激光散斑位移测量方法研究
激光散斑的测量1
激光散斑测量实验目的:本实验介绍单光束散斑技术的基本概念,并应用此技术测量激光散斑的大小和毛玻璃的面内位移.实验原理1.激光散斑的基本概念照射产生的,因此是一种随机过程。
要研究它必须使用概率统计的方法。
通过统计方法的研究,可以得到对散斑的强度分布、对比度和散斑运动规律等特点的认识。
图2说明激光散斑具体的产生过程。
当激光照射在粗糙表面上时,表面上的每一点都要散射光。
因此在空间各点都要接受到来自物体上各个点散射的光,这些光虽然是相干的,但它们的振幅和位相都不相同,而且是无规分布的。
来自粗糙表面上各个小面积元射来的基元光波的复振幅互相迭加,形成一定的统计分布。
由于毛玻璃足够粗糙,所以激光散斑的亮暗对比强烈,而散斑的大小要根据光路情况来决定。
散斑场按光路分为两种,一种散斑场是在自由空间中传播而形成的(也称客观散斑),另一种是由透镜成象形成的(也称主观散斑)。
2. 激光散斑光强分布的相关函数的概念如图3所示激光高斯光束(参见附录1)投射在毛玻璃上(ξ,η),在一定距离处放置的观察屏(x,y)上的形成的散斑的光强分布为I(x,y)。
(1)自相关函数假设观察面任意两点上的散斑光强分布为I(x 1,y 1),I(x 2,y 2),我们定义光强分布的自相关函数为:G (x 1,y 1;x 2,y 2)=〈I(x 1,y 1) I(x 2,y 2) 〉 (1) 其中I(x 1,y 1)表示观察面上任一点Q 1的光强,I(x2,y2)表示观察面上另一点Q 2上的光强,〈〉表示求统计平均值。
根据光学知识我们知道:I (x ,y )=U (x ,y )U *(x ,y ) (2) 式中U(x,y)表示光场的复振幅。
当玻璃板表面足够粗糙(毛玻璃)时,根据散斑统计学的理论我们可以得到如下的公式:G (x 1,y 1;x 2,y 2)=〈I(x 1,y 1)〉〈I(x 2,y 2)〉+|〈U(x 1,y 1)U *(x 2,y 2)〉|2 (3) =〈I〉2[ 1+μ( x 1,y 1;x 2,y 2)]式中μ(x 1,y 1;x 2, y 2)=|〈U(x 1, y 1) U *(x 2, y 2) 〉|2/〈I〉2称做复相干系数。
毕业设计论文——激光散斑测物体位移
武汉轻工大学毕业设计(论文)论文题目:基于激光散斑进行位移测量院系: 电气与电子工程学院学号: 101204222姓名: 王斌专业: 电子信息科学与技术指导老师: 李丹二零一四年五月摘要用散斑法测量无题的位移、应变、振动、等是散斑法在实验力学中的主要应用之一。
这种测量方法不但有非接触的优点,而且可以测量面内及离面的位移。
物体表面以及内部的应变、比较圆满地解决振动与瞬变的问题。
本文主要介绍了散斑测量技术的发展情况,对激光散斑的特性进行了系统的分析。
激光散斑测量法是在全息方法基础上发展起来的一种测量方法,这种方法具有很强的实用价值。
散斑位移测量不仅可以实现离面微位移的测量,也可以进行面内微位移测量。
主要是对面内微位移进行了测量研究,利用设计的测量系统将物体发生位移前后的散斑图由CCD记录下来,分别用数字散斑相关法和散斑照相法对散斑图像进行了分析处理,并得出了相应的结论。
最后,对以上两种测量法的特点和测量误差产生的原因都作了简单的分析和比较。
关键词:激光散斑;位移测量;数字图像处理;位移散斑图AbstractOne main application of the speckle measurement method in experimental mechanics is to measure the displacement, strain, vibration and so on. This method can not only processed non-contact measurement, but also can measure the in-plane or out-plane displacement and transient. In this paper, we introduced the development of speckle measurement technique, and systemically analyzed the characters of speckle.The laser speckle based on holography is of great practical value and can measure micro-displacement. In surface micro-displacement is focused on in this paper. The two laser speckle patterns are respectively shot before and after the object is moved. Digital speckle correlation method and speckle photography are used to measure a small displacement moved along x or y axle. The above two methods are compared at the end of the paper.Keywords:laser speckle; displacement measurement; digital image process; displacement of speckle pattern目录第1章绪论............................................1.1课题研究的背景和意义..............................1.2激光散斑测量方法的应用............................ 第2章激光散斑测量的基本理论...........................2.1激光散斑的基本概念................................2.2散斑的成因及类型..................................2.2.1散斑的成因2.2.2散斑的类型2.3激光散斑光强分布的相关函数的概念..................2.3.1自相关函数.....................................2.3.2两个散斑场光强分布的互相关函数第3章激光散斑测量方法3.1激光散斑位移测量..................................3.1.1 散斑照相法3.1.2 激光散斑数字相关3.2 测量微小位移实验系统3.2.1 实验内容3.2.2 设计方法3.2.3 数据处理及心得结论................................................. 致谢................................................. 参考文献.................................................武汉轻工大学本科毕业设计(论文)第1章绪论1.1 本论文的背景和意义传感技术、计算机技术和通信技术共同构成信息技术的三大支柱。
激光散斑的测量
W ( Z ) W0 (1 Z 2 / a 2 )1/2 0.01726 1
S P2 / W
632.8 106 555.0 0.07545mm 1.4816
2. x 和y 的计算
P2 555 x d 1 0.1611mm 1 P 0.03 126.96 1 P2 y d 1 P 0 1
答:由于激光光强起伏周期远大于 CCD 采样的周期,激光器光强时整体下降或 者提升的,最终图像上整体光强大小可能会有变化 6、在本实验中若有一均匀的背景光迭加在散斑信号上,对 S 值的测量有影响 吗?试分析原因。 答:观察面上的光强整体上升了,统计平均值显然会上升,但是不会影响统计分 布。即对拟合没有影响,因此对 S 无影响。
W012
f ' d1
2 01 2 '
50mm
(50 650) 53.55mm 650 2 0.22442 2 (1 ) ( ) 50 632.8nm 50mm
W02 (1
d1 2 W012 2 ) ( ) f' f'
0.22442 0.01726mm 650 2 0.22442 2 (1 ) ( ) 50 632.8nm 50
五.思考题
1、激光散斑测量的光路参数(P1,P2)选择是根据什麽? 答: 为了得到较好的图像, 一方面需要考虑图像中散斑个数要多已得到的统计数 据比较可信, 另一方面要使散斑图像尽可能地大以获得精确测量。所以实验中需 要调节(P1,P2)兼顾这两个方面,以获得最佳图像 2、为什麽在本实验中散斑的大小用 CCD 象元,而毛玻璃与 CCD 表面的距离可 以用卷尺(最小刻度为 1 毫米)? 答:CCD 象元由计算机处理,精确度高。有公式 d x
激光散斑测量
激光散斑测量实验报告实验题目:激光散斑测量实验目的:了解激光散斑的原理及应用,掌握散斑的测量方法以及相关的一些函数关系,性质。
实验原理:激光自散射体的表面漫反射或通过一个透明散射体(例如毛玻璃)时,在散射表面或附近的光场中可以观察到一种无规分布的亮暗斑点,称为激光散斑(laser Speckles )或斑纹。
当激光照射在粗糙表面上时,表面上的每一点都要散射光。
因此在空间各点都要接受到来自物体上各个点散射的光,这些光虽然是相干的,但它们的振幅和位相都不相同,而且是无规分布的。
来自粗糙表面上各个小面积元射来的基元光波的复振幅互相迭加,形成一定的统计分布。
由于毛玻璃足够粗糙,所以激光散斑的亮暗对比强烈。
当单色激光穿过具有粗糙表面的玻璃板,在某一距离处的观察平面上可以看到大大小小的亮斑分布在几乎全暗的背景上,当沿光路方向移动观察面时这些亮斑会发生大小的变化,如果设法改变激光照在玻璃面上的面积,散斑的大小也会发生变化。
由于这些散斑的大小是不一致的,因此这里所谓的大小是指其统计平均值。
它的变化规律可以用相关函数来描述。
可以知道S 与激光高斯光斑半径W (在毛玻璃上的光斑)的关系式为2/S P W l p =。
S 的意义即代表散斑的平均半径。
这是一个以1为底的高斯分布函数。
以下为两个散斑场的互相关函数:实验器材:1.氦氖激光器 2.双偏振片 3.全反射镜 4.透镜 5.毛玻璃 D 7.计算机已知数据: 光路参数:d1=650mm d2=59mm r 1()P =92mm P2=537mm P1=92mm激光波长 = 0.0006328mm =632.8nm21212222(1/())(1/())(,)1exp{[]}exp{[]}C y d P P x d P P g x y SSh x r r D ++D ++D D =+--常数π = 3.14159265CCD 像素大小=0.014mm激光器内氦氖激光管的长度d=250mm 会聚透镜的焦距f ’=50mm毛玻璃垂直光路位移量d ξ 和d η, d ξ=5小格=0.05mm ,d η=0理论值:(a) 照在毛玻璃上激光光斑的平均半径01W 0.224403mm =''12222011''d (1)()f d f W d f f p l -=--+02W =由于20/a W p l =221/20()(1/)W Z W Z a =+ 这里Z=P 1,W 0=W 02 所以W(P 1)= 0.990179mm2/S P W l p == 0.109239mmb) 毛玻璃的平均实际位移量0.05d mm x =∆x = d ξ (1 + p2 / ρ(P 1))=0.342mm0d h =∆y= d η (1 + p2 / ρ(P 1))=0实验数据及数据处理实验值:S=112121in s=å=7.30477像素= 0.102267 mm2P W Sl p == 1.05768 mm 误差分析:W 误差为1.05768-0.9901796.8%0.990179=S 误差为0.102267-0.1092396.4%0.109239= b) 毛玻璃的平均实际位移量实验值:x D =1661in x =åD =25.83333像素= 0.362mmy D =1661in y =D å=0误差分析:∆x 误差为0.3620.3425.8%0.342-=∆y 误差为 0。
实验十五 数字散斑测量微小位移的实验
实验十五 数字散斑测量微小位移的实验实验目的:1. 掌握数字散斑干涉的原理。
2. 学会根据CCD ,激光器等器件,利用计算机进行快速傅立叶变换,测量物体的微小位移。
3. 学会分析思考并处理实验中出现的问题。
实验原理:当一束激光照射到具有漫射特性的粗糙表面上时,在反射光的空间中用一个白色的屏去接收光总可以看到一些斑点,这就是激光散斑现象。
散斑现象是高度相干性光源照明的结果,虽然会降低全息照相时的成像质量,但由于散斑的大小、位移及运动是有规律的,它可以用来进行微小位移的检测、形变测量以及振动研究等。
传统的散斑干涉测量技术采用在同一张底片上记录物体位移前后的双曝光散斑图,并通过会聚透镜进行光学傅立叶变换得到杨氏条纹图。
随着CCD 的日益普及出现了数字散斑干涉技术,散斑图可以方便的记录在计算机中,并使用数字傅立叶变换进行处理和分析,避免了底片冲印测量的繁琐过程,可以实现方便快速的实时测量。
通过CCD 捕获被测物体位移前后的双曝光散斑图,对双曝光散斑图的任一点附近取一小块区域进行两次快速傅立叶变换,可以得到物体位移的方向和距离。
设位移前后的散斑图分别为()21,x x g i 和()2211,u x u x g itd ++,叠加得双曝光散斑图()()()22112121,,,u x u x g x x g x x g itd i +++= (15-1)用快速傅立叶变换对其中一小块区域进行计算,结果为一小幅杨氏条纹图。
()()()[]()[]⎰⎰∆+-∙+++=212211*********exp ,,,dx dx x x j u x u x g x x g G itd i ωωπωω(15-2)上式中,()21,ωωG 为频谱图上的谱面函数,21,ωω为谱面坐标,∆是积分域。
根据傅立叶平移原理,并假设21,u u 很小,可得双曝光散斑图相应的光强为:()()()()()()[]ωπωωωπωωωωωωd V I d I G I g g 2cos 1,2cos ,4,221221'22121+=∙=+= (15-3)式中()21,u u d = ,()21,ωωω=,()1≤V 是杨氏条纹的对比度。
激光散斑测量(中国科大实验讲义)
可编辑ppt
19
一维自相关函数图
实验曲线
拟合曲线
可编辑ppt
20
一维互相关函数图
实验曲线
可编辑ppt
21
可编辑ppt
22
激光散斑实验
什麽是激光散斑现象? 激光散斑现象的特点
激光散斑的应用 散斑测量实验的内容 数据处理的方法和结论
可编辑ppt
1
什麽是激光散斑现象?
• 当一束激光照射到具有漫射特性的粗糙表面 上时,在反射光的空间中用一个白色的屏去 接收光总可以看到一些斑点。这就是激光散 斑现象。
• 经透镜成象形成的散斑是主观散斑 。在自由 空间传播形成的 散斑叫做客观散斑。
xdx(1P 2/(P 1))
gc
可编辑ppt
x
17
实验相关函数的计算
• 利用CCD和采集卡(10moons)得到的是BMP格式的图 象文件,调用程序可以将BMP图象文件转化为两维的 数据文件,也就是得到了CCD面阵所在的这一面积上 的光强的值I(i, j)(i,j=1,2…,N0) 。利用这些值就可以 计算散斑场的归一化样本自相关函数和互相关函数。 这些由计算机完成。
可编辑ppt
6
由激光器出射的高斯光束
d
2W0
d=250mm ,=0.0006328mm ,w0=0.2244mm
d 1 w0 ( ) 2
可编辑ppt
7
高斯光束的复振幅表达式:
I I0
W0 0.135I0
u ( x , y , z ) A exp[ ik ( x y ) ] q(z)
S P W
激光散斑数字相关法测量微小位移
两种方法的比较ຫໍສະໝຸດ 通过对测量数据分析,发现这两种方法均可以实现对面 内微位移进行测量,但是这两种方法各有特点。干涉法中散 斑图的质量是决定测量结果的重要因素。在实验中发现物 体表面粗糙度对条纹间距会产生直接影响。在实验中也发 现,位移量大小对实验结果有很大的影响,位移太小和太大都 直接降低了条纹质量。相关法根据物体发生位移前后的相 关性进行测量的。实验条件容易实现,而且实验精度也较高。 但是在相关法测量中发现散射基元大小会对测量结果产生 一定的影响,位移量较大时,散斑会产生一定的变形,这对测量 是有很大影响的。
激光散斑数字相关法测量微小 位移
指导教师——张毅 答辩人——刘桐
选题背景
散斑现象普遍存在于光学成像的过程中,很早以前牛 顿就解释过恒星闪烁而行星不闪烁的现象。由于激光的高 度相干性,激光散斑的现象就更加明显。最初人们主要研 究如何减弱散斑的影响。在研究的过程中发现散斑携带了 光束和光束所通过的物体的许多信息,于是产生了许多的 应用。例如用散斑的对比度测量反射表面的粗糙度,利用 散斑的动态情况测量物体运动的速度,利用散斑进行光学 信息处理、甚至利用散斑验光等等。激光散斑可以用曝光 的办法进行测量,但最新的测量方法是利用CCD和计算机技 术,因为用此技术避免了显影和定影的过程,可以实现实 时测量的目的,在科研和生产过程中得到日益广泛的应用。
实验原理
实物光路图
实验仪器
实验图样
Matalab编程
程序源代码
相关度运算
定标结果
毛玻璃每移动0.05mm对应散斑位移30个像素点
实验中遇到的问题及解决办法
问题:测量中发现散射基元大小会对测量结果产生一 定的影响,位移量较大时,散斑会产生一定的变形,这对 测量是有很大影响的。 解决办法:在定标时分别测定几个不同位移,当出现 相关位移为0时,将该数据除去,反复测量,求平均值。
激光散斑照相法测量不同金属材料焊接部位的热位移
激光散斑照相法测量不同金属材料焊接部位的热位移张景超丁喜峰(燕山大学数理系,秦皇岛066004)提要:本文用激光散斑照相法对不同金属材料焊接件在不同温度区间产生的热位移进行了实测,得到焊接部位的热位移随温度的升高而增大,其热应变及热应力亦随温度的升高而增大,且与理论中的分析相符。
关键词:激光散斑,焊接,热位移,热应变1引言金属材料的焊接过程是一种局部加热和冷却的过程。
加热时金属膨胀,而冷却和凝固时金属收缩。
由于这种膨胀和收缩都是在极复杂的局部应变状态下进行的,因而使金属焊接部位产生复杂的应力和变形。
本文用激光散斑照相法分别对不同材料焊接件在不同温度区间产生的热位移进行了实测,又从理论上找到焊接件的热应变随温度变化的关系,实验结果与理论分析的结论是相符的。
2检测原理用激光照射被测物体漫反射表面,形成空间散斑场。
在被测物体变形前和变形后进行两次曝光,即将两个散斑场记录在同一张底片上,得到双曝光散斑图。
将记录了物体位移信息的双曝光散斑图经显影,定影之后,放在如图1所示的光路中,用激光束照射在双曝光散斑图上,照射点与物体表面的一个微小区域相对应。
假设物体移动,把这个小区域叫准平移区,若物体变形前后某个准平移区的位移为d,则在双曝光底片上,对应的那个小区域内,两组散斑之间就相应地移动了ζ=Md (1)其中M为透镜的放大倍数。
这样,第一次曝光的散斑图的每个散斑与第二次曝光的散斑图相对应的散斑,一一组成对偶,这些成对的散斑的方向一致,孔距基本相等,在激光束照射下,产生同样的双孔衍射干涉,在屏幕上形成有规律的等间距平行条纹-杨氏条纹。
杨氏条纹方向与双孔方向垂直,杨氏条纹之间距离与双孔之间距离成反比,即δ=λL/ζ(2)将(1)式代入(2)式得到物体对应点表面位移与杨氏条纹间距的关系:d=λL/δM (3)式中,λ为激光光波波长,L为散斑图到屏幕之间距离。
由上式可将物体表面被测点的位移大小计算出来。
位移方向与杨氏条纹垂直。
激光散斑位移测量方法研究
第23卷 第1期2008年3月 北京机械工业学院学报Journal of Beijing I nstitute ofM achineryVol.23No.1Dec.2008文章编号:1008-1658(2008)01-0039-03激光散斑位移测量方法研究李晓英,郎晓萍(北京信息科技大学 光电信息与通信工程学院,北京100192)摘 要:激光散斑测量法是在全息方法基础上发展起来的一种测量方法,这种方法具有很强的实用价值。
散斑位移测量不仅可以实现离面微位移的测量,也可以进行面内微位移测量。
主要是对面内微位移进行了测量研究,利用设计的测量系统将物体发生位移前后的散斑图由CCD 记录下来,分别用数字散斑相关法和散斑照相法对散斑图像进行了分析处理,并得出了相应的结论。
最后,对以上两种测量法的特点和测量误差产生的原因都作了简单的分析和比较。
关 键 词:激光散斑;位移测量;数字图像处理中图分类号:O436.1 文献标识码:AResearch of d ispl acem en t m ea surem en tba sed on l a ser speckleL I Xiao2ying,LANG Xiao2p ing(School of Phot oelectric I nfor mati on and Telecommunicati on Engineering,Beijing I nfor mati on Science and Technol ogy University,Beijing100192,China)Abstract:The laser s peckle based on hol ography is of great p ractical value and can measure m icr o2 dis p lace ment.I n surface m icr o2dis p lace ment is focused on in this paper.The t w o laser s peckle patterns are res pectively shot bef ore and after the object is moved.D igital s peckle correlati on method and s peckle phot ography are used t o measure a s mall dis p lace ment moved al ong x or y axle.The above t w o methods are compared at the end of the paper.Key words:laser s peckle;dis p lace ment measure ment;digital i m age p r ocess 散斑测量与其他测量方法相比具有光路简单、成本低、调试及操作方便等优点,从而在位移测量中得到了广泛的应用。
激光散斑照相法—一种测量微小位移的方法
ik
x y 2F
2
2
A1 e
ik
( x
F F x )2 ( y y )2 uF u F 2v
A1e
( x x )2 ( y y )2 ik 2v
x y F v M y uF u x
Experiment
一、内容和步骤
测量模拟极限变形 实际应用——压电陶瓷的变形测量 单板记录多样复杂信息的花样
Experiment
极值测量
测量方法: 在压电陶瓷表面贴上一层毛玻璃,放在带 有螺旋测微器的光具座上,调节光路使成 像清晰,拍摄记录一次,然后手动调节螺 旋钮,使沿垂直于成像光路方向产生一定 量的位移(微小),再拍摄记录一次,通 过显影、定影后,再现观察所得胶片,即 可定出运用该方法测量微小位移的极限长 度(包括极大值与极小值)
条纹间距 /cm
× ×
理论位移/um (由条纹间距计算出)
× ×
备注
1 2 3 4 5 6
无条纹 1条纹 (一个椭圆斑) 3条纹 亮纹5条,暗纹2条
15.80/3=5.27 16.80/5=3.36
10.9 17.1
80
90
30、40
30、40
12.00/16=0.75
8.90/14=0.64
u2 ( x, y) u1 ( x, y) e A1 e 物面小位移 ( x x )2 ( y y )2 ik 2u ( x, y) A1e u1 在像面上反映为
x2 y 2 ik 2F
x2 y 2 ik 2v
( x, y) u1 ( x, y) e u2
2 2
M
激光散斑测量(中国科大实验讲义)
高斯光束的传播公式
高斯光束过程中光束轮廓为绕Z轴旋转的双曲面
( z ) z (1
z w
0
z0 ) 2 z
2
w
2
2 0
(z) w
2 0
(1
z 2 ) 2 z0
高斯光束特性图解
R(z)z处波面曲率半径
W0=0.2244mm
z
准直距离 Z0=2W02 / =499.99mm
高斯光束经透镜后的变换
2W01
2W02
d1
d2
w d a ( ) ( f f f d d f CD是Charge-coupled devices的缩写
CCD的空间分辨率与每个 象元的尺寸和间距以及传输 mA/W 过程有关,本实验中大约为 14微米。 暗电流(主要由热产生) 很高的光电灵敏度, (CCD器件必须避免强光照 射。同学们在每次采样完毕 后应及时合上光窗或挡住 光)。 光谱响应 度
400
1050 波长/nm
实验中的光路参数
2w
2w01
He-Ne
2w02 CCD
d1
d2
p1
p2
实验目的
1)测量散斑的统计半径(通过计算散斑场各点光强 的自相关函数并拟合求出)
P S W
2)测量散斑的位移(通过计算两个散斑场各点光强 的互相关函数并寻峰求出)
P x dx( ) (P )
He-Ne Laser
透镜
客 观 散 斑 场 毛玻璃
CCD
PC
激光的产生
激光工作物质被激活(光、电能等)后产生粒子数反转, 发生受激辐射,能使光得到放大。光在由两片高反射 率的镜片和激活物质组成的谐振腔之间多次的反射形 成激光输出。
激光散斑测量实验报告
激光散斑测量实验报告实验报告一、引言二、实验仪器和原理实验仪器:激光、透镜、狭缝、幕布、尺子、直尺实验原理:1.激光散斑现象:当激光通过光学元件后,由于光的波动性,光束经过屏幕成为一幅杂乱无章的亮暗交替、相互交错的斑图,这种图案被称为散斑。
散斑的出现是由于光的相位随机分布所导致的,故散斑图案是一种统计性质的成像效应。
2.透镜焦距的测量:当激光通过透镜时,如果透镜的焦距为f,则在焦距前后的位置,散斑图案会有明显的变化。
通过观察焦距前后散斑的大小和形状,可以确定透镜的焦距。
3.狭缝宽度的测量:当激光通过狭缝时,经狭缝后的散斑会变得更加明显。
通过观察狭缝前后散斑的大小和形状,可以确定狭缝的宽度。
三、实验步骤1.将激光照射到透镜上,观察透镜前后的散斑图案。
2.移动屏幕,找到焦距前后的位置,观察散斑图案的变化。
3.测量透镜到焦距前后的距离,计算出焦距。
4.将狭缝放在激光路径上,观察狭缝前后的散斑图案。
5.测量狭缝前后散斑的距离,计算出狭缝的宽度。
四、实验结果及数据处理1.透镜焦距的测量:透镜到焦距前后的距离为d1和d2,焦距为f,根据几何关系可得:1/f=1/d1+1/d2根据测量数据计算得到透镜焦距为f = xx mm。
2.狭缝宽度的测量:狭缝前后散斑的距离为l,透镜到屏幕的距离为D,根据几何关系可得:d=f*l/D根据测量数据计算得到狭缝宽度为d = xx mm。
五、实验讨论1.实验中使用的激光是否满足单色条件?可以通过观察散斑图案的颜色变化进行判断。
2.实验中是否考虑了折射和衍射对散斑图案的影响?3.实验中使用的透镜和狭缝是否满足理想条件?是否考虑了它们的光学畸变?5.实验中的结果是否与理论值相符?如果不符合,可能的原因是什么?六、结论通过激光散斑测量实验,测量得到了透镜的焦距和狭缝的宽度。
实验结果表明,激光散斑测量是一种简便有效的方法,可以用来测量光学元件的性能参数。
同时,实验中也发现了一些实验中需要注意的问题,并提出了一些改进的建议。
激光散斑实验实验报告
激光散斑实验实验报告激光散斑实验实验报告激光散斑实验是一种常见的光学实验,通过观察激光光束在不同表面上的散斑图案,可以对光的传播和干涉现象进行研究。
本次实验旨在通过观察激光在不同材料上的散斑图案,探究光的干涉现象以及不同材料对光的作用。
实验装置主要由激光器、透镜、光屏和不同材料的样品组成。
首先,我们将激光器调整至合适的工作状态,确保激光光束的稳定和垂直度。
然后,将透镜放置在激光光束的路径上,调整透镜的位置和焦距,使得光束能够在光屏上形成清晰的散斑图案。
在实验过程中,我们使用了不同材料的样品,包括透明材料如玻璃和塑料,以及不透明材料如金属和纸张。
通过将这些样品放置在激光光束的路径上,我们可以观察到不同材料对激光的散斑效应。
实验中,我们将透明材料放置在光屏上方,而不透明材料则放置在光屏下方,以便观察到不同材料的散斑图案。
观察散斑图案时,我们可以看到一系列明暗相间的环形或条纹状图案。
这些图案是由于光的干涉所产生的。
当激光光束经过透明材料时,光的传播速度和路径会发生变化,从而导致光的相位发生变化,最终形成干涉图案。
而当激光光束经过不透明材料时,光的传播会受到材料的吸收和散射,从而形成不同的散斑效应。
通过实验观察,我们可以发现不同材料对激光的散斑效应有着不同的影响。
透明材料如玻璃和塑料会产生明亮的环形散斑图案,而不透明材料如金属和纸张则会产生暗纹或条纹状的散斑图案。
这是因为透明材料对光的传播影响较小,而不透明材料则会吸收和散射光线,从而产生干涉效应的差异。
除了观察不同材料的散斑图案,我们还可以通过调整透镜的位置和焦距,改变激光光束的直径和聚焦效果,进一步研究光的干涉现象。
通过调整透镜的位置,我们可以观察到散斑图案的变化,从而了解光的传播和聚焦的特性。
综上所述,激光散斑实验是一种重要的光学实验,通过观察激光在不同材料上的散斑图案,可以研究光的传播和干涉现象。
通过实验,我们可以了解不同材料对光的作用以及透镜的调节对散斑图案的影响。
激光散斑测量技术与应用研究
激光散斑测量技术与应用研究引言激光散斑测量技术是一种基于散斑现象的非接触式测量技术,通过激光照射目标物体表面,利用散斑的特性来获取目标物体表面形貌或者表面变形的信息。
该技术具有测量精度高、测量速度快、适用范围广等优点,在科学研究、工业制造、生物医学等领域具有广泛的应用前景。
散斑现象介绍散斑是指当一束平行光线经过不规则表面或者光束传播介质中的不均匀区域时,由于光的散射而形成的频率和强度的空间变化。
散斑现象的形成原理主要包括两个因素:绕射和干涉效应。
绕射是光线在不规则表面或光束传播介质变化的区域上发生偏折;干涉是不同光线在某一点重新叠加时产生的干涉效应。
通过观察和分析散斑现象,可以获得物体表面形貌、表面变形等信息。
激光散斑测量原理激光散斑测量技术是利用激光的单色性、相干性和定向性,通过激光的投影和散射来实现对目标物体表面形貌或表面变形的测量。
基本的激光散斑测量原理包括以下几个步骤:1.激光照射:将激光照射到目标物体表面,产生散斑现象。
2.散斑记录:使用相机或者其他散斑记录装置记录散斑图像。
3.散斑分析:对散斑图像进行分析,提取目标物体表面形貌或者表面变形的信息。
激光散斑测量技术的应用1. 表面形貌测量激光散斑测量技术可以应用于表面形貌的测量。
通过记录激光照射到目标物体表面的散斑图像,利用散斑图像的信息可以还原出目标物体表面的形貌信息。
这对于制造行业的工件检测、光学元件的表面质量检验等方面具有重要的应用意义。
2. 表面变形测量激光散斑测量技术可以应用于表面变形的测量。
通过记录目标物体在受力或变形作用下的散斑图像,可以分析散斑图像的变化,从而获取目标物体的表面变形信息。
这对于工程结构的应力分析、材料力学性能的研究等方面具有很大的意义。
3. 物体运动测量激光散斑测量技术还可以应用于物体运动的测量。
通过记录目标物体运动过程中的散斑图像,可以利用散斑图像的相位信息提取出物体的运动参数,如速度、加速度等。
这对于机器人导航、运动追踪等领域具有广泛的应用前景。
三级大物实验报告-激光散斑的测量
实验题目:激光散斑测量实验目的:通过对激光散斑大小的测量,了解激光散斑的统计特性,学习有关散斑光强分布重要的数据处理方法。
实验器材:氦氖激光器,双偏振片,全反射镜,透镜 ,毛玻璃,CCD ,计算机。
实验原理:激光散斑是由无规散射体(实验中为毛玻璃)被相干光照射产生的。
散斑场按光路分为两种,一种是在自由空间中传播而形成的客观散斑(本实验研究的情况),另一种是由透镜成象形成的主观散斑。
散斑的大小、位移及运动变化可以反映光路中物体及传播介质的变化。
试验中用的是激光高斯光束,其传播时光场的等振幅线在沿光路方向为双曲线。
光斑最细的位置为束腰。
激光经过凸透镜时其偏角会变化,会产生新的束腰。
毛玻璃离透镜的距离改变时,照在其上的光斑半径也随之改变。
实验是通过用计算机测量散斑的变化来算出光路中毛玻璃的移动情况。
激光散斑光强分布的规律由相关函数来描述。
自相关函数为:G (x 1,y 1;x 2,y 2)=〈I(x 1,y 1) I(x 2,y 2) 〉归一化后为: 其中: 互相关函数为:G C (x 1,y 1;x 2,y 2)=〈I(x 1,y 1) I’(x 2,y 2) 〉归一化后为: )](ex p[1),(222Sy x y x g ∆+∆-+=∆∆})](/1[ex p{})](/1[(ex p{1),(212212S P P d y S P P d x y x g y x C ρρ++∆-++∆-+=∆∆WP S πλ/2=其中实验数据(原始数据纸质提交): N s x /像素 s y /像素 1 8.54 7.94 2 7.62 7.95 3 7.59 7.51 4 8.46 8.28 5 7.77 8.35 6 7.70 7.91 77.747.87))(/1(12P P d x x ρ+-=∆实验装置图 1.氦氖激光器 2.双偏振片 3.全反射镜 4.透镜 5.毛玻璃 D 7.计算机123 4 5 6735cm30cm15cm55cm数据处理:(1)理论值计算:由公式:2101)(πλd w =得激光管口处腰束半径为:mm E w 2244.01415926.398.632*25.001==-=由2'2012'11''2)()1(d fW f dd f f λπ+---=得mm E 55.53)4328.6*502244.0*()506501(6505050d 2222=-+---=π 由公式:2'2012'120102)()1(fW f d W W λπ+-=得:mm E W 01726.0)50*4328.62244.0*()506501(2244.0222202=-+-=πP1=150-53.55mm=96.45mm)(479.110328.6/01726.0/42202mm W a =⨯⨯==-πλπ)(126.1)479.1/45.961(01726.0)/11()1(2/1222/12202mm a p W p W =+⨯=+=)(47.96)45.96/479.11(45.96)1/1(1)1(2222mm p a p p =+⨯=+=ρ)(0984.0)126.1/(55010328.6/42mm W P S =⨯⨯⨯==-ππλ ∆x 和∆y 计算:(这里d ξ=0.06mm)∆x = d ξ (1 + p2 / ρ(P1))=0.06×(1 + 550/ 96.47)mm =0.4021(mm ) ∆y= d η (1 + p2 / ρ(P1))=0mm (2)实验值计算:S1=(Sx +Sy)/2=(8.55+7.95)/2=8.25 (像素) S2=(Sx +Sy)/2= (7.62+7.95)/2=7.78 (像素) S3=(Sx +Sy)/2= (7.59+7.51)/2=7.55 (像素) S4=(Sx +Sy)/2= (8.46+8.28)/2=8.37 (像素) S5=(Sx +Sy)/2= (7.77+8.35)/2=8.06 (像素) S6=(Sx +Sy)/2= (7.70+7.91)/2=7.80 (像素) S7=(Sx +Sy)/2= (7.74+7.87)/2=7.80 (像素) S8=(Sx +Sy)/2= (7.78+7.69)/2=7.74 (像素) 则S =0.014*(S1+S2+S3+S4+S5+S6+S7+S8)/8=0.014*(8.25+7.78+7.55+8.37+8.06+7.80+7.80+7.74)/8=0.1109mm则照在毛玻璃上激光光斑的平均半径为:mm E S P w 9990.01109.0*4328.6*5502=-==ππλ ∆x =0.014*(36+36+37+37+37+35)/6=0.5087mm 毛玻璃的平均实际位移量mm P P x d 076.047.96/55015087.0)(112=+=+∆=ρξ误差分析:1)试验中求得毛玻璃的平均实际位移量为0.076mm ,照在毛玻璃上的光斑半径理论值为0.0984mm ,而实际测得为0.1109mm 。
激光散斑法测量横向微小位移的实验
实验报告实验名称:激光散斑法测量横向微小位移实验实验时间:2015年12月18日班级:xxxx学生姓名:xxx同组人:xxx实验目的:1、观察激光散斑图,了解散斑的成因及特点。
2、掌握二次曝光法测量微小位移的原理和方法。
3、通过实际测量,验证位移量与散斑图像的关系公式。
实验仪器:导轨(800mm)、半导体激光器(650nm,25mW)、功率指示计+十二挡光探头、定时器、毛玻璃、扩束镜、准直镜、干板架、白屏、导轨滑块实验原理:激光散斑:激光自散射体的表面漫反射或通过一个透明的散射体(例如毛玻璃)后,因各点散射光或透射光干涉,在散射表面或附近的光场中可以观察到一种无规则分布的亮暗散斑。
利用激光散斑可以测量微小位移变化,具有无接触、高灵敏度等特点。
本实验中让激光通过具有粗糙表面的毛玻璃,在同一张全息干板上先后曝光两次,这样在同张激光干板上物体两幅散斑图,若物体有位移,则,两散斑图之间有一相对移动。
如果把散斑点看成圆孔,则各散斑点的移动在二次曝光散斑图上就相当于一对对“双孔”。
用激光束照射该散斑图,则会出现类似杨氏双缝干涉的图形。
λ由此可计算出微小位移。
由杨氏双缝理论:△y=ld实验内容与步骤:A、拍摄激光散斑图(1)调节图中实验装置,使得出射光束成为准直平行光。
(2)将毛玻璃片放在一维位移架上,使光斑打在毛玻璃屏中央部分。
(3)调节白屏位置,使白屏上光斑均匀。
(4)将全息干板放在白屏位置,在黑暗中,进行第一次曝光。
(5)微移全息干板位置后,进行第二次曝光。
并对全息干板进行处理,得到稳定的照片。
B、观察激光散斑图在激光器前放入拍好的散斑图,调节实验装置,使白屏上出现清晰的干涉条纹。
C、测量干涉条纹间距用刻度尺多次测量条纹间距,并在导轨上读出白屏与散斑图之间距离。
光波长λ取650nm.实验数据与分析:△y=y i5=0.9+0.85+0.8+0.85+0.85=0.84cm通过衍射条纹测得的位移d=lλ△y =0.2000×650×10−90.0084=1.5×10−5m横向位移L=0.7×1/50mm=1.4×10−5m误差η=d−LL×100%=7.1%L为一次测量量,其不确定度U L取仪器的最小精度2.0×10−5mL±U L=(1.4±2.0)×10−5m对于d,△y五次测量的不确定度公式分别用U=pn 2S x2+△仪2公式来计算,其中△仪取刻度尺的最小测量精度0.01cm,pn取1.24,S x2用贝塞尔公式s=S i−S平均23i=12,l的不确定度取仪器最小精度0.1cm,λ的不确定度取1nm。
激光散斑的测量实验
激光散斑的测量实验一、计算机的故障及排除方法:现象:打开计算机,计算机发出报警声。
原因:(1) 内存条或显卡松动。
(2) 系统部分文件残损。
排除方法:(1) 打开主机盖,拔下内存条和显卡,用擦皮擦一下接口的地方,再用劲插上,同时将其它的插条也顺便检查一下。
(2) 补装部分系统文件,如不行,将C盘格式化,重装系统文件。
二、CCD的故障及排除方法:现象:CCD不工作。
原因:(1) 在做实验的过程中,CCD处于开机状态时,大范围移动了CCD,CCD受到震动,一时恢复不了平稳状态,采集不到像点。
(2) 计算机主机内的采集卡松动。
(3) 采集卡系统文件缺损,造成采集卡不能工作。
排除方法:(1) 关闭CCD电源,关闭计算机,稍等几分钟再开。
(2) 打开计算机主机盖,将采集卡拔下,用擦皮擦一下接口处,再用劲插上。
(3) 重新安装采集卡系统文件。
[注意] 做实验时,光路摆好后才能打开CCD,不要将激光光束直接照在CCD 表面上,同时也不要长时间暴露在白光灯下,做完实验应及时将盖子罩上。
三、CCD数据处理的故障及排除方法:1. 现象:用自相关函数程序计算出的散斑半径Sx、Sy数值相差太远。
原因:光路不共轴。
排除方法:学会调节共轴。
先调激光器水平,激光束经反射镜直射CCD盖子上的十字叉中心;然后将透镜插入光路中,光束经透镜中央,以十字叉中心光斑为圆点扩束。
2. 现象:(1) 用互相关函数程序计算出的散斑位移量△x为零,△y有很大位移量。
(2) 用互相关函数程序计算出的散斑位移量△x为一定数值,△y也有位移量。
原因:(1) 磁性表座没有锁住;或千分头没有顶住调整架端面且实验桌有震动;或调图的次序错误。
(2) 在拍图片时,实验桌有震动。
排除方法:(1) 光路调节好,一定要将所有的磁性表座全部锁住,防止震动;在旋千分头时,千分头要顶住调整架端面,并且按同一个方向旋转,避免螺距差;在进行数据处理时,如果是顺时针旋转千分头,在做互相关计算时,是后一幅图和前一幅图比较,如果是逆时针旋转千分头,是前一幅图和后一幅图比较。
面内位移的散斑测量
二、实验原理
当一束激光射到物体的粗糙表面上时,在粗糙表面前面的空间将布满 明暗相同的亮斑与暗斑,这些亮斑与暗斑的分布是杂乱的,故称为散 斑(Speckle)。借助于散斑不仅可研究粗糙表面本身,而且还可以研 究它的形状与位置变化。因此,把获取这些信息的各种实验技术称为 散斑技术。 散斑是相干照明时,粗糙表面各个面积元上散射光波之间干涉在空间 域内形成的颗粒状结构。颗粒的大小,可用它的平均直径来表示,而 颗粒尺寸的严格定义是两相邻亮斑间距离的统计平均值。此值由产生 散斑的激光波长l及粗糙表面圆形照明区域对该散斑的孔径角m’所决定 0.6l 散斑平均直径 ( r ) sin m ' 经过一个光学系统,在它的像平面上形成的散斑,称为成像散斑,则
工作台16 工作台18 毛玻璃 钢片 铝片 平面镜 1 2 3 毛玻璃 4 钢片 7 5 铝片 8 9 6
2、面内位移的散斑测试(做出-U曲线)
U1 1 U2 U=U1-U2 K=1+p/s
2
3 4 5 7
五、思考题
1. 对绘制的曲线进行分析,评价此次实验结果。 2. 若计算机所得结果存在竖直方向位移,分析其原因。 3. 进行实验误差分析。
U
i
P’
p
P
图1
p =U(1+ ) s
4
三、实验光路
1
1
3
5
6
9 8 10 送 计 算 机 24 14 17 7
23
22
20
16
18
光散斑性质测试光路
5
1
1
3
5
6
9 8 10 送 计 算 机 24 14 17 7
23
22
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第23卷 第1期2008年3月 北京机械工业学院学报Journal of Beijing I nstitute ofM achineryVol.23No.1Dec.2008文章编号:1008-1658(2008)01-0039-03激光散斑位移测量方法研究李晓英,郎晓萍(北京信息科技大学 光电信息与通信工程学院,北京100192)摘 要:激光散斑测量法是在全息方法基础上发展起来的一种测量方法,这种方法具有很强的实用价值。
散斑位移测量不仅可以实现离面微位移的测量,也可以进行面内微位移测量。
主要是对面内微位移进行了测量研究,利用设计的测量系统将物体发生位移前后的散斑图由CCD 记录下来,分别用数字散斑相关法和散斑照相法对散斑图像进行了分析处理,并得出了相应的结论。
最后,对以上两种测量法的特点和测量误差产生的原因都作了简单的分析和比较。
关 键 词:激光散斑;位移测量;数字图像处理中图分类号:O436.1 文献标识码:AResearch of d ispl acem en t m ea surem en tba sed on l a ser speckleL I Xiao2ying,LANG Xiao2p ing(School of Phot oelectric I nfor mati on and Telecommunicati on Engineering,Beijing I nfor mati on Science and Technol ogy University,Beijing100192,China)Abstract:The laser s peckle based on hol ography is of great p ractical value and can measure m icr o2 dis p lace ment.I n surface m icr o2dis p lace ment is focused on in this paper.The t w o laser s peckle patterns are res pectively shot bef ore and after the object is moved.D igital s peckle correlati on method and s peckle phot ography are used t o measure a s mall dis p lace ment moved al ong x or y axle.The above t w o methods are compared at the end of the paper.Key words:laser s peckle;dis p lace ment measure ment;digital i m age p r ocess 散斑测量与其他测量方法相比具有光路简单、成本低、调试及操作方便等优点,从而在位移测量中得到了广泛的应用。
其实,散斑不仅可测量物体的位移和形变,还可测量振动、无损探伤等等。
散斑在精细无损计量方面具有很大的发展潜力,是目前研究的一个热点[1]。
所以对散斑特性和规律研究具有非常重要的意义[2]。
1激光散斑测量基本原理1.1散斑照相法当一束激光射到粗糙物体表面时,光被物体表面反射后在成像空间形成散斑。
若将物体发生微小位移前后的散斑分别对记录介质曝光一次,就会得到一副双曝光散斑图,光强度分布为:I(x,y)=I0(x,y)+I0(x-Δx,y-Δy)(1)I0(x,y)表示第一次曝光光强,I0(x-Δx,y-Δy)表示第二次曝光光强,Δx,Δy分别指物体发生的面内微位移。
根据全息原理知,记录介质的振幅透过率与光强成线性关系,即:t(x,y)=a-bI(x,y)(2)式中,a与b为常数。
因为当物体发生一个较小的面内位移时,可以认为前后两张散斑图的微观结构相同,仅有一个相对位移。
当用一束细平行激光照射该散斑图时,在接收平面上可以接受到散斑图的夫琅和费衍射图样(杨氏条纹),其振幅分布由记录介质振幅透过率的傅里叶变换决定,经分析可得出微位移和条纹间距之间的关系[3,4]:Δx=λLM d xΔy=λLM d y(3)收稿日期:2008-01-16作者简介:李晓英(1975-),女,山西原平市人,北京信息科技大学光电信息与通信工程学院讲师,硕士,主要从事光学的教学与研究工作。
北京机械工业学院学报 第23卷 式中L为记录介质与接收屏之间的距离,dx,d y 分别为x方向和y方向上干涉条纹间距。
M是散斑照相时的放大倍数。
由于条纹的方向是垂直于散斑位移方向。
所以杨氏条纹方向决定散斑的位移方向,只要测量出条纹的间距和方向,就可得到照射点的位移大小和方向。
计算机散斑干涉法是利用CCD摄像机和图像采集卡将物体发生位移前后的两个散斑图分别进行采集,然后将其保存在计算机内,通过编写的程序对两个散斑图进行处理后叠加可获得强度相关条纹场,类似杨氏条纹。
测量出干涉条纹间距,按照公式(3)便可算出物体发生的微位移。
1.2数字散斑相关法散斑相关法是根据物体在变形前后的相关性来确定物体位移和变形的一种非接触性全场测量方法。
如果被测物体发生的是一个微小的面内位移,可以认为微位移只改变散射基元的空间位置而不影响散射特性,所以散斑图的微观结构基本上保持不变,图上每一点全部仅发生了相应面内位移[5]。
假设物体发生位移前的函数为f(x,y),发生位移后的函数变为f((x-x),(y-y0)),根据自相关函数: r ff(x,y)=∫∞-∞∫f(ξ,η)f3(ξ-x,η-y)dξdη(4)可知:自相关函数的模|rff(x,y)|在原点最大。
也就是当信号相对本身有平移时,就改变了位移为零时的逐点相似性,自相关的模减小[6]。
所以自相关模最大时所对应的位移量即是物体发生的位移。
数字散斑相关法首先将被测物体发生位移前后所形成的散斑图分别由CCD摄像机采集并保存在计算机里,利用编写的程序对散斑图作相应的数字图像处理,然后利用数字图像相关处理,分析物体表面位移场分布。
通常相关运算形式为[7]:C( Γ)=κsΨ( σ+ Γ)d2 σ(5)式中,C是相关系数,S是相关子区, Γ是位移矢量,Ψ( σ+ Γ)是相关积分核,具体形式如下:Ψ( σ+ Γ)=f( σ)・g( σ+ Γ)(6)f和g分别为变形前后散斑场强度函数。
具体方法是:从变化前散斑图上选取一个散射基元,根据式(6)确定相关积分核,利用matlab软件编写的程序自动在变化后散斑图上搜索最大相关系数所对应的位置,以此确定物体的位移量。
本方法需要逐点进行比较,因此必须进行大量的数据计算,但是此测量精度较高。
2实验结果和分析2.1散斑照相法图1为测量系统原理图。
系统由激光器、偏振片、扩束镜、准直镜、毛玻璃、CCD摄像机和计算机组成。
测量所用激光器为氦氖激光器。
测量时首先记录一幅物体位移前的散斑图,然后再记录一幅物体位移后的散斑图。
利用Matlab编写的程序分别对散斑图经过了滤波处理和二值化处理,然后将两张散斑图重叠,产生双曝光图,如图2所示。
1—偏振片;2—扩束镜;3—准直镜;4—毛玻璃图1 双曝光法测量面内位移系统原理图图2 散斑干涉图 对散斑图进行处理分析,得出相邻干涉条纹之间的距离,利用公式(3)算出相应的位移量。
测量数据见表1。
表1 利用相关法得到的实验数据序号实际位移/mm测量位移/mm10.010.010920.020.021630.030.032040.040.0439 实验中测量相对误差接近10%。
误差大的原因关键在于条纹质量比较差。
影响条纹质量的因素大致有几个方面:①物体表面的粗糙度影响;②背景光的干扰;③测量时光路调节不够理想;④散斑的大小直接影响到可测量的位移,所以可能还与测量的位移量大小有关。
2.2数字散斑相关法图3为相关法测量面内位移系统原理图。
系统04 第1期 李晓英等:激光散斑位移测量方法研究中所用激光器为氦氖激光器。
激光器发出的光依次经过反射镜、准直镜、毛玻璃、透镜,最后由CCD 记录散斑图。
图3 相关法测量面内位移系统原理图 首先记录一张初始位置的散斑图保存在计算机内,然后再记录物体发生位移后的散斑图。
通过计算机编写程序对这两幅散斑图作相应的滤波和二值化处理后。
图4所示,是用CCD 记录的物体发生位移前后的散斑图。
图4 物体发生位移前后的散斑图 图5是从位移前散斑图上选取的一个小的散射基元,根据式(5)编写的程序,实现散射基元在位移后散斑图上自动搜寻与之匹配的基元,根据相关系数大小来确定物体发生的位移。
表2是处理数据结果。
图5 散射基元表2 利用相关法得到的实验数据序号实际位移/mm测量位移/mm最大相关系数散射基元大小/像素10.010.00990.7057100×10020.010.00990.8417200×20030.010.00980.8728300×30040.020.02010.4340100×10050.020.02030.6932200×20060.020.02080.7714300×30070.030.03010.8284100×10080.030.03050.7563200×20090.030.03110.7691300×300100.040.04010.4231100×100110.040.04090.5264200×200120.040.04180.6087300×300 测量最大相对误差在5%左右。
通过实验发现:①相关系数随位移的增加而减小;②散射基元大小会直接影响到相关系数的大小;③散斑会有一定的变形。
3结束语本文设计了一套利用散板测量面内微位移的系统,该系统结构简单,操作方便。
实验中利用CCD 记录散板图像,便于实现测量数字化,而且通过提高CCD 的分辨率来提高测量的精度。
实验中分别用散斑照相法和散斑相关法对物体面内发生的微位移进行了测量和分析。
通过对测量数据分析,发现这两种方法均可以实现对面内微位移进行测量,但是这两种方法各有特点。
双曝光法是通过对物体发生位移前后所形成的散斑图进行叠加,获得干涉条纹来计算物体的位移,所以散斑图的质量是决定测量结果的重要因素。
在实验中发现物体表面粗糙度对条纹间距会产生直接影响。
在实验中也发现,位移量大小对实验结果有很大的影响,位移太小和太大都直接降低了条纹质量。
(下转第61页)14 第1期 王信东等:我国现代服务业统计范围演变研究计),得到的数据供本地区参考。