高中数学_函数解析式的十一种方法
高中数学思想与逻辑:11种数学思想方法总结与例题讲解

中学数学思想与逻辑:11种数学思想方法总结与例题讲解中学数学转化化归思想与逻辑划分思想例题讲解在转化过程中,应遵循三个原则:1、熟识化原则,即将生疏的问题转化为熟识的问题;2、简洁化原则,即将困难问题转化为简洁问题;3、直观化原则,即将抽象总是详细化.策略一:正向向逆向转化一个命题的题设和结论是因果关系的辨证统一,解题时,假如从下面入手思维受阻,不妨从它的正面动身,逆向思维,往往会另有捷径.例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.A、150B、147C、144D、141分析:本题正面入手,状况困难,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简洁多了.10个点中任取4个点取法有种,其中面ABC内的6个点中任取4点都共面有种,同理其余3个面内也有种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种,不共面取法有种,应选(D).策略二:局部向整体的转化从局部入手,按部就班地分析问题,是常用思维方法,但对较困难的数学问题却须要从总体上去把握事物,不纠缠细微环节,从系统中去分析问题,不单打独斗.例2:一个四面体全部棱长都是,四个顶点在同一球面上,则此球表面积为( )A、B、C、D、分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,简洁出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为,所以正方体棱长为1,从而外接球半径为,应选(A).策略三:未知向已知转化又称类比转化,它是一种培育学问迁移实力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相像性,奇妙进行类比转换,答案就会应运而生.例3:在等差数列中,若,则有等式( 成立,类比上述性质,在等比数列中,,则有等式_________成立.分析:等差数列中,,必有,故有类比等比数列,因为,故成立.二、逻辑划分思想例题1、已知集合A= ,B= ,若B A,求实数a 取值的集合.解A= :分两种状况探讨(1)B=¢,此时a=0;(2)B为一元集合,B= ,此时又分两种状况探讨:(i) B={-1},则=-1,a=-1(ii)B={1},则=1,a=1.(二级分类)综合上述所求集合为.例题2、设函数f(x)=ax -2x+2,对于满意1x4的一切x值都有f(x) 0,求实数a的取值范围.例题3、已知,试比较的大小.于是可以知道解本题必需分类探讨,其划分点为.小结:分类探讨的一般步骤:(1)明确探讨对象及对象的范围P.(即对哪一个参数进行探讨);(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级探讨.;(3)逐类探讨,获得阶段性结果.(化整为零,各个击破);(4)归纳小结,综合得出结论.(主元求并,副元分类作答).十一种数学思想方法总结与详解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
高中数学:函数解析式的十一种方法

高中数学:函数解析式的十一种方法一、定义法 二、待定系数法 三、换元(或代换)法 四、配凑法 五、函数方程组法七、利用给定的特性求解析式.六、特殊值法 八、累加法 九、归纳法 十、递推法 十一、微积分法一、定义法:【例1】设23)1(2+-=+x x x f ,求)(x f .2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2++-+x x 65)(2+-=∴x x x f【例2】设21)]([++=x x x f f ,求)(x f . 【解析】设xx x x x x f f ++=+++=++=111111121)]([xx f +=∴11)(【例3】设33221)1(,1)1(x x x x g x x x x f +=++=+,求)]([x g f .【解析】2)(2)1(1)1(2222-=∴-+=+=+x x f x x x x x x f又x x x g x x x x xx x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([24623-+-=--=x x x x x x g f【例4】设)(sin ,17cos )(cos x f x x f 求=.【解析】)2(17cos )]2[cos()(sin x x f x f -=-=ππx x x 17sin )172cos()1728cos(=-=-+=πππ.二、待定系数法:在已知函数解析式的构造时,可用待定系数法。
【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知1392)2(2+-=-x x x f ,求)(x f .【解析】显然,)(x f 是一个一元二次函数。
高中数学思想与逻辑11种数学思想方法总结与例题讲解.doc

高中数学思想与逻辑:11种数学思想方法总结与例题讲解高中数学思想与逻辑:11种数学思想方法总结与例题讲解一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径.例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.A、150B、147C、144D、141分析:本题正面入手,情况复杂,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简单多了.10个点中任取4个点取法有种,其中面ABC内的6个点中任取4点都共面有种,同理其余3个面内也有种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种,不共面取法有种,应选(D).策略二:局部向整体的转化从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗.例2:一个四面体所有棱长都是,四个顶点在同一球面上,则此球表面积为( )A、B、C、D、分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,容易出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为,所以正方体棱长为1,从而外接球半径为,应选(A).策略三:未知向已知转化又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧妙进行类比转换,答案就会应运而生.例3:在等差数列中,若,则有等式( 成立,类比上述性质,在等比数列中,,则有等式_________成立.分析:等差数列中,,必有,故有类比等比数列,因为,故成立.二、逻辑划分思想例题1、已知集合A= ,B= ,若B A,求实数a 取值的集合.解A= :分两种情况讨论(1)B=¢,此时a=0;(2)B为一元集合,B= ,此时又分两种情况讨论:(i) B={-1},则=-1,a=-1(ii)B={1},则=1,a=1.(二级分类)综合上述所求集合为.例题2、设函数f(x)=ax -2x+2,对于满足1 x 4的一切x值都有f(x) 0,求实数a的取值范围.例题3、已知,试比较的大小.【分析】于是可以知道解本题必须分类讨论,其划分点为.小结:分类讨论的一般步骤:(1)明确讨论对象及对象的范围P.(即对哪一个参数进行讨论);(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级讨论.;(3)逐类讨论,获取阶段性结果.(化整为零,各个击破);(4)归纳小结,综合得出结论.(主元求并,副元分类作答).十一种数学思想方法总结与详解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
函数定义域值域求法(全十一种)

文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x
故
22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。
解函数方程的几种方法

绪论在数学研究的许多领域中如代数学、几何学、概率论等都涉及函数方程问题,在计算机科学中迭代理论和方法也涉及函数方程问题,在航空技术、遥感技术、经济学理论、心理学理论等诸多方面也提出了许多函数方程模型.函数方程因此一直受到广泛关注,是当今数学研究的一个十分重要的课题.由于函数方程形式多样,涉及面广,难度大,需要大量的数学基础知识.尤其是在中学数学教学中,函数方程是最基本、最易出现的问题,也是历年高考的重点.在中学教学和国内外数学竞赛中,经常遇到函数方程问题.这类题目一般是求解某一给定的函数方程,而数学上尚无一般方法可循.当然,较大一部分中学生在遇到这类问题时,常常没有比较清晰的解题思路.本文就着重以函数与方程的性质来讨论函数方程在中学数学中的应用,及解决问题的途径,并通过实际问题的求解过程来阐述.首先,我们会给出函数方程的相关概念包括函数方程的定义、函数方程的解以及解函数方程.其次,利用函数与方程的基本性质,就中学数学中常出现的方法进行归纳并结合相应的例题解析.当然由于中学数学中考查点的不同,我们的讨论也有所侧重.对常见的方法包括换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法等均会加重笔墨,尤其会给出一些较为典型的例题分析以及巧解的方法,而对于不常用的方法本文也会提到,以让读者了解到比较前全面的函数方程问题的解题策略.最后,就种种方法进行总结归纳.“法无定法”,关键在于人们对问题的观察、分析,进而选择最优的方法来解决问题.很多情况下,由于解决的途径并不唯一,所以在解决问题的时候一般采用多种方法同步求解,以达到简化求解过程的目的.1函数方程的一些相关概念1.1函数方程的定义含有未知函数的等式叫做函数方程.如()()f x f x-=,=-,()()f x f x+=等,其中()f x即是未知函数.f x f x(1)()1.2函数方程的解设某一函数()f x对自变量在其定义域内的所有值均满足某已知方程,那么把()f x就叫做函数方程f x就叫做已知函数方程的解.即能使函数方程成立的()的解.函数方程的解可能是一个函数,也可能是若干个函数或无穷多个函数或无解.如偶函数、奇函数、()1=-分别是上述各方程的解.f x x1.3解函数方程求函数方程的解或证明函数方程无解的过程就称为解函数方程.即指的是在不给出具体函数形式,只给出函数的一些性质和一些关系式而要确定这个函数,或求出某些函数值,或证明这个函数所具有的其他性质.2函数方程的常见解法由于函数与方程的性质极多,解题的方法也形式多样,出现较为频繁的有换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法、数学归纳法等等.2.1换元法(代换法)换元法又叫代换法或引进辅助未知数法或定义法.将函数方程中的自变量适当地以别的自变量代换(代换时应注意使函数的定义域不发生变化),得到一个新的较为简单的函数方程,然后直接求解未知函数.但值得注意的是,某些换元会导致函数的定义域发生变化,这时就需要进行验证换元的可行性.例 2.1已知2-=,求()f x x(1cos)sinf x.分析此题是一个最基本的函数方程问题,要求解函数()f x的表达式,就需要将1cos xsin x进行转化.当然,我们可以先用换元法把x,y用t代替,消+和2去x,y,就得到一个关于t的解析式,再用x替代t,于是得解.但这里我们还给出了另外的解法,就是用()=的参数表达式进行求解.y f x解法一令1cos x t-=,所以c o s1=-,x t因为-≤≤,1cos1x所以x≤-≤,01cos2即t≤≤.02又因为22-==-,f x x x(1cos)sin1cos所以22=--=-+,(02)f t t t t()1(1)2t≤≤,故2=-+,(02)f x x x()2≤≤.x解法二设所求函数()=的参数表达式y f x=-,x t1c o s2y t=,sin即得=-,(1)c o s1t x2s i n t y=. (2)2+,消去参数t,得(1)(2)2-+=,(1)1x y整理,得22y x x =-+,[0x ∈,2],即2()2f x x x =-+,[0x ∈,2].在本题中,由于三角函数可以相互转化,很容易看出1cos x -与2sin x 之间的联系,然后直接利用换元法进行转化,但考虑到x (或t )的定义域,这个环节一般容易出错.故一般采用后面介绍的参数法相对来说也就简单多了.2.2 赋值法赋值和代换是确定适合函数方程的函数性质的基本方法,根据所给条件,在函数定义域内赋与变量一个或几个特殊值,使方程化繁为简,从而使问题获解.例 2.2.1 函数:f N N +→(N +为非负整数),满足:(i ) 对任意非负整数n ,有(1)()f n f n +>;(ii ) 对任意,m n N +∈,有(())()1f n f m f n m +=++.求(2001)f 的值.分析 本题欲求(2001)f 的值,则须了解()f n 有什么性质.由条件(i )、(ii )可以联想到(0)f 的取值是本题的关键,而分别利用条件(i )、(ii )进行推导,并结合反证法推出矛盾,得到(0)f 的唯一值,进而得解.解 令(0)f k =,其中k 为非负整数.由(ii)得()()1f n k f n +=+. (1)若0k =,则()()1f n f n =+,矛盾.故0k ≠,由(i )有(1)()()1f n k f n k f n +-<+=+. (2) 若1k >,则11n k n +-≥+,于是由(i ),得(1)(1)()1f n k f n f n +-≥+≥+, (3) 但(2)与(3)矛盾,故1k =是惟一解.当1k =时,式(1)为(1)()1f n f n +=+,此函数满足条件(i )、(ii ),所以得惟一解(2001)2002f =.例 2.2.2 解函数方程()()2()cos f x y f x y f x y ++-=.分析 此题是函数方程里较为典型的一个问题,在很多文章中都有提到.本题中方程含有,x y 两个未知数,对于一个方程,首先想到的就是消元,考虑到三角函数cos y 的特殊性质,可用一些比较特殊的值分别去代换,x y ,再求得()f x 的表达式.解 在原方程中令0x =,y t =得()()2(0)cos f t f t f t +-=, (1) 再令2x t π=+,2y π=得()()0f t f t π++=, (2) 又再令2x π=,2y t π=+得()()2()sin 2f t f t f t ππ++-=-, (3) (1)+(2)-(3)得()(0)cos ()sin 2f t f t f t π=+. 令(0)a f =,()2b f π=并将t 换成x 得 ()cos sin f x a x b x =+,(a ,b 均为任意常数).代入(1)式验证()()f x y f x y ++-cos()sin()cos()sin()a x y b x y a x y b x y =++++-+-2cos cos 2sin cos a x y b x y =+2cos (cos sin )y a x b x =+2()cos f x y =.所以()f x 是函数方程(1)的解.赋值法是很特殊的一种方法,首先它考验人们的“眼力”,即根据所给出的式子找出其规律;其次,就是“笔力”即计算方面的能力,所赋的值即某些特殊值要有助于解题;最后,不难看出赋值法其实就是与代换法、消元法等方法相结合的一种方法.如例2.2.1就是赋值法与反证法相结合,例2.2.2是赋值法、代换法、消元法结合的典型.2.3迭代周期法(递推法)函数迭代是一类特殊的函数复合形式.一般由函数方程找出函数值之间的关系,通过n 次迭代得到函数方程的解法.例 2.3.1 对任意正整数k ,令()f k 定义为k 的各位数字和的平方,求2001(11)f .分析 本题是迭代的简单运用题,由“()f k 定义为k 的各位数字和的平方”入手,可以找出11与函数方程以及函数值之间的关系,结合数列相关知识通过n 次迭代从而求解.解 由已知有 12(11)(11)4f =+=,2(11)((11))(4)16f f f f ===,322(11)((11))(16)(16)49f f f f ===+=,432(11)((11))(49)(49)169f f f f ===+=,542(11)((11))(169)(169)256f f f f ===++=,652(11)((11))(256)(256)169f f f f ===++=,…从而当n 为大于3的奇数时,(11)256n f =,当n 为大于3的偶数时,(11)169n f =,故2001(11)256f =.例 2.3.2 设()f x 定义在自然数集N 上,且对任意,x y N ∈,都满足(1)1f =,()()()f x y f x f y xy +=++,求()f x . 解 令1y =,得(1)()1f x f x x +=++,再依次令1x =,2…, 1n -,有(2)(1)2f f =+,(3)(2)3f f =+,…(1)(2)(1f n f n n -=-+-,()(1)f n f nn =-+, 依次代入,得()(1)23f n f =+++…(1)(1)2n n n n ++-+=, 所以(1)()2x x f x +=,()x N +∈. 前面的例2.3.1仅是迭代的入门题,可以直接根据函数方程找出函数值之间的关系,然后通过n 次迭代进行求解.而在迭代问题中,很大一部分题目并不是仅借助迭代的思想来解决的,而是综合所学知识进行求解.如例4.2就是赋予一些特殊值,再利用递推法简化问题,从而求解.2.4待定系数法待定系数法适用于所求函数是多项式的情形,且已知所求函数解析式的类型,可先设出一个含有特定系数的代数式,然后利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)而求出待定系数的值,或者消除这些待定系数,使问题得以解决.例 2.4.1 已知()f x 是一次函数,且[()]41f f x x =-,求()f x .解 因为()f x 是一次函数,不妨设()(0)f x ax b a =+≠,又因为[()]41f f x x =-,所以()()41f ax b a ax b b x +=++=-,即241a x ab b x ++=-,于是有24a =,1a b b +=-. 解这个方程组得2a =,或者 2a =-,13b =-, 1b =. 所以1()23f x x =-或()21f x x =-+. 本题考虑到()f x 是一次函数,故可设出()f x 的一般形式,再由条件[()]41f f x x =-代入()f x 进而对应求出a ,b .这属于较简单的待定系数法应用,而对于关系f 有很多次的就另当别论了.例 2.4.2 已知()f x 是一次函数,且10次迭代{[(f f f …())]}10241023f x x =+,求()f x .分析 观察本题,()f x 是一次函数且函数方程是一个10次迭代的方程,要怎样进行思考呢?只能依据题中最基本的条件进行解决,故而给出如下解法:解 设()(0)f x ax b a =+≠,则(2)2()[()]()()(1)f x f f x f ax b a ax b b a x a b ==+=++=++,(3)(2)232()(()){[()]}[(1)](1)f x f f x f f f x f a x a b a x a a b ===++=+++, …(9)1098(())(f f x a x a a =+++…1)a b ++.因为(10)()10241023f x x =+,所以10101024(2)a ==±,98(a a ++…1011)10231a a b b a -++==-. 解方程组得2a =,1b =或2a =-,3b =-.故所求的一次函数为()21f x x =+或()23f x x =--.观察题中条件,问题的难度比例2.4.1的增加了许多,这又怎么做呢?万变不离其宗,仍采用待定系数法进而找出规律,并结合等比数列相关性质而求得a ,b ,但要注意解决这类问题时千万不要漏根.2.5 数学归纳法数学归纳法主要适用于定义域是正整数的函数方程,其解题方法是通过对(1)f ,(2)f ,(3)f ,…的具体计算,加以概括抽象,提出对()f n 的解析式的一个猜想,然后用数学归纳法对猜想进行证明.根据已知条件,首先运用赋值法求出函数()f x 在某些点的特殊值,再猜想()f x 的表达式,最后用数学归纳法证明此猜想.例 2.5.1 函数()f n 的定义域为正整数集,值域为非负整数集,所有正整数m ,n 满足()()()0f m n f m f n +--=或1; (2)0f =,(3)0f >,(9999)3333f = ,求(1982)f .解 由(11)(1)(1)0f f f +--=或1,而0(2)2(1)f f =≥,所以(1)0f =,由(21)(2)(1)0f f f +--=或1,得(3)0f =或1,因为(3)0f >,所以(3)1f =,同理,可推得(32)2f ⨯≥,(33)3f ⨯≥…已知(9999)(33333)3333f f =⨯=,猜想(3)f k k ≥,(3333)k <.下面用数学归纳法证明.(1)由上可知,1k =,2,3时,结论成立.(2)假设对小于k 的一切自然数,结论成立.则(3)[3(1)3]f k f k k =-+[3(1)](3)f k f ≥-+11k ≥-+k =,即(3)(3333)f k k k ≥<,如果(3)1f k k ≥+,则(9999)(99993)(3)f f k f k ≥-+33331k k ≥-++3333>,与题设矛盾,所以(3)f k k =,显然,有660(1982)661f ≤≤.若(1982)661f =,则(9999)(5198289)f f =⨯+5(1982)(89)f f ≥+5661(89)f ≥⨯+330529≥+3333>,与题设矛盾.所以(1982)660f =.例 2.5.2 已知2()2f x x x =+,求()n f x .解 由2()(1)1f x x =+-,因此有22242()(())((1)1)(1)1(1)1f x f f x f x x x ==+-=+-=+-,233222()(())((1)1)(1)1f x f f x f x x ==+-=+-, 猜想2()(1)1nn f x x =+-.下面用归纳法证明.(1)显然2n =时,猜想成立.(2)假设对n 成立,即 2()(1)1nn f x x =+-,则 (1)()(())n n f x f f x +=2((1)1)n f x =+- 22((1)11)1n x =+-+-12(1)n x +=+.综合(1)、(2),对任意n N ∈,有2()(1)1n n f x x =+-.数学归纳法一般适用于证明题,但有时候不排除这类找规律、猜想进而证明猜想的问题.遇到这种问题的时候,首先要找准规律,证明起来也就会很轻松了.2.6数列法利用等比、等差数列相关知识(通项公式、求和求积公式),求定义在N 上的函数()f x .例 2.6 已知(1)1f =,且对任意正整数n 都有(1)3()2f n f n +=+,求()f n . 解 在已知等式两边都加上1,得(1)12f +=,(1)13()213[()1]f n f n f n ++=++=+,所以(1)13()1f n f n ++=+. 因此,数列{()1}f n +是首项为(1)12f +=,公比为3的等比数列,它的第n 项为1()123n f n -+=⋅,故1()231n f n -=⋅-.熟悉等差、等比数列的相关性质如公差(比)、求和公式等,运用起来解决本题就会感到得心应手.2.7 反证法反证法在数学上使用得相当普遍,即一些问题从正面直接证明有困难,而它的结论的相反结论比原结论更具体,更明确,易于导出矛盾,这时一般采用反证法.先从已知条件中得出满足函数方程的一些特殊解,然后再用反证法证明除了这些解以外无其他解.例 2.7 设f :(0,)(0+∞→,)+∞是连续函数,若对x ∀,(0y ∈,)+∞,有 ()(())f x f xf y y=. (1) 证明此函数方程无解.证明 在(1)中取1x y ==,得((1))(1)f f f =, 取(1)y f =,得()(((1)))(1)f x f xf f f =, 再取1y =,得((1))()f xf f x =.从而有()()((1))(((1)))(1)f x f x f xf f xf f f ===, 即(1)1f =.在(1)中取1x =,得(1)1(())f f f y y y==, 联立(1)推出()((()))()()f x x f xf f y f f y y==,即()()()x f x f y f y=. 取x st =,y t =,s ∀,(0t ∈,)+∞,有()()()f s t f t f s =,s ∀,(0t ∈,)+∞, (2) 我们知道满足上面函数方程的连续函数为()a f x x =,(ln ())a f e =. 由1(())f f y y=,知 21a y y -=,即21a =-.矛盾,所以(1)没有连续解. 2.8不等式法在推导过程中,主要利用不等式02a b a +≥≥,0)b ≥的等式成立的充要条件a b =.例 2.8 设()f x 的定义域为(0,1),且()(1)2()(1)f x f x f y f y -+=-,x ∀,(0y ∈,1). (1) 若()0f x >,(0x ∀∈,1)且1()12f =,求f x (). 分析 本题给出了函数()f x 的一系列成立的条件,只要依据条件进行思考就很容易解决了.首先我们知道函数()f x 有一个特殊值1()12f =,而函数方程(1)中有,x y 两个未知量,故而解决问题时考虑到消元,并尽量结合1()2f 的值来使问题简化.解 在(1)式中取12y =,得 ()(1)2()(1)11()(1)22f x f x f x f x f f -=+=+--, (2) 再在(1)式中取12x =,y x =得11()()11222()(1)()(1)f f f x f x f x f x =+=+--, (3) 把(2)和(3)相加得 411()(1)()(1)f x f x f x f x =++-+-≥4=, 所以1()()f x f x =, 即2(())1f x =,因为()f x 是正的,故()1f x ≡,(0x ∀∈,1).3 其它方法前面介绍的几种方法在中学数学中比较常见,应用起来也得心应手.但初等问题何其繁多,解决的途径也就形式多样.还有很多其它的方式,由于本文篇幅有限,在此仅给出方法及其概念.如:参数法、配凑法、通解问题、多项式法以及柯西法等.参数法即先设参数再消去参数得出函数的对应关系,而求出()f x .前面在例2.1.1的解法二已经就参数法进行作答,在此我们就不再讲解了.配凑法是根据函数的概念、对应法则并结合配方法求解函数方程的一种基本方法.当我们不能利用设元法求解时,配凑法不失为一种有效的方法,也是应用定义的一种方法.前面已经介绍了很多求解函数方程的方法.然而,求一个或若干个解也许容易,如果要求出一个函数方程的所有解常常遇到困难.这时就是所谓的通解问题.我们知道,只要给出函数在一个周期内的函数值,则需要将定义域延拓到整个实数域R 上,从而求得的()f x 就是相应函数方程的解.例如函数方程()()f x T f x +=,x R ∈,对以[0,]T 为定义域的任意函数()g x ,都可以得到函数方程的解()g x , 当0x T ≤≤时;()f x =()g x nT -, 当(1)nT x n T ≤≤+时.其中n为整数.当函数方程中的未知函数是多项式时,就称为多项式函数方程.这是函数方程中较为常见、也较简单的一类.多项式法就是利用多项式相等的原理,通过比较等式两边的次数、系数,或通过比较方程的根的个数来求出多项式函数方程的解的方法.方程()()()+=称之为Cauchy方程,是法国数学家Cauchy最早研f x y f x f y究并解决的.他的解法是一种逐步扩充其定义域的推理方法,即先在自然数集上,求其函数方程应具有的形式,然后逐步证明这种解的定义域可扩充到整数、有理数、无理数直到实数.这种解题方法后人称之为Cauchy方法.在()f x单调(或连续)的条件下,先将自变量考虑成自然数求出函数方的解,然后证明该解的表达式当其自变量取成整数、有理数及实数时仍然满足该函数方程,从而获得函数方程的解.但它受函数连续性要求的限制.柯西法在高等数学中的使用频率极高,故在中学里只需了解就可.结论由于函数方程的形式相当多,解决的方式也就相对的丰富.尤其是在高等数学中,运用微积分解决函数方程问题就显得非常简单了;但在初等解法里,方式方法丰富多样:换元法(代换法)、赋值法、待定系数法、迭代周期法(迭代法)、数学归纳法、数列法、反证法及不等式法等,都是常见而且易懂的初等解法.但在解决很多问题时,不仅仅使用一种方法,也有几种方式相结合而进行的,如:例2.2.2就是换元法与赋值法的结合,例2.7是赋值法与反证法的结合.在求解某些问题时,通过构造函数方程,也可以将问题转化为函数方程分解,从而使问题比较简化、明了.参考文献[1] 张伟年、杨地莲、邓圣福.函数方程[M].成都:四川教育出版社,2002,36-72.[2] 陈刚、陈凌云.函数方程的初等解法[J].绥化师专学报.1996,第1期:120.[3] 黄洪琴.函数方程[J].成都教育学院报.2005,第19卷(6):117-118.[4] 毕唐书.全线突破.高考总复习·数学(理科版)[M].北京:中国社会出版社,2005,13.[5] 陈传理、张同君.竞赛数学教程[M].第2版.北京:高等教育出版社,2005,170-170.[6] 聂锡军.函数方程的解法及应用[J].丹东师专学报.1997,总第68期:20.[7] 姚开成.函数方程的几种解法[J].新疆石油教育学院学报.2000,第5卷(5):46-47.[8] 张同君、陈传理.竞赛数学解题研究[M].北京:高等教育出版社,2000(2005重印),72-75.[9] 余元希.初等代数研究(下册)[M].北京:高等教育出版社,1988(2004重印),344-345.[10] 蒋国宝.函数方程的解法[J].宁德师专学报(自然科学版).1998,第10卷(1):37-38.[11] 赵伟.解函数方程的若干初等方法[J].中学数学月刊.2004,第6期:30-31.致谢在本篇论文的选题,以及写作过程中,承蒙指导教师代泽明副教授的悉心指导,多次修改终于完成了本篇论文.在此我向代老师致以诚挚的感谢:通过这次论文的编写我感受到了学术编写的困难和乐趣,深省数学知识在各学科中的重要作用.同时,也感谢同组的所有同学,他们在我写作此篇论文的过程中也给予了我很多帮助.大学四年转瞬即逝,作为一名即将毕业的学生,我感谢绵阳师范学院的所有老师,感谢你们在这四年里对我的谆谆教导;感谢你们在这四年里对我的培养;感谢你们在这四年里对我的关怀;感谢你们为祖国培养了一批又一批优秀的人民教师.最后祝愿绵阳师范学院的明天更美好!祝愿数学与信息科学系前程似锦!祝愿所有老师身体健康,工作顺利!范臣菊 2007年5月30日。
函数值域求法大全

函数值域求法大全函数的值域是由定义域和对应法则共同确定。
确定函数的值域是研究函数不可缺少的重要一环。
本文介绍了十一种函数值域求法。
首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。
例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。
再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。
其次是配方法,这是求二次函数值域最基本的方法之一。
例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。
还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。
除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。
这些方法各有特点,应根据具体情况选择合适的方法来求解。
总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。
换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。
其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。
换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。
例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。
代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。
由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。
因此,函数的值域为 $[1,+\infty)$。
又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。
函数解析式的求法

函数解析式的求法1.待定系数法例1.求一次函数y=f(x)解析式,使f(f(x))=4x+3.解:设f(x)=ax+b(a≠0).∴f(f(x))==af(x)+b=a(ax+b)+b=a^2x+ab+b∴a^2x+ab+b=4x+3∴a^2=4,ab+b=3解得a=2,b=1或a=-2,b=-3.∴f(x)=2x+1或f(x)=-2x-3.总结:当已知函数类型时,求函数解析式,常用待定系数法。
其基本步骤:设出函数的一般式,代入已知条件通过解方程(组)确定未知系数。
2.换元法换元法就是引进一个或几个新的变量来替换原来的某些量的解题方法,它的目的是化繁为简、化难为易,以快速的实现从未知向已知的转换,从而达到顺利解题的目的。
常见换元法是多种多样的,如局部换元、整体换元、分母换元、平均换元等,应用极为广泛。
例2.已知f(1-√x)=x.求f(x).解:设1-√x=t,则x=(1-t)^2∵x≥0,∴t≤1,∴f(t)=(1-t)^2(t≤1)∴f(x)=(1-x)^2(x≤1)(函数变量的无关性)总结:(1)利用换元法解题时,要注意在换元时易引起定义域的变化,所以最后的结果要注意所求函数的定义域。
(2)函数变量的无关性,变量无论是用x还是用t表示,都无关紧要,函数依然成立。
3.配凑法例3.已知f(3x+1)=9x^2-6x+5,求f(x).解:∵f(3x+1)=9x^2-6x+5=(3x+1)^2-12x+4=(3x+1)^2-4(3x+1)+8∴f(x)=x^2-4x+8总结:当已知函数表达式比较简单时,可直接应用配凑法,即根据具体的解析式凑出复合变量的形式,从而求出函数解析式。
4.消元法(又叫解方程组法)例4.已知函数f(x)满足条件:f(x)+2f(1/x)=x,求f(x).分析:用1/x代替条件方程中的x得:f(1/x)+2f(x)=1/x.把它与原条件式联立。
用消元法消去f(1/x),即得f(x)的解析式。
高中数学求函数解析式解题方法大全与配套练习

高中数学求函数解析式解题方法大全及配套练习一、定义法:根据函数的定义求解析式用定义法。
【例1】【例2】【例3】【例4】二、待定系数法:(主要用于二次函数)已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式。
它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。
其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
【例1】【解析】【例2】已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f(x)的解析式.解:设二次函数f(x)= ax2+bx+c,则f(0)= c= 0 ①f(x+1)(x+1)= ax2+(2a+b)x+a+b②由f(x+1)= f(x)+2x+8 与①、②得解得故f(x)= x2+7x.【例3】三、换元(或代换)法:道所求函数的类型,且函数的变量易于用另一个变量表示的问题。
使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。
如:已知复合函数f [g(x)]的解析式,求原函数f(x)的解析式,把g(x)看成一个整体t,进行换元,从而求出f(x)的方法。
实施换元后,应注意新变量的取值围,即为函数的定义域.【例1】【解析】【例2】【例3】【例4】(1)在(1(2)1(3)【例5】(1(2)由【例6】四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.【例1】解则解得,上,(五)配凑法【例1】:2x当然,上例也可直接使用换元法即由此可知,求函数解析式时,可以用配凑法来解决的,有些也可直接用换元法来求解。
【例2】:分析:此题直接用换元法比较繁锁,而且不易求出来,但用配凑法比较方便。
实质上,配凑法也缊含换元的思想,只是不是首先换元,而是先把函数表达式配凑成用此复合函数的函数来表示出来,在通过整体换元。
和换元法一样,最后结果要注明定义域。
一次函数解析式的15种类型docx

一次函数解析式的15种类型一.定义型例1.己知函数y=(m+l)x2-'ml+4,y是X的一次函数,则m的值是( )A.1B.-1C.1或7D.任意实数【变式1-1】己知函数y=(m+3)x+2是一次函数,则m的取值范围是( ) Λ.m≠-3B.m≠l C.m≠0 D.In为任意实数【变式1-21m为何值时,函数y=(m-2)x m+2-5(x≠0)是一次函数?【变式1-3】已知aABC的三边长分别为a=3,b=9,c=x,化简:y=∣4--x∣-√X2-6X+9,然后判断y是否是X的一次函数.二.点斜型例2.已知一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随X值的增大而增大,则这个一次函数的表达式可能是( )A.y=-2x+lB.y=2x+lC.y=-2χ-lD.y=2χ-l【变式2-1】一次函数y=3x+b的图象过坐标点(-1,-5),则这个一次函数解析式为变式2-2】一次函数y=kx+的图象过点(1,-2),且y随X的增大而减小,则这个函数的表达式可能是()Λ.y=2χ-4 B.y=3χ-l C.y=-3x+l D.y=-2x+4 【变式2・3】已知直线y=2x+b过点(0,・5),确定该直线1的表达式是()A.y=χ-5B.y=x+5 C,y=2x+5 D.y=2χ-5【变式2・4】一次函数y=ax+2的图象经过点(1,0).当y>0时,X的取值范围是_三.两点型例3.如图,在直角坐标系XOy中,直线1过(1,3)和(3,1)两点,且分别与X轴,y轴交于A,B 两点.(I)求直线1的函数解析式;(2)若点C在X轴上,且aBOC的面枳为6.求点C的坐标.【变式3-1]如图,在平面直角坐标系中,直线1经过点A(0,2)、B(-3,0).(1)求直线1所对应的函数表达式.(2)若点M(3,m)在直线1上,求m的值.(3)若y=-x+n过点B,交y轴于点C,求AABC的面积.【变式3・2]如图,己知点A(3,0),B(0,2).(1)求直线AB所对应的函数解析式;(2)若C为直线AB上一点,当aOBC的面积为6时,点C的坐标.四.图像型例4.如图,在平面直角坐标系XOy中,点A在y轴的正半轴上,点B在X轴的正半轴上,OA=OB=IO.(1)求直线AB的解析式;(2)若点P是直线AB上的一点,且P的横坐标为4,C(6,0),求AOPC的面积.【变式4-1]如图,直线OA的解析式是【变式4-2】一次函数y=kx+b的图象如图,则k=【变式4-3】如图,直线AB与X轴,y轴分别交于点A,B,已知OA=8,OB=6,点C在X轴上,且OC=6.(1)求直线AB的表达式;(2)若点P(x,y)是直线AB上在第二象限内的一个动点,试求出在点P的运动过程中,^OPC的面积S与X的函数关系式;9(3)试探究:在(2)的条件下,点P在什么位置时,AOPC的面积为一?2【变式4-4】已知直线1的图象如图所示.(1)求直线1的函数表达式;(2)求证:OC=OD.五.斜截型例5.直线1经过点(2,-1),且截距为8,求直线1的解析式.[变式5-1]若点A是函数y=2x+l图象上的一点,且到X轴的距离为3,则点A到y轴的距离是()A.1或2B.1C.2D.L或12∖-k【变式5-2]已知直线y=(k+2)x+—厂在y轴上的截距为1,则直线解析式为—【变式5-3】直线y=kx-4经过点(-2,2),则该直线的解析式是()Λ.y=-3χ-4 B.y=-χ-4 C.y=χ-4 D.y=3χ-4六.平移型6.在平面直角坐标系中,将直线L:y=2x-2平移后得到直线J y=2x+4,则下列平移方法正确的是()A.将L向上平移4个单位长度B.将L向下平移6个单位长度C.将L向左平移3个单位长度D.将L向右平移3个单位长度【变式6-1】把直线y=2x-l向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为()A.y=2x+3B.y=3x+2C.y=2x+4D.y=2x+l【变式6-2】把直线y=-2x+l向上平移3个单位长度后,所得直线的解析式是()A.y=-2χ-2 B.y=-2x+4 C.y=-2x^3 D.y=-2x+3【变式6-3]在平面直角坐标系中,将一次函数y=2x+2的图象沿X轴向右平移m(m>0)个单位后,经过点(4,2),则m的值为()Λ.4 B.6 C.8 D.10七.实际应用型A、B两地相距500千米,一辆汽车以50千米/时的速度由A地驶向B地.汽车距B地的距离y (千米)与行驶时间t(之间)的关系式为.:当卖出笔记本的数量为7件时,销售总价为()A.44 元B.38 元C.48 元D.34 元【变式7-2】百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其长度X与售价y如下表,下列用长度X表示售价y的关系式中,正确的是()_________________________________________长度x/m1234…售价y/元8+0.316+0.624+0.932+1.2…Λ.y=8x+0.3 B.y=(8+0.3)XC.y=8+0.3x D.y=8+0.3+x 【变式7・3】从A地向B地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t分钟(仑3),则需付电话费y(元)与t(分钟)之间的函数关系式是•【变式7-4】某文具店老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价比甲品牌的进货单价多5元.预计购进乙品牌文具盒数量y(个)与甲品牌文具盒数量X(个)之间满足关系式y=kx+b(k≠0),若甲品牌文具盒数量X为50个时,乙品牌文具盒数量y为200个;若甲品牌文具盒数量X为150个时,乙品牌文具盒数量y为100个.当购进的甲、乙品牌的文具盒中,甲有80个时,购进甲、乙品牌文具盒共需7100元.(1)求k,b的值;(2)求甲、乙两种品牌的文具盒进货单价.八.面积型例8在平面直角坐标系中,点O是坐标原点,过点A(1,2)的直线y=kx+b与X轴交于点B,且SAA。
函数的12种解法

∴函数y的值域为y≠3的一切实数。点评:
对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。
练习:
求函数y=(x2-1)/(x-1)(x≠1)的值域。(
答案:
y≠2)
十二.不等式法
例6求函数Y=3x/(3x+1)的值域。
点拨:
先求出原函数的反函数,根据自变量的取值范围,构造不等式。
通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。
解:
设t=√2x+1(t≥0),则。
于是≥
所以,原函数的值域为{y|y≥-}。
点评:
将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。
练习:
已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(
答案:
{f(x,y)|f(x,y)≥1})
十一.利用多项式的除法
例5求函数y=(3x+2)/(x+1)的值域。
点拨:
将原分式函数,利用长除法转化为一个整式与一个分式之和。
解:
y=(3x+2)/(x+1)=3-1/(x+1)。
点拨:
根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。
解:
∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤
高中数学思想与逻辑:11种数学思想方法总结与例题讲解

高中数学思想与逻辑:11种数学思想方法总结与例题讲解高中数学转化化归思想与逻辑划分思想例题讲解在转化过程中,应遵循三个原则:1、熟悉化原则,即将陌生的问题转化为熟悉的问题;2、简单化原则,即将复杂问题转化为简单问题;3、直观化原则,即将抽象总是具体化.策略一:正向向逆向转化一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径.例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.A、150B、147C、144D、141分析:本题正面入手,情况复杂,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简单多了.10个点中任取4个点取法有种,其中面ABC内的6个点中任取4点都共面有种,同理其余3个面内也有种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种,不共面取法有种,应选(D).策略二:局部向整体的转化从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗.例2:一个四面体所有棱长都是,四个顶点在同一球面上,则此球表面积为( )A、 B、 C、 D、分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,容易出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为,所以正方体棱长为1,从而外接球半径为,应选(A).策略三:未知向已知转化又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧妙进行类比转换,答案就会应运而生.例3:在等差数列中,若,则有等式( 成立,类比上述性质,在等比数列中,,则有等式_________成立.分析:等差数列中,,必有,故有类比等比数列,因为,故成立.二、逻辑划分思想例题1、已知集合 A= ,B= ,若B A,求实数 a 取值的集合.解 A= :分两种情况讨论(1)B=¢,此时a=0;(2)B为一元集合,B= ,此时又分两种情况讨论:(i) B={-1},则 =-1,a=-1(ii)B={1},则 =1, a=1.(二级分类)综合上述所求集合为 .例题2、设函数f(x)=ax -2x+2,对于满足1≤x≤4的一切x值都有f(x)≥ 0,求实数a的取值范围.例题3、已知,试比较的大小.【分析】于是可以知道解本题必须分类讨论,其划分点为 .小结:分类讨论的一般步骤:(1)明确讨论对象及对象的范围P.(即对哪一个参数进行讨论);(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级讨论.;(3)逐类讨论,获取阶段性结果.(化整为零,各个击破);(4)归纳小结,综合得出结论.(主元求并,副元分类作答).十一种数学思想方法总结与详解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
函数定义域值域求法 全十一种

高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式或组即得原函数的定义域;例1 求函数8|3x |15x 2x y 2-+--=的定义域;解:要使函数有意义,则必须满足 由①解得 3x -≤或5x ≥; ③ 由②解得 5x ≠或11x -≠ ④③和④求交集得3x -≤且11x -≠或x>5;故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且; 例2 求函数2x161x sin y -+=的定义域;解:要使函数有意义,则必须满足由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分你会吗 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况; (1)已知)x (f 的定义域,求)]x (g [f 的定义域;(2)其解法是:已知)x (f 的定义域是a,b 求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域;例3 已知)x (f 的定义域为-2,2,求)1x (f 2-的定义域;解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-; 2已知)]x (g [f 的定义域,求fx 的定义域;其解法是:已知)]x (g [f 的定义域是a,b,求fx 定义域的方法是:由b x a ≤≤,求gx 的值域,即所求fx 的定义域;例4 已知)1x 2(f +的定义域为1,2,求fx 的定义域; 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,; 即函数fx 的定义域是}5x 3|x {≤≤; 三、逆向型即已知所给函数的定义域求解析式中参数的取值范围;特别是对于已知定义域为R,求参数的范围问题通常是转化为恒成立问题来解决;例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围;分析:函数的定义域为R,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项的系数是m,所以应分m=0或0m ≠进行讨论; 解:当m=0时,函数的定义域为R ;当0m ≠时,08m mx 6mx 2≥++-是二次不等式,其对一切实数x 都成立的充要条件是综上可知1m 0≤≤;评注:不少学生容易忽略m=0的情况,希望通过此例解决问题;例6 已知函数3kx 4kx 7kx )x (f 2+++=的定义域是R,求实数k 的取值范围; 解:要使函数有意义,则必须3kx 4kx 2++≠0恒成立,因为)x (f 的定义域为R,即03kx 4kx 2=++无实数①当k ≠0时,0k 34k 162<⨯-=∆恒成立,解得43k 0<<; ②当k=0时,方程左边=3≠0恒成立; 综上k 的取值范围是43k 0<≤;四、实际问题型这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要加倍注意,并形成意识;例7 将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数的解析式,并求函数的定义域;解:设矩形一边为x,则另一边长为)x 2a (21-于是可得矩形面积;ax 21x 2+-=;由问题的实际意义,知函数的定义域应满足2a x 0<<⇒; 故所求函数的解析式为ax 21x y 2+-=,定义域为0,2a ;例8 用长为L 的铁丝弯成下部为矩形上部为半圆的框架,如图,若矩形底边长为2x,求此框架围成的面积y 与x 的函数关系式,并求定义域;解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图;因为CD=AB=2x,所以x CD π=⋂,所以2xx 2L 2CD AB L AD π--=--=⋂, 故2x 2x x 2L x 2y 2π+π--⋅= 根据实际问题的意义知故函数的解析式为Lx x )22(y 2+π+-=,定义域0,2L+π; 五、参数型对于含参数的函数,求定义域时,必须对分母分类讨论;例9 已知)x (f 的定义域为0,1,求函数)a x (f )a x (f )x (F -++=的定义域;解:因为)x (f 的定义域为0,1,即1x 0≤≤;故函数)x (F 的定义域为下列不等式组的解集:⎩⎨⎧≤-≤≤+≤1a x 01a x 0,即⎩⎨⎧+≤≤-≤≤-a 1x a a1x a 即两个区间-a,1-a 与a,1+a 的交集,比较两个区间左、右端点,知 1当0a 21≤≤-时,Fx 的定义域为}a 1x a |x {+≤≤-; 2当21a 0≤≤时,Fx 的定义域为}a 1x a |x {-≤≤; 3当21a >或21a -<时,上述两区间的交集为空集,此时Fx 不能构成函数; 六、隐含型有些问题从表面上看并不求定义域,但是不注意定义域,往往导致错解,事实上定义域隐含在问题中,例如函数的单调区间是其定义域的子集;因此,求函数的单调区间,必须先求定义域;例10 求函数)3x 2x (log y 22++-=的单调区间;解:由03x 2x 2>++-,即03x 2x 2<--,解得3x 1<<-;即函数y 的定义域为-1,3;函数)3x 2x (log y 22++-=是由函数3x 2x t t log y 22++-==,复合而成的;4)1x (3x 2x t 22+--=++-=,对称轴x=1,由二次函数的单调性,可知t 在区间]1(,-∞上是增函数;在区间)1[∞+,上是减函数,而t log y 2=在其定义域上单调增; 3)[1)[1)31(]11(]1()31(,,,,,,,=∞+--=-∞- ,所以函数)3x 2x (log y 22++-=在区间]11(,-上是增函数,在区间)31[,上是减函数;函数值域求法十一种1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到; 例1. 求函数x1y =的值域;解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y -=的值域; 解:∵0x ≥故函数的值域是:]3,[-∞ 2. 配方法配方法是求二次函数值域最基本的方法之一;例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域;解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:4,8 3. 判别式法例4. 求函数22x 1x x 1y +++=的值域;解:原函数化为关于x 的一元二次方程 1当1y ≠时,R x ∈解得:23y 21≤≤ 2当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域;解:两边平方整理得:0y x )1y (2x 222=++- 1 ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间0,2上,即不能确保方程1有实根,由 0≥∆求出的范围可能比y的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21;可以采取如下方法进一步确定原函数的值域; ∵2x 0≤≤21y ,0y min +==∴代入方程1 解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除; 4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域;例6. 求函数6x 54x 3++值域;解:由原函数式可得:3y 5y 64x --=则其反函数为:3x 5y 64y --=,其定义域为:53x ≠故所求函数的值域为:⎪⎭⎫ ⎝⎛∞-53,5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域;例7. 求函数1e 1e y xx +-=的值域;解:由原函数式可得:1y 1y e x -+=∵0e x >∴01y 1y >-+解得:1y 1<<-故所求函数的值域为)1,1(-例8. 求函数3x sin xcos y -=的值域;解:由原函数式可得:y 3x cos x sin y =-,可化为:即1y y 3)x (x sin 2+=β+ ∵R x ∈∴]1,1[)x (x sin -∈β+即11y y 312≤+≤- 解得:42y 42≤≤-故函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡-42,42 6. 函数单调性法 例9. 求函数)10x 2(1x log 2y 35x ≤≤-+=-的值域;解:令1x log y ,2y 325x 1-==- 则21y ,y 在2,10上都是增函数 所以21y y y +=在2,10上是增函数 当x=2时,8112log 2y 33min =-+=-当x=10时,339log 2y 35max =+=故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81例10. 求函数1x 1x y --+=的值域;解:原函数可化为:1x 1x 2y -++=令1x y ,1x y 21-=+=,显然21y ,y 在],1[+∞上为无上界的增函数 所以1y y =,2y 在],1[+∞上也为无上界的增函数所以当x=1时,21y y y +=有最小值2,原函数有最大值222= 显然0y >,故原函数的值域为]2,0( 7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用;例11. 求函数1x x y -+=的值域; 解:令t 1x =-,)0t (≥ 则1t x 2+=∵43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知当0t =时,1y min = 当0t →时,+∞→y 故函数的值域为),1[+∞例12. 求函数2)1x (12x y +-++=的值域;解:因0)1x (12≥+- 即1)1x (2≤+故可令],0[,cos 1x π∈ββ=+∴1cos sin cos 11cos y 2+β+β=β-++β=∵π≤π+β≤π≤β≤4540,0故所求函数的值域为]21,0[+例13. 求函数1x 2x x x y 243++-=的值域; 解:原函数可变形为:222x 1x 1x 1x 221y +-⨯+⨯=可令β=tg x ,则有β=+-β=+2222cos x 1x 1,2sin x 1x 2当82k π-π=β时,41y max =当82k π+π=β时,41y min -=而此时βtan 有意义;故所求函数的值域为⎥⎦⎤⎢⎣⎡-41,41 例14. 求函数)1x )(cos 1x (sin y ++=,⎥⎦⎤⎢⎣⎡ππ-∈2,12x 的值域;解:)1x )(cos 1x (sin y ++=令t x cos x sin =+,则)1t (21x cos x sin 2-=由)4/x sin(2x cos x sin t π+=+=且⎥⎦⎤⎢⎣⎡ππ-∈2,12x可得:2t 22≤≤ ∴当2t =时,223y max +=,当22t =时,2243y +=故所求函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡++223,2243; 例15. 求函数2x 54x y -++=的值域;解:由0x 52≥-,可得5|x |≤ 故可令],0[,cos 5x π∈ββ= ∵π≤β≤0当4/π=β时,104y max += 当π=β时,54y min -=故所求函数的值域为:]104,54[+-8. 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目;例16. 求函数22)8x ()2x (y ++-=的值域;解:原函数可化简得:|8x ||2x |y ++-=上式可以看成数轴上点Px 到定点A2,)8(B -间的距离之和; 由上图可知,当点P 在线段AB 上时,10|AB ||8x ||2x |y ==++-=当点P 在线段AB 的延长线或反向延长线上时,10|AB ||8x ||2x |y =>++-= 故所求函数的值域为:],10[+∞例17. 求函数5x 4x 13x 6x y 22++++-=的值域; 解:原函数可变形为:上式可看成x 轴上的点)0,x (P 到两定点)1,2(B ),2,3(A --的距离之和, 由图可知当点P 为线段与x 轴的交点时,43)12()23(|AB |y 22min =+++==,故所求函数的值域为],43[+∞ 例18. 求函数5x 4x 13x 6x y 22++-+-=的值域;解:将函数变形为:2222)10()2x ()20()3x (y -++--+-=上式可看成定点A3,2到点Px,0的距离与定点)1,2(B -到点)0,x (P 的距离之差;即:|BP ||AP |y -=由图可知:1当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点'P ,则构成'ABP ∆,根据三角形两边之差小于第三边,有26)12()23(|AB |||'BP ||'AP ||22=-++=<-即:26y 26<<-2当点P 恰好为直线AB 与x 轴的交点时,有26|AB |||BP ||AP ||==- 综上所述,可知函数的值域为:]26,26(- 注:由例17,18可知,求两距离之和时,要将函数式变形,使A 、B 两点在x 轴的两侧,而求两距离之差时,则要使A,B 两点在x 轴的同侧;如:例17的A,B 两点坐标分别为:3,2,)1,2(--,在x 轴的同侧;例18的A,B 两点坐标分别为3,2,)1,2(-,在x 轴的同侧; 9. 不等式法利用基本不等式abc 3c b a ,ab 2b a 3≥++≥+)R c ,b ,a (+∈,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧; 例19. 求函数4)x cos 1x (cos )x sin 1x (sin y 22-+++=的值域;解:原函数变形为: 当且仅当x cot x tan =即当4k x π±π=时)z k (∈,等号成立 故原函数的值域为:),5[+∞例20. 求函数x 2sin x sin 2y =的值域; 解:x cos x sin x sin 4y = 当且仅当x sin 22x sin 22-=,即当32x sin 2=时,等号成立;由2764y 2≤可得:938y 938≤≤-故原函数的值域为:⎥⎥⎦⎤⎢⎢⎣⎡-938,938 10. 一一映射法原理:因为)0c (d cx bax y ≠++=在定义域上x与y 是一一对应的;故两个变量中,若知道一个变量范围,就可以求另一个变量范围; 例21. 求函数1x 2x31y +-=的值域;解:∵定义域为⎭⎬⎫⎩⎨⎧->-<21x 21x |x 或 由1x 2x 31y +-=得3y 2y 1x +-=故213y 2y 1x ->+-=或213y 2y 1x -<+-=解得23y 23y ->-<或 故函数的值域为⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,2323, 11. 多种方法综合运用例22. 求函数3x 2x y ++=的值域;解:令)0t (2x t ≥+=,则1t 3x 2+=+1当0t >时,21t 1t 11t t y 2≤+=+=,当且仅当t=1,即1x -=时取等号,所以21y 0≤< 2当t=0时,y=0;综上所述,函数的值域为:⎥⎦⎤⎢⎣⎡21,0注:先换元,后用不等式法例23. 求函数42432x x 21x x x 2x 1y ++++-+=的值域;解:4234242x x 21x x x x 21x x 21y +++++++-=令2tan x β=,则β=⎪⎪⎭⎫ ⎝⎛+-2222cos x 1x 1∴当41sin =β时,1617y max =当1sin -=β时,2y min -=此时2tan β都存在,故函数的值域为⎥⎦⎤⎢⎣⎡-1617,2注:此题先用换元法,后用配方法,然后再运用βsin 的有界性;总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法;。
高中数学:函数解析式的十一种方法

高中数学:函数解析式的十一种方法一、定义法 二、待定系数法 三、换元(或代换)法 四、配凑法 五、函数方程组法七、利用给定的特性求解析式.六、特殊值法 八、累加法 九、归纳法 十、递推法 十一、微积分法一、定义法:【例1】设23)1(2+-=+x x x f ,求)(x f .2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2++-+x x65)(2+-=∴x x x f【例2】设21)]([++=x x x f f ,求)(x f . 【解析】设xx x x x x f f ++=+++=++=111111121)]([xx f +=∴11)(【例3】设33221)1(,1)1(x x x x g x x x x f +=++=+,求)]([x g f .【解析】2)(2)1(1)1(2222-=∴-+=+=+x x f x x x x x x f又x x x g x x x x xx x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([24623-+-=--=x x x x x x g f【例4】设)(sin ,17cos )(cos x f x x f 求=.【解析】)2(17cos )]2[cos()(sin x x f x f -=-=ππx x x 17sin )172cos()1728cos(=-=-+=πππ.二、待定系数法:在已知函数解析式的构造时,可用待定系数法。
【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知1392)2(2+-=-x x x f ,求)(x f .【解析】显然,)(x f 是一个一元二次函数。
函数值域求法十一种

函数值域求法十种1. 直接观察法例1. 求函数x 1y =的值域。
解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域。
解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。
解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤(2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21 例5. 求函数)x 2(x x y -+=的值域。
解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈ ∴0y 8)1y (42≥-+=∆解得:21y 21+≤≤- 但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤ 0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1) 解得:]2,0[22222x 41∈-+=即当22222x 41-+=时, 原函数的值域为:]21,0[+4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例6. 求函数6x 54x 3++值域。
解:由原函数式可得:3y 5y 64x --= 则其反函数为:3x 5y 64y --=,其定义域为:53x ≠ 故所求函数的值域为:⎪⎭⎫ ⎝⎛∞-53,5. 函数有界性 例7. 求函数1e 1e y xx +-=的值域。
函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。
2x2x 15例 1 求函数 y的定义域。
| x 3| 8解:要使函数有意义,则必须满足2x 2x 15 0① | x 3 | 8 0②由①解得 x 3或 x 5。
③由②解得x5或 x 11 ④ ③和④求交集得 x 3且 x 11或 x>5。
故所求函数的定义域为 {x | x 3且x 11} {x | x 5} 。
例 2 求函数1ysin x的定义域。
216 x解:要使函数有意义,则必须满足sin x0 ① 216 x② 由①解得 2kx2k ,kZ③ 由②解得 4 x 4 ④由③和④求公共部分,得4 x 或0 x 故函数的定义域为 ( 4, ] (0, ]评注:③和④怎样求公共部分?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。
(1)已知 f (x) 的定义域,求 f[g(x )] 的定义域。
(2)其解法是:已知 f (x) 的定义域是[a ,b ]求 f [g(x)] 的定义域是解 a g(x) b ,即为所求的定义域。
2 例3 已知 f (x) 的定义域为[-2,2],求 f ( x 1)的定义域。
2 解:令 2 x 1 2 2 ,得 1 x 32,即 0x3,因此 0 | x |3 ,从而3 x 3 ,故函数的定义域是 { x | 3 x 3} 。
(2)已知 f [g( x)] 的定义域,求 f(x) 的定义域。
其解法是:已知 f [g(x )] 的定义域是[a , b ],求 f(x) 定义域的方法是:由 a x b ,求g(x)的值域,即所求 f(x) 的定义域。
例 4 已知 f (2x 1) 的定义域为[1,2],求 f(x) 的定义域。
函数12种求法

一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x) 的值域。
点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y 的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
高考真题求函数解析式答案

高考真题求函数解析式答案高考是每个学生都非常重视的一场考试,其中数学科目是让很多学生感到头疼的一门科目。
在数学题目中,函数解析式是一个需要运用数学知识和推理能力解答的问题。
本文将通过分析高考真题,讨论如何求函数解析式的答案。
在高考数学试卷中,常常会出现一类题目,要求求解一个函数的解析式。
这类题目一般会给出函数的一些性质或条件,然后要求根据这些条件来确定函数的表达式。
首先,我们先来看一个例题:已知函数f(x)满足条件f(x+1)=2f(x)+3,且f(0)=1,求f(x)的解析式。
对于这类题目,我们可以通过反复代入来解决。
首先,我们将f(x)替换为f(x+1)的表达式,得到f(x+1)=2(2f(x)+3)+3。
接着,我们对f(x)进行进一步代入,得到f(x+1)=4f(x)+9。
观察左右两边的表达式,我们可以发现一个规律:每往后迈一步,右边的表达式都变为4倍,并且会有一个常数项的增加。
因此,我们猜测f(x)可能是一个关于4的幂函数,即f(x)=a*4^x。
接下来,我们将f(x)代入到原方程中,得到a*4^(x+1)=2*(a*4^x)+3。
接着,我们对等式进行化简,得到a*4^(x+1)=8*a*4^x+3。
观察右边的表达式,我们可以发现:每往后迈一步,右边的表达式都变为8倍,并且会有一个常数项的增加。
因此,我们可以得到方程a*4^x=8*a*4^(x-1)+3。
通过进一步观察和化简,我们可以发现一个递归的关系:a*4^x=2^3*a*4^(x-1)+3。
由此可得递归公式a*4^x=2^k*a*4^(x-k)+3*(2^(k-1)),其中k为正整数。
然后我们希望找到一个k的取值,使得满足a*4^x和a*4^(x-k)的系数相等。
我们知道,4=2^2,所以将k取为2,即可使得a*4^x=2^2*a*4^(x-2)+3*(2^(2-1))。
对比系数可得a=a+3,解得a=3。
于是,我们可以得出函数f(x)的解析式为f(x)=3*4^x。
高中数学:函数解析式的十一种方法

高中数学:函数解析式的十一种方法一、定义法六、特殊值法二、待定系数法八、累加法三、换元(或代换)法九、归纳法四、配凑法十、递推法五、函数方程组法十一、微积分法七、利用给定的特性求解析式.一、定义法:2 x【例1】设f (x 1) x 3 2,求f ( x) .2 x x 2 x 2 xf ( x 1) x 3 2 [( 1)1] 3[( 1) 1] 2 = (x 1) 5( 1) 6f (x) 2 xx 56【例2】设x 1f [ f ( x)] ,求f (x) .x 2【解析】设 f [ f ( x)] xx12x 11f(x)1x 1 1 111x1x【例3】设1 2 1 1 13f (x ) x , g(x ) x ,求f [ g( x)] .2 3x x x x1 1 12 f x x2 2【解析】) 2 ( ) 2f (x) x (x2x x x1 1 1 13 3 3又g x x xg( x) x (x ) 3(x ) ( ) 33x x x x3 x x x x2 6 4 2故f [ g( x)] (x 3 ) 2 6 9 2【例4】设f (cos x) cos17 x, 求f (sin x) .【解析】)f (sin x) f [cos( x)] cos17 ( x2 2cos(8 17 x) cos( 17 x) sin17x.2 2二、待定系数法:在已知函数解析式的构造时,可用待定系数法。
【例1】设f (x) 是一次函数,且 f [ f ( x)] 4x3,求 f (x)【解析】设f (x) ax b (a 0),则f [ f ( x)] af (x) b a( ax b) b a 2 x ab ba ab 2 4b 3ab2 a或1 b23f (x) 2x 1或 f (x) 2x 32 x【例2】已知f (x 2) 2x 9 13,求f (x) .2 bx c a 【解析】显然, f (x) 是一个一元二次函数。
函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。
例 1求函数 y x 22x15| x 3 |8的定义域。
解:要使函数有意义,则必须满足x 22x150①| x 3 |8 0②由①解得x3或 x 5 。
③由②解得x5或 x11④③和④求交集得x3且 x11或x>5。
故所求函数的定义域为{ x | x 3且x11}{ x | x5} 。
例 2求函数 y sin x1的定义域。
16x 2解:要使函数有意义,则必须满足sin x0①16x 20②由①解得2k x2k,k Z③由②解得 4 x4④由③和④求公共部分,得4x或 0x故函数的定义域为(4, ](0, ]评注:③和④怎样求公共部分?你会吗?二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。
( 1)已知f (x )的定义域,求f [ g(x )]的定义域。
( 2)其解法是:已知 f (x) 的定义域是[a,b]求 f [g(x)] 的定义域是解a g(x) b ,即为所求的定义域。
例 3已知 f (x) 的定义域为[-2, 2],求f ( x 21) 的定义域。
解:令 2 x21 2 ,得 1 x2 3 ,即0 x 23,因此0| x | 3 ,从而3 x 3 ,故函数的定义域是{ x | 3 x3} 。
( 2)已知f [g( x)]的定义域,求f(x) 的定义域。
其解法是:已知 f [g(x )] 的定义域是[a,b],求f(x)定义域的方法是:由a x b,求g(x) 的值域,即所求f(x) 的定义域。
例 4已知 f (2x1) 的定义域为[1,2],求f(x)的定义域。
解:因为 1 x2,22x4,32x 1 5 。
即函数 f(x) 的定义域是{ x | 3x5} 。
函数解析式求解中的“夹逼”方法

√ 手 匣 成 立 , 从 而 对 任 意 z ≥ 。 的 一
B 一
< 。 ) , 若 A n B = A , 则 实
1 .已知全 集 U—R, 集合 A 一{ l 一1 ≤
.
数 的 取 值 范 围 是 ( 一o o , t ) , 其 中 实数 t 一
z≤ 3 ) , 集 合 B一{ I z l l o g ( 一 2 ) <1 } , 则
例 2 已知 ,( z) 是 定 义在 R 上 的 函 对 的辩 证关 系 .
数, 厂( 1 )一1 , 且 对任 意 z E R 都有 f( x+
5 )≥ f( x)+ 5,f( x+ 1 )≤ f( x)+ 1 .若
例3 已知二 次 函数 厂 ( z) 一a x 2 + + f ( 以, b ,c E R ) 对 任 意 实 数 z 都 有 z ≤
g( z)一 f( x)+ 1 一 z, 则 g( 2 0 1 7 )一
f ( x ) ≤÷( z+1 ) 恒成立, 且f ( -1 ) 一0 ,
解 由g ( x ) 一
g( z) + z 一 1 .
) +1 一z得 f ( x ) 一 求 f( x) 的 解析 式.
1 )+z+ 1 —1 ≤ g( ) + z一 1 +1 ,即 g( z+ 1 )≤ g( ) .
z + 1 于 是 ,( ) 一n + 1
一 口.
.
十 一
1
‘
所 以 g( z)≤ g( z+5 ) ≤ g( z+ 4 ) ≤
g( z+ 3 )≤ g( z+ 2 )≤ g( z+ 1 )≤ g( ) ,
A n c u B 一
分 析 集 合 A 是 对 数 不 等 式 的解 集 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学:函数解析式的十一种方法一、定义法 二、待定系数法 三、换元(或代换)法 四、配凑法 五、函数方程组法七、利用给定的特性求解析式.六、特殊值法 八、累加法 九、归纳法 十、递推法 十一、微积分法一、定义法:【例1】设23)1(2+-=+x x x f ,求)(x f .2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2++-+x x 65)(2+-=∴x x x f【例2】设21)]([++=x x x f f ,求)(x f . 【解析】设xx x x x x f f ++=+++=++=111111121)]([xx f +=∴11)(【例3】设33221)1(,1)1(x x x x g x x x x f +=++=+,求)]([x g f .【解析】2)(2)1(1)1(2222-=∴-+=+=+x x f x x x x x x f又x x x g x x x x xx x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([24623-+-=--=x x x x x x g f【例4】设)(sin ,17cos )(cos x f x x f 求=.【解析】)2(17cos )]2[cos()(sin x x f x f -=-=ππx x x 17sin )172cos()1728cos(=-=-+=πππ.二、待定系数法:在已知函数解析式的构造时,可用待定系数法。
【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知1392)2(2+-=-x x x f ,求)(x f .【解析】显然,)(x f 是一个一元二次函数。
设)0()(2≠++=a c bx ax x f则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2+-=-x x x f比较系数得:⎪⎩⎪⎨⎧=+--=-=1324942c b a a b a 解得:⎪⎩⎪⎨⎧=-==312c b a 32)(2+-=∴x x x f三、换元(或代换)法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
【例1】 已知x x x f 2)1(+=+,求)1(+x f 【解析】令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x【例2】 已知,11)1(22x x x x x f ++=+求)(x f .【解析】设,1t x x =+则11-=t x 则x x x x x x x f t f 11111)1()(222++=++=+= 1)1()1(1111)11(11222+-=-+-+=-+-+=t t t t t t 1)(2+-=∴x x x f 【例3】 设x x f 2cos )1(cos =-,求)(x f .解:令1cos ,1cos +=∴-=t x x t又0201cos 2,1cos 1≤≤-≤-≤-∴≤≤-t x x 即]0,2[,)1()()02(,)1()(22-∈+=≤≤-+=∴x x x f t t t f 即【例4】 若x xx f x f +=-+1)1()( (1) 在(1)式中以xx 1-代替x 得x x xx x x f x x f 11)111()1(-+=---+-即x x x f x x f 12)11()1(-=--+- (2) 又以11--x 代替(1)式中的x 得:12)()11(--=+--x x x f x f (3) )1(112121)(2:)2()3()1(23---=----++=-+x x x x x x x x x x f 得)1(21)(23---=∴x x x x x f【例5】设)0,,()1()()(b a ,c b a cxxbf x af x f ±≠=+且均不为其中满足,求)(x f 。
【解析】cx x bf x af =+)1()( (1)用x1来代替x ,得x c x bf x af 1)()1(⋅=+ (2) 由xbcacx x f b a b a -=-⨯-⨯222)()(:)2()1(得xb a bcacx x f ba )()(222--=∴±≠【例6】已知2)(21+=-x af x ,求)(x f .【解析】设01 -=x a t,则t x a log 1=- 即1log +=t x a代入已知等式中,得:3log 2log 2)1(log )(22++=++=t t t t f a a a3log 2log )(2++=∴x x x f a a四、配凑法已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用配凑法时,要注意定义域的变化。
【例1】已知1)f x =+求()f x 的解析式。
【解析】2x x +∴可用配凑法由21))1f x =+=- 令t =1x t ≥∴≥则2()1f t t =- 即2()1(1)f x x x =-≥ 当然,上例也可直接使用换元法令t = 则1t = 得222(1)()(1)2(1)1x t f t t t t =-∴=-+-=- 即 2()1(1)f x x x =-≥由此可知,求函数解析式时,可以用配凑法来解决的,有些也可直接用换元法来求解。
【 例 2】已知2211(),f x x x x-=+求()f x . 【解析】此题直接用换元法比较繁锁,而且不易求出来,但用配凑法比较方便。
由222111()()2f x x x x x x-=+=-+令2110t x x tx x=-⇒--=由0∆≥即240t +≥得t R ∈2()2f t t∴=+ 即:2()2()f x x x R =+∈实质上,配凑法也缊含换元的思想,只是不是首先换元,而是先把函数表达式配凑成用此复合函数的内函数来表示出来,在通过整体换元。
和换元法一样,最后结果要注明定义域。
五、函数方程组法。
函数方程组法适用的范围是:题高条件中,有若干复合函数与原函数()f x 混合运算,则要充分利用变量代换,然后联立方程组消去其余部分。
【 例1】设()f x 满足1()2(),f x f x x-=求()f x 的解析式。
【解析】要求()f x 可消去1()f x ,为此,可根据题中的条件再找一个关于()f x 与1()f x的等式,通过解方程组达到消元的目的。
1()2()f x f x x-=………………………①显然,0x ≠,将x 换成1x得11()2()f f x x x-=……………………………..②由1()2()11()2()f x f x x f f x xx ⎧-=⎪⎪⎨⎪-=⎪⎩ 消去1()f x ,得12()33f x x x=--小结:函数方程组法适用于自变量的对称规律。
互为倒数,如f(x)、1()f x;互为相反数,如f(x)、f(-x),通过对称代换构造一个对称方程组,解方程组即得f(x)的解析式。
【 例 2】已知2)(21+=-x af x ,求)(x f .【解析】设01 -=x a t,则t x a log 1=- 即1log +=t x a代入已知等式中,得:3log 2log 2)1(log )(22++=++=t t t t f a a a3log 2log )(2++=∴x x x f a a【例 3】设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式 【解析】)(x f 为偶函数,)(x g 为奇函数,)()(),()(x g x g x f x f -=-=-∴又11)()(-=+x x g x f ① , 用x -替换x 得:11)()(+-=-+-x x g x f 即11)()(+-=-x x g x f ② 解① ②联立的方程组,得 11)(2-=x x f , xx x g -=21)( 六、特殊值法:(赋值类求抽象函数)【例1】设)(x f 是定义在N 上的函数,满足1)1(=f ,对于任意正整数y x ,,均有xy y x f y f x f -+=+)()()(,求)(x f .解:由1)1(=f ,xy y x f y f x f -+=+)()()(设1=y 得:x x f x f -+=+)1(1)( 即:1)()1(+=-+x x f x f在上式中,x 分别用1,,3,2,1-t 代替,然后各式相加可得:t t t t t f 21211)1)(2(21)(2+=+-+=)(2121)(2*∈+=∴N x x x x f【例2】 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f【解析】对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,不妨令0x =,则有1)1(1)1()0()(2+-=-+=+--=-y y y y y y f y f 再令 x y =- 得函数解析式为:1)(2++=x x x f七.利用给定的特性求解析式.【例1】设)(x f 是偶函数,当x >0时, xe x e xf +⋅=2)(,求当x <0时,)(x f 的表达式.【解析】对x∈R, )(x f 满足)1()(+-=x f x f ,且当x∈[-1,0]时, x x x f 2)(2+=求当x∈[9,10]时)(x f 的表达式.七.利用给定的特性求解析式.八、累加法:(核心思想与求数列的通项公式相似)【例1】若af 1lg)1(=,且当),0(,lg )()1(,21*∈-=-≥-N x a a x f x f x x 满足时,求)(x f . 【解析】),0(lg )1()(1*-∈+-=N x a a x f x f x递推得:2lg )2()1(-+-=-x a x f x f3lg )3()2(-+-=-x a x f x f…… ……2lg )2()3(a f f +=a f f lg )1()2(+=以上)1(-x 个等式两边分别相加,得:122lg lg lg lg )1()(--+++++=x x a a a a f x f )1()2(21lg )1(-+-++++=x x a f12)1(2)1(lg lg 1lg ---=+=x x x x aaaa x x lg ]12)1([--= 九、归纳法:【例1】已知a f N x x f x f =*∈+=+)1()(),(212)1(且,求)(x f . 【解析】a a f f a f 2124212)1(212)2(,)1(+-=+=+==a a f f 202124)212(212)2(212)3(+-=++=+=a a f f 312124)413(212)3(212)4(+-=++=+=-a a f f 422124)81213(212)4(212)5(+-=++=+=-………………………………,依此类推,得a x f x x 132124)(--+-=再用数学归纳法证明之。