中规模同步加法计数器
6时序逻辑电路3【精选】
![6时序逻辑电路3【精选】](https://img.taocdn.com/s3/m/98362540b7360b4c2f3f6426.png)
1、N > M
原理:计数循环过程中设法跳过N-M个状态。
具体方法 (a)置零法
(b)置数法
异步置零法 同步置零法
异步预置数法 同步预置数法
例:将十进制的74160接成六进制计数器
CP RD LD EP ET 工作状态 X 0 X X X 置 0(异步)
1 0 X X 预置数(同步) X 1 1 0 1 保持(包括C) X 1 1 X 0 保持(C=0)
无
40MHZ
74LS190 十进制可逆 异步
无
20MHZ
74LS568 十进制可逆 同步 同步(低)
20MHZ
74LS163A 4位二进制 同步 同步(低)
25MHZ
74LS161A 4位二进制 同步 异步(低)
25MHZ
74LS561 4位二进制 同步 同步(低)/异步(低)30MHZ
74LS193 4位进制可逆 异步 异步(高)
双时钟:74192--集成十进制同步可逆计数器,其引脚排列图 和逻辑功能示意图与74193相同。
中规模集成计数器
几种中规模集成同步计数器
型号
模式 预置 清零
工作 频率
74LS162A 十进制 同步 同步(低)
25MHZ
74LS160A 十进制 同步 异步(低)
25MHZ
74LS168 十进制可逆 同步
25MHZ
74LS191 4位进制可逆 异步
无
20MHZ
74LS569 4位进制可逆 同步 异步(低)
20MHZ
74LS867 8位二进制 同步 同步
115MHZ
74LS569 8位二进制 异步 异步
115MHZ
三、任意进制计数器的构成方法
SMI计数器的应用设计
![SMI计数器的应用设计](https://img.taocdn.com/s3/m/5f5674e70975f46527d3e1ca.png)
SMI计数器的应用设计余 莉 朱利洋(丽水学院工学院 浙江 丽水 323000)摘 要: 通过对比分析汇总若干常用的中规模集成(SMI)计数器,并通过实例得出灵活设计任意进制计数器的方法。
关键词: SMI任意进制计数器;清零置数级联;设计中图分类号:TP29 文献标识码:A 文章编号:1671-7597(2012)1110054-02制计数器,若k>1,采用先级联后反馈的方式实现M 进制,具体0 引言做法是:先将这K 片连接成,然后采用整体反馈法实现M 进制计计数器是最常用的时序逻辑电路,在数字电子技术课程中k 数器。
主要思想是:在N 进制计数的过程中,设法使之跳越-占有非常重要的地位。
集成计数器的灵活应用是计数器部分的M 个状态,就可以得到M 进制的计数器。
教学目标。
目前大多数的教材中都会花大量篇幅介绍大量的电 2.1 确定芯片数目k路和集成芯片,学生学习起来难以快速掌握。
本文汇总各种常见的SMI 计数器,对比分析总结各种计数器的功能区别,并通过设计实例得到快速、灵活掌握任意进制计数器的实现方法。
1 常见SMI计数器计数器的种类非常繁多。
按计数器中的各个触发器是否同时翻转分为同步计数器和异步计数器。
按计数过程中数值的增减可分为加法计数器、减法计数器和可逆计数器。
按计数容量可分为十进制计数器,十六进制计数器,任意进制计数器。
74系列SMI 同步计数器是目前集成计数器的主流产品。
常见的SMI 同步计数器型号有160/161/162/163/190/191/192/193。
其中,160/161/162/163是同步加法计数器,同步可逆(加/减)计数器型号是190/191/192/193。
常见的SMI 异步计数器有74LS290/293等。
161/163/191/193/293等型号是奇数的为四位二进制计数器,也称十六进制计数器,160/162/190/192/290等型号是偶数的为十进制计数器。
74LS161和74LS290集成计数器功能说明
![74LS161和74LS290集成计数器功能说明](https://img.taocdn.com/s3/m/e5404000a417866fb84a8ee7.png)
74LS161和74LS290集成计数器功能说明1、集成同步计数器同步计数器电路复杂,但计数速度快,多用在计算机电路中。
目前生产的同步计数器芯片分为二进制和十进制两种。
(1)集成同步二进制计数器中规模同步四位二进制加法计数器74LS161具有计数、保持、预置、清零功能。
图8.51所示是它的逻辑符号和引脚排列图。
图8.51 74LS161的逻辑符号和外引脚排列图图中LD为同步置数控制端,d R为异步置0控制端,EP和ET为计数控制端,D0~D3为并行数据输入端,Q0~Q3为输出端,C为进位输出端。
表8.13为74LS161的功能表。
R=0时,输出端清0,与CP无关。
①异步清0 当dR=1,当LD=0时,在输入端D3D2D1D0预置某个数据,则在CP脉②同步并行预置数d冲上升沿的作用下,就将输入端的数据置入计数器。
R=1,当=1时,只要EP和ET中有一个为低电平,计数器就处于保持状态。
③保持d在保持状态下,CP不起作用。
R=1,LD=1,EP=ET=1时,电路为四位二进制加法计数器。
当计到1111时,④计数d进位输出端C送出进位信号(高电平有效),即C=1。
(2)集成同步十进制计数器集成同步十进制加法计数器74LS160的管脚图和功能表与74LS161基本相同,唯一不同的是74LS160是十进制计数器,而74LS161是二进制计数器。
2、集成异步计数器异步计数电路简单,但计数速度慢,多用于仪器、仪表中。
(1)集成计数器74LS290图8.52是二-五-十进制集成计数器74LS290的逻辑结构图。
它兼有二进制、五进制和十进制三种计数功能。
当十进制计数时,又有8421BCD 和5421BCD 码选用功能,表8.14是它的功能表。
95481213131011CP 0CP 1Q 0Q 1Q 3Q 2R O(1)R O(2)S 9(1)S 9(2)图8.52 74LS290的逻辑结构图由表可知,74LS290具有如下功能:①异步置0 当R 0(1)=R 0(2)=1且S 9(1)或S 9(2)中任一端为0,则计数器清零,即Q D Q C Q B Q A =0000。
利用中规模集成计数器设计任意进制计数器的几种方法
![利用中规模集成计数器设计任意进制计数器的几种方法](https://img.taocdn.com/s3/m/5e20f95aa36925c52cc58bd63186bceb19e8ed97.png)
利用中规模集成计数器设计任意进制计数器的几种方法
赵守斌
【期刊名称】《淮北煤师院学报:自然科学版》
【年(卷),期】1996(017)004
【摘要】本文阐述了用MSI计数器设计任意进制同步加法计数器的几种方法。
【总页数】3页(P93-95)
【作者】赵守斌
【作者单位】淮北煤炭师范学院
【正文语种】中文
【中图分类】TN332.12
【相关文献】
1.用集成计数器构成任意进制计数器 [J], 姚旻
2.用74160集成计数器构成任意进制计数器的电路设计 [J], 单嵛琼;单长吉
3.浅谈利用触发器的复位端设计计数器——将多位二进制计数器变成其它进制的计数器 [J], 阮长青
4.集成计数器实现任意进制计数器的方法 [J], 刘宝连
5.集成计数器构成任意进制计数器的方法 [J], 王敦惠
因版权原因,仅展示原文概要,查看原文内容请购买。
采用中规模集成计数器进行任意进制计数器设计的解决方案
![采用中规模集成计数器进行任意进制计数器设计的解决方案](https://img.taocdn.com/s3/m/9ddc7ffe360cba1aa811dadd.png)
采用中规模集成计数器进行任意进制计数器设计的解决方案1 绪论计数器是数字逻辑系统中的基本部件,它是数字系统中用得最多的时序逻辑电路,其主要功能就是用计数器的不同状态来记忆输入脉冲的个数。
除此以外还具有定时、分频、运算等逻辑功能。
计数器不仅能用于对时钟脉冲的计数,还可使用于定时、分频、产生节拍脉冲以及进行数字运算等。
只要是稍微复杂一些的数字系统,几乎没有不包含计数器的。
通常把满足N=2n的计数器称为二进制规则计数器,有些数字定时、分频系统中,常需要N≠2n 的任意进制计数器。
当我们在设计任意进制计数器(即计数模不是2及10)时,一般采用现有的中规模集成电路(Medium Scale Integration, MSI)芯片,通过适当的反馈连接加以实现。
而市场上现成的中规模集成电路芯片常见的只有十进制计数器和十六进制计数器,而在实际应用中,如数字钟电路中,却需要二十四进制和六十进制计数器,因此要将现有计数器改造成任意进制计数器。
利用MSI芯片进行适当的连接就可以构成任意进制计数,所使用的方法主要有反馈置零法、反馈预置法和级联法。
采用中规模集成计数器来设计任意进制计数器,使设计和调试工作更趋于简单,并且具有体积小,功耗低,可靠性高等优点。
本文主要阐述了用中规模集成计数器设计任意进制同步加法计数器的设计思想,并对设计方法和步骤作了讨论。
2. MS I中规模计数器概述2.1 MS I中规模计数器芯片种类MS I中规模计数器芯片有非常多的种类。
若按触发时钟的方式分类有:同步计数器、异步计数器;若按进制的"模"分类有:二进制计数器、十进制计数器;若按计数的方式分类:有加法计数器、减法计数器和可逆(加/减)计数器;若按芯片的型号分类就更多了,如:仅74系列的4位二进制计数器芯片就有161、163、191、193、197等,十进制计数器芯片有160、162等。
2.2 MSI中规模计数器工作原理。
同步计数器的设计实验报告
![同步计数器的设计实验报告](https://img.taocdn.com/s3/m/4ec567bbba0d4a7302763a73.png)
同步计数器的设计实验报告同步计数器的设计实验报告篇一:实验六同步计数器的设计实验报告实验六同步计数器的设计学号:姓名:一、实验目的和要求1.熟悉JK触发器的逻辑功能。
2.掌握用JK触发器设计同步计数器。
二、实验仪器及器件三、实验预习1、复习时序逻辑电路设计方法。
⑴逻辑抽象,得出电路的状态转换图或状态转换表①分析给定的逻辑问题,确定输入变量、输出变量以及电路的状态数。
通常都是取原因(或条件)作为输入逻辑变量,取结果作输出逻辑变量。
②定义输入、输出逻辑状态和每个电路状态的含意,并将电路状态顺序编号。
③按照题意列出电路的状态转换表或画出电路的状态转换图。
通过以上步骤将给定的逻辑问题抽象成时序逻辑函数。
⑵状态化简①等价状态:在相同的输入下有相同的输出,并且转换到同一次态的两个状态。
②合并等价状态,使电路的状态数最少。
⑶状态分配①确定触发器的数目n。
因为n个触发器共有2n种状态组合,所以为获得时序电路所需的M个状态,必须取2n1<M2n②给每个电路状态规定对应的触发器状态组合。
⑷选定触发器类型,求出电路的状态方程、驱动方程和输出方程①根据器件的供应情况与系统中触发器种类尽量少的原则谨慎选择使用的触发器类型。
②根据状态转换图(或状态转换表)和选定的状态编码、触发器的类型,即可写出电路的状态方程、驱动方程和输出方程。
⑸根据得到的方程式画出逻辑图⑹检查设计的电路能否自启动①电路开始工作时通过预置数将电路设置成有效状态的一种。
②通过修改逻辑设计加以解决。
⑺设计步骤简图图3 设计步骤简图2、按实验内容设计逻辑电路画出逻辑图。
设计思路详情见第六部分。
电路图如下:四、实验原理1.计数器的工作原理递增计数器----每来一个CP,触发器的组成状态按二进制代码规律增加。
递减计数器-----按二进制代码规律减少。
双向计数器-----可增可减,由控制端来决定。
2.集成J-K触发器74LS73⑴符号:图1 J-K触发器符号⑵功能:表1 J-K触发器功能表⑶状态转换图:图2 J-K触发器状态转换图⑷特性方程:Qn1JQnKQn⑸注意事项:①在J-K触发器中,凡是要求接“1”的,一定要接高电平(例如5V),否则会出现错误的翻转。
集成计数器功能描述及说明
![集成计数器功能描述及说明](https://img.taocdn.com/s3/m/d90832839e314332396893eb.png)
集成计数器功能描述及说明一、计数器概述集成计数器具有功能完善、通用性强、功耗低、工作速度快、功能可扩展等许多优点,应用非常广泛。
目前用得最多、性能较好的是高速CMOS集成计数器,其次是TTL计数器。
由于定型产品的种类毕竟有限,就计数进制而言,在集成计数器中,只有二进制和十进制计数两大系列。
因此,学习集成计数器,必须掌握用已有的计数器芯片构成其它任意进制计数器的连接方法。
1、集成同步计数器同步计数器电路复杂,但计数速度快,多用在计算机电路中。
目前生产的同步计数器芯片分为二进制和十进制两种。
(1)集成同步二进制计数器中规模同步四位二进制加法计数器74LS161具有计数、保持、预置、清零功能。
图8.51所示是它的逻辑符号和引脚排列图。
图8.51 74LS161的逻辑符号和外引脚排列图图中LD为同步置数控制端,d R为异步置0控制端,EP和ET为计数控制端,D0~D3为并行数据输入端,Q0~Q3为输出端,C为进位输出端。
表8.13为74LS161的功能表。
R=0时,输出端清0,与CP无关。
①异步清0 当d②同步并行预置数 d R =1,当LD =0时,在输入端D 3D 2D 1D 0预置某个数据,则在CP 脉冲上升沿的作用下,就将输入端的数据置入计数器。
③保持 d R =1,当=1时,只要EP 和ET 中有一个为低电平,计数器就处于保持状态。
在保持状态下,CP 不起作用。
④计数 d R =1,LD =1,EP =ET =1时,电路为四位二进制加法计数器。
当计到1111时,进位输出端C 送出进位信号(高电平有效),即C =1。
(2)集成同步十进制计数器集成同步十进制加法计数器74LS160的管脚图和功能表与74LS161基本相同,唯一不同的是74LS160是十进制计数器,而74LS161是二进制计数器。
2、集成异步计数器异步计数电路简单,但计数速度慢,多用于仪器、仪表中。
(1)集成计数器74LS290图8.52是二-五-十进制集成计数器74LS290的逻辑结构图。
数电实验报告:计数器及其应用-计数器应用实验报告
![数电实验报告:计数器及其应用-计数器应用实验报告](https://img.taocdn.com/s3/m/b536db6eaf1ffc4ffe47ac11.png)
数字电子技术实验报告实验四:计数器及其应用一、实验目的:1、熟悉常用中规模计数器的逻辑功能。
2、掌握二进制计数器和十进制计数器的工作原理和使用方法。
二、实验设备:1、数字电路实验箱;2、74LS90。
三、实验原理:1、计数是一种最简单基本运算,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时具有分频功能。
计数器按计数进制分有:二进制计数器,十进制计数器和任意进制计数器;按计数单元中触发器所接收计数脉冲和翻转顺序分有:异步计数器,同步计数器;按计数功能分有:加法计数器,减法计数器,可逆(双向)计数器等。
2、74LS90是一块二-五-十进制异步计数器,外形为双列直插,NC表示空脚,不接线,它由四个主从JK触发器和一些附加门电路组成,其中一个触发器构成一位二进制计数器;另三个触发器构成异步五进制计数器。
在74LS90计数器电路中,设有专用置“0”端R0(1),R0(2)和置“9”端S9(1)S9(2)。
其中前两个为异步清0端,后两个为异步置9端。
CP1, CP2为两个时钟输入端;Q0~Q3为计数输出端。
当R1=R2=S1=S2=0时,时钟从CP1引入,Q0输出为二进制;从CP2引入,Q3输出为五进制。
时钟从CP1引入,二Q0接CP1,则Q3Q2Q1Q0输出为十进制(8421码);时钟从CP2引入,而Q3接CP1,则Q0Q3Q2Q1输出为十进制(5421码)。
四、实验原理图及实验结果:1、实现0~9十进制计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~9十个数字。
2、实现六进制计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~5六个数字。
3、实现0、2、4、6、8、1、3、5、7、9计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0、2、4、6、8、1、3、5、7、9十个数字。
计数器实验报告
![计数器实验报告](https://img.taocdn.com/s3/m/af6d9ad585868762caaedd3383c4bb4cf7ecb723.png)
一、实验目的1. 理解计数器的基本原理和功能。
2. 掌握使用集成触发器构成计数器的方法。
3. 熟悉中规模集成计数器的使用及功能测试方法。
4. 了解计数器在数字系统中的应用。
二、实验器材1. 数字电路实验箱2. 同步十进制可逆计数器74LS1923. 2输入四与门74LS004. 模拟示波器5. 逻辑分析仪6. 电源三、实验原理计数器是一种用于统计输入脉冲个数的逻辑电路,广泛应用于数字系统中。
计数器不仅可以实现计数功能,还可以用于定时控制、分频、数字运算等。
根据计数进制、触发器翻转方式、计数功能等不同,计数器可以分为多种类型。
1. 计数进制:二进制计数器、十进制计数器、任意进制计数器。
2. 触发器翻转方式:同步计数器、异步计数器。
3. 计数功能:加法计数器、减法计数器、可逆计数器。
本实验采用74LS192同步十进制可逆计数器和74LS00四与门组成计数器电路。
四、实验内容及步骤1. 搭建实验电路:- 将74LS192的时钟输入端CP、复位端R、置数端S、计数输出端Q0-Q3分别与74LS00的输入端相连。
- 将74LS192的时钟输入端CP接至实验箱的时钟信号输出端。
- 将74LS192的复位端R和置数端S接至实验箱的控制信号输出端。
- 将74LS192的计数输出端Q0-Q3分别连接至逻辑分析仪的输入端。
2. 功能测试:- 测试计数器的计数功能:观察逻辑分析仪显示的计数输出波形,验证计数器能否实现计数功能。
- 测试计数器的复位功能:通过控制实验箱的控制信号,观察逻辑分析仪显示的计数输出波形,验证计数器能否实现复位功能。
- 测试计数器的置数功能:通过控制实验箱的控制信号,观察逻辑分析仪显示的计数输出波形,验证计数器能否实现置数功能。
3. 计数器应用:- 利用计数器实现定时功能:将计数器的计数输出端Q0-Q3分别连接至74LS00的输入端,通过组合逻辑电路实现定时功能。
- 利用计数器实现分频功能:将计数器的计数输出端Q0-Q3分别连接至74LS00的输入端,通过组合逻辑电路实现分频功能。
中规模十进制计数器74LS192(或CC40192)
![中规模十进制计数器74LS192(或CC40192)](https://img.taocdn.com/s3/m/2bc9b282a1116c175f0e7cd184254b35eefd1a73.png)
中规模十进制计数器74LS192(或CC40192)3、中规模十进制计数器74LS192(或CC40192)74LS192是同步十进制可逆计数器,它具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如下所示:图14-4 74LS192的引脚排列及逻辑符号(a)引脚排列 (b) 逻辑符号图中:(LD)为置数端,为加计数端,为减计数端,(CO)为非同步进PLCPCPTCUDU 位输出端 (BO)为非同步借位输出端,P0(D)、P1、P2、P3为计数器输入端,(CR)MRTC0D为清除端,Q0、Q1、Q2、Q3为数据输出端。
计数器及其应用(设计性)一、实验目的1(学习集成触发器构成计数器的方法。
2(掌握中规模集成计数器的使用方法及功能侧试方法。
3(用集成电路计数器构成1,N分频器。
二、实验预习要求1(复习计数器电路工作原理。
2(预习中规模集成电路计数器74LS192的逻辑功能及使用方法。
3(复习实现任意进制计数的方法。
三、实验原理计数器是典型的时序逻辑电路,它是用来累计和记忆输入脉冲的个数(计数是数字系统中很重要的基本操作,集成计数器是最广泛应用的逻辑部件之一。
计数器种类较多,按构成计数器中的多触发、器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数制的不同,可分为二进制计数器、十进制计数器和任意进制计数器:根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等。
本实验主要研究中规模十进制计数器74LS192的功能及应用。
1. 74LS192的主要原理(1)74LS192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其逻辑符号及引脚排列如图4-1所示。
图4—1 74LS192逻辑符号及引脚排列图中:CPU—加计数端 CP一减计数端 /LD一置数端 CR一清零端 /CO一非同D 步进位输出端/BO一非同步借位输出端 D0、 D1、D2、 D3一数据输入端 Q0、Q1、Q2、Q3一数据输出端74LS192功能如下表4—1:(1)清零(CR)令CR=1,其它输入端状态为任意态,,记录Q3Q2Q1Q0的状态和译码显示的数值。
计数器的原理
![计数器的原理](https://img.taocdn.com/s3/m/9991ca18de80d4d8d15a4fde.png)
计数器的原理计数器是数字电路中广泛使用的逻辑部件,是时序逻辑电路中最重要的逻辑部件之一。
计数器除用于对输入脉冲的个数进行计数外,还可以用于分频、定时、产生节拍脉冲等。
计数器按计数脉冲的作用方式分类,有同步计数器和异步计数器;按功能分类,有加法计数器、减法计数器和既具有加法又有减法的可逆计数器;按计数进制的不同,又可分为二进制计数器、十进制计数器和任意进制计数器。
一、计数器的工作原理1、二进制计数器(1)异步二进制加法计数器图1所示为用JK触发器组成的4位异步二进制加法计数器逻辑图。
图中4个触发器F0~F3均处于计数工作状态。
计数脉冲从最低位触发器F0的CP端输入,每输入一个计数脉冲,F0的状态改变一次。
低位触发器的Q端与高位触发器的CP端相连。
每当低位触发器的状态由1变0时,即输出一负跳变脉冲时,高位触发器翻转。
各触发器置0端R D并联,作为清0端,清0后,使触发器初态为0000。
当第一个计数脉冲输入后,脉冲后沿使F0的Q0由0变1,F1、F2、F3均保持0态,计数器的状态为0001;当图1 4位异步二进制加法计数器第二个计数脉冲输入后,Q0由1变为0,但Q0的这个负跳变加至F1的CP端,使Q1由0变为1,而此时F3、F2仍保持0状态,计数器的状态为0010。
依此类推,对于F0来说,每来一个计数脉冲后沿,Q0的状态就改变,而对于F1、F2、F3来说,则要看前一位输出端Q 是否从1跳到0,即后沿到来时,其输出端的状态才改变,否则Q1、Q2、Q3端的状态同前一个状态一样。
这样在第15个计数脉冲输入后,计数器的状态为1111,第16个计数脉冲输入,计数器恢复为0000。
由上述分析可知,一个4位二进制加法计数器有24=16种状态,每经过十六个计数脉冲,计数器的状态就循环一次。
通常把计数器的状态数称之为计数器的进制数(或称计数器的模),因此,4位二进制计数器也可称之为1位十六进制(模16)计数器。
表1所示为4位二进制加法计数器的状态表。
实验七 中规模集成计数器的应用
![实验七 中规模集成计数器的应用](https://img.taocdn.com/s3/m/f96c4f80763231126fdb112f.png)
实验七 中规模集成计数器的应用一、实验目的1.熟悉中规模集成电路计数器的功能及应用。
2.进一步熟悉数字逻辑实验箱中的译码显示功能。
二、实验原理计数器是一种中规模集成电路,其种类有很多。
如果按照触发器翻转的次序分类,可分为同步计数器和异步计数器两种;如果按照计数数字的增减可分为加法计数器、减法计数器和可逆计数器三种;如果按照计数器进位规律又可分为二进制计数器、十进制计数器、可编程N 进制计数器等多种。
常用计数器均有典型产品,不须自己设计,只要合理选用即可。
本实验选用四位二进制同步计数器74LS161做计数器,该计数器外加适当的反馈电路可以构成十六进制以内的任意进制计数器。
图1是它的逻辑符号,它除了具有二进制加法计数功能外,还具有预置数、清零、保持的功能。
图中LD 是预置数控制端,0D 、1D 、2D 、3D 是预置数据输入端,r C 是清零端,T CT 、P CT 是计数器使能控制端,0C 是进位信号输出端,它的主要功能有:(1)异步清零功能 若r C =0(输出低电平),则输出0Q 1Q 2Q 3Q =0000,与其它输入信号无关,也不需要CP 脉冲的配合,所以称为“异步清零”。
(2)同步并行置数功能 在r C =1,且LD =0的条件下,当CP 上升沿到来后,触发器0Q 1Q 2Q 3Q 同时接收0D 1D 2D 3D 输入端的并行数据。
由于数据进入计数器需要CP 脉冲的作用,所以称为“同步置数”,由于4个触发器同时置入,又称为“并行”。
(3)保持功能 在r C =LD =1的条件下,T CT 、P CT 两个使能端只要有一个低电平,计数器将处于数据保持状态,与CP 及0D 1D 2D 3D 输入无关。
(4)计数功能 当r C =LD =T CT =P CT =1时,电路为四位二进制加法计数器。
在CP 脉冲作用下,电路按自然二进制递加,状态变化在0000~1111间循环。
74LS161的功能表详见表一所示。
数字电路技术实验之计数器
![数字电路技术实验之计数器](https://img.taocdn.com/s3/m/5f1fea9e2b160b4e777fcf11.png)
实验七计数器一、实验目的1. 熟悉中规模集成计数器的逻辑功能及使用方法。
2. 掌握用中规模集成计数器构成任意进制计数器的方法。
3. 学习用集成触发器构成计数器的方法。
二、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可以用来对脉冲计数,还常用作数字系统的定时、分频和执行数字运算以及其他特定的逻辑功能。
计数器是由基本的计数单元和一些控制门所组成,计数单元则由一系列具有存储信息功能的各类触发器构成,这些触发器有RS触发器、T触发器、D触发器及JK触发器等。
计数器在数字系统中应用广泛,如在电子计算机的控制器中对指令地址进行计数,以便顺序取出下一条指令,在运算器中作乘法、除法运算时记下加法、减法次数,又如在数字仪器中对脉冲的计数等等。
计数器种类很多,按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数进制的不同,分为二进制计数器、十进制计数器和任意进制计数器;根据计数的增减趋势,又分为加法、减法和可逆计数器;如按预置和清除方式来分,则有并行预置、直接预置、异步清除和同步清除等;按权码来分,则有“8421”码,“5421”码、余“3”码等计数器及可编程序功能计数器等等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数电路。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。
1.十进制计数器74LS90(二、五分频)74LS90是模二-五-十异步计数器。
具有计数、清除、置9功能。
74LS90包含M=2和M=5两个独立的下降沿触发计数器,清除端和置9端两计数器公用,没有预置端。
模2计数器的时钟输入端为A(CP1),输出端为Q A;模5计数器的时钟输入端为B(CP2)。
输出端由高位到低位为Q D、Q C、Q B;异步置9端为S91和S92,高电平有效。
即只要S91·S92=1,则输出Q D Q C Q B Q A为1001;异步清除端为R01和R02,当R01·R02=1,且S91·S92=0时,输出Q D Q C Q B Q A=0000;只有R01·R02=0,S91·S92=0,即两者全无效时,74LS90才能执行计数操作。
中规模计数器的应用
![中规模计数器的应用](https://img.taocdn.com/s3/m/b95739aedc88d0d233d4b14e852458fb770b38a7.png)
中规模计数器的应用
复位法
假如已有N进制计数器,要得到一个M进制计数器,只要NM,令N 进制计数器在计数过程中,计满M个状态后,跳过剩余N-M个状态,即可得到M进制计数器。
实现状态跳动的方法一般有两种:同步复位法、异步复位法(利用计数器的复位端实现)。
预置法
这种方法适用于有预置数功能的计数器。
置数法与置零法不同,它是通过给计数器重复置入某个数值来跳越M-N个状态,从而获得N 进制计数器。
对于同步预置数的计数器,在其计数过程中,可将它输出的任何一个状态译码,产生一个预置数掌握信号反馈至预置数掌握端,在下一个CP作用后,计数器就会把预置数输入端的状态置入输出端。
预置数掌握信号消逝后,计数器就从被置入的状态开头重新计数,即LD=0的信号应从Si状态译出,待下一个CP信号到来时,才将要置入的数据置入计数器中,稳定的状态循环中包含有Si状态。
而对于异步预置数的计数器,只要= 0 信号一消失,马上会将数据置入计数器中,而不受CP信号的掌握,因此LD=0信号应从Si+1状态译出。
Si +1状态只在极短的瞬间消失,稳定的状态循环中不包含这个状态。
置数操作可在电路的任何一个状态下进行,详细方式又可分为置全0法、置最小值法、置最大值法。
电气工程师-专业基础(发输变电)-数字电子技术-3.6时序逻辑电路
![电气工程师-专业基础(发输变电)-数字电子技术-3.6时序逻辑电路](https://img.taocdn.com/s3/m/3643f8b6690203d8ce2f0066f5335a8102d266b2.png)
电气工程师-专业基础(发输变电)-数字电子技术-3.6时序逻辑电路[单选题]1.图3-6-1是一个集成74LS161集成计数器电路图,则该电路实现的逻辑功能是()。
[2018年真题](江南博哥)图3-6-1A.十进制加计数器B.四进制加计数器C.八进制加计数器D.十六进制加计数器正确答案:C参考解析:加法计数器74LS161预置数端接地,无预置数。
根据输出端逻辑关系,即当Q3Q2Q1Q0=(0111)2时,下个CP脉冲,电路重新置零。
从(0000)2到(0111)2需计数8次,因此该电路实现的逻辑功能是八进制计数器。
[单选题]2.采用中规模加法计数器74LS161构成的电路如图3-6-2所示,该电路构成几进制加法计数器()。
[2017年真题]图3-6-2表3-6-1 74LS161功能表A.九进制B.十进制C.十二进制D.十三进制正确答案:B参考解析:由表3-6-1得,加法计数器74LS161预置数为DCBA=(0011)2,当Q D=1,Q C=1首次出现时,即输出为(1100)2重新进行预置数。
其它情况继续保持计数。
计数器的循环状态为:0011-0100-0101-0110-0111-1000-1001-1010-1011-1100-0011,因此,为十进制计数器。
[单选题]3.四位双向移位寄存器74194组成的电路如图3-6-3所示,74194的功能表如表3-6-2所示,该电路的状态转换图为()。
[2016年真题]图3-6-3图3-6-4表3-6-2A.图(a)B.图(b)C.图(c)D.图(d)正确答案:A参考解析:M1和CP的产生第一个脉冲时,M1=CP=1,电路处于置数状态,因此第一个数为1000。
脉冲过后,M1=0,M0=1,电路开始执行右移操作。
根据逻辑关系图以及电路图可看出:故其循环为1000、0100、0010、0001。
因此,状态转换图为图(a)。
[单选题]4.图3-6-5电路中波形的频率为()。
数字电子技术基础5、6练习
![数字电子技术基础5、6练习](https://img.taocdn.com/s3/m/de61f020a5e9856a56126063.png)
CMOS器件CC40161;TTL器件T1161、T4161及国外件 74LS161、 74LS163等都是同步4位二进制加法计数器,具有 同步预置数、清零和保持功能。其功能表如下:
输入
cp cr 1 1 1 0 LD 0 1 1 EP 0 1 Er 功能 置数 保持 计数 清零
o
o
o o
1
o
o
o
28 n位二进制加法计数器有( B )个状态,最大计数值是 (C ) A2
n-1
B2
n
C 2 -1
n
16 经过有限个CP,可由任意一个无效状态进入有效状态的计 数器是(A )自启动的计数器。
A能 B 不能 C 不一定能
17 利用中规模集成计数器构成任意进制计数器的方法有 ( ABC )。 A 复位法 B 预置数法 C 级联复位法
18 复位法是利用计数器芯片的( A)构成任意进制计数器的 方法。
A 复位法 B 预置数法 C 进(借)位输出端
a)电源电压一样时,可以兼容;但TTL型不用的控制端可以悬空 为“1”;CMOS型的不用控制端不可以悬空,必须通过电阻接电 源为“1” b)只要电源电压一致可随意使用 c)电源电压不同也 可互换使用 5-13 按结构分双稳态触发器的类型有( c ) a)基本RS,同步RS 包括 b)主从型,维持阻塞型等 c)前两者都
5-17 同一种导电类型和电路结构的触发器可否用不同的导电 类型和不同的结构来实现( a )
a)可以
b)不可以
5-18 同一种导电类型和电路结构的触发器可否做成不同的逻辑
( a)
a)可以
b)不可以
5-19 接成计数状态存在空翻问题的触发器是( b)
a)D触发器
第三节 3. 计数器 (2)
![第三节 3. 计数器 (2)](https://img.taocdn.com/s3/m/fe806f097cd184254b35359b.png)
Q0 Q1 Q2 Q3 QA QB QC QD 1 1 ET ET CP
Cr
Q4 Q5 Q6 Q7 QA QB QC QD ET ET CP
LD Cr
Q 8 Q 9 Q 10 Q 11 QA ET ET CP
Cr
QB QC QD CO
CO 74LS161 Ⅰ
A B C D
CO 74LS161 Ⅱ
A B C D LD
M =10 计 数 器 接 线 示 意 图
当 计 数 器 Q A Q B Q C Q D 计 到 1111 时 , C O = 1
D 状态图: 数 上升沿到来置数 为 L 经非门→ =0 置 ,Q Q Q Q 置
D
CO=1,L =0,CP
A B C D
0 11 0
来 一 个 C P 计 数 器 加 1。 状 态 图 :
0000→0001→0010→0011→0100
↑ ↓ 1001←1000←0111←0110←0101 74LS160除了作为十进制计数器使用外,也可以利用Cr端的 清0作用,构成10以内的任意进制计数器。
如下所示是用74LS160和一个与非门构成六进制计数器。
QA QB 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 QC 0 0 1 1 0 0 1 1 0 0 QD 0 1 0 1 0 1 0 1 0 1
QD & Cr
QC LD
QB ET
QA CP EP +5V
74LS160
用 74LS160 构 成 六 进 制 计 数 器
Cr 第六个脉冲到来后QAQBQCQD为0110(很短), Q Q 0 , 计数器清“0”,QAQBQCQD为0000,方法如同前面介绍的脉冲 反馈法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图23-3-1 74LS160的逻辑符号
a
2
74LS160、 74LS161的计数功能
C TR D IV 16
1 Rd
CT 0
1 LD
M1
1
1
ET EP
CP
M2
3CT 9
G3
G4
C 5/2,3,4
RCO
计数
0
1
2
3
4
×A
×B
× ×
C D
1 ,5 D (1) (2) (3) (4)
QA QB QC
M1 M2 G3
EP
G4
3CT 15
RCO
CP
C 5/2,3,4
CP
C 5/2,3,4
A
1 ,5 D (1)
QA
B
(2)
QB
C
(3)
QC
CP
D
(4)
QD
A
1 ,5 D (1)
QA
B
(2)
QB
C
(3)
QC
D
(4)
QD
(a)74LS161的逻辑符号(低位) (b) 74LS161的逻辑符号(高位)
同步计数器74LS161串行级联方法
C 5/2,3,4
1 ,5 D (1) (2) (3) (4)
RCO
QA 1
QB
QC 1
QD
&0
置零
反馈归零法实现13进制计数
十三进制计数器
a
状态转换表
QD QC QB QA
0000 0001 0010 0011 0100 0101 0110 0111 1001 1010 1011 1100 0000
6
23.4.2.1 2-5分频异步加法计数器74LS90简介
2分Q A 频
2 C PA
R 0(1)
& CTR
R 0(2)
CT 0
S 9(1) S 9(2)
& Z3
C PA
D IV 2
3CT 1
QA
C PB
D IV 5
0
CT
QB QC
3CT 4
2
QD
74LS90逻辑符号图
QDQ换表
QD QC QB
000
0 0
五01进制10
011
100
0a 0 0
状态转换表
QD QC QB QA
0000 0001 0010 0011 0100 0101 0110 0111 1001 0000
十进制 计数器
7
QC
QD
图23-3-1 74LS161的逻辑符号
12
7
14
8
74LS161状态转换图
a
3
23.3.1.4 计数器的进位使能与计数器的级联
C TR D IV 16
Rd
5CT 0
C TR D IV 16
Rd
5CT 0
LD
ET EP
M1 M2 G3 G4
3CT 15
RCO
LD
16×16=256进制E T
QD
9 87 6 5
图23-3-1 74LS160的逻辑符号
74LS160状态转换图
1 Rd 1 LD
1
1 ET
EP
CP
× × × ×
A B C
D
C TR D IV 16
5CT 0
M1
M2
3CT 15
G3
G4
C 5/2,3,4
1 ,5 D (1) (2) (3) (4)
RCO
0
计数
QA QB
15
QD QC QB QA
0000 0001 0010 0011 0100 0101 0110 0111 1001 1010 1011 01 01 00 00
5
23.3.2.2 预置数法改变计数进制
0
Rd LD
ET EP
CP
A B C D
C TR D IV 16
CT 0
M1
M2
3CT 15
G3
G4
本节讨论中规模计数器
23.3 中规模同步加法计数器 23.4.2 集成异步计数器
a
1
23.3.1 2/10和2/16进制可预置同步加法计数器的逻辑功能
C TR D IV 16
Rd
CT 0
LD
M1
M2
3CT 9
ET
G3
EP
G4
CP
C 5/2,3,4
A
1 ,5 D (1)
B
(2)
C
(3)
D
(4)
表23-5 CT74LS160/161 功能表
输
入
输
出
清零
R C O CP CR LD EP ET A B C D QA QB QC QD
L LLLL HL ABCD ABCD
置数
QA
HHL
保持
QB
HH L
QC QD
HHHH
保持 计数
置零
HL LLLL LLLL
a
4
23.3.2.1 反馈归零法改变计数进制
0
Rd LD
ET EP
CP
A B C D
C TR D IV 16
CT 0
M1 M2
3CT 15 RCO
G3
G4
C 5/2,3,4
1 ,5 D (1) (2) (3) (4)
QA 1
QB
&
0
QC
QD
1
清零
反馈归零法实现12进制计数
十二进制计数器
a
状态转换表