2019年四川省成都市中考数学试题(含答案)

合集下载

中考数学专题实际应用题(解析版)

中考数学专题实际应用题(解析版)
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)

四川省成都市2019年中考一模数学试题

四川省成都市2019年中考一模数学试题

2019年九年级第一次联合质质量抽测试卷数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.25-的绝对值是() A .25- B .25 C .52- D .522.“十三五”期间,河南将安排40.27亿元资金支持郑州大学.河南大学“双一流”建设.数据“40.27亿”用科学记数法表示为()A .104.02710⨯B .100.402710⨯C .94.02710⨯D .90.402710⨯3.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A .B .C .D .4.下表是我国近六年“两会”会期(单位:天)的统计结果:则我国近六年“两会”会期(天)的众数和中位数分别是() A .13,11B .13,13C .13,14D .14,13.55.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大.小和尚各100人6.将分别标有“学”“习”“强”“国”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其它差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸的球上的汉字组成“强国”的概率是() A .18 B .16 C .14 D .127.下列不等式组的解集,在数轴上表示为如图所示的是()A .1020x x ->⎧⎨+≤⎩ B .1020x x -≤⎧⎨+<⎩C .1020x x +≤⎧⎨->⎩D .1020x x +>⎧⎨-≤⎩8.已知函数y kx b =+的图象如图所示,则一元二次方程210x x k ++-=的根的情况是()A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定9.如图,已知矩形AOBC 的三个顶点的坐标分别为(0,0)O ,(0,3)A ,(4,0)B ,按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交,OC OB 于点,D E ;②分别以点,D E 为圆心,大于12DE 的长为半径作弧,两弧在BOC ∠内交于点F ;③作射线OF ,交边BC 于点G ,则点G 的坐标为()A .44,3⎛⎫ ⎪⎝⎭ B .4,43⎛⎫ ⎪⎝⎭C .5,43⎛⎫ ⎪⎝⎭ D .54,3⎛⎫ ⎪⎝⎭10.如图1,在菱形ABCD 中,120A ∠=︒,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a b +的值为()A .B .4CD 二、填空(每小题3分,共15分)11.计算:112-⎛⎫--= ⎪⎝⎭______.12.已知:如图,12355∠=∠=∠=︒,则4∠的度数是______.13.已知反比例函数2y x=,当1x <-时,y 的取值范围为_____. 14.如图,在菱形ABCD ,60B ∠=︒,2AB =,把菱形ABCD 绕BC 的中点E 顺时针旋转60︒得到菱形A B C D '''',其中点D 的运动路径为¼DD ',则图中阴影部分的面积为______.15.如图,ABC △中,90ACB ∠=︒,30A ∠=︒,1BC =,CD 是ABC △的中线,E 是AC 上一动点,将AED △沿ED 折叠,点A 落在点F 处,EF 与线段CD 交于点G ,若CEG △是直角三角形,则CE =_____.三、解答题(本大题共8道题,共75分)16.先化简,再求值:2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭,其中2m =. 17.贺岁片《流浪地球》被称为开启了中国科幻片的大门,2019也被称为中国科幻片的元年.某电影院为了全面了解观众对《流浪地球》的满意度情况,进行随机抽样调查,分为四个类别:A .非常满意;B .满意;C 基本满意;D .不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)本次接受调查的观众共有______人;(2)扇形统计图中,扇形C 的圆心角度数是_____; (3)请补全条形统计图;(4)春节期间,该电影院来观看《流浪地球》的观众约3000人,请估计观众中对该电影满意(A B C 、、类视为满意)的人数.18.如图,AB 为O e 的直径,DB AB ⊥于B ,点C 是弧AB 上的任一点,过点C 作O e 的切线交BD 于点E .连接OE 交O e 于F .(1)求证:CE ED =;(2)填空:①当D ∠=_____时,四边形OCEB 是正方形; ②当D ∠=_____时,四边形OACF 是菱形. 19.如图,反比例函数(0)ky x x=>的图象过格点(网格线的交点)A . (1)求反比例函数的解析式;(2)若点P 是该双曲线第一象限上的一点,且45AOP ∠=︒, 填空:①直线OP 的解析式为_______;②点P 的坐标为______.20.某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A 到地面的铅直高度AC 长度为15米,原坡面AB 的倾斜角ABC ∠为45︒,原坡脚B 与场馆中央的运动区边界的安全距离BD 为5米.如果按照施工方提供的设计方案施工,新座位区最高点E 到地面的铅直高度EG 长度保持15米不变,使A E 、两点间距离为2米,使改造后坡面EF 的倾斜角EFG ∠为37︒.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD 至少保持2.5米( 2.5FD …),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:3sin 375︒≈,3tan 374︒≈)21.某公司推出一款产品,成本价10元/千克,经过市场调查,该产品的日销售量y (千克)与销售单价x (元/克)之间满足一次函数关系,该产品的日销售量与销售单价之间的几组对应值如下表:(注:日销售利润=日销售量×(销售单价-成本单价)) (1)求y 关于x 的函数解析式(不要求写出x 的取值范围); (2)根据以上信息,填空: ①m =_____元;②当销售价格x =_____元时,日销售利润W 最大,最大值是______元;(3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1025元,试确定该产品销售单价的范围.22.如图1,在ABC △中,90BAC ∠=︒,AB AC =,点,D E 分别在边,AB AC 上,AD AE =,连接DC 、BE ,点P 为DC 的中点.(1)观察猜想图1中,线段AP 与BE 的数量关系是______,位置关系是________; (2)探究证明把ADE △绕点A 逆时针方向旋转到图2的位置,小航猜想(1)中的结论仍然成立,请你证明小航的猜想; (3)拓展延伸把ADE △绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出线段AP 的取值范围.23.如图,抛物线23y ax bx =-+交x 轴于(1,0)B ,(3,0)C 两点,交y 轴于A 点,连接AB ,点P 为抛物线上一动点. (1)求抛物线的解析式; (2)当点P 到直线AB 时,求点P 的横坐标; (3)当ACP △和ABC △的面积相等时,请直接写出点P 的坐标.2019年九年级第一次联合质质量抽测试卷数学参考答案及评分标准一、选择题:(每小题3分,共30分) BCDBA BDCAC二、填空题:(每小题3分,共15分)11.4- 12.125︒ 13.20y -<< 14.76π 三、解答题:(本大题共8个小题,满分75分)16.解:原式22(2)31111m m m m m ⎛⎫--=÷- ⎪---⎝⎭22(2)411m m m m --=÷--2(2)11(2)(2)m m m m m --=⋅--+-22m m -=-+当2m =-时,原式=== 17解:(1)Q 被调查的总户数为6060%100÷=,故答案为100; (2)54︒;(3)补全图形如下:(4)观众对该电影的满意(A B C 、、类视为满意)的人数为:6020153000100%2850100++⨯⨯=(人)18.(1)证明:连接BC ,AB Q 为O e 的直径,DB AB ⊥于A ,CE 为O e 切线,EB EC ∴=,90DBA ACB ∠=∠=︒,ECB EBC ∴∠=∠,90EBC D ∠+∠=︒Q ,90ECB ECD ∠+∠=︒,D ECD ∴∠=∠. CE CD ∴=(2)①45︒②30︒19.解:(1)Q 反比例函数(0)ky x x =>的图象过格点(1,3)A ,133k ∴=⨯=, ∴反比例函数的解析式为3y x=;(2)①12y x =;②⎭20.解:施工方提供的设计方案不满足安全要求,理由如下:在Rt ABC △中,15AC m =,45ABC ∠=︒,15tan 45ACBC m ==︒.在Rt EFG △中,15EG m =,37EFC ∠=︒,15203tan374EG GF m =≈=︒15EG AC m ==Q ,AC BC ⊥,EG BC ⊥,EG AC ∴P ,∴四边形EGCA 是矩形,2GC EA m ∴==,201523BF GF GC BC m ∴=--≈--=. 5BD m =Q ,532 2.5FD BD BF ∴=-≈-=<,∴施工方提供的设计方案不满足安全要求.21.解:(1)设y 与x 的函数关系式为y kx b =+,则1424018180k b k b +=⎧⎨+=⎩解得:15k =-,450b =,15450y x ∴=-+,(2)60,20,1500(3)21001560045001001025W x x -=-+--=整理得:215(20)375x --=-,解得:115x =,225x =所以,当1525x 剟时,捐赠后每天的剩余利润不低于1025元 22.(1)12AP BE =,AP BE ⊥ (2)延长PA 交BE 于N 延长AP 到M 使PM AP =,连接CM ,则ADP MCP △≌△,AD CM AE ∴==,DAP M ∠=∠,AD CM ∴P ,M DAP ∴∠=∠,180DAC ACM ∠+∠=︒,又90BAC DAE ∠︒∠==Q ,180DAC BAE ∴∠+∠=︒,ACM BAE ∴∠=∠, 又AB AC =Q ,BAE ACM ∴△≌△,M AEB DAP ∴∠=∠=∠,BE AM =,12AP AM =Q ,12AP BE ∴= 又90EAN DAP ∠︒∠+=Q ,90EAN AEB ∴∠+∠=︒,90ENA ∴∠=︒即AP BE ⊥(3)37AP 剟23.解:(1)把(1,0)B ,(3,0)C 代入23y ax bx =-+得030933a b a b =-+⎧⎨=-+⎩解得:14a b =⎧⎨=⎩所以,抛物线的解析式为:243y x x =-+(2)过点P 作PQ AB ⊥于Q ,过点P 作PD y P 轴交直线AB 于D , 则OAB PDQ ∠=∠,(0,3)A Q ,(1,0)B3OA ∴=,1OB =,∴直线AB 的解析式为:33y x =-+AB ∴===sin sinOAB PDQ ∴∠=∠=又sin PQ PDQ PD∠=PQ PD ∴=PQ ∴=设点()2,43P m m m -+,(,33)D m m -+2243(33)PD m m m m m =-+--+=-,PQ =2|m m --=解得:173m =-,2103m = 故点P 的横坐标为73-或103(3)(2,1)-或⎝⎭或⎝⎭。

2019年四川省成都市中考数学试题(含解析)

2019年四川省成都市中考数学试题(含解析)

2019年四川省成都市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019四川省成都市,1,3)比-3大5的数是(A)-15 (B)-8 (C)2 (D)8【答案】C【解析】列式子计算:-3+5=2,故选C【知识点】有理数加法2.(2019四川省成都市,2,3)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是(A)(B)(C)(D)【答案】B【解析】从左面看,上层有1个,下层有2个,故选B.【知识点】三视图3.(2019四川省成都市,3,3)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年,将数据5500万用科学记数法表示为(A)5500×104(B)55×106(C)5.5×107(D)5.5×108【答案】C【解析】用科学记数法可以把一个数表示a×10n的形式,其中1≤a<10,n的值可由小数点移动情况来决定,若原数大于1,n为正整数;若原数小于1,则n为负整数;小数点移动几位,n的绝对值就是几.【知识点】科学记数法4.(2019四川省成都市,4,3)在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为(A)(2,3)(B)(-6,3)(C)(-2,7)(D)(-2,-1)【答案】A【解析】点的坐标向右(左)平移a个单位,则点的横坐标加(减)a,本题中点向右平移了4个单位,故横坐标加4,纵坐标不变,选A.【知识点】点平移的坐标变化规律5.(2019四川省成都市,5,3)将等腰直角三角形纸片和矩形纸片按如图方式叠放在一起,若∠1=30°,则∠2的度数为(A)10°(B)15°(C)20°(D)30°【答案】B【解析】由平行线的性质可得∠1的内错角也为30°,再用45°减去30°即得∠2度数,故选B . 【知识点】平行线的性质;等腰直角三角形的性质6.(2019四川省成都市,6,3)下列计算正确的是 (A )5ab-3a=2b (B )(-3a 2b )2=6a 4b 2 (C )(a-1)2=a 2-1 (D )2a 2b ÷b=2a 2 【答案】D【解析】选项A 不是同类项,不能合并;选项B 中-3的平方不能是6;选项C 中完全平方公式用错;D 选项符合单项式除法法则,故选D.【知识点】幂的乘方;积的乘方;合并同类项;单项式除法法则7.(2019四川省成都市,7,3)分式方程1215=+--xx x 的解为 (A )x=-1 (B )x=1 (C )x=2 (D )x=-2【答案】A【解析】通过去分母在方程两边同时乘以x (x-1),将分式方程转化为一元一次方程,通过解一元一次方程求得分式方程的解,通过检验验证是否有解. 【知识点】解分式方程8.(2019四川省成都市,8,3)某校开展了主题为“青春·梦想”的艺术作品征集活动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是 (A )42件 (B )45件 (C )46件 (D )50件 【答案】C【思路分析】将所有数据按照从小到大(或从大到小)排列,位于最中间的数或者位于最中间的两个数的平均数即为所求中位数.【解题过程】将5个数据按照从小到大排列:42,45,46,50,50.位于最中间的数是46,故选C. 【知识点】中位数9.(2019四川省成都市,9,3)如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则∠CPD 的度数为(A )30° (B )36° (C )60° (D )72°【答案】B【思路分析】求圆周角的度数,可以考虑求所对弧对的圆心角的度数,利用一条弧所对的圆周角等于它所对的圆心角的一半求解.【解题过程】连接OC 、OD ,∵五边形ABCDE 是正五边形,∴∠COD=72°,∴∠CPD=36°,故选B. 【知识点】正多边形与圆;圆周角定理E DCBOAP10.(2019四川省成都市,10,3)如图,二函数y=ax 2+bx+c 的图象经过点A (1,0),B (5,0),下列说法正确的是(A )c <0 (B )b 2-4ac <0 (C )a-b+c <0 (D )图象的对称轴是直线x=3【答案】D【思路分析】根据二次函数图象的性质及特征点的坐标判断选项的正确性.【解题过程】根据图象,显然c >0,故A 错;抛物线与x 轴有两个交点,则Δ>0,故B 错;当x=-1时,函数值y >0,所以a-b+c >0,故C 错;A 、B 两点的纵坐标相同,其中点横坐标为3,故D 正确. 【知识点】二次函数图象的性质二、填空题:本大题共4小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在题中横线上. 11.(2019四川省成都市,11,3)若m-1与-2互为相反数,则m 的值为_______. 【答案】1【解析】由两数互为相反数,其和为零列出方程:m+1-2=0,解m=1. 【知识点】相反数;一元一次方程应用 12.(2019四川省成都市,12,3)如图,在△ABC 中,AB=AC ,点D ,E 都在边BC 上,∠BAD=∠CAE ,若BD=9,则CE 点长为_________.B【答案】9【解析】∵AB=AC ,∴∠B=∠C ,∵∠BAD=∠CAE ,∴△ABD ≌△AEC ,∴CE=BD=9. 【知识点】等腰三角形的性质;全等三角形的判定和性质 13.(2019四川省成都市,13,3)已知一次函数y=(k-3)x+1的图象经过一、二、四象限,则k 的取值范围是_______. 【答案】k <3【解析】一次函数同时经过了二、四象限,所以k-3<0,解得k <3. 【知识点】一次函数图象的性质14.(2019四川省成都市,14,3)如图,ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ′;③以点M ′为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ′;④过点N ′作射线ON ′交BC 于点E.若AB=8,则线段OE 的长为________.A【答案】4【解析】根据尺规作图可以判定∠COE=∠CAB ,所以OE ∥AB ,可得OE 为△CAB 的中位线,从而得到OE 等于AB 的一半.【知识点】尺规作图;三角形中位线三、解答题(本大题共6小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 15.(2019四川省成都市,15,12)(本小题满分12分,每题6分)(1)计算:(π-2)0-2cos30°-16+3-1. (2)解不等式组:⎪⎩⎪⎨⎧+--≤-②①(x x x x 21142554)23【思路分析】(1)利用零指数幂、特殊角三角函数值、二次根式化简、去绝对值等知识逐项求得各项结果,相加即可;(2)通过解不等式①和不等式②得到两个解集,求公共解集即可. 【解题过程】(1)原式=1-2×23-4+3-1=-4 (2)解不等式①得x ≥-1,解不等式②得x <2,故不等式组的解集为-1≤x <2. 【知识点】零指数幂;特殊角三角函数值;二次根式化简;绝对值;解不等式组16.(2019四川省成都市,16,6)(本小题满分6分)先化简,再求值:621234-12++-÷⎪⎭⎫ ⎝⎛+x x x x ,其中x=2+1.【思路分析】先利用分式的加减乘除运算法则将分式化简,再将x 值代入求解. 【解题过程】()()1213231)3(2)1(3433621234-1222-=-+⨯+-=+-÷⎪⎭⎫ ⎝⎛+-++=++-÷⎪⎭⎫ ⎝⎛+x x x x x x x x x x x x x x 当x=2+1时,原式=22=2【知识点】分式的加减;分式的乘除;二次根式化简 17.(2019四川省成都市,17,8)(本小题满分8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择,某校计划为学生提供以下四类在线学习方式:在线阅读,在线听课,在线答题和在线讨论,为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图. 根据图中信息解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对“在线阅读”最感兴趣的学生人数.3642483024181260在线答题在线讨论在线阅读在线听课人数【思路分析】(1)由在线答题的人数占总人数的百分比及人数求出总人数,再求出在线听课的人数,补充完整条形统计图;(2)用在线讨论的人数除以总人数求出百分比,用这个百分比乘以360°得到圆心角度数;(3)求出在线阅读人数的百分比,乘以该校总人数即可. 【解题过程】(1)18÷20%=90;90-24-18-12=36,补全图如下:361218243642483024181260在线答题在线讨论在线阅读在线听课人数方式(2)360×9012=48° (3)2100×9024=560答:估计该校对“在线阅读”最感兴趣的学生人数大约有560人. 【知识点】条形统计图;扇形统计图;用样本估计总体18.(2019四川省成都市,18,8)(本小题满分8分)2019年成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A 处测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB=20米,求起点拱门CD 的高度.(结果精确到1米:参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【思路分析】过点C 作CE ⊥AB 于点E ,在Rt △ADB 中求出BD ,在Rt △ACE 中求AE ,用AB 减去AE 即可. 【解题过程】过点C 作CE ⊥AB 于点E ,在RtABD 中,BD=45tan AB=20,∴CE=20,在Rt △ACE 中,AE=CE · tan35°=20×0.70=14,∴CD=BE=20-14=6.答:拱门高6米.【知识点】解直角三角形的应用19.(2019四川省成都市,19,10)(本小题满分10分)如图,在平面直角坐标系xOy 中,一次函数y=21x+5和Ey=-2x 的图象相交于点A ,反比例函数y=xk的图象经过点A. (1)求反比例函数的表达式; (2)设一次函数y=21x+5点图象与反比例函数y=xk的图象的另一个交点为B ,连接OB ,求△ABO 的面积.x【思路分析】(1)先通过一次函数y=21x+5和y=-2x 的图象求出交点A 的坐标,将点A 坐标代入y=xk求出k 值;(2) 通过一次函数y=21x+5与反比例函数组成的方程组求出B 点坐标,进而求△OAB 的面积. 【解题过程】解:(1)解方程组⎪⎩⎪⎨⎧-=+=x y x y 2521得⎩⎨⎧=-=42y x ,∴点A (-2,4),将点A 坐标代入y=x k 得k=-8,故反比例函数解析式为y=x8-(2)解方程组⎪⎪⎩⎪⎪⎨⎧-=+=x y x y 8521得⎩⎨⎧==1y 8-x ,∴点B (-8,1),设直线AB 与x 轴交于点F ,与y 轴交于点G ,当x=0时,y=5,当y=0时,x=-10,故F (-10,0),G (0,5),∴S △FOG =21×5×10=25,S △FBO =21×1×10=5,S △AOG =21×2×5=5,∴S △AOB =25-5-5=15.x【知识点】一次函数;反比例函数20.(2019四川省成都市,20,10)(本小题满分10分)如图,AB 为⊙O 的直径,C ,D 为圆上的两点,OC ∥BD ,弦AD ,BC 相交于点E. (1)求证:=AC CD(2)若CE=1,EB=3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作PQ ∥CB 交⊙O 于F ,Q 两点(点F 在线段PQ 上),求PQ 的长.BA【思路分析】(1)连接OD ,利用证明两条弧所对的圆心角相等证明弧等;(2)通过已知证明△CBA ∽△CAE 得比例式求CA ,再进一步利用勾股定理求解;(3)根据已知证明PC ∥AE ,得比例式求PA ,进而求PO ,再证△OHP ∽△ACB 列比例式求OH 、PH ,进而利用勾股定理求HQ ,得PQ.【解题过程】解:(1)连接OD ∵OC ∥BD , ∴∠OCB=∠DBC ∵OB=OC,∴∠OCB=∠OBC ∴∠OBC=∠DBC ∴∠AOC=∠COD ∴=AC CD(2)连接AC ,∵=AC CD ∴∠CBA=∠CAD ∵∠BCA=∠ACE ∴△CBA ∽△CAE ∴CA CBCE CA=∴CA 2=CE ·CB=CE ·(CE+EB )=1×(1+3)=4 ∴CA=2∵AB 为⊙O 的直径 ∴∠ACB=90°在Rt △ACB 中,由勾股定理,得2222=2+4=25CA CB +∴⊙O 5(3)如图,设AD 与CO 相交于点N. ∵AB 为⊙O 的直径, ∴∠ADB=90° ∵OC ∥BD ,∴∠ANO=∠ADB=90° ∵PC 为⊙O 的切线 ∴∠PCO=90° ∴∠ANO=∠PCO ∴PC ∥AE ∴1==3PA CE AB EB ∴PA=13AB=13×525∴25555 过点O 作OH ⊥PQ 于点H ,则∠OHP=90°=∠ACB∵PQ ∥CB∴∠BPQ=∠ABC ∴△OHP ∽△ACB ∴OP OH PHAB AC BC==∴OH=55253==325AC OP AB ⨯,PH 554103==325BC OP AB ⨯连接OQ在Rt △OHQ 中,由勾股定理,得HQ=()2222525-=5-=33OQ OH ⎛⎫ ⎪⎝⎭∴PQ=PH+HQ=10+253【知识点】圆中三组量关系;圆周角定理;切线的性质;相似三角形的判定和性质;勾股定理B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21.(2019四川省成都市,21,4) 估算:7.37≈________(结果精确到1).【答案】6【解析】从被开方数看,值在6~7之间,而6.5的平方为42.25,故其值在6~6.5之间,四舍五入,故精确后为6.【知识点】算术平方根 22.(2019四川省成都市,22,4)已知x 1、x 2是关于x 的一元二次方程x 2+2x+k-1=0的两个实数根,且x 12+x 22-x 1x 2=13,则k 的值为________.【答案】-2【解题过程】利用根与系数关系可得x 1+x 2=-2,x 1·x 2=k-1,∴x 12+x 22-x 1x 2=(x 1+x 2)2-3x 1x 2=13,即(-2)2-3(k-1)=13,解得k=-2.【知识点】根与系数关系;解一元一次方程;配方 23.(2019四川省成都市,23,4)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为75,则盒子中原有的白球的个数为_______.【答案】20【解题过程】设原来有白球x 个,根据题意列方程5+51057x x =++,解x=20 【知识点】概率的求法24.(2019四川省成都市,24,4)如图,在边长为1的菱形ABCD 中,∠ABC=60°,将△ABD 沿射线BD 的方向平移得到△A ′B ′D ′,分别连接A ′C ,A ′D ,B ′C ,则A ′C+B ′C 的最小值为________.D′A'D AB C B′【答案】3【解题过程】解:∵在边长为1的菱形ABCD 中,∠ABC =60°,∴AB =1,∠ABD =30°,∵将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',∴A ′B ′=AB =1,∠A ′B ′D =30°,当B ′C ⊥A ′B ′时,A 'C +B 'C 的值最小,∵AB ∥A ′B ′,AB =A ′B ′,AB =CD ,AB ∥CD ,∴A ′B ′=CD ,A ′B ′∥CD ,∴四边形A ′B ′CD 是矩形,∠B ′A ′C =30°,∴B ′C =,A ′C =,∴A 'C +B 'C 的最小值为,故答案为:.D′A'D AB C B′F【知识点】菱形的性质;解直角三角形;矩形的性质25.(2019四川省成都市,25,4) 如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”,已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为215,则△OAB 的内部(不含边界)的整点的个数为____________.【答案】4或5或6【解题过程】解:设B (m ,n ),∵点A 的坐标为(5,0),∴OA =5,∵△OAB 的面积=5•n =, ∴n =3,结合图象可以找到其中的一种情况:(以一种为例)当2<m <3时,有6个整数点;当3<m <时,有5个整数点;当m =3时,有4个整数点;可知有6个或5个或4个整数点;故答案为4或5或6;【知识点】点的坐标二、解答题(本大题共三个小题,共30分,解答过程写在答题卡上)26.(2019四川省成都市,26,8)(本小题满分8分)随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化,设该产品在第x (x 为整数)个销售周期每台的销售价格为x 元,y 与x 之间的满足如图所示的一次函数关系.(1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p=21x+21来描述,根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【思路分析】(1)利用待定系数法求解即可;(2)设销售收入为w ,列出w 关于x 的函数关系式,利用二次函数顶点坐标公式求出最大销售收入时x 的值,再代入(1)中函数关系式求y 值即可.【解题过程】(1)设函数解析式为y=kx+b则700055000k b k b +=⎧⎨+=⎩解得5007500k b =-⎧⎨=⎩,∴函数关系式为y=-500x+7500 (2)设第x 个销售周期的销售收入为w ,则w=(-500x+7500)(21x+21)=-250x 2+3500x+3750 当x=7时,w 有最大值为4000答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元【知识点】一次函数;待定系数法;二次函数顶点坐标27.(2019四川省成都市,27,10)(本小题满分10分)如图1,在△ABC 中,AB=AC=20,tanB=43,点D 为BC 边上的动点(点D 不与点B 、C 重合),以D 为顶点作∠ADE=∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD 交射线DE 于点F ,连接CF.(1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF=CF ?若存在,求出此时BD 的长;若不存在,请说明理由.【思路分析】(1)利用一线三等角证明出∠BAD=∠CDE,再利用等腰三角形得到角等证明相似;(2)作AM⊥BC 于点M,解直角三角形求出BM,进而求得BC,易证∠BAD=∠ADE=∠EDC=∠B=∠ACB,从而得∴△ABD∽△CBA,通过比例式求BD,再利用平行线得比例式求AE长;(3)过点F作FH⊥BC于点H,过点A作AM⊥BC 于点M,AN⊥FH于点N,易得△AFN∽△ADM,从而利用AM、BM的值求得tanB的值,进而求得AN、CH,利用DF=CF条件求出CD,进而求BD长.【解题过程】解:(1)∵AB=AC∴∠B=∠ACB∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B∴∠BAD=∠CDE∴△ABD∽△DCE.(2)过点A作AM⊥BC于点M.在Rt△ABM中,设BM=4k,则AM=BM·tanB=4k·34=3k由勾股定理,得AB2=AM2+BM2∴202=(3k)2+(4k)2∴k=4∵AB=AC,AM⊥BC∴BC=2BM=2·4k=32∵DE∥AB∴∠BAD=∠ADE又∵∠ADE=∠B,∠B=∠ACB ∴∠BAD=∠ACB∵∠ABD=∠CBA∴△ABD∽△CBA∴AB DB CB AB=∴DB=222025322 ABCB==∵DE∥AB∴AE BD AC BC=∴AE=25202=32AC BDBC⨯=12516(3)点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF.过点F 作FH ⊥BC 于点H ,过点A 作AM ⊥BC 于点M ,AN ⊥FH 于点N ,则∠NHM=∠AMH=∠ANH=90°.∴四边形AMHN 为矩形,∴∠MAN=90°,MH=AN ,∵AB=AC ,AM ⊥BC ,∴BM=CM=12BC=12×32=16 在Rt △ABM 中,由勾股定理,得AM=2222201612AB BM -=-= ∵AN ⊥FH ,AM ⊥BC∴∠ANF=90°=∠AMD∵∠DAF=90°=∠MAN∴∠NAF=∠MAD∴△AFN ∽△ADM∴3==tan =tan =4AN AF ADF B AM AD ∠∴AN=34AM=34×12=9 ∴CH=CM-MH=CM-AN=16-9=7当DF=CF 时,由点D 不与点C 重合,可知△DFC 为等腰三角形又∵FH ⊥DC∴CD=2CH=14∴BD=BC-CD=32-14=18所以,点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF ,此时BD=18【知识点】相似三角形的判定和性质;解直角三角形;矩形的性质和判定;等腰三角形的性质28.(2019四川省成都市,28,12)(本小题满分12分)如图,抛物线y=ax 2+bx+c 经过点A (-2,5),与x 轴相交于B (-1,0),C (3,0)两点.(1)求抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△BCD 沿直线BD 翻折得到△BC ′D ,若点C ′恰好落在抛物线的对称轴上,求点C ′和点D 的坐标;(3)设P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP 的函数表达式.【思路分析】(1)直接利用待定系数法求解;(2)设抛物线的轴对称性与x 轴交于点H ,可得BH=12BC=12BC ′,则利用三角函数易得∠ABC=60°,从而通过直角三角形和等腰三角形易得C ′和D 点坐标;(3)分类讨论:①当点P 在x 轴上方时,点Q 在x 轴上方,连接BQ ,C ′P ,利用(2)条件构造△BCQ ≌△C ′CP ,进而得到C ′P=CQ=CP ,从而得到BP 是CC ′垂直平分线,可得D 点在BP 上,利用B 、D 坐标求直线解析式;②当点P 在x 轴下方时,点Q 在x 轴下方同理可求.【解题过程】解:(1)由题意,得4250930a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的函数表达式为y=x 2-2x-3(2)∵抛物线与x 轴的交点为B (-1,0)、C (3,0)∴BC=4,抛物线的对称轴为直线x=1设抛物线的对称轴与x 轴交于点H ,则H 点的坐标为(1,0),BH=2由翻折得C ′B=CB=4在Rt △BHC ′中,由勾股定理,得C ′2222-=4-2=23C B BH ′∴点C ′的坐标为(3),tan ∠C ′BH=23=3C H BH ′∴∠C ′BH=60°由翻折得∠DBH=12∠C ′BH=30° 在Rt △BHD 中,DH=BH ·tan ∠DBH=2·tan30°=233∴点D的坐标为(1,233)(3)取(2)中的点C′,D,连接CC′∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形分类讨论如下:①当点P在x轴上方时,点Q在x轴上方连接BQ,C′P,∵△PCQ,△C′CB为等边三角形∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°∴∠BCQ=∠C′CP∴△BCQ≌△C′CP∴BQ=C′P∵点Q在抛物线的对称轴上,∴BQ=CQ∴C′P=CQ=CP又∵BC′=BC∴BP垂直平分CC′由翻折可知BD垂直平分CC′∴点D在直线BP上设直线BP的函数表达式为y=kx+b则0=-k+b23⎧解得3333kb⎧=⎪⎪⎨⎪=⎪⎩∴直线BP的函数表达式为33②当点P在x轴下方时,点Q在x轴下方∵△QCP,△C′CB为等边三角形∴CP = CQ,BC=C′C,∠C′CB=∠QCP=60°∴∠BCP=∠C′CQ∴△BCP≌△C′CQ∴∠CBP=∠CC′Q∵BC′=CC′,C′H⊥BC∴∠CC′Q=12∠CC′B=30°∴∠CBP=30°设BP与y轴相交于点E在Rt△BOE中,OE=OB·tan∠CBP=OB·tan30°=1×33=33∴点E的坐标为(0,-33)设直线BP的函数表达式为y=k′x+b′则0-+3-=3k bb=⎧⎪⎨⎪⎩′′解得3=-33=-3kb⎧⎪⎪⎨⎪⎪⎩′′∴直线BP的函数表达式为y=-33x-33综上所述,直线BP的函数表达式为y=33x+33或y=-33x-33【知识点】待定系数法;轴对称性;等边三角形的性质;全等三角形的判定和性质;解直角三角形。

成都市中考数学试卷附答案

成都市中考数学试卷附答案

成都市中考数学试卷附答案集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A 卷和B 卷,A 卷满分100分,8卷满分50分;考试时间l20分钟。

A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。

A 卷(共100分) 第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。

答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。

考试结束,监考人员将试卷和答题卡一并收回。

2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求。

每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。

请注意机读答题卡的横竖格式。

一、选择题:(每小题3分,共30分)1. 计算2×(12-)的结果是(A)-1 (B) l (C)一2 (D) 2 2. 在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >3. 如图所示的是某几何体的三视图,则该几何体的形状是(A)长方体 (B)三棱柱 (C)圆锥 (D)正方体 4. 下列说法正确的是左视图俯视图主视图(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定朝上 (C)在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖 (D)在平面内,平行四边形的两条对角线一定相交5. 已知△ABC∽△DEF ,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:16. 在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A′, 则点A ′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限7. 若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k >- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠8. 若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是(A)40° (B)80° (C)120° (D)150°9. 某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为 (A)20kg (B)25kg(C)28kg (D)30kg10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了l5户家庭的日用电量,结果如下表:则关于这l5户家庭的日用电量,下列说法错误的是AB C DEA′(A)众数是6度 (B)平均数是度 (C)极差是5度 (D)中位数是6度成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项: 1.A 卷的第Ⅱ卷和B 卷共l0页,用蓝、黑钢笔或圆珠笔直接答在试卷上。

2019年数学中考试卷(含答案)

2019年数学中考试卷(含答案)
(2)如图 2,当 6<t<10 时,DE 是否存在最小值?若存在,求出 DE 的最小值;若不存 在,请说明理由. (3)当点 D 在射线 OM 上运动时,是否存在以 D,E,B 为顶点的三角形是直角三角形? 若存在,求出此时 t 的值;若不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
24.某公司销售两种椅子,普通椅子价格是每把 180 元,实木椅子的价格是每把 400 元. (1)该公司在 2019 年第一月销售了两种椅子共 900 把,销售总金额达到了 272000 元,求两 种椅了各销售了多少把? (2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降 30 元后销售,实 木椅子每把降价 2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上
22.4 月 18 日,一年一度的“风筝节”活动在市政广场举行 ,如图,广场上有一风筝 A,小 江抓着风筝线的一端站在 D 处,他从牵引端 E 测得风筝 A 的仰角为 67°,同一时刻小芸在 附近一座距地面 30 米高(BC=30 米)的居民楼顶 B 处测得风筝 A 的仰角是 45°,已知小江 与居民楼的距离 CD=40 米,牵引端距地面高度 DE=1.5 米,根据以上条件计算风筝距地
7.D
解析:D 【解析】 【分析】 【详解】
解:A 选项中,根据对顶角相等,得 1与 2 一定相等; B、C 项中无法确定 1与 2 是否相等;
D 选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1. 故选:D
8.A
解析:A 【解析】
【分析】
【详解】
该班男生有
x
人,女生有
y
人.根据题意得:
x y 30 3x 2y 78

中考数学真题知识分类练习试卷:代数式(含解析)

中考数学真题知识分类练习试卷:代数式(含解析)

中考数学真题知识分类练习试卷:代数式(含解析)【一】单项选择题1.以下运算:①a2•a3=a6,②〔a3〕2=a6,③a5÷a5=a,④〔ab〕3 =a3b3,其中结果正确的个数为〔〕A. 1B. 2C. 3D. 4【来源】山东省滨州市2019年中考数学试题2.计算的结果是〔〕A. B. C. D.【来源】江苏省南京市2019年中考数学试卷【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:应选:B.点睛:此题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法那么和性质是解题的关键.3.以下计算结果等于的是〔〕A. B. C. D.【来源】2019年甘肃省武威市〔凉州区〕中考数学试题4.以下运算正确的选项是〔〕A. B.C. D.【来源】湖南省娄底市2019年中考数学试题【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法那么逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,应选D.【点睛】此题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法那么是解题的关键.5.以下运算正确的选项是〔〕A. B. C. D.【来源】山东省德州市2019年中考数学试题6.我国南宋数学家杨辉所著的«详解九章算术»一书中,用以下图的三角形解释二项式的展开式的各项系数,此三角形称为〝杨辉三角〞.A. 84B. 56C. 35D. 28【来源】山东省德州市2019年中考数学试题7.以下运算正确的选项是〔〕A. B. C. D.【来源】安徽省2019年中考数学试题【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法那么逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,应选D.【点睛】此题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法那么是解题的关键.8.据省××局发布,2019年我省有效发明专利数比2019年增长22.1%假定2019年的平均增长率保持不变,2019年和2019年我省有效发明专利分别为a万件和b万件,那么〔〕A. B.C. D.【来源】安徽省2019年中考数学试题【解析】【分析】根据题意可知2019年我省有效发明专利数为〔1+22. 1%〕a万件,2019年我省有效发明专利数为〔1+22.1%〕•〔1+22.1%〕a,由此即可得.【详解】由题意得:2019年我省有效发明专利数为〔1+22.1%〕a万件,2019年我省有效发明专利数为〔1+22.1%〕•〔1+22.1%〕a万件,即b=〔1+22.1%〕2a万件,应选B.【点睛】此题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.以下运算正确的选项是〔〕A. B. C. D.【来源】山东省泰安市2019年中考数学试题10.按如下图的运算程序,能使输出的结果为的是〔〕A. B. C. D.【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕11.以下运算正确的选项是〔〕A. B. C. D.【来源】江苏省宿迁市2019年中考数学试卷12.以下运算正确的选项是〔〕A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. 〔x﹣1〕2=x2﹣1【来源】江苏省连云港市2019年中考数学试题13.以下运算正确的选项是〔〕A. B. C. D.【来源】江苏省盐城市2019年中考数学试题14.以下计算正确的选项是〔〕A. B.C. D.【来源】湖北省孝感市2019年中考数学试题详解:A、,正确;B、〔a+b〕2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、〔a3〕2=a6,故此选项错误;应选:A、点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法那么是解题关键.15.假设单项式am﹣1b2与的和仍是单项式,那么nm的值是〔〕A. 3B. 6C. 8D. 9【来源】山东省淄博市2019年中考数学试题【解析】分析:首先可判断单项式am﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式am﹣1b2与的和仍是单项式,∴单项式am﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴nm=23=8.应选:C、点睛:此题考查了合并同类项的知识,解答此题的关键是掌握同类项中的两个相同.16.以下运算正确的选项是( )A. B. C. D.【来源】广东省深圳市2019年中考数学试题17.以下运算结果正确的选项是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos3 0°=【来源】湖北省黄冈市2019年中考数学试题【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.应选D、点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.以下计算正确的选项是〔〕A. B.C. D.【来源】四川省成都市2019年中考数学试题19.以下计算正确的选项是( )A. B. C. D.【来源】山东省潍坊市2019年中考数学试题【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法那么,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法那么:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-〔b-a〕=2a-b,故C正确;D、〔-a〕3=-a3,故D错误.应选C、点睛:此题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法那么是解题的关键.20.计算〔﹣a〕3÷a结果正确的选项是〔〕A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2019年中考数学试题详解:〔-a〕3÷a=-a3÷a=-a3-1=-a2,应选B、点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法那么是解题关键.21.把三角形按如下图的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,那么第⑦个图案中三角形的个数为〔〕A. 12B. 14C. 16D. 18【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是〔〕A. ①B. ②C. ③D. ④【来源】2019年浙江省绍兴市中考数学试卷解析【二】填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,那么位于第45行、第8列的数是__________.【来源】山东省淄博市2019年中考数学试题∴第45行、第8列的数是2025﹣7=2019,点睛:此题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如下图的三角形,我们称之为〝杨辉三角〞,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2019年中考数学试题25.假设a-=,那么a2+值为_______________________.【来源】湖北省黄冈市2019年中考数学试题详解:∵a-=,∴〔a-〕2=6,∴a2-2+=6,∴a2+=8.点睛:此题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.,,,,,,…〔即当为大于1的奇数时,;当为大于1的偶数时,〕,按此规律,__________.【来源】四川省成都市2019年中考数学试题27.计算的结果等于__________.【来源】天津市2019年中考数学试题【解析】分析:依据单项式乘单项式的运算法那么进行计算即可.详解:原式=2x4+3=2x7.点睛:此题主要考查的是单项式乘单项式,掌握相关运算法那么是解题的关键.28.假设是关于的完全平方式,那么__________.【来源】贵州省安顺市2019年中考数学试题详解:∵x2+2〔m-3〕x+16是关于x的完全平方式,∴2〔m-3〕=±8,解得:m=-1或7,点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简〔x﹣1〕〔x+1〕的结果是_____.【来源】浙江省金华市2019年中考数学试题30.观察以下各式:请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2019年中考数学试题详解:由题意可得:=+1++1++ (1)=9+〔1﹣+﹣+﹣+…+﹣〕=9+=9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.【来源】湖南省娄底市2019年中考数学试题32.如图是一个运算程序的示意图,假设开始输入的值为625,那么第2019次输出的结果为__________.【来源】2019年甘肃省武威市〔凉州区〕中考数学试题【三】解答题33.先化简,再求值:a〔a+2b〕﹣〔a+1〕2+2a,其中.【来源】山东省淄博市2019年中考数学试题【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣〔a2+2a+1〕+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2〔+1〕〔-1〕﹣1=2﹣1=1.点睛:此题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法那么进行化简是解此题的关键.34.〔1〕计算:;〔2〕化简:(m+2)2 +4(2-m)【来源】浙江省温州市2019年中考数学试卷35.我们常用的数是十进制数,如,数要用10个数码〔又叫数字〕:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2019年中考数学试题【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:此题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.〔1〕计算:;〔2〕解不等式:【来源】江西省2019年中等学校招生考试数学试题37.计算或化简.〔1〕;〔2〕.【来源】江苏省扬州市2019年中考数学试题【解析】分析:〔1〕根据负整数幂、绝对值的运算法那么和特殊三角函数值即可化简求值.〔2〕利用完全平方公式和平方差公式即可.详解:〔1〕〔〕-1+|−2|+tan60°=2+〔2-〕+=2+2-+=4〔2〕〔2x+3〕2-〔2x+3〕〔2x-3〕=〔2x〕2+12x+9-[〔2x2〕-9]=〔2x〕2+12x+9-〔2x〕2+9=12x+18点睛:此题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,按照以上规律,解决以下问题:〔1〕写出第6个等式:;〔2〕写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2019年中考数学试题【解析】【分析】〔1〕根据观察到的规律写出第6个等式即可;〔2〕根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:〔1〕〔2〕【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,那么称n为〝极数〞.〔1〕请任意写出三个〝极数〞;并猜想任意一个〝极数〞是否是99的倍数,请说明理由;〔2〕如果一个正整数a是另一个正整数b的平方,那么称正整数a 是完全平方数,假设四位数m为〝极数〞,记D〔m〕=.求满足D〔m〕是完全平方数的所有m.【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如下图的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=〔a+b〕2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=〔a+b〕2请你根据方案【二】方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2019年中考数学试卷。

四川省成都市中考数学试卷(A卷)

四川省成都市中考数学试卷(A卷)

四川省成都市中考数学试卷(A卷)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.四川省成都市中考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看一层三个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017•成都)总投资647亿元的西成高铁预计11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•成都)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.(3分)(2017•成都)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•成都)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.【点评】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.7.(3分)(2017•成都)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)(2017•成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.【点评】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.9.(3分)(2017•成都)已知x=3是分式方程﹣=2的解,那么实数k 的值为()A.﹣1 B.0 C.1 D.2【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.10.(3分)(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【分析】首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.【点评】本题考查了二次函数图象与系数的关系,由图象找出有关a,b,c的相关信息以及抛物线与x轴交点情况,是解题的关键.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2017•成都)(﹣1)0=1.【分析】直接利用零指数幂的性质求出答案.【解答】解:(﹣1)0=1.故答案为:1.【点评】此题主要考查了零指数幂的性质,正确把握定义是解题关键.12.(4分)(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.13.(4分)(2017•成都)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1y2.<故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.(4分)(2017•成都)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD 于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三、解答题(本大题共6小题,共54分)15.(12分)(2017•成都)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.【点评】本题考查了解一元一次不等式组,实数的运算,负整数指数幂以及特殊角的三角函数值.熟练掌握运算法则是解本题的关键.16.(6分)(2017•成都)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(8分)(2017•成都)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【分析】(1)用“非常了解”人数除以它所占的百分比即可得到调查的总人数;(2)用总人数乘以“不了解”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.(8分)(2017•成都)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.19.(10分)(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x 的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P 的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.(12分)(2017•成都)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.【点评】本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r,根据等边对等角表示其它边长,利用比例列方程解决问题.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)(2017•成都)如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.22.(4分)(2017•成都)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由x12﹣x22=0得x1+x2=0或x1﹣x2=0;当x1+x2=0时,运用两根关系可以得到﹣2m﹣1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.23.(4分)(2017•成都)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【分析】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解答】解:设⊙O的半径为1,则AD=,=π,故S圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.【点评】此题主要考查了几何概率,正确得出各部分面积是解题关键.24.(4分)(2017•成都)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.25.(4分)(2017•成都)如图1,把一张正方形纸片对折得到长方形ABCD ,再沿∠ADC 的平分线DE 折叠,如图2,点C 落在点C′处,最后按图3所示方式折叠,使点A 落在DE 的中点A′处,折痕是FG ,若原正方形纸片的边长为6cm ,则FG=cm .【分析】作GM ⊥AC′于M ,A′N ⊥AD 于N ,AA′交EC′于K .易知MG=AB=AC′,首先证明△AKC′≌△GFM ,可得GF=AK ,由AN=4.5cm ,A′N=1.5cm ,C′K ∥A′N ,推出=,可得=,推出C′K=1cm ,在Rt △A C′K 中,根据AK=,求出AK 即可解决问题.【解答】解:作GM ⊥AC′于M ,A′N ⊥AD 于N ,AA′交EC′于K .易知MG=AB=AC′, ∵GF ⊥AA′,∴∠AFG +∠FAK=90°,∠MGF +∠MFG=90°, ∴∠MGF=∠KAC′, ∴△AKC′≌△GFM , ∴GF=AK ,∵AN=4.5cm ,A′N=1.5cm ,C′K ∥A′N ,∴=,∴=,∴C′K=1cm ,在Rt △AC′K 中,AK==cm ,∴FG=AK=cm , 故答案为.【点评】本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题(本大题共3小题,共30分)26.(8分)(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点评】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.27.(10分)(2017•成都)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==3.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质、四点共圆、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活应用所学知识解决问题,学会添加辅助圆解决问题,属于中考压轴题.28.(10分)(2017•成都)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c 与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.。

成都市中考数学试题(含答案)

成都市中考数学试题(含答案)

成都市中考数学试题(含答案)(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷.A 卷满分100分.B 卷满分50分;考试时间120分钟.2. 五城区及高新区的考生使用答题卡作答.郊区(市)县的考生使用机读卡加答题卷作答。

3. 在作答前.考生务必将自己的姓名、准考证号涂写在答题卡(机读卡加答题卷)上。

考试结束.监考人员将试卷和答题卡(机读卡加答题卷) 一并收回。

4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写.字体工整、笔迹清楚。

5.请按照题号在答题卡(机读卡加答题卷)上各题目对应的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

6.保持答题卡面(机读卡加答题卷)清洁.不得折叠、污染、破损等。

A 卷(共100分) 第Ⅰ卷(选择题.共30分)一、选择题:(每小题3分.共3 0分)每小题均有四个选项.其中只有一项符合题目要求。

1. 4的平方根是(A)±16 (B)16 (C )±2 (D)2 2.如图所示的几何体的俯视图是3. 在函数12y x =-x 的取值范围是 (A)12x ≤(B) 12x < (C) 12x ≥ (D) 12x > 4. 近年来.随着交通网络的不断完善.我市近郊游持续升温。

据统计.在今年“五一”期间.某风景区接待游览的人数约为20.3万人.这一数据用科学记数法表示为(A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是 (A )2x x x += (B)2x x x ⋅= (C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根.则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -=BC D E ABCDE30(C)240n mk -> (D)240n mk -≥ 7.如图.若AB 是⊙0的直径.CD 是⊙O 的弦.∠ABD=58°. 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、昆在数轴上的对应点的位置如图所示.则下列判断正确的是 (A)0m > (B)0n < (C)0mn < (D)0m n ->9. 为了解某小区“全民健身”活动的开展情况.某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计.并绘制成如图所示的条形统计图.根据图中提供的信息.这50人一周的体育锻炼时间的众数和中位数分别是(A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时10. 已知⊙O 的面积为9π2cm .若点0到直线l 的距离为πcm .则直线l 与⊙O 的位置关系是(A)相交 (B)相切 (C)相离 (D)无法确定第Ⅱ卷《非选择题.共7()分)二、填空题:(每小题4分.共l 6分)11. 分解因式:.221x x ++=________________。

四川省成都市2019年中考数学试题试题及答案

四川省成都市2019年中考数学试题试题及答案

2019年成都中考数学试题全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分,考试时间120分钟A 卷(共100分) 第I 卷(选择题,共30分)一.选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求) 1.比-3大5的数是( )A.-15B.-8C.2D.8 【解析】此题考查有理数的加减,-3+5=2,故选C2.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A. B. C. D.【解析】此题考查立体几何里三视图的左视图,三视图的左视图,应从左面看,故选B 3.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.将数据5500万用科学计数法表示为( )5500×104 B.55×106 C.5.5×107 D.5.5×108【解析】此题考查科学记数法(较大数),将一个较大数写成na 10⨯的形式,其中101<≤a ,n 为正整数,故选C4.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( ) A.(2,3) B.(-6,3) C.(-2,7) D.(-2,-1)【解析】此题考查科学记数法(较大数),一个点向右平移之后的点的坐标,纵坐标不变,横坐标加4,故选A5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=30°,则∠2的度数为( )A.10°B.15°C.20°D.30°【解析】此题考查平行线的性质(两直线平行内错角相等)以及等腰直角三角形的性质,故选B6.下列计算正确的是( )A.b b ab 235=-B.242263b a b a =-)( C.1)1(22-=-a a D.2222a b b a =÷ 【解析】此题考查正式的运算,A 选项明显错误,B 选项正确结果为249b a ,C 选项122+-a a ,故选D7. 分式方程1215=+--xx x 的解为( ) 8.A.1-=xB.1=xC.2=xD.2-=x 【解析】此题考查分式方程的求解.选A8.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是( )A.42件B.45件C.46件D.50件【解析】此题考查数据统计相关概念中中位数的概念,中位数表示将这列数按从小到大排列后,最中间的一个数或者最中间的两个数的平均值,故选C 。

2020年四川省成都市中考数学试题(word版,解析版) (2)

2020年四川省成都市中考数学试题(word版,解析版) (2)

2019年成都中考数学试题全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟A卷(共100分)第I卷(选择题,共30分)一.选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.比-3大5的数是()A.-15B.-8C.2D.82.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A. B. C. D.3.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.将数据5500万用科学计数法表示为()A.5500×104B.55×106C.5.5×107D.5.5×1084.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为()A.(2,3)B.(-6,3)C.(-2,7)D.(-2,-1)5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°6.下列计算正确的是( )A.b b ab 235=-B.242263b a b a =-)( C.1)1(22-=-a a D.2222a b b a =÷ 7.分式方程1215=+--xx x 的解为( ) A.1-=x B.1=x C.2=x D.2-=x8.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是( ) A.42件 B.45件 C.46件 D.50件9.如图,正五边形ABCDE 内接于∠O ,P 为»DE 上的一点(点P 不与点D 重合),则∠CPD的度数为( )A.30°B.36°C.60°D.72°10.如图,二次函数c bx ax y ++=2的图象经过点A (1,0),B (5,0),下列说法正确的是( )A.0>cB.042<-ac b C.0<+-c b a D.图象的对称轴是直线3=x第II 卷(非选择题,共70分)二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11.若1+m 与-2互为相反数,则m 的值为 .12.如图,在∠ABC 中,AB=AC ,点D ,E 都在边BC 上,∠BAD=∠CAE ,若BD=9,则CE 的长为 .13.已知一次函数1)3(+-=x k y 的图象经过第一、二、四象限,则k 的取值范围是 14.如图,□ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:∠以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;∠以点O 为圆心,以AM 长为半径作弧,交OC 于点M ';∠以点M '为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ';∠过点N '作射线N O '交BC 于点E ,若AB=8,则线段OE 的长为 .三.解答题.(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每题6分)(1)计算:|31|1630cos 2)2(0-+-︒--π.(2)解不等式组:⎪⎩⎪⎨⎧+<--≤-②211425①54)2(3x x x x16.(本小题满分6分)先化简,再求值:62123412++-÷⎪⎭⎫ ⎝⎛+-x x x x ,其中12+=x . 17(本小题满分8分)随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.(2)在线讨论所占圆心角︒=︒⨯=⨯=483609012圆周角调查总人数在线讨论人数18.(本小题满分8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A 处,测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB=20米,求起点拱门CD 的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)19.(本小题满分10分)如图,在平面直角坐标系xOy 中,一次函数521+=x y 和x y 2-=的图象相交于点A ,反比例函数xky =的图象经过点A. (1)求反比例函数的表达式;(2)设一次函数521+=x y 的图象与反比例函数xky = 的图象的另一个交点为B ,连接OB ,求∠ABO 的面积。

2019年四川省成都市石室天府中学中考数学模拟试卷(4月)(解析版)

2019年四川省成都市石室天府中学中考数学模拟试卷(4月)(解析版)

2019年四川省成都市石室天府中学中考数学模拟试卷(4月)一.选择题(共10小题,满分30分,每小题3分)1.有一透明实物如图,它的主视图是()A.B.C.D.2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8B.12C.13D.184.已知反比例函数y=﹣,下列结论中错误的是()A.图象在二,四象限内B.图象必经过(﹣2,4)C.当﹣1<x<0时,y>8D.y随x的增大而减小5.如图,在菱形ABCD中,∠A=130°,连接BD,∠DBC等于()A.25°B.35°C.50°D.65°6.三角形两边长分别为2和4,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.10B.8或10C.8D.8和107.如图,正方形ABCD的边长为4cm,则它的外接圆的半径长是()A.cm B.2cm C.3cm D.4cm8.某存折的密码是一个六位数字(每位可以是0),由于小王忘记了密码的首位数字,则他能一次说对密码的概率是()A.B.C.D.9.关于x的方程mx2+2x+1=0有实数根,则m的取值范围是()A.m≤1B.m≥1C.m<1D.m≤1且m≠010.在方格图中,称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.如图,在5×5的正方形方格中,每个小正方形的边长都是1,△ABC是格点三角形,sin∠ACB的值为()A.B.C.D.二.填空题(共4小题,满分16分,每小题4分)11.已知,则xy=.12.如图,已知▱ABCD中,点E在CD上,=,BE交对角线AC于点F.则=.13.已知A(﹣2,y1)、B(﹣3,y2)是抛物线y=(x﹣1)2+c上两点,则y1y2.(填“>”、“=”或“<”)14.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为.三.解答题(共2小题,满分18分)15.(12分)(1)计算:()﹣1﹣6cos30°﹣()0+(2)解方程:4x2+x﹣3=0.16.(6分)为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽鄂尔多斯”的号召,康巴什区某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)扇形统计图中投稿篇数为3所对应的扇形的圆心角的度数是;该校八,九年级各班在这一周内投稿的平均篇数是;并将该条形统计图补充完整.(2)如果要求该校八、九年级的投稿班级个数为30个,估计投稿篇数为5篇的班级个数.(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个班级中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A 的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)18.(8分)如图,正方形ABCD的对角线AC,BD相交于点O,点P是BC延长线上一点,连接AP,分别交BD,CD于点E,F,过点B作BG⊥AP于G,交线段AC于H.(1)若∠P=25°,求∠AHG的大小;(2)求证:AE2=EF•EP.五.解答题(共2小题,满分20分,每小题10分)19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y1=﹣2x的图象与反比例函数y2=的图象交于A(﹣1,n),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.20.(10分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.六.填空题(共5小题,满分20分,每小题4分)21.设m,n是方程x2﹣x﹣2019=0的两实数根,则m3+2020n﹣2019=.22.如图,四边形ABCD内接于⊙O,对角线AC过圆心O,且AC⊥BD,P为BC延长线上一点,PD⊥BD,若AC=10,AD=8,则BP的长为.23.如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y轴的正半轴上,点B的坐标为(5,6),双曲线y=(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为.24.如图,AC是▱ABCD的对角线,且AC⊥AB,在AD上截取AH=AB,连接BH交AC于点F,过点C作CE平分∠ACB交BH于点G,且GF=,CG=3,则AC=.25.如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是.七.解答题(共1小题,满分8分,每小题8分)26.(8分)嘉兴某公司抓住“一带一路”的机遇不断创新发展,生产销售某产品,该产品销售量y (万件)与售价x(元件)之间存在图1(一条线段)所示的变化趋势,总成本P(万元)与销售量y(万件)之间存在图2所示的变化趋势,当6≤y≤10时可看成一条线段,当10≤y≤18时可看成抛物线P=﹣y2+8y+m(1)写出y与x之间的函数关系式(2)若销售量不超过10万件时,利润为45万元,求此时的售价为多少元/件?(3)当售价为多少元时,利润最大,最大值是多少万元?(利润=销售总额一总成本)八.解答题(共1小题,满分10分,每小题10分)27.(10分)在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO绕点O 顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)九.解答题(共1小题,满分12分,每小题12分)28.(12分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.2019年四川省成都市石室天府中学中考数学模拟试卷(4月)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】细心观察图中几何体摆放的位置和形状,根据主视图是从正面看到的图象判定则可.【解答】解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的轮廓线.故选:B.【点评】本题考查了立体图形的三视图,要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.2.【分析】由抛物线解析式即可求得答案.【解答】解:∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.3.【分析】先根据∠C=90°,AC=5,cos∠A=,即可得到AB的长,再根据勾股定理,即可得到BC的长.【解答】解:∵△ABC中,∠C=90°,AC=5,cos∠A=,∴=,∴AB=13,∴BC==12,故选:B.【点评】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.4.【分析】依据反比例函数的性质以及图象进行判断,即可得到错误的选项.【解答】解:∵反比例函数y=﹣中,k=﹣8<0,∴图象在二,四象限内,故A选项正确;∵﹣2×4=﹣8,∴图象必经过(﹣2,4),故B选项正确;由图可得,当﹣1<x<0时,y>8,故C选项正确;∵反比例函数y=﹣中,k=﹣8<0,∴在每个象限内,y随x的增大而增大,故D选项错误;故选:D.【点评】本题主要考查了反比例函数的图象与性质,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.5.【分析】直接利用菱形的性质得出∠C的度数,再利用等腰三角形的性质得出答案.【解答】解:∵在菱形ABCD中,∠A=130°,∴∠C=130°,BC=DC,∴∠DBC=∠CDB=(180°﹣130°)=25°.故选:A.【点评】此题主要考查了菱形的性质以及等腰三角形的性质,正确应用菱形的性质是解题关键.6.【分析】利用因式分解法求出已知方程的解确定出第三边,即可求出三角形周长.【解答】解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,解得:x=2或x=4,当x=2时,三角形三边为2,2,4,不能构成三角形,舍去;当x=4时,三角形三边为2,4,4,周长为2+4+4=10,故选:A.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.7.【分析】作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.【解答】解:作OE⊥AD于E,连接OD,则AE=DE=2cm,OE=2cm.在Rt△ADE中,OD==2cm.故选:B.【点评】本题需仔细分析图形,利用勾股定理即可解决问题.8.【分析】由一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,∴他能一次说对密码的概率是;故选:D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.【分析】分两种情况考虑:当m=0时,方程为一元一次方程,有实数根,符合题意;当m不为0时,方程为一元二次方程,得到根的判别式大于等于0,求出m的范围,综上,得到满足题意m的范围.【解答】解:当m=0时,方程化为2x+1=0,解得:x=﹣,符合题意;当m≠0时,得到△=4﹣4m≥0,解得:m≤1,综上,m的取值范围是m≤1且m≠0.故选:D.【点评】此题考查了根的判别式,以及一元二次方程的定义,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.10.【分析】根据题意,作出合适的辅助线,然后根据等积法可以求得BD的长,然后根据锐角三角函数即可解答本题.【解答】解:作BD⊥AC于点D,作CE⊥AB交AB的延长线于点E,如右图所示,∵每个小正方形的边长都是1,∴AB=2,CE=1,AC=,BC=,∵,∴BD=,∴sin∠ACB==,故选:C.【点评】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.二.填空题(共4小题,满分16分,每小题4分)11.【分析】根据两内项之积等于两外项之积解答即可.【解答】解:∵=,∴xy=6.故答案为:6.【点评】本题主要考查比例的性质,可根据比例的基本性质直接求解.12.【分析】根据平行四边形的性质可得出CD∥AB,CD=AB,由=可得出CE=AB,由CD∥AB,可得出△CEF∽△ABF,再利用相似三角形的性质即可求出的值.【解答】解:∵四边形ABCD为平行四边形,∴CD∥AB,CD=AB.∵点E在CD上,=,∴CE=CD=AB.∵CD∥AB,∴△CEF∽△ABF∴==.故答案为:.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,利用平行四边形的性质找出△CEF∽△ABF及CE=AB是解题的关键.13.【分析】根据二次函数的性质得到x<1时,y随y的增大而减小,然后根据自变量的大小得到对应函数值的大小.【解答】解:抛物线的对称轴为直线x=1,而x<1时,y随y的增大而减小,所以y1<y2.故答案为<.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,据此可得出BD的长,进而可得出结论.【解答】解:如图,连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.由题可知BC=CD=4,CE是线段BD的垂直平分线,∴∠CDB=∠CBD=60°,DF=BD,∴AD=CD=BC=4,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故答案为:6.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.三.解答题(共2小题,满分18分)15.【分析】(1)原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果;(2)方程利用因式分解法求出解即可.【解答】解:(1)原式=2﹣6×﹣1+3=1;(2)分解因式得:(4x﹣3)(x+1)=0,解得:x=或x=﹣1.【点评】此题考查了解一元二次方程﹣因式分解法,以及实数的运算,熟练掌握运算法则是解本题的关键.16.【分析】(1)根据投稿6篇的班级个数是3个,所占的比例是25%,可求总共班级个数,利用投稿篇数为2的比例乘以360°即可求解;根据加权平均数公式可求该校八,九年级各班在这一周内投稿的平均篇数,再用总共班级个数﹣不同投稿情况的班级个数即可求解;(2)由12个班级中5篇所占的比值即可估算出班级个数为30个时,投稿篇数为5篇的班级个数;(3)利用树状图法,然后利用概率的计算公式即可求解.【解答】解:(1)投稿班级的总个数为:3÷25%=12(个),∴×360°=30°.∵投稿5篇的班级有12﹣1﹣2﹣3﹣4=2(个),∴各班在这一周内投稿的平均篇数为×(2+3×2+5×2+6×3+9×4)=×72=6(篇),该条形统计图补充完整为:故答案为:30°,6篇;(2)30××100%=5(个);(3)画树状图如下:总共12画树状图如下:总共12种情况,不在同一年级的有8种情况,所选两个班正好不在同一年级的概率为:=.【点评】本题考查的是条形统计图和扇形统计图以及用树状图法求概率的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)根据题意作出合适的辅助线,然后根据题意和锐角三角函数可以求得城门大楼的高度;(2)根据(1)中的结果和锐角三角函数可以求得A,B之间所挂彩旗的长度.【解答】解:(1)作AF⊥BC交BC于点F,交DE于点E,如右图所示,由题意可得,CD=EF=3米,∠B=22°,∠ADE=45°,BC=21米,DE=CF,∵∠AED=∠AFB=90°,∴∠DAE=45°,∴∠DAE=∠ADE,∴AE=DE,设AF=a米,则AE=(a﹣3)米,∵tan∠B=,∴tan22°=,即,解得,a=12,答:城门大楼的高度是12米;(2)∵∠B=22°,AF=12米,sin∠B=,∴sin22°=,∴AB=32,即A,B之间所挂彩旗的长度是32米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.18.【分析】(1)由∠ACB=∠P+∠CAP,求出∠CAP即可解决问题;(2)连接EC,证明△ECF∽△EPC即可解决问题;【解答】(1)解:∵四边形ABCD是正方形,∴∠ACB=45°,∵∠ACB=∠P+∠CAP,∴∠CAP=20°,∵BG⊥AP,∴∠AGH=90°,∴AHG=90°﹣20°=70°.(2)证明:∵四边形ABCD是正方形,∴A,C关于BD对称,∠ACB=∠ACD=45°,∴EA=EC,∴∠EAC=∠ECA,∵∠ACB=∠P+∠CAE=45°,∠ECF+∠ECA=45°,∴∠ECF=∠P,∵∠CEF=∠PEC,∴△CEF∽△PEC,∴=,∴EC2=EF•EP,∴EA2=EF•EP.【点评】本题考查正方形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.五.解答题(共2小题,满分20分,每小题10分)19.【分析】(1)把A (﹣1,n )代入y =﹣2x ,可得A (﹣1,2),把A (﹣1,2)代入y =,可得反比例函数的表达式为y =﹣,再根据点B 与点A 关于原点对称,即可得到B 的坐标; (2)观察函数图象即可求解;(3)设P (m ,﹣),根据S 梯形MBPN =S △POB =1,可得方程(2+)(m ﹣1)=1或(2+)(1﹣m )=1,求得m 的值,即可得到点P 的横坐标.【解答】解:(1)把A (﹣1,n )代入y =﹣2x ,可得n =2,∴A (﹣1,2),把A (﹣1,2)代入y =,可得k =﹣2,∴反比例函数的表达式为y =﹣,∵点B 与点A 关于原点对称,∴B (1,﹣2).(2)∵A (﹣1,2),∴y ≤2的取值范围是x <﹣1或x >0;(3)作BM ⊥x 轴于M ,PN ⊥x 轴于N ,∵S 梯形MBPN =S △POB =1,设P (m ,﹣),则(2+)(m ﹣1)=1或(2+)(1﹣m )=1整理得,m 2﹣m ﹣1=0或m 2+m +1=0,解得m =或m =,∴P 点的横坐标为.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.六.填空题(共5小题,满分20分,每小题4分)21.【分析】先利用一元二次方程的定义得到m2=m+2019,m3=2020m+2019,所以m3+2020n﹣2019=2020(m+n),然后利用根与系数的关系得到m+n=1,最后利用整体代入的方法计算.【解答】解:∵m是方程x2﹣x﹣2019=0的根,∴m2﹣m﹣2019=0,∴m2=m+2019,m3=m2+2019m=m+2019+2019m=2020m+2019,∴m3+2020n﹣2019=2020m+2019+2020n﹣2019=2020(m+n),∵m,n是方程x2﹣x﹣2019=0的两实数根,∴m+n=1,∴m3+2020n﹣2019=2020.故答案为2020.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.22.【分析】根据圆周角定理得到∠ADC=90°,根据勾股定理得到CD==6,推出点C是PB的中点,根据直角三角形的性质即可得到结论.【解答】解:∵AC是⊙O的直径,∴∠ADC=90°,∵AC=10,AD=8,∴CD==6,∵AC⊥BD,∴AC平分BD,∵PD⊥BD,∴AC∥PD,∴点C是PB的中点,∴PB=2CD=12,故答案为:12.【点评】本题考查了圆周角定理,垂径定理,平行线的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.23.【分析】延长EF交CO于G,依据反比例函数图象上点的坐标特征,即可得到点E的横坐标为5,点E的纵坐标为3,再根据勾股定理可得EF的长,设OP=x,则PG=3﹣x,分两种情况讨论,依据Rt△FGP中,FG2+PG2=PF2,即可得到x的值,进而得出点P的坐标.【解答】解:如图所示,延长EF交CO于G,∵EF∥x轴,∴∠FGP=90°=∠AEF,∵双曲线y=(k≠0)经过矩形OABC的边BC的中点D,点B的坐标为(5,6),∴点D(,6),∴k=15,又∵点E的横坐标为5,∴点E的纵坐标为=3,即AE=3,①当点F在AB左侧时,由折叠可得,AF=AO=5,∴Rt△AEF中,EF===4,∴GF=5﹣4=1,设OP=x,则PG=3﹣x,∵Rt△FGP中,FG2+PG2=PF2,∴12+(3﹣x)2=x2,解得x=,∴点P的坐标为(0,);②当点F在AB右侧时,同理可得EF=4,∴GF=5+4=9,设OP=x,则PG=x﹣3,∵Rt△FGP中,FG2+PG2=PF2,∴92+(x﹣3)2=x2,解得x=15,∴点P的坐标为(0,15);故答案为:(0,)或(0,15).【点评】本题考查了反比例函数图象上点的坐标特征,翻折变换、勾股定理等知识的综合运用,解题时,常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.24.【分析】如图,连接AG,作GN⊥AC于N,FM⊥EC于M.想办法证明等G是△ABC的内心,推出∠FGN=∠CAG=45°,解直角三角形即可解决问题.【解答】解:如图,连接AG,作GN⊥AC于N,FM⊥EC于M.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AHB=∠HBC,∵AB=AH,∴∠ABH=∠AHB,∴∠ABH=∠CBH,∵∠ECA=∠ECB,∠ABC+∠ACB=90°,∴∠GBC+∠GCB=45°,∴∠FGC=∠GBC+∠GCB=45°,∵FM⊥CG,GN⊥AC,FG=,∴FM=GM=1,∵CG=3,∴CM=2,∴tan∠FCM===,∴CN=2CG,∴GN=,CN=,∵BG,CG是△ABC的角平分线,∴AG也是△ABC的角平分线,∴∠NAG=45°,∴AN=GN=,∴AC=AN+NC=.故答案为.【点评】本题考查平行四边形的性质,解直角三角形,三角形的内心等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.【分析】根据菱形的性质,可得OC的长,根据三角函数,可得OD与CD,根据待定系数法,可得答案.【解答】解:如图,由菱形OABC的一个顶点在原点O处,A点的坐标是(0,4),得OC=OA=4.又∵∠1=60°,∴∠2=30°.sin∠2==,∴CD=2.cos∠2=cos30°==,OD=2,∴C(2,2).设AC的解析式为y=kx+b,将A,C点坐标代入函数解析式,得,解得,直线AC的表达式是y=﹣x+4,故答案为:y=﹣x+4.【点评】本题考查了待定系数法求一次函数解析式,利用锐角三角函数得出C点坐标是解题关键,又利用了菱形的性质及待定系数法求函数解析式.七.解答题(共1小题,满分8分,每小题8分)26.【分析】(1)将点(18,6)、(6,18)代入一次函数表达式:y=kx+b得:,解得:,即可求解;(2)当6≤y≤10时,同理可得:P=10y,由题意得:利润w=yx﹣P=﹣(x﹣10)(x﹣24)=45,即可求解;(3)分6≤y≤10、10≤y≤18两种情况,分别求解即可.【解答】解:(1)将点(18,6)、(6,18)代入一次函数表达式:y=kx+b得:,解得:,函数表达式为:y=﹣x+24;(2)当6≤y≤10时,同理可得:P=10y,由题意得:利润w=yx﹣P=﹣(x﹣10)(x﹣24)=45,解得:x=15或19,即:此时的售价为15或19元;(3)①当6≤y≤10时,w1=yx﹣P=﹣(x﹣10)(x﹣24),当x=17时,w1有最大值为49万元;②10≤y≤18时,把点(10,100)代入二次函数并解得:m=40,w2=yx﹣P=﹣(24﹣x)2+(24﹣x)(x﹣8)﹣40=﹣x2+x﹣,当x=﹣=14时,w2的最大值为40万元,49>40,故:x=17元时,w有最大值为49万元.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.八.解答题(共1小题,满分10分,每小题10分)27.【分析】(Ⅰ)如图①,只要证明△AOA′是等边三角形即可;(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.解直角三角形求出BH,CH 即可解决问题;(Ⅲ)如图③,设A′B′交x轴于点K.首先证明A′B′⊥x轴,求出OK,A′K即可解决问题;【解答】解:(Ⅰ)如图①,∵A(﹣,0),B(0,1),∴OA=,OB=1,∴tan∠BAO==,∴∠BAO=30°,∠ABO=60°,∵△A′OB′是由△AOB旋转得到,∴∠B′=∠ABO=60°,OB=OB′,OA=OA′,∴∠BOB′=α=∠AOA′=60°,∴△AOA′是等边三角形,∴AA′=OA=.(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.∵∠A′B′O=60°,∠CAB′=30°,∴∠ACB′=90°,∵A′B=OA′﹣OB=﹣1,∠BA′C=30°,∴BC=A′B=,∵∠HBC=60°,∴BH=BC=,CH=BH=,∴OH=1+BH=,∴点C的坐标(,).(Ⅲ)如图③中,设A′B′交x轴于点K.当A′在AB上时,∵OA=OA′,∴∠OAA′=∠AA′O=30°,∵∠OA′B′=30°,∴∠AKA′=90°,∵OA′=,∠OA′K=30°,∴OK=OA′=,A′K=OK=,∴A′(,).【点评】本题属于三角形综合题,考查了解直角三角形,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.九.解答题(共1小题,满分12分,每小题12分)28.【分析】(1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用x1,t=﹣2,即可得出直线QH过定点(0,﹣2).待定系数法和韦达定理可求得a=x2﹣【解答】解:(1)∵抛物线y=x2+bx+c经过点A、C,把点A(﹣1,0),C(0,﹣3)代入,得:,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标E(1,﹣4),设N的坐标为(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴当时,m最小值为;当n=﹣4时,m有最大值,m的最大值=16﹣12+1=5.∴m的取值范围是.(3)设点P(x1,y1),Q(x2,y2),∵过点P作x轴平行线交抛物线于点H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,设直线HQ表达式为y=ax+t,将点Q(x2,y2),H(﹣x1,y1)代入,得,x1)=ka,∴y2﹣y1=a(x1+x2),即k(x2﹣x1,∴a=x2﹣∵=(x2﹣x1)x2+t,∴t=﹣2,∴直线HQ表达式为y=(x2﹣x1)x﹣2,∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.。

2019年四川省成都七中育才学校中考数学一诊试卷 解析版

2019年四川省成都七中育才学校中考数学一诊试卷  解析版

2019年四川省成都七中育才学校中考数学一诊试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是( )A.3℃B.﹣3℃C.11℃D.﹣11℃2.(3分)如图,5个完全相同的小正方体组成了一个几何体,则这个几何体的主视图是( )A.B.C.D.3.(3分)下列等式成立的是( )A.x2+3x2=3x4B.0.00028=2.8×10﹣3C.(a3b2)3=a9b6D.(﹣a+b)(﹣a﹣b)=b2﹣a24.(3分)如图,a∥b,点B在直线b上,且AB⊥BC,∠1=35°,那么∠2=( )A.45°B.50°C.55°D.60°5.(3分)当k<0时,一次函数y=kx﹣k的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( )A.众数B.中位数C.平均数D.方差7.(3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为( )A.20B.16C.12D.88.(3分)分式方程=1的解是( )A.x=﹣2B.x=2C.x=3D.无解9.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交y轴于点P,若△ABC与△A′B′C′关于点P成中心对称,则点A′的坐标为( )A.(﹣4,﹣5)B.(﹣5,﹣4)C.(﹣3,﹣4)D.(﹣4,﹣3)10.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是( )A.1B.2C.3D.4二.填空题(本大题共4小题,每小题4分,共16分)11.(4分)分解因式:x3﹣9x= .12.(4分)函数y=+中自变量x的取值范围是 .13.(4分)如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,AB=2AE,若△ADE的面积为2,则四边形BCED的面积为 .14.(4分)如图,在▱ABCD中,AB=6,BC=8,以C为圆心适当长为半径画弧分别交BC,CD于M,N两点,分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P,连接CP并延长交AD于E,交BA的延长线于F,则AE+AF的值等于 .三.解答题(本大题共6个小题,共54分)15.(12分)(1)计算:(﹣1)2019+(﹣)﹣2﹣|2﹣|+4sin60°(2)先化简,再求值:(1﹣)÷,其中a=+216.(6分)已知方程组,当m为何值时,x>y?17.(8分)为了解中考体育科目训练情况,长沙市从全市九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是 ;(2)图1中∠α的度数是 ,并把图2条形统计图补充完整;(3)若全市九年级有学生35000名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 .(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.18.(8分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)19.(10分)如图,直线y=2x+6与反比例函数y=(￿>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?20.(10分)如图,F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求MF、FG、EG之间的数量关系,并说明理由.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.一、填空题(本大题共5小题,每小题4分,共20分)21.(4分)关于x的方程x2+2(m﹣1)x﹣4m=0的两个实数根分别是x1,x2,且x1﹣x2=2,则m的值是 .22.(4分)已知a n=1﹣(n=1,2,3,……),定义b1=a1,b2=a1•a2…,b n=a1•a2…•a n,则b2019= .23.(4分)如图,点A,点B分别在y轴,x轴上,OA=OB,点E为AB的中点,连接OE并延长交反比例函数y=(x>0)的图象于点C,过点C作CD⊥x轴于点D,点D关于直线AB的对称点恰好在反比例函数图象上,则OE﹣EC= .24.(4分)在△ABC中,∠BAC=90°,AC=AB=4,E为边AC上一点,连接BE,过A作AF⊥BE于点F,D是BC边上的中点,连接DF,点H是边AB上一点,将△AFH沿HF翻折.点A落在M点,若MH∥AF,DF=,则MH2= .25.(4分)定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b.当a<b时,min{a,b}=a.若当﹣2≤x≤3,min{x2﹣2x﹣15,m(x+1)}=x2﹣2x﹣15,则实数m的取值范围是 .二、解答题(本大题共3个小题,共30分)26.(8分)某工厂生产一批竹编笔筒,该批产品出厂价为每只4元,按要求在20天内完成,工人小薛第x天生产的笔筒为y只,y与x满足如下关系:y=(1)小薛第几天生产的笔筒数量为320只?(2)如图,设第x天生产的每只笔筒的成本是P元,P与x的关系可用图中的函数图象来刻画,若小薛第x天创造的利润为W元,求W与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?27.(10分)已知,如图所示,在矩形ABCD中,点E在BC边上,△AEF=90°(1)如图①,已知点F在CD边上,AD=AE=5,AB=4,求DF的长;(2)如图②,已知AE=EF,G为AF的中点,试探究线段AB,BE,BG的数量关系;(3)如图③,点E在矩形ABCD的BC边的延长线上,AE与BG相交于O点,其他条件与(2)保持不变,AD=5,AB=4,CE=1,求△AOG的面积.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+,分别交x轴于A与B点,交y轴于点C点,顶点为D,连接AD.(1)如图1,P是抛物线的对称轴上一点,当AP⊥AD时,求P的坐标;(2)在(1)的条件下,在直线AP上方、对称轴右侧的抛物线上找一点Q,过Q作QH⊥x轴,交直线AP于H,过Q作QE∥PH交对称轴于E,当▱QHPE周长最大时,在抛物线的对称轴上找一点,使|QM﹣AM|最大,并求这个最大值及此时M点的坐标.(3)如图2,连接BD,把∠DAB沿x轴平移到∠D′A′B′,在平移过程中把∠D′A′B′绕点A′旋转,使∠D′A′B′的一边始终过点D点,另一边交直线DB于R,是否存在这样的R点,使△DRA′为等腰三角形,若存在,求出BR的长;若不存在,说明理由.2019年四川省成都七中育才学校中考数学一诊试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是( )A.3℃B.﹣3℃C.11℃D.﹣11℃【分析】根据题意列出算式,再利用加法法则计算可得.【解答】解:温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.【点评】本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.2.(3分)如图,5个完全相同的小正方体组成了一个几何体,则这个几何体的主视图是( )A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,.故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)下列等式成立的是( )A.x2+3x2=3x4B.0.00028=2.8×10﹣3C.(a3b2)3=a9b6D.(﹣a+b)(﹣a﹣b)=b2﹣a2【分析】直接利用平方差公式以及科学记数法、积的乘方运算法则分别计算得出答案.【解答】解:A、x2+3x2=4x2,故此选项错误;B、0.00028=2.8×10﹣4,故此选项错误;C、(a3b2)3=a9b6,正确;D、(﹣a+b)(﹣a﹣b)=a2﹣b2,故此选项错误;故选:C.【点评】此题主要考查了平方差公式以及科学记数法、积的乘方运算,正确掌握运算法则是解题关键.4.(3分)如图,a∥b,点B在直线b上,且AB⊥BC,∠1=35°,那么∠2=( )A.45°B.50°C.55°D.60°【分析】先根据∠1=35°,a∥b求出∠3的度数,再由AB⊥BC即可得出答案.【解答】解:∵a∥b,∠1=35°,∴∠3=∠1=35°.∵AB⊥BC,∴∠2=90°﹣∠3=55°.故选:C.【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.5.(3分)当k<0时,一次函数y=kx﹣k的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】由k<0可得出﹣k>0,结合一次函数图象与系数的关系即可得出一次函数y=kx﹣k的图象经过第一、二、四象限,此题得解.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选:C.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.6.(3分)某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( )A.众数B.中位数C.平均数D.方差【分析】由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.【解答】解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B.【点评】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数7.(3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为( )A.20B.16C.12D.8【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.(3分)分式方程=1的解是( )A.x=﹣2B.x=2C.x=3D.无解【分析】分式方程去分母转化为整式方程,求出整式方程的解确定出x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+1)2﹣6=x2﹣1解得:x=2经检验x=2是分式方程的解,故选:B.【点评】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交y轴于点P,若△ABC与△A′B′C′关于点P成中心对称,则点A′的坐标为( )A.(﹣4,﹣5)B.(﹣5,﹣4)C.(﹣3,﹣4)D.(﹣4,﹣3)【分析】先求得直线AB解析式为y=x﹣1,即可得出P(0,﹣1),再根据点A与点A'关于点P成中心对称,利用中点公式,即可得到点A′的坐标.【解答】解:∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∴A(4,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=x﹣1,令x=0,则y=﹣1,∴P(0,﹣1),又∵点A与点A'关于点P成中心对称,∴点P为AA'的中点,设A'(m,n),则=0,=﹣1,∴m=﹣4,n=﹣5,∴A'(﹣4,﹣5),故选:A.【点评】本题考查了中心对称,等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.10.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是( )A.1B.2C.3D.4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.【点评】此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.二.填空题(本大题共4小题,每小题4分,共16分)11.(4分)分解因式:x3﹣9x= x(x+3)(x﹣3) .【分析】根据提取公因式、平方差公式,可分解因式.【解答】解:原式=x(x2﹣9)=x(x+3)(x﹣3),故答案为:x(x+3)(x﹣3).【点评】本题考查了因式分解,利用了提公因式法与平方差公式,注意分解要彻底.12.(4分)函数y=+中自变量x的取值范围是 x≥1且x≠2 .【分析】根据被开方数大于等于0,分母不等于0列不等式计算即可得解.【解答】解:由题意得,解得:x≥1且x≠2,故答案为:x≥1且x≠2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(4分)如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,AB=2AE,若△ADE的面积为2,则四边形BCED的面积为 6 .【分析】由△ADE∽△ACB,推出相似比==,推出=()2,由此即可解决问题;【解答】解:∵∠A=∠A,∠AED=∠B,∴△ADE∽△ACB,∴相似比==,∴=()2,∵S△ADE=2,∴S△ABC=8,∴S四边形BCED=8﹣2=6,故答案为6.【点评】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(4分)如图,在▱ABCD中,AB=6,BC=8,以C为圆心适当长为半径画弧分别交BC,CD于M,N两点,分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P,连接CP并延长交AD于E,交BA的延长线于F,则AE+AF的值等于 4 .【分析】先根据角平分线的性质得出∠BCE=∠DCE,再由平行四边形的性质得出AB∥CD,AD∥BC,故可得出∠DCE=∠F,∠BCE=∠AEF,故可得出BF=BC,∠F=∠AEF,进而可得出结论.【解答】解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠DCE=∠F,∠BCE=∠AEF,∴BF=BC,∠F=∠AEF,∴AF=AE.∵AB=6,BC=8,∴AF=AE=8﹣6=2,∴AE+AF=4.故答案为:4.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三.解答题(本大题共6个小题,共54分)15.(12分)(1)计算:(﹣1)2019+(﹣)﹣2﹣|2﹣|+4sin60°(2)先化简,再求值:(1﹣)÷,其中a=+2【分析】(1)原式利用乘方的意义,负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=﹣1+4﹣2+2+4×=5;(2)原式=•=,当a=+2时,原式===1+.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.(6分)已知方程组,当m为何值时,x>y?【分析】解此题首先要把字母m看做常数,然后解得x、y的值,结合题意,列得一元一次不等式,解不等式即可.【解答】解:,②×2﹣①得:x=m﹣3③,将③代入②得:y=﹣m+5,∴得,∵x>y,∴m﹣3>﹣m+5,解得m>4,∴当m>4时,x>y.【点评】此题提高了学生的计算能力,解题的关键是把字母m看做常数,然后解一元一次方程组与一元一次不等式.17.(8分)为了解中考体育科目训练情况,长沙市从全市九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是 40 ;(2)图1中∠α的度数是 54° ,并把图2条形统计图补充完整;(3)若全市九年级有学生35000名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 7000 .(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.【分析】(1)由统计图可得:B级学生12人,占30%,即可求得本次抽样测试的学生人数;(2)由A级6人,可求得A级占的百分数,继而求得∠α的度数;然后由C级占35%,可求得C级的人数,继而补全统计图;(3)首先求得D级的百分比,继而估算出不及格的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小明的情况,再利用概率公式即可求得答案.【解答】解:(1)本次抽样测试的学生人数是:=40(人);故答案为:40;(2)根据题意得:∠α=360°×=54°,C级的人数是:40﹣6﹣12﹣8=14(人),如图:(3)根据题意得:35000×=7000(人),答:不及格的人数为7000人.故答案为:7000;(4)画树状图得:∵共有12种情况,选中小明的有6种,∴P(选中小明)==.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.18.(8分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【分析】(1)先过点A作AH⊥PO,根据斜坡AP的坡度为1:2.4,得出=,设AH=5k,则PH=12k,AP=13k,求出k的值即可.(2)先延长BC交PO于点D,根据BC⊥AC,AC∥PO,得出BD⊥PO,四边形AHDC是矩形,再根据∠BPD=45°,得出PD=BD,然后设BC=x,得出AC=DH=x﹣14,最后根据在Rt△ABC中,tan76°=,列出方程,求出x的值即可.【解答】解:(1)过点A作AH⊥PO,垂足为点H,∵斜坡AP的坡度为1:2.4,∴=,设AH=5k,则PH=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AH=10,答:坡顶A到地面PO的距离为10米.(2)延长BC交PO于点D,∵BC⊥AC,AC∥PO,∴BD⊥PO,∴四边形AHDC是矩形,CD=AH=10,AC=DH,∵∠BPD=45°,∴PD=BD,设BC=x,则x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.01.解得x≈19.答:古塔BC的高度约为19米.【点评】此题考查了解直角三角形,用到的知识点是勾股定理、锐角三角函数、坡角与坡角等,关键是做出辅助线,构造直角三角形.19.(10分)如图,直线y=2x+6与反比例函数y=(￿>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)结合函数图象找到直线在双曲线下方对应的x的取值范围;(3)构建二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y=;(2)不等式2x+6<0的解集为0<x<1;(3)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴>0∴S△BMN=|MN|×|y M|==(n﹣3)2+,∴n=3时,△BMN的面积最大,最大值为.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考常考题型.20.(10分)如图,F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求MF、FG、EG之间的数量关系,并说明理由.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.【分析】(1)连接OF,由切线的性质结合等角的余角相等可得出∠MFG=∠AGH,结合∠MGF=∠AGH可得出∠MFG=∠MGF,进而可证出△MFG为等腰三角形;(2)由MD∥AB可得出∠M=∠B,连接EF,则∠EFG=∠B,进而可得出∠M=∠EFG,结合∠MGF=∠FGE可得出△MGF∽△FGE,利用相似三角形的性质可得出FG2=EG•MG,结合MF=MG 可得出FG2=EG•MF;(3)由∠M=∠B,tan∠M=可得出若设AH=3k,则HB=4k,AB=5k,连接FO,OB,由∠MHD=∠OFD=90°,∠D=∠D可得出∠FOD=∠M,结合FD=6,可得出FO=8=OB=OA,进而可得出OH=8﹣3k,在Rt△OHB中,利用勾股定理可求出k值,由MD∥AB可得出∠MFG=∠BAF,进而可得出∠BGA=∠BAG,由等角对等腰可得出AB=GB=5k,结合BH=4k可得出GH=k,结合AH=3k利用勾股定理可求出AG=k,再代入k值即可求出结论.【解答】(1)证明:连接OF,如图1所示.∵DF为⊙O的切线,∴OF⊥DM,∴∠MFG+∠AFO=90°.∵BH⊥AD,∴∠AHG=90°,∴∠AGH+∠GAH=90°.∵OA=OF,∴∠OAF=∠OFA,∴∠MFG=∠AGH.又∵∠MGF=∠AGH,∴∠MFG=∠MGF,∴△MFG为等腰三角形.(2)解:FG2=EG•MF,理由如下:∵MD∥AB,∴∠M=∠B.连接EF,如图2所示.∵∠EFG=∠B,∴∠M=∠EFG.又∵∠MGF=∠FGE,∴△MGF∽△FGE,∴=,即FG2=EG•MG,∴FG2=EG•MF.(3)解:∵∠M=∠B,tan∠M=,∴设AH=3k,则HB=4k,AB=5k.连接FO,OB,如图3所示.∵∠MHD=∠OFD=90°,∠D=∠D,∴∠FOD=∠M.∵FD=6,∴FO=8=OB=OA,∴OH=8﹣3k.在Rt△OHB中,OH2+HB2=OB2,即(4k)2+(8﹣3k)2=82,解得:k=.∵MD∥AB,∴∠MFG=∠BAF,∴∠BGA=∠BAG,∴AB=GB=5k,∴GH=k,∴AG==k,∴AG=.【点评】本题考查了切线的性质、三角形内角和定理、等腰三角形的判定与性质、相似三角形的判定与性质、解直角三角形以及勾股定理,解题的关键是:(1)由等角的余角相等结合对顶角相等,证出∠MFG=∠MGF;(2)利用相似三角形的性质,找出FG2=EG•MG;(3)利用勾股定理,求出k 值.一、填空题(本大题共5小题,每小题4分,共20分)21.(4分)关于x的方程x2+2(m﹣1)x﹣4m=0的两个实数根分别是x1,x2,且x1﹣x2=2,则m的值是 0或﹣2 .【分析】由韦达定理得出x1+x2=﹣2(m﹣1),x1x2=﹣4m,结合x1﹣x2=2知,代入x1x2=﹣4m可得关于m的方程,解之可得答案.【解答】解:∵关于x的方程x2+2(m﹣1)x﹣4m=0的两个实数根分别是x1,x2,∴x1+x2=﹣2(m﹣1),x1x2=﹣4m,又∵x1﹣x2=2,∴,解得:,代入x1x2=﹣4m得﹣m(﹣m+2)=﹣4m,解得:m=0或m=﹣2,故答案为:m=0或m=﹣2.【点评】本题主要考查一元二次方程根与系数的关系,根据韦达定理及x1﹣x2=2得出关于m的方程是解题的关键.22.(4分)已知a n=1﹣(n=1,2,3,……),定义b1=a1,b2=a1•a2…,b n=a1•a2…•a n,则b2019= .【分析】根据题目要求分别求出b1、b2、b3…等数据的结果分别为…从而发现,分别逐渐加2;分子逐渐加1;从而列出计算规律式子,再把n=2019代入式子中.【解答】解:∵a n=1﹣(n=1,2,3,……),b1=a1,b2=a1•a2…,b n=a1•a2…•a n,∴b1=,b2=,b3=,从中发现:式子中分子比第n个式子的n多2;式子中的分母2•(n+1)∴当n=2019,bn=.【点评】这题主要考查数学类的规律;需要学生认真算出每个式子的结果,找出分子分母与n之间的关系;23.(4分)如图,点A,点B分别在y轴,x轴上,OA=OB,点E为AB的中点,连接OE并延长交反比例函数y=(x>0)的图象于点C,过点C作CD⊥x轴于点D,点D关于直线AB的对称点恰好在反比例函数图象上,则OE﹣EC= .【分析】由题意可得直线OC的解析式为y=x,设C(a,a),由点C在反比例函数y=(x>0)的图象上,求得C(1,1),求得D的坐标,根据互相垂直的两条直线斜率之积为﹣1,可设直线AB的解析式为y=﹣x+b,则B(b,0),BD=b﹣1.由点D和点F关于直线AB对称,得出BF=DB=b﹣1,那么B(b,b﹣1),再将F点坐标代入y=,得到b(b﹣1)=1,解方程即可求得B的坐标,然后通过三角形相似求得OE,根据OE﹣EC=OE﹣(OC﹣OE)=2OE﹣OC即可求得结果.【解答】解:∵点A,点B分别在y轴,x轴上,OA=OB,点E为AB的中点,∴直线OC的解析式为y=x,设C(a,a),∵点C在反比例函数y=(x>0)的图象上,∴a2=1,∴a=1,∴C(1,1),∴D(1,0),∴设直线AB的解析式为y=﹣x+b,则B(b,0),BD=b﹣1.∵点B和点F关于直线AB对称,∴BF=BD=b﹣1,∴F(b,b﹣1),∵F在反比例函数y=的图象上,∴b(b﹣1)=1,解得b1=,b2=(舍去),∴B(,0),∵C(1,1),∴OD=CD=1,∴OC=,易证△ODC∽△OEB,∴=,即=,∴OE=,∴OE﹣EC=OE﹣(OC﹣OE)=2OE﹣OC=﹣=.故答案为:.【点评】本题考查了待定系数法求反比例函数、正比例函数的解析式,轴对称的性质,函数图象上点的坐标特征,互相垂直的两条直线斜率之积为﹣1,设直线l的解析式为y=﹣x+b,用含b的代数式表示B点坐标是解题的关键.24.(4分)在△ABC中,∠BAC=90°,AC=AB=4,E为边AC上一点,连接BE,过A作AF⊥BE于点F,D是BC边上的中点,连接DF,点H是边AB上一点,将△AFH沿HF翻折.点A落在M点,若MH∥AF,DF=,则MH2= 8﹣2 .【分析】如图,作DK⊥DF交BE于K.首先证明AF=BK,设AF=BK=x,在Rt△AFB中,利用勾股定理构建方程求出x,再证明HM=AF即可解决问题.【解答】解:如图,作DK⊥DF交BE于K.∴AF⊥BE,∴∠AFB=90°,∴AC=AB=4,∠BAC=90°,DC=DB,∴AD⊥BC,BC=4,∴DA=DB=DC,∴∠AFB=∠ADB=90°,∴A,F,D,B四点共圆,∴∠DFB=∠DAB=45°,∵∠FDK=90°,∴∠DFK=∠DKF=45°,∴DF=DK=,∴FK=2,∵∠FDK=∠ADB=90°,∴∠ADF=∠BDK,∵DF=DK,DA=DB,∴△FDA≌△KDB(SAS),∴AF=BK,设AF=BK=x,在Rt△AFB中,则有:x2+(x+2)2=42,解得x=﹣1+或﹣1﹣(舍弃),∴AF=﹣1+,∵HM∥AF,∴∠AFH=∠FHM=∠AHF,∴AH=AF=HM,∴四边形AFMH是平行四边形,∴HM=AF=﹣1+,∴HM2=8﹣2.故答案为8﹣2.【点评】本题考查翻折变换,全等三角形的判定和性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.25.(4分)定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b.当a<b时,min{a,b}=a.若当﹣2≤x≤3,min{x2﹣2x﹣15,m(x+1)}=x2﹣2x﹣15,则实数m的取值范围是 ﹣3≤m≤7 .【分析】根据题意可以得到关于m的一元一次不等式组,从而可以求得m的取值范围.【解答】解:∵当﹣2≤x≤3,min{x2﹣2x﹣15,m(x+1)}=x2﹣2x﹣15,∴x2﹣2x﹣15≤m(x+1),∴x2﹣(2+m)x﹣(15+m)≤0,,解得,﹣3≤m≤7,故答案为:﹣3≤m≤7.【点评】本题考查二次函数的性质、一次函数的性质、解不等式,解答本题的关键是明确题意,列出相应的不等式组.二、解答题(本大题共3个小题,共30分)26.(8分)某工厂生产一批竹编笔筒,该批产品出厂价为每只4元,按要求在20天内完成,工人小薛第x天生产的笔筒为y只,y与x满足如下关系:y=(1)小薛第几天生产的笔筒数量为320只?(2)如图,设第x天生产的每只笔筒的成本是P元,P与x的关系可用图中的函数图象来刻画,若小薛第x天创造的利润为W元,求W与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?【分析】(1)把y=320代入y=20x+80,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;【解答】解:(1)设小薛第x天生产的竹编笔筒数量为320只,由题意可知:20x+80=320,解得x=12.答:第12生产的竹编笔筒数量为320只.(2)由图象得,当0≤x<10时,p=2;当10≤x≤20时,设P=kx+b,把点(10,2),(20,3)代入得,,解得,∴p=0.1x+1,①0≤x≤6时,w=(4﹣2)×36x=72x,当x=6时,w最大=432(元);②6<x≤10时,w=(4﹣2)×(20x+80)=40x+160,∵x是整数,∴当x=10时,w最大=560(元);③10<x≤20时,w=(4﹣0.1x﹣1)×(20x+80)=﹣2x2+52x+240,∵a=﹣2<0,∴当x=﹣=13时,w最大=578(元);综上,当x=13时,w有最大值,最大值为578.【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.27.(10分)已知,如图所示,在矩形ABCD中,点E在BC边上,△AEF=90°(1)如图①,已知点F在CD边上,AD=AE=5,AB=4,求DF的长;(2)如图②,已知AE=EF,G为AF的中点,试探究线段AB,BE,BG的数量关系;(3)如图③,点E在矩形ABCD的BC边的延长线上,AE与BG相交于O点,其他条件与(2)保持不变,AD=5,AB=4,CE=1,求△AOG的面积.【分析】(1)根据勾股定理求出BE,证明△ABE∽△ECF,根据相似三角形的性质列出比例式,计算即可;(2)作FM⊥BC交BC的延长线于M,作GN⊥BC于N,连接GM,证明△ABE≌△EMF,根据全等三角形的性质得到AB=EM,BE=FM,根据直角三角形的性质、勾股定理计算,即可得出结论;(3)连接EG,作OP⊥BE于P,作OQ⊥AG于Q,由矩形的性质得出BC=AD=5,∠ABC=90°,BE=BC+CE=6,由勾股定理求出AE==2,证出△AGE是等腰直角三角形,得出AE=AG,求出AG=,证明A、B、E、G四点共圆,由圆周角定理得出∠GBE=∠GAE=45°,得出△OBP是等腰直角三角形,OP=BP,设OP=BP=x,由tan∠AEB===,求出PE=x,由BP+PE=BE得出方程x+x=6,解得:x=,得出OP=,PE=,由勾股定理求出OE==,得出AO=,在Rt△AOQ中,由等腰直角三角形的性质得出OQ=OA=,即可求出△AOG的面积.【解答】解:(1)∵四边形ABCD是矩形,∴∠A=∠C=∠D=90°,CD=AB=4,∵AD=AE,AD=5,∴AE=5,在Rt△ABE中,由勾股定理得,BE==3,∴EC=2,在Rt△AEF和Rt△ADF中,,∴Rt△AEF≌Rt△ADF(HL),∴EF=DF,设DF=EF=x,则CF=4﹣x,在Rt△CEF中,由勾股定理得:22+(4﹣x)2=x2,解得:x=,即DF的长为;(2)AB+BE=BG.理由如下:作FM⊥BC交BC的延长线于M,作GN⊥BC于N,连接GM,如图②所示:在△ABE和△EMF中,,∴△ABE≌△EMF(AAS)∴AB=EM,BE=FM,∵AB⊥BC,FM⊥BC,GN⊥BC,∴AB∥GN∥FM,又点G为AF的中点,∴点N为BM的中点,GN=(AB+FM),∴GN=BM,∴GB=GN,∠BGM=90°,∴BM=BG,∴AB+BE=BG.(3)连接EG,作OP⊥BE于P,作OQ⊥AG于Q,如图③所示:∵四边形ABCD是矩形,∴BC=AD=5,∠ABC=90°,∴BE=BC+CE=6,∴AE===2,∵△AEF是等腰直角三角形,G是AF的中点,∴∠GAE=45°,EG⊥AF,∴△AGE是等腰直角三角形,∠AGE=90°,。

13. 中考数学专题分式与二次根式数学母题题源系列(解析版)

13. 中考数学专题分式与二次根式数学母题题源系列(解析版)

【母题来源一】【2019•在实数范围内有意义,则x 的取值范围是 A .x ≥1且x ≠2B .x ≤1C .x >1且x ≠2D .x <1【答案】A【解析】依题意,得x -1≥0且x -200,解得x ≥1且x ≠2.故选A . 【母题来源二】【2019•北京】如果m +n =1,那么代数式22221()()m n m n m mn m++⋅--的值为 A .-3B .-1C .1D .3【答案】D【解析】原式=2()m n m n m m n ++--·(m +n )(m -n )=3()mm m n -·(m +n )(m -n )=3(m +n ),当m +n =1时,原式=3.故选D .【母题来源三】【2019•河北】如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在A .段①B .段②C .段③D .段④【答案】B【解析】∵2222(2)1(2)111441(2)111x x xx x x x x x x ++-=-=-=+++++++,又∵x 为正整数,∴12≤x <1,故表示22(2)1441x x x x +-+++的值的点落在②,故选B . 【母题来源四】【2019·天津】计算2211a a a +++的结果是专题03 分式与二次根式A .2B .22a +C .1D .41aa + 【答案】A 【解析】原式=222(1)211a a a a ++==++,故选A . 【母题来源五】【2019·南充】计算:2111x x x+=--__________.【答案】x +1【解析】2111x x x +--=2111x x x ---211x x -=-()()111x x x +-=-1x =+,故答案为:x +1. 【母题来源六】【2019·扬州】化简:2111a a a +--. 【解析】2111a a a +-- =2111a a a --- =211a a -- =(1)(1)1a a a +--=a +1.【母题来源七】【2019·重庆A 卷】计算: 2949()22a a a a a --+÷--. 【解析】原式=222949()222a a a a a a a ---+÷--- 2269229a a a a a -+-=⨯-- 2(3)22(3)(3)a a a a a --=⨯-+-33a a -=+.【母题来源八】【2019•益阳】化简:2244(4)2x x x x+--÷. 【解析】原式=2(2)2(2)(2)x xx x x -⋅+- =242x x -+. 【母题来源九】【2019•河南】先化简,再求值:2212(1)244x x xx x x +--÷--+,其中x【解析】原式=212(2)()22(2)x x x x x x x +---÷--- =322x x x -⋅- =3x, 当x. 【母题来源十】【2019•安顺】先化简2221(1)369x x x x -+÷--+,再从不等式组24324x x x -<⎧⎨<+⎩的整数解中选一个合适的x 的值代入求值.【解析】原式232(3)3(1)(1)x x x x x -+-=⨯-+-=31x x -+,解不等式组24324x x x -<⎧⎨<+⎩①②得-2<x <4,∴其整数解为-1,0,1,2,3, ∵要使原分式有意义,∴x 可取0,2. ∴当x =0时,原式=-3, (或当x =2时,原式=13-).【命题意图】这类试题主要考查分式的有关知识,包括分式有意义的条件、分式的加减乘除运算、分式的化简求值等.【方法总结】1.分式的定义(1)一般地,整式A除以整式B,可以表示成AB的形式,如果除式B中含有字母,那么称AB为分式.(2)分式AB中,A叫做分子,B叫做分母.【注意】①若B≠0,则AB有意义;②若B=0,则AB无意义;③若A=0且B≠0,则AB=0.2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为(0)A A CCB B C⋅=≠⋅或(0)A A CCB B C÷=≠÷,其中A,B,C均为整式.3.分式的运算(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:()(nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.【母题来源十一】【2019·重庆A 卷】估计 A .4和5之间 B .5和6之间 C .6和7之间D .7和8之间【答案】C【解析】,又因为,所以,故选C . 【母题来源十二】【2019•山西】下列二次根式是最简二次根式的是A BCD【答案】D【解析】A 2=,故A 不符合题意;B 7=,故B 不符合题意;C =C 不符合题意;D D 符合题意.故选D . 【母题来源十三】【2019·济宁】下列计算正确的是A 3=-B =C 6±D .0.6=-【答案】D【解析】A3=,故此选项错误;B=,故此选项错误; C6=,故此选项错误;D.0.6=-,正确.故选D . 【母题来源十四】【2019的结果是__________. 【答案】3,故答案为:3.【母题来源十五】【2019•=__________.【答案】【解析】原式==.故答案为:【母题来源十六】【2019·天津】计算1)的结果等于__________. 【答案】2【解析】原式=3-1=2.故答案为:2.【命题意图】这类试题主要考查二次根式有意义的条件、二次根式值为0的条件、最简二次根式、二次根式的运算和化简等. 【方法总结】 1.二次根式的性质 (1)a ≥ 0(a ≥0); (2))0()(2≥=a a a ;(3(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)a b =≥≥;(50,0)a b ≥>.2.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式. (2)二次根式的乘除0,0)a b =≥≥;0,0)a b ≥>. (3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的. 在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.1.【北京市房山区2018年中考二模数学试题】若代数式22x x -有意义,则实数x 的取值范围是A .x =0B .x =2C .x ≠0D .x ≠2【答案】D【解析】∵代数式22x x -有意义,∴x -2≠0,即x ≠2, 故选D .【名师点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.2.【四川省成都市都江堰市2019x 的取值范围是 A .10x ≥B .10x ≤C .10x >D .10x ≠【答案】A 【解析】x -10≥0, 解得:x ≥10, 故选A .【名师点睛】本题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.3.【北京市通州区2019届九年级中考数学3月份模拟】化简22a bb a+-的结果是 A .1a b- B .1b a- C .a -bD .b -a【答案】B 【解析】原式=()()a b b a b a ++-=1b a-,故选B .【名师点睛】本题考查的知识点是约分,解题的关键是熟练的掌握约分.4.【天津市滨海新区2019届中考一模数学试题】计算2231366x x x x x+-⋅-+的结果为 A .6x x+ B .6x x - C .6x x +D .6x +【答案】A【解析】2231366x x x x x+-⋅-+ =221(6)(6)6(1)x x x x x x ++-⋅-+ =6x x+, 故选A .【名师点睛】本题考查分式的乘法,熟练掌握分式乘法的运算法则是解题关键. 5.【河北省唐山市路北区2019届九年级下学期第三次模拟数学试题】在化简分式23311x x x-+--的过程中,开始出现错误的步骤是 A .33(1)(1)(1)(1)(1)x x x x x x -+-+-+-B .331(1)(1)x x x x --++-C .22(1)(1)x x x --+-D .21x -- 【答案】B【解析】∵正确的解题步骤是:23311x x x-+-- 33(1)(1)(1)(1)(1)x x x x x x -+=-+-+-333(1)(1)x x x x ---=+-,∴开始出现错误的步骤是331(1)(1)x x x x --++-.去括号是漏乘了.故选B .【名师点睛】本题主要考查分式的加减法,比较简单.6.【2019年浙江省杭州市拱墅区中考数学二模试卷】下列变形正确的是 A .a b =22a b ++ B .0.220.1a b a bb b++=C .a b -1=1a b-D .a b =22(1)(1)a mb m ++ 【答案】D【解析】A .a b ≠22a b ++,故A 错误; B .0.20.1a b b +=210a b b +,故B 错误;C .a b -1=a b b-,故C 错误;故选D .【名师点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 7.【2019年山东省潍坊市中考数学一模试卷】化简341()(1)32a a a a -+---的结果等于 A .-a -2 B .23a a -- C .a +2D .32a a -- 【答案】A【解析】原式=233412()()3322a a a a a a a a ---+-----24332a a a a --+=⋅-- (2)(2)(3)32a a a a a -+--=⋅--=-(a +2) =-a -2. 故选A .【名师点睛】本题考查了分式的化简,熟练掌握分式混合运算法则是解题的关键.8.【江苏省淮安市清江浦区2019届九年级质量调研一数学试题】运算正确的是A=1B=C=D【答案】D【解析】A、C被开方数不同,不能进行减法、加法运算;B、原式B选项不正确;D、原式=2,所以D选项正确.故选D.【名师点睛】本题考查二次根式的化简和计算:先把各二次根式化为最简二次根式,再进行二次根式的加减乘除运算,然后合并同类二次根式.9.【2019年山东省潍坊市中考数学一模试卷】实数a在数轴上的位置如图所示,化简后为A.7 B.-7 C.2a-15 D.无法确定【答案】C【解析】根据数轴上点的位置得:5<a<10,∴a-4>0,a-11<0,则原式=|a-4|-|a-11|=a-4+a-11=2a-15,故选C.【名师点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.10.【广东省汕头市潮南区2019有意义,则x的取值范围为__________.【答案】x≥-1且x≠2【解析】由题意得:x+1≥0,且x-2≠0,解得:x≥-1且x≠2,故答案为:x≥-1且x≠2.【名师点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.11.【海南省海口市2019届中考数学5月份模拟试卷】化简22669a a a -=-+__________. 【答案】23a - 【解析】原式=()()2233a a --=23a -, 故答案为:23a -. 【名师点睛】本题考查了约分的定义与方法.约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.12.【江苏常州市2019届九年级教学情况调研测试第二次模拟测试数学试题】已知分式3x x y+的值为2,且1y ≠-,则分式21x y ++的值为__________. 【答案】2 【解析】∵3x x y +=2, ∴x =2y ,把x =2y 代入21x y ++得,222(1)211y y y y ++==++. 故答案为:2. 【名师点睛】本题考查了分式的运算,把3x x y+=2化为x =2y 是解题关键.13.【天津市五区2019届中考一模数学试题】计算__________.【答案】4-【解析】原式=4故答案为:4.【名师点睛】本题主要考查二次根式的除法运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.14.【2019的结果是__________.【答案】【解析】原式-12×.故答案为:. 【名师点睛】本题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.15.【2019年山西省百校联考中考数学模拟试卷二】计算(-2)(-2)的结果是__________.【答案】-16【解析】原式=-()(2)=-(20-4)=-16.故答案为:-16.【名师点睛】本题考查了二次根式的混合运算和平方差公式,在二次根式的混合运算中,如能结合题目特点,选择恰当的解题途径,往往能事半功倍.16.【2019年广西河池市中考数学三模试卷】计算:6. 【答案】6 【解析】原式=6.故答案为:6. 【名师点睛】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.17.【2019年黑龙江省大庆市初中毕业升学考试数学模拟测试卷二】已知2310x x -+=,求221x x +的值. 【解析】由2310x x -+=得130x x -+=,即13x x +=, ∴221x x +=21()2x x+-=9-2=7. 【名师点睛】本题考查了完全平方公式的应用,解题的关键是对等式和代数式进行变形,寻找联系.18.【2019年广东省湛江市霞山区中考数学一模试卷】先化简,再求值:21(1)211a a a a ÷-+++,其中1a =. 【解析】21(1)211a a a a ÷-+++ =211(1)1a a a a +-÷++ =21(1)a a a a+⋅+ =1+1a ,当a 时,原式=2. 【名师点睛】此题考查分式的化简求值,关键在于约分.19.【甘肃省定西市2019届九年级下学期第一次诊断考试数学试题】先化简,再求值:221)21x x x x x x+2÷(--+-1,从13x -≤<的范围内选取一个你喜欢的整数作为x 的值.【解析】原式=2(1)2(1)(1)(1)x x x x x x x +--÷-- =2(1)(1)x x x +-·(1)1x x x -+ =21x x -. ∵x ≠0,x ≠±1,∴x =2,当x =2时,原式=2221-=4. 【名师点睛】本题考查了分式的运算及分式有意义的条件,要使分式有意义,分母不为0,熟练掌握运算法则是解题关键.20.【2019年河南省许昌市中考二模数学试题】先化简,再求值:2443(1)11m m m m m -+÷----,其中1m =.【解析】2443(1)11m m m m m -+÷---- =()()()2231111m m m m m --+-÷--=()()()221122m m m m m --⋅-+- =22m m-+,当m -1时,原式()315===. 【名师点睛】本题考查分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.注意分母有理化的运算.21.【2019年上海市杨浦区中考数学三模试卷】先化简,再计算:2221222x x x x x x x--+⋅--+,其中x 1+. 【解析】原式=(1)(2)12(1)2(1)x x x x x x x +-+⋅--+ 12x x x+=- 1x x-=,当x +1时,原式2=. 【名师点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.。

2019年四川省成都市中考数学二诊试卷(含答案)

2019年四川省成都市中考数学二诊试卷(含答案)

中考数学二诊试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)如果a与互为相反数,则a等于()A.B.C.2 D.﹣22.(3分)如图所示的几何体是由6 个完全相同的小立方块搭成,则这个几何体的左视图是()A.B.C.D.3.(3分)从成都经川南到贵阳的成贵客运专线正在建设中,这项工程总投资约780亿元,预计2019 年12月建成通车,届时成都到贵阳只要3 小时,这段铁路被称为“世界第一条山区高速铁路”.将数据780亿用科学记数法表示为()A.78×109 B.7.8×108C.7.8×1010D.7.8×10114.(3分)下列计算正确的是()A.(﹣2a2)3=﹣6a6B.a3+a3=2a3C.a6÷a3=a2D.a3•a3=a95.(3分)在平面直角坐标系中,若直线y=2x+k﹣1经过第一、二、三象限,则k的取值范围是()A.k>1B.k>2C.k<1D.k<2<6.(3分)如图,直线a∥b,直线c与直线a、b分别相交于点A、B,过A作AC⊥b,垂足为C,若∠1=48°,则∠2的度数为()[A.58°B.52°C.48°D.42°7.(3分)武侯区部分学校已经开展“分享学习”数学课堂教学,在刚刚结束的3 月份的月考中,某班7 个共学小组的数学平均成绩分别为130 分、128 分、126 分、130 分、127 分、129 分、131 分,则这组数据的众数和中位数分别是()A.131分,130分B.130分,126分C.128分,128分D.130分,129分8.(3分)关于x的一元二次方程2x2﹣3x=﹣5的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定9.(3分)如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB 的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.B.π C.2πD.3π10.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x 轴的一个交点坐标为(3,0),对称轴为直线x=﹣1,则下列说法正确的是()A.a<0 B.b2﹣4ac<0C.a+b+c=0 D.y随x的增大而增大二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)49的算术平方根是.12.(4分)已知2a+b=2,2a﹣b=﹣4,则4a2﹣b2=.13.(4分)如图,在△ABC中,D为AB的中点,E为AC上一点,连接DE,若AB=12,AE=8,∠ABC=∠AED,则AC=.14.(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)求不等式组的整数解.16.(6分)先化简,再求值:,其中.17.(8分)为了减轻二环高架上汽车的噪音污染,成都市政府计划在高架上的一些路段的护栏上方增加隔音屏.如图,工程人员在高架上的车道M 处测得某居民楼顶的仰角∠ABC的度数是20°,仪器BM 的高是0.8m,点M 到护栏的距离MD 的长为11m,求需要安装的隔音屏的顶部到桥面的距离ED 的长(结果保留到0.1m,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)18.(8分)为了弘扬中国传统文化,“中国诗词大会”第三季已在中央电视台播出.某校为了解九年级学生对“中国诗词大会”的知晓情况,对九年级部分学生进行随机抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请根据统计图的信息,解答下列问题:(1)求在本次抽样调查中,“基本了解”中国诗词大会的学生人数;(2)根据调查结果,发现“很了解”的学生中有三名同学的诗词功底非常深厚,其中有两名女生和一名男生.现准备从这三名同学中随机选取两人代表学校参加“武侯区诗词大会”比赛,请用画树状图或列表的方法,求恰好选取一名男生和一名女生的概率.19.(10分)如图,一次函数y=kx+b的图象与反比例函数的图象相交于A (n,3),B(3,﹣2)两点,过A作AC⊥x轴于点C,连接OA.(1)分别求出一次函数与反比例函数的表达式;=2S△AOC,求点M的坐(2)若直线AB上有一点M,连接MC,且满足S△AMC标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD ⊥AB于点D,过C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF并延长交EC的延长线于点G.ⅰ)试探究线段CF与CD之间满足的数量关系;ⅱ)若CD=4,tan∠BCE=,求线段FG的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)若a为实数,则代数式a2+4a﹣6的最小值为.22.(4分)对于实数m,n 定义运算“※”:m※n=mn(m+n),例如:4※2=4×2(4+2)=48,若x1、x2是关于x 的一元二次方程x2﹣5x+3=0的两个实数根,则x1※x2=.23.(4分)如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是.24.(4分)如图,在平面直角坐标系中,平行四边形ABOC的边OB在x轴上,过点C(3,4)的双曲线与AB交于点D,且AC=2AD,则点D的坐标为.25.(4分)如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm的矩形木板MBCN,并将其拼接在剩下的矩形木板AMND的正下方,其中M′、B′、C′、N′分别与M、B、C、N对应.现在这个新的组合木板上画圆,要使这个圆最大,则x的取值范围是,且最大圆的面积是dm2.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?27.(10分)如图,已知△ABC是等边三角形,点D、E分别在AC、AB上,且CD=AE,BD与CE相交于点P.(1)求证:△ACE≌△CBD;(2)如图2,将△CPD沿直线CP翻折得到对应的△CPM,过C作CG∥AB,交射线PM于点G,PG与BC相交于点F,连接BG.ⅰ)试判断四边形ABGC的形状,并说明理由;ⅱ)若四边形ABGC的面积为,PF=1,求CE的长.28.(12分)在平面直角坐标系中,抛物线y=﹣6x+4的顶点A在直线y=kx ﹣2上.(1)求直线的函数表达式;(2)现将抛物线沿该直线方向进行平移,平移后的抛物线的顶点为A′,与直线的另一交点为B′,与x轴的右交点为C(点C不与点A′重合),连接B′C、A′C.ⅰ)如图,在平移过程中,当点B′在第四象限且△A′B′C的面积为60时,求平移的距离AA′的长;ⅱ)在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,求出所有满足条件的点A′的坐标.参考答案与试题解析一、选择题1.B.2.B.3.C.4.B.5.A6.D7.D8.C9.A10.C.二、填空题11.712.﹣813.9.14.3.三、解答题15.解:(1)原式=3﹣1+2×+2﹣=2++2﹣=4;(2)解不等式2(x﹣3)≤﹣2,得:x≤2,解不等式>x﹣1,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的整数解为0、1、2.16.解:====,当a=+1时,原式=.17.解:由题意:CD=BM=0.8m,BC=MD=11m,在Rt△ECB中,EC=BC•tan20°=11×0.36≈3.96(m),∴ED=CD+EC=3.96+0.8≈4.8(m),答:需要安装的隔音屏的顶部到桥面的距离ED 的长4.8m.18.解:(1)∵调查的总人数为12÷20%=60(人),∴“基本了解”中国诗词大会的学生人数m=60﹣24﹣12﹣6=18(人);(2)列表:共有6种等可能的结果,其中恰好选取一名男生和一名女生的情况有4种,∴P(恰为一名男生和一名女生)==.19.解:(1)将点B(3,﹣2)代入,得:m=3×(﹣2)=6,则反比例函数解析式为y=﹣.∵反比例函数的图象过A(n,3),∴3=﹣,∴n=﹣2,∴A(﹣2,3),将点A(﹣2,3)、B(3,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=﹣x+1;(2)设点M的坐标为(m,﹣m+1),过M作ME⊥AC于E.∵y=﹣,∴S△AOC=×|﹣6|=3,∴S△AMC =2S△AOC=6,∴AC•ME=×3×|m+2|=6,解得m=2或﹣6.当m=2时,﹣m+1=﹣1;当m=﹣6时,﹣m+1=7,∴点M的坐标为(2,﹣1)或(﹣6,7).20.(本小题满分10分)(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,(1分)∵CD⊥AB,∴∠OBC+∠BCD=90°,(2分)∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(3分)(2)解:i)线段CF与CD之间满足的数量关系是:CF=2CD,(4分)理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;(6分)ii)∵∠BCD=∠BCE,tan∠BCE=,∴tan∠BCD=.∵CD=4,∴BD=CD•tan∠1=2,∴BC==2,由i)得:CF=2CD=8,设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴,∴=,∴FG=.(10分)一、填空题21.解:原式=a2+4a+4﹣10=(a+2)2﹣10,因为(a+2)2≥0,所以(a+2)2﹣10≥﹣10,则代数式a2+4a﹣6的最小值是﹣10.故答案是:﹣10.22.解:由题意可知:△>0,∴x1+x2=5,x1x2=3∴原式=x1x2(x1+x2)=3×5=15故答案为:1523.解:由题可得,随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙,∵a2+2ab+b2=(a+b)2,∴选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,∴能拼成一个正方形的概率为,故答案为:.24.解:作CF⊥OB,垂足为F,作DE⊥OB,垂足为E,连接CD并延长交x 轴于M设反比例函数的解析式是y=,把C点的坐标(3,4)代入得:k=12即y=,∵ABOC是平行四边形∴AC∥OB,OC∥AB,AC=OB,AB=OC ∵C(3,4)∴OF=3,CF=4∴OC=,即AB=5设AC=2a,则AD=a,OB=2a (a>0)∴BD=5﹣a,∵OC∥AB∴∠COF=∠DBE且∠CFO=∠DEB∴△CFO∽△BDE∴∴DE=,BE=∴OE=∴D(,)∵点D是y=图象上一点∴×=12∴a=∴D(7,)故答案为(7,).25.解:如图,设⊙O与AB相切于点H,交CD与E,连接OH,延长HO交CD于F,设⊙O的半径为r.在Rt△OEF中,当点E与N′重合时,⊙O的面积最大,此时EF=4,,则有:r2=(8﹣r)2+42,∴r=5.∴⊙O的最大面积为25π,由题意:,∴2≤x≤3,故答案为2≤x≤3,25π.二、解答题26.解:(1)设各通道的宽度为x米,根据题意得:(90﹣3x)(60﹣3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:﹣=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.27.(1)证明:∵△ABC是等边三角形,∴∠A=∠ACB=60°,AC=BC,(2分)∵AE=CD,∴△ACE≌△CBD;(3分)(2)解:i)四边形ABGC为菱形,理由是:∵△ACE≌△CBD,∴∠ACE=∠CBD,∴∠DPC=∠PCB+∠CBD=∠PCB+∠ACE=∠ACB=60°,由翻折得:CD=CM,∠CDP=∠CMP,∠MPC=∠DPC=60°,∴∠DCF+∠DPF=60°+2×60°=180°,∴∠CDP+∠CFP=360°﹣180°=180°,∴∠CMP+∠CMF=180°∴∠CMF=∠CFP,∴CF=CM=CD,(4分)∵∠CFM+∠CFG=180°,∠CDP+∠CFM=180°,∴∠CDP=∠CFG,∵CG∥AB,∴∠GCF=∠CBA=60°=∠BCD,∴△CDB≌△CFG,(5分)∴CG=CB,∴CG=AB,∵CG∥AB,CG=AB=AC,∴四边形ABGC是菱形;(6分)ii)过C作CH⊥AB于H,设菱形ABGC的边长为a,∵△ABC是等边三角形,∴AH=BH=a,∴CH=AH•sin60°=a=,∵菱形ABGC的面积为6,∴AB•CH=6,即a a=6,∴a=2,(7分)∴BG=2,∵四边形ABGC是菱形,∴AC∥BG,∴∠GBC=∠ACB=60°,∵∠GPB=180°﹣∠CPD﹣∠CPM=60°,∴∠GBC=∠GPB,∵∠BGF=∠BGF,∴△BGF∽△PGB,(8分)∴,即BG2=FG•PG,∵PF=1,BG=2,∴,∴FG=3或﹣4(舍),(9分)∵△CDB≌△CFG,△ACE≌△CBD,∴FG=BD,BD=CE,∴CE=FG=3.(10分)28.解:(1)∵y=﹣6x+4=(x﹣6)2﹣14,∴点A的坐标为(6,﹣14).∵点A在直线y=kx﹣2上,∴﹣14=6k﹣2,解得:k=﹣2,∴直线的函数表达式为y=﹣2x﹣2.(2)设点A′的坐标为(m,﹣2m﹣2),则平移后抛物线的函数表达式为y=(x ﹣m)2﹣2m﹣2.当y=0时,有﹣2x﹣2=0,解得:x=﹣1,∵平移后的抛物线与x轴的右交点为C(点C不与点A′重合),∴m>﹣1.(i)联立直线与抛物线的表达式成方程组,,解得:,,∴点B′的坐标为(m﹣4,﹣2m+6).当y=0时,有(x﹣m)2﹣2m﹣2=0,解得:x1=m﹣2,x2=m+2,∴点C的坐标为(m+2,0).过点C作CD∥y轴,交直线A′B′于点D,如图所示.当x=m+2时,y=﹣2x﹣2=﹣2m﹣4﹣2,∴点D的坐标为(m+2,﹣2m﹣4﹣2),∴CD=2m+2+4.∴S△A′B′C =S△B′CD﹣S△A′CD=CD•[m+2﹣(m﹣4)]﹣CD•(m+2﹣m)=2CD=2(2m+2+4)=60.设t=,则有t2+2t﹣15=0,解得:t1=﹣5(舍去),t2=3,∴m=8,∴点A′的坐标为(8,﹣18),∴AA′==2.(ii)∵A′(m,﹣2m﹣2),B′(m﹣4,﹣2m+6),C(m+2,0),∴A′B′2=(m﹣4﹣m)2+[﹣2m+6﹣(﹣2m﹣2)]2=80,A′C2=(m+2﹣m)2+[0﹣(﹣2m﹣2)]2=4m2+12m+8,B′C2=[m+2﹣(m﹣4)]2+[0﹣(﹣2m+6)]2=4m2﹣20m+56+16.当∠A′B′C=90°时,有A′C2=A′B′2+B′C2,即4m2+12m+8=80+4m2﹣20m+56+16,整理得:32m﹣128﹣16=0.设a=,则有2a2﹣a﹣10=0,解得:a1=﹣2(舍去),a2=,∴m=,∴点A′的坐标为(,﹣);当∠B′A′C=90°时,有B′C2=A′B′2+A′C2,即4m2﹣20m+56+16=80+4m2+12m+8,整理得:32m+32﹣16=0.设a=,则有2a2﹣a=0,解得:a3=0(舍去),a4=,∴m=﹣,∴点A′的坐标为(﹣,﹣).综上所述:在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,点A′的坐标为(,﹣)或(﹣,﹣).。

2019年中考数学试卷(word版,含答案) (18)

2019年中考数学试卷(word版,含答案) (18)

2019年初中毕业升学考试数 学 试 题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.5的相反数是A .﹣5B .5C .15-D .152.函数y 中的自变量x 的取值范围是 A .x ≠12 B .x ≥1 C .x >12 D .x ≥123.分解因式224x y -的结果是A .(4)(4)x y x y +-B .4()()x y x y +-C .(2)(2)x y x y +-D .2()()x y x y +- 4.已知一组数据:66,66,62,67,63这组数据的众数和中位数分别是 A .66,62 B .66,66 C .67,62 D .67,66 5.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是 A .长方体 B .四棱锥 C .三棱锥 D .圆锥 6.下列图案中,是中心对称图形但不是轴对称图形的是7.下列结论中,矩形具有而菱形不一定具有的性质是A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直 8.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为 A .20° B .25° C .40° D .50° 9.如图,已知A 为反比例函数ky x=(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为A .2B .﹣2C .4D .﹣4 10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 A .10 B .9 C .8 D .7第8题 第9题 第16题二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.49的平方根为 .12.2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20000000人次,这个年接待客量可以用科学记数法表示为 人次. 13.计算:2(3)a += .14.某个函数具有性质:当x >0时,y 随x 的增大而增大,这个函数的表达式可以是 (只要写出一个符合题意的答案即可).15.已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm . 16.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式30kx b ->的解集为 .第17题 第18题17.如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内自由移动,若⊙Oxy O-6OOB CABE Fxy-6OABBCHGB的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 .18.如图,在△ABC 中,AB =AC =5,BC=D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为 .三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)1013()2--+-; (2)3233)(2a a a -⋅. 20.(本题满分8分)解方程:(1)0522=--x x ; (2)1421+=-x x . 21.(本题满分8分)如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .(1)求证:△DBC ≌△ECB ; (2)求证:OB =OC .22.(本题满分6分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为 ; (2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程) 23.(本题满分6分)B《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生人数分布扇形统计图各等级学生平均分统计表(1)扇形统计图中“不及格”所占的百分比是 ; (2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级. 24.(本题满分8分)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin ∠ABOOAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.25.(本题满分8分)不及格“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y (km)与出发时间之间的函数关系式如图1中线段AB 所示,在小丽出发的同时,小明从乙地沿同一条公路汽骑车匀速前往甲地,两人之间的距离x (km)与出发时间t (h)之间的函数关系式如图2中折线段CD —DE —EF 所示.(1)小丽和小明骑车的速度各是多少? (2)求E 点坐标,并解释点的实际意义.26.(本题满分10分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A 为圆O 上一点,请用直尺(不带刻度)和圆规作出得内接正方形;(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图.①如图2,在□ABCD 中,E 为CD 的中点,作BC 的中点F ;②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC 的高AH .27.(本题满分10分)CBBAA D已知二次函数42-+=bx ax y (a >0)的图像与x 轴交于A 、B 两点,(A 在B 左侧,且OA <OB ),与y 轴交于点C .D 为顶点,直线AC 交对称轴于点E ,直线BE 交y 轴于点F ,AC :CE =2:1.(1)求C 点坐标,并判断b 的正负性;(2)设这个二次函数的图像的对称轴与直线AC 交于点D ,已知DC :CA =1:2,直线BD 与y 轴交于点E ,连接BC .①若△BCE 的面积为8,求二次函数的解析式;②若△BCD 为锐角三角形,请直接写出OA 的取值范围.28.(本题满分10分)如图1,在矩形ABCD 中,BC =3,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作△PAB 关于直线PA 的对称△PAB′,设点P 的运动时间为t (s).(1)若AB=2,当点B′落在AC 上时,显然△PAB′是直角三角形,求此时t 的值;②是否存在异于图2的时刻,使得△PC B′是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB′与直线CD 相交于点M ,且当t <3时存在某一时刻有结论∠PAM =45°成立,试探究:对于t >3的任意时刻,结论∠PAM =45°是否总是成立?请说明理由.参考答案1.A 2.D 3.C 4.B 5.A 6.C 7.C 8.B 9.D 10.B 11.23±12.7210´ 13.269a a ++ 14.2y x =(答案不唯一) 15.3 16.x <2 17.25 18.8 19.(1)【解答】解:原式=4 (2)【解答】解:原式=6a 20.(1)【解答】解:61,6121-=+=x x ; (2)【解答】解:3=x ,经检验3=x 是方程的解 21.(1) 证明:∵AB=AC , ∴∠ECB=∠DBC 在中与ECB DBC ∆∆ECB CB BC DBC CE BD ∠⎪⎩⎪⎨⎧==∠=∴ ECB DBC ∆≅∆(2)证明:由(1)知ECB DBC ∆≅∆ ∴∠DCB=∠EBC ∴OB=OC 22. (1)12(2)开始2112121211221221ììïïïïíïïïïîïïìïïïïíïïïïîïíìïïïïïíïïïïîïïìïïïïíïïïïîî红红黑黑红红黑黑红黑红黑红黑红黑 共有等可能事件12种 其中符合题目要求获得2份奖品的事件有2种所以概率P=1623.(1) 4%(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1(3)设总人数为n 个 , 80.0 ≤ 41.3×n×4%≤89.9 所以 48<n<54 又因为 4%n 为整数 所以n=50即优秀的学生有52%×50÷10%=260 人 24.(1) 作MN BO ,由垂径定理得N 为OB 中点 MN=12OA ∵MN=3∴OA=6,即A (-6,0) ∵sin ∠ABO=2,OA=6 ∴OB= 即B (0,设y kx b =+,将A 、B带入得到3y x =+(2)∵第一问解得∠ABO=60°,∴∠AMO=120°所以阴影部分面积为221=434S =--π((π25.(1)()()=36 2.25=16/=361-16=20/V km h V km h ÷÷小丽小明(2)93620=5914416=)559144,55km E ÷⨯⎛⎫⇒ ⎪⎝⎭(h )(实际意义为小明到达甲地26.(1)连结AE 并延长交圆E 于点C ,作AC 的中垂线交圆于点B ,D ,四边形ABCD 即为所求(2)①法一:连结AC,BD 交于点O,连结EB 交AC 于点G,连结DG 并延长交CB 于点F , F 即为所求法二:连结AC,BD 交于点OEACB连结EO 并延长交AB 于点G 连结GC,BE 交于点M连结OM 并延长交CB 于点F ,F 即为所求②27.(1) 令x=0,则4-=y ,∴C (0,-4) ∵ OA <OB ,∴对称轴在y 轴右侧,即02 ab- ∵a >0,∴b <0 (2)①过点D 作DM ⊥oy ,则21===CO MC OA DM CA DC , ∴AO DM 21=设A (-2m ,0)m >0,则AO=2m,DM=m ∵OC=4,∴CM=2∴D (m ,-6),B (4m ,0) A 型相似可得OBBNOE DN = EDACBCAB∴OE=884421BEF △=⨯⨯=m S∴1=m∴A (-2,0),B (4,0) 设)4)(2(-+=x x a y 即a ax ax y 822--= 令x=0,则y=-8a ∴C (0,-8a ) ∴-8a=-4,a=21 ∴4212--=x x y ②易知:B (4m ,0)C (0,-4)D (m ,-6),通过分析可得∠CBD 一定为锐角 计算可得2222221616,4,936CB m CD m DB m =+=+=+ 1°当∠CDB 为锐角时,222CD DB CB +>22249361616m m m ++++>,解得2m 2-<<2°当∠BCD 为锐角时,222CD CB DB +>22241616936m m m ++++>,解得m m <m 2<,m 42<∴4OA < 28.(1)①勾股求的 易证'CBA CB P △∽△,''4B P =解得②1°如图,当∠PCB ’=90 °时,在△PCB ’中采用勾股得:222(3)t t +-=,解得t=22°如图,当∠PCB ’=90 °时,在△PCB’中采用勾股得:222(3)t t +-=,解得t=63ABP ’为正方形,解得(2)如图3-t tB'B'CBAADPD3B'CA BD∵∠PAM=45°∴∠2+∠3=45°,∠1+∠4=45° 又∵翻折∴∠1=∠2,∠3=∠4又∵∠ADM=∠AB ’M (AAS ) ∴AD=AB ’=AB即四边形ABCD 是正方形 如图,设∠APB=x∴∠PAB=90°-x ∴∠DAP=x易证△MDA ≌△B ’AM (HL ) ∴∠BAM=∠DAM ∵翻折∴∠PAB=∠PAB ’=90°-x∴∠DAB ’=∠PAB ’-∠DAP=90°-2x ∴∠DAM=21∠DAB ’=45°-x ∴∠MAP=∠DAM+∠PAD=45°MA DP4321MB'BCB'A D PP。

2019年四川省成都市成华区中考数学一诊试卷含答案

2019年四川省成都市成华区中考数学一诊试卷含答案

2019年四川省成都市成华区中考数学一诊试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有项符合题目要求,答案涂在答题卡上)1.(3分)2cos60°=()A.1B.C.D.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.4.(3分)对于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小5.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm6.(3分)若关于x 的一元二次方程(k ﹣1)x 2+4x+1=0有实数根,则k 的取值范围是()A .k ≤5B .k ≤5,且k ≠1C .k <5,且k ≠1D .k <57.(3分)如图,要测量小河两岸相对的两点P ,A 的距离,可以在小河边取P A 的垂线PB 上的一点C ,测得PC =100米,∠PCA =35°,则小河宽PA 等于()A .100sin35°米B .100sin55°米C .100tan35°米D .100tan55°米8.(3分)如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为()A .2B .4C .6D .89.(3分)我市某楼盘准备以每平方米15000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,最终以每平方米12150元的均价销售,则平均每次下调的百分率是()A .8%B .9%C .10%D .11%10.(3分)如图,若二次函数y =ax 2+bx+c (a ≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a ﹣b+c <0;③b 2﹣4ac <0;④当y >0时,﹣1<x <3.其中正确的个数是()A.1B.2C.3D.4二.填空题(本大题共4小题,每小题4分,共16分)11.(4分)若关于x的一元二次方程x 2+mx+2n=0有一个根是2,则m+n=.12.(4分)在Rt△ABC中,∠C=90°,tanA=,则sin B=.13.(4分)已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.14.(4分)如图,在?ABCD中,AD>CD,按下列步骤作图:①分别以点A,C为圆心,大于AC的长为半径画弧,两弧交点分别为点F,G;②过点F,G作直线FG,交AD于点E.如果△CDE的周长为8,那么?ABCD的周长是.三、解答下列各题(本大题满分54分)15.(12分)(1)计算:|﹣2|+tan60°﹣﹣(sin30°)(2)解方程:(x+1)(x ﹣3)=2x ﹣516.(6分)先化简,再求值:(﹣)÷,其中x 满足x 2﹣2x ﹣2=0.17.(8分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.18.(8分)如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时.数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速在l外取一点P,作PC ⊥1,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°,测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)19.(10分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C 作x轴的垂线交反比例函数图象于点B.(1)求反比例函数和直线AC的解析式;(2)求△ABC的面积;(3)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,请直接写出符合条件的所有D点的坐标.20.(10分)如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG于点E,BF⊥AG于点F,设=k.(1)求证:AE=BF;(2)求证:=k;(3)连接DF,当∠EDF=30°时,求k的值.B卷一、.填空题(本大题共5小题,每小题4分,共20分)21.(4分)已知关于x的一元二次方程mx 2+5x+m2﹣2m=0有一个根为0,则m=.22.(4分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.23.(4分)从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y=图象上的概率是.24.(4分)如图点A在反比例函数y=(x<0)的图象上,作Rt△ABC,直角边BC在x轴上,点D为斜边AC的中点,直线BD交y轴于点E,若△BCE的面积为8,则k=.25.(4分)已知二次函数y=﹣x 2+x+6及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=x+m与这个新图象有四个交点时,m的取值范围是.二、解谷题(本大题共30分)26.(10分)某农户承包荒山种植某产品种蜜柚.已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?27.(10分)如果a:b=b:c,即b 2=ac,则b叫a和c的比例中项,或等比中项.若一个三角形一条边是另两条边的等比中项,我们把这个三角形叫做等比三角形.(1)已知△ABC是等比三角形,AB=2,BC=3.请直接写出所有满足条件的AC的长;(2)如图,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC,求证:△ABC是等比三角形;(3)如图2,在(2)的条件下,当∠ADC=90时,求的值.参考答案一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有项符合题目要求,答案涂在答题卡上)1.A.2.D.3.B.4.C.5.D.6.B.7.C.8.B.9.C.10.B.二.填空题(本大题共4小题,每小题4分,共16分)11.【解答】解:∵2(n≠0)是关于x的一元二次方程x 2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.12.【解答】解:∵在△ABC中,∠C=90°,tanA=,设BC=x,则AC=3x,∴AB==x.∴sinB===.故答案为.13.【解答】解:设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=()2,即=,解得:x=9,即四边形BCED 的面积为9,故答案为:9.14.【解答】解:由图知,EF 是线段AC 的中垂线,∴AE =CE ,∵△CDE 的周长为8,∴CD +DE +CE =CD +DE +AE =CD +AD =8,则?ABCD 的周长是2×8=16,故答案为:16.三、解答下列各题(本大题满分54分)15.【解答】解:(1)原式=2﹣+×﹣3﹣1=1﹣;(2)整理得:x 2﹣4x+2=0,x 2﹣4x =﹣2,x 2﹣4x+4=﹣2+4,即(x ﹣2)2=2,∴x ﹣2=,∴x 1=2+,x 2=2﹣,16.【解答】解:原式=[﹣]÷=?=,∵x 2﹣2x ﹣2=0,∴x 2=2x+2=2(x+1),则原式==.17.【解答】解:(1)本次活动调查的总人数为(45+50+15)÷(1﹣15%﹣30%)=200人,则表示“支付宝”支付的扇形圆心角的度数为360°×=81°,故答案为:200、81°;(2)微信人数为200×30%=60人,银行卡人数为200×15%=30人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:画树状图得:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.18.【解答】解:在Rt△APC中,AC=PCtan∠APC=30tan71°≈30×2.90=87,在Rt△BPC中,BC=PCtan∠BPC=30tan35°≈30×0.70=21,则AB=AC﹣BC=87﹣21=66,∴该汽车的实际速度为=11m/s,又∵40km/h≈11.1m/s,∴该车没有超速.19.【解答】解:(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=.把A(3,4),C(6,0)代入y=mx+n中,可得:,解得:,所以直线AC的解析式为:y=﹣x+8;(2)∵点C(6,0),BC⊥x轴,∴把x=6代入反比例函数y=,得y==2.则B(6,2).所以△ABC的面积=;(3)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y A﹣y D=y B﹣y C即4﹣y D=2﹣0,故y D=2.所以D(3,2).②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y D′﹣y A=y B﹣y C即y D﹣4=2﹣0,故y D′=6.所以D′(3,6).③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC∥BD″.∵A(3,4)、B(6,2)、C(6,0),∴x D″﹣x B=x C﹣x A即x D″﹣6=6﹣3,故x D″=9.y D″﹣y B=y C﹣y A即y D″﹣2=0﹣4,故y D″=﹣2.所以D″(9,﹣2).综上所述,符合条件的点D的坐标是:(3,2)或(3,6)或(9,﹣2).20.【解答】(1)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠BAF+∠DAE=90°,∵DE⊥AG,∴∠ADE+∠DAE=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,,∴△ABF≌△DAE(AAS)∴AE=BF;(2)证明:∵∠BAF=∠ADE,∠ABG=∠DEA,∴△ABG∽△DEA,∴=,又AE =BF ,∴==k ;(3)解:设DE =a ,则AF =a ,BF =AE =ka ,∴EF =a ﹣ka ,在Rt △DEF 中,tan ∠EDF =,即=,解得,k =.B 卷一、.填空题(本大题共5小题,每小题4分,共20分)21.【解答】解:∵关于x 的一元二次方程mx 2+5x+m 2﹣2m =0有一个根为0,∴m 2﹣2m =0且m ≠0,解得,m =2.故答案是:2.22.【解答】解:∵AB 2=32+42=25、AC 2=22+42=20、BC 2=12+22=5,∴AC 2+BC 2=AB 2,∴△ABC 为直角三角形,且∠ACB =90°,则cos ∠BAC ==,故答案为:.23.【解答】解:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数y=图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数y=图象上的概率是:=.故答案为:.24.【解答】解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,,即BC×OE=BO×AB.又∵S△BEC=8,∴=8,∴BC×OE=16=BO×AB=|k|.∵反比例函数图象在第三象限,k>0.∴k=16故答案是:16.25.【解答】解:如图所示,过点B作直线y=x+m1,将直线向下平移到恰在点C处相切,则一次函数y=x+m在两条直线之间时,两个图象有4个交点,令y=﹣x2+x+6=0,解得:x=﹣2或3,即点B坐标(3,0),翻折抛物线的表达式为:y=(x﹣3)(x+2)=x2﹣x﹣6,将一次函数与二次函数表达式联立并整理得:x2﹣2x﹣6﹣m=0,△=b2﹣4ac=4+(6+m)=0,解得:m=﹣10,当一次函数过点B时,将点B坐标代入:y=x+m得:0=3+m,解得:m=﹣3,故答案为:﹣6<m<﹣3.二、解谷题(本大题共30分)26.【解答】解:(1)设y与x的函数关系式为y=kx+b,将点(10,200),(15,150)代入y=kx+b,得:,解得:,∴y=﹣10x+300.当y=0时,﹣10x+300=0,解得:x=30.∴y与x的函数关系式为y=﹣10x+300(8≤x<30).(2)设每天获得的利润为w元,根据题意得:w=y(x﹣8)=(﹣10x+300)(x﹣8)=﹣10x2+380x﹣2400=﹣10(x﹣19)2+1210.∵a=﹣10<0,∴当x=19时,w取最大值,最大值为1210.答:当蜜柚定价为19元/千克时,每天获得的利润最大,最大利润是1210元.27.【解答】解:(1)∵△ABC是比例三角形,且AB=2、BC=3,①当AB2=BC?AC时,得:4=3AC,解得:AC=;②当BC2=AB?AC时,得:9=2AC,解得:AC=;③当AC2=AB?BC时,得:AC2=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC?AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC?AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB?BC=BH?DB,∴AB?BC=BD2,又∵AB?BC=AC2,∴BD2=AC2,∴=.。

2019年四川省成都市中考数学试题及参考答案

2019年四川省成都市中考数学试题及参考答案
(1)求证:△ABD∽△AEB;
(2)当 = 时,求tanE;
(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.
四、填空题:每小题4分,共20分
21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.
1
1.2
1
1.8
如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )
A.甲B.乙C.丙D.丁
9.二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )
A.抛物线开口向下B.抛物线经过点(2,3)
C.抛物线的对称轴是直线x=1D.抛物线与x轴有两个交点
10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则 的长为( )
25.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.
第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;
第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;
第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).
则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.

(精品考题)四川省成都市中考数学押题卷(含解析)

(精品考题)四川省成都市中考数学押题卷(含解析)

2019年四川省成都市中考数学押题试卷一.选择题(共10小题,每小题3分,满分30分)1.迁安市某天的最低气温为零下9℃,最高气温为零上3℃,则这一天的温差为( )A.6℃B.﹣6℃C.12℃D.﹣12C2.如果y=+2,那么(﹣x)y的值为( )A.1 B.﹣1 C.±1 D.03.下面是小明同学做的四道题:①3m+2m=5m;②5x﹣4x=1;③﹣p2﹣2p2=﹣3p2;④3+x=3x.你认为他做正确了( )A.1道B.2道C.3道D.4道4.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( )A.55×105B.5.5×104C.0.55×105D.5.5×1055.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是( )A.B.C.D.6.点M(1,2)关于y轴对称点的坐标为( )A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)7.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )A .B .C .D .8.某车间需加工一批零件,车间20名工人每天加工零件数如表所示: 每天加工零件数4 5 6 7 8人数 3 6 5 4 2 每天加工零件数的中位数和众数为( )A .6,5B .6,6C .5,5D .5,69.菱形的两条对角线长分别为6,8,则它的周长是( )A .5B .10C .20D .2410.如图,正方形ABCD 和正△AEF 都内接于⊙O ,EF 与BC 、CD 分别相交于点G 、H .若AE =3,则EG 的长为( )A .B .C .D .二.填空题(共4小题,每小题4分,满分16分)11.若m +n =1,mn =2,则的值为 .12.二次函数y =2(x +3)2﹣4的最小值为 .13.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =2,E为斜边AB的中点,点P 是射线BC上的一个动点,连接AP 、PE ,将△AEP 沿着边PE 折叠,折叠后得到△EPA ′,当折叠后△EPA ′与△BEP 的重叠部分的面积恰好为△ABP 面积的四分之一,则此时BP 的长为 .14.如图,点P在反比例函数y=(x<0)的图象上,过P分别作x轴、y轴的垂线,垂足分别为点A、B.已知矩形PAOB的面积为8,则k= .三.解答题(共6小题,满分54分)15.(12分)(1)计算:(2)解方程组:16.(6分)如图所示,在菱形ABCD中,AC是对角线,CD=CE,连接DE.(1)若AC=16,CD=10,求DE的长.(2)G是BC上一点,若GC=GF=CH且CH⊥GF,垂足为P,求证: DH=CF.17.(8分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN 垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN 的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)18.(8分)某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:时间(小时) 频数(人数) 频率2≤t<3 4 0.13≤t<4 10 0.254≤t<5 a0.155≤t<6 8 b6≤t<7 12 0.3合计40 1(1)表中的a= ,b= ;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?19.(10分)如图,在平面直角坐标系中,点P(1,4),Q(m,n)在反比例函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y 轴的垂线,垂足为点C,D,QD交PA于点E.(1)求该反比例函数的解析式;(2)用只含n的代数式表示四边形ACQE的面积;(3)随着m的增大,四边形ACQE的面积如何变化?20.(10分)如图,四边形ABCD内接于⊙O.AC为直径,AC、BD交于E,=.(1)求证:AD+CD=BD;(2)过B作AD的平行线,交AC于F,求证:EA2+CF2=EF2;(3)在(2)条件下过E,F分别作AB、BC的垂线垂足分别为G、H,连GH、BO交于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O半径.四.填空题(共5小题,满分20分,每小题4分)21.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为 ;22.在一个不透明的口袋中装有除颜色外其它都相同的3个红球和2个黄球,任意从口袋中摸出两个球,摸到一个红球和一个黄球的概率为 .23.某景区有一复古建筑,其窗户的设计如图所示.圆O的圆心与矩形的对角线交点重合,且圆与矩形上下两边相切(切点为E)与AD交于F,G两点,图中阴影部分为不透光区域,其余部分为透光区域,已知圆的半径为2.若∠EOF=45°,则窗户的透光率为 .24.△ABC是等腰三角形,腰上的高为8cm,面积为40cm2,则该三角形的周长是 cm.25.如图1,点E,F,G分别是等边三角形ABC三边AB,BC,CA上的动点,且始终保持AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象大致为图2所示,则等边三角形ABC 的边长为 .五.解答题(共3小题,满分30分)26.(8分)某商店销售A型和B型两种电器,若销售A型电器20台,B型电器10台可获利13000元,若销售A型电器25台,B型电器5台可获利12500元.(1)求销售A型和B型两种电器各获利多少元?(2)该商店计划一次性购进两种型号的电器共100台,其中B型电器的进货量不超过A型电器的2倍,该商店购进A型、B型电器各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电器出厂价下调a(0<a<200)元,且限定商店最多购进A型电器60台,若商店保持同种电器的售价不变,请你根据以上信息,设计出使这100台电器销售总利润最大的进货方案.27.(10分)如图1在直线BCE的同一侧作两个正方形ABCD与CEFG,连接BG与DE.(1)请证明下列结论:①BG=DE;②直线BG与直线DE之间的夹角为90°;③直线BG与直线DE 相交于点O,连接OC,则OC平分∠BOE;(2)正方形CEFG旋转到如图2的位置,则(1)中的结论是否依然正确?(3)当正方形CEFG旋转到如图3的位置时,(1)中的结论是否依然正确?28.(12分)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5与x轴交于A,点B,与y轴交于点C,过点C作CD⊥y轴交抛物线于点D,过点B作BE⊥x轴,交DC延长线于点E,连接BD,交y轴于点F,直线BD的解析式为y=﹣x+2.(1)点E的坐标为 ;抛物线的解析式为 .(2)如图2,点P在线段EB上从点E向点B以1个单位长度/秒的速度运动,同时,点Q在线段BD上从点B向点D以个单位长度/秒的速度运动,当一个点到达终点时,另一个点随之停止运动,当t为何值时,△PQB为直角三角形?(3)如图3,过点B的直线BG交抛物线于点G,且tan∠ABG=,点M为直线BG上方抛物线上一点,过点M作MH⊥BG,垂足为H,若HF=MF,请直接写出满足条件的点M的坐标.2019年四川省成都市中考数学押题试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据温差是指某天的最高气温与最低气温的差可求解.【解答】解:∵最低气温为零下9℃,最高气温为零上3℃,∴温差为12°故选:C.【点评】本题考查了有理数的减法,熟练掌握有理数的减法法则是解决问题的关键.2.【分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.3.【分析】根据合并同类项解答即可.【解答】解:①3m+2m=5m,正确;②5x﹣4x=x,错误;③﹣p2﹣2p2=﹣3p2,正确;④3+x不能合并,错误;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项计算.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据55000用科学记数法表示为5.5×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】根据勾股定理求出OA,根据正弦的定义解答即可.【解答】解:由题意得,OC=2,AC=4,由勾股定理得,AO==2,∴sin A==,故选:A.【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.6.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.8.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:A.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.【分析】根据菱形的性质即可求出答案.【解答】解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.【点评】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.10.【分析】首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,即可求EG的值.【解答】解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=OA=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,AC⊥EF,EG=EF=∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=r,∴EF=r×2=r=AE=3,∴r=∴OI=,∴CI=OC﹣OI=,∵EF⊥AC,∠BCA=45°∴∠IGC=∠BCI=45°∴CI=GI=∴EG=EI﹣GI=故选:B.【点评】本题考查了三角形的外接圆和外心,等边三角形的性质,正方形的性质,要熟练掌握,解答此题的关键是要明确正多边形的有关概念.二.填空题(共4小题,满分16分,每小题4分)11.【分析】原式通分并利用同分母分式的加法法则计算,将m+n与mn的值代入计算即可求出值.【解答】解:∵m+n=1,mn=2,∴原式==.故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.12.【分析】根据顶点式,可直接得到.【解答】解:二次函数y=2(x+3)2﹣4中当x=﹣3时,取得最小值﹣4,故答案为﹣4.【点评】本题考查二次函数的基本性质,解题的关键是正确掌握二次函数的顶点式,若题目给出是一般式则需进行配方化为顶点式或者直接运用顶点公式.13.【分析】根据30°角所对的直角边等于斜边的一半可求出AB,即可得到AE的值,然后根据勾股定理求出BC.①若PA′与AB交于点F,连接A′B,如图1,易得S△EFP=S△BEP=S△A′EP,即可得到EF=BE=BF,PF=A′P=A′F.从而可得四边形A′EPB是平行四边形,即可得到BP =A′E,从而可求出BP;②若EA′与BC交于点G,连接AA′,交EP与H,如图2,同理可得GP=BG,EG=EA′=1,根据三角形中位线定理可得AP=2=AC,此时点P与点C重合(BP=BC),从而可求出BP.【解答】解:∵∠ACB=90°,∠B=30°,AC=2,E为斜边AB的中点,∴AB=4,AE=AB=2,BC=2.①若PA′与AB交于点F,连接A′B,如图1.由折叠可得S△A′EP=S△AEP,A′E=AE=2,.∵点E是AB的中点,∴S△BEP=S△AEP=S△ABP.由题可得S△EFP=S△ABP,∴S△EFP=S△BEP=S△AEP=S△A′EP,∴EF=BE=BF,PF=A′P=A′F.∴四边形A′EPB是平行四边形,∴BP=A′E=2;②若EA′与BC交于点G,连接AA′,交EP与H,如图2..同理可得GP=BP=BG,EG=EA′=×2=1.∵BE=AE,∴EG=AP=1,∴AP=2=AC,∴点P与点C重合,∴BP=BC=2.故答案为2或2.【点评】本题主要考查了轴对称的性质、30°角所对的直角边等于斜边的一半、勾股定理、平行四边形的判定与性质、等高三角形的面积比等于底的比、三角形中位线定理等知识,运用分类讨论的思想是解决本题的关键.14.【分析】根据反比例函数k的几何意义可得|k|=﹣8,再根据图象在二、四象限可确定k<0,进而得到解析式.【解答】解:∵S矩形PAOB=8,∴|k|=8,∵图象在二、四象限,∴k<0,∴k=﹣8,故答案为:﹣8.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.三.解答题(共6小题,满分54分)15.【分析】(1)根据特殊角的三角函数值,负整数指数幂的定义,零指数幂的定义,变形为实数的运算,计算求值即可,(2)利用代入消元法解之即可.【解答】解:(1)cos45°﹣+20190=﹣3+1=1﹣3+1=﹣1,(2),把①代入②得:2(y+5)﹣y=8,解得:y=﹣2,把y=﹣2代入①得:x=﹣2+5=3,即原方程组的解为:.【点评】本题考查了解二元一次方程组,实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,解题的关键:(1)特殊角的三角函数值,负整数指数幂的定义,零指数幂的定义,实数的运算,(2)正确掌握代入消元法.16.【分析】(1)连接BD交AC于K.想办法求出DK,EK,利用勾股定理即可解决问题.(2)证明:过H作HQ⊥CD于Q,过G作GJ⊥CD于J.想办法证明∠CDH=∠HGJ=45°,可得DH =QH解决问题.【解答】(1)解:连接BD交AC于K.∵四边形ABCD是菱形,∴AC⊥BD,AK=CK=8,在Rt△AKD中,DK==6,∵CD=CE,∴EK=CE﹣CK=10﹣8=2,在Rt△DKE中,DE==2.(2)证明:过H作HQ⊥CD于Q,过G作GJ⊥CD于J.∵CH⊥GF,∴∠GJF=∠CQH=∠GPC=90°,∴∠QCH=∠JGF,∵CH=GF,∴△CQH≌△GJF(AAS),∴QH=CJ,∵GC=GF,∴∠QCH=∠JGF=∠CGJ,CJ=FJ=CF,∵GC=CH,∴∠CHG=∠CGH,∴∠CDH+∠QCH=∠HGJ+∠CGJ,∴∠CDH=∠HGJ,∵∠GJF=∠CQH=∠GPC=90°,∴∠CDH=∠HGJ=45°,∴DH=QH,∴DH=2QH=CF.【点评】本题考查菱形的性质,解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【分析】在Rt△APN中根据已知条件得到PA=PN,设PA=PN=x,得到MP=AP•tan∠MAP=1.6x,根据三角函数的定义列方程即可得到结论.【解答】解:在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,设PA=PN=x,∵∠MAP=58°,∴MP=AP•tan∠MAP=1.6x,在Rt△BPM中,tan∠MBP=,∵∠MBP=31°,AB=5,∴0.6=,∴x=3,∴MN=MP﹣NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.【点评】此题主要考查了解直角三角形的应用﹣仰角俯角问题,根据已知直角三角形得出AP的长是解题关键.18.【分析】(1)根据题意列式计算即可;(2)根据b的值画出直方图即可;(3)利用样本估计总体的思想解决问题即可;【解答】解:(1)总人数=4÷0.1=40,∴a=40×0.15=6,b==0.2;故答案为6,0.2(2)频数分布直方图如图所示:(3)由题意得,估计全校每周在校参加体育锻炼时间至少有4小时的学生约为1200×(0.15+0.2+0.3)=780名.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.【分析】(1)首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,于是得到结论;(2)根据矩形的面积公式即可得到结论;(3)根据函数的性质判断即可.【解答】解:(1)AC=m﹣1,CQ=n,则S四边形ACQE=AC•CQ=(m﹣1)n=mn﹣n.∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴该反比例函数的解析式为:y=;(2)∴S四边形ACQE=AC•CQ=4﹣n;(3)∵当m>1时,n随m的增大而减小,∴S四边形ACQE=4﹣n随m的增大而增大.【点评】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.20.【分析】(1)延长DA至W,使AW=CD,连接WB,证△BCD和△BAW全等,得到△WBD是等腰直角三角形,然后推出结论;(2)过B作BE的垂线BN,使BN=BE,连接NC,分别证△AEB和△CNB全等,△BFE和△BFN全等,将EA,CF,EF三条线段转化为直角三角形的三边,即可推出结论;(3)延长GE,HF交于K,通过大量的面积法的运用,将AE,CF,EF三条线段用含相同的字母表示出来,再根据第二问的结论求出相关字母的值,再求出AB的值,进一步求出⊙O半径.【解答】解:(1)延长DA至W,使AW=CD,连接WB,∵=,∴∠ADB=∠CDB=45°,AB=BC,∵四边形ABCD内接于⊙O.∴∠BAD+∠BCD=180°,∵∠BAD+∠WAB=180°,∴∠BCD=∠WAB,在△BCD和△BAW中,,∴△BCD≌△BAW(SAS),∴BW=BD,∴△WBD是等腰直角三角形,∴AD+DC=DW=BD;(2)如图2,设∠ABE=α,∠CBF=β,则α+β=45°,过B作BE的垂线BN,使BN=BE,连接NC,在△AEB和△CNB中,,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°,∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN,∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)得EA2+CF2=EF2,∴EA2+CF2=EF2,∴S△AGE+S△CFH=S△EFK,∴S△AGE+S△CFH+S五边形BGEFH=S△EFK+S五边形BGEFH,即S△ABC=S矩形BGKH,∴S△ABC=S矩形BGKH,∴S△GBH=S△ABO=S△CBO,∴S△BGM=S四边形COMH,S△BMH=S四边形AGMO,∵S四边形AGMO:S四边形COMH=8:9,∴S△BMH:S△BGM=8:9,∵BM平分∠GBH,∴BG:BH=9:8,设BG=9k,BH=8k,∴CH=3+k,∴AE=3,CF=(k+3),EF=(8k﹣3),∴(3)2+[(k+3)]2=[(8k﹣3)]2,整理,得7k2﹣6k﹣1=0,解得:k1=﹣(舍去),k2=1,∴AB=12,∴AO=AB=6,∴⊙O半径为6.【点评】本题考查了图形的旋转,三角形的全等,勾股定理,面积法的运用等,综合性非常强,尤其是第(3)问,解题的关键是数学综合能力要非常强.四.填空题(共5小题,满分20分,每小题4分)21.【分析】根据一元二次方程跟与系数的关系,结合“α,β是方程x2﹣x﹣2019=0的两个实数根”,得到α+β的值,代入α3﹣2021α﹣β,再把α代入方程x2﹣x﹣2019=0,经过整理变化,即可得到答案.【解答】解:根据题意得:α+β=1,α3﹣2021α﹣β=α(α2﹣2020)﹣(α+β)=α(α2﹣2020)﹣1,∵α2﹣α﹣2019=0,∴α2﹣2020=α﹣1,把α2﹣2020=α﹣1代入原式得:原式=α(α﹣1)﹣1=α2﹣α﹣1=2019﹣1=2018.【点评】本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.22.【分析】根据题意可以用树状图法写出所有的可能性,从而可以求得到一个红球和一个黄球的概率.【解答】解:由题意可得,则摸到一个红球和一个黄球的概率为:=,故答案为:.【点评】本题考查列表法和树状图法,解答本题的关键是明确题意,求出相应的概率.23.【分析】把透光部分看作是两个直角三角形与四个45°的扇形的组合体,其和就是透光的面积,再计算矩形的面积,相比可得结果.【解答】解:设⊙O与矩形ABCD的另一个切M,连接OM、OG,则M、O、E共线,由题意得:∠MOG=∠EOF=45°,∴∠FOG=90°,且OF=OG=2,∴S透明区域=,过O作ON⊥AD于N,∴ON=FG=,∴AB=2ON=2×=2,∴S矩形=,∴,故答案为:.【点评】本题考查了矩形的性质、扇形的面积、直角三角形的面积,将透光部分化分为几个熟知图形的面积是解题的关键.24.【分析】先根据三角形面积公式求出腰长,设AE=xcm,则BC=cm,BE=cm,在Rt△ACE 中,根据勾股定理求出x,进一步得到BC,从而得到该三角形的周长,即可求解.【解答】解:腰长为40×2÷8=10(cm),如图1,等腰三角形顶角是锐角,如图2,等腰三角形顶角是钝角,设AE=x,则BC=,BE=,在Rt△ACE中,x2+()2=102,解得x=±4(负值舍去)或x=±2(负值舍去),∴BC=4或8,∴该三角形的周长是(20+4)或(20+8)cm.故答案为:(20+4)或(20+8).【点评】考查了勾股定理,等腰三角形的性质,三角形面积,难点是根据勾股定理得到底边的长.25.【分析】设出等边三角形ABC边长和BE的长,表示等边三角形ABC的面积,讨论最值即可.【解答】解:设等边三角形ABC边长为a,则可知等边三角形ABC的面积为设BE=x,则BF=a﹣xS△BEF=易证△BEF≌△AGE≌△CFGy=﹣3()=当x=时,△EFG的面积为最小.此时,等边△EFG的面积为,则边长为1EF是等边三角形ABC的中位线,则AC=2故答案为:2【点评】本题是动点函数图象问题,考查了等边三角形的性质及判断.解答时要注意通过设出未知量构造数学模型.五.解答题(共3小题,满分30分)26.【分析】(1)根据销售A型电器20台,B型电器10台可获利13000元,销售A型电器25台,B型电器5台可获利12500元可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到利润和甲种型号电器之间的函数关系式,然后根据一次函数的性质解答本题;(3)根据题意,利用分类讨论的方法可以解答本题.【解答】解:(1)设销售A型和B型两种电器分别获利为a元/台,b元/台,,得,答:销售A型和B型两种电器分别获利为400元/台,500元/台;(2)设销售利润为W元,购进A种型号电器x台,W=400x+500(100﹣x)=﹣100x+50000,∵B型电器的进货量不超过A型电器的2倍,∴100﹣x≤2x,解得,x≥,∵x为整数,∴当x=34时,W取得最大值,此时W=﹣100×34+50000=46600,100﹣x=66,答:该商店购进A型、B型电器分别为34台、66台,才能使销售总利润最大,最大利润是46600元;(3)设利润为W元,购进A种型号电器x台,W=(400+a)x+500(100﹣x)=(a﹣100)x+50000,∵0<a<200,0≤x≤60,∴当100<a<200时,x=60时W取得最大值,此时W=60a+44000>50000,100﹣x=40;当a=100时,W=50000;当0<a<100时,x=0时,W取得最大值,此时W=5000,100﹣x=100;由上可得,当100<a<200时,购买A种型号的电器60台,B种型号的电器40台可获得最大利润;当a=100时,利润为定值50000,此时只要A种型号的电器不超过60台即可;当0<a<100时,购买A种型号电器0台,B种型号电器100台可获得最大利润.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的方法解答.27.【分析】(1)①由正方形的性质可得BC=CD,CE=CG,∠BCD=∠GCE=90°,可证△BCG≌△DCE,可得BG=DE;②由△BCG≌△DCE,可证BG⊥DE,即直线BG与直线DE之间的夹角为90°;③过点C作CM⊥BG于点M,作CN⊥DE于点N,由△BCG≌△DCE,可得S△BCG=S△DCE,可证CM=CN,根据角平分线的性质可得OC平分∠BOE;(2))由正方形的性质可得BC=CD,CE=CG,∠BCD=∠GCE=90°,可证△BCG≌△DCE,可得BG =DE,∠CDE=∠CBG,可证BG⊥DE,即直线BG与直线DE之间的夹角为90°,过点C作CM⊥BG 于点M,作CN⊥DE于点N,由△BCG≌△DCE,可得S△BCG=S△DCE,可证CM=CN,根据角平分线的性质可得OC平分∠BOE;(3)由正方形的性质可得BC=CD,CE=CG,∠BCD=∠GCE=90°,可证△BCG≌△DCE,可得BG =DE,∠CDE=∠CBG,可证BG⊥DE,即直线BG与直线DE之间的夹角为90°.由点C在∠BOE外部,可得OC平分∠BOE不成立.【解答】解:(1)①∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CE=CG,∠BCD=∠GCE=90°,∴△BCG≌△DCE(SAS)∴BG=DE,∵△BCG≌△DCE,∴∠CBG=∠CDE,∵∠CDE+∠DEC=90°∴∠CBG+∠DEC=90°即∠DOG=90°∴BG⊥DE即直线BG与直线DE之间的夹角为90°.③如图,过点C作CM⊥BG于点M,作CN⊥DE于点N,∵△BCG≌△DCE,∴S△BCG=S△DCE,∴×BG×CM=×DE×CN,∴CM=CN,且CM⊥BG,CN⊥DE,∴CO平分∠BOE,(2)结论①②③仍然成立,理由如下:如图,连接CO,过点C作CM⊥BG于点M,作CN⊥DE于点N,∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CE=CG,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS)∴BG=DE,∠CBG=∠CDE,∵∠CBG+∠BHC=90°,且∠BHC=∠DHO,∴∠CDE+∠DHO=90°即∠DOG=90°∴BG⊥DE即直线BG与直线DE之间的夹角为90°.∵△BCG≌△DCE,∴S△BCG=S△DCE,∴×BG×CM=×DE×CN,∴CM=CN,且CM⊥BG,CN⊥DE,∴CO平分∠BOE,(3)结论①②成立,③不成立,如图,延长DE交BC于点H,交BG的延长线于点O,∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CE=CG,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS)∴BG=DE,∠CBG=∠CDE,∵∠CDE+∠CHD=90°,且∠BHO=∠DHC,∴∠CBG+∠BHO=90°即∠DOB=90°∴BG⊥DE即直线BG与直线DE之间的夹角为90°.∵点C在∠BOE外部,∴CO不平分∠BOE.【点评】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,三角形的外角性质,旋转的性质,关键是证出△BCG≌△DCE,主要训练学生的推理能力和观察图形的能力.28.【分析】(1)由待定系数法求点坐标及函数关系式;(2)根据题意,△DEB为等腰直角三角形,通过分类讨论PQB=90°或∠QPB=90°的情况求出满足条件t值;(3)延长MF交GB于K,由∠MHK=90°,HF=MF可推得HF=FK,即F为MK中点,设出M坐标,利用中点坐标性质,表示K点坐标,代入GB解析式,可求得点M坐标.【解答】解:(1)∵直线BD的解析式为y=﹣x+2∴点B坐标为(2,0)由抛物线解析式可知点C坐标为(0,5)∵CD⊥y,BE⊥x轴∴点D纵坐标为5,代入y=﹣x+2得到横坐标x=﹣3,点D坐标为(﹣3,5)则点E坐标为(2,5)将点D(﹣3,5)点B(2,0)代入y=ax2+bx+5解得∴抛物线解析式为:y=﹣x2﹣+5故答案为:(2,5),y=﹣x2﹣+5(2)由已知∠QBE=45°,PE=t,PB=5﹣t,QB=当∠QPB=90°时,△PQB为直角三角形.∵∠QBE=45°∴QB=∴解得t=当∠PQB=90°时,△PQB为直角三角形.△BPQ∽△BDE∴BQ•BD=BP•BE∴5(5﹣t)=解得:t=∴t=或时,△PQB为直角三角形.(3)由已知tan∠ABG=,且直线GB过B点则直线GB解析式为:y=延长MF交直线BG于点K∵HF=MF∴∠FMH=∠FHM∵MH⊥BG时∴∠FMH+∠MKH=90°∠FHK+∠FHM=90°∴∠FKH=∠FHK∴HF=KF∴F为MK中点设点M坐标为(x,﹣ x2﹣x+5)∵F(0,2)∴点K坐标为(﹣x, x2+x﹣1)把K点坐标代入入y=解得x1=0,x2=﹣4,把x=0代入y=﹣x2﹣+5,解得y=5,把x=﹣4代入y=﹣x2﹣+5解得y=3则点M坐标为(﹣4,3)或(0,5).【点评】本题为代数几何综合题,考查了二次函数性质、一次函数性质、三角形相似以及直角三角形的性质,应用了分类讨论和数形结合思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C 0.13×105
D 0.13×106




考点:科学记数法—表示较大的数
分析:科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时, 要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相 同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.
而合并可得出答案.
(2)①+②可得出 x 的值,将 x 的值代入①可得 y 的值,继而得出方程组的解.
解答: 解:(1)原式=4+
+2×
﹣2
=4;
(2)

①+②可得:3x=6, 解得:x=2,
将 x=2 代入①可得:y=﹣1,
故方程组的解为

点评:本题考查了实数的运算及特殊角的三角函数值,解答本题的关键是熟练各部分的运 算法则,注意细心运算,避免出错.
所以从本次参赛作品中获得 A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,
恰好抽到学生 A1 和 A2 的概率为:P=

点评:本题考查读频数(率)分布表的能力和利用图表获取信息的能力.利用统计图表获 取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问 题.用到的知识点为:各小组频数之和等于数据总数;各小组频率之和等于 1;频率 =频数÷数据总数;概率=所求情况数与总情况数之比.
四川省成都市 2013 年中题,每小题 3 分,共 30 分.每小题均有四个选项.其中只有一项符合题目要
求,答案涂在答题卡上)
1.(3 分)(2013•成都)2 的相反数是( )
A 2
B
C
D

. ﹣2


考点:相反数
分析:根据相反数的定义求解即可.
解答: 解:2 的相反数为:﹣2.
C .
2﹣3=6
D . (﹣2013)0=0
考点:负整数指数幂;有理数的减法;有理数的乘法;零指数幂
分析:根据有理数的乘法、减法及负整数指数幂、零指数幂的运算法则,结合各选项进行 判断即可.
解答:解:A、 ×(﹣3)=﹣1,运算错误,故本选项错误;
B、5﹣8=﹣3,运算正确,故本选项正确;
C、2﹣3= ,运算错误,故本选项错误;
解答:解:(1)∵x+35+11=50,∴x=4,或 x=50×0.08=4;
y= =0.7,或 y=1﹣0.08﹣0.22=0.7;
(2)依题得获得 A 等级的学生有 4 人,用 A1,A2,A3,A4 表示,画树状图如下:
由上图可知共有 12 种结果,且每一种结果可能性都相同,其中抽到学生 A1 和 A2 的 有两种结果,
A 40° .
B 50° .
C 80° .
D 100° .
考点:圆周角定理
分析:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一 半,由此可得出答案.
解答:解:由题意得,∠BOC=2∠A=100°. 故选 D.
点评:本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.
∵9>0, ∴原方程有两个不相等的实数根. 故选 A. 点评:本题主要考查判断一元二次方程有没有实数根主要看根的判别式△的值.△>0,有 两个不相等的实数根;△=0,有两个不相等的实数根;△<0,没有实数根. 10.(3 分)(2013•成都)如图,点 A,B,C 在⊙O 上,∠A=50°,则∠BOC 的度数为( )
点评:本题主要考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据 不等式的性质正确解不等式是解此题的关键.
12.(4 分)(2013•成都)今年 4 月 20 日在雅安市芦山县发生了 7.0 级的大地震,全川人民众志成城,抗 震救灾.某班组织“捐零花钱,献爱心”活动,全班 50 名学生的捐款情况如图所示,则本次捐款金额的众数 是 10 元.
考点:作图-旋转变换;扇形面积的计算
专题:作图题.
分析:(1)根据网格结构找出点 B、C 旋转后的对应点 B′、C′的位置,然后顺次连接即可;
(2)先求出 AC 的长,再根据扇形的面积公式列式进行计算即可得解. 解答:解:(1)△AB′C′如图所示;
(2)由图可知,AC=2, 所以,线段 AC 旋转过程中扫过的扇形的面积=
二.填空题(本大题共 4 个小题,每小题 4 分,共 16 分,答案写在答题卡上)
11.(4 分)(2013•成都)不等式 2x﹣1>3 的解集是 x>2 .
考点:解一元一次不等式;不等式的性质
专题:计算题.
分析:移项后合并同类项得出 2x>4,不等式的两边都除以 2 即可求出答案.
解答: 解:2x﹣1>3, 移项得:2x>3+1, 合并同类项得:2x>4, 不等式的两边都除以 2 得:x>2, 故答案为:x>2.
点评:本题考查了俯视图的知识,属于基础题,关键是掌握俯视图是从上往下看得到的视 图.
3.(3 分)(2013•成都)要使分式 有意义,则 x 的取值范围是( )
A x≠1 .
B x>1 .
C x<1 .
D . x≠﹣1
考点:分式有意义的条件
分析:根据分式有意义的条件是分母不等于零,可得出 x 的取值范围.
14.(4 分)(2013•成都)如图,某山坡的坡面 AB=200 米,坡角∠BAC=30°,则该山坡的高 BC 的长为 100 米.
考点:解直角三角形的应用-坡度坡角问题
分析:在 Rt△ABC 中,由∠BAC=30°,AB=200 米,即可得出 BC 的长度.
解答:解:由题意得,∠BCA=90°,∠BAC=30°,AB=200 米, 故可得 BC= AB=100 米.
考点:频数(率)分布表;列表法与树状图法
分析:(1)用 50 减去 B 等级与 C 等级的学生人数,即可求出 A 等级的学生人数 x 的值, 用 35 除以 50 即可得出 B 等级的频率即 y 的值; (2)由(1)可知获得 A 等级的学生有 4 人,用 A1,A2,A3,A4 表示,画出树状 图,通过图确定恰好抽到学生 A1 和 A2 的概率.
故答案为:100. 点评:本题考查了解直角三角形的应用,解答本题的关键是掌握含 30°角的直角三角形的性
质. 三、解答题(本大题共 6 个小题,共 54 分) 15.(12 分)(2013•成都)(1)计算:
(2)解方程组:

考点:解二元一次方程组;实数的运算;特殊角的三角函数值
专题:计算题.
分析:(1)分别进行平方、绝对值、二次根式的化简,然后代入特殊角的三角函数值,继
考点:平行线的性质
分析:根据 AB∥CD,可得∠BCD=∠B=30°,然后根据 CB 平分∠ACD,可得 ∠ACD=2∠BCD=60°.
解答:解:∵AB∥CD,∠B=30°, ∴∠BCD=∠B=30°, ∵CB 平分∠ACD, ∴∠ACD=2∠BCD=60°. 故答案为:60.
点评:本题考查了平行线的性质和角平分线的性质,掌握平行线的性质:两直线平行,内 错角相等是解题的关键.
分析:根据等腰三角形的性质可得 AB=AC,继而得出 AC 的长.
解答:解:∵∠B=∠C,
∴AB=AC=5.
故选 D.
点评:本题考查了等腰三角形的性质,解答本题的关键是掌握等腰三角形的两腰相等,底
边上的两底角相等.
5.(3 分)(2013•成都)下列运算正确的是( )
A ×(﹣3)=1 .
B . 5﹣8=﹣3
代入判断,难度一般.
9.(3 分)(2013•成都)一元二次方程 x2+x﹣2=0 的根的情况是( )
A 有两个不相等的实数根 . C.只有一个实数根
B.有两个相等的实数根
D 没有实数根 .
考点:根的判别式
分析:先计算出根的判别式△的值,根据△的值就可以判断根的情况.
解答: 解:△=b2﹣4ac=12﹣4×1×(﹣2)=9,
D、(﹣2013)0=1,运算错误,故本选项错误;
故选 B.
点评:本题考查了负整数指数幂、零指数幂及有理数的运算,属于基础题,掌握各部分的
运算法则是关键.
6.(3 分)(2013•成都)参加成都市今年初三毕业会考的学生约有 13 万人,将 13 万用科学记数法表示应
为( )
A 1.3×105
B 13×104
16.(6 分)(2013•成都)化简

考点:分式的混合运算
分析:除以一个分式等于乘以这个分式的倒数,由此计算即可.
解答: 解:原式=a(a﹣1)×
=a.
点评:本题考查了分式的混合运算,注意除以一个分式等于乘以这个分式的倒数.
17.(8 分)(2013•成都)如图,在边长为 1 的小正方形组成的方格纸上,将△ABC 绕着点 A 顺时针旋转 90° (1)画出旋转之后的△AB′C′; (2)求线段 AC 旋转过程中扫过的扇形的面积.
=π.
点评:本题考查了利用旋转变换作图,扇形面积的计算,是基础题,熟练掌握网格结构, 准确找出对应点的位置是解题的关键.
18.(8 分)(2013•成都)“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追
梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作
故选 B. 点评:本题考查了相反数的知识,属于基础题,掌握相反数的定义是解题的关键.
2.(3 分)(2013•成都)如图所示的几何体的俯视图可能是( )
A
B
C
D




考点:简单几何体的三视图
分析:俯视图是从上往下看得到的视图,由此可得出答案.
解答:解:所给图形的俯视图是一个带有圆心的圆. 故选 C.
相关文档
最新文档