指数函数的性质与图像
指数函数对数函数与幂函数指数函数的性质与图像
指数函数对数函数与幂函数指数函数的性质与图像xx年xx月xx日CATALOGUE 目录•指数函数的定义与性质•对数函数的定义与性质•幂函数的定义与性质•指数函数、对数函数与幂函数的比较•指数函数、对数函数与幂函数的应用案例•总结与展望01指数函数的定义与性质指数函数的定义02指数函数:y=f(x)=a^x03a>0时,函数图像过一三象限;a<0时,函数图像过二四象限。
指数函数的性质函数图像恒过(0,1)点值域:R a>1时,函数为单调递增函数;0<a<1时,函数为单调递减函数奇偶性:当a>0时,为奇函数;当a=0时,既不是奇函数也不是偶函数;当a<0时,为偶函数指数函数的图像图像恒过(0,1)点当a>1时,函数的增长速度随着x的增大而逐渐加快;当0<a<1时,函数的增长速度随着x的增大而逐渐减慢。
a>1时,函数为单调递增函数,图像位于一三象限;0<a<1时,函数为单调递减函数,图像位于二四象限。
当a>1时,函数的最大值无限趋近于正无穷大;当0<a<1时,函数的最小值无限趋近于0。
02对数函数的定义与性质1 2 3自然对数:以数学常数e为底数的对数,记作ln(x)。
常用对数:以10为底数的对数,记作lg(x)。
底数为任意正数的对数,记作log(x)。
对数的运算性质log(a*b)=log(a)+log(b);log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。
对数恒等式log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。
对数的运算律如果a>0且a不等于1,M>0,N>0,那么log(a)(MN)=log(a)M +log(a)N;log(a)(M/N)=log(a)M -log(a)N;log(a)M^n=nlog(a)M。
•对数函数的图像与性质:图像与x轴交点为1,当x>1时,函数值大于0;当0<x<1时,函数值小于0。
2.1.2指数函数图象及性质(二)
若把函数 f ( x ) 的图象向左平移2 个单位, y=3(x+2)2 则得到函数 ____________ 的图象; 若把函数 f ( x ) 的图象向下平移 3 个单位, y=3x2-3 则得到函数 _________ 的图象; 若把函数 f ( x ) 的图象向上平移 4 个单位, y=3x2+4 则得到函数 _________ 的图象.
C. 0 a 1, 且 b 0 B. a 1, 且 b 0 D. a 1, 且 b 0
y
o
x
0 a 1, 1 b 1 0,
主页
§2.1.2指数函数及其性质(二) y ( 1 ) x 作出函数图象,求定义域、 例1. 已知函数 2 y ( 1 )| x| 的关系. 值域,并探讨与图象 2
y
2
o -2
- x 1
x
所以当x<0时, f ( x ) 2
主页
.
§2.1.2指数函数及其性质(二)
1.图像过定点问题
由于函数y=ax(a>0,且a≠1)恒经过定点 (0,1),因此指数函数与其它函数复合会产生一 些丰富多彩的定点问题
例2.函数y=ax-3+2(a>0,且a≠1)必经 过哪个定点? (3, 3)
点评:函数y=ax-3+2的图象恒过定点(3,3),实 际上就是将定点(0,1)向右平移3个单位,向上平 移2个单位得到.
主页
§2.1.2指数函数及其性质(二)
【1】函数y=ax+5-1(a>0,且a≠1)必经 过哪个定点? ( 5, 0)
【2】函数 y a b=____. 1
x b
2 恒过定点(1,3)则
1 ) x12 2 x1 , f ( x ) ( 1 ) x22 2 x 2 , 则 f ( x1 ) ( 5 2 5
指数函数的图象和性质
1
1
练习:比较大小 a3和a 2,(a 0, a 1)
方法总结
(1)构造函数法:要点是利用函数的单调性,数的特征是同底不同 指(包括可以化为同底的),若底数是参变量要注意分类讨论。比 较两个同底数幂的大小时,可以构造一个指数函数,再利用指数函数的 单调性即可比较大小. (2)搭桥比较法:用别的数如0或1做桥。数的特征是不同底不同指。 比较两个不同底数幂的大小时,通常引入第三个数作参照.
分析:(1)因为该城市人口呈指数增长,而同一指数函数 的倍增期是相同的,所以可以从图象中选取适当的点计算 倍增期.(2)要计算20年后的人口数,关键是要找到20年与 倍增期的数量关系. 解:(1)观察图,发现该城市人口经过20年约为10万人,经过40年 约为20万人,即由10万人口增加到20万人口所用的时间约为20年, 所以该城市人口每翻一番所需的时间约为20年.(2)因为倍增期为 20年,所以每经过20年,人口将翻一番.因此,从80万人开始, 经过20年,该城市人口大约会增长到160万人.
x
用描点法作函数y (1)x 和y (1)x的图象.
函
2
3
x … -3 -2 -1 0 1 2 3 …
数 y=2-x … 8 4 2 1 1/2 1/4 1/8 …
图 y=3-x … 27 9 3 1 1/3 1/9 1/27 …
象 y (1)x 2
特 征
y (1)x 3
y
O
思考:若不用描点法, 这两个函数的图象又该 如何作出呢?
底数a由大变小时函数图像在第一象限内按__顺__
时针方向旋转.
问题三:图象中有哪些特殊的点?
答:四个图象都经过点_(_0_,1_) .
a>1
数学人教A版必修第一册4.2.2指数函数的图像与性质课件
(2)所有图像都过(0,1)
之势;y =
1 x
和y
2
=
1 x
呈下降之势.
3
x
y
7
6
y = 3x
5
4
y=
不同点:
y = 2x 和y = 3x 的图像从左到右呈上升
()
1
3
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
思考2:你认为是什么原因造成y = 2x 和y = 3x 的图像从
的大小是否有关?如有,底数的大小是如何影响函
数图像在第一象限内的分布呢?
y=
()
1
3
x
y
7
6
y = 3x
5
4
底数越大,其图像越在上方
y=
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
探
究
新
知
思考4:你能根据对上述四个函数图像及其性质的分
析,填写下表吗?
0<a<1
图像
y
y
4
4
3
3
2
2
1
1
–2 –1 O 1
(2)判断该函数的奇偶性和单调性.
1
解:(1)根据题意,函数 = (2)|| + 的图象过原点,则
有0 = + ,则 = −,
又由 () 的图象无限接近直线 = −2 但又不与该直线相交,
则 = 2,又由 + = 0,则 = −2,
指数函数图像和性质_课件
x 0, 则a 1
(4)自左向右看,y=ax(a>1)的图 像逐渐上升;y=ax(0<a<1)的图像 (4) a>1,y=ax是增函数 当0<a<1,y=ax是减函数 逐渐下降
比较下列各题中两个值的大小: ①
1 .7
2.5
,
1.7
3
解 :利用函数单调性, 1.7 2.5 与 1.7 3 的底数是1.7,它们可以看成函数 y= 1.7 x 当x=2.5和3时的函数值;
(5)在R上是增函数
(5)在R上是减函数
图象特征
(1)图象都位于x轴上方 (2)图象都过(0,1 )点
函数性质
(1)x取任何实数都有ax>0 (2)a为任何正数,总有a0 =1
x (3)y=ax(a>1)的图像在第一 x 0 , 则 a 1 x 象限内的纵坐标都大于1,在 3当a 1时, x 0 , 则 0 a 1 第二象限的纵坐标都小于1; x x 0 , 则 0 a 1 x y=a (0<a<1)的图像正好相反 当0 a 1时, x
比较指数型值常常 借助于指数函数的图像 或直接利用函数的单调性 或选取适当的中介值(常用的特殊值是0和1),再利用单调性比较大小
补充练习
1.下图是①y=ax②y=bx③y=cx④y=dx的图像,则 a,b,c,d与1的大小关系是 (B) A.a<b<1<c<d C.1<a<b<c<d
①
②
y③
B.b<a<1<d<c D.a<b<1<d<c
当a>1时,a的值越大,图像越靠近y轴,递增速度越快. 当0<a<1时,a的值越大,图像越靠近x轴,递减的速度越快.
指数函数的图像及性质
∴1-3c>3a-1,即3c+3a<2. 【答案】 D
求与指数函数有关的函数的定义域与值域
求下列函数的定义域和值域:
(1) y=( 1 )2x-x2;(2)y=9x+2×3x-1.
2
思路点拨:这是与指数函数有关的复合函数,可以利 用指数函数的概念和性质来求函数的定义域、值域,对于 形式较为复杂的可以考虑利用换元法(如(2)).
素材2.1 设函数f x =a- (a 0且a 1),
x
若f 2 = 4,则a = f (2)与f 1的大小关系 是 ;
,
xa x 2 函数y = 0 a 1的 | x| 图象的大致形状是
解析:
1由f 2 4,得a
-2
1 4,所以a , 2
另一部分是:y=3x
(x<0)
向左平移
1个单位
y=3x+1 (x<-1).
图象如图:
(2)由图象知函数在(-∞,-1]上是增函数,
在(-1,+∞)上是减函数. (3)由图象知当x=-1时,函数有最大值1,无最小值. 探究提高
在作函数图象时,首先要研究函数与某一
基本函数的关系.然后通过平移或伸缩来完成.
考点探究
点评: 利用单调性可以解决与指数函数有关的值域 问题.指数函数本身是非奇非偶函数,但是与指数函数有
关的一些函数则可能是奇函数或偶函数.要注意使用相关
的概念和性质解决问题.
考点探究
2 2.已知 f(x)是定义在 R 上的奇函数,且当 x∈(0,1)时,f(x)= x . 4 +1 (1)求 f(x)在(-1,1)上的解析式; (2)证明:f(x)在(0,1)上是减函数.
指数函数及其图像与性质_图文
小试牛刀
例2.判断下列函数在其定义域上的单调性
(1)y=4x; 解:
知识积累:
y
指数函数y=2x的性质 x
(1)函数的定义域为R,值域为(0,∞); (2)图像都在x轴的上方,向上无限延伸,
向下无限接近x轴; (3)函数图象都经过(0,1)点; (4)函数图像自左至右呈上升趋势。
动手试一试
列表:
x
…
-3
…
8
图像:
指数函数y= 的图像
-2
-1.5
-1
-0.5
指数函数及其图像与性质_图文.ppt
直观感知:核裂变
如果裂变次数为x ,裂变后的原子核为 y,则y与x之间的关 系是什么?
y=2x
你还能举出一些类似的例子吗? (如细胞分裂……)
归纳结论
指数函数的概念:
一般地,设a>0且a≠1,形如y=ax的函数称为指数函数。 定义域:R
学以致用
问题:对于其它a的值,指数函数的图像又 是怎样的呢?
及时复习~~积沙成塔
指数函数的图像和性质:
y=ax
a
a>1
0<a<1
图
像
性 质
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时,y>1;当x<0时, 0<y<1; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时, 0<y<1 ;当x<0时, y>1 ; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
0
0.5
指数函数图象及性质
mn
⑶比较下列各数的大小:
10 , 0.42.5 ,
2 0.2
1 0.42.5 0
2 0.2
例3在同一坐标系下作出下列函数的图象,并指出
它们与指数函数y= 2x 的图象的关系,
⑴ y 2x1 与 y 2x2
⑵ y 2x1 与 y 2x2
解:⑴列出函数数据表,作出图像
x -3 -2 -1 0 1 2 3
( 1 0,且 1 1)
a
a
探究2:判断下列函数,那些是指数函数?
(1) y=4x
(2) y=x4
(3) y=-4x
(4) y=(-3)x
(5) y=xx
(6) y=3×4x
(7) y=3x+1
点评:函数解析式三大特征为①指数是自变量 x ;②底数是非1正常数;③系数为1.
随堂练习:
函数y=(a2-3a+3)ax 是指数函数,求a的 值.
-0.5 0 0.6 1 1.7 1
0.5 1 2 3 … 1.4 2 4 8 …
0.71 0.5 0.25 0.13 …
0.5 1 2 1.7 3 9
2.5 … 15.6 …
0.6 0.3 0.1 0.06 …
x
… -3 -2 -1
y 2x … 0.13 0.25 0.5
y 1 x … 8
由3x≥30.5,可得x≥0.5,即x的取值范围为 [0.5,+∞)。
;
高中数学必修1同步辅导课程——指数函数及其性质
例2:解下列不等式
(1)(1)x2 8 32x 3
(2) ax22x ( 1 )x2 (a 0且a 1) a
例2:指出下列函数的单调区间,并判断增减性;
课件6:4.1.2 指数函数的性质与图像
∴
1
0< ≤≤.
由二次函数的图象知,
1
当∈[ , ]时,
函数=( + 1) −
2
1
2在[ , ]上为增函数,
故当=时,max=2 + 2 − 1,
∴ 2 + 2 − 1=14,解得=3或=-5(舍去).
②若0<<1,∵ ∈[-1,1],
∴
2 −2−3
1
2
∴ y=
≤
1 −4
=16.又∵
2
2 −2−3
1
2
2 −2−3
1
的值域为(0,16].
2
>0,
形如y=af(x)的函数的定义域和值域的求法
(1)函数y=af(x)的定义域与函数f(x)的定义域相同;
(2)求函数y=af(x)的值域,需先确定函数f(x)的
值域,再根据指数函数y=ax的单调性确定函数y=af(x)
图象;
③函数=|()|的图象是将函数 = ()的图象在轴下
方的部分沿轴翻折到上方,轴上方的部分不变.
若直线=2与函数=| − 1|(>0,且≠1)
1
0,
的图象有两个公共点,则的取值范围是( 2 ) .
(3)图象的识别问题
例5 如图所示的是指数函数①y=ax;②y=bx;③y=
1
−4
(1) 2
=
(2)
=
;
2
1 −2−3
.
2
解:(1)由-4≠0,得≠4,
∴ =2
1
−4
的定义域为{|∈R,且≠4}.
1
4.2(1)指数函数的图像与性质
(1)y=4x (2)y=2.5x (3)y=0.4x (4)y=0.25x
y=0.25x
指数函数图像性质: y=4x 1.指数函数y=ax的图像恒
y=0.4x
过定点(0,1); y=2.5x 2.指数函数y=ax的图像恒
在x轴上方,即值域
y(0,+);
3.指数函数y=ax的图像当 a>1时,是增函数; 当
3… 8…
y 2x … 8
4
2
1.4 1 0.71 0.5 0.25 0.13 …
9
y 2 y 2Hale Waihona Puke x8 7x6
5 4
3 2
1
-6-5-4-3-2-10 1 2 3 4 5 6
x
y
y 1 x 2
y
1 3
x
y 3x
y 2x
3
2
1
x
0
1
x=-1
x=1
练习:在同一直角坐标系中,画下列指数函数的图像
x
二.描点法画指数函数的图像
例1.在同一坐标系中分别作出函数的图像.
(1)
y
2x
与y
1 2
x
(2)
y
3x
与y
1 3
x
作图的基本步骤: 列表、描点、连线.
在同一坐标系中分别作出如下函数的图像:
y
2x与
y
(
1 2
)
x
y 2x
x … -3 -2 -1 -0.5 0 0.5 1 2
y
y 2x … 0.13 0.25 0.5 0.71 1 1.4 2 4
0<a<1时,时减函数;
1
指数函数图像和性质_课件
0.4
2.5
10 20.2
比较指数型值常常 借助于指数函数的图像 或直接利用函数的单调性 或选取适当的中介值(常用的特殊值是0和1),再利用单调性比较大小
a>1
图
6
0<a<1
6
5
5
4
4
3
3
象
1
-4 -2
2
2
1
1
1
-4
-2
0
-1
2
4
6
0
-1
2
4
6
1.定义域:R
性
2.值域:(0,+∞) 3.过点(0,1),即x=0时,y=1
x
x
-2
-1
0 1
1 2
2 4
3 8
2
1 2 x
1 8 8 1 27 1 27
1 4
4
1 2 2 1 3 3
1
1 1
3
1 3
x
1 9 9
1 2 3 1 3
1 4 9 1 9
1 8 27 1 27
y
1 y 2
x
1 y 3
x
y 3x
x>0时,0<y<1 x<0时, y>1 在R上是减函数
比较下列各题中两个值的大小: ①
1 .7
2 .5
,
1.7
3
解 :利用函数单调性, 1.7 2.5 与 1.7 3 的底数是1.7,它们可以看成函数 y= 1.7 x 当x=2.5和3时的函数值;
5
;
因为1.7>1,所以函数y= 1.7 在R上是增函数, 而2.5<3,所以,
指数函数及其性质(指数函数的概念与图象)_图文
3 9 27 …
1
o -3 -2 -1 1 2 3
x
函数图象特征
x
… -3
-2
1Leabharlann y=2-x … 8 4 2
y=3-x … 27 9 3 Y
0 1 2 3…
1
1/ 2
1/4
1/8
…
1思考13:/ 若1不/9用描17/点2法…,
这两个函数的图象又该
如何作出呢?
Y=1
X O
观察右边图象,回答下列问题: 问题一:
指数函数及其性质(指数函数的概念与图象)_ 图文.ppt
一、问题引入
问题一、比较下列指数的异同,能不能把它们看成函数值? ①、
②、
函数值??什 么函数?
函数图象特征
x … -3 -2 -1 0 y=2x … 1/8 1/4 1/2 1 y=3x … 1/27 1/9 1/3 1
y
12 24
3… 8…
图象分别在哪几个象限?
y=3X
Y y=2x
答:四个图象都在第_Ⅰ_、_Ⅱ_象限
问题二: 图象的上升、下降与底数a有联系吗O ?
Y=1
X
答:当底数__时图象上升;当底数____时图象下降.
底数a由大变小时函数图像在第一象限内按__顺__
时针方向旋转.
问题三: 图象中有哪些特殊的点?
答:四个图象都经过点____.
2.1.2
• 第二课时
指数函数及其性 质
指数函数的性质
2.函数
是指数函数吗?
指数函数的解析式
中, 的系数是1.
有些函数貌似指数函数,实际上却不是.
有些函数看起来不像指数函数,实际上却是.
应用2
4.2指数函数的图象与性质课件(人教版)
(2)该城市人口从80万人开始,经过20年会
增长到多少万人?
分析:(1)因为该城市人口呈指数增长,而
同一指数函数的倍增期是相同的,所以可以
从图象中选取适当的点计算倍增期.
(2)要计算20年后的人口数,关键是要找到
20年与倍增期的数量关系.
解:(1)视察图,发现该城市人口经过20年
或中间变量进行
比较
三、应用三
(2023·北京·统考高考真题)下列函数中,在区间 (0, ) 上单调递增的是( C )
A. f ( x) ln x
C. f ( x)
1
x
1
B. f ( x) x
2
| x 1|
D. f ( x) 3
三、应用四
如图,某城市人口呈指数增长.
(1)根据图象,估计该城市人口每翻一番所
4
7
3
7
不同底但可化同底
5 0.3
0.3
与 0.2
<
0.3
不同底但同指数
6
0.3
1.7
>
同底指数幂比大
小,构造指数函数,
利用函数单调性
与0.9
3.1
底不同,指数也不同
7
与
8
<
5
12
不同底数幂比大小
,利用指数函数图像
与底的关系比较
利用函数图像
y 的图象,探究两个函数的图象有什
2
两个函数图像关于y轴对称
8
fx = 2x
7
6
x
x
y
y
5
-2
4
指数函数性质及图像
指数函数性质及图像指数函数定义为y=a^x(a>0,a1),其中,x 为“指数”,a 为“底数”,y 为“值”。
指数函数可以用于描述一定规律的大小之间的变化关系。
从数学上讲,指数函数属于多项式函数中的特例,其特点是当变量 x加 1,函数值 y 会翻倍或减半,而不像多项式函数那样只会减少很小的数量,比如,当 x 从 0加到 1,y 会从 a^0加到 a^1。
指数函数的性质有如下几点:(1)变量 x指数函数中的未知数,而 a是指数函数中的常量;(2)当 a > 1,指数函数单调递增;当 a < 1,指数函数单调递减;当 a = 1,指数函数是线性函数;(3)任意两个底数不一样的指数函数互不相等,但两个有着相同底数的指数函数则相等;(4)指数函数可以增加或减少的极限是无穷大或无穷小;(5)指数函数是可导函数,其导数可以由变量 x决定,只有当x 为正数或0时其导数才有意义,如当 x 为正数时,其导数为 a^x * ln(a);(6)对于指数函数而言,当其变量 x大时,其函数值 y 会越大,也就是说随着 x增大,y按照指数函数变化,而不像线性函数那样按照简单的等比数列变化。
二、指数函数的图像指数函数的图像只有在二维坐标系内才能看到,在二维坐标系内,指数函数的图像具有以下几个特点:(1)指数函数图像与底数 a正比,因此,当 a > 1,图像的斜率增大,而 a < 1,斜率减小;(2)指数函数的图像是一条弯曲的曲线;(3)指数函数的变量 x 与底数 a取值有关,当 a = 1,x值大小范围为所有实数;当 a > 1,x取值范围是所有正数;当 a < 1,x取值范围是所有负数;(4)指数函数的图像不会交叉,即,它的定义域和值域是相同的;(5)指数函数的图像没有不连续的部分,它表示的是一个连续的函数。
三、指数函数的应用指数函数的性质和图像有着广泛的应用,下面介绍几个比较常见的指数函数的应用:(1)指数函数在金融中有着重要的应用,例如,可以通过指数函数来计算投资利息、通货膨胀率等;(2)指数函数可以用来描述物理数据,例如压强温度曲线、热变形速度温度曲线等;(3)指数函数在社会学、政治科学和投票学中也有着广泛的用途,它可以帮助我们进行统计分析和预测社会变化;(4)指数函数也可以用来模拟电路中的电流电压曲线、正弦波等。
指数函数的图像及性质的应用
例4.讨论函数 的单调性,并求其值域.
任取x1,x2∈(-∞,1],且x1< x2 ,
∵f(x1)>0, f(x2)>0,
解:
则
复合函数的单调性
所以 f( x ) 在 (-∞,1]上为增函数.
又 x2 - 2x =(x -1)2 -1≥-1,
解:
例7.求证函数 是奇函数
证明:函数的定义域为R,
所以f(x)在R上是奇函数.
01
02
03
指数形式的复合函数的奇偶性
利用 f(0)= 0
1
解:若 f ( x ) 为奇函数,则 f(-x )=-f (x),
2
设a是实数, (2)试确定a的值,使f(x)为奇函数.
02
复合函数:
复合函数的单调性
内u=g(x)
增函数
减函数
增函数
减函数
外y=f(u)
增函数
减函数
减函数
增函数
复y=f[g(x)]
规律: 当内外函数的单调性相同时,其复合函数是增函数; 当内外函数的单调性不相同时,其复合函数是减函数 “同增异减”
增函数
增函数
减函数
减函数
“异”“同” 指内外函数单调性的异同
3
∴ a = 1.
4
变式练习
练习:
的定义域均为R
变式 1 、 函数 的单调增区间是
2、函数 的增区间为 ________. 值域为_________.
(-∞,1]
(0,81]
B
指数形式的复合函数的定义域与值域
2
O
x
y
7
6
5
4
3
2
指数函数的图像和性质
指数函数的图像和性质
指数函数是一种特殊函数,其定义域为实数集合R,值域也是实数集合R。
指
数函数的图像是一条弧线,朝右上方抛物线式延伸,底点在坐标原点处。
其图像如下所示:
指数函数具有以下性质:
一、指数函数是定义在实数集合上的单值函数,其图象是一条朝右上方延伸的
弧线,且在坐标原点处有底点,函数值随x增大而增大,函数图像上每一点到底点的距离都不变;
二、指数函数对任何正实数都有定义,指数函数f(x)=a^x(a为正实数)的图
谱具有单调性,当a的值不同时,指数函数的函数图象具有相似的特点;
三、指数函数具有不变性,不论x的取值范围如何,函数的函数图象仍不改变;
四、指数函数的切线斜率随着x的增大而增大;
五、指数函数的斜率在同一条线上增加或减少;
六、不论指数函数是升幂函数还是降幂函数,其图象都是从坐标原点开始,一
条朝右上方延伸的弧线。
以上就是指数函数的图像与性质,根据以上描述,指数函数的函数图像与以及
其性质可以得出:指数函数是从坐标原点开始,一条朝右上方延伸的弧线,有着单调性,不变性,切线斜率随着x的增大而增大等性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.(-1,1)
B.(-1,+∞)
C.(0,1)∪(1,+∞)
D.(-∞,-1)
D [不等式 2x+1<1=20,
因为 y=2x 在 R 上是增函数,所以 x+1<0,
即 x<-1.]
【例 1】 (1)下列一定是指数函数的是( )
A.y=ax
B.y=xa(a>0 且a-2)ax
单调性 在 R 上是_增__函__数__
在 R 上是_减__函__数__
1.思考辨析(正确的画“√”,错误的画“×”) (1)函数 y=-2x 是指数函数.( ) (2)函数 y=2x+1 是指数函数.( ) (3)函数 y=(-2)x 是指数函数.( ) (4)指数函数的图像一定在 x 轴上方.( )
2.指数函数 y=ax 与 y=bx 的图像如图所示, 则( )
A.a<0,b<0 B.a<0,b>0 C.0<a<1,b>1 D.0<a<1,0<b<1 C [函数 y=ax 的图像是下降的,所以 0<a<1;函数 y=bx 的图 像是上升的,所以 b>1.]
3.若 2x+1<1,则 x 的取值范围是( )
2.指数函数 y=ax(a>0 且 a≠1)的图像和性质
a>1
0<a<1
图像
定义域
R
值域
_(_0_,__+__∞_)_
性 过定点
__(0_,_1_)_
质 函数值 当 x>0 时,__y_>_1_; 当 x>0 时,_0_<_y_<_1_;
的变化 当 x<0 时,_0_<_y_<_1____ 当 x<0 时,__y>__1__
4.1.2 指数函数的性质与图像
将一张报纸连续对折,折叠次数 x 与对应的 层数 y 之间存在什么关系?对折后的面积 S(设原 面积为 1)与折叠的次数有怎样的关系?
折叠次数 x=1 x=2 x=3 ……
对应层数 y=2=21 y=4=22 y=8=23
……
对折后的面积 S S=12
S=14=122 S=18=123
……
由上面的对应关系,我们可以归纳出第 x 次折叠后对应的层数 为 y=2x(x∈N*),对折后的面积 S=12x(x∈N*).
问题:实例中得到的两个函数解析式有什么共同特征?
1.指数函数的定义 一般地,函数___y=___a_x _称为指数函数,其中 a 是常数,a>0 且 a≠1.
思考:指数函数中为什么规定 a>0 且 a≠1? [提示] (1)如果 a=0,当 x>0 时,ax 恒等于 0,没有研究的必要; 当 x≤0 时,ax 无意义; (2)如果 a<0,例如 f(x)=(-4)x,这时对于 x=12,14,…,该函数 无意义; (3)如果 a=1,则 y=1x 是一个常量,没有研究的价值. 为了避免上述各种情况,所以规定 a>0 且 a≠1.
(3)已知函数 f(x)=(2a-1)x 是指数函数,则实数 a 的取值范围是
________.
【例 2】 (1)函数 y=3-x(-2≤x≤1)的值域是( ) A.[3,9] B. 13,9C. 13,3 D. 19,13
【例 3】 (1)已知 a=1.50.5,b=0.51.5,c=0.50.5,则( )
A.a>b>c
B.a>c>b
C.b>a>c
D.c>a>b
(2)使不等式 92x-1<3 成立的 x 的集合是( )
A.-∞,78 C.87,+∞
B.-∞,34 D.43,+∞
(2)函数 y=(a-2)2ax 是指数函数,则( )
A.a=1 或 a=3
B.a=1
C.a=3
D.a>0 且 a≠1
1.(1)下列以 x 为自变量的函数中,是指数函数的是( )
A.y=(-4)x
B.y=πx
C.y=-4x
D.y=ax+2(a>0,a≠1)
(2)若函数 f(x)是指数函数,且 f(2)=9,则 f(x)=________.