分析化学中常用的分离富集方法

合集下载

分析化学中常用的分离和富集方法

分析化学中常用的分离和富集方法

分析化学中常用的分离和富集方法1.蒸馏法:蒸馏是根据溶液中各组分的沸点差异来进行分离的方法。

通过加热混合液体使其汽化,然后再冷凝收集汽化物,从而分离不同沸点的组分。

蒸馏法适用于溶液中的挥发性组分富集和纯化。

2.萃取法:萃取是利用两种或多种不相溶液体的亲和性差异将待分析的组分从混合体系中转移到单一溶剂中的分离方法。

常见的有液液萃取和固相萃取。

萃取法适用于挥发性差异较小的物质分离。

3.结晶法:结晶是根据物质在溶液中的溶解度差异来进行分离的方法。

通过逐渐降低溶解度使其中一种或几种溶质结晶出来,从而实现分离和富集。

结晶法适用于固体组分富集和纯化。

4.洗涤法:洗涤是通过溶解或稀释洗涤剂来将带有目标分子的样品与杂质分离的方法。

洗涤法适用于固态、液态和气态混合物中分离和富集。

5.离子交换法:离子交换是通过离子交换树脂的吸附作用来分离和富集组分的方法。

树脂上的离子可与溶液中的离子发生交换,从而实现目标组分的富集。

离子交换法适用于溶液中离子的分离和富集。

6.气相色谱法:气相色谱是一种利用气相色谱柱对待分析物进行分离的方法。

根据化合物在不同固定相上的吸附特性差异进行分离和富集。

气相色谱法适用于气态和挥发性物质的分离和富集。

7.液相色谱法:液相色谱是一种利用液相色谱柱对待分析物进行分离的方法。

根据待分析物在流动相和固定相之间的分配系数差异进行分离和富集。

液相色谱法适用于液态和溶液中的分离和富集。

8.电泳法:电泳是一种利用电场对待分析物进行分离和富集的方法。

根据待分析物在电场中的迁移速度差异来分离和富集。

电泳法适用于溶液中离子和带电粒子的分离和富集。

以上是常见的分离和富集方法,每一种方法在不同场合的适应性和分离效果各有差异。

在实际应用中,需要根据具体情况选择合适的方法。

不同的分析问题可能需要结合多种方法的优势来达到理想的分析结果。

第章分析化学中常用的分离富集方法

第章分析化学中常用的分离富集方法

第章分析化学中常用的分离富集方法分析化学是研究物质成分和性质的科学,分析化学中常常需要进行分离和富集样品中的目标组分以便进行后续的定性与定量分析。

在分析化学中,常用的分离富集方法包括溶剂提取法、固相萃取法、离子交换法、凝胶过滤法等。

以下将对这些方法进行详细介绍。

1.溶剂提取法溶剂提取法是利用目标组分在水相和有机相之间的分配系数差异将目标组分从样品中分离出来的方法。

该方法常用于富集有机物、金属离子等。

常用的溶剂包括正己烷、乙酸乙酯、乙酸纳等。

溶剂提取法具有操作简便、富集效果好的特点,但需要注意溶剂的选择和体积比的控制。

2.固相萃取法固相萃取法是利用固态吸附剂或吸附剂包裹在固态材料上,通过吸附目标物质来实现分离和富集的方法。

该方法常用于富集挥发性有机物、农药、药物等。

常用的吸附剂有活性炭、硅胶、聚酯、聚乙烯等。

固相萃取法具有操作简便、富集效果好的特点,但需要注意吸附剂的选择和样品前处理的步骤。

3.离子交换法离子交换法是利用离子交换树脂将样品中的离子按照离子交换性质进行分离和富集的方法。

离子交换树脂是一种具有交换离子基团的吸附剂,可以选择性地吸附目标离子。

离子交换法常用于富集金属离子、阴离子、阳离子等。

常用的离子交换树脂有强阴离子交换树脂、强阳离子交换树脂、弱阴离子交换树脂等。

离子交换法具有选择性好、重现性好的特点,但需要注意树脂的选择和样品的处理方法。

4.凝胶过滤法凝胶过滤法是利用凝胶材料的孔隙大小将大分子与小分子进行分离和富集的方法。

凝胶过滤法常用于分离大分子如蛋白质、DNA等。

常用的凝胶材料有琼脂糖、聚丙烯酰胺凝胶等。

凝胶过滤法具有操作简便、选择性好的特点,但需要注意凝胶材料的选择和样品前处理的步骤。

以上是分析化学中常用的分离富集方法,不同的方法适用于不同的目标组分和样品类型。

在进行分析前,需要根据样品的特性和分析要求选择合适的分离富集方法,并进行合理的样品前处理步骤,以确保分析结果的准确性和可靠性。

分析化学中常用分离富集方法

分析化学中常用分离富集方法

分析化学中常用分离富集方法在分析化学中,常用的分离富集方法有溶剂萃取、吸附、离子交换、凝胶渗透层析、电动毛细管层析等。

这些方法根据分析样品的性质以及分离纯化的目的选择合适的方法。

下面将对这些方法进行详细介绍。

溶剂萃取是一种常用的分离富集方法,它基于溶液中不同物质的相溶性差异。

一般来说,溶液中的物质可以根据其分配系数(即溶于有机溶剂相对于水溶液中浓度比值)在两个不同的相中分散。

通过调整溶液的pH、温度或添加其他化学试剂,可以改变物质在两个相中的分配系数,从而实现分离富集功能。

溶剂萃取适用于分离大分子有机化合物、脂肪酸、金属离子等。

吸附是一种以吸附剂与待分离物质之间的吸附作用为基础的分离方法。

吸附剂可以是固体(如硅胶、活性炭、分子筛)或液体(如活性炭糊剂、萃取液)。

吸附分离原理包括亲和性吸附、离子交换吸附等。

亲和性吸附是通过亲和剂和待测物之间的特异性相互作用实现分离,如抗体-抗原、酶-底物、核酸-亲和基团的结合。

离子交换吸附是利用固定在吸附剂上的离子官能团与溶液中的离子发生相互作用实现分离,如阳离子交换剂、阴离子交换剂。

离子交换是利用带电荷的树脂与待分离物质之间的吸附-解吸作用,实现分离富集的方法。

树脂具有氧阴离子或聚合物等功能基团,它们可以与离子相互作用形成络合物,通过控制pH、离子浓度等参数的变化,实现离子交换和分离。

离子交换常用于水样中稀释度高的金属离子分离、无机阴阳离子的分离等。

凝胶渗透层析:是一种以凝胶为固定相进行分析的方法。

凝胶是由网状三维网络结构构成的,分子可以在凝胶孔隙中进行渗透和扩散。

样品进入凝胶后,分子的速率取决于其分子尺寸,较大的分子会被凝胶阻滞在孔隙中,而较小的分子则能够通过孔隙。

通过调节凝胶孔隙的大小和形状,可以实现对分子大小的选择性分离。

电动毛细管层析(CE)是近年来发展起来的一种高效分离富集方法。

它利用毛细管内的电细胞电动力学作用,使待分离物质在电场作用下,根据体积、电荷、形状等特性进行分离。

分析化学中常用的分离和富集方法

分析化学中常用的分离和富集方法

分析化学中常用的分离和富集方法分析化学作为一门研究物质组成和性质的科学,其中常用的分离和富集方法起着至关重要的作用。

分离和富集方法可以将需要分析的目标物质从复杂的混合物中分离出来,提高分析的灵敏度和准确度。

本文将介绍常用的分析化学分离和富集方法,包括溶剂萃取、固相萃取、薄层板法和气相色谱。

溶剂萃取是一种常见的分离和富集方法。

它基于物质在不同溶剂中的溶解度差异来实现分离。

常用的溶剂包括醚类、酯类和芳烃类。

溶剂萃取可以根据目标物质的亲水性或疏水性进行选择,有效地将目标物质从样品中富集。

例如,对于水样中的有机污染物分析,可以使用非极性的有机溶剂进行富集,如二氯甲烷、正己烷等。

溶剂萃取方法操作简便,成本较低,已广泛应用于环境监测和食品安全等领域。

固相萃取是一种利用固相吸附材料对目标物质进行富集的方法。

固相萃取通常以固相萃取柱或固相萃取膜的形式存在。

固相萃取材料多为具有特定化学性质的固体材料,如聚苯乙烯、聚二氟乙烯、硅胶等。

富集过程中,样品通过固相萃取材料,目标物质被吸附在固相上,其他杂质被去除,从而实现分离和富集。

固相萃取方法具有选择性好、灵敏度高的特点,广泛应用于环境、生物医药、食品和化学等行业的样品前处理中。

薄层板法是一种常用的分析化学分离技术,广泛应用于天然产物和化学成分分析中。

薄层板法利用了化学物质在不同极性固体支持物上的吸附和分配性质。

分离过程中,样品溶液在薄层板上扩展,不同成分因溶液中的分配系数不同而在薄层板上分离出来。

随后,可以通过显色剂、紫外灯或其他检测手段进行成分的定性分析或定量测定。

薄层板法操作简单、迅速,结果直观,已成为化学分析中不可或缺的手段之一。

气相色谱是一种基于物质在气相中分配系数的分离技术,被广泛应用于挥发性有机物的分析。

在气相色谱中,样品经过蒸发器的加热,被气体载气(如氮气或氦气)带入色谱柱进行分离。

色谱柱内填充有具有特定性质的固体或液体填料,目标物质通过填充物与载气发生相互作用,从而实现分离。

分析化学中的分离与富集方法

分析化学中的分离与富集方法

分析化学中的分离与富集方法
1.蒸馏法:根据不同物质的沸点差异进行分离和富集。

常用的蒸馏方
法有常压蒸馏、减压蒸馏、水蒸气蒸馏等。

2.萃取法:利用两种或多种溶剂相互不溶的特性,将目标物质从混合
物中转移到溶剂中,从而达到分离和富集的目的。

典型的例子有固-液萃
取和液-液萃取。

3.变温结晶法:根据不同物质溶解度随温度变化的规律,通过调节温
度使目标物质结晶,从而将其与其他组分分离。

4.气相色谱法:利用物质在固定相和流动相之间的分配系数差异,以
气态物质的流动为介质,将目标物质从混合物中分离并富集。

1.沉淀法:通过在混合物中加入沉淀剂,使得目标物质与沉淀剂反应
生成不溶性沉淀,从而分离富集目标物质。

这种方法常用于分离金属离子。

2.化学还原法:通过还原剂将目标物质转化为不溶性化合物,从而使
其与混合物分离。

例如,将有机污染物还原为不溶性沉淀。

3.化学萃取法:利用目标物质与萃取剂之间的化学反应进行分离。

例如,萃取剂选择性地与目标物质发生络合反应,形成可溶性络合物,从而
将其与其他组分分离。

4.吸附分离法:通过吸附剂对目标物质的选择性吸附将其从混合物中
分离。

主要有固相萃取、层析和磁性吸附等方法。

以上仅是分析化学中常用的一些分离与富集方法,实际应用中还有很
多其他方法,如超临界流体萃取、电分离、膜分离等。

在实际的分析过程
中,要根据混合物的性质和目标物质的特点选择合适的方法,并合理优化条件,以提高分离效果和分析结果的准确性。

分析化学中常用的分离和富集方法及小结

分析化学中常用的分离和富集方法及小结

3. 其它无机沉淀剂
H2SO4,H3PO4,HF or NH4F,HCl
稀HCl:Ag Hg22+ Pb→白↓( Ⅰ组阳离子)
HCl
AgCl,Hg2Cl2,PbCl2
NH3
溶于热水
Ag(NH3)2+ Pb(OH)2 HgNH2Cl(白)+Hg(黑)
13
(白)
灰黑
无机沉淀剂: 易产生共沉淀, 选择性不高; 应首先沉淀微量组分.
UO22+,Al3+,Sn4+,Bi3+等。
21
无机共沉淀剂选择性差, 干扰下一步测定。
2、有机共沉淀剂(选择性高,应用广)
丹宁,辛可宁,动物胶等,可灼烧除去。
例1:分离微量H2WO4
HNO3介质中, H2WO4-辛可宁。
带负电胶粒,
不易凝聚
胶体凝聚
例2:分离微量cd
R h C B 2 4 d (IR)2 h CB 2 4 d I
氢氧化物:NaOH、NH3 硫化物:H2S 有机沉淀剂:H2C2O4,丁二酮肟

离子交换分离
阳离子交换树脂 阴离子交换树脂
气液分离:挥发和蒸馏 克氏定氮法,Cl2预氧化I-法

螯合物萃取
萃取分离 离子缔合物萃取
方 液液分离

膜分离
三元络合物萃取 支撑型液膜 乳状液型液膜
生物膜
气固分离——超临界流体萃取
离子)(氨水沉淀分离法中常加入大量NH4+盐,其作 用是什么?)
10
3 控制pH=5-6
① ZnO悬浊液法
高价离子Fe3+,Al3+,Cr3+,Th4+等定量↓ ቤተ መጻሕፍቲ ባይዱi2+,Co2+,Mn2+,Mg2+,Ca2+,Sr2+不↓

分析化学中常用的分离和富集方法

分析化学中常用的分离和富集方法

3 溶于CHCl3
亲水 水合离子的正电性被中 和,亲水的水分子被疏 水有机大分子取代
疏水
8-羟基喹啉
萃取剂
CHCl3
溶剂
3.反萃取
Back extraction
萃取的反过程(将组分从有机溶液中萃取到水溶液中)
如:8-羟基喹啉铝螯合物中加入1mol/L HCl
12
4. 分配系数与分配比 分配系数 partition coefficient HA (w) HA (o)
常用分离方法
沉淀分离法 溶剂萃取分离法
Precipitation Solvent extraction Ion exchange
离子交换分离法
色谱分离法
挥发和蒸馏分离法
Chromatography
Volatilization and distillation
11.3沉淀分离与富集 ——依据溶度积分硫酸盐、卤化物、磷酸盐等 有机沉淀剂:草酸、铜铁试剂、铜试剂、丁二酮肟、苦杏仁酸等
例如常见阳离子的两酸两碱分离
分组 组试剂 Ⅰ HCl Ag Hg (I) (Pb) Ⅱ H2SO4 Ca Sr Ba Pb Ⅲ NH4Cl - NH3 Ⅳ NaOH Ⅴ 可溶组* Na K Zn NH4+
萃取分离法 在含有被分离物质的水溶液中,加入 萃取剂和与水不相混溶的有机溶剂,
震荡,利用物质在两相中的分配不同
的性质,使一些组分进入有机相中, 使另一些组分仍留在水相中,从而达
到分离的目的。
梨形分液漏斗
例:I2的萃取
11.4.1 萃取分离的基本原理
1. 萃取分离的依据 hydrophilic 物质 hydrophobic 亲水性 离子型化合物 极性

分析化学_分析化学中常用的分离和富集方法

分析化学_分析化学中常用的分离和富集方法

分析化学_分析化学中常用的分离和富集方法分析化学是研究物质的组成、结构和性质的一门学科。

在分析化学中,为了检测和测定分析对象中微量或痕量的目标物质,常常需要使用分离和富集方法,以提高目标物质的检测灵敏度。

1.搅拌萃取:搅拌萃取是一种常见的分离和富集方法。

通过将样品与其中一种有机溶剂反复搅拌混合,使目标物质从水相转移到有机相中,从而实现分离和富集。

该方法适用于目标物质在水相和有机相之间有较大的分配系数差异的情况。

2.相间萃取:相间萃取是指根据目标物质在两相中的分配差异进行分离和富集的方法。

常见的相间萃取方法包括液液萃取、固相微萃取和液相萃取等。

相间萃取通常需要将样品与萃取剂反复摇匀并分离两相,以实现目标物质的富集。

3.固相萃取:固相萃取是指使用固定在固相萃取柱或固相萃取膜上的吸附剂来对目标物质进行分离和富集的方法。

固相萃取方法具有操作简单、富集效果好、适用范围广等优点,常用于分析化学中的前处理过程。

4.蒸馏:蒸馏是指通过加热使液体汽化,然后冷凝收集汽化液体的方法。

蒸馏可以实现液体的分离和富集,适用于目标物质在样品中的浓度较低且需高度富集的情况。

5.色谱分离:色谱分离是一种基于目标物质在不同相之间的分配差异进行分离的方法。

常用的色谱分离方法包括气相色谱、液相色谱、固相色谱等。

色谱分离方法具有分辨率高、重复性好、操作简便等优点,广泛应用于分析化学中。

6.气相萃取:气相萃取是指利用气相萃取装置将目标物质从固体、液体或气体中分离和富集的方法。

气相萃取主要通过溶剂的蒸发和再冷凝,将目标物质从样品中富集到溶剂中,然后通过蒸发或其他方法将溶剂去除,得到目标物质。

7.凝胶电泳:凝胶电泳是一种基于目标物质的电荷、大小或形状差异进行分离和富集的方法。

常见的凝胶电泳方法包括聚丙烯酰胺凝胶电泳、聚丙烯酰胺梯度凝胶电泳等。

凝胶电泳方法具有分辨率高、富集效果好等优点,适用于复杂样品的分析。

总之,分析化学中常用的分离和富集方法有搅拌萃取、相间萃取、固相萃取、蒸馏、色谱分离、气相萃取和凝胶电泳等。

分析化学中常用的分离和富集方法

分析化学中常用的分离和富集方法

分析化学中常⽤的分离和富集⽅法第8章分析化学中常⽤的分离和富集⽅法8.1 概述分离和富集是定量分析化学的重要组成部分。

当分析对象中的共存物质对测定有⼲扰时,如果采⽤控制反应条件、掩蔽等⽅法仍不能消除其⼲扰时,就要将其分离,然后测定;当待测组分含量低、测定⽅法灵敏度不⾜够⾼时,就要先将微量待测组分富集,然后测定。

分离过程往往也是富集过程。

对分离的要求是分离必须完全,即⼲扰组分减少到不再⼲扰的程度;⽽被测组分在分离过程中的损失要⼩⾄可忽略不计的程度。

被测组分在分离过程中的损失,可⽤回收率来衡量。

1. 回收率(R )其定义为:%100?==分离前待测组分的质量分离后待测组分的质量R对质量分数为1%以上的待测组分,⼀般要求R >99.9%;对质量分数为0.01%~1%的待测组分,要求R >99%;质量分数⼩于0.01%的痕量组分要求R 为90%~95%。

例1. 含有钴与镍离⼦的混合溶液中,钴与镍的质量均为20.0mg ,⽤离⼦交换法分离钴镍后,溶液中余下的钴为0.20mg ,⽽镍为19.0mg,钴镍的回收率分别为多少?解:%0.10.2020.0 %,0.950.200.19Co Ni ====R R2. 分离因⼦S A/B分离因⼦S B/A 等于⼲扰组分B 的回收率与待测组分A 的回收率的⽐,可⽤来表⽰⼲扰组分B 与待测组分A 的分离程度。

%100/?=A B A B R R SB 的回收率越低,A 的回收率越⾼,分离因⼦越⼩,则A 与B 之间的分离就越完全,⼲扰消除越彻底。

8.2 沉淀分离法沉淀分离法是⼀种经典的分离⽅法,它是利⽤沉淀反应选择性地沉淀某些离⼦,⽽与可溶性的离⼦分离。

沉淀分离法的主要依据是溶度积原理。

沉淀分离法的主要类型如下表。

8.2.1常量组分的沉淀分离1. 氢氧化物沉淀分离⼤多数⾦属离⼦都能⽣成氢氧化物沉淀,各种氢氧化物沉淀的溶解度有很⼤的差别。

因此可以通过控制酸度,改变溶液中的[OH-],以达到选择沉淀分离的⽬的。

分析化学中常用的分离富集方法

分析化学中常用的分离富集方法

分析化学中常用的分离富集方法1.蒸馏法:蒸馏法是一种基于物质沸点差异的分离富集方法。

通过加热混合物,使成分具有不同沸点的组分分别转化为气态和液态,然后通过冷凝收集液态成分,从而实现分离。

蒸馏法广泛应用于分离液体的混合物,例如石油的分离和酒精的纯化。

2.萃取法:萃取法是一种基于物质在不同相中的分配系数差异的分离富集方法。

它通过萃取剂与混合物中其中一成分发生作用,将其从混合物中提取出来。

常用的萃取剂包括有机溶剂、水和金属络合剂等。

萃取法广泛应用于固体、液体或气体的分离富集,例如从矿石中提取金属离子、从天然产物中提取天然色素等。

3.结晶法:结晶法是一种基于物质在溶液中溶解度差异的分离富集方法。

通过逐渐降低溶液中的溶质浓度,使其超过饱和度,从而导致溶质结晶出来。

结晶法广泛应用于分离纯化固体物质,例如提取药物原料和脱盐。

4.吸附法:吸附法是一种基于物质在固体吸附剂表面吸附能力差异的分离富集方法。

通过将混合物与吸附剂接触,利用其表面活性或化学反应特性,将目标成分吸附在吸附剂上,然后通过洗脱、干燥等步骤分离目标成分。

常用的吸附剂包括硅胶、活性炭和分子筛等。

吸附法广泛应用于气体和溶液的分离富集,例如气体的净化和水处理。

5.色谱法:色谱法是一种基于物质在固相或液相载体上移动速度差异的分离富集方法。

它利用混合物成分在固定相和流动相之间相互作用的差异,通过在柱上或薄层上移动,分离各个组分。

常用的色谱法包括气相色谱法、液相色谱法和薄层色谱法等。

色谱法广泛应用于有机化合物和生物大分子的分离分析,例如对复杂的混合物进行定性和定量分析。

除了上述常用的分离富集方法,还有一些其他的方法如离子交换法、电泳法、过滤法等。

这些方法在不同的应用领域具有独特的优势和适用性。

分析化学中的分离富集方法是实现样品预处理、纯化和定性定量分析的基础,对于提高分析的准确性和灵敏度具有重要意义。

第十一章 分析化学中常用的分离和富集方法

第十一章 分析化学中常用的分离和富集方法



二、痕量组分的共沉淀分离和富集
在重量分析中共沉淀现象是一种消极因素,在 分离方法中,却能利用共沉现象来分离和富集微量 组分。即加入某种离子同沉淀剂生成沉淀作为载体, 将痕量组分定量地沉淀下来,然后将沉淀分离,溶 解在少量溶剂中,以达到分离和富集的目的。 例如,海水中含UO22+的量为2~3ug· -1,不能 L 将铀直接测定和沉淀分离。但可在1 L海水中,调 pH为5~6,用AlPO4 共沉淀UO22+ ,过滤洗净后, 再将沉淀物用10mL盐酸溶解。如此,既将铀从海 水中分离出来,又将铀的浓度富集了近100倍。

实际分析方法:常常有一些干扰。通常采用 掩蔽方法消除干扰。在严重干扰的情况下,必须 采用分离方法,使干扰组分与待测组分分离。

采用分离方法的同时也能对待测组分进行富 集和浓缩。
对于常量组分的分离和痕量组分的富集,总 的要求是分离要完全,即:待测组分的回收率要 符合一定要求。


表示
分离效果通常以回收率( RA )和分离因数( SB/A )
三、挥发和蒸馏分离法
依据物质挥发性的差异进行的分离法称为蒸
馏分离法。可以用于分离干扰组分,也可以使被
测组分定量分出后再测定。该方法对无机物的分 离选择性较高。

例如可控制不同的馏出温度将SiF4 、GeCl4 、 AsH3 、AsCl3 、SbCl3 等从待测体系中馏出,定量 吸收之后,选用适宜的方法再进行测定。
QA RA 0 100% QA

式中,QA是分离出来待测组分A的质量, Q0A是试样中A 的总质量。 回收率当然越高越好,实际工作中待测组分难 免会有损失。分析化学中常用加标法测定回收率。对 回收率的要求视待测组分的大小而定,如表所示。 A ﹥1% 99.9% 0.01%~ 1% 99% ~0.01% 90%-95%

11分析化学中常用的分离和富集方法

11分析化学中常用的分离和富集方法

2 蒸馏 将液体加热至沸腾,使液体变为蒸气,然后使蒸 气冷却再凝结为液体,这两个过程的联合操作称 为蒸馏。很明显,蒸馏可将易挥发和不易挥发的 物质分离开来,也可将沸点不同的液体混合物分 离开来。但液体混合物各组分的沸点必须相差很 大(至少30℃以上)才能得到较好的分离效果。
a 常压蒸馏
b 水蒸气蒸馏
一种分离方法的分离效果,是否符合定量分析的要 求,可通过回收率的大小来判断,例如,当分离物质 A时,回收率
回收率=
分离后所得待测组离过程中,回收率越大(最大接近于1)分离效果 越好。在一般情况下,对质量分数大于1%的组分,回 收率应大于99.9%;对质量分数为0.01% - 1%的组分, 回收率应大于99%;质量分数低于0.01%的痕量组分, 回收率为90% - 95%,有时更低一些也允许。
第11章分析化学中常用的分离富集方法
11.1 概述 11.2 气态分离法 11.3 沉淀与过滤分离 11.4 萃取分离法 11.5 离子交换分离法 11.6 色谱分离 11.7 电分离法 11.8 气浮分离法 11.9 膜分离
11.1 概述
分离 在实际分析工作中,遇到的样品往往含有多种组 分,进行测定时彼此发生干扰,不仅影响分析结 果的准确度,甚至无法进行测定。为了消除干扰, 比较简单的方法是控制分析条件或采用适当的掩 蔽剂。但是在许多情况下,仅仅控制分析条件或 加入掩蔽剂,不能消除干扰,还必须把被测元素 与干扰组分分离以后才能进行测定。所以定量分 离是分析化学的重要内容之一。
水蒸气蒸馏(Steam Distillation)是将水蒸气通入 不溶于水的有机物中或使有机物与水经过共沸而蒸出 的操作过程
c 减压和真空蒸馏 在大气压以下的蒸馏称为减压和真空蒸馏,用于分离易

分析化学课件常用的分离和富集方法

分析化学课件常用的分离和富集方法

膜分离
膜分离是一种利用不同物质在薄膜中的传输特性进行分离的方法。它具有操 作简便、能耗低等优点,被广泛应用于水处理和生物医药等领域。
总结
通过本课件的学习,你已经了解了分析化学中常用的分离和富集方法。这些 方法在实际应用中具有重要的意义,帮助我们更好地理解和解决化学问题。
分析化学课件常用的分离 和富集方法
在分析化学课程中,分离和富集方法是非常重要的。本课件将介绍几种常用 的分离和富集方法,帮助你更好地理解和应用这些技术。
蒸馏
蒸馏是一种通过利用不同组分的沸点差异来分离混合物的方法。它可以用于纯化液体样品,去除杂质,以及分离可 挥发性组分。
萃取
萃取是一种使用溶剂来从混合物中分离出目标物质的方法。该方法广泛应用 于有机合成、化学分析和环境监测等领域。
色谱分离
色谱分离是一种基于样品分子的物理化学特性差异进行分离的方法。它可以 用来分离和鉴定复杂混合物中的各种成分。
浓缩
浓缩是一种将稀溶液中的目标物质转化为较小体积的方法。它可以用于提高 目标物质的检测灵敏度和纯度。
萃取富集
萃取富集是一种将目标物质从大量样中富集到较小体积的方法。它常用于分析样品预处理和提取罕见成分。

常用的分离富集方法

常用的分离富集方法

05 电泳分离法
自由电泳
原理
利用带电粒子在电场中的迁移率不同而实现分离。
应用
用于分离蛋白质、核酸等生物大分子。
优点
操作简单,分辨率高。
缺点
时间长,对样品纯度要求高。
区带电泳
原理
在电场中,带电粒子在支持介质上移动时,受到电场力和阻力的作用, 最终会形成稳定的区带。
应用
常用于分离混合物中的组分,如蛋白质、多糖等。
常用的分离富集方法

目 录
• 沉淀分离法 • 萃取分离法 • 吸附分离法 • 色谱分离法 • 电泳分离法
01 沉淀分离法
盐析法
总结词
通过向溶液中加入适量的盐类,使目标物质因溶解度降低而析出的方法。
详细描述
盐析法是利用盐类物质降低溶液中目标物质的溶解度,使其从溶液中析出,从而实现分离富集的方法 。常用的盐析剂有硫酸铵、硫酸钠、氯化钠等。该方法操作简便,分离效果良好,但可能会引入杂质 离子。
优点
分离效果好,分辨率高。
缺点
操作复杂,对样品纯度要求高。
等电聚焦电泳
原理
利用等电点差异将不同蛋白质分离。
缺点
操作复杂,对缓冲液要求高。
应用
用于蛋白质的分离和纯化。
优点
分辨率高,可同时分离多种蛋白质。
THANKS FOR WATCHING
感谢您的观看
详细描述
柱色谱是将固体吸附剂或溶剂装填在柱管中,然后将样品加到柱子上,用合适的溶剂进 行洗脱,实现样品的分离。该方法具有分离效果好、可处理大量样品等优点,广泛应用
于各种领域。
气相色谱
总结词
气相色谱是一种高效的分离和富集方法,适 用于气体和挥发性液体的分析。

分析化学中常用的分离富集方法

分析化学中常用的分离富集方法
溶质A在有机相中的总量
溶质A的总量
= ×100%
coVo
coVo+cwVw
E= ×100%
D
D+(Vw/Vo)
4 萃取体系和萃取平衡
萃取平衡 萃取剂多为有机弱酸碱, 中性形式易疏水而溶于有机溶剂,一元弱酸(HL)在两相中平衡有:
7 固相萃取和固相微萃取
固相萃取:液-固分离 分离载体一般为硅氧基甲烷,颗粒直径40-80 mm
选适宜SPE管
加入样品溶液到载体
洗涤除去共存物
洗脱待分离物质
润湿载体
一般程序为:
固相微萃取技术 始于1992年,(加拿大的Janusz Pawliszyn)
8 超临界流体萃取
原理: 超临界流体萃取:气-固萃取 萃取剂: 超临界条件下的气体 粘度低,接近零的表面张力,比很多液体容易渗透固体颗粒,易于除去。
杂多酸萃取体系
c 溶剂化合物萃取体系
R2O>ROH>RCOOH>RCOOR'>RCOR'>RCHO
d 共价化合物萃取体系
在HCl溶液中乙醚萃取FeCl4-,乙醚与H+形成[(CH3CH2)2OH]+,它与FeCl4-形成缔合物[(CH3CH2)2OH]+·[FeCl4]-。在这里乙醚既是萃取剂又是萃取溶剂。如此的还有甲基异丁基酮,乙酸乙酯等。含氧有机溶剂化合物成盐的能力大小为:
也有把该体系列入离子缔合萃取体系。
也叫简单分子萃取体系,如I2,Br2,GeCl4,OsO4等不带电荷,在水溶液中以分子形式存在,可为CCl4,C6H6等萃取
5 萃取条件的选择
a 萃取剂的选择 螯合物稳定,疏水性强,萃取率高
b 溶液的酸度 酸度影响萃取剂的离解,络合物的稳定性,金属离子的水解

分析化学中常用的分离和富集方法

分析化学中常用的分离和富集方法

分析化学中常用的分离和富集方法要求:了解分析化学中常用的分离方法;理解萃取分离法的基本原理、萃取条件的选择及主要的萃取体系;掌握分配比、分配系数和萃取率的计算;掌握各种色谱法分离的机理。

了解一些新的分离富集方法。

一、概述在分析中对分离的要求是,干扰组分应减少到不再干扰被测组分的测定,被测组分在分离过程中损失要小到可以忽略不计。

后者常用回收率来衡量。

%100⨯=原来所含待测组分质量质量分离后待测的待测组分回收率回收率越高越好,不同体系对回收率的要求不一。

二、沉淀分离法沉淀分离法是一种经典的分离方法,它是利用沉淀反应有选择地沉淀某些离子,而其他离子则留在溶液中,从而达到分离的目的。

常用方法有:常量组分的沉淀分离(氢氧化物沉淀分离:氢氧化钠法、氨水法、有机碱法、ZnO 悬浊液法;硫化物沉淀分离;利用有机沉淀剂进行分离;其他无机沉淀剂),痕量组分共沉淀分离和富集(无机共沉淀剂;有机共沉淀剂)。

三、挥发和蒸馏分离法挥发和蒸馏分离法是利用物质的挥发性的差异进行分离的一种方法,可以用于除去干扰组分,也可以使被测组分定量分出后再测定。

在无机物中,具有挥发性的物质并不多,因此这种方法选择性较高。

四、液—液萃取分离法1.萃取分离的原理:利用与水不相混溶的有机溶剂同试液一起震荡,一些组分进入有机相,另一些留在水相中,达到分离富集的目的。

2. 分配比和分配系数3. 萃取百分比%100⨯=被萃取物质的总量的总量被萃取物质在有机相中E即%100/00000⨯+=+=V V D D V C V C V C E w ww[] [::]D organic w aterO O D w wA A A c K D K A c D ==分配系数分配比ww V DV V m m +⋅=001若用0V (mL )溶剂,萃取n 次,水相中剩余被萃取物为m n (g ),则DV DV V m m nw w n )]/([00+=,查表得出同量的萃取剂,分几次萃取的效率比一次萃取的效率高,但增加萃取次数会影响工作效率。

分析化学中常用的分离和富集方法

分析化学中常用的分离和富集方法

第八章分析化学中常用的分离和富集方法在实际工作中,遇到的样品往往含有多种组分,进行测定时常常发生干扰,不仅影响结果的准确度,甚至无法测定,为了消除干扰,比较简单的方法是控制分析条件或加入掩蔽剂。

但很多情况仅此不够,必须把待测组分与干扰组分分离,有时为了测定试样中痕量组分,在进行分离的同时,也进行必要的浓缩和富集。

以保证分析结果的准确度。

对于常量组分的分离和痕量组分的富集,总的要求是分离要完全,即:待测组分的回收率要符合一定要求。

待测组分的回收率:对于常量组分 (>1%) : R T>99% ( 接近 100%)对于微量组分: R T>90%常见的分离方法: 1 .沉淀分离2 .萃取分离3 .离子交换分离4 .色谱分离5 .气浮分离6 .挥发和蒸馏分离第一节沉淀分离法沉淀分离是利用沉淀反应进行分离的方法。

根据难溶化合物的溶解度不同,利用沉淀反应进行分离,在试液中加入适当沉淀剂,使待测组分沉淀出来或将干扰组分沉淀除去。

从而达到分离的目的。

它主要有:无机沉淀剂沉淀分离法有机沉淀剂沉淀分离法共沉淀分离法。

( 还有均相沉淀法 )一、无机沉淀剂沉淀分离法无机沉淀剂沉淀分离法很多,形成沉淀的类型也很多,本书只对M (OH ) n ↓和硫化物沉淀简单介绍.例如: Fe(OH)3,,当 [时,刚析出沉淀时pH ≥ 2.18 ;沉淀完全时pH ≥ 3.51 。

因此,氢氧化物是否能沉淀完全,取决于溶液的酸度。

NaOH Fe(OH)3沉淀剂: NH3·H2O → Mg(OH)2WO3 xH2O 等ZnO 等 SiO2·xH2O两种离子是否能借M(OH)n↓ N(OH)n↓ ( 氢氧化物沉淀 ) 完全分离,取决于它们溶解度的相对大小表 8-1 是假定开始时=0.01mol/L ,残留浓度mol/L( 沉淀完全 ) 时,部分氢氧化物的 pH ( 由 KSP 计算出来的 ), 此数值仅供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析化学中常用的分离富集方法思考题11-1 在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何?答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。

换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用围。

在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。

样品组分含量越低,对回收率要求也降低。

11-2 常用哪些方法进行氢氧化物沉淀分离?举例说明。

答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。

因此,采用控制溶液中酸度可使某些金属离子彼此分离。

在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。

常用的沉淀剂有:a 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。

b 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。

c 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。

d ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。

11-3 某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全?答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。

试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。

11-4 如将上述矿样用Na2O2熔融,以水浸取,其分离情况又如何?答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-和MnO4-。

因此溶液有AlO22-,ZnO22-,MnO4-和CrO42-和少量Ca2+,在沉淀中有:Fe(OH)3,Mg(OH)2和Cu(OH)2和少量Ca(OH)2或CaCO3沉淀。

Ca2+将分离不完全。

(注:Na 2O 2常用以分铬铁矿,分离后的分别测定Cr 和Fe 。

也有认为Mn 2+被Na 2O 2氧化成Mn 4+,因而以 MnO(OH)2沉淀形式存在。

)11-5 某试样含Fe ,A1,Ca ,Mg ,Ti 元素,经碱熔融后,用水浸取,盐酸酸化,加氨水中至出现红棕色沉淀(pH 约为3左右),再加六亚甲基四胺加热过滤,分出沉淀和滤液。

试问。

a 为什么溶液中刚出现红棕色沉淀时人们看到红棕色沉淀时,表示pH 为3左右?b 过滤后得的沉淀是什么?滤液又是什么?c 试样中若含Zn 2+和Mn 2+,它们是在沉淀中还是在滤液中?答:a .溶液中出现红棕色沉淀应是Fe(OH)3,沉淀时的pH 应在3左右。

(当人眼看到红棕色沉淀时,已有部分Fe(OH)3析出,pH 值稍大于Fe 3+开始沉淀的理论值)。

b .过滤后得的沉淀应是TiO(OH)2、Fe(OH)3 和Al(OH)3;滤液是Ca 2+,Mg 2+离子溶液。

c .试样中若含Zn 2+和Mn 2+,它们应以Zn 2+和MnO 4-离子形式存在于滤液中。

11-6 采用无机沉淀剂,怎样从铜合金的试掖中分离出微量Fe 3+?答:采用NH 4Cl- NH 3缓冲液,pH8-9,采用Al(OH)3共沉淀剂可以从铜合金试液中氢氧化物共沉淀法分离出微量Fe 3+。

11-7 用氢氧化物沉淀分离时,常有共沉淀现象,有什么方法可以减少沉淀对其他组分的吸附? 答:加入大量无干扰的电解质,可以减少沉淀对其他组分的吸附。

11-8 共沉淀富集痕量组分,对共沉淀剂有什么要求?有机共沉淀剂较无机共沉淀剂有何优点? 答:对共沉淀剂的要求主要有:一是对富集的微量组分的回收率要高(即富集效率大);二是不干扰富集组分的测定或者干扰容易消除(即不影响后续测定)。

有机共沉淀剂较无机共沉淀剂的主要优点:一是选择性高;二是有机共沉淀剂除去(如灼烧);三是富集效果较好。

11-9 何谓分配系数,分配比?萃取率与哪些因素有关?采用什么措施可提高萃取率?答:分配系数和分配比是萃取分离中的两个重要参数。

分配系数:0[][]D wA K A =是溶质在两相中型体相同组分的浓度比(严格说应为活度比)。

而分配比:0wc D c =是溶质在两相中的总浓度之比。

在给定的温度下,K D 是一个常数。

但D 除了与K D 有关外,还与溶液酸度、溶质浓度等因素有关,它是一个条件常数。

在分析化学中,人们更多关注分离组分的总量而较少考虑其形态分布,因此通常使用分配比。

萃取率:0100%w D E V D V =⨯+,可见萃取率与分配比(即溶质性质和萃取体系)和相比有关,与组分含量无关。

提高萃取率有两个重要途径:一是采用(少量有机溶剂)多次萃取;二是采用协同萃取。

11-10 为什么在进行螯合萃取时,溶液酸度的控制显得很重要?答:螯合物萃取过程可表示为:n 0n 0M n(HR)(MR )nH +++=+可见,溶液酸度可能影响螯合剂的离解、金属离子的水解以及其他副反应,影响螯合物萃取平衡,因此在进行螯合萃取时酸度控制是非常重要的。

11-11 用硫酸钡重量法测定硫酸根时,大量Fe 3+会产生共沉淀。

试问当分析硫铁矿(FeS 2)中的硫时,如果用硫酸钡重量法进行测定,有什么办法可以消除Fe 3+干扰?答:将试液流过强酸型阳离子交换树脂过柱除去Fe 3+,流出液再加入沉淀剂测定硫酸根。

11-12 离子交换树脂分几类,各有什么特点?什么是离子交换树脂的交联度,交换容量? 答:通常离子交换树脂按性能通常分为三类:a 阳离子交换树脂,用于分离阳离子,又分为强酸型阳离子交换树脂和弱酸型阳离子交换树脂。

前者可在酸性中型和碱性溶液中使用,而后者不宜在酸性溶液中使用。

b 阴离子交换树脂,用于分离阴离子,又分为强碱性阴离子交换树脂和弱碱性阴离子交换树脂两种。

前者可在酸性中型和碱性溶液中使用,而后者不宜在碱性溶液中使用。

c 螯合树脂。

选择性地交换某些金属离子。

交联度指交联剂在树脂中质量百分率,其大小与树脂性能有关。

交联度一般在4-14%之间。

交联度小,树脂网眼大,溶胀性大,刚性差。

交换容量是指每克干树脂所能交换的物质量(mmol ),它决定于树脂所含活性基团的数目,一般为3~6 mmol·g -1。

11-13 几种色谱分离方法(纸上色谱,薄层色谱及反相分配色谱)的固定相和分离机理有何不同?答:色谱法是一种分离方法,它利用物质在两相中分配系数的微小差异,当两相作相对移动时,使被测物质在两相之间进行反复多次分配,这样原来微小的分配差异产生了很大的效果,使各组分分离开来。

通常认为纸色谱的固定相是吸附滤纸纤维素上的水分(或与纤维素羟基缔合的固定水),分配色谱是纸色谱的主要分离机理。

薄层色谱的固定相主要是硅胶等吸附剂,吸附色谱是薄层色谱的分离机理。

反相分配色谱的固定相一般是涂渍在载体上的非极性有机物,其分离机理是反相分配色谱。

11-14 如何进行薄层色谱的定量测定?答:薄层色谱的定量测定有直接测定或将样斑刮下后提取溶液测定两种方式。

直接测定又分为: 比较斑点面积定量法:与标准溶液斑点对照样品斑点大小和颜色深浅,只能达到半定量分析。

稀释定量法:用标准溶液、稀释一定倍数的标准溶液和样品溶液等体积点样在同一块板上,展开显色后进行斑点面积测量。

样品含量计算公式为:d A A A A W W s sd ss lg lg lg ⋅--+=式中A 、A s 和A sd 分别为样品、标准溶液和稀释标准溶液的斑点面积,d 为稀释倍数的倒数。

薄层扫描法:使用薄层色谱扫描仪对薄层上被分离物质斑点进行光吸收或荧光测定的直接定量法。

11-15 用气浮分离法富集痕量金属离子有什么优点?为什么要加入表面活性剂?答:用气浮分离法富集痕量金属离子具有分离速度快、富集倍数大和操作简便等优点,特别适用于大量的极稀溶液(10-7~10-15 mol·L -1) 金属离子的分离富集。

对于共沉淀分离中不易过滤或离心分离的胶状、絮状沉淀,对于离子对溶剂萃取分离中经常遇到的分层费时、两液界面不清晰等分离难题, 改用适当的浮选分离可以较好地解决。

在浮选过程中,表面活性剂可改变被浮选物的表面性质和稳定气泡,它直接影响着浮选分离的成败。

但表面活性剂的用量不宜超过临界胶束浓度(CMC )。

表面活性剂非极性部分链长度增加,会使它在气泡上的吸附增加,从而提高分离效果。

一般说来,碳链越长浮选效果越好;但太长时泡沫的稳定性增大,浮选平衡时间增长,反而对浮选不利。

碳链太短则表面活性下降,泡沫不稳定,使浮选率下降。

碳链的碳原子数以14 ~ 18为宜。

11-16 若用浮选分离富集水中的痕量CrO 42-,可采用哪些途径?答:一是采用离子浮选法:在试液中加入溴化十六烷基三甲胺(CTMAB)为表面活性剂浮选。

二是沉淀浮选:在试液中加入Al(OH)3沉淀剂和油酸钠表面活性剂,控制pH~7浮选。

11-17 固相微萃取分离法、超临界萃取分离法、液膜分离法及微波萃取分离法的分离机理有何不同?答:固相微萃取分离法、超临界萃取分离法、液膜分离法及微波萃取分离法是一些新型的分离技术。

固相微萃取(SPME)是一种无需有机溶剂、简便快速,集“采样、萃取、浓缩、进样”于一体,能够与气相色谱或高效液相色谱仪连用样品前处理技术。

适用于气体、水样、生物样品(如血、尿、体液等)的萃取提取。

其分离原理是溶质在高分子固定液膜和水溶液间达到分配平衡后分离。

超临界流体具有类似于气体的较强穿透能力和类似于液体的较大密度和溶解度。

超临界萃取分离法(SFE )是基于分离组分溶解度及其与超临界流体分子间作用力的差别,当超临界溶剂流过样品时,使分离组分与样品基体分离。

由于超临界流体不仅有好的溶剂化能力,比液体有更大的扩散系数,而且它的表面力几乎接近零,即它较容易渗透到一些固体的孔隙里,以使分离效率和速度大为提高。

值得一提的是,90 % 的SFE 采用CO 2流体,因此避免了有害溶剂对环境的严重污染。

SFE 已逐步作为替代有害溶剂萃取法的标准方法。

相关文档
最新文档