初三数学上册《一元二次方程》

合集下载

初三上册数学《一元二次方程》知识点复习资料

初三上册数学《一元二次方程》知识点复习资料

初三上册数学《一元二次方程》知识点复习资料习是一架保持平衡的天平,一边是付出,一边是收获,少付出少收获,多付出多收获,那么你们知道关于初三上册数学《一元二次方程》知识点复习资料内容还有哪些呢?下面是小编为大家准备初三上册数学《一元二次方程》知识点复习资料大全,欢迎参阅。

初三上册数学《一元二次方程》知识点复习资料等号两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程。

注意一下几点:①只含有一个未知数;②未知数的次数是2;③是整式方程。

知识点二一元二次方程的一般形式一般形式:ax2+bx+c=0(a≠0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。

方程的解的定义是解方程过程中验根的依据。

21.2降次——解一元二次方程21.2.1配方法知识点一直接开平方法解一元二次方程(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。

一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=?a.(2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。

(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。

(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。

知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。

配方法的一般步骤可以总结为:一移、二除、三配、四开。

人教版九年级数学上册《一元二次方程》课件(共13张PPT)

人教版九年级数学上册《一元二次方程》课件(共13张PPT)

【跟踪训练】
3.把方程 x(2x-1)=1 化成 ax2+bx+c=0 的形式,则 a,
b,c 的一组值是( A )
A.2,-1,-1
B.2,-1,1
C.2,1,-1
D.2,1,1
4.把下列关于 x 的一元二次方程化为一般形式,并指出其 二次项系数、一次项系数和常数项.
(1)3x2=5x-1; (2)a(x2-x)=bx+c(a≠0). 解:(1)一般形式为 3x2-5x+1=0,二次项系数为 3,一次 项系数为-5,常数项为 1. (2)一般形式为 ax2-(a+b)x-c=0,二次项系数为 a,一次 项系数为-(a+b),常数项为-c.
证明:∵关于 x 的一元二次方程 ax2+bx+c=0(a≠0)中的 二次项系数与常数项之和等于一次项系数,
∴a+c=b. ∴当 x=-1 时,ax2+bx+c=a-b+c=b-b=0, ∴-1 必是该方程的一个根.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话, 另一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
第二十一章 一元二次方程
21.1 一元二次方程
1.一元二次方程的概念 只含有__一__个___未知数,并且未知数的最高次数是___2____ 的___整__式___方程,叫做一元二次方程. 注意:一元二次方程有三个特点:(1)只含有一个未知数; (2)未知数的最高次数是 2;(3)是整式方程.

初中数学九年级上册第二十一章 一元二次方程《一元二次方程》教案

初中数学九年级上册第二十一章 一元二次方程《一元二次方程》教案

一元二次方程一、教学目标:知识技能:1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,确定出二次项系数、一次项系数和常数项;3..理解一元二次方程的根的意义,能够运用代入法检验根的正确性.数学思考:在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性.问题解决:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移得到一元二次方程的概念.情感态度:通过用数学知识解决实际问题的思想激发学生的学习热情和积极性.二、教学重难点:通过类比一元一次方程,了解一元二次方程的概念、一般形式ax2+bx+c=0(a≠0)及一元二次方程的根等概念,并能用这些概念解决简单问题.把实际问题转化为一元二次方程模型.教学时间:两课时三、教学过程:第一课时洋葱小视频分享一、有关解方程的科学家的故事,激发学生学习方程的兴趣。

洋葱小视频分享二、一元二次方程的定义讲解,激发学生利用手中的工具提前预习,轻松学习知识。

(一)、知识回顾、教师引导学生完成下列题目,复习一元一次方程的相关知识:一元一次方程的知识:1.一元一次方程中的“一元”是指__1个未知数__,“一次”是指__未知数的次数是1__,一元一次方程左右两边都是__整式__的形式.2.一元一次方程的一般形式是__ax+b=0(a,b是常数,且a≠0)__.若关于x的方程(m+1)x|m|+1=0是一元一次方程,则m=____1____.3.什么是一元一次方程的解?如何判断一个数是不是一元一次方程的解?若已知x=1是方程ax+3=0的解,则a=__-3__.(二)、【课堂引入】问题1:有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?学生先自主探究、分析,再在小组内合作讨论,设出合适的未知数,根据等量关系列出方程.1.探究交流观察[课堂引入]中所列的方程,分析以上两个方程是不是一元二次方程,它们与一元一次方程有什么区别与联系.学生观察、思考、讨论、交流、汇报.教师重点引导学生观察得到所列方程的特点:①整式;②一元;③二次.引入课题(板书):一元二次方程.2.归纳定义问题:根据找出的一元二次方程的特征,你能给一元二次方程下个定义吗?教师引导学生结合所列方程的三个特征及一元二次方程的名称,类比一元一次方程的定义,得出一元二次方程的定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.教师板书:整式;一元;二次.(三)、新知探究运用1、(试一试)抢答:下列各方程是不是一元二次方程:①3x+2=5x-2;②2x2-2x=0;③x2=0;④-=0;⑤3y2=(3y+1)(y-2);⑥ax2+bx+c=0;⑦3x2=5x-1;⑧(x+3)(2x-4)=0.第二课时教学过程:一、简单回顾一元二次方程的定义及判断二、新知探究:(一)、一元二次方程的一般形式:问题1:类比一元一次方程的一般形式,你能写出一元二次方程的一般形式,并说出各项的名称吗?师生共同小结(板书):一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.(试一试)抢答:指出下列各方程的二次项、一次项和常数项.①3x2+2x-1=0;②2x2=3;③=0.(二)、问题2:类比一元一次方程的解的定义,你能给一元二次方程的根下定义吗?师生共同小结(板书):概念:一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根. (试一试)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3,4.(三)、【应用举例】例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.变式练习:将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.例2已知关于x的方程x2-2x+k2=0的一个根是1,那么k的值是________.变式练习:已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为________.(四)、【拓展提升】例3已知关于x的方程(2a-4)x2-2x+a=0,在什么条件下,此方程为一元一次方程?在什么条件下,此方程为一元二次方程?例4已知关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,求a的值.例5求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.学生自主思考,教师做好指导,最后由个别学生进行课堂解答,教师给予评价和辅导.教师指出解答问题的易错点和方法应用.三、【达标测评】1.若方程mx2-2x+m=0是关于x的一元二次方程,则( C )A.m为任意实数B.m=0C.m≠0 D.m=0或m=12.下列方程中,不含一次项的是(D)A.3x2-5=2x B.16x=x2C.x(x-7)=0 D.(x+5)(x-5)=03.若关于x的一元二次方程ax2+bx+c=0有一个根为1,则a+b+c=__0__;若a-b+c=0,则方程必有一根为__-1__.4.一元二次方程2x2=1-4x的二次项系数、一次项系数和常数项之和为__5__.5.若关于x的方程(k-1)x|k|-1-x-2=0是一元二次方程,求k的值.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.四、课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说!五、【教学反思】①[授课流程反思]在问题导入环节中,出示的问题有难度,需要教师进一步讲解;在新知探究环节中,学生充分发挥主动性,总结新知能力较强;在能力训练环节中,学生完成较好,值得鼓励与表扬.②[讲授效果反思]对于一元二次方程的定义,教师必须强调:(1)把握一般形式;(2)二次项系数不为0;(3)分清各项系数.③[师生互动反思]从课堂过程和效果分析,学生能够充分交流、合作,对于问题思考和解答都有独立性,效果较好.。

人教版九年级上册数学第21章一元二次方程知识点复习总结

人教版九年级上册数学第21章一元二次方程知识点复习总结

一元二次方程知识点复习总结1. 一元二次方程的一般形式:a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、c ;其中 a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式:当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根;Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根;Δ≥0 <=> 有两个实根(等或不等).4. 一元二次方程的根系关系:当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式:.ac x x ab x x )2(a2ac4bbx )1(212122,1,;※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式acx x a bx x 2121,;Δ=b 2-4ac 分析,不要求背记) (1)两根互为相反数ab = 0且Δ≥0 b = 0且Δ≥0;(2)两根互为倒数a c =1且Δ≥0 a = c 且Δ≥0;(3)只有一个零根a c = 0且a b ≠0 c = 0且b ≠0;(4)有两个零根a c = 0且a b = 0c = 0且b=0;(5)至少有一个零根a c =0 c=0;(6)两根异号a c <0 a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值a c <0且a b >0a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值a c <0且a b <0a 、c 异号且a 、b 同号;(9)有两个正根a c >0,ab >0且Δ≥0 a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根ac >0,ab <0且Δ≥0 a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.ax 2+bx+c=a(x-x1)(x-x2) 或 ax 2+bx+c=a2ac4bb xa2ac4bb xa 22.7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0.注意:所求出方程的系数应化为整数.8.平均增长率问题--------应用题的类型题之一(设增长率为x ):(1)第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程:第一年+第二年+第三年=总和.9.分式方程的解法:.0)1(),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x1x(x1x2)x1x(x1xx x 4)x x ()x x (x x 2)x x (xx )1(2121221221212122122121222222212212212122122214x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为;.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或;.0x ,0x :.1x x Bsin A cos ,1Acos Asin ,90BAB sin x ,A sin x )4(2122212221注意隐含条件可推出由公式时且如.0x ,0x :.x ,x ),,(,x ,x )5(212121注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个。

九年级上册第二章《一元二次方程》教材分析

九年级上册第二章《一元二次方程》教材分析
5、在求方程近似解时,学生会觉得无从下手,所以应启发学生根据实际生活确定未知数的大致范围,再通过具体计算进行两边“夹逼”逐步获得近似解。
第二节配方法
教学目标:
一、教学知识点:
1、会用开平方的方法解形如 的方程
2、理解一元二次方程的解法——配方法
3、会用配方法解简单的数字系数的一元二次方程
4、了解用配方法解一元二次方程的基本步骤
2、能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题,解决问题的意识和能力。
3、了解一元二次方程及其相关概念,会用配方法,公式法,分解因式法解简单的一元二次方程(数字系数),并在解一元二次方程的过程中体会转化等数学思想。
4、经历在具体情境中估计一元二次方程解的过程,发展估算意识和能力。
2、会用求根公式解一元二次方程
二、能力训练要求:
1、通过公式的推倒,加强推理技能训练,进一步发展逻辑思维能力。
2、会用公式法解简单的数字系数和一元二次方程
三、情感与价值观要求:
通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯。
教学重点:
一元二次方程的求根公式。
教学难点:
求根公式的条件:
1、经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效的数学模型
2、理解一元二次方程的概念
3、经历方程解的探索过程,增进对方程解的认识,发展估算意识际中抽象出数学问题,让学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识和产生探求其解的欲望,为方程精确解的研究做了铺垫,产生求精确解的内在要求。
2、会用分解因式法(提公因式法、公式法)解某些简单的数字系数的一元二次方程。

九年级数学上一元二次方程的解法教案(优秀5篇)

九年级数学上一元二次方程的解法教案(优秀5篇)

九年级数学上一元二次方程的解法教案(优秀5篇)数学《一元二次方程》教案设计篇一教学目标1、了解整式方程和一元二次方程的概念;2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:1、教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。

方程,只有当时,才叫做一元二次方程。

如果且,它就是一元二次方程了。

解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。

如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。

如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

初三上册数学教学工作计划篇二【学习目标】1、了解整式方程和一元二次方程的概念。

2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

【重点、难点】重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定【学习过程】一、知识回顾1、什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。

初中数学教学课例《一元二次方程(1)》课程思政核心素养教学设计及总结反思

初中数学教学课例《一元二次方程(1)》课程思政核心素养教学设计及总结反思
课题,明确本节课的中心任务。 择与设计
3.播放“未铺地毯区域有多宽”的课件,说明题 目的条件和要求,课件要求制作得精美并且可以清楚得 显示出各个量之间的关系。
4.给学生时间思考:如何明确并用数学式子表示
出题目中的各个量? 5.让学生回答他们的答案是什么,给予点评,让
学生核对答案,可以以学生举手示意的方式掌握全班的 情况。
没有深入的理解。通过本节课的学习,应该让学生进一
步体会一元二次方程也是刻画现实世界的一个有效数
学模型。
1、会根据具体问题列出一元二次方程,体会方程
的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程
的一般形式;会把一个一元二次方程化为一般形式;会
判断一元二次方程的二次项系数、一次项系数和常数 教学目标
10.设置悬念:有的同学猜测是 1 米,到底是多少, 我们后面来看一看。为后续学习做好铺垫。
11.让学生说出他们的答案,点评,其他学生核对 自己的答案;可以以学生举手示意的方式掌握全班的情 况。
12.肯定学生的表现:大家自己的探索已经很好地 打开了第二章“一元二次方程”的大门,相信同学们这 一章会学得很好。
①在这个问题中,梯子顶端下滑 1 米时,梯子底端 滑动的距离大于 1 米,那么梯子顶端下滑几米时,梯子 底端滑动的距离和它相等呢?②如果梯子长度是 13 米,梯子顶端下滑的距离与梯子底端滑动的距离可能相 等吗?如果相等,那么这个距离是多少?
3、观察下面等式:102+112+122=132 +142 你还能找到其他的五个连续整数,使前三个数 的平方和等于后两个数的平方和吗?
10.总结本节内容,记下作业。(分析学生在本课 中所需学习方法的掌握情况、学生的课堂学习行为与习 惯、合作学习氛围、学生认知障碍等)

人教版九年级数学课件《一元二次方程根的判别式》

人教版九年级数学课件《一元二次方程根的判别式》

典例解析
人教版数学九年级上册
例3 不解方程,判断下列方程的根的情况. (1)3x2+4x-3=0; (2)4x2=12x-9;
(3) 7y=5(y2+1).
解:(1)3x2+4x-3=0,a=3,b=4,c=-3, ∴b2-4ac=32-4×3×(-3)=52>0. ∴方程有两个不相等的实数根.
(2)方程化为:4x2-12x+9=0, ∴b2-4ac=(-12)2-4×4×9=0.
解:(2m+1)2 -4 (m−2)2 ≥0
4m2 +4m+1- 4m2 +16m-16≥0
20m≥15
m≥ 34 又∵ (m−2)2 ≠0 ∴m≠2 ∴m≥ 34 且m≠2
针对练习
人教版数学九年级上册
7.在等腰△ABC 中,三边分别为a,b,c,其中a=5,若关于x的方程 x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC 的周长.
解:关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根, 所以Δ=b2-4ac=(b+2)2-4(6-b)=b2+8b-20=0. 所以b=-10或b=2. 将b=-10代入原方程得x2-8x+16=0,x1=x2=4; 将b=2代入原方程得x2+4x+4=0,x1=x2=-2(舍去);
所以△ABC 的三边长为4,4,5, 其周长为4+4+5=13.
=4m2-4m+1-4m2+4m=1>0,
∴此方程有两个不相等的实数根.
(2)解方程x2-(2m-1)x+m2-m=0
得x=m或x=m-1,
∵a>b,m>m-1,

人教版九年级数学课件《一元二次方程根与系数的关系》

人教版九年级数学课件《一元二次方程根与系数的关系》

知识精讲
人教版数学九年级上册
解下列方程并完成填空:
(1)x2+3x-4=0;
(2)x2-5x+6=0;
(3)2x2+3x+1=0.
一元二次方程
x2+3x-4=0 x2-5x+6=0 2x2+3x+1=0
a b c 两根
x1 x2
关系
1 3 -4 -4 1 x1+x2=_-_3_;x1 ·x2=__-4_.
【特别强调】满足上述关系的前提条件:b2-4ac≥0.
典例解析
人教版数学九年级上册
例1:利用根与系数的关系,求下列方程的两根之和、两根之积.
(1)x2 + 7x + 6 = 0;
(2)2x2 - 3x - 2 = 0.
解: a = 1 , b = 7 , c = 6.
解: a = 2 , b = -3 , c = -2.
二、常见的求值应用
1. 1 1 x1 x2 ;
x1 x2
x1 x2
2. x12 x22 (x1 x2 )2 2x1x2 =(x1-x2 )2 +2x1x2;
3. x1 x2 (x1 x2 )2 (x1 x2 )2 4x1x2 .
人教版数学九年级上册
THE END!
祝各位同学们学业进步、天天向上!
设方程的两个实数根是 x1, x2, 那么
x1 + x2 =
3 2
, x1 x2 = -1 .
典例解析
人教版数学九年级上册
例2:已知方程5x2+kx-6=0的一个根是2,求它的另一个根
及k的值.
解:设方程的两个根分别是x1、x2,其中x1=2 .

初三上册数学一元二次方程知识点公式法

初三上册数学一元二次方程知识点公式法

初三上册数学一元二次方程知识点公式法一元二次方程的定义一元二次方程是指形式为Ax^2 + Bx + C = 0的方程,其中A、B 和C都是已知的实数且A ≠ 0。

其中,A是二次项系数,B是一次项系数,C是常数项。

一元二次方程的解一元二次方程的解可以通过求根公式来求得。

求根公式为:x = (-B ± √(B^2 - 4AC)) / (2A)。

其中,“±”表示两个解,即正负两个值。

如果根的判别式D = B^2 - 4AC大于0,方程有两个不相等的实数根;如果D = 0,方程有两个相等的实数根;如果D < 0,方程没有实数根。

一元二次方程的性质1.一元二次方程的图像是抛物线。

当A > 0时,抛物线开口朝上;当A < 0时,抛物线开口朝下。

2.一元二次方程的对称轴是x = -B/2A。

对称轴将抛物线分成两个对称的部分。

3.一元二次方程的顶点坐标为(-B/2A, f(-B/2A)),其中f(x)为方程的解析式。

4.一元二次方程的解的个数与判别式D的大小相关。

当D > 0时,方程有两个不相等的实数根;当 D = 0时,方程有两个相等的实数根;当D < 0时,方程没有实数根。

5.一元二次方程的解与方程的系数有关。

如果改变A、B、C的大小,方程的解也会相应改变。

公式法解一元二次方程的步骤1.将方程写成标准形式:Ax^2 + Bx + C = 0,其中A ≠ 0。

2.计算判别式D = B^2 - 4AC。

3.根据判别式的大小判断方程的解的个数:–当D > 0时,方程有两个不相等的实数根,可以使用求根公式直接计算。

–当D = 0时,方程有两个相等的实数根,可以使用求根公式直接计算。

–当D < 0时,方程没有实数根,无法使用求根公式计算。

4.如果方程有实数根,使用求根公式计算解:–x1 = (-B + √D) / (2A)–x2 = (-B - √D) / (2A)例题演示例题1:解一元二次方程 2x^2 - 5x + 2 = 0。

九年级数学上册(一元二次方程)教案 新人教版 教案

九年级数学上册(一元二次方程)教案 新人教版 教案

《一元二次方程》教案第一课时教学内容:一元二次方程概念及一元二次方程的一般形式及有关概念.教学目标:1. 通过设置问题,建立数学模型,•模仿一元一次方程的概念给一元二次方程下定义。

2.了解一元二次方程的概念;能熟练地把一元二次方程整理成一般形式:ax2+bx+c=0(a、b、c是常数,a≠0)。

3.通过教学,让生分清一般形式中的二次项及其系数,一次项及其系数以及常数项各是什么。

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键:1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程:一、复习引入学生活动:列方程.问题(1)绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?如果假设长方形的宽为x•米,•那么,•这个的长为_______•米,•根据题意,•得________.整理、化简,得:__________.问题(2)如图,如果AC CBAB AC,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=______,根据题意,得:________.整理得:_________.问题(3)学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册。

求这两年的年平均增长率。

如果假设这两年的年平均增长率为x。

则今年年底的图书数是__________万册。

同样,明年年底的图书数又是今年的_________倍,即____________万册。

由此可得方程____________________________,整理得:________________________。

老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得:40-16x-10x+4x2=18移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:去括号,得:x2+2x+1+x2-4=1移项,合并得:2x2+2x-4=0其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.三、巩固练习教材P19练习题:(1)、(2)、(3)、(4).四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.五、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.教材P19习题23.1 : 1、2、3.2.选用作业设计.作业设计一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个 B.2个 C.3个 D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为(). A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值X围是________.三、综合提高题1.a满足什么条件时,关于x的方程a(x2+x)x-(x+1)是一元二次方程?2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?3.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,•是这样做的:设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:第一步:所以,________<x<__________第二步:所以,________<x<__________(1)请你帮小明填完空格,完成他未完成的部分;(2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______.。

人教版九年级上册数学精品教学课件 第21章 一元二次方程 第1课时 传播问题与一元二次方程

人教版九年级上册数学精品教学课件 第21章 一元二次方程 第1课时 传播问题与一元二次方程

x(x 1) 10. 2
解得 x1=5,x2=−4(舍去).∴ x=5.
答:共有 5 个人参加聚会.
归纳 握手问题及球赛单循环问题要注意重复进行了 一次,所以要在总数的基础上除以 2.
【变式题】某中学组织初三学生开展足球比赛,以班为
单位,采用主客场赛制 (即每两个班之间都进行两场比 赛),计划安排 72 场比赛,则共有多少个班级参赛? 解:设共有 x 个班级参赛,则每个班级要进行(x-1)场
第 2 轮传染后人数 x(x + 1) + x + 1
根据示意图,列表如下:
传染源人数 第1轮传染后的人数 第2轮传染后的人数
1
1 + x = (1 + x)1 1 + x + x(1 + x) = (1 + x)2
解:设每轮传染中平均一个人传染了 x 个人.
根据题意,得 (1 + x)2 = 121.
小 分


x
…… 支干
x2 = −12 (不合题意,舍去).
x
答:每个支干长出 11 个小分支.
主干 1
交流讨论 1. 在分析引例和例 1 中的数量关系时它们有何区别?
每个支干只分裂一次,每名患者每轮都传染.
2. 解决这类传播问题有什么经验和方法? (1)审题,设元,列方程,解方程,检验,作答; (2)可利用表格梳理数量关系; (3)关注起始值、新增数量,找出变化规律.
A. x2 = 1980 C. 1 x(x - 1) = 1980
2
B. x(x + 1) = 1980 D. x(x - 1) = 1980
2. 有一根月季,它的主干长出若干数目的支干,每个支

(最新)人教版九年级数学上册《一元二次方程》教案

(最新)人教版九年级数学上册《一元二次方程》教案

《一元二次方程》教案教学内容本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.教学目标知识技能 探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识。

数学思考 在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系。

解决问题培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养。

情感态度通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.重难点、关键重点:一元二次方程的定义、各项系数的辨别,根的作用.难点:根的作用的理解.关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程 一、 情境引入【问题情境】问题1 如图,有一块矩形铁皮,长100 cm ,宽50 cm .在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm 2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为xcm,则盒底的长为 ,宽为 .根据方盒的底面积为3600cm2,得方程为 _______________ ,,整理, 得问题 2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?分析:全部比赛共4×7=28场350752=+-x x 0350752=+-x x设应邀请x 个队参赛,每个队要与其他 _____ 个队各赛1场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共 ______________场.得方程____________________________整理, 得【活动方略】 教师演示课件,给出题目.学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题.【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.二、 探索新知【活动方略】学生活动:请口答下面问题.(1)上面两个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x ;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.【设计意图】主体活动,探索一元二次方程的定义及其相关概念.三、范例点击 例1 将方程3(1)5(2)x x x -=+化成一元二次方程的一般形式,并指出各项系数. 解:去括号得233510x x x -=+,移项,合并同类项,得一元二次方程的一般形式238100x x --=.其中二次项系数是3,一次项系数是-8,常数项是-10.【活动方略】学生活动:学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系562=-x x 562=-x x数.教师活动:在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题).【设计意图】进一步巩固一元二次方程的基本概念.例2 猜测方程2560x x --=的解是什么?【活动方略】学生活动:学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x =1、2、3、4、5等,发现x =8时等号成立,于是x =8是方程的一个解,如此等等.教师活动:教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结: 使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).【设计意图】探究一元二次方程根的概念以及作用.四、跟踪训练。

人教版九年级数学上册《一元二次方程》知识点总结

人教版九年级数学上册《一元二次方程》知识点总结

人教版九年级数学上册《一元二次方程》知识点总结合理的总结,合理的归结,关于考试效果会有很大的协助,下文为大家引荐了一元二次方程知识点总结,祝大家期末考试顺利。

1. 一元二次方程的普通方式: a≠0时,ax2+bx+c=0叫一元二次方程的普通方式,研讨一元二次方程的有关效果时,少数习题要先化为普通方式,目的是确定普通方式中的a、 b、c; 其中a 、 b,、c能够是详细数,也能够是含待定字母或特定式子的代数式.
2. 一元二次方程的解法: 一元二次方程的四种解法要求灵敏运用,其中直接开平方法虽然复杂,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发作计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法运用较少.
3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a≠0)时,
Δ=b2-4ac 叫一元二次方程根的判别式.请留意以上等价命题:
Δ>0有两个不等的实根; Δ=0有两个相等的实根;
Δ无实根; Δ≥0有两个实根(等或不等).
4. 一元二次方程的根系关系:当ax2+bx+c=0 (a≠0) 时,如Δ≥0,有以下公式:
有了查字典数学网为大家整理的一元二次方程知识点总结,
大家觉得是不是方便了很多,那么大家就要及时关注本网站了。

数学人教版九年级上册《一元二次方程》说课稿

数学人教版九年级上册《一元二次方程》说课稿

(三观察迁移、采用发现法、探究法、 练习法为辅的教学方法.
2、学法分析 :在教学活动中,指导学生自主探究
为出发点养,让学生合作探究。建立数学模型.通 过观察类比得出一元二次方程的相关概念及根的意 义
三、说教学程序(五个环节)
(一)情境激趣与引入。
(以上问题引导学生讨论,检查学生对基础知识的掌握情况.对 一元二次方程的根有更深刻的理解。)
(四)课堂总结
本节课你学到了什么知识?从中得到了什么启发? (1)一元二次方程的概念; (2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、 二次项系数,一次项、一次项系数,常数项的概念及其它们的运 用; (3)一元二次方程根的概念以及作用 教师引导学生归纳小结,学生反思学习和解决问题的过程. 学生独立完成作业,教师批改、总结.
六、 板书设计
谢谢观赏!
(三) 应用拓展
1.下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4. 2.你能用以前所学的知识求出下列方程的根吗? (1)x2-64=0 (2)3x2-6=0 (3) 3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,这块铁 片应该怎样剪? 设长为xcm,则宽为(x-5)cm,列方程x(x-5)=150,即x2-5x-150=0 请根据列方程回答以下问题: (1)x可能小于5吗?可能等于10吗?说说你的理由. x1011121314151617…x2-5x-150
由实际问题入手,设置情境问题, 激发学生的兴趣,体会数学来源于生活, 又应用于生活,让学生初步感受一元二 次方程,同时让学生体会方程这一刻画 现实世界的数学模型.
(二)探索新知
通过活动一的情景分析,让学生小组合作,列出方程.在学生 列出方程后,对所列方程进行整理,并引导学生分析所列方程的特 征得出一元二次方程的概念.由于一元二次方程的概念是本节的重 点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、 自我分析、自我修正、自我反思,让学生真正理解一元二次方程概 念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数 的最高次数是2. 创设学生熟悉的生活情境,由学生自主探索一元二次方程的定 义及其相关概念.同时体现出一种“问题情景---数学模型-----概 念归纳”的模式,有计划的逐步展示知识的产生过程,渗透方程思 想.通过例1.例2进一步巩固一元二次方程的基本概念. 通过活动二 探究一元二次方程根的概念以及作用。

人教版数学九年级上册第二十一章《一元二次方程》简介

人教版数学九年级上册第二十一章《一元二次方程》简介

第二十一章“一元二次方程”简介课程教材研究所章建跃一元二次方程是刻画数量关系的重要数学模型。

一元二次方程的解法和实际应用是初中阶段的核心内容。

前面已经学习了一元一次方程、二元一次方程组以及分式方程等,本章学习一元二次方程的解法,讨论与方程的根有关的几个基本问题(判别式与方程的根、根与系数的关系等),在此基础上学习利用一元二次方程模型解决简单的实际问题。

本章的学习将为后续的勾股定理、二次函数等打下学习基础,在学生的“四基”、“四能”的发展,特别是在运算能力、推理能力、模型思想和应用意识的培养上可以发挥较大作用。

本章教学时间约需13课时,具体分配如下(仅供参考):21.1 一元二次方程1课时21.2 解一元二次方程 7课时21.3 实际问题与一元二次方程 3课时数学活动小结2课时一、教科书内容和本章学习目标1.本章知识结构现实生活中,许多问题中的数量关系可以抽象为一元二次方程。

因此,从深化数学模型思想、加强应用意识的角度看,从实际问题中抽象出数量关系,列出一元二次方程,求出它的根进而解决实际问题,是本章学习的一条主线。

学生已经学习一元一次方程的解法和实际应用,知道可以利用运算律、等式的基本性质,通过去括号、移项、合并同类项等求出它的解。

学生还学过二元一次方程组以及三元一次方程组的解法和实际应用,知道可以通过消元,将它们转化为一元一次方程。

从数学知识的内部发展看,二元、三元一次方程组可以看成是对一元一次方程在“元”上的推广。

自然地,如果在次数上做推广,首先就是一元二次方程。

类比二(三)元一次方程组的解法,可以想到:能否将一元二次方程转化为一元一次方程?如何转化?因此,利用什么方法将“二次”降为“一次”,这是本章学习的另一条主线。

与一元一次方程、二元一次方程组的解法相比,一元二次方程的解法涉及更多的知识,可以根据方程的具体特点,选择相关的知识和方法,对方程进行求解。

这是培养学生的思维品质,特别是思维的敏捷性、灵活性、深刻性的机会。

人教版数学九上21.2《解一元二次方程》(配方法)ppt课件

人教版数学九上21.2《解一元二次方程》(配方法)ppt课件
方程两边都加上一次项系数的一半的平方,使 左边配成一个完全平方式
3.你能总结出来用这种方法解一元二次方程的 步骤吗?
21.2 解一元二次方程
3.你能总结出来用这种方法解一元二次方程的 步骤吗? (1)把常数项移到方程右边; (2)方程两边同除以二次项系数,化二次项 系数为1; (3)方程两边都加上一次项系数一半的平方 ; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方 求出方程的解,如果右边是负数,则一元二次 方程无解.
,配方后的方程可以是A( )
A.(x-1)2=4
B.(x+1)2=4
C.(x-1)2=16
D.(x+1)2=16
2.一个小球以15 m/s的初速度向上竖直弹出
,它在空中的高度h(m)与时间t(s)满足关系式h
=15t-5t2,当小球的高度为10 m时,t为C( )
A.1 s
B.2 s
C.1 s或2 s
21.2 解一元二次方程
1.用配方法解一元二次方程x2-4x=5时
,此方程可变形D为( ) A.(x+2)2=1
B.(x-2)2=
1
C.(x+2)2=9
D D.(x-2)2=9
2.下列配方有错误的是(
)
A.x2-2x-3=0化为(x-1)2=4
B.x2+6x+8=0化为(x+3)2=1
C.x2-4x-1=0化为(x-2)2=5
用配方法解二次项系数不是1的一元二次方程,首先方 程两边都除以二次项系数,将方程化为二次项系数是1 的类型.
21.2 解一元二次方程
1.通过配成__完___全__平__方__形__式___来解一元二次方程的方法叫

新人教版九年级数学(上)一元二次方程的解法——配方法、求根公式法

新人教版九年级数学(上)一元二次方程的解法——配方法、求根公式法

新人教版九年级数学(上)一元二次方程的解法——配方法、求根公式法知识点一、配方法解一元二次方程()002≠=++a c bx ax 222442a ac b a b x -=??? ??+? ※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。

典型例题:例1、试用配方法说明322+-x x 的值恒大于0。

例2、已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。

例3、已知,x、y y x y x 0136422=+-++为实数,求yx 的值。

例4、分解因式:31242++x x一元二次方程的解法(二)针对练习:★★1、试用配方法说明47102-+-x x 的值恒小于0。

★★2、已知041122=---+x x x x ,则=+x x 1 .★★★3、若912322-+--=x x t ,则t 的最大值为,最小值为。

★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为。

知识点二、根的判别式从配方法那里我们知道不是所有的一元二次方程都是有实数解的,原因在于配方得到的右边的项为2244a ac b - ;而当04422<-a ac b ,是不能开方的,所以方程无实数解。

而2244aac b -与0的大小关系又取决于ac b 42-;所以:当042>-ac b 时,方程有两个不相等的实数根;当042=-ac b 时,方程有两个相等的实数根;当042<-ac b 时,方程没有实数根。

由此可知ac b 42-的取值决定了一元二次方程根的情况,我们把ac b 42-称作根的判别式,用符号“Δ”表示;即:ac b 42-=? 根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。

典型例题:例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是。

例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( ) A.10≠≥且m m B.0≥m C.1≠m D.1>m例3、已知关于x 的方程()0222=++-k x k x (1)求证:无论k 取何值时,方程总有实数根;(2)若等腰?ABC 的一边长为1,另两边长恰好是方程的两个根,求?ABC 的周长。

九年级数学上册第一单元知识点总结,初三数学上册第二章知识点归纳(人..

九年级数学上册第一单元知识点总结,初三数学上册第二章知识点归纳(人..

九年级数学月考知识点汇总第二十一章一元二次方程22.1一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.注意一下几点:©只含有一个未知数;②未知数的最高次数是2;③是整式方程.知识点二一元二次方程的一般形式—般形式:«v2+c=o(a^0)其中,ax1是二次项,。

是二次项系数;冰是一次项,方是一次项系数;。

是常数项.知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根一方程的解的定义是解方程过程中验根的依据.22.2降次——解一元二次方程22.2.1配方法知识点一直接开平方法解一元二次方程(1)如果方程的一边可以化成含未知数的代数式的平方,另—边是非负数,可以直接开平方.一般地,对于形如亍=°("20)的方程,根据平方根的定义可解得•砂+扁=-槌厂⑵直接开平方法适用于解形如X2=2或国+。

下=P(""0)形式的方程,如果p^O,就可以利用直接开平方法.(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根・(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根.知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解.配方法的一般步骤可以总结为:一移、二除、三配、四开.(1)把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4)若等号右边为非负数,直接开平方求出方程的解.2222公式法知识点一公式法解一元二次方程$一般地,对于一元二次方ox2+fex+<c=0(o*0)t女口b2 -4ac>0,程那么方程的两个根为LL,这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由一元二方程的系数a,b,c的值直接求得方程的解’这种解方程的方法叫做公式法.Q一元二次方程求根公式的推导过程,就是用配方法解一般形式的一元二次方程”+bx+c=0(a*0)的过程.$公式法解一元二次方程的具体步骤:①方程化为一般形式:履+&r+c=O(a,O),—般1化为正值②确定公式中a,b,c的值,注意符号;③求出44W的值;④若yg则把a,b,c和b-4ac的值代入公式即可求解,广4”<0,则方程无实数根.知识点二一元二次方程根的判别式式子甘-4ac叫做方程履+bx+c=0(g0)根的判别式,通常用希腊字母△表示它,即A=/-4oc,22.2.3因式分解法知识点一因式分解法解一元二次方程①把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求两个一元一次方程的解,这种解方程的方法叫做因式分解法.0因式分解法的详细步骤:①移项,将所有的项都移到左边,右边化为0;②把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式和完全平方公式;令每一个因式分别为零,得到一元一次方程;③④解一元一次方程即可得到原方程的知识点二用合适的方法解一元一次方程222.4 一元二次方程的根与系数的关系(了解)方法名称理论依据适用范围直接开平方法平方根的意义形如/ =#或(m + 刀尸=pQp>0)配方法完全平方公式所有一元二次方程公式法配方法所有一元二次方程因式分解法当 ab=O,则 a=0 或 b=0一边为0,另一边易于分解成两个一次因式的积的一元二次方程.若一元二次方程F +处+q=0的两个根为八,则有+ X 2 = —p 9 Xi x 2= q若一元二次方程技+fcr + c=O0MO )有两个实数根.Xb X +X = — .XX a 则有C a 22.3实际问题与一元二次方程知识点一列一元二次方程解应用题的一般步骤:(1)审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的等量关系.(2) 设:是指设元,也就是设出未知数・(3) 歹IJ :就是列方程,这是关键步骤,一般先找出能够表达应 用题全部含义的一个相等含义,然后列代数式表示这个相等关系中的各个量,就得到含有未知数的等式,即方程一(4)解:就是解方程,求出未知数的值一(5)验:是指检验方程的解是否保证实际问题有意义,符合题意.(6)答:写出答案.知识点二列一元二次方程解应用题的几种常见类型(1)数字问题三个连续整数:若设中间的一个数为x,则另两个数分别为x-L x+1.三个连续偶数(奇数):若中间的一个数为X,则另两个数分别为x-2,x+2.三位数的表示方法:设百位、十位、个位上的数字分别为&则这个三位数是100a+10b+c.(2)增长率问题设初始量为终止量为b,平均增长率或平均降低率为x,则经过两次的增长或降低后的等量关系为用±西。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的想一想
(1)关于x的方程是一元二次方程吗?
(2)关于x的方程是一元二次方程的条件是什么?
(注意a≠0的条件!)
⑶巩固练习深化知识
做一做
1.将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:
(及时巩固新知,为公式法的学习打下基础!)
我说的就这些,不足之处请各位专家、老师批评指正!
拓展题:用试验的方法探索情景二中竹竿的长度!
附板书设计:
一元二次方程
一元二次方程的概念
一元二次方程的一般形式:
㈤说评价
课堂教学是一个动态过程,学生的思维又常常受到课堂气氛或突发事件的影响,为了达到最佳的教学效果,我将"教学反应"型评价和"教学反馈"型评价相结合,一方面根据课堂实施状况和学生反馈的信息而作出一种即时性评价,并顺势从教学内部进行调节;另一方面根据课堂练习的反馈,了解学生掌握知识的程度,灵活安排教学细节,从而达到教学的预期效果.
⑴创设情境导入新课⑵自主探索归纳新知⑶巩固练习深化知识⑷归纳小结反思提高⑸布置作业分层落实
⑴创设情境导入新课
情景一:教材页的"问题1
有一根竹竿,不知道它有多长,把竹竿竖放在城门前,竹竿比门高三尺;把竹竿横放在这门前,竹竿比门宽六尺;把竹竿斜放,竹竿正好和门的对角线等长,问竹竿长几尺?设竹竿长x尺,由题意得:
读一读
请同学们阅读教材页的"问题2",进一步明确列方程解实际问题的思路和方法.设这两年的年平均增长率为x.由题意得:(培养学生的自学能力)将三个问题中的方程整理得:
.
(方程模型的建立为下一环节的教学做好铺垫)
⑵自主探索归纳新知
比较一:与一元一次方程作纵向比较得一元二次方程的概念:
只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.比较二:方程之间作横向比较得一元二次方程的一般形式:ax²+bx+c=0(a,b,c是已知数,a≠0),其中a,b,c分别叫做二次项系数、一次项系数和常数项.
⑵教学重点
一元二次方程的概念及一般形式.
⑶教学难点
经历用试验的方法探索方程的解,并会解释解的合理性.
㈡说目标
教学目标
1.知识目标:使学生充分了解一元二次方程的概念;正确掌握一元二次方程的一般形式.
2.能力目标:经历抽象一元二次方程的过程,使学生体会出方程是刻画现实世界中数量关系的一个有效数学模型;经历探索满足方程解的过程,发展估算的意识和能力.
2.用试验的方法探索情景一中所列方程x(x+10)=900的解,方程有几个解?都是情景一的解吗?突破难点
组1:900=2×2×3×3×5×5
900=36×25或900=(-36)×(-25)……
组2:
宽…20…30…
长…30…40…
面积…600…1200…宽…25…26…
面积…875…936…
长…35…36…
一元二次方程说课稿
各位领导、专家、老师大家好:很高兴能有机会参加这次活动,并能得到您的指导.我说课的题目是华师大版九年级(上)第23章第一节《一元二次方程》.说课内容
⑴说教材⑵说目标⑶说教学方法⑷说教学程序⑸说评价
㈠说教材
⑴教材分析
本节课介绍了一元二次方程的概念及一般形式.一元二次方程的学习是一次方程、方程组及不等式知识的延续和深化,也是函数等重要数学思想方法的基础.本节课是研究一元二次方程的导入课,它为进一步学习一元二次方程的解法及简单应用起到铺垫作用.
宽…25.4…25.5…宽…25.41…25.42…
长…35.4…35.5…长…35.41…35.42…
面积…899.16…905.25…面积…899.7681…900.3746…⑷归纳小结反思提高
小结:通过本节课的学习,你学到了哪些知识?请谈一谈体会和收获.⑸布置作业分层落实
作业:
基本题:教材习题1、2、3;
3.情感目标:培养学生主动探索、敢于实践、勇于发现、合作交流的精神.㈢说教学方法
⑴教法分析
本节课主要采用以类比发现法为主,以讨论法、练习法为辅的教学方法.⑵学法指导
本节课的教学中,教会学生善于观察、分ቤተ መጻሕፍቲ ባይዱ讨论、类比归纳,最后抽象出有价值⑶教学手段
采用电脑多媒体辅助教学,利用实物投影进行集体交流,及时反馈相关信息㈣说教学程序
相关文档
最新文档