曾谨严量子力学习题第八章

合集下载

曾谨言《量子力学导论》第二版的课后答案

曾谨言《量子力学导论》第二版的课后答案

+a
= 2mω a 2 ⋅
得 a2 = (3)
π = mωπ a 2 = n h 2
代入(2) ,解出
E n = nℏω ,
积分公式:
n = 1, 2 , 3 , ⋯ a 2 − u 2 du = u a2 u a2 − u2 + arcsin + c 2 2 a
(4)


1.4 设一个平面转子的转动惯量为 I,求能量的可能取值。 提示:利用
)
[ (
) (
)
]
其 中 T 的 第 一 项 可 化 为 面 积 分 , 而 在 无 穷 远 处 归 一 化 的 波 函 数 必 然 为 0 。 因 此
ℏ2 T= d 3 r∇ψ * ⋅ ∇ψ ∫ 2m
结合式(1) 、 (2)和(3) ,可知能量密度
(3)
w=
且能量平均值
ℏ2 ∇ψ * ⋅ ∇ψ + ψ *Vψ , 2m
(1)
1 mω 2 x 2 。 2
−a
0 a x (2)
a = 2 E / mω 2 ,
x = ± a 即为粒子运动的转折点。有量子化条件
+a
∫ p ⋅ dx = 2 ∫
nh 2ℏn = mωπ mω
−a
1 2m( E − mω 2 x 2 ) dx = 2mω 2 ∫ a 2 − x 2 dx 2 −a
∫= 1, 2 , ⋯ , pϕ 是平面转子的角动量。转子的能量 E = pϕ / 2I 。
解:平面转子的转角(角位移)记为 ϕ 。
.
它的角动量 pϕ = I ϕ (广义动量) , pϕ 是运动惯量。按量子化条件


因而平面转子的能量

曾谨言量子力学课后答案

曾谨言量子力学课后答案

h2 2m


(rv,
t
)
+
[V1
(rv
)
+
iV2
(rv
)]ψ
(rv,
t
)
V1 与V2 为实函数。
4
(1)
(a)证明粒子的几率(粒子数)不守恒。
(b)证明粒子在空间体积τ 内的几率随时间的变化为
( ) d
dt
∫∫∫ τ
d
3 rψ

=

h 2im
∫∫
S
ψ
*∇ψ
−ψ∇ψ *
v ⋅ dS +
2V2 h
(1) (2)
5
取(1)之复共轭:

ih
∂ψ * 1 ∂t
= −
h2 ∇2 2m
+
V
ψ
* 1
ψ
2
×
(3)
−ψ
* 1
×
(2),得
(3)
对全空间积分:
( ) ( ) − ih
∂ ∂t
ψ *ψ 12
=

h2 2m
ψ
2


* 1
−ψ 1*∇ 2ψ
2
∫ ∫ [ ] − ih d dt
d
3 rψ
* 1
(rv,
d
3rψ
*

h2 2m

2
ψ
(动能平均值)
=

h2 2m

d
3
r
[∇


*∇ψ
)

(∇ψ
*
)⋅
(∇ψ

量子力学导论习题答案(曾谨言)

量子力学导论习题答案(曾谨言)

第九章 力学量本征值问题的代数解法9—1)在8.2节式(21)中给出了自旋(21)与轨迹角动量(l )耦合成总角动量j 的波函数jljm φ,这相当于21,21===s j l j 的耦合。

试由8.2节中式(21)写出表9.1(a )中的CG 系数 jm m m j 21121解:8.2节式(21a )(21b ): ()21),0( 21+=≠-=m m l l j jjljm φ⎪⎪⎭⎫ ⎝⎛-+++=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a ) ()21-=j ljljm φ⎪⎪⎭⎫⎝⎛++---=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b )()21++j l此二式中的l 相当于CG 系数中的1j ,而212==s j ,21,~,,~21±=m m m m j 。

因此,(21a )式可重写为jm ∑=222112211m jm m j m j m j m j212121212121212111111111--+=m j jm m j m j jm m j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎪⎪⎭⎫ ⎝⎛++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m 时 ,21111112212121⎪⎪⎭⎫ ⎝⎛++=+j m j jm m j 而212-=m 时,21111112212121⎪⎪⎭⎫ ⎝⎛+-=-+j m j jm m j 对于21211-=-=j l j 的(21b )式,有21111111221,212121⎪⎪⎭⎫ ⎝⎛+--=-+j m j m j m j21111111221,212121⎪⎪⎭⎫ ⎝⎛++=--+j m j m j m j9-2)设两个全同粒子角动量21j j j ==,耦合成总角动量J ,JMj2ψ()()21212121jm jm m m JM m j jm ψψ∑=(1)利用CG 系数的对称性,证明()JMjJj JM j p 22212ψψ--=由此证明,无论是Bose 子或Fermi 子,J 都必须取偶数证:由式(1),JM j p 212ψ()()12212121jm jm m m JM jm jm ψψ∑=把21m m ↔, ()()12122112jm jm m m JM jm jm ψψ∑=利用CG 系数的对称性 ()()()21212112212jm jm m m Jj JM m j m j ψψ∑--=()JMjJj 22ψ--= (2)对于Fermi 子,=j 半奇数,=j 2奇数,但要求ψψ-=12p , 即要求()12-=--Jj ,所以J 必须为偶数。

曾谨言--量子力学习题及解答

曾谨言--量子力学习题及解答

dv , 1
(1) (2) (3)
v c , v dv v d ,
dv d c d v ( ) d ( ) v c

8hc 5
1 e
hc kT
, 1
1
这里的 的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。 本题关注的是λ取何值时, 取得极大值,因此,就得要求 对λ的一阶导数为零, 由此可求得相应的λ的值,记作 m 。但要注意的是,还需要验证 对λ的二阶导数在 m 处的取值是否小于零,如果小于零,那么前面求得的 m 就是要求的,具体如下:
2


k
2 E
2


k
cos 2d (2 ) cos d ,
2 E



k

这里 =2θ,这样,就有
2
A B E


k
d sin 0
(2)
根据式(1)和(2) ,便有
A E
这样,便有

k n h 2
E

k

E
n h 2 k
nh
其中 h

k
,
h 2
最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的 能量是等间隔分布的。 (2)当电子在均匀磁场中作圆周运动时,有

R p qBR

2
qB
这时,玻尔——索末菲的量子化条件就为

又因为动能耐 E

p2 ,所以,有 2
2
2 如果所考虑的粒子是非相对论性的电子( E 动 e c ) ,那么

量子力学 曾谨言 习题解答

量子力学 曾谨言 习题解答

a
p dx 2
2m(E 1 m 2 x2 ) dx 2m 2 a
a2 x2 dx
a
2
a
2ma2 m a2 nh 2
得 a2 nh 2n m m
(3)
代入(2),解出
En n,
n 1, 2,3,
(4)
积分公式:
a 2 u 2 du u a 2 u 2 a 2 arcsin u c
abc a
b
c
nx , ny , nz 1,2,3,
当 a b c 时,
En n n xyz
2 2 2ma 2
(n
2 x
n
2 y
n
2 z
)
n n n xy z
3
2 2 a
sin nx x sin ny y sin nz y
a
a
a
nx ny nz 时,能级不简并;
nx , n y , nz 三者中有二者相等,而第三者不等时,能级一般为三重简并的。
动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为 x, y, z 轴方向,把粒子沿 x, y, z 轴三个方向的运动
分开处理。利用量子化条件,对于 x 方向,有
px dx nxh , nx 1, 2,3,

px 2a nxh ( 2a :一来一回为一个周期)
px nxh / 2a ,
6
t 2m ,
u
k
mx t

参照本题的解题提示,即得
x,t
1 e imx2 2t 2
2m t
e i
/
4
k
k
mx t
d
k
(2)
m t

曾谨言《量子力学教程》(第3版)配套题库【章节题库-自 旋】

曾谨言《量子力学教程》(第3版)配套题库【章节题库-自 旋】

第8章 自 旋一、填空题1.称______等固有性质______的微观粒子为全同粒子。

【答案】质量;电荷;自旋;完全相同2.对氢原子,不考虑电子的自旋,能级的简并度为______,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为______。

【答案】n 2;2n 23.一个电子运动的旋量波函数为,则表示电子自旋向上、位置在处的几率密度表达式为______,表示电子自旋向下的几率的表达式为______。

【答案】;二、名词解释题 电子自旋。

答:电子的内禀特性之一:(1)在非相对论量子力学中。

电子自旋是作为假定由Uhlenbeck 和Goudsmit 提出的:每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值:;每个电子具有自旋磁矩M s ,它和自旋角动量的关系式:。

(2)在相对论量子力学中,自旋象粒子的其他性质—样包含在波动方程中,不需另作假定。

三、简答题 1.请用泡利矩阵,,定义电子的自旋算符,并验证它们满足角动量对易关系。

答:电子的自旋算符,其中,i =x ,y ,z 。

()()()z ,2,,2r r s r ψψψ⎛⎫= ⎪ ⎪-⎝⎭r ()2,/2r ψ()23d ,/2rr ψ-⎰2±=z s μμ2e M S e M sz s ±=→-=⎪⎪⎭⎫ ⎝⎛=0110xσ⎪⎪⎭⎫ ⎝⎛-=00i i y σ⎪⎪⎭⎫ ⎝⎛-=1001zσi iS σˆ2ˆ=2.写出由两个自旋态矢构成的总自旋为0的态矢和自旋为1的态矢。

答:总自旋为0。

总自旋为1: 。

3.写出泡利矩阵。

答:,,4.试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。

答:让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀磁场,则电子分为两束。

5.完全描述电子运动的旋量波函数为,试述及分别表示什么样的物理意义。

答:表示电子自旋向下,位置在处的几率密度;表示电子自旋向上的几率。

曾谨言量子力学第8章

曾谨言量子力学第8章

ˆ x , ˆx , ˆ y i , ˆ y i
ˆ y ˆ z ˆ y ˆ z 2i ˆ x ˆy ˆ x ˆ y ˆ y ˆx 0 上面两式子相加可得反对易关系
反对易关系
ˆ x , ˆ y} 0 {
ˆ x ˆy ˆ y ˆx 0 ˆ y ˆz ˆ z ˆy 0 ˆ ˆ ˆ x ˆz 0 z x
(2)每个电子都具有自旋磁矩,它与自旋角动量的关系为: e e M S S,(SI ); M S S , (CGS ) c Note: 电子的自旋角动量绝对不是来源电子自身的旋转,而是电子 的内在属性
e2 ~ m c2 , re p ~ re
p c v 2 c 137c m mr e e
(14)
ˆ x ˆ y ˆ y ˆ x i ˆz 由(11),(14)得 ˆ y ˆ z ˆ z ˆ y i ˆx ˆ ˆ ˆ x ˆ z i ˆy z x
(15)
由(13),(15)可写成
ˆ ˆ i ˆ
另一等号类似证明
2. Pauli表象(sz表象,σz表象)
在σz表象中, σz 的矩阵是
1 0 ˆz 0 1
ˆ z ˆ x ˆ x ˆz
a b ˆx 设 c d

,则根据
b a b a c d c d
N
S
Hale Waihona Puke 分析: 设原子磁矩为M,外磁场为B
原子在Z方向外磁场中的势能是
U M B MBz cos
Fz
磁矩与磁场 之夹角

量子力学_答案_曾谨言

量子力学_答案_曾谨言
粒子能量
E nx n y nz
π2 2 1 2 2 = + py + p z2 ) = ( px 2m 2m
n x , n y , n z = 1, 2 , 3 ,
2 2 ⎞ ⎛ nx n2 ⎜ + y + nz ⎟ ⎜ a2 b2 c2 ⎟ ⎝ ⎠
1.3 设质量为 m 的粒子在谐振子势 V ( x) = 提示:利用
(1)
V = ∫ d 3 rψ *Vψ
2 ⎞ ⎛ ⎜ T = ∫ d rψ ⎜ − ∇2 ⎟ ⎟ψ ⎠ ⎝ 2m 3 *
(势能平均值)
(2)
(动能平均值)
=−
2m ∫
2
d 3r ∇ ⋅ ( ψ *∇ψ ) − (∇ψ * ) ⋅ (∇ψ )
[
]
其 中 T 的 第 一 项 可 化 为 面 积 分 , 而 在 无 穷 远 处 归 一 化 的 波 函 数 必 然 为 0 。 因 此
1 mω 2 x 2 中运动,用量子化条件求粒子能量 E 的可能取值。 2 p = 2m[ E − V ( x)]
∫ p ⋅ d x = nh,
n = 1, 2 ,
,
V ( x)
1
解:能量为 E 的粒子在谐振子势中的活动范围为
x ≤a
其中 a 由下式决定: E = V ( x) x = a = 由此得
(2)
ψ * × (1)-ψ × (2),得
i
2 ∂ * ( ( ψ ψ )= − ψ *∇ 2ψ − ψ∇ 2ψ * ) + 2iψ *V2ψ ∂t 2m
=−
2
2m
∇⋅( ψ *∇ψ − ψ∇ψ * ) + 2iV2ψ *ψ

量子力学作业题

量子力学作业题

《量子力学》作业题号及题目教材:曾谨言,《量子力学教程》,科学出版社(2003)(以下简称教材)作业题号:(章节按上课讲义为序)第一章量子力学的历史渊源作业:(无)第二章波函数与Schrödinger方程作业:教材P25-27,1、2、3、5第三章一维势场中的粒子作业:教材P50-52,1、2、3、4、6、10、11第四章力学量用算符表示作业:教材P74-75,1、2、3、4、10、12、14、15、16第五章量子力学的矩阵形式与表象理论作业:教材P142-143,1、2、3、4、6;P175,1第六章守恒量与对称性作业:教材P94-95,1、2、3、4、6、9第七章中心立场作业:教材P115-116,1、3、4、5、12第八章电磁场中粒子的运动作业:教材P126,3第九章自旋与角动量理论初步作业:教材P160-161,1、2、4、7、8第十章微扰论及其他近似方法作业:教材P195,1、2、4;P240,2、3第十一章量子跃迁作业:教材P220-221,1、3、4、6第十二章散射作业:教材P195,6参考书:曾谨言,《量子力学导论》(第二版),北京大学出版社(以下简称参考书)没有教材,使用上书的同学相应的作业题号和题目如下(与教材的题目一样)注:下面的作业题目中,“补充题目”是指布置了的在教材中有而在参考书中没有的作业题目,列出是为了便于只使用参考书的同学。

作业题目:注意:如果公式显示有问题,请安装mathtype5.2第一章 量子力学的历史渊源作业:(无)第二章 波函数与Schrödinger 方程作业:参考书P47-48,1、2、6以及下面题目补充题目:(相应教材P25,3)对于一维自由粒子,(a )设波函数为()ipx p x ψ= ,试用Hamilton 算符 222222d H p m m dx ==− 对()p x ψ运算,验证 2()()2p p p H x x mψψ=。

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-自旋(圣才出品)

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-自旋(圣才出品)

上式中任何一式的左侧的 3 个二体自旋算符中任何两个都构成 2 电子体系的一组 CSCO.例如,{σ1x,σ2x,σ1y,σ2y)的共同本征态,列于表 8.2 中[采用(σ1z,σ2z)表象],
这就是著名的 Bell 基. 表 8.2 Bell 基
7 / 37
圣才电子书

对于 j = l −1/ 2(l 0) ,
(1)
(2)方程的解以及光谱双线粗细结构原因
(2)
电子能量本征值与量子数
都有关,记为 ,是(2j+1)重简并.可以得出
即 j = l +1/ 2 能级略高于 j = l −1/ 2(l 0) 能级.但由于自旋轨道耦合很小,这两条能级 很靠近.这就是造成光谱双线粗细结构的原因.
本征态 SM 可以表示为
以它们为基矢的表象,称为角动量耦合(coupling)表象.
6 / 37
圣才电子书

(4)分离态与纠缠态
十万种考研考证电子书、题库视频学习平台
由两个粒子组成的复合体系的量子态,如果能够表示为每个粒子的量子态的乘积,则
称为可分离态(separablestate).反之,为纠缠态(entangled state).例如,(S1z ,
4 / 37
圣才电子书 十万种考研考证电子书、题库视频学习平台

2.反常 Zeeman 效应 考虑磁场后能量本征值为
(3) 与 则是求解径向方程(1)和(2)得出的本征函数和本征值.当无外磁场 时(B=0),能级 是(2j+1)重简并.当加上外磁场时,如式(3)所示,能级 将依赖于磁量子数 mj,一般说来, 能级分裂为(2j+1)条.(2j+1)为偶数,这就 造成了反常 Zeeman 分裂现象.
圣才电子书 十万种考研考证电子书、题库视频学习平台

曾谨言《量子力学教程》(第3版)配套题库【课后习题-波函数与Schr

曾谨言《量子力学教程》(第3版)配套题库【课后习题-波函数与Schr

第1章波函数与Schrödinger方程1.1 设质量为m的粒子在势场V(r)中运动。

(a)证明粒子的能量平均值为,式中(能量密度)(b)证明能量守恒公式(能流密度)证明:(a)粒子能量平均值为(设ψ已归一化)(势能平均值)(动能平均值)其中第一项可化为面积分,对于归一化的波函数,可以证明此面积分为零(见《量子力学教程》,18页脚注),所以(b)按能量密度W和能流密度s的定义因此1.2 考虑单粒子的Schrodinger方程V1与V2为实函数.(a)证明粒子的概率(粒子数)不守恒;(b)证明粒子在空间体积τ内的概率随时间的变化为证明:由Schrodinger方程取复共轭得积分,利用Stokes定理对于可归一化波函数,当,上式第一项(面积分)为0,而,所以不为0,即粒子数不守恒.1.3 对于一维自由粒子(a)设波函数为,试用Hamilton算符对运算,验证;说明动量本征态是Hamilton量(能量)本征态,能量本征值为(b)设粒子在初始(t=0)时刻,求(c)设波函数为,可以看成无穷多个平面波的叠加,即无穷多个动量本征态的叠加,试问是否是能量本征态?(d)设粒子在t=0时刻,求.解:(a)容易计算出所以动量本征态量(能量)的本征态,能量本征值为.(b)其Fourier变换为由于ψ(x,0)是能量本征态,按《量子力学教程》1.2节,(37)式,(c)对于自由粒子,动量本征态,亦即能量本征态,由于是无穷多个动量本征态的叠加,所以不是能量本征态.(d)因为,按《量子力学教程》1.2节,(5)式所以计算中利用了积分公式或,所以1.4 设一维自由粒子的初态为一个Gauss波包(1)证明初始时刻,(2)计算t时刻的波函数解:(1)初始时刻按《量子力学教程》1.2节,(18)式之逆变换所以(2)按《量子力学教程》1.2节的讨论(见1.2节,(5)式,(18)式)可知,在t>0时的波函数可见随时间的增加,波包逐渐扩散,振幅逐渐减小,而其宽度△x逐渐增大.1.5 设一维自由粒子的初态为,证明在足够长时间后,式中是ψ(x,0)的Fourier变换提示:利用证明:根据自由粒子的动量(能量)本征态随时间变化的规律,式中所以时刻t的波函数为当时间足够长后(t→∞),利用积分公式上式被积函数中指数函数具有δ函数的性质,即1.6 按照粒子密度分布ρ和粒子流密度分布j的表示式(1.2节式(13),(14))定义粒子的速度分布v证明设想v描述一个速度场,则v为一个无旋场.证明:按照上述v的定义,可知。

曾谨言量子力学课后答案

曾谨言量子力学课后答案

h2 2m


(rv,
t
)
+
[V1
(rv
)
+
iV2
(rv
)]ψ
(rv,
t
)
V1 与V2 为实函数。
4
(1)
(a)证明粒子的几率(粒子数)不守恒。
(b)证明粒子在空间体积τ 内的几率随时间的变化为
( ) d
dt
∫∫∫ τ
d
3 rψ

=

h 2im
∫∫
S
ψ
*∇ψ
−ψ∇ψ *
v ⋅ dS +
2V2 h
第一章、量子力学的诞生
1.1 设质量为 m 的粒子在一维无限深势阱中运动,
V
( x)
=
∞,
0,
x < 0, x > a 0< x<a
试用 de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有
a = n⋅λ 2
∴λ = 2a / n
(n = 1, 2, 3,L)
又据 de Broglie 关系
动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为 x, y, z 轴方向,把粒子沿 x, y, z 轴三个方向的运动
分开处理。利用量子化条件,对于 x 方向,有
∫ px ⋅ dx = nx h , (nx = 1, 2 ,3,L)

px ⋅ 2a = nx h ( 2a :一来一回为一个周期)
∫∫∫d 3rψ *ψ τ
证:(a)式(1)取复共轭, 得
− ih
∂ ∂t
ψ
*
=

曾谨严量子力学习题第八章

曾谨严量子力学习题第八章

第八章:自旋[1]在x σˆ表象中,求x σˆ的本征态 (解) 设泡利算符2σ,x σ,的共同本征函数组是: ()z s x 21 和()z s x21- (1)或者简单地记作α和β,因为这两个波函数并不是x σˆ的本征函数,但它们构成一个完整系,所以任何自旋态都能用这两个本征函数的线性式表示(叠加原理),x σˆ的本征函数可表示:βαχ21c c += (2)21,c c 待定常数,又设x σˆ的本征值λ,则x σˆ的本征方程式是: λχχσ=x ˆ (3) 将(2)代入(3):()()βαλβασ2121ˆc c c c x +=+ (4) 根据本章问题6(P .264),x σˆ对z σˆ表象基矢的运算法则是: βασ=x ˆ αβσ=x ˆ 此外又假设x σˆ的本征矢(2)是归一花的,将(5)代入(4):βλαλαβ2111c c c c +=+比较βα,的系数(这二者线性不相关),再加的归一化条件,有:)6()6()6(122211221c b a c c c c c c ------------------------------------⎪⎩⎪⎨⎧=+==λλ 前二式得12=λ,即1=λ,或1-=λ当时1=λ,代入(6a )得21c c =,再代入(6c),得: δi e c 211=δi e c 212=δ 是任意的相位因子。

当时1-=λ,代入(6a )得21c c -=代入(6c),得:δi e c 211=δi e c 212-=最后得x σˆ的本征函数: )(21βαδ+=i e x 对应本征值1)(22βαδ-=i e x 对应本征值-1以上是利用寻常的波函数表示法,但在2ˆˆσσx 共同表象中,采用z s 作自变量时,既是坐标表象,同时又是角动量表象。

可用矩阵表示算符和本征矢。

⎥⎦⎤⎢⎣⎡=01α ⎥⎦⎤⎢⎣⎡=10β ⎥⎦⎤⎢⎣⎡=21c c χ (7)x σˆ的矩阵已证明是 ⎥⎦⎤⎢⎣⎡=0110ˆx σ因此x σˆ的矩阵式本征方程式是: ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡21211010c c c c λ (8) 其余步骤与坐标表象的方法相同,x σˆ本征矢的矩阵形式是: ⎥⎦⎤⎢⎣⎡=1121δi e x ⎥⎦⎤⎢⎣⎡-=1122δi e x[2]在z σ表象中,求n⋅σ的本征态,)cos ,sin sin ,cos (sin θϕθϕθn 是),(ϕθ方向的单位矢。

量子力学导论习题答案(曾谨言)

量子力学导论习题答案(曾谨言)

第八章 自旋8.1) 在z σ表象中,求x σ的本征态。

解:在z σ表象中,x σ的矩阵表示为:x σ⎪⎪⎭⎫⎝⎛=0110 设x σ的本征矢(在z σ表象中)为⎪⎪⎭⎫⎝⎛b a ,则有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛b a b a λ0110 可得a b λ=及b a λ= 1,12±==∴λλ 。

,1=λ 则;b a = ,1-=λ 则b a -=利用归一化条件,可求出x σ的两个本征态为,1=λ;1121⎪⎪⎭⎫ ⎝⎛ ,1-=λ ⎪⎪⎭⎫ ⎝⎛-1121 。

8.2) 在z σ表象中,求⋅的本征态,()ϕϕθϕθcos ,sin sin ,cos sin n是()ϕθ,方向的单位矢. 解:在z δ表象中,δ的矩阵表示为x σ⎪⎪⎭⎫⎝⎛=0110, y σ⎪⎪⎭⎫ ⎝⎛-=00i i , z σ⎪⎪⎭⎫⎝⎛-=1001 (1) 因此, z z y y x x n n n n n σσσσ++=⋅=⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+-=-θθθθϕϕcos sin sin cos i i z y x y x ze e n inn in n n (2)设n σ的本征函数表示为Φ⎪⎪⎭⎫⎝⎛=b a ,本征值为λ,则本征方程为()0=-φλσn ,即 0cos sin sin cos =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----b a e e i i λθθθλθϕϕ (3) 由(3)式的系数行列式0=,可解得1±=λ。

对于1=λ,代回(3)式,可得x y x y x x i i n in n in n n e e b a --=++==-=--112sin 2cos cos 1sin ϕϕθθθθ 归一化本征函数用()ϕθ,表示,通常取为()⎪⎪⎭⎫ ⎝⎛=ϕθθϕθφi e 2sin 2cos ,1或⎪⎪⎪⎭⎫⎝⎛-222sin 2cos ϕϕθθi i ee (4)后者形式上更加对称,它和前者相差因子2ϕi e-,并无实质差别。

量子力学习题答案(曾谨言版)

量子力学习题答案(曾谨言版)
n
同理有
[ x, F ] i F p
P75 习题3.14
解:设lz算符的本征态为m,相应的本征值mћ ˆ dx l *l
x

m x
m
1 * ˆ ˆ ˆl ˆ ) dx m ( l y lz l z y m i 1 * ˆ ˆ * ˆ ˆ [ m l y lz m dx m lz l y m dx] i 1 * ˆ ˆ ) * l ˆ dx] [m m ly dx ( l z m z m y m i 1 * ˆ * ˆ [m m ly dx m z m m l y m dx ] 0 i 类似地可以证明 l y 0


p ' * ( x , t ) ( x , t )dx p ' * ( x, t )dx C ( p) p ( x, t )dp





p ' * ( x , t ) ( x , t )dx p ' * ( x, t )dx C ( p) p ( x, t )dp
c1
2
(ቤተ መጻሕፍቲ ባይዱ) l2的可能测值
l l ( l 1)
2 1 2 2
2 2
2 , l 1 相应本征态Y11
2
l l ( l 1)
2 1
6 , l 2 相应本征态Y20
2
相应的测量概率:
l : c1 ;
平均值:
2 2 1 2
2
l : c2
2 2 2
2 2
2
l l c1 l c2 2
Rnl ( r ) N nl l e 2F ( n l 1, 2l 2, )

曾量子力学题库(网用)

曾量子力学题库(网用)

曾谨言量子力学题库一简述题:1. (1)试述Wien 公式、Rayleigh-Jeans 公式和Planck 公式在解释黑体辐射能量密度随频率分布的问题上的差别2. (1)试给出原子的特征长度的数量级(以m 为单位)及可见光的波长范围(以Å为单位)3. (1)试用Einstein 光量子假说解释光电效应4. (1)试简述Bohr 的量子理论5. (1)简述波尔-索末菲的量子化条件6. (1)试述de Broglie 物质波假设7. (2)写出态的叠加原理8. (2)一个体系的状态可以用不同的几率分布函数来表示吗?试举例说明。

9. (2)按照波函数的统计解释,试给出波函数应满足的条件10.(2)已知粒子波函数在球坐标中为),,(ϕθψr ,写出粒子在球壳),(dr r r +中被测到的几率以及在),(ϕθ方向的立体角元ϕθθΩd d d sin =中找到粒子的几率。

11.(2)什么是定态?它有哪些特征?12.(2))()(x x δψ=是否定态?为什么?13.(2)设ikr e r1=ψ,试写成其几率密度和几率流密度 14.(2)试解释为何微观粒子的状态可以用归一化的波函数完全描述。

15.(3)简述和解释隧道效应16.(3)说明一维方势阱体系中束缚态与共振态之间的联系与区别。

17.(4)试述量子力学中力学量与力学量算符之间的关系18.(4)简述力学量算符的性质19.(4)试述力学量完全集的概念20.(4)试讨论:若两个厄米算符对易,是否在所有态下它们都同时具有确定值?21.(4)若算符Aˆ、B ˆ均与算符C ˆ对易,即0]ˆ,ˆ[]ˆ,ˆ[==C B C A ,A ˆ、B ˆ、C ˆ是否可同时取得确定值?为什么?并举例说明。

22.(4)对于力学量A 与B ,写出二者在任何量子态下的涨落所满足的关系,并说明物理意义。

23.(4)微观粒子x 方向的动量x p ˆ和x 方向的角动量xL ˆ是否为可同时有确定值的力学量?为什么? 24.(4)试写出态和力学量的表象变换的表达式25.(4)简述幺正变换的性质26.(4)在坐标表象中,给出坐标算符和动量算符的矩阵表示27.(4)粒子处在2221)(x x V μω=的一维谐振子势场中,试写出其坐标表象和动量表象的定态Schr ödinger 方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波函数记作或
中任意两个。 描写两电子体系的波函数是个别电子波函数的相乘积或其线性式,
根据§8.4的理论,要使体系的波函数成为总自旋的本征态,只有三种形 式的归一化波函数:
(1) 计算2s+1种 (2) 这种波函数种数等于2s+1文字中选择不同文字的种数计有种。
以上二类对称自旋波函数的总数目 n=(2s+1)+(2s+1)s=(2s+1)(s+1) (3)
(1) 整个体系的哈氏算符是:
(此式中r是电子相对位矢) 将自旋轨道相互作用算符用角动量算符表示,由于:
(2)
原子的状态可以用()的共同本征函数表示,将算符(2),运算于这 个本征函数,可以求的能量贡献(修正量)
(3) 但当原子处在自旋的单重态时,
总自旋量子数s=0,有从(1)式的关系看出
因此J=L,(3)式成为:
则 (证明)先设: 代入


因此A的矩阵是
再代入

即b=0
于是A只能是形式
再代入

即a=0
于是,满足三个对易关系的二维矩整,只能是,而定理得证。
另一方法,用矢量矩阵-
仍设 代入
作简化:
从任何两个元素都能得到一组解
a=b=c=d=0
[14]证明找不到一种表象,在其中(1)三个泡利矩阵均为实矩阵或 (2)二个是纯虚矩阵,另一个为实矩阵。 (证明)根据角动量定义: 又根据第八章问题(1)的结论
(1) (2) 根据矩阵乘法法则,可以根据每一个矩阵的元素,求得乘积的径迹 (对角元素总和): (方法二)不展开矩阵乘积,但利用自旋分量的性质 根据径迹的定义知道:若一个矩阵能分解成若干个同阶矩阵的和, 则原矩阵的径迹,应等于诸分矩阵的径迹之和,根据(3): 但因为 而 。命题得证。 (3)式在习题(15)中已论证过。 ―――――――――――――――――――――――――――――――――――――
但。(前一公式的来源不在本题中讨论) (1) (a)宇称:体系的哈密顿算符包括两粒子的能量和势能 (2)
按§5.3(P。176)一体系若具有空间反射不交性,则其宇称是守恒 的,即
(3) 在本题的情形,这条件是成立的,注意,粒子的动能可能梯度表示。 (2)式用坐标显示为:
(4) 当参考系发生空间反射时, 。但不变,此外总的自旋角动量依赖与自旋坐标和,与空间坐标无关, 因而也不随空间反射而变更,又因为
(解) 方法类似前题,设算符的本征矢是:
(1)
它的本征值是。又将题给的算符展开:
(2)
写出本征方程式:
(3)
根据问题(6)的结论,,对的共同本征矢,,运算法则是
,, ,
,,
(4)
将这些代入(3),集项后,对此两边,的系数:
(5)

(6)
(6)具有非平凡解(平凡解 ,)条件是久期方程式为零,即
它的解
(7)
(9) (10)
根据(1):,因此在不失普遍性的情况下,可以设定以下形式: (11) (12)
式中必是实数,而,任意实数得相因子,根据(9)和(10),同样可 设:
(13) (14) 这四个元素满足(1)(4)(5)(8)和(9)(10),但对于(2)或 (3),对于(6)或(7)这两个条件的满足,给初相位,,,一些限
又 只与角度有关,与相对矢径无关,所以与一切与有关的算符对易
(7) 最后一式说明,归结为较简单的的运算
再注意到:
运用两个业已证明过的对易式(第四章)
将此结果代入(7)式,得到
所以最终得到:
(是守恒量 )
(9)
(d)总角动量平方 :
前一步骤出发,再计算 与的对易关系
(10)
现在将(8)代入(10),立即又有
最后得的本征函数: 对应本征值1 对应本征值-1
以上是利用寻常的波函数表示法,但在共同表象中,采用作自变量时, 既是坐标表象,同时又是角动量表象。可用矩阵表示算符和本征矢。
(7)
的矩阵已证明是
因此的矩阵式本征方程式是:
(8) 其余步骤与坐标表象的方法相同,本征矢的矩阵形式是:
[2]在表象中,求的本征态,是方向的单位矢。
[解] 自旋为s指的是自旋角量子数是s(它和轨道运动中的l相当),在 轨道运动中,角量子数给定后(l),角动量z分量的本征值m有2l+1种不 同值:
推广到自旋的情形若自旋自旋角量子数(不一定是1/2,例如原子核的 自旋)则自旋磁量子数有2s+1种值
但s可以是整数,也可以是半整数。 自旋的不同态用来区别,第一电子的自旋波记作或,第二电子的自旋
制,将,,,的表达式代入(2)得: (15)
【18】证明,但,,是与能对易得任意矢量。 【证明】仿照前一题方法,并且利用前一题结论。
(方法一)直接展开矩阵积: (1)
(方法二)利用习题17的结论: (2)
重复使用此公式于本题的三重乘积
在第二项中应用公式(2),即在(2)式中作替换,, 得: (3)
最后一式中I式单位矩阵 和习题17一样,这个三重积已分解成四个单位矩阵的线性式,因
假设,试将(1)式运算于合成角动量的本征态(共同本征态),首 先,对于有:
(3) 式中;。 其次,可对于的本征态计算: 又因为,所以 [6] 一个具有两个电子的原子,处于自旋单态(s=0)。证明自旋轨道耦 合作用 。对能量无贡献。 [解]、整个原子的角动量看作每一个电子角动量矢量和,此外每一电 子角动量又包括轨道运动和自旋。
等,所以动能部分也不随反射而变化,所以(4)式整个不随反射变 化,若是任意函数,我们有:

是守恒量
(b)总自旋平方算符: 自旋和一切轨道运动的量都能对易,只需检验与 的对易性:
因等,又等,因此有: (6)
(c)总角动量分量 : 总角动量分量与轨道运动部分的诸力学算符相对易,这在第六章中心 力场和第四章§4.1都有过讨论,只需证明与的势能部分的对易性就足 够。
(证明) 矩阵在一般情形有四个不为零的元素,若用四个已知的矩阵
表示成线性式,恰能附有四个待定系数,构成一义的解,即任意矩阵
(1)
我们得到关于未知系数的方程式组:
可以解得
(2)
但需要证明彼此独立,即不存在着不为零的系数足以使
即 这要求每一元素为零,即
同时满足这四条件的解只能是
即是线性无关的。 最后我们将任意矩阵用它和的径迹(Trace即对角元素总合)表示。从

【19】满足下列条件的维矩阵,称为矩阵
试求的一般表示式。 【解】设:
则 代入题给的第一个条件 化成等效的条件 同理,代入第二个条件
前列出的八个方程式并非完全独立。 容易看出(2)与(3)是复共轭,(6)(7)也是复共轭式,;因此只
有六个不相关方程式,因 等,又(1)(5)相减,(1)(8)相减,得两个关系式:
我们在(c)一小题中计算时全部用了直角座标,因此座标 有轮换的 对称,(10)式也是如此,因而应该也有下式:
(11) 将(10)和(11)的两式相加,得
(12) 从而也得到交换式
(是守恒量 )
(e)这两算符不能是守恒量,因为它们不和对易。 (2)最后证明,在双电子体系的单态中,张量力等于零。 设第一电子的态用表示,第二电子用表示,在单态的情形,体系总自 旋的本征值S=0,自旋波函数是反对称的,写作
不论采取任何表象上述两组式子满足,从(1)看出若有两个算符在角 动量表象中纯虚数(每一元素为虚)如而为实矩阵,则可设
,a,b…… 都是实数。 代入(1)得 这要求是纯虚矩阵,与假设违背,又从(4)看出,如果全部是实数矩 阵,则这一条法则也违背,故是不可能的。
[15]证明及I(单位矩阵)构成矩阵的完全集合,即任何矩阵都能用他们 的线性组合来表达,任何矩阵可表成:
(5)
(6)
若,有以下的二态:
(7)
(8)
将题给的态和一般公式对照,发现(1)(2)(3)式与(7)(5)
(6)(8)式相当,总角动量平方算符,总角动量分量算符可能测值如
下:
状 态
数值 算符
(1)
(2)
(3)
(4)
的量子数
3/2
3/2
3/2
3/2
的量子数
3/2
1/2
-1/2
-3/2
[5]令 , , 证明: (证明)本题的,是两个带有相加的常数分子的算符 根据总角动量理论内,前两算符可变形如下:
[10]证明:(1) ( ) (2) 其中
矢量与σ对易, θ表示θ方向的单位矢量。 (证) (j=x,y,z) (1)
(1) (2)
因此的性质与相同:
代入(2)式即得到待证明的结果。
[11]证明, 是与对易的任何矢量算符。 (证明)这是矢量关系式,可先证明x分量
=该式右方。
又这个证明对x,y,z有轮换性,故可不需重负对y,z运算。又 前式中用了对易式。
式(2)知道 (4)
从式子看出:
(6) 将(5)(6)代入(4)得 命题得证。 ――――――――――――――――――――――――――――――――――――― 【16】求证与三个泡利矩阵都对易的2×2矩阵,只能是常数矩阵。 【证】设能与对易:
满足 即 这要求,故的形式应受限制,成为 又满足即 这又要求因而的形式简化成这是个常数矩阵(元素相等)它可以满 足第三对易关系 因为 本题亦可以用矢量矩阵法(见第9题)求解。 ――――――――――――――――――――――――――――――――――――― 【17】证明.,是与 相对易的任意两个矢量,与自旋的自由度无关。 【证明】以下的论证中,为使公式形式略为简化起见,忽去算符的 符号“”不写,但矢量符号“”依旧。 (方法一)直接用矩阵展开式计算,利用自旋分量公式 ,,,将等表成矩阵:
所以,轨道自旋的耦合作用对能量本征值没有影响,因不含
相关文档
最新文档