试验二十四电子射线的电偏转与磁偏转
实验十三 电子束线的电偏转与磁偏转
实验十三电子束线的电偏转与磁偏转一、实验目的1.了解电子束线的产生、调节和偏转原理。
3.了解磁场对电子运动的影响。
二、实验原理电子束线是一束加速的电子流,是通过电子枪中的热阴极发射大量的电子,通过电子加速管的阳极电压加速,并通过管中一些特定的结构,如聚焦器,透镜,偏转板等来调节。
在热阴极上施加较高电压,热阴极表面极易发射电子,使电子从热阴极射出,在加速管中通过阳极电压加速。
加速度与阳极电压成正比,电流与电子流密度成正比。
2.电子束线的电偏转电偏转是指通过电场对电子束线中的电子进行偏转。
当电子束通过一个带电和平板时,电子束中的电子会受到力的作用,在水平方向受到电场力F=E×q,其中 E 为电场强度,q 为电子所带电荷量。
力的方向始终垂直于电子运动的方向,所以电子束线将被打向与电场垂直的方向。
三、实验器材与装置万用电表、电子学实验箱、电子束线管、CRO 示波器等。
四、实验步骤1.检查实验仪器和所需的全部元器件,按照电路接线图连接好实验电路,并保证电子枪稳定工作。
2.将电子束管放在实验台上,调节相应的管电压并调整其成一个垂直的红色线,以便后续实验调整方便。
3.接通电路电源,在电子束线管中加入直流电压,使电子流从阳极发射管流经偏转器以及磁偏转器,最后击中荧光屏上。
4.打开示波器,调整亮度,聚焦和辉度,直到荧光屏上显示出一个明亮的光点。
5.调整偏转电压和磁场的大小,使电子流在荧光屏上绘制出一个稳定的图形,记录下相应偏转电压和磁场强度。
6.通过更改偏转器的输出信号并记录不同输入电压下电子束的偏转量,记录实验数据并计算出电偏转的比率。
7.更改磁偏转器的输入电流并记录荧光屏上的偏转量,计算出该磁场的磁感应强度。
五、实验注意事项1.注意安全,使用仪器前应检查仪器是否运行正常。
2.要经常检查电子束线管的压力,确保其正常工作。
3.调节偏转电压和磁场强度时,一定要谨慎,防止电子束过大而烧毁设备。
4.记录每次实验的数据,做好实验报告。
电子束的电偏转和磁偏转实验报告
电子束的电偏转和磁偏转实验报告电子束的电偏转和磁偏转实验报告篇一:电子束的电偏转和磁偏转电子束的电偏转和磁偏转实验目的:1.掌握电子束在外加电场和磁场作用下的偏转的原理和方式。
2.观察电子束的电偏转和磁偏转现象,测定电偏转灵敏度、磁偏转灵敏度、截止栅偏压。
?实验原理:1.电偏转的观测电子束电偏转原理图如图(1)所示。
当加速后的电子以速度V沿x 方向进入电场时,将受到电场力作用,作加速运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上。
其电偏转的距离D与偏转电压V,加速电压VA及示波管结构有关。
图(1)电子束电偏转原理为了反应电偏转的灵敏程度,定义e?D(1)Ve称为电偏转灵敏度,用mm/V为单位。
?e越大,电偏转的灵敏度越高。
实验中D从荧光屏上读出,记下V,就可验证D与V的线性关系。
2.磁偏转原理电子束磁偏转原理如图(2)所示。
当加速后的电子以速度V沿x 方向垂直射入磁场时,将会受到洛伦磁力作用,在均匀磁场b内作匀速圆周运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上。
为了反映磁偏转的灵敏程度,定义m?slI(2)m称为磁偏转灵敏,用mm/A为单位。
?m越大,表示磁偏转系统灵敏度越高。
实验中s从荧屏上读出,测出I,就可验证s与I的线性关系。
3.截止栅偏压原理示波管的电子束流通常通过调节负栅压ugK来控制的,调节ugK 即调节“辉度调节”电位器,可调节荧光屏上光点的辉度。
ugK是一个负电压,通常在-35~45之间。
负栅压越大,电子束电流越小,光点的辉度越暗。
使电子束流截止的负栅压ugK0称为截止栅偏压。
?实验仪器:Th-eb型电子束实验仪,示波管组件,0~30V可调直流电源,多用表?实验步骤:1.准备工作。
2.电偏转灵敏度的测定。
3.磁偏转灵敏度的测定。
4.测定截止栅偏压。
?数据记录及实验数据处理:1.电偏转(vA?800伏)水平电偏转灵敏度D-V曲线:垂直电偏转灵敏度D-V曲线:电偏转(V A?1000伏)垂直电偏转:2.2.磁偏转(vA?800伏)磁场励磁线圈电阻R=210欧姆磁偏转(vA?1000伏)注:偏移量D或s等于加电压时的光点坐标与0伏电压的光点坐标的差值。
电子束的电偏转和磁偏转PowerPointPrese
电子到达电场的后半区(右半边)时, 受到的作用力F可分 解为相应的Fr和Fz两个分量。Fr使电子离开轴线, 起散焦 作用。
电子束的电偏转和磁偏转 PowerPointPrese
但因为在整个电场区域里电子都受到同方向的沿Z轴的作 用力, 电子在后半区的轴向速度比在前半区的大得多。因此, 在 后半区, 电子受Fr的作用时间短得多, 获得的离轴速度比在前半 区获得的向轴速度小。 总的效果是, 电子向轴线靠拢, 整个电场起聚焦作用。
电子束的电偏转和磁偏转 PowerPointPrese
注意事项
(1)实验中阴极K、栅极G对地有上千伏特的高电压,第一阳极A1对地也有数 百伏特高电压,要注意人身安全,且不能将高压与地短路;其次注意高压三 用表的极性(此时负极为公共极COM,正极接专用2500V接口,电表放直流 1000V档! 此时满量程为2500V,通常只需测读 V2。请不要改变量程,若 带电拨插表棒,需要格外小 心!
(2)实验过程中要求单手操作,另一只手不要接触接地良好的物品(如水管、 暖气等)。
(3 (4)数字三用表不用时,请拨到OFF档,以节省电池。 (5
电子束的电偏转和磁偏转 PowerPointPrese
3rew
演讲完毕, 谢谢听讲!
再见, see you again
2024/8/1
电子束的电偏转和磁偏转 PowerPointPrese
电子束的电偏转和磁偏转 PowerPointPrese
实验目的
1、理解电子束实验仪面板上各个旋钮的作用,并 能够正确使用。
2、主要实验内容包括四部分:电聚焦、电偏转。 要求正确使用电子束实验仪和数显直流稳压源、 完整记录测量数据(包括有效数字和单位)。
试验二十四电子射线的电偏转与磁偏转
实验二十四 电子射线的电偏转与磁偏转一、实验目的1. 掌握电子束在外加电场和磁场作用下偏转的原理和方式;2. 了解阴极射线管的构造与作用。
三、实验仪器1. TH-EB 电子束实验仪;2. 0~30V 可调直流电源;3. 数字式万用表。
三、实验原理1 电偏转原理电子束电偏转原理如图1所示。
通常在示波管的偏转板上加偏转电压V ,当加速后的电子以速度v 沿x 方向进入偏转板后,受到偏转电场E (y 轴方向)的作用,使电子的运动轨迹发生偏转。
假定偏转电场在偏转板l 范围内是均匀的,电子将作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。
荧光屏上电子束的偏转距离D 可以表示为式中V 为偏转电压,V A 为加速电压,k e 是一个与示波管结构有关的常数,称为电偏常数。
为了反映电偏转的灵敏程度,定义δ电称为电偏转灵敏度,用mm/V 为单位。
δ电越大,电偏转的灵敏度越高。
2 磁偏转原理电子束磁偏转原理如图2所示。
通常在示波管的瓶颈的两侧加上一均匀横向磁场,假定在l 范围内是均匀的,在其他范围都为零。
当加速后的电子以速度v 沿x 方向垂直 射入磁场时,将受到洛仑兹力作用,在均匀磁场B 内作匀速圆周运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上,磁偏转的距离可以表示为:式中I 是偏转线圈的励磁电流,单位A ;k m 是一个与示波管结构有关的常数称为磁偏常数。
为了反映磁偏转的灵敏程度,定义 )3( A m V I k D =(2) 电A e V k V D ==δ(1)/ A e V V k D = l e 图1 电子束电偏转原理 e v图2 电子束磁偏转原理δ磁称为磁偏转灵敏度,用mm/A 为单位。
δ磁越大,表示磁偏转系统灵敏度越高。
2 截止栅偏压原理示波管的电子束流通常是通过调节负栅压U GK 来控制的,调节U GK 可调节荧光屏上光点的辉度。
U GK 是一个负电压,负栅压越大,电子束电流越小,光点的辉度越暗。
电子束的磁偏转与磁聚焦实验报告
电子束的磁偏转与磁聚焦实验报告一、实验目的1、研究电子束在磁场中的偏转规律,加深对洛伦兹力的理解。
2、掌握电子束磁偏转和磁聚焦的测量方法。
3、测定电子荷质比。
二、实验原理1、电子束的磁偏转当电子以速度 v 垂直进入磁场 B 时,将受到洛伦兹力 F 的作用,其大小为 F = e v B,其中 e 为电子电荷。
洛伦兹力的方向始终垂直于电子的速度方向,使电子在垂直于磁场和速度的平面内做圆周运动。
在磁场中运动的电子会发生偏转,其偏转位移 y 与磁场强度 B、加速电压 V、偏转电压 V_d 等因素有关。
2、电子束的磁聚焦在均匀磁场中,电子束中的电子做螺旋运动。
如果磁场是轴向的,且各电子的速度 v 大小相近、方向略有差异,经过一段距离后,它们会会聚在一点,这就是磁聚焦现象。
磁聚焦的条件是电子旋转一周的时间与在轴向前进的距离正好相等。
三、实验仪器电子束实验仪、直流稳压电源、示波器等。
四、实验步骤1、连接实验仪器,确保线路连接正确。
2、打开电源,预热一段时间,使仪器工作稳定。
3、调节加速电压 V,使其达到一定值,并保持不变。
4、逐渐增加偏转电压 V_d,观察电子束在磁场中的偏转情况,记录偏转位移 y。
5、改变磁场强度B,重复上述步骤,测量不同条件下的偏转位移。
6、进行磁聚焦实验,调节磁场强度和加速电压,观察磁聚焦现象,测量相关数据。
五、实验数据及处理1、磁偏转实验数据加速电压 V =____ V磁场强度 B(T)偏转电压 V_d(V)偏转位移 y(mm)01 5 1201 10 2502 5 0602 10 13根据实验数据,绘制偏转位移 y 与偏转电压 V_d 的关系曲线,分析其线性关系。
2、磁聚焦实验数据加速电压 V =____ V磁场强度 B(T)聚焦长度 L(mm)01 15002 75根据磁聚焦实验数据,计算电子的荷质比 e/m。
六、实验误差分析1、仪器精度的限制,如电源电压的稳定性、磁场强度的测量误差等。
700117电子束的电偏转和磁偏转
电子束的电偏转和磁偏转实验报告【一】实验目的及实验仪器实验目的1.了解示波管的基本构造和原理。
2.研究带电粒子在电场和磁场中偏转的规律。
实验仪器DZS-D型电子束试验仪仪器介绍1.螺线管内的线圈匝数n=526匝2.螺线管的长度『0.234米3.螺旋管的直径d=0.090米4.螺距(y偏转板至荧光屏距离)h=0.145米5.加速电压V k调节旋钮:改变电子束加速电压的大小,600〜800V。
6.聚焦电压V1调节旋钮:用以调节聚焦板上的电压,以调节电板附近区域的电场分布,从而调节电子束的聚焦和散焦。
7.栅极电压V C辉度调节旋钮:用以调节加在示波管控制栅极上的电压大小,以控制阴极发射的电子数量,从而控制荧光屏上光点的辉度。
8.Vdx偏转电压调节旋钮:-30〜30V,Vdy偏转电压调节旋钮:-30〜30V。
9.调零x调节旋钮:用来调节光点水平位置,调零y,调节旋钮用来调节光点上下位置。
10.Vdx、Vdy低压转换开关:当打到Vdx挡,低压测量表头即可显示偏转电压Vdy,当打到Vdy的低压测量表头即可显示偏转电压Vdy。
同理,高压转换开关对应高压测量表头。
11.磁偏转线圈:用来做磁偏转实验。
12.电流测量表头:显示磁偏转线圈内励磁电流大小。
13.电流调节旋钮:用来改变磁偏转线圈内励磁电流大小。
14.示波管电源开关:用来接通总电源使仪器工作【二】实验原理及过程简述1.示波管的基本构造它由电子枪、偏转板和荧光屏三部分组成。
自阴极发射的电子束,经过第一栅极(61)、第二栅极(G2)、第一阳极(A1)、第二阳极(A2)的加速和聚焦后,形成一个细电子束。
垂直偏转板(常称作Y轴)及水平偏转板(常称作X轴)所形成的二维电场,使电子束发生位移。
位移大小与X、Y偏转板上所加的电压有关:y=s y V y=V y/D y( 1) x=S x V x=V x/D x(2)式⑴中S y和D y为y轴偏转板的偏转灵敏度和偏转因数,式(2)中S y和D y为x轴偏转板的偏转灵敏度和偏转因数。
电偏转与磁偏转实验报告
电偏转与磁偏转实验报告电偏转与磁偏转实验报告引言:电偏转与磁偏转实验是物理学实验中常见的一种实验,通过观察电子束在电场和磁场中的偏转现象,可以验证电子的带电性质以及电场和磁场的基本性质。
本实验旨在通过实际操作和数据分析,加深对电磁学基本原理的理解。
实验一:电偏转实验1. 实验目的通过观察电子束在电场中的偏转现象,验证电子的带电性质以及电场对带电粒子的作用。
2. 实验装置实验装置包括电子枪、电场装置和测量仪器。
3. 实验步骤首先,将电子枪放置在真空室中,通过加热阴极产生电子。
然后,将电子束引入电场装置,调节电场强度。
观察电子束在电场中的偏转现象,并记录相应的数据。
4. 实验结果与分析根据实验数据,可以得到电子束在电场中偏转的角度与电场强度之间的关系。
通过分析这一关系,可以验证电子带电性质以及电场对带电粒子的作用。
实验二:磁偏转实验1. 实验目的通过观察电子束在磁场中的偏转现象,验证电子的带电性质以及磁场对带电粒子的作用。
2. 实验装置实验装置包括电子枪、磁场装置和测量仪器。
3. 实验步骤首先,将电子枪放置在真空室中,通过加热阴极产生电子。
然后,将电子束引入磁场装置,调节磁场强度。
观察电子束在磁场中的偏转现象,并记录相应的数据。
4. 实验结果与分析根据实验数据,可以得到电子束在磁场中偏转的角度与磁场强度之间的关系。
通过分析这一关系,可以验证电子带电性质以及磁场对带电粒子的作用。
实验三:电偏转与磁偏转的对比分析1. 实验目的通过对比电偏转实验和磁偏转实验的结果,分析电场和磁场对带电粒子的作用的异同。
2. 实验装置实验装置包括电子枪、电场装置、磁场装置和测量仪器。
3. 实验步骤首先,按照实验一和实验二的步骤进行电偏转实验和磁偏转实验。
然后,通过对比两个实验的结果,分析电场和磁场对带电粒子的作用的异同。
4. 实验结果与分析通过对比分析,可以得出电场和磁场对带电粒子的作用的异同。
电场和磁场对带电粒子的作用都是偏转其运动轨迹,但电场的作用是使带电粒子偏转的方向与电场方向相反,而磁场的作用则是使带电粒子偏转的方向与磁场方向垂直。
实验二十四电子束的偏转
实验二十四 电子束的偏转示波器中用来显示电信号波形的示波管和电视机、摄像机里显示图像的显像管、摄像管都属于电子束线管,虽然它们的型号和结构不完全相同,但都有产生电子束的系统和电子加速系统,为了使电子束在荧光屏上清晰的成像,还要设聚焦、偏转和强度控制系统。
对电子束的聚焦和偏转,可以利用电极形成的静电场实现,也可以用电流形成的恒磁场实现。
前者称为电聚焦或电偏转。
随着科技的发展,利用静电场或恒磁场使电子束偏转、聚焦的原理和方法还被广泛地用于扫描电子显微镜、回旋加速器、质谱仪等许多仪器设备的研制之中。
本实验在了解电子束线管的结构基础上,先讨论电子束的偏转特性及其测量方法。
【目的】1.了解示波管结构和原理。
2.研究带电粒子在电场和磁场中偏转的规律。
3.测试示波管的电偏灵敏度和磁偏灵敏度与加速电压的关系。
【原理】示波管的基本结构主要由以下4个部分组成 (1)示波管示波管的构造如图4-43所示。
当加热电流通过灯丝时,阴极K被加热并发射电子,栅极G 加上相对于阴极为负的电压,调节栅极电压的大小,可以控制阴极发射电子的多少,即控制光点的亮度。
第一阳极A1相对于阴极K有很高的电压(约1 500V )用以加速电子;第二阳极A 2与第一阳极A1之间构成聚焦电场,使发散的电子束在聚焦电的作用下汇聚起来,打在荧光屏上发出荧光。
X、Y 偏转板是2对分别平行且相互垂直的属极,在平行板上加不同的电压控制荧光屏上的光点的位置。
光点移动距离的大小与加在偏转板上的电压成正比。
(2)扫描电压发生器扫描电压发生器是产生扫描电压的装置。
示波器通常是要观察轴输入的周期性信号电压的波形。
如果只把被测信号(如正弦电压)加在Y 偏转板上,而亮线。
要在荧光屏上显示出正弦电压的波形,就必须使亮点在Y 轴上的运动沿X 方向展开。
为此必须在X 偏转板上加一周期性随时间线性变化的电压,这种电压称为扫描电压。
这样荧光屏上光点在作竖直运动的同时还要作自左向右的匀速运动。
实验电子束的电偏转
实验电子束的电偏转电子束的电偏转、磁偏转研究示波器中用来显示电信号波形的示波管和电视机里显示图像的显象管及雷达指示管、电子显微镜等电子器件的外形和功用虽各不相同,但有其共同点:都有产生电子束的系统和对电子加速的系统;为了使电子束在荧光屏上清晰地成象,还有聚焦、偏转和强度控制等系统。
因此统称它们为电子束线管。
电子束的聚焦和偏转可以通过电场和磁场对电子的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。
本实验研究电子束的电偏转和磁偏转。
通过实验,将使我们加深对电子在电场及磁场中运动规律的理解,有助于了解示波器和显象管的工作原理。
[实验目的]1.研究带电粒子在电场和磁场中偏转的规律。
2.了解电子束线管的结构和原理。
[实验原理]1.电子束的电偏转电子在两偏转板之间穿过时,如果两板间电位差为零,电子则笔直地穿过偏转板打在荧屏中央(假定电子枪瞄准了中心)形成一个小亮斑。
如果在两块Y (或X )偏转板上加有电压,电子就会受电场力的作用而发生偏转。
在图5-1中,设两板相距为d ,电位差为V d ,可看做平行板电容器,则两板间的电场强度是d V E d y =电子受电场力 d eV eE f d yy ==的作用,产生加速度md eV mf a d y y ==电子在Z 方向上没有加速度,故从Y 板左端运动到右端的时间是z v l t /1=再从右端运动到屏的时间是z v L t /2'=电子离开板右端时的垂直位移是2211)(22zd y v l mdeV t a y ?==在同一点的垂直速度)()(1z d y y v lmdeV t a v ?==电子离开板右端时不再受电场力的作用,作匀速直线运动,到达屏上的垂直位移是)()()(22z z d y v L v l mdeV t v y '??== 电子在屏上总位移 )2()(221L l m d vl eV y y D zd '+?=+=令L l L '+=2,又因为电子在加速电压的作用下,加速场对电子所做的功全部转化为电子的动能,则 2221eV mvz=(1)代入上式,并由式(1)消去v z 最后得,板中心至屏的距离,dV dV lL D 22=(2)式(2)表明,偏转板的电压V d 越大,屏上光点的位移也越大,两者是线性关系。
实验二十四电子束的偏转
实验二十四 电子束的偏转示波器中用来显示电信号波形的示波管和电视机、摄像机里显示图像的显像管、摄像管都属于电子束线管,虽然它们的型号和结构不完全相同,但都有产生电子束的系统和电子加速系统,为了使电子束在荧光屏上清晰的成像,还要设聚焦、偏转和强度控制系统。
对电子束的聚焦和偏转,可以利用电极形成的静电场实现,也可以用电流形成的恒磁场实现。
前者称为电聚焦或电偏转。
随着科技的发展,利用静电场或恒磁场使电子束偏转、聚焦的原理和方法还被广泛地用于扫描电子显微镜、回旋加速器、质谱仪等许多仪器设备的研制之中。
本实验在了解电子束线管的结构基础上,先讨论电子束的偏转特性及其测量方法。
【目的】1.了解示波管结构和原理。
2.研究带电粒子在电场和磁场中偏转的规律。
3.测试示波管的电偏灵敏度和磁偏灵敏度与加速电压的关系。
【原理】示波管的基本结构主要由以下4个部分组成 (1)示波管示波管的构造如图4-43所示。
当加热电流通过灯丝时,阴极K 被加热并发射电子,栅极G 加上相对于阴极为负的电压,调节栅极电压的大小,可以控制阴极发射电子的多少,即控制光点的亮度。
第一阳极A 1相对于阴极K 有很高的电压(约1 500V )用以加速电子;第二阳极A 2与第一阳极A 1之间构成聚焦电场,使发散的电子束在聚焦电的作用下汇聚起来,打在荧光屏上发出荧光。
X 、Y 偏转板是2对分别平行且相互垂直的属极,在平行板上加不同的电压控制荧光屏上的光点的位置。
光点移动距离的大小与加在偏转板上的电压成正比。
(2)扫描电压发生器扫描电压发生器是产生扫描电压的装置。
示波器通常是要观察轴输入的周期性信号电压的波形。
如果只把被测信号(如正弦电压)加在Y 偏转板上,而亮线。
要在荧光屏上显示出正弦电压的波形,就必须使亮点在Y 轴上的运动沿X 方向展开。
为此必须在X 偏转板上加一周期性随时间线性变化的电压,这种电压称为扫描电压。
这样荧光屏上光点在作竖直运动的同时还要作自左向右的匀速运动。
700117电子束的电偏转和磁偏转 (1)
电子束的电偏转和磁偏转实验报告【一】实验目的及实验仪器实验目的 1.了解示波管的基本构造和原理。
2.研究带电粒子在电场和磁场中偏转的规律。
实验仪器DZS-D型电子束试验仪仪器介绍1.螺线管内的线圈匝数n=526匝2.螺线管的长度l=0.234米3.螺旋管的直径d=0.090米4.螺距(y偏转板至荧光屏距离)h=0.145米5.加速电压V k调节旋钮:改变电子束加速电压的大小,600~800V。
6.聚焦电压V1调节旋钮:用以调节聚焦板上的电压,以调节电板附近区域的电场分布,从而调节电子束的聚焦和散焦。
7.栅极电压V C辉度调节旋钮:用以调节加在示波管控制栅极上的电压大小,以控制阴极发射的电子数量,从而控制荧光屏上光点的辉度。
8.Vdx偏转电压调节旋钮:-30~30V,Vdy偏转电压调节旋钮:-30~30V。
9.调零x调节旋钮:用来调节光点水平位置,调零y,调节旋钮用来调节光点上下位置。
10.Vdx、Vdy低压转换开关:当打到Vdx挡,低压测量表头即可显示偏转电压Vdy,当打到Vdy的低压测量表头即可显示偏转电压Vdy。
同理,高压转换开关对应高压测量表头。
11.磁偏转线圈:用来做磁偏转实验。
12.电流测量表头:显示磁偏转线圈内励磁电流大小。
13.电流调节旋钮:用来改变磁偏转线圈内励磁电流大小。
14.示波管电源开关:用来接通总电源使仪器工作【二】实验原理及过程简述1.示波管的基本构造它由电子枪、偏转板和荧光屏三部分组成。
自阴极发射的电子束,经过第一栅极(G1)、第二栅极(G2)、第一阳极(A1)、第二阳极(A2)的加速和聚焦后,形成一个细电子束。
垂直偏转板(常称作Y轴)及水平偏转板(常称作X轴)所形成的二维电场,使电子束发生位移。
位移大小与X、Y偏转板上所加的电压有关:y=s y V y=V y/D y(1)x=s x V x=V x/D x(2)式(1)中S y和D y为y轴偏转板的偏转灵敏度和偏转因数,式(2)中S y和D y为x轴偏转板的偏转灵敏度和偏转因数。
电子束的电偏转与磁偏转
电子束的电偏转与磁偏转【实验原理】1、电子示波管实验中所采用的电子示波管型号是8SJ45J ,就是示波器中的示波管。
通常用在雷达中。
它的工作原理与电视显像管非常相似,这种管子又名阴极射线管(CRT )或者电子束示波管。
在近代科学技术许多领域中都要用到,是一种非常有用的电子器件。
电子示波管的构造如图1所示。
包括下面几个部分:(1)电子枪,它的作用是发射电子,把它加速到一定的速度并聚成一细束;(2)偏转系统,由两对平板电板构成,一对上下放置的叫Y 轴偏转板或垂直偏转板,另一对左右放置的是X 轴偏转板或水平偏转板;(3)荧光屏,用以显示电子束打在示波管端面的位置。
所有这几部分都密封在一只玻璃外壳中,玻璃管壳内抽成高度真空,以避免电子与空气分子发生碰撞引起电子束的散射。
电子源是阴极,图1中用字母K 表示。
它是一只金属圆柱筒,里面装有一根加热用的钨丝,两者之间用陶瓷套管绝缘。
当灯丝通电时(6.3伏交流电)把阴极加热到很高温度,在圆柱筒端部涂有钡和锶的氧化物,这种材料中的电子由于加热得到足够的能量会逸出表面,并能在阴极周围空间自由运动,这种过程叫热电子发射。
与阴极共轴布置着四个圆筒状电极,其中有几个中间带有小孔的隔板。
电极G 1称为控制栅,正常工作时加有相当于阴极K 大约0~30伏的负电压,它产生一个电场是要把阴极发射出来的电子推回到阴极去。
改变控制栅极的电位可以限制穿过G 上小孔出去的电子数目,从而控制电子束的强度。
电压V2,—般约有几百伏到几千伏的正电压。
它产生一个很强的电场使电子沿电子枪轴线方向加速。
8SJ45J 示波管的电极A 1为聚焦电极,在正常使用情况下具有电位V 1(相当于K ),大小介于K 和A 2的电位之间。
在G 2和A 1之间以及A 1和A 2之间形成的电场把电子束聚焦成很细的电子流,使它打在荧光屏上形成很小的一个光点。
聚焦程度好坏主要取决于V 1和v 2的大小。
2、电偏转原理电偏转是通过在垂直于电子射线的方向上外加电场来实现的。
实验十七电子射线的电偏转与磁偏转
实验十七 电子射线的电偏转与磁偏转【实验目的】1. 掌握电子束在外加电场和磁场作用下偏转的原理和方式; 2. 了解阴极射线管的构造与作用。
【实验仪器】1. TH-EB 电子束实验仪。
2. 0~30V 可调直流电源。
3. 数字式万用表。
【实验原理】1.电偏转原理电子束电偏转原理如图1所示。
通常在示波管的偏转板上加偏转电压V ,当加速后的电子以速度v 沿x 方向进入偏转板后,受到偏转电场E (y 轴方向)的作用,使电子的运动轨迹发生偏转。
假定偏转电场在偏转板l 范围内是均匀的,电子将作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。
荧光屏上电子束的偏转距离D 可以表示为式中V 为偏转电压,V A 为加速电压,k e 是一个与示波管结构有关的常数,称为电偏常数。
为了反映电偏转的灵敏程度,定义δ电称为电偏转灵敏度,用mm/V 为单位。
δ电越大,电偏转的灵敏度越高。
2.磁偏转原理电子束磁偏转原理如图2所示。
通常在示波管的瓶颈的两侧加上一均匀横向磁场,假定在l 范围内是均匀的,在其他范围都为零。
当加速后的电子以速度v 沿x 方向垂直 射入磁场时,将受到洛仑兹力作用,在均匀磁场B 内作匀速圆周运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上,磁偏转的距离可以表示为:式中I 是偏转线圈的励磁电流,单位A ;k m 是一个与示波管结构有关的常数称为磁偏常数。
为了反映磁偏转的灵敏程度,定义δ磁称为磁偏转灵敏度,用mm/A 为单位。
δ磁越大,表示磁偏转系统灵敏度越高。
3.截止栅偏压原理示波管的电子束流通常是通过调节负栅压U GK 来控制的,调节U GK 可调节荧光屏上光点的辉度。
U GK 是一个负电压,负栅压越大,电子束电流越小,光点的辉度越暗。
使电子束流截)3( A m V I k D =(2) 电A e V k V D ==δ4)( I mA V k D ==磁δ(1)/ Ae V V k D = le图1 电子束电偏转原理y ev 图2 电子束磁偏转原理止的负栅压称为截止栅偏压。
电磁场中电子电偏转和磁偏转 预习报告
电磁场中电子电偏转和磁偏转【实验目的】1、 研究电子在电场和磁场中的运动规律;2、 掌握用外加电场或者磁场的方法来约束电子束运动的方法。
【实验原理】一、电子在电场中的加速和偏转:为了描述电子的运动,我们选用了一个直角坐标系,其z 轴沿示波管管轴,x 轴是示波管正面所在平面上的水平线,y 轴是示波管正面所在平面上的竖直线。
从阴极发射出来通过电子枪各个小孔的一个电子,它在从阳极2A 射出时在z 方向上具有速度Z v ;Z v 的值取决于K 和2A 之间的电位差C B 2V V V +=(图2)。
电子从K 移动到2A ,位能降低了2eV ;因此,如果电子逸出阴极时的初始动能可以忽略不计,那么它从2A 射出时的动能221z mv 就由下式确定: 2221eV mv z = (1) 此后,电子再通过偏转板之间的空间。
如果偏转板之间没有电位差,那么电子将笔直地通过。
最后打在荧光屏的中心(假定电子枪描准了中心)形成一个小亮点。
但是,如果两个垂直偏转板(水平放置的一对)之间加有电位差d V ,使偏转板之间形成一个横向电场y E ,那么作用在电子上的电场力便使电子获得一个横向速度y v ,但却不改变它的轴向速度分量z v ,这样,电子在离开偏转板时运动的方向将与z 轴成一个夹角θ,而这个θ角由下式决定:zy v v tg =θ (2) 如图3所示。
如果知道了偏转电位差和偏转板的尺寸,那么以上各个量都能计算出来。
设距离为d 的两个偏转板之间的电位差d V 在其中产生一个横向电场d /V E d y =,从而对电子作用一个大小为d /eV eE F d y y == 的横向力。
在电子从偏转板之间通过的时间t ∆内,这个力使电子得到一个横向动量y mv ,而它等于力的冲量,即d t eV t F mv d y y ∆⋅=∆= (3) 于是:t d V m e v d y ∆⋅⋅= (4) 然而,这个时间间隔t ∆,也就是电子以轴向速度z v 通过距离l (l 等于偏转板的长度)所需要的时间,因此t v l z ∆=。
实验二十一电子束的电偏转和磁偏转
实验二十二 电子束的电偏转和磁偏转【实验目的】1.掌握电子在电场和磁场中的运动规律及电、磁聚焦和电、磁偏转的基本原理; 2.学习电子电、磁聚焦和电、磁偏转的实验方法;3. 测定电子比荷,加深理解电子在电场和磁场中的运动规律。
【实验仪器】DZS-D 电子束实验仪,直流稳压电源 【实验原理】电子具有一定的质量与电量。
它在电场或磁场中运动时会受到电、磁场的作用,使自己的运动状态发生变化,产生聚焦或偏转现象。
利用聚焦偏转现象可以研究电子自身的性质,例如可以测定电子比荷(也称为荷质比),即单位质量带有的电荷e/m 。
此外示波器的示波管、电视机显象管也是利用电子在电、磁场中的聚焦、偏转性质工作的。
一、电聚焦电子射线束的聚焦是所有射线管如示波管,显象管和电子显微镜等都必须解决的问题。
在阴 极射线管中,阴极被灯丝加热发射电子。
电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能通过栅极小孔而飞向阳极。
改变栅极电位能控制通过栅极小孔的电子数目,从而控制荧光屏上的辉度。
当栅极上的电位负到一定的程度时,可使电子射线截止,辉度为零。
前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。
由于各电极上的电位不同,在它们之间形成了弯曲的等位面、电力线。
这样就使电子束的路径发生弯曲,类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。
改变电极间的电位分布,可以改变等位面的弯曲程度,从而达到电子束的聚焦。
二、电偏转电子从阴极发射出来时,可以认为它的初速度为零。
电子枪内阳极A 2相对阴极K 具有几百甚 至几千伏的加速正电位U z 。
它产生的电场使电子沿轴向加速。
电子从速度为0到达A 2时速度为V 。
过阳极A 2的电子具有V 的速度进入两个相对平行的偏转板间。
若在两偏转板上加上电压U d ,两平 (22.1)2 21 2meU v eU mv z z ==所以由能量关系有: t 2121221代入得将vl t m eE t a y y =⋅==行板间距离为d 。
高三物理“电偏转”和“磁偏转”的区别
“电偏转”和“磁偏转”的区别“电偏转”和“磁偏转”分别是利用电场和磁场对运动电荷施加作用,从而控制其运动方向。
由于电场和磁场对运动电荷的作用具备着不同的特征,这使得两种偏转也存在着以下几个方面的差别。
(一)受力特征的差别在“电偏转”中,质量为m ,电荷量为q 的粒子以速度v 0垂直射入电场强度为E 的匀强电场中时,所受到的电场力F 电=qE 与粒子的速度v 0无关,F 电是恒力。
在“磁偏转”中,质量为m ,电荷量为q 的粒子以速度v 0垂直射入磁感应强度为B 的匀强磁场中时,所受到的磁场力(即洛伦磁力)F 磁=qvB 与粒子的速度v 0有关,F 磁所产生的加速度是粒子的速度方向发生变化,而速度方向的变化反过来又导致F 磁的方向变化,F 磁是变力。
(二)运动规律的差别在“电偏转”中,恒定的F 电使粒子做匀变速曲线运动——“类平抛运动”,其运动规律分别由沿垂直于电场和平行于电场的两个相互垂直的方向给出:沿平行于电场的方向:粒子做匀速直线运动,有v x = v 0 x= v 0t沿垂直于电场的方向: 粒子做初速度为零的匀加速直线运动,有a=qE m v y =qE m ⋅t y=12qE m⋅t 2在“磁偏转”中,变化的F 磁使粒子做变速曲线运动——匀速圆周运动,其运动规律由洛伦磁力充当向心力可得:F 磁=F 向 即qvB=m 2v R∴R=mvqB又由T=2R v π 得 T=2mqBπ(三)偏转情况的差别在“电偏转”中,粒子的运动方向的偏转角tan θ=y xv v ,显然θ<2π,且在相等时间内偏转的角度往往是不相等的。
在“磁偏转”中,粒子的运动方向所能偏转的角度不受限制, θ=ωt=vt R =qBmt ,且在相等时间内偏转的角度总是相等的。
(四)动能变化的差别在“电偏转”中,由于F 电与粒子的运动方向间的夹角越来越小,且总小于900,F 电对粒子做正功,所以其动能将不断增大,且增大越来越快。
电子束的电偏转和磁偏转实验报告
电子束的电偏转和磁偏转实验报告实验报告:电子束的电偏转和磁偏转一、实验目的1.理解和掌握电子束在电场和磁场中的偏转原理;2.学会使用电子束电偏转和磁偏转的实验设备;3.通过实验数据分析,提高实验数据处理和实验结果分析的能力。
二、实验原理1.电偏转:当电子束通过加有直流电压的电场时,电子束会受到电场力的作用发生偏转。
根据牛顿第二定律,电子束将在电场中加速或减速,导致电子束的飞行方向发生变化。
电偏转的大小取决于电场的强度和电子束进入电场的角度。
2.磁偏转:当电子束通过磁场时,电子束会受到洛伦兹力的作用发生偏转。
洛伦兹力的大小取决于磁场的强度和电子束的速度。
磁偏转的大小取决于磁场的强度和电子束进入磁场的角度。
三、实验步骤1.准备实验设备:电子枪、电源、电场发生器、磁场发生器、屏幕、测量工具等;2.调整电子枪的发射角度,使电子束尽量垂直射向屏幕;3.调整电场和磁场的强度,观察电子束的偏转情况;4.使用测量工具测量电子束偏转的角度和距离;5.重复步骤3和4,收集足够的数据;6.根据实验数据,分析电偏转和磁偏转的特点和规律。
四、实验结果与分析1.电偏转实验结果:实验数据显示,随着电场强度的增加,电子束的偏转角度和距离都增加。
这表明电场强度对电偏转有显著影响。
当电子束进入电场的角度发生变化时,偏转角度和距离也会发生变化。
这表明电偏转还受到电子束入射角度的影响。
2.磁偏转实验结果:实验数据显示,随着磁场强度的增加,电子束的偏转角度和距离也增加。
这表明磁场强度对磁偏转有显著影响。
当电子束的速度发生变化时,偏转角度和距离也会发生变化。
这表明磁偏转还受到电子束速度的影响。
此外,我们还发现磁偏转的角度和距离都较小,这表明磁场对电子束的作用力较弱。
五、结论通过本次实验,我们深入理解了电子束在电场和磁场中的偏转原理。
实验结果表明,电场和磁场对电子束的偏转都有显著影响,但磁场对电子束的作用力较弱。
在实际应用中,我们可以利用电子束的电偏转和磁偏转来实现许多重要的功能,例如电子显微镜、电子探针等。
电磁学实验-----电子射线电偏转
丛伟艳 空间科学与物理学院
1
项目意义
通过实验了解电子射线管电聚焦和电偏转的原理。 通过实验了解电子射线管偏转灵敏度的表述,及影响电 子射线管偏转灵敏度的因素。
2
完成项目所需硬件
EMB-2型电子射线电子比荷测定仪、励磁电源、励磁螺线 管、导线。
3
技术路线
示波管
亮度调节,符号为☼;聚焦调节,符号为⊙;辅助聚焦调节, 符号为〇。
4
技术路线
电聚焦原理 在示波管中,加速电场的分布 使由阴极极表面不同点发出的 电子,在向阳极方向运动时, 在栅极小圆孔前方会聚,形成 一个电子射线的交叉点F1(第 一聚焦点)。
由加速电极、第一阳极和第 二阳极组成的电聚焦系统, 把F1成像在示波管的荧光屏上, 呈现为直径足够小的光点 (第二聚焦点)。
5
技术路线
为了说明静电透镜的电聚焦原理,在两块电位差为10V的带电 平行板中间放一块带有圆孔的金属膜片,如图所示。
6
技术路线
电偏转及示波管灵敏度测定
y yb yl 1 2 abtb abtbtl 2 1 eV b 2 eV b l前 ( ) 2 m d v// m d v// v//
(3)计算仪器的偏转灵敏度和偏转因数。
11
实验步骤及内容
偏转灵敏度 偏转因数( (cm/V) V/cm)
偏转值(cm)
1.0
2.0
3.0
4.0
5.0
850V
X偏转板
950V 1050V
850V
Y偏转板
950V 1050 V
12
注意事项
• 确认所加偏转电压是哪个方向
•
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二十四 电子射线的电偏转与磁偏转
一、实验目的
1. 掌握电子束在外加电场和磁场作用下偏转的原理和方式;
2. 了解阴极射线管的构造与作用。
三、实验仪器
1. TH-EB 电子束实验仪;
2. 0~30V 可调直流电源;
3. 数字式万用表。
三、实验原理
1 电偏转原理
电子束电偏转原理如图1所示。
通常在示波管的偏转板上加
偏转电压V ,当加速后的电子以速度v 沿x 方向进入偏转板后,
受到偏转电场E (y 轴方向)的作用,使电子的运动轨迹发生偏
转。
假定偏转电场在偏转板l 范围内是均匀的,电子将作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。
荧光屏上电子束的偏转距离D 可以表示为
式中V 为偏转电压,V A 为加速电压,k e 是一个与示波管结构有关的常数,称为电偏常数。
为了反映电偏转的灵敏程度,定义
δ电称为电偏转灵敏度,用mm/V 为单位。
δ电越大,电偏转的灵敏度越高。
2 磁偏转原理
电子束磁偏转原理如图2所示。
通常在示波管的瓶颈的两侧加上一均匀横向磁场,假定在l 范围内是均匀的,在其他范围都为
零。
当加速后的电子以速度v 沿x 方向垂直 射入磁场时,将受到洛仑
兹力作用,在均匀磁场B 内作匀速圆周运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上,磁偏转的距离可以表示为:
式中I 是偏转线圈的励磁电流,单位A ;k m 是一个与示波管结构有关的
常数称为磁偏常数。
为了反映磁偏转的灵敏程度,定义 )3( A m V I k D =(2)
电A e V k V D ==δ(1)
/ A e V V k D = l e 图1 电子束电偏转原理 e v
图2 电子束磁偏转原理
δ磁称为磁偏转灵敏度,用mm/A 为单位。
δ磁越大,表示磁偏转系统灵敏度越高。
2 截止栅偏压原理
示波管的电子束流通常是通过调节负栅压U GK 来控制的,调节U GK 可调节荧光屏上光点的辉度。
U GK 是一个负电压,负栅压越大,电子束电流越小,光点的辉度越暗。
使电子束流截止的负栅压称为截止栅偏压。
四、实验步骤
1.准备工作
1) 用专用电缆线联接实验和示波管支架上的插座。
2) 将实验箱面板上的“电聚焦/磁聚焦”选择开关置于“电聚焦”。
3) 将与第一阳极对应的钮子开关置于上方,其余的钮子开关均置于下方。
4) 将“励磁电流调节”旋钮旋至最小位置。
5)开启电源开关,调节“阳极电压调节”电位器,使“阳极电压”数显表指示为800V ,适当调节“辉度调节”电位器,此时示波器上出现光斑,然后调节“电聚焦调节”电位器,使光斑聚焦。
2.电偏转灵敏度的测定
1)令“阳极电压”指示为800V ,在光点聚焦的状态下,将H 1、H 2对应的钮子开关置于上方,此时荧光屏上会出现一条短的水平亮线,这是因为水平偏转极板上感应有50Hz 交流电压之故。
测量时将水平偏转极板H 1和H 2接通直流偏转电压,分别记录电压为0V 、10V 、20V 时光点位置偏移量,然后调换偏转电压的极性,重复上述步骤。
2)将“阳极电压”分别调至1000V 、1200V ,按上述的方法使光点重新聚焦后,
按实验步骤1)重复以上测量,列表记录数据。
3)将H 1、H 2对应的钮子开关置于下方,将V 1、V 2对应的钮子开关置于上方。
此时荧光屏上也会出现一条短的垂直亮线。
这也是因为垂直偏转极板上感应有50Hz 交流电压之故。
测量时,在V 1、V 2两端依次加0V 、10V 、20V 直流偏转电压,(阳极电压依次为800V 、1000V 、1200V),列表记录数据。
3.磁偏转灵敏度的测定
1)准备工作与“电聚焦特性的测定”完全相同。
为了计算亥姆霍兹线圈中的电流,必须事先用数字万用表测量线圈的电阻值,并记录。
2)令“阳极电压”指示为800V ,使光点在聚焦的状态下,接通亥姆霍兹线圈的励磁电压,并分别调到0V 、2V 、4V 、6V ,记录荧光屏上光点的偏移量,然后改变励磁电压的极性,重复以上步骤,列表记录数4)
( I m 磁A V k D ==δ
据。
3)调节“阳极电压调节”电位器,使阳极电压分别为1000V、1200V,重复实验步骤2)。
4.截止栅偏压的测定
1)准备工作与“电聚焦特性的测定”完全相同,但为了测量阴极电压和栅极电压,需将与阴极K和栅极G相对应的钮子开关置于上方。
2)令“阳极电压”指示为800V,使光点在聚焦的状态下,用数字万用表直流电压档测量栅极与阴极之间的电压,调节“辉度调节”电位器,记录荧光屏上光点刚消失时的V GK值。
3)调节“阳极电压调节”电位器,使阳极电压分别为1000V、1200V,重复步骤2),记录相应的V GK 值。
五、安全注意事项
1.本仪器内示波管电路和励磁电路均存在高压,在仪器插上电源线后,切勿触及
印刷板、示波器管座、励磁线圈的金属部分,以免电击危险。
2.本仪器的电源线应插在标准的三芯电源插座上。
电源的相线,零线和地线应按国家标准接法之规定接在规定的位置上。
3.实验前必须先阅读电子束实验仪使用说明书。
六、思考题
1.电偏转、磁偏转的灵敏度是怎样定义的?
2.在不同阳极电压下,为什么偏转灵敏度会不同?
3.何谓截止栅偏压?
七、实验报告要求
1.计算不同阳极电压下的水平电偏转灵敏度和垂直电偏转灵敏度。
2.试分析在同等偏置条件下,为什么垂直电偏转灵敏度会大于水平电偏转灵敏度。
3.计算不同阳极电压下的磁偏转灵敏度。
4.试分析磁偏转灵敏度与哪些实验参数有关。
5.试分析,栅负压为什么必需是负电压,截止栅偏压与阳极电压V A2有何关系。