式;(2).求tan ABO ∠的值.四、解答题(本题共20分,每小题5分)19.已知:如图,矩形ABCD 中, 4AB =,7BC =,点P 是AD 边上一个动点,PE PC ⊥, PE 交AB 于点E ,对应点E 也随之在AB 上运动,连结EC .(1)若PEC ∆是等腰三角形,求PD 的长; (2)当30PEC ∠=︒时,求AP 的长.20. 已知:如图,AB 是O ⊙的直径,10AB =, DC 切O ⊙于点C AD DC ⊥,,垂足为D ,AD 交O ⊙于点E .DCE PDCBA DCBAA BCO xyFEDCBA(1)求证:BC EC =; (2)若4cos 5BEC ∠=, 求DC 的长.21. 为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭去年每个月的用水量,统计得到的数据绘制了下面的两幅统计图.图1是去年这50户家庭月总用水量的折线统计图,图2是去年这50户家庭月总用水量的不完整的频数分布直方图.(1)根据图1提供的信息,补全图2中的频数分布直方图;(2)在抽查的50户家庭去年月总用水量这12个数据中,极差是 米3,众数是 米3,中位数是 米3;(3)请你根据上述提供的统计数据,估计该住宅区今年每户家庭平均每 月的用水量是多少米3? 22.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x (x >0). 依题意,割补前后图形面积相等, 有52=x , 解得5=x .由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图2所示的分割线,拼出如图3所示的新正方形.月份550 500600 650 700 800 750 12 1 2 3 4 5 6 7 8 9 10 11 O•月总用水量(米3) • ••• • •• •• ••图1请你参考小东同学的做法,解决如下问题:(1) 如图4,是由边长为1的5个小正方形组成,请你通过分割,把它拼成一个正方形(在图4上画出分割线,在图4的右侧画出拼成的正方形简图);(2)如图5,是由边长分别为a 和b 的两个正方形组成,请你通过分割,把它拼成一个正方形(在图5上画出分割线,在图5的右侧画出拼成的正方形简图).五、解答题(本题共22分,第23题8分,第24题7分,第25题7分) 23.已知关于x 的方程2(31)220mx m x m --+-=. (1)求证:无论m 取任何实数时,方程恒有实数根;(2)若m 为整数,且抛物线2(31)22y mx m x m =--+-与x 轴两交点间的距离为2,求抛物线的解析式;(3)若直线y x b =+与(2) 中的抛物线没有交点,求b 的取值范围.24. 已知:如图,ABC ∆内接于O , AB 为O 的直径,=52AC BC =, 点D 是AC图3图2图1图3图2图1上一个动点,连结AD 、CD 和BD , BD 与AC 相交于点E , 过点C 作PC CD ⊥于C ,PC 与BD 相交于点P ,连结OP 和AP .(1) 求证:AD BP =; (2)如图1,若1tan 2ACD ∠=, 求证:DC AP ; (3) 如图2,设AD x = , 四边形APCD 的面积为y ,求y 与x 之间的关系式.25.已知,如图,抛物线24(0)y ax bx a =++≠与y 轴交于点C ,与x 轴交于点A B ,,点A 的坐标为(40)-,,对称轴是1x =-. (1)求该抛物线的解析式;(2)点M 是线段AB 上的动点,过点M 作MN ∥AC ,分别交y 轴、BC 于点P 、N ,连接CM .当CMN △的面积最大时,求点M 的坐标; (3)在(2)的条件下,求CPNABCS S ∆∆的值.图1图2O CD E P ABBAPEDC O。

2009-2011海淀、东城、西城、一模、二模试题初三数学汇编Microsoft Word 文档 (2)

2009-2011海淀、东城、西城、一模、二模试题初三数学汇编Microsoft Word 文档 (2)

北京市东城区2010--2011学年第二学期初三综合练习(一)数 学 试 卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.-2的相反数是( ) A . 2 B.21 C. 21- D. -2 2.根据国家统计局的公布数据,2010年我国GDP 的总量约为398 000亿元人民币. 将398 000 用科学记数法表示应为( )A. 398×103B. 0.398×106 C . 3.98×105 D. 3.98×106 3.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( ) A . 30° B. 40°C. 60° D . 70°4.如图,在△ABC 中,D 、E 分别是BC 、AC 边的中点. 若DE =2,则AB 的长度是( ) A .6 B .5 C .4 D .35.甲、乙、丙、丁四名学生10次小测验成绩的平均数(单位:分)和方差如下表: 则这四人中成绩最稳定的是( ) A.甲 B .乙 C.丙 D.丁6.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于( )A .11πB .10πC .9πD .8π7. 若从10~99这连续90个正整数中选出一个数,其中每个数被选出的机会相等,则选出的 数其十位数字与个位数字的和为9的概率是 A .901 B . 101 C. 91 D. 4548. 如图,在矩形ABCD 中,AB =5,BC =4,E 、F 分别是AB 、AD 的中点.动点R 从点B 出发,沿B →C →D →F 方向运动至点F 处停止.设点R 运动的路程为x ,EFR △的面积为y ,当y 取到最大值时,点R 应运动到A .BC 的中点处B .C 点处C .CD 的中点处 D .D 点处 二、填空题(本题共16分,每小题4分) 9. 若分式53+x 有意义,则x 的取值范围是____________. 10. 分解因式:a 2b -2ab+b =________________.2是 .(写出一对即可) 12. 如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点4A 的坐标为( , );点n A ( , ).三、解答题(本题共30分,每小题5分) 13.计算:04sin 45(3)4︒+-π+-.14. 求不等式组46,1(3)22x x +≤⎧⎪⎨->-⎪⎩ 的整数解.15.先化简,再求值:1)1213(22-÷-+-x xxx x x ,其中13-=x .16. 如图,在四边形ABCD 中, AC 是∠DAE 的平分线,DA ∥CE ,∠AEB =∠CEB . 求证:AB=CB .17.列方程或方程组解应用题随着人们节能意识的增强,节能产品进入千家万户,今年1月小明家将天燃气热水器换成了太阳能热水器.去年12月份小明家的燃气费是96元,从今年1月份起天燃气价格每立方米上涨25%,小明家2月份的用气量比去年12月份少10立方米,2月份的燃气费是90元.问小明家2月份用气多少立方米.18.如图,在平行四边形ABCD 中,过点A 分别作AE ⊥BC 于点E ,AF ⊥CD 于点F . (1)求证:∠BAE =∠DAF ;(2)若AE =4,AF =245,3sin 5BAE ∠=,求CF 的长.四、解答题(本题共20分,每小题5分)19. 某中学的地理兴趣小组在本校学生中开展主题为―地震知识知多少‖的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为―非常了解‖、―比较了解‖、―基本了解‖、―不太了解‖四个等级,划分等级后的数据整理如下表:(1)表中的m 的值为_______,n 的值为 .(2)根据表中的数据,请你计算―非常了解‖的频率在下图中所对应的扇形的圆心角的度数,并补全扇形统计图.(3)若该校有1500名学生,请根据调查结果估计这些学生中―比较了解‖的人数约为多少?20. 已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C.(1)求证:AD=DC;(2)过D作⊙O的切线交BC于E,若DE=2,CE=1,求⊙O的半径.21.在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y=xk2的图象交于A(1,6),B(a,3)两点.(1)求k1,k2的值;(2)如图,点D在x轴上,在梯形OBCD中,BC∥OD,OB=DC,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为18时,求PE:PC的值.22. 如图1,在△ABC 中,已知∠BAC =45°,AD ⊥BC 于D ,BD =2,DC =3,求AD 的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB 、AC 为对称轴,画出△ABD 、△ACD 的轴对称图形,D 点的对称点为E 、F ,延长EB 、FC 相交于G 点,得到四边形AEGF 是正方形.设AD =x ,利用勾股定理,建立关于x 的方程模型,求出x 的值. (1)请你帮小萍求出x 的值.(2) 参考小萍的思路,探究并解答新问题:如图2,在△ABC 中,∠BAC =30°,AD ⊥BC 于D ,AD =4.请你按照小萍的方法画图,得到四边形AEGF ,求△BGC 的周长.(画图所用字母与图1中的字母对应)图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的方程(m -1)x 2-(2m-1)x +2=0有两个正整数根.(1) 确定整数m 值;(2) 在(1)的条件下,利用图象写出方程(m -1)x 2-(2m -1)x +2+xm=0的实数根的个数.24. 等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边AB、AC交于点E、F.(1)如图1,当点P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;(2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y 与x的函数关系式,并写出自变量x的取值范围;(3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.图1 图2 图325. 如图,已知二次函数y=ax2+bx+8(a≠0)的图像与x轴交于点A(-2,0),B,与y轴交于点C,tan∠ABC=2.(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得经过点P的直线PM垂直于直线CD,且与直线OP的夹角为75°?若存在,求出点P的坐标;若不存在,请说明理由;(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究:抛物线最多可以向上平移多少个单位长度?北京市东城区2010--2011学年第二学期初三综合练习(二)数 学 试 卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1. 21-的绝对值是( ) A. 21 B. 21- C. 2 D. -22. 下列运算中,正确的是( )A .235a a a += B .3412a a a ⋅= C .236a a a =÷ D .43a a a -=3.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是( )A .18 B . 13 C . 38 D . 354.下列图形中,既是..轴对称图形又是..中心对称图形的是( )5. 若一个正多边形的一个内角等于150°,则这个正多边形的边数是( )A .9B .10C .11D .126.A .30,35B .50,35C .50,50D .15,50 7.已知反比例函数2k y x -=的图象如图所示,则一元二次方程22x -况是( )A .没有实根B . 有两个不等实根C .有两个相等实根D .无法确定8.用min{a ,b }表示a ,b 两数中的最小数,若函数}1,1min{2x x y -+=,则y 的图象为( )D C B AA BC D9. 反比例函数ky x=的图象经过点(-2,1),则k 的值为_______.10. 已知一个几何体的三视图如图所示,则该几何体是 . 左视图俯视图 11. 如图,将三角板的直角顶点放置在直线AB 上的点O 处.使斜边CD ∥AB ,则∠a 的余弦值为__________.12. 如图,Rt ABC △中,90ACB ∠= ,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过 部分的面积(即阴影部分面积)为 . 三、解答题(本题共30分,每小题5分)13. 先化简,再求值:2(21)(2)(2)4(1)x x x x x +++--+,其中x =14. 解分式方程: 11322x x x-+=--.15.如图,点A 、B 、C 的坐标分别为(3,3)、(2,1)、(5,1),将△ABC 先向下平移4个单位,得△A 1B 1C 1;再将△A 1B 1C 1沿y 轴翻折,得△A 2B 2C 2. (1)画出△A 1B 1C 1和△A 2B 2C 2; (2)求线段B 2C 长. AH BOC 1O1H 1A1Cy16. 如图,点D 在AB 上,DF 交AC 于点E ,CF AB ∥,AE EC =. 求证:AD CF =.17. 列方程或方程组解应用题为了配合学校开展的“爱护地球母亲”主题活动,初三(1)班提出“我骑车我快乐”的口号. “五一”之后小明不用父母开车送,坚持自己骑车上学. 五月底他对自己家的用车情况进行了统计,5月份所走的总路程比4月份的54还少100千米,且这两个月共消耗93号汽油260升. 若小明家的汽车平均油耗为0.1升/千米,求他家4、5两月各行驶了多少千米.18.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,点Q 的坐标为(0,2). (1)求直线QC 的解析式;(2)点P (a ,0)在边AB 上运动,若过点P 、Q 的直线将矩形ABCD 的周长分成3∶1两部分,求出此时a 的值.AB CD EF四、解答题(本题共20分,每小题5分)19. 如图,在梯形ABCD 中,AD //BC ,BD 是∠ABC 的平分线. (1)求证:AB =AD ;(2)若∠ABC =60°,BC =3AB ,求∠C 的度数 .20. 如图,四边形ABCD 是平行四边形,以AB 为直径的 ⊙O 经过点D ,E 是⊙O 上一点,且∠AED =45︒.(1) 试判断CD 与⊙O 的位置关系,并证明你的结论; (2) 若⊙O 的半径为3,sin ∠ADE =65,求AE 的值.A BCD21.某商店在四个月的试销期内,只销售A ,B 两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图l 和图2. (1)第四个月销量占总销量的百分比是_______; (2)在图2中补全表示B 品牌电视机月销量的折线图;(3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.图1 图222. 如图1是一个三棱柱包装盒,它的底面是边长为10cm 的正三角形,三个侧面都是矩形.现将宽为15cm 的彩色矩形纸带AMCN 裁剪成一个平行四边形ABCD (如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A 的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.(1)请在图4中画出拼接后符合条件的平行四边形; (2)请在图2中,计算裁剪的角度(即∠ABM 的度数).图1图4F E D C BA五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的一元二次方程2220x ax b ++=,0,0>>b a . (1)若方程有实数根,试确定a ,b 之间的大小关系; (2)若a ∶b =21222x x -=,求a ,b 的值;(3)在(2)的条件下,二次函数222y x ax b =++的图象与x 轴的交点为A 、C (点A 在点C的左侧),与y 轴的交点为B ,顶点为D .若点P (x ,y )是四边形ABCD 边上的点, 试求3x -y 的最大值.图1O E D C B A R Q P 图2O E D C B A 24. 如图1,在△ABC 中,AB =BC =5,AC =6. △ECD 是△ABC 沿CB 方向平移得到的,连结AE ,AC 和BE 相交于点O .(1)判断四边形ABCE 是怎样的四边形,并证明你的结论; (2)如图2,P 是线段BC 上一动点(不与点B 、C 重合),连接PO 并延长交线段AE 于点Q ,QR ⊥BD ,垂足为点R .①四边形PQED 的面积是否随点P 的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED 的面积;②当线段BP 的长为何值时,以点P 、Q 、R 为顶点的三角形与△BOC 相似?25. 如图,已知在平面直角坐标系xOy 中,直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于点E 和F . (1)求经过A 、B 、C 三点的抛物线的解析式;(2)当BE 经过(1)中抛物线的顶点时,求CF 的长;(3)在抛物线的对称轴上取两点P 、Q (点Q 在点P 的上方),且PQ =1,要使四边形BCPQ 的周长最小,求出P 、Q 两点的坐标.北京市西城区2011年初三一模数学试卷一、选择题(本题共32分,每小题4分)1.-2的相反数为().A.2 B.-2 C.12D.-122.上海世博会是我国第一次举办的综合类世界博览会.据统计自2010年5月1日开幕至5月31日,累计参观人数约为8 030 000人.将8 030 000用科学记数法表示应为().A .480310⨯B.580.310⨯C.68.0310⨯ D. 70.80310⨯3.以方程组21y xy x=-+⎧⎨=-⎩的解为坐标的点(,)x y在().A.第一象限B.第二象限C.第三象限D.第四象限4.右图是正方体的展开图,原正方体相对两个面上的数字和最小是().A. 4B. 6C. 7D. 85.有四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.则抽取的两张卡片上的算式都正确的概率是().A.12B.14C.18D.166.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图.则这组数据的众数和中位数分别是().A.7,7 B.8,7.5C.7,7.5 D.8,67.如图,在梯形ABCD中,AB∥CD,∠A=60°,∠B=30°,若AD=CD=6,则AB的长等于().A.9 B.12C.6+D.188.如图,点A在半径为3的⊙O内,P为⊙O上一点,当∠OP A取最大值时,P A的长等于().A.32BC D.二、填空题(本题共16分,每小题4分)9.分解因式:yxyyx962+-= .14253610.如图,甲、乙两盏路灯相距20米. 一天晚上,当小明从路灯甲走到距路灯乙底部4米处时,发现自己的身影顶部正好接触到路灯乙的底部.已知小明的身高为1.6米,那么路灯甲的高为 米.11. 定义[,,a b c ]为函数2y ax bx c =++的特征数,下面给出特征数为[2m ,14m -,21m -] 的函数的一些结论:①当12m =时,函数图象的顶点坐标是11()24-,;②当1-=m 时,函数在1x >时,y 随x 的增大而减小;③无论m 取何值,函数图象都经过同一个点. 其中所有的正确结论有 .(填写正确结论的序号)12. 如图1,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111D C B A ,正方形1111D C B A 的面积为 ;再把正方形1111D C B A 的各边延长一倍得到正方形2222D C B A (如图2),如此进行下去,正方形n n n n D C B A 的面积为 .(用含有n 的式子表示,n 为正整数) 图1三、解答题(本题共30分,每小题5分) 13.计算:1024sin 60(-︒-14.解不等式组 302(1)33,x x x +>⎧⎨-+⎩,≥ 并判断3=x 是否为该不等式组的解.15. 如图,在平面直角坐标系xOy 中,一条直线l 与x 轴相交于点A , 与y 轴相交于点(0,2)B ,与正比例函数 y =mx (m ≠0)的图象 相交于点(1,1)P . (1)求直线l 的解析式; (2)求△AOP 的面积.16. 如图,在四边形ABCD 中,AB =BC ,BF 平分∠ABC ,AF ∥DC , 连接AC ,CF . 求证:(1)AF =CF ;(2)CA 平分∠DCF .17. 已知关于x 的一元二次方程)0(0212≠=++a bx ax 有两个相等的实数根,求()()()11122-++-b b a ab 的值.18.某中学就到校的方式问题对初三年级的所有学生进行了一次调查,并将调查结果制成了表格和扇形统计图,请你根据图表信息完成下列各题: (1)补全下表:(2)在扇形统计图中,―步行‖对应的圆心角的度数为 °.四、解答题(本题共20分,每小题5分)19.在2011年春运期间,我国南方发生大范围冻雨灾害,导致某地电路出现故障,该地供电局组织电工进行抢修.供电局距离抢修工地15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车每小时分别行驶多少千米.20.如图,四边形ABCD 是边长为9的正方形纸片,B '为CD 边上的点,C B '=3.将纸片沿某条直线折叠,使点B 落在点B '处,点A 的对应点为A ',折痕分别与AD ,BC 边交于点M ,N . (1)求BN 的长;(2)求四边形ABNM 的面积.21.如图,D 是⊙O 的直径CA 延长线上一点,点 B 在⊙O 上, 且AB =AD =AO .(1)求证:BD 是⊙O 的切线;(2)若E 是劣弧BC 上一点,AE 与BC 相交于点F ,△BEF 的面积为8,且cos ∠BF A =32, 求△ACF 的面积.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n .① 判断mn 的符号;② 若抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (点A 在点B 左侧),请说明116x <,2112x <<.22.我们约定,若一个三角形(记为△A 1)是由另一个三角形(记为△A )通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A 1是由△A 复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A 复制出△A 1,又由△A 1复制出△A 2,再由△A 2复制出△A 3,形成了一个大三角形,记作△B .以下各题中的复制均是由△A 开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图1中标出的是一种可能的复制结果,小明发现△A ∽△B ,其相似比为_________.在图1的基础上继续复制下去得到△C ,若△C 的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C 中含有______个小三角形(2)若△A 是正三角形,你认为通过复制能形成的正多边形是________;(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.24.如图1,平面直角坐标系xOy中,A,B(4,0).将△OAB绕点O顺时针旋转α角(0°<α<90°)得到△OCD(O,A,B的对应点分别为O,C,D),将△OAB沿x轴负方向...平移m个单位得到△EFG(m>0,O,A,B的对应点分别为E,F,G),α,m的值恰使点C,D,F落在同一反比例函数kyx=(k≠0)的图象上.(1)∠AOB=°,α=°;(2)求经过点A,B,F的抛物线的解析式;(3)若(2)中抛物线的顶点为M,抛物线与直线EF的另一个交点为H,抛物线上的点P满足以P,M,F,A为顶点的四边形的面积与四边形MF AH的面积相等(点P不与点H重合),请直接写出满足条件的点P的个数,并求位于直线EF25.在Rt△ABC中,∠C=90°,D,E分别为CB,CA延长线上的点,BE与AD的交点为P. (1)若BD=AC,AE=CD,在图1中画出符合题意的图形,并直接写出∠APE的度数;(2)若AC,CD,求∠APE的度数.图1 图北京市西城区2011年初三二模试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.3-的倒数是( )A .3B .13-C .3-D .132.2010年,我国国内生产总值(GDP )为58 786亿美元,超过日本,成为世界第二大经济体.58 786用科学记数法表示为( ) A .45.878610⨯ B .55.878610⨯ C .358.78610⨯ D .50.5878610⨯3.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,若圆心距O 1O 2=2 cm ,则这两圆的位置关系是( ) A .内含 B .外切 C .相交 D .内切4.若一个多边形的内角和是它的外角和的2倍,则这个多边形是 ( ) A .四边形 B .五边形 C .六边形 D .八边形 5.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是( ) A .平均数 B .众数 C .中位数 D .方差 6.小明的爷爷每天坚持体育锻炼,一天他步行到离家较远的公园,打了一会儿太极拳后跑步回家.下面的四个函数图象中,能大致反映当天小明的爷爷离家的距离y 与时间x 的函数关系的是( )7.下图的长方体是由A ,B ,C ,D 四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是( )8.在平面直角坐标系xOy 中,点P 在由直线3+-=x y ,直线4y =和直线1x =所围成的区域内或其边界上,点Q 在x 轴上,若点R 的坐标为(2,2)R ,则QP QR +的最小值为( )A B .25+ C . D .4 二、填空题(本题共16分,每小题4分) 9.分解因式 m 3 – 4m = .10.函数21-=x y 中,自变量x 的取值范围是 .11.如图,两同心圆的圆心为O ,大圆的弦AB 与小圆相切,切点为P .若两圆的半径分别为2和1,则弦长AB =;若用阴影部分围成一个圆锥(OA 与OB 重合),则该圆锥的底面半径长为 . 12.对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n ,B n 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);11222011A B A B A B +++ 的值为 .三、解答题(本题共30分,每小题5分) 13.计算:2273181---⎪⎭⎫ ⎝⎛--- .14.已知:如图,直线AB 同侧两点C ,D 满足,,DBC CAD ∠=∠ AC =BD ,BC 与AD 相交于点E .求证:AE =BE .15.已知:关于x 的一元二次方程2420x x k ++=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最大整数值时,用公式法求该方程的解.16.已知 122=+xy x ,215xy y +=,求代数式()22()x y y x y +-+的值.17.如图,一次函数y kx b =+()0≠k 的图象与反比例函数my x=()0≠m 的图象交于(3,1)A -,(2,)B n 两点. (1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积.18.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有 人; (2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树 棵.(保留整数) 四、解答题(本题共20分,每小题5分)19.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求 出该方案所需费用.20.如图,在梯形ABCD 中,AB ∥DC ,5AD BC ==,10AB =,4CD =,连结并延长BD 到E ,使DE BD =, 作EF AB ⊥,交BA 的延长线于点F . (1)求tan ABD ∠的值;(2)求AF 的长.21.已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点,AD 交BC 于点E ,连结AB .(1)求证:2AB AE AD =⋅;(2)过点D 作⊙O 的切线,与BC 的延长线交于点F , 若AE =2,ED =4,求EF 的长.22.如图1,若将△AOB 绕点O 逆时针旋转180°得到△COD ,则△AOB ≌△COD .此时,我们称△AOB 与△COD 为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC 是锐角三角形且AC >AB ,点E 为AC 中点,F 为BC 上一点且BF ≠FC (F 不与B ,C 重合),沿EF 将其剪开,得到的两块图形恰能拼成一个梯形.请分别按下列要求用直线将图2中的△ABC 重新进行分割,画出分割线及拼接后的图形. (1)在图3中将△ABC 沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;(2)在图4中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;(3)在图5中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中 的一块为钝角三角形.五、解答题(本题共22分,第23题7分,第24题7分,第8分)23.阅读下列材料:若关于x 的一元二次方程20ax bx c ++=()0≠a 的两个实数根分别为x 1,x 2,则12bx x a +=-,12c x x a⋅=. 解决下列问题:已知:a ,b ,c 均为非零实数,且a >b >c ,关于x 的一元二次方程20ax bx c ++=有两个实数根,其中一根为2.(1)填空:42a b c ++ 0,a 0,c 0;(填“>”,“<”或“=”)(2)利用阅读材料中的结论直接写出方程20ax bx c ++=的另一个实数根(用含a ,c 的代数式表示);(3)若实数m 使代数式2am bm c ++的值小于0,问:当x =5m +时,代数式2ax bx c ++的值是否为正数?写出你的结论并说明理由.24.如图1,在Rt △ABC 中,∠C =90°,AC =9cm ,BC =12cm .在Rt △DEF 中,∠DFE =90°,EF=6cm ,DF =8cm .E ,F 两点在BC 边上,DE ,DF 两边分别与AB 边交于G ,H 两点. 现固定△ABC 不动,△DEF 从点F 与点B 重合的位置出发,沿BC 以1cm/s 的速度向点C 运动,点P 从点F 出发,在折线FD —DE 上以2cm/s 的速度向点E 运动.△DEF 与点P 同时出发,当点E 到达点C 时,△DEF 和点P 同时停止运动.设运动的时间是t (单位:s ),t >0. (1)当t =2时,PH= cm ,DG = cm ; (2)t 为多少秒时△PDE 为等腰三角形?请说明理由; (3)t 为多少秒时点P 与点G 重合?写出计算过程; (4)求tan ∠PBF 的值(可用含t 的代数式表示).25.如图1,在平面直角坐标系xOy 中,以y 轴正半轴上一点(0,)A m (m 为非零常数)为端点,作与y 轴正方向夹角为60°的射线l ,在l 上取点B ,使AB =4k (k 为正整数),并在l 下方作∠ABC =120°,BC=2OA ,线段AB ,OC 的中点分别为D ,E . (1)当m =4,k =1时,直接写出B ,C 两点的坐标;(2)若抛物线212y x x m k =-++的顶点恰好为D 点,且DE=求抛物线的解析式及此时cos ∠ODE 的值;(3)当k =1时,记线段AB ,OC 的中点分别为D 1,E 1,当k =3时,记线段AB ,OC 的中点分别为D 3,E 3,求直线13E E 的解析式及四边形1331D D E E 的面积(用含m 的代数式表示).海淀区九年级第二学期期中测评数学一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.的倒数是()A. 2B.C.D.2.2010年2月12日至28日,温哥华冬奥会官方网站的浏览量为275 000 000人次. 将275 000 000用科学记数法表示为()A. B. C. D.3.右图是某几何体的三视图,则这个几何体是()A. 圆柱B. 正方体C. 球D. 圆锥4.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A. 5B.6C. 7D.85.一个布袋中有4个除颜色外其余都相同的小球,其中3个白球,1个红球.从袋中任意摸出1个球是白球的概率是()A.B.C.D.6.四名运动员参加了射击预选赛,他们成绩的平均环数及其方差如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选()A.甲B.乙C.丙D.丁7.把代数式分解因式,结果正确的是()A.B.C.D.8. 如图,点、是以线段为公共弦的两条圆弧的中点,. 点、分别为线段、上的动点. 连接、,设,,下列图象中,能表示与的函数关系的图象是()A. B.C. D.二、填空题(本题共16分,每小题4分)9.函数的自变量的取值范围是.10.如图,⊙O的半径为2,点为⊙O上一点,弦于点,,则_____.11.若代数式可化为,则的值是 .12. 如图,+1个边长为2的等边三角形有一条边在同一直线上,设△的面积为,△的面积为,…,△的面积为,则= ;=____ (用含的式子表示).三、解答题(本题共30分,每小题5分)13.计算: . 14.解方程:.15. 如图, △和△均为等腰直角三角形,, 连接、.求证: .16. 已知:,求代数式的值.17. 已知:如图,一次函数与反比例函数的图象在第一象限的交点为.(1)求与的值;(2)设一次函数的图像与轴交于点,连接,求的度数.18. 列方程(组)解应用题:2009年12月联合国气候会议在哥本哈根召开.从某地到哥本哈根,若乘飞机需要3小时,若乘汽车需要9小时.这两种交通工具平均每小时二氧化碳的排放量之和为70千克,飞机全程二氧化碳的排放总量比汽车的多54千克,分别求飞机和汽车平均每小时二氧化碳的排放量.四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分)19.已知:如图,在直角梯形中,∥,,于点O,,求的长.20.已知:如图,⊙O为的外接圆,为⊙O的直径,作射线,使得平分,过点作于点.(1)求证:为\⊙O的切线;(2)若,,求⊙O的半径.21.2009年秋季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动. 同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果做出的统计图的一部分.图1 图2请根据以上信息解答问题:(1)补全图1和图2;(2)如果全校学生家庭总人数约为3000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.22.阅读:如图1,在和中,,,、、、四点都在直线上,点与点重合.连接、,我们可以借助于和的大小关系证明不等式:().证明过程如下:∵∴∵,∴.即.∴.∴.解决下列问题:(1)现将△沿直线向右平移,设,且.如图2,当时,.利用此图,仿照上述方法,证明不等式:().(2)用四个与全等的直角三角形纸板进行拼接,也能够借助图形证明上述不等式.请你画出一个示意图,并简要说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2011年初三二模试卷数 学 2011. 6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.3-的倒数是A .3B .13-C .3-D .132.2010年,我国国内生产总值(GDP )为58 786亿美元,超过日本,成为世界第二大经济体.58 786用科学记数法表示为A .45.878610⨯B .55.878610⨯C .358.78610⨯D .50.5878610⨯3.⊙O1的半径为3cm ,⊙O2的半径为5cm ,若圆心距O1O2=2 cm ,则这两圆的位置关系是A .内含B .外切C .相交D .内切4.若一个多边形的内角和是它的外角和的2倍,则这个多边形是A .四边形B .五边形C .六边形D .八边形5.某鞋店试销一种新款女鞋,销售情况如下表所示:数量(双) 3 5 10 15 8 3 2鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是A .平均数B .众数C .中位数D .方差6.小明的爷爷每天坚持体育锻炼,一天他步行到离家较远的公园,打了一会儿太极拳后跑步回家.下面的四个函数图象中,能大致反映当天小明的爷爷离家的距离y 与时间x 的函数关系的是7.下图的长方体是由A ,B ,C ,D 四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是8.在平面直角坐标系xOy 中,点P 在由直线3+-=x y ,直线4y =和直线1x =所围成的区域内或其边界上,点Q 在x 轴上,若点R 的坐标为(2,2)R ,则QP QR +的最小值为A .17B .25+C .35D .4二、填空题(本题共16分,每小题4分)9.分解因式 m3 – 4m = .10.函数21-=x y 中,自变量x 的取值范围是 .11.如图,两同心圆的圆心为O ,大圆的弦AB 与小圆相切,切点为P . 若两圆的半径分别为2和1,则弦长AB= ;若用阴影部分围成一个圆锥(OA 与OB 重合),则该圆锥的底面半径长为 .12.对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于An ,Bn 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示); 112220112011A B A B A B +++的值为 .三、解答题(本题共30分,每小题5分)13.计算:22731810---⎪⎭⎫ ⎝⎛--- .14.已知:如图,直线AB 同侧两点C ,D 满足CAD DBC ∠=∠, AC=BD ,BC 与AD 相交于点E .求证:AE??BE .??.已知:关于x 的一元二次方程2420xx k ++=??.已知??122=+xy x ,215xy y +=,求代数式()22()x y y x y +-+的值.?? y kx b =+()0≠k 的图象与反比例函数m y x=()0≠m 的图象交于(3,1)A -,(2,)B n 两点. (1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积.18.今年3月12日,的有关信息,完成下列问题:20辆,已40万元,设购买大型客车x(辆),购车总费用为y (万元).(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求 出该方案所需费用.20.如图,在梯形ABCD 中,AB ∥DC ,5AD BC ==,10AB =,4CD =,连结并延长BD 到E ,使DE BD =,作EF AB ⊥,交BA 的延长线于点F .( )求tan ABD ∠的值;(2)求AF 的长.21.已知:如图,BD为⊙O的直径,点A是劣弧BC的中点, AD交BC于点E,连结AB.(1)求证:2=⋅;AB AE AD(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.22.如图1,若将△AOB绕点O逆时针旋转则△AOB≌△COD.此时,我们称△AOB与△COD“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC是锐角三角形且AC>AB, E为AC的中点,F为BC上一点且BF≠FC(F不与B,C重合),沿EF将其剪开,得到的两块图形恰能拼成一个梯形.重新进行分割,画出(1)在图3中将△ABC沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;(2)在图4中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;(3)在图5中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的一块为钝角三角形.五、解答题(本题共2225题8分)23.阅读下列材料:若关于)0≠的两个实数根分别为x1,x2,则12b x x a +=-,12c x x a⋅=. 解决下列问题:已知:a ,b ,c 均为非零实数,且a >b >c ,关于x 的一元二次方程20ax bx c ++=有两个实数根,其中一根为2.(1)填空:42a b c ++ 0,a 0,c 0;(填“>”,“<”或“=”)(2)利用阅读材料中的结论直接写出方程20ax bx c ++=的另一个实数根(用含a ,c 的代数式表示);(3)若实数m 使代数式2am bm c ++的值小于0,问:当x=5m +时,代数式2ax bx c ++的值是否为正数?写出你的结论并说明理由.24.如图1,在Rt △ABC 中,∠C =90°,AC =9cm ,BC =12cm .在Rt △DEF 中,∠DFE =90°,EF =6cm ,DF =8cm .E ,F 两点在BC 边上,DE ,DF 两边分别与AB 边交于G ,H 两点.现固定△ABC 不动,△DEF 从点F 与点B 重合的位置出发,沿BC 以1cm/s 的速度向点C 运动,点P 从点F 出发,在折线FD —DE 上以2cm/s 的速度向点E 运动.△DEF 与点P 同时出发,当点E 到达点C 时,△DEF 和点P 同时停止运动.设运动的时间是t (单位:s ),t >0.(1)当t =2时,PH= cm ,DG = cm ;(2)t 为多少秒时△PDE 为等腰三角形?请说明理由;(3)t 为多少秒时点P 与点G 重合?写出计算过程;(4)求tan ∠PBF 的值(可用含t 的代数式表示).25.如图1y点B ,使AB=4k (k 为正整数),并在l 下方作∠ABC =120°,BC=2OA ,线段AB ,OC 的中点分别为D ,E .(1)当m=4,k=1时,直接写出B ,C 两点的坐标;(2)若抛物线212y x m k =-++的顶点恰好为D 点,且DE=求抛物线的解析式及此时cos ∠ODE 的值;(3)当k=1时,记线段AB ,OC 的中点分别为D1,E1;当k=3时,记线段AB ,OC 的中点分别为D3,E3,求直线13E E 的解析式及四边形1331D D E E 的面积(用含m 的代数式表示).二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13.解:原式=112--……………………………………………………………4分=32. ……………………………………………………………………5分14.证明: 如图1.在△ACE 和△BDE 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BD AC BED AEC DBE CAE ………………………………3分∴△ACE ≌△BDE . ……………………………………………………………4分 ∴AE=BE .………………………………………………………………………5分15.解:(1)∵ 关于x 的一元二次方程2420x x k ++=有两个不相等的实数根, ∴16420k ∆=-⨯>. ………………………………………………………1分解得2k <. (2)分 (2)∵2k <,∴ 符合条件的最大整数1k =,此时方程为2420x x ++=. ……………3分∴ 142a b c ===,,.∴22444128b ac -=-⨯⨯=. (4)分代入求根公式2b x a -±=,得422x -±==-±.…………5分∴1222x x =-+=--. 16.解:原式=222222xxy y xy y ++--=22x y -. (2)分∵ 122=+xy x ①,152=+y xy ②, ∴ ①-②,得223x y -=-. (4)分 ∴ 原式=3-. ………………………………………………………………………5分17.解:(1)∵ 反比例数m y x =()0≠m 的图象经过(3,1)A -,(2,)B n 两点,(如图 )313m =-⨯=-,322m n ==-. 3y x=- 点B 的坐标为3(2)2B -, y kx b =+()0≠k 的图象经过(3,1)A -, 3(2)2B -,两点, ∴ 31,32.2k b k b -+=⎧⎪⎨+=-⎪⎩ 解得 1,21.2k b ⎧=-⎪⎪⎨⎪=-⎪⎩ ∴ 一次函数的解析式为1122y x =--.……………………………………3分 (2)设一次函数1122y x =--的图象与x 轴的交点为C ,则点C 的坐标为(1,0)C -.∴ =AOB ACO COB S S S ∆∆∆+113=11+1222⨯⨯⨯⨯5=4. …………………………5分18.解:(1)50;………………………………………………………………………………1分………………………………………………………………………………3分(3)3. (5)分四、解答题(本题共20分,每小题5分)19.解:(1)因为购买大型客车x辆,所以购买中型客车(20)x-辆.()=+-=+.…………………………………………2分y x x x62402022800(2)依题意得x-20< x.解得x >10. (3)分∵22800y x=+,y随着x的增大而增大,x为整数,∴当x=11时,购车费用最省,为22×11+800=1 042(万元).…………4分此时需购买大型客车11辆,中型客车9辆.……………………………5分答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.20.解:(1)作DM⊥AB于点M,CN⊥AB于点N.(如图3)∵AB∥DC,DM⊥AB,CN⊥AB,∴∠DMN=∠CNM=∠MDC=90︒.∴四边形MNCD是矩形.∵4CD=,∴ MN=CD= 4.∵ 在梯形ABCD 中,AB ∥DC ,5AD BC ==, ∴ ∠DAB=∠CBA ,DM=CN . ∴ △ADM ≌△BCN . 又∵10AB =,∴ AM=BN=()11(104)322AB MN -=⨯-=.∴MB=BN+MN=7.……………………………………………………………2分 ∵ 在Rt △AMD 中,∠AMD=90︒,AD=5,AM=3, ∴4DM =.∴4tan 7DM ABD BM ∠==.……………………………………………………3分(2)∵ EF AB ⊥, ∴ ∠F=90︒.∵∠DMN=90︒, ∴ ∠F=∠DMN. ∴ DM ∥EF .∴ △BDM ∽△BEF . ∵ DE BD =, ∴ 12BMBD BFBE ==. ∴ BF=2BM=14. ……………………………………………………………4分∴ AF=BF -AB=14-10=4. (5)分21.(1)证明:如图4.∵点A是劣弧BC的中点,∴∠ABC=∠ADB又∵∠BAD=∠EAB,∴△ABE∽△ADB.………………………2分∴AB ADAE AB=.∴2AB AE AD=⋅.………………………………………………………3分(2)解:∵ AE=2,ED=4,∴()22612AB AE AD AE AE ED=⋅=+=⨯=.∴AB=(舍负).………………………………………………………4分∵ BD为⊙O的直径,∴∠A=90︒.又∵ DF是⊙O的切线,∴ DF⊥BD.∴∠BDF=90︒.在Rt△ABD中,tan ABADBAD∠===,∴∠ADB=30︒.∴∠ABC=∠ADB=30︒.∴∠DEF=∠AEB=60︒,903060EDF BDF ADB∠=∠-∠=︒-︒=︒.∴∠F =18060DEF EDF︒-∠-∠=︒.∴△DEF是等边三角形.∴EF=DE=45分 22.解:(1……………………………………………………1分(2……………………………………3分(3……………………………………………………5分 23.解:(1)=,>,<.……………………………………………………………………3分 (2)2ca.……………………………………………………………………………4分(3)答:当x=5m +时,代数式2y ax bx c =++的值是正数. 理由如下:设抛物线2y ax bx c =++(a ≠0),则由题意可知,它经过A (,0)2c a,B (2,0) 两点.∵ a >0,c <0,∴ 抛物线2y ax bx c =++开口向上,且2ca<0<2,即点A 在点B 左侧.………………………5分设点M 的坐标为2(,)M m am bm c ++,点N 的坐标为(5,)N m y +. ∵ 代数式2am bm c ++的值小于0,∴ 点M 在抛物线2y ax bx c =++上,且点M∴点M 在x 轴下方的抛物线上.(如图5)∴ A M B x x x <<,即22cm a<<. ∴ 5572c m a +<+<,即572N c x a+<<.以下判断52c a+与B x 的大小关系:∵ 42a b c ++=0,a >b ,a >0, ∴ 66(42)(5)(5)202222B cc a c a a b a b x aa a a a+-+-+-=+-===>. ∴B x a c >+52. ∴ 52N B cx x a>+>.…………………………………………………………6分∵ B ,N 两点都在抛物线的对称轴的右侧,y 随x 的增大而增大, ∴B Ny y >,即0y >.∴ 当x=5m +时,代数式2ax bx c ++的值是正数. ………………………7分 24.解:(1)52,265.………………………………………………………………………2分(2)只有点P 在DF 边上运动时,△PDE 才能成为等腰三角形,且PD=PE .(如图6)……………3分∵ BF=t ,PF=2t ,DF =8, ∴ 82PD DF PF t =-=-.在Rt △PEF 中,2222436PE PF EF t =+=+=2PD .即()2228364t t -=+.解得 78t =.…………………………………4分∴ t 为78时△PDE 为等腰三角形.(3)设当△DEF 和点P 运动的时间是t 时,点P 与点G 重合,此时点P 一定在DE 边上,DP= DG . 由已知可得93tan 124AC B BC===,63tan 84EF D DF ===. ∴.D B ∠=∠∴.90︒=∠=∠BFH DGH ∴ 3tan 4FH BF B t =⋅=,384DH DF FH t =-=-,.5325354438cos +-=⨯⎪⎭⎫ ⎝⎛-=⋅=t t D DH DG∵ 2DP DF t +=, ∴ 28DP t =-.由DP=DG 得3322855t t -=-+.解得7213t =. …………………………………………………………………5分检验:724613<<,此时点P 在DE 边上.∴ t 的值为7213时,点P 与点G 重合.(4)当0<t ≤4时,点P 在DF 边上运动(如图6),tan 2PF PBF BF∠==.…………………………………………………………………………………6分当4< t ≤6时,点P 在DE 边上运动(如图7),作PS ⊥BC 于S ,则tan PS PBF BS∠=.可得10(28)182PE DE DP t t =-=--=-.此时()5725821854cos cos +-=-=⋅=∠⋅=t t D PE EPS PE PS ,()5545621853sin sin +-=-=⋅=∠⋅=t t D PE EPS PE ES . 524511554566-=⎪⎭⎫ ⎝⎛+--+=-+=t t t ES EF BF BS . ∴728tan 1124PS tPBF BS t -∠==-.………………………………………………7分综上所述, 2 (04),tan 728 (46).1124t PBF tt t <≤⎧⎪∠=-⎨<≤⎪-⎩ (以上时间单位均为s ,线段长度单位均为cm ) 25.解:(1)B点的坐标为, (1)分C点的坐标为. (3)分(2)当AB=4k ,(0,)A m 时,OA=m ,与(1)同理可得B点的坐标为,2)B k m +,C点的坐标为,2)C k .如图8,过点B 作y 轴的垂线,垂足为F ,过点C 作x 轴的垂线,垂足为G , 两条垂线的交点为H ,作DM ⊥FH 于点M ,EN ⊥OG 于点N . 由三角形中位线的性质可得点D的坐标为,)D k m +,点E 的坐标为)E k +.由勾股定理得DE =. ∵DE=∴ m=4. ……………………………4分 ∵ D恰为抛物线212y x m k =-+++它的顶点横坐标为∴=.解得k=1.此时抛物线的解析式2143y x =-++. (5)分此时D ,E两点的坐标分别为D,E .∴OD =,OE =∴ OD=OE=DE .∴ 此时△ODE 为等边三角形,cos ∠ODE= cos60°=12.……………………6分(3)E1,E3点的坐标分别为1(2E +,E3(2+. 设直线13E E 的解析式为y ax b =+(a ≠0).则1,3.a b a b ⎧+=⎪⎪⎨⎪++=⎪⎩解得.2a m b ⎧=⎪⎪⎨⎪=-⎪⎩∴直线13E E 的解析式为2my =-. ……………………………………7分可得直线13E E 与y 轴正方向的夹角为60°.∵ 直线13D D ,13E E 与y 轴正方向的夹角都等于60°, ∴ 13D D ∥13E E .∵ D1,D3两点的坐标分别为11)D m +,33)D m +,由勾股定理得13D D =4,13E E =4.∴ 1313D D E E =.∴ 四边形1331D D E E 为平行四边形.设直线13E E 与y 轴的交点为P ,作AQ ⊥13E E 于Q .(如图9)可得点P 的坐标为.23,2,0m AP m P =⎪⎭⎫ ⎝⎛-∴.43360sin sin m AP OPQ AP AQ =︒⋅=∠⋅=∴1331134D D E ES D D AQ =⨯==四边形.…………………………8分。

相关文档
最新文档