直流电机的调速方法..
直流电动机有哪几种调速方法各有哪些特点答:直流电动机有三种
直流电动机有哪几种调速方法?各有哪些特点?答:直流电动机有三种调速方法:1)调节电枢供电电压U ;2)减弱励磁磁通Φ;3)改变电枢回路电阻R 。
特点:对于要求在一定范围内无极平滑调速的系统来说,以调节电枢供电电压的方式为最好。
改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(额定转速)以上作小范围的弱磁升速。
晶闸管—电动机系统当电流断续时机械特性的显著特点是什么?答:电流断续时的电压、电流波形图(Ⅰ10P 、Ⅱ 12P )(三相零式为例)。
断续时,0d u 波形本身与反电势E 有关,因而就与转速n 有关,而不是像电流连续时那样只由控制角α决定的常值。
机械特性呈严重的非线性,有两个显著的特点:第一个特点是当电流略有增加时,电动机的转速会下降很多,即机械特性变软。
当晶闸管导通时,整流电压波形与相电压完全一致,是电源正弦电压的一部分。
当电流断续后,晶闸管都不导通,负载端的电压波形就是反电势波形。
电流波形是一串脉冲波,其间距为︒120,脉冲电流的底部很窄。
由于整流电流平均值d I 与电流波形包围的面积成正比,如果电流波形的底部很窄,为了产生一定的d I ,各相电流峰值必须加大,因为RE u i d d -=,而整流输出的瞬时电压d u 的大小由交流电源决定,不能改变。
也就是说应使E 下降很多即转速下降很多,才能产生一定的d I ,这就是电流断续时机械特性变软的原因。
第二个特点是理想空载转速0n 升高。
因为理想空载时0=d I ,所以2m a x 02U u E d ==,所以0n 升高。
简述直流PWM 变换器电路的基本结构。
答:直流 PWM 变换器基本结构如图所示,包括 IGBT 和续流二极管。
三相交流电经过整流滤波后送往直流 PWM 变换器,通过改变直流 PWM 变换器中 IGBT 的控制脉冲占空比来调节直流 PWM 变换器输出电压大小,二极管起续流作用。
Ug0Ton T t 直流PWM 变换器基本结构直流PWM 变换器输出电压的特征是什么?答:频率一定、宽度可调的脉动直流电压。
直流电机的调速方法
直流电机的调速方法一、前言直流电机是工业生产中常用的驱动设备,它具有调速范围广、转矩平稳等优点。
在实际应用中,为了满足不同的工艺要求,需要对直流电机进行调速。
本文将介绍直流电机的调速方法。
二、基本原理直流电机的调速原理是通过改变电源电压和/或改变电枢回路中的电阻来改变电机的转速。
当电压增大或者回路阻值减小时,会使得转矩增大,从而使得转速提高;反之亦然。
三、调速方式1. 串联型调速串联型调速是通过改变外接串联在直流电机上的可变阻值来改变回路总阻值,从而达到降低转矩和减缓转速的目的。
具体步骤如下:(1)将可变阻器串联在直流电机中;(2)当可变阻器阻值增加时,回路总阻值增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
2. 并联型调速并联型调速是通过改变外接并联在直流电机上的可变阻值来改变电枢回路的总电阻,从而达到提高转矩和加快转速的目的。
具体步骤如下:(1)将可变阻器并联在直流电机中;(2)当可变阻器阻值增加时,电枢回路总电阻增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
3. 电枢调速电枢调速是通过改变直流电机中的电枢回路中的电阻来改变回路总阻值,从而达到降低转矩和减缓转速的目的。
具体步骤如下:(1)将可变阻器连接在直流电机的电枢回路上;(2)当可变阻器阻值增加时,回路总阻值增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
4. 磁通调速磁通调速是通过改变直流电机中励磁回路中串联在励磁线圈上的可变抵抗来改变磁通量大小,从而达到改变转速和转矩的目的。
具体步骤如下:(1)将可变抵抗串联在励磁线圈上;(2)当可变抵抗阻值增加时,回路总阻值增加,从而使得磁通量减小,输出功率减小;反之亦然;(3)通过逐渐增加或减小可变抵抗的阻值来实现调节。
四、注意事项1. 在进行调速时,应根据直流电机的额定参数和工作要求进行合理选择。
他励直流电动机调速方法
他励直流电动机调速方法拖动肯定的负载运行,其转速由工作点打算。
假如调整某些参数,则可以转变转速。
n = U / (CeΦ) - [(Ra+Rp) / (CeCTΦ2)]×T = n0L - kT直流电动机的调速方法有三种: (1)转变电枢回路外串电阻Rtj;(2)转变励磁回路外串电阻Rf即转变磁通Φ;(3)转变电枢电压U。
三种调速方法实质上都是转变了电动机的机械特性曲线外形,使之与负载机械特性曲线的交点转变,以达到调速的目的。
一、转变电枢电压调速(设TZ为常数)降低电枢电压时,电动机机械特性平行下移。
负载不变时,交点也下移,速度也随之转变。
优点:调速后,转速稳定性不变、无级、平滑、损耗小。
便于计算机掌握。
缺点:需要特地设备,成本较高。
(可控硅调压调速系统)二、转变励磁电流调速(调整励磁电阻)(设TZ为常数)增大励磁电阻即削减励磁电流时,磁通Φ削减,电动机机械特性n0L 点和斜率增大。
负载不变时,交点也下移,速度也随之转变。
优点:励磁回路电流小约为(1~3)% IN , 损耗小,连续调速,易掌握。
缺点:只能上调,最高转速受机械强度的限制,负载转矩大时调速范围小。
三、电枢回路串入调整电阻调速调整电阻Rp增大时,电动机机械特性的斜率增大,与负载机械特性的交点也会转变,达到调速目的。
优点:设备简洁、操作便利。
缺点:只能在低于固有机械特性的范围内调速,低转速时变化率较大,电枢电流较大,调速过程中有损耗。
四、转变电动机转向的方法要转变电动机转向,就必需转变电磁转矩的方向。
T = CT Φ Ia依据电动机的工作原理,单独转变磁通方向(即通过转变励磁绕组连接)或者单独转变电枢电流的方向,均可以转变电磁转矩的方向。
故转变转向的方法:(1)对于并励电动机,单独将励磁绕组引出端对调。
(2)单独将电枢绕组引出端对调。
对于复励电动机,应将电枢引出端对调或者同时将并励绕组和串励绕组引出段分别对调(维持加复励状态)。
直流电机的调速方法
电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。 但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎 没什么调速作用;还会在调速电阻上消耗大量电能。
二、直流电动机调速的种类与方法
直流电机调速的种类分别有: 1.调节电枢供电电压U
改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定 转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑 调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速 响应,但是需要大容量可调直流电源。 2.改变电动机主磁通
1.ቤተ መጻሕፍቲ ባይዱ节电枢供电电压U
三、直流电动机调速方法的特点
直流电动机三种调速方法的特点: 不同的需要,采用不同的调速方式 1.调电枢电压,适合应用在0~基速以下范围内调速。不能达
到电动机的最高转速。 2.在电枢全电压状态,调激磁电压,适合应用在基速以上,
弱磁升速。 不能得到电动机的较低转速。 3.在全磁场状态,调电枢电压,电枢全电压之后,弱磁升速。
适合应用在调速范围大的情况。这是直流电动机最完善的 调速方式,但设备复杂,造价高。
直流电机的调速方法
• 一组:韩爽 刘磊 刘畅 韩玉迪
目录
一、直流电动机调速的定义与工作原理 二、直流电动机调速的种类与方法 三、直流电动机调速方法的特点
一、直流电动机调速的定义与工作原理
• 定义:直流电机调速器就是调节直流电动机速度 的设备。
• 工作原理:是通过改变输出方波的占空比使负载上 的平均电流功率从0-100%变化、从而改变负载、 灯光亮度/电机速度。利用脉宽调制(PWM)方式、 实现调光/调速、它的优点是电源的能量功率、能 得到充分利用、电路的效率高。
直流电动机调速方法有
直流电动机调速方法有
直流电动机的调速方法主要有以下几种:
1. 变电压调速法:通过改变直流电机的输入电压来调整电机的转速。
增大输入电压可以提高电机的转速,减小输入电压可以降低电机的转速。
2. 变电流调速法:通过改变电机的励磁电流来调整电机的转速。
增大励磁电流可以提高电机的转速,减小励磁电流可以降低电机的转速。
3. 变极数调速法:通过改变电枢绕组和励磁绕组的并联组合方式来调整电机的转速。
增加并联绕组的极数可以提高电机的转速,减小并联绕组的极数可以降低电机的转速。
4. 变电阻调速法:通过改变电枢绕组或励磁绕组的电阻来调整电机的转速。
增大电阻可以降低电机的转速,减小电阻可以提高电机的转速。
5. 变频调速法:通过改变电机所接受的频率来调整电机的转速。
提高频率可以提高电机的转速,降低频率可以降低电机的转速。
这些调速方法可以单独应用,也可以结合使用,以实现更精确的电机转速调节。
简述直流电动机的调速方法。
简述直流电动机的调速方法。
直流电动机是一种无刷直流电机,其工作原理基于电枢的旋转,其调速方法
主要有以下几种:
1. 电阻调速:将直流电动机接入电阻器中,通过改变电阻的大小来控制电动机的转速。
这种方法的优点是调速范围宽,但缺点是调速效率低,而且电阻器易损坏。
2. 电容调速:在直流电动机的转轴上加装电容,通过改变电容的大小来控制电动机的转速。
这种方法的优点是调速效率高,但缺点是需要较大的电容,而且容易引起电动机故障。
3. 串激调速:在直流电动机的转轴上串联一个电阻和一个电感,通过改变它们的相对大小来控制电动机的转速。
这种方法的优点是调速范围宽,但缺点是需要复杂的电路,而且容易引起电动机故障。
4. 反相调速:在直流电动机的转轴上加装一个电容器和一个电阻,通过改变它们的相对大小来控制电动机的转速。
这种方法的优点是调速效率高,但缺点是需要较大的电容器,而且容易引起电动机故障。
除了以上几种调速方法外,还有一些其他的方法,例如脉冲调速、积分调速等。
这些方法在实际应用中要根据具体情况选择使用。
直流电动机的调速方法的选择应该考虑到调速范围、调速效率、电动机的性能和稳定性等因素。
在实际应用中,需要根据具体的情况和要求选择合适的调速方法。
直流电机调速原理
直流电机调速原理
直流电机调速原理主要是通过控制电机的电压和电流来改变电机的转速。
直流电机调速可以分为电压调速和电流调速两种方法。
1. 电压调速:
电压调速是通过改变直流电机的供电电压来实现的。
当电机的电压降低时,电机的转速会相应降低;当电压增加时,电机的转速也会增加。
这是因为电机内部的电流与电压成正比关系,而电机的转速又与电机内部的电流成正比关系。
2. 电流调速:
电流调速是通过改变直流电机的电流来实现的。
电机的转速与电机的电流成正比关系,在一定电压的情况下,增大电机的电流可以提高电机的转速。
通过改变电机的电流大小,可以实现直流电机的调速。
在实际应用中,调速控制器会根据需要调整电机供电的电压或电流,以达到期望的转速。
常见的调速方法包括电压调制调速、PWM调速和编码器反馈调速等。
需要注意的是,直流电机调速原理中还涉及到调速控制系统中的反馈机制和控制算法。
例如,通过编码器等传感器对电机的转速进行实时测量,并将测量值与期望值进行比较,并根据比较结果进行调速控制。
通过不断调整电机供电的电压和电流,使电机的实际转速逐渐接近期望转速,从而实现直流电机的精确调速。
直流电机的调速的方法
直流电机的调速的方法直流电机是一种常见的电动机,它的特性是输出电压和电流是直流的,因此将其应用在不同的机械设备中时,需要根据实际需要对其进行调速,从而满足不同的工作要求。
直流电机调速的方法主要有以下几种:1. 电压调速法电压调速法也称为励磁调速法,就是通过改变电源电压的大小来改变电机的转速。
在实际应用中,常常采用直流电阻切换或场极并联调节的方法来达到不同的调速效果。
在电压调速法中,当电源电压增加时,电机的励磁电流也随之增加,进而使得电机的转矩增大,从而实现调速的目的。
但是,这种调速方式的效率较低,因为当电压降低时,电机的励磁电流也会随之减小,从而使得电机的转矩下降,甚至达不到需要的工作要求。
2. 电流调速法电流调速法也称为串联调速法,就是通过改变电机的电阻大小来改变电机的转速。
在实际应用中,常常采用外加电阻或场极串联调节的方法来实现不同的调速效果。
在电流调速法中,当电阻增加时,电机的总电阻增大,进而使得电机的总电流减小,这时电机的转速也会相应降低,从而实现调速的目的。
但是这种调速方式也存在一定的缺陷,主要是因为电阻耗散能量较大,因此这种调速方式的效率较低。
3. 常规调速法常规调速法是根据工作负载的大小来调节电机的转速。
当工作负载增大时,需要电机输出更多的转矩,从而调高电机的转速;当工作负载减小时,需要电机输出较小的转矩,从而调降电机的转速。
常规调速法的优点是可靠性高、调节精度高,但是需要根据不同的工作负载进行反复调整,因此调节时间较长,不便于实时调节。
4. 变频调速法变频调速法是目前应用最广泛的电机调速方法,它通过改变电机供电电压频率来调节电机转速。
具体来说,变频器是将固定电压电源的输入电压通过变换器组件转换为定电压、可调频率的高压电源,通过改变这个高压电源的输出频率来调节电机的转速。
变频调速法的优点是调速范围大、调节精度高、效率高、稳定性好,因此在各种领域中都有广泛的应用,例如机械制造、电力工业、化工、交通运输等。
直流电机调速的三种方法及公式
直流电机调速的三种方法及公式嘿,朋友们!今天咱来聊聊直流电机调速的那些事儿。
直流电机调速啊,就好比是驾驭一匹烈马,得有合适的方法和技巧才能让它乖乖听话,按照咱的心意跑起来。
先来说说第一种方法,那就是改变电枢电压啦。
就像给马调整缰绳的松紧一样,通过改变电枢电压,就能控制电机的速度。
这就好比你开车的时候,踩油门轻重不一样,车速也就不一样啦。
这其中的公式呢,就是转速和电枢电压成正比关系哦。
再讲讲第二种方法,改变电枢回路电阻。
这就像是给马走的路设置不同的阻力,电阻大了,电机转得就慢些;电阻小了,电机就跑得快啦。
不过这种方法不太常用哦,毕竟改变电阻有时候不太方便呢。
最后说说第三种,改变励磁电流。
这就好像是调整马的精神状态,励磁电流一变,电机的速度也跟着变啦。
咱举个例子啊,想象一下,直流电机就像是一个大力士,电枢电压就是他的力量源泉,决定他能使多大劲儿;电枢回路电阻就是他脚下的绊脚石,多了就跑不快;励磁电流呢,就是他的心情,心情好干劲足,速度就快。
这三种方法各有各的特点和用处呢。
有时候我们根据实际情况,选择最合适的那种来给直流电机调速。
就像我们出门,得根据天气、路程等因素选择是走路、骑车还是开车一样。
在实际应用中,可不能马虎哦。
要仔细研究电机的特性,根据需要来选择调速方法。
不然啊,就像是让马乱了套,可就不好啦。
所以啊,直流电机调速可不是一件简单的事儿,得好好琢磨琢磨。
要把这三种方法都掌握好,就像有了三把钥匙,能打开不同情况下电机调速的大门。
朋友们,你们说是不是这个理儿呀?咱可得把这直流电机调速给玩转咯,让它为我们的各种设备好好服务呀!这就是直流电机调速的三种方法及公式啦,大家都记住了吗?。
直流电机调速方法
1.改变电枢回路电阻调速当负载一定时,随着串入的外接电阻R的增大,电枢回路总电阻增大,电动机转速就降低。
2.改变电枢电压调速连续改变电枢供电电压,可以使直流电动机在很宽的范围内实现无级调速。
3.采用晶闸管变流器供电的调速方法变电枢电压调速是直流电机调速系统中应用最广的一种调速方法。
4.采用大功率半导体器件的直流电动机脉宽调速方法我比较喜欢这种调速方法。
5.改变励磁电流调速当电枢电压恒定时,改变电动机的励磁电流也能实现调速。
电动机的转速与磁通Ф(也就是励磁电流)成反比,即当磁通减小时,转速升高;反之,则降低。
由于电动机的转矩是磁通和电枢电流的乘积,电枢电流不变时,随着磁通的减小,其转速升高,转矩也会相应地减小。
典型恒功率调速。
2.从调整的部位来讲有:1.调整电枢电流。
2.调整励磁电流。
从调整电流的方式来讲有:1.电阻调速。
2.斩波调速。
常用的有:磁场消弱,磁极减对,电枢串联电阻降压。
直流电动机分为有换向器和无换向器两大类。
直流电动机调速系统最早采用恒定直流电压给直流电动机供电,通过改变电枢回路中的电阻来实现调速。
这种方法简单易行、设备制造方便、价格低廉;但缺点是效率低、机械特性软,不能得到较宽和平滑的调速性能。
该法只适用在一些小功率且调速范围要求不大的场合。
30年代末期,发电机-电动机系统的出现才使调速性能优异的直流电动机得到广泛应用。
这种控制方法可获得较宽的调速范围、较小的转速变化率和平滑的调速性能。
但此方法的主要缺点是系统重量大、占地多、效率低及维修困难。
近年来,随着电力电子技术的迅速发展,由晶闸管变流器供电的直流电动机调速系统已取代了发电机-电动机调速系统,它的调速性能也远远地超过了发电机-电动机调速系统。
特别是大规模集成电路技术以及计算机技术的飞速发展,使直流电动机调速系统的精度、动态性能、可靠性有了更大的提高。
电力电子技术中IGBT等大功率器件的发展正在取代晶闸管,出现了性能更好的直流调速系统。
直流无刷电机控制器调速方法【技巧】
直流无刷电机怎么控制速度?很多开始使用无刷电机的客户咨询这个问题,随着无刷马达广泛在医疗、自动化设备、机器人、汽车等领域的应用,为了实现不同的传动控制要求,对控制直流无刷电机的速度的快慢、正反转等驱动问题有很多疑问,下面给大家分享控制无刷电机速度的3个方法:直流无刷电机的调速方法:方法一:用电压来操控速度,扭力主要由电流来操控,一般会带一个配套的电机驱动器,更改驱动器的輸出电压就还可以操控无刷电机的速度,如果没有驱动器,想自已真接操控马达的话,需要看马达的功率和工作电流。
方法二:PWM控速,直流电机的PWM控速原理与交流电机调速原理不同,它不是通过调频方式去调节马达的转速,而是通过调节驱动电压脉冲宽度的方式,并与电路中一些相应的储能元件配合,更改了输送到电枢电压的幅值,从而达到更改直流无刷电机转速的目的。
它的调制方式是调幅。
PWM操控有两种方式:1.采用PWM信号,操控三极管的导通时间,导通的时间越长,那么做功的时间越长,马达的转速就越高2.采用PWM操控信号操控三极管导通时间,更改操控电压高低来实现方法三:如果是小功率的马达还可以用电阻控速(不建议采用,方式非常简单,串联个电位器即可,只有这个方式会降低效率,因此不倡导),大功率的马达不能采用电阻操控速度,是因为这样需要一个小阻值大功率的电阻(马达工作阻值很小),这个电阻不好找而且这个方案效率太低,最好是还是找个配套的直流无刷电机驱动器。
以上就是关于直流无刷电机控制调速的3个比较常用的方法,希望可以给大家一点帮助和启示。
扩展资料:直流无刷电机工作原理:无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。
电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。
电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。
驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。
直流电动机的调速方法
直流电动机的调速方法直流电动机是一种常见的电动机,广泛应用于工业生产和家用电器中。
在实际应用中,往往需要对直流电动机进行调速,以满足不同工况下的需求。
下面将介绍几种常见的直流电动机调速方法。
一、电压调制调速。
电压调制调速是通过改变电动机的供电电压来实现调速的方法。
当电动机的供电电压改变时,电动机的转速也会相应地改变。
这种方法简单易行,成本低廉,但是调速范围有限,且效果不够理想。
二、串联电阻调速。
串联电阻调速是通过串联电阻来改变电动机的电枢电流,从而实现调速的方法。
串联电阻越大,电动机的电枢电流越小,转速也会相应地减小。
这种方法调速范围较大,但是效率较低,且需要考虑电阻的散热和功率损耗的问题。
三、场励调速。
场励调速是通过改变电动机的励磁电流来实现调速的方法。
当励磁电流增大时,磁场增强,电动机的转速也会增大。
这种方法调速范围广,效率较高,但是需要专门的励磁设备和控制系统。
四、PWM调速。
PWM调速是通过改变电动机的供电脉冲宽度来实现调速的方法。
通过控制开关器件的导通时间,可以改变电动机的平均电压,从而实现调速。
这种方法调速范围广,效率高,但是需要专门的PWM控制器和反馈系统。
五、变频调速。
变频调速是通过改变电动机的供电频率来实现调速的方法。
通过变频器控制电源的频率,可以实现电动机的调速。
这种方法调速范围广,效率高,但是设备成本较高。
综上所述,直流电动机有多种调速方法,每种方法都有其适用的场合和特点。
在实际应用中,需要根据具体情况选择合适的调速方法,以实现最佳的调速效果。
希望本文对直流电动机的调速方法有所帮助。
直流电动机的调速方法
直流电动机的调速方法1.改变牵引电动机端电压U D :U D=D A U FA D ——主电路每条之路串联的电动机台数;上式说明:改变每条支路电动机台数叫串并联转换。
若两台电动机是串联 A D =2;若两台电动机是并联 A D =1;电动机端电压增加一倍,电动机转速n D 就可以提高一倍。
故提高电动机端电压可以通过主电路中串并联转换,也可以通过调节发电机的端电压U F 进行。
2.电动机的磁场削弱:直流电动机的速率特性DL D D D D C R I U n Φ-= U D ——端电压(V );I D ——电枢电流(A );R D ——电动机内部电阻;C E ——与电机有关常数;D φ——电动机的励磁磁通(wb )下图说明磁场削弱原理,串励绕组两端并联一级或数级分路电阻。
a.削弱前 b.削弱后a.磁场削弱进行之前削弱接触器X C 没有闭合,磁场削弱电阻对串励绕阻W 不起作用,即串励绕阻的绕阻电流等于电枢电流 I D =I DL ,这种状态为“满磁场”。
b. 磁场削弱接触器X C 闭合后,磁场削弱电阻对串励绕阻W 起分路作用,所流过绕阻电流若是小于电枢电流,即,I DL <I D 这种状态就是磁场削弱。
电动机励磁电流I DL 与电枢电流比值β%表示磁场削弱的深度,β称电动机磁场削弱系数。
β=D DL I I (%)在恒压情况下, 按n D=D e DD D C R I U φ- D φ减小,n D 增加说明由恒电压电源供电的电动机,磁场削弱后电动机的稳定转速要高于磁场削弱前电动机的转速。
但n D 是靠从电源取得更大的功率来保证。
3.变压下的磁场削弱时的速率特性和转矩特性对于串励电动机,在磁场削弱的情况下,励磁电流只是电枢电流的一部分,即I DL = β I D 若电动机的磁通D φ与励磁电流DL I 成正比从n D=De D D D C R I U φ-看出,同一D I 下n D 提高了β1倍。
从D M D I C M D φ=(C M ——电动机有关常数)可以看出转矩M D 减小了β倍。
直流电机工作原理及调速
直流电机工作原理及调速直流电机是一种将直流电能转化为机械能的电动机。
它的工作原理是基于斯瓦孔法则,即当导体在磁场中运动时,会感应出电动势,从而使电流通过导体产生力矩,从而实现转动。
直流电机由定子和转子两部分组成。
定子是由产生磁场的电磁铁组成,而转子是由导体组成的,可以旋转。
当电流通过电磁铁时,产生的磁场和定子之间的磁场相互作用,使得转子受到力矩的作用而转动。
直流电机的调速可以通过以下几种方法实现:1.电压调速:通过改变直流电机的供电电压,可以实现调速。
当增加电压时,电机的转速增加,反之减小。
这是因为电压的变化会影响电机的转矩,从而改变转速。
2.电流调速:通过改变直流电机的电流,也可以实现调速。
当增加电流时,电机的转矩增加,进而转速增加,反之减小。
3.调制调速:通过改变电机的脉宽调制(PWM)信号的占空比,可以实现电机的调速。
当占空比增加时,电机的平均电压增加,从而增加转矩和转速。
4.脉冲调速:通过改变电机的输入脉冲的频率,可以实现电机的调速。
当脉冲频率增加时,电机的转速增加,反之减小。
此外,还有一些其他方法可以实现直流电机的调速,如使用电阻、变换输入频率等。
每种调速方法都有其特点和适用场景,根据具体需求选择合适的方法进行调速。
需要注意的是,在实际应用中,为了实现更精确的调速,通常使用电子调速器来控制直流电机的转速。
电子调速器通过对输入信号进行处理,实现对电机供电的精确控制,从而实现更灵活、稳定的调速效果。
总之,直流电机是一种将直流电能转化为机械能的电动机。
通过改变电压、电流、调制信号和脉冲频率等方式,可以实现对直流电机的调速。
在实际应用中,通常使用电子调速器来实现对直流电机的精确控制。
直流电机的调速方法
-----精品文档------
三、直流电动机调速的方法
(1)改变电枢回路总电阻Ra; (2)改变电源电压调速Ua; (3)改变励磁Ф。
-----精品文档------
(1)改变电枢回路总电阻Ra
电枢回路串电阻调速的原理及调速过程可用下图说明。设电动机拖动恒转矩负载TL在固有特性 上A点运行,其转速为nN。若电枢回路串入电阻Rs1,则达到新的稳态后,工作点变为人为 特性上的B点,转速下降到n1。从图中可以看出,串入的电阻值越大,稳态转速就越低。现 以转速由nN降至n1为例,说明其调速过程。电动机原来在A点稳定运行时,Tem=TL, n=nN,当串入Rs1后,电动机的机械特性变为直线n0B,因串电阻瞬间转速不突变,故Ea不 突变,于是Ia及Tem突变减小,工作点平移到A/点。在A/点,Tem<TL,所以电动机开始减速 ,随着n的减小,Ea减小,Ia及Tem增大,即工作点沿A/B方向移动,当到达B点时, Tem=TL,达到了新的平衡,电动机便在n1转速下稳定运行。调速过程中转速n和电流ia(或 Tem)随时间的变化规律下图所示。
-----精品文档------
(2)改变电源电压(Ua)调速
电动机的工作电压不允许超过额定电压,因此电枢电压只能在额定电压以下进行调节。降低电源电 压调速的原理及调速过程可用下图说明。
降低电压调速 设电动机拖动恒转矩负载TL在固有特性上A点运行,其转速为nN。若电源电压由UN下降至U1,则达到 新的稳态后,工作点将移到对应人为特性曲线上的B点,其转速下降为n1。从图中可以看出,电压越 低,稳态转速也越低。 转速由nN下降至n1的调速过程如下:电动机原来在A点稳定运行时,Tem=TL,n=nN。当电压降至U1后 ,电动机的机械特性变为直线n01B。在降压瞬间,转速n不突变,Ea不突变,所以Ia和Tem突变减小 ,工作点平移到A/点。在A/点,Tem<TL,电动机开始减速,随着n减小,Ea减小,Ia和Tem增大,工 作点沿A/B方向移动,到达B点时,达到了新的平衡:Tem=TL,此时电动机便在较低转速n1下稳定运 行。降压调速过程与电枢串电阻调速过程类似,调速过程中转速和电枢电流(或转矩)随时间的变 化曲线也与图1—40类似。
直流电机的调速方法
第八章直流调速系统8.1 概述调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机械中广泛采由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,在许多场合正逐渐取代直流调速系统。
但是主要形式。
在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。
因此,我们先着重讨论直流调速8.1.1直流电机的调速方法根据第三章直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直流电动机的调速方法有三种:(1)调节电枢供电电压U。
改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩系统来说,这种方法最好。
变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。
(2)改变电动机主磁通。
改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。
(3)改变电枢回路电阻。
在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。
但是只能进行有级调速么调速作用;还会在调速电阻上消耗大量电能。
改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动速配合使用,在额定转速以上作小范围的升速。
因此,自动控制的直流调速系统往往以调压调速为主,必要时把调压调速和弱磁直流电动机电枢绕组中的电流与定子主磁通相互作用,产生电磁力和电磁转矩,电枢因而转动。
直流电机的调速方法有哪些
直流电机的调速方法有哪些直流电机的调速方法有许多种,以下是一些常见的调速方法:1. 电压调速方法:通过改变电源电压的大小来调整电机的转速。
这种方法简单可行,但对电机的负载能力影响较大,不适用于需要大范围调速的场合。
2. 变极调速方法:利用电枢绕组和磁场绕组之间的电磁耦合原理,通过调节电枢绕组的绕组连接方式,改变电机的磁通量,从而实现调速。
这种调速方法的优点是结构简单,速度调节范围较大,但调速性能较差。
3. 变频调速方法:利用频率变换器将交流电源转换为不同频率的交流电源供给直流电机,通过改变频率来控制电机的转速。
这种调速方法具有调速范围广、调速性能好等优点,但设备价格较高。
4. 串电阻调速方法:通过在电枢电路中串联电阻,降低电枢电压,从而调速。
这种调速方法简单易行,适用于轻载和小功率的直流电机调速。
5. 并电阻调速方法:通过在电枢电路中并联电阻,降低电枢回路的电阻,从而调节电枢电流和转速。
这种调速方法比串电阻调速方法具有调速范围广、对电机性能影响较小等优点。
6. 脉宽调制(PWM)调速方法:利用脉冲宽度调制技术,调节电机的平均电压值,控制电机的转速。
这种调速方法具有调速范围广、调速稳定等优点,被广泛应用于直流电机调速控制系统中。
7. 电流反馈调速方法:通过测量电机的电流信号,对电机控制系统进行反馈控制,使得输出速度与设定速度保持一致。
这种调速方法具有调速精度高、控制稳定等优点,适用于对速度要求较高的场合。
8. 矢量控制调速方法:利用矢量控制技术,对电机的磁场和电压进行分别控制,使电机既能调速,又能提供较大的转矩。
这种调速方法具有快速响应、控制精度高等优点,被广泛应用于高性能调速系统中。
总之,直流电机的调速方法有电压调速、变极调速、变频调速、串电阻调速、并电阻调速、脉宽调制调速、电流反馈调速和矢量控制调速等多种。
不同的调速方法适用于不同的场合,根据实际需要选择合适的调速方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、直流电动机调速的种类与方法
直流电机调速的种类分别有: 1.调节电枢供电电压U 改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定 转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑 调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速 响应,但是需要大容量可调直流电源。 2.改变电动机主磁通 改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简 称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。变化 时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但 所需电源容量小。 3.电枢回路串电阻调速 电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。 但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎 没什么调速作用;还会在调速电阻上消耗大量电能。
直流电机的调速方法
• 一组:韩爽 刘磊 刘畅 韩玉迪
目录
一、直流电动机调速的定义与工作原理 二、直流电动机调速的种类与方法 三、直流电动理
• 定义:直流电机调速器就是调节直流电动机速度 的设备。 • 工作原理:是通过改变输出方波的占空比使负载上 的平均电流功率从0-100%变化、从而改变负载、 灯光亮度/电机速度。利用脉宽调制(PWM)方式、 实现调光/调速、它的优点是电源的能量功率、能 得到充分利用、电路的效率高。
1.调节电枢供电电压U
2.改变电动机主磁通
保持电枢电压U不变,改变励磁电流If (调Rf)以 改变磁通 。 采用减少励磁电流(减弱磁通)的方法调速, 即
Rf If n 改变时的机械特性如图
n0 ' '
改变磁通调速的方法: 减小磁通,n只能上调。
n0 ' n0
O
n
Rf
n0
n
Ra
Ra + R
电 阻 增 大
(3)能量损耗大,只用于小型直流
机。
T
三、直流电动机调速方法的特点
直流电动机三种调速方法的特点: 不同的需要,采用不同的调速方式 1.调电枢电压,适合应用在0~基速以下范围内调速。不能达 到电动机的最高转速。 2.在电枢全电压状态,调激磁电压,适合应用在基速以上, 弱磁升速。 不能得到电动机的较低转速。 3.在全磁场状态,调电枢电压,电枢全电压之后,弱磁升速。 适合应用在调速范围大的情况。这是直流电动机最完善的 调速方式,但设备复杂,造价高。
(
增 减 加 小
)
TL
T
3.电枢回路串电阻调速
• 电枢中串入电阻,使 n 、 n0不变,即 电机的特性曲线变陡(斜率变大),在 相同力矩下,n。特性曲线如图。 • 电枢回路串电阻调速需在电枢中串入 专用电阻,电阻增大则转速下降,因 此 n 只能下调。 • 特点:(1) 设备简单,操作方便。 (2)机械特性软,稳定性差。