分式——知识点梳理
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【变式】(2015 春•靖江市校级月考)若关于 x 的方程
﹣=
有增根,求增根
和 k 的值. 【答案】解:最简公分母为 3x(x﹣1),
去分母得:3x+3k﹣x+1=﹣2x, 由分式方程有增根,得到 x=0 或 x=1, 把 x=0 代入整式方程得:k=﹣ ;
把 x=1 代入整式方程得:k=﹣ .
类型五、分式方程的应用
法,体会解方程中的化归思想. 【知识网络】
【要点梳理】 要点一、分式的有关概念及性质 1.分式
A
一般地,如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 叫做分式.其中 A
B
叫做分子,B 叫做分母. 要点诠释:分式中的分母表示除数,由于除数不能为 0,所以分式的分母不能为 0,即
A
当 B≠0 时,分式 才有意义.
增根的产生:分式方程本身隐含着分母不为 0 的条件,当把分式方程转化为整式方程后, 方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值 为 0,那么就会出现不适合原方程的根---增根.
要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将 所得的根带入到最简公分母中,看它是否为 0,如果为 0,即为增根,不为 0,就是原方程 的解. 要点四、分式方程的应用 列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住 “找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量” 等关键环节,从而正确列出方程,并进行求解. 【典型例题】 类型一、分式及其基本性质
解这个整式方程,得 x 6 . 经检验, x 6 是原方程的根.
答:该工程限期是 6 天.
x
所以
y x2
2 x x x2
x x 3. 2 x 3x 7 x 7
xy 3 x2x 3
3
3
类型四、分式方程的解法
6、解方程 6
3
5
.
x2 25 (x 3)(x 5) (x 3)(x 5)
【答案与解析】 解:原方程整理得:
6
3
5
(x 5)(x 5) (x 3)(x 5) (x 3)(x 5)
解:原式 2 2 4 4 4 8 . 1 x2 1 x2 1 x4 1 x4 1 x4 1 x8
【总结升华】此类题在进行计算时采用“分步通分”的方法,逐步进行计算,达到化繁为简 的目的.在解题时既要看到局部特征,又要全局考虑. 举一反三:
【变式】计算 1
1
1
…
1
.
a(a 1) (a 1)(a 2) (a 2)(a 3)
(2)
(0.3x 0.2 y) 100
30x 20 y
5(6x 4 y)
6x 4y
;
0.05x y (0.05x y) 100 5x 100 y 5(x 20 y) x 20 y
(3)原式 (0.4x2 0.3y2 ) 100 40x2 30 y2 5(8x2 6 y2 ) 8x2 6 y2 ; (0.25x2 0.6 y2 ) 100 25x2 60 y2 5(5x2 12 y2 ) 5x2 12 y2
【变式】已知 2x2
xy
3y2
0 ,且
x
y
,求
y
x x2
的值.
x y
【答案】
解:因为 2x2 xy 3y2 0 ,
所以 (x y)(2x 3y) 0 ,
所以 x y 0 或 2x 3y 0 ,
又因为 x y ,所以 x y 0 ,
所以 2x 3y 0 ,所以 y 2 x , 3
解得: x 6 ,
经检验, x 6 是原分式方程的解,且符合题意.
答:原计划每天能加工 6 个零件.
【总结升华】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出
合适的等量关系,列方程求解,注意检验.
举一反三:
【变式】某项工程限期完成,甲队独做正好按期完成,乙队独做则要误期 3 天.现两队合做
(a 2005)(a 2006)
【答案】
解:原式
1 a
a
1
1
a
1
1
a
1
2
a
1
2
a
1
3
…
a
1 2005
a
1 2006
1 1 1 1 1 1 … 1 1
a a 1 a 1 a 2 a 2 a 3
a 2005 a 2006
1 1 a 2006
a
不是;因为 x2 0 ,所以 x2 1 0 ,即不论 x 为何实数,都有 x2 1 0 ,所以选项 C 是; 当 x =±1 时,| x |-1=0,所以选项 D 不是.
【总结升华】分式有意义的条件是分母不为零,无意义的条件是分母为零.
2、不改变分式的值,把下列各式分子与分母中各项的系数都化为最简整数.
1、当 x 为任意实数时,下列分式一定有意义的是( )
A.
B.
C.
D.
【答案】C;
【解析】一个分式有无意义,取决于它的分母是否等于 0.即若 是一个分式,则 有意义
B≠0.当 x =0 时, x2 0 ,所以选项 A 不是;当 x 1 时, 2x 1 0 ,所以选项 B 2
a c 把 b 2c 代入原式中,
∴ 原式 4c2 5(2c)2 6c2 22c2 11 .
c2 2(2c)2 3c2 12c2
6
【总结升华】当所求分式的分子、公母无法约分,也无法通过解方程组后代入求值时,若将 两个三元一次方程中的一个未知数当作已知数时,即可通过解方程组代入求值. 举一反三:
7、(2016•大庆)某车间计划加工 360 个零件,由于技术上的改进,提高了工作效率, 每天比原计划多加工 20%,结果提前 10 天完成任务,求原计划每天能加工多少个零件?
【思路点拨】等量关系为:原计划天数=实际生产天数+10.
【答案与解析】
解:设原计划每天能加工 x 个零件,
由题意得, 360 360 10 , x 1.2x
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.
(3)除法运算 a c a d ad ,其中 a、b、c、d 是整式, bcd 0 . b d b c bc
两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.
(4)乘方运算
分式的乘方,把分子、分母分别乘方。 4.零指数
式化为同分母的分式,这样的分式变形叫做分式的通分. 3.基本运算法则 分式的运算法则与分数的运算法则类似,具体运算法则如下: (1)加减运算
a b a b ;同分母的分式相加减,分母不变,把分子相加减. cc c
;异分母的分式相加减,先通分,变为同分母的分式,再加减.
(2)乘法运算 a c ac ,其中 a、b、c、d 是整式, bd 0 . b d bd
1 a 4b (1) 2 3 ;
1a1b 34
0.3x 0.2 y
(2)
;
0.05x y
0.4x2 3 y2
(3)
10 .
1 x2 0.6 y2
4
【答案与解析】
解:(1)
1 2
a
4 3
b
1 2
a
4 3
b
12
6a
16b
.
1a1b 34
1 3
a
1 4
b
12
4a 3b
0.3x 0.2 y
解:方法一:∵
x4
x2 x2
1
(x4
x2 1) x2 x2 x2
x2
1
1 x2
x2
1 x2
1
x
1 x
2
1,而
x
1 x
4
,
∴
x4
x2 x2
1
15
,∴
x2
1.
x4 x2 1 15
方法二:原式
x2 x2
1
1
(x4 x2 1) x2
x2
1
1 x2
x2
1 x2
1
x
1 1 2 x
【总结升华】在确定分子和分母中所有分母的最小公倍数时,要把小数先化成最简分数;相 乘时分子、分母要加括号,注意不要漏乘. 类型二、分式运算
3、计算: 1 1 2 4 . 1 x 1 x 1 x2 1 x4
【思路点拨】本题如果直接通分计算太繁琐,观察比较发现,前两个分式分母之积为平方差 公式,通分后与第三个分式的分母又符合平方差公式,以此类推可解此题. 【答案与解析】
2006 .
a a 2006 a(a 2006) a(a 2006) a2 2006a
类型三、分式条件求值的常用技巧
4、已知 x 1 4 ,求 x2 的值.
x
x4 x2 1
【思路点拨】直接求值很困难,根据其特点和已知条件,能够求出其倒数的值,这样便可求
x2
出
的值.
x4 x2 1
【答案与解析】
2 天后,余下的工程再由乙队独做,也正好在限期内完成,问该工程限期是多少天?
【答案】
1
1
解:设该工作限期为 x 天,则甲队的工作效率为 ,乙队的工作效率为
.
x
x3
依题意列出方程:
2
1 x
x
1
3
(
x
Βιβλιοθήκη Baidu
2)
1 1. x3
整理,得 2 x 1. x x3
两边都乘以 x(x 3) ,得 2(x 3) x2 x(x 3) .
分式全章复习与巩固(提高)
【学习目标】 1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为 0 的条件. 2.了解分式的基本性质,掌握分式的约分和通分法则. 3.掌握分式的四则运算. 4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的
知识体系. 5.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解
方程两边同乘以 (x 3)(x 5)(x 5) 得:
6(x 3) 3(x 5) 5(x 5)
去括号,移项合并同类项得: 2x 8 ,∴ x 4 . 检验:把 x 4 代入 (x 3)(x 5)(x 5) 0
∴ x 4 是原方程的根.
【总结升华】解分式方程的基本思想是:设法将分式方程“转化”为整式方程,去分母是解 分式方程的一般方法,在方程两边同乘以各分式的最简公分母,使分式方程转化为整式方 程.但要注意可能会产生增根,所以必须验根. 举一反三:
∴(x﹣ )2=(x+ )2﹣4=36﹣4=32,
∴x﹣ =±4 , 又∵0<x<1, ∴x﹣ =﹣4 .
5、设 abc 0 ,且 3a 2b 7c 0 , 7a 4b 15c 0 ,求 4a2 5b2 6c2 的值. a2 2b2 3c2
【答案与解析】
3a 2b 7c 0 a c 解:解关于 a 、 b 的方程组 7a 4b 15c 0 得 b 2c .
B
2.分式的基本性质
(M 为不等于 0 的整式).
3.最简分式 分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.
要点二、分式的运算 1.约分
利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样 的分式变形叫做分式的约分. 2.通分
利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分
1
1 15
.
【总结升华】(1)本题运用转化思想将所求分式通过分式的基本性质转化为已知分式的代
数式来求值.(2)根据完全平方公式,熟练掌握
x
1 x
、
x2
1 x2
、
x4
x2 x2
1
之间的关系,
利用它们之间的关系进行互相转化. 举一反三:
【变式】(2015 春•惠州校级月考)若 0<x<1,且
的值.
【答案】 解:∵x+ =6,
.
5.负整数指数
6.分式的混合运算顺序 先算乘方,再算乘除,最后加减,有括号先算括号里面的. 要点三、分式方程 1.分式方程的概念
分母中含有未知数的方程叫做分式方程. 2.分式方程的解法
解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程. 3.分式方程的增根问题