第2章2.3.2双曲线的几何性质(二)

合集下载

2.3.2 双曲线的简单几何性质

2.3.2 双曲线的简单几何性质

思路分析将双曲线方程化为标准方程,先求出参数a,b,c的值,再写
出各个结果.
解双曲线的方程化为标准形式是������2
9

���4���2=1,
∴a2=9,b2=4,
∴a=3,b=2,c= 13.
又双曲线的焦点在 x 轴上,
∴顶点坐标为(-3,0),(3,0),
焦点坐标为(- 13,0),( 13,0),
������2+������2 ������2
=
1+
������ ������
2,所以������������ =
������2-1,所以离心率
的大小决定了渐近线斜率的大小,从而决定了双曲线开口的大小,离
心率越大,开口越开阔,离心率越小,开口越扁狭.
4.等轴双曲线是指实轴长与虚轴长相等的双曲线,其渐近线方程
������2
������

������2
������
=1(λ≠0),由题意得
49
a=3.
当 λ>0 时,4������=9,λ=36,双曲线方程为���9���2 − ���4���2=1;
当 λ<0 时,-9������=9,λ=-81,双曲线方程为���9���2 − 48���1���2=1.
为 y=±x,离心率等于 2.
课前篇自主预习
【做一做1】 若点M(x0,y0)是双曲线
������2 4

������2 25
=1上支上的任意一点,
则x0的取值范围是
,y0的取值范围是
.
解析因为a2=4,b2=25,所以a=2,b=5,所以x0∈R,y0≥2.
ቤተ መጻሕፍቲ ባይዱ

人教版选修21第二章双曲线双曲线的几何性质讲义

人教版选修21第二章双曲线双曲线的几何性质讲义

案例(二)——精析精练课堂 合作 探究重点难点突破知识点一双曲线的几何性质 (1)范围、对称性由标准方程12222=-b y a x 可得22a x ≥,当a x ≥时,y 才有实数值;对于y 的任何值,x 都有实数值。

这说明从横的方向来看,直线a x a x =-=,之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线。

双曲线不封闭,但仍称其对称中心为双曲线的中心。

(2)顶点顶点:()()0,,0,21a A a A -,特殊点:()()b B b B ,0,,021-。

实轴:21A A 长为a 2,a 叫做半实轴长;虚轴:21B B 长为b 2,b 叫做虚半轴长。

如右图所示,在双曲线方程12222=-by a x 中,令0=y 得a x ±=,故它与x 轴有两个交点()0,1a A -,()0,2a A ,且x 轴为双曲线12222=-b y a x 的对称轴,所以()0,1a A -与()0,2a A 其对称轴的交点,称为双曲线的顶点(一般而言,曲线的顶点均指与其对称轴的交点),而对称轴上位于两顶点间的线段21A A 叫做双曲线12222=-by a x 的实轴长,它的长是a 2。

在方程12222=-by a x 中,令0=x ,得22b y -=,这个方程没有实数根,说明双曲线和y y 轴没有交点。

但y 轴上的两个特殊点()()b B b B ,0,,021-,这两个点在双曲线中也有非常重要的作用把线段21B B 叫做双曲线的虚轴,它的长是b 2,要特别注意不要把虚轴与椭圆的短轴混淆。

双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异。

(3)渐近线如上图所示,过双曲线12222=-by a x 的两顶点21,A A ,作y 轴的平行线a x ±=,经过21,B B 作x 轴的平行线b y ±=,四条直线围成一个矩形,矩形的两条对角线所在直线方程是⎪⎭⎫⎝⎛=±±=0b y a x x a b y ,这两条直线就是双曲线的渐近线。

第二章 2.3 2.3.2 双曲线的简单几何性质

第二章  2.3   2.3.2  双曲线的简单几何性质

返回导航 上页
下页
人教A版数学·选修2-1
返回导航 上页
下页
直线与双曲线的位置关系 [典例] (本题满分 12 分)设双曲线 C:xa22-y2=1(a>0)与直线 l:x+y =1 相交于两个不同的点 A,B. (1)求双曲线 C 的离心率 e 的取值范围. (2)设直线 l 与 y 轴的交点为 P,且P→A=152P→B,求 a 的值.
人教A版数学·选修2-1
[解析] (1)设双曲线的方程为 mx2+ny2=1(mn<0),
则4298mm++792nn==11,, 解得nm==-2157,15, 所求双曲线方程为2x52-7y52 =1. (2)设所求双曲线方程为 16x2-9y2=λ(λ≠0), 将 M8,1313代入,得 λ=16×82-9×13132=-576, 所求双曲线方程为 16x2-9y2=-576, 即6y42 -3x62=1.
D.y=±2x
解析:y2-x2=2 的渐近线方程为 y=±x.
答案:A
返回导航 上页
下页
人教A版数学·选修2-1
返回导航 上页
下页
2.若双曲线1y62 -xm2=1 的离心率 e=2,则 m=________. 解析:a2=16,b2=m,c2=16+m, ∴1+1m6=4,∴1m6=3,m=48. 答案:48
返回导航 上页
下页
人教A版数学·选修2-1
返回导航 上页
下页
求双曲线的离心率的方法技巧 (1)若可求得 a,c,则直接利用 e=ac得解; (2)若已知 a,b,可直接利用 e= 1+ba2得解; (3)若得到的是关于 a,c 的齐次方程 pc2+q·ac+r·a2=0(p,q,r 为常数,且 p≠0),则转化为关于 e 的方程 pe2+q·e+r=0 求解.

2.3.2双曲线的简单几何性质(二))

2.3.2双曲线的简单几何性质(二))
a2 直线 : x 是对应于焦点 F (c,0) 的一条准线, c
2
作业:课本 P B 组第 4 题
62
x2 y2 1 的左焦点 F1 作倾角为 的直线与双曲线 1.过双曲线 9 16 4
192 交于 A、B 两点,则|AB|= . 7
所得弦长为
2.双曲线的两条渐进线方程为 x 2 y 0 ,且截直线 x y 3 0
4
,求点M的轨迹.
d
M
16 x 5 将上式两边平方,并化简,得9 x2- y 2 144, 16
由此得
. 4
F
x
x y 即 - 1 16 9
2
2
所以,点M的轨迹是实轴、虚轴长分别为8、6的双曲线。
变式:动点 M ( x, y) 与定点 F (c,0)(c 0) 的距离和它到定直线 a2 c c : x 的距离的比是常数 ( 1) ,求点 M 的轨迹方程. c a a 2
F1
O
A
B
F2 x
你能求出△AF1B 的周长吗?
2 | AF2 | 8 3
课堂练习: 1.到定点的距离与到定直线的距离之比等于 log23 的点的轨迹是( C ) (A)圆 (B)椭圆 (C)双曲线 (D)抛物线 2.点 P 与两定点 F1(-a,0)、F2(a,0)(a>0)的 连线的斜率乘积为常数 k,当点 P 的轨迹是离心 率为 2 的双曲线时,k 的值为( A ) (A)3 (B) 3 (C)± 3 (D)4 2 2 x y 1 上的点 P 到双曲线的右 3.如果双曲线 64 36 6.4 焦点的距离是 8, 那么 P 到右准线的距离是_____, 19.2 P 到左准线的距离是________.

2021_2022学年高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质讲义苏教版选修2_1

2021_2022学年高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质讲义苏教版选修2_1

2.3.2 双曲线的几何性质学习目标核心素养1.了解双曲线的简单几何性质.(重点)2.会求双曲线的渐近线、离心率、顶点、焦点坐标等.(重点)3.知道椭圆与双曲线几何性质的区别.1.通过双曲线性质的学习,提升直观想象素养.2.借助性质的应用,提升数学运算素养.1.双曲线的简单几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距2c范围x≤-a或x≥a,y∈Ry≤-a或y≥a,x∈R对称轴x轴,y轴对称中心原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b;实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±bax y=±abx(1)实轴和虚轴等长的双曲线叫做等轴双曲线.(2)性质:①等轴双曲线的离心率e=2;②等轴双曲线的渐近线方程为y =±x ,它们互相垂直. 思考:(1)渐近线一样的双曲线是同一条双曲线吗? (2)双曲线的离心率和渐近线的斜率有怎样的关系?[提示] (1)渐近线一样的双曲线有无数条,但它们实轴与虚轴的长的比值一样.(2)e 2=c 2a 2=1+b 2a 2,ba是渐近线的斜率或其倒数.1.双曲线x 24-y 29=1的渐近线方程是( ) A .y =±23xB .y =±49xC .y =±32xD .y =±94xC [双曲线的焦点在x 轴上,且a =2,b =3,因此渐近线方程为y =±32x .]2.双曲线x 216-y 2=1的顶点坐标是( )A .(4,0),(0,1)B .(-4,0),(4,0)C .(0,1),(0,-1)D .(-4,0),(0,-1)B [由题意知,双曲线的焦点在x 轴上,且a =4,因此双曲线的顶点坐标是(-4,0),(4,0).]3.假设双曲线x 24-y 2m =1(m >0)的渐近线方程为y =±32x ,那么双曲线的焦点坐标是________.(-7,0),(7,0) [由双曲线方程得出其渐近线方程为y =±m2x ,∴m =3,求得双曲线方程为x 24-y 23=1,从而得到焦点坐标为(-7,0),(7,0).]4.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =43x ,那么双曲线的离心率为________.53 [因为渐近线方程为y =43x ,所以b a =43, 所以离心率e =ca=1+⎝ ⎛⎭⎪⎫b a2=1+⎝ ⎛⎭⎪⎫432=53.]由双曲线的方程求其几何性质【例1】 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程,并作出草图.[思路探究] 此题给出的方程不是标准方程,应先化方程为标准形式,然后根据标准方程求出根本量a ,b ,c 即可得解,注意确定焦点所在坐标轴.[解] 将9y 2-4x 2=-36变形为x 29-y 24=1,即x 232-y 222=1, 所以a =3,b =2,c =13, 因此顶点坐标A 1(-3,0),A 2(3,0), 焦点坐标F 1(-13,0),F 2(13,0), 实轴长是2a =6,虚轴长是2b =4, 离心率e =c a =133, 渐近线方程为y =±b a x =±23x .作草图,如下图:用双曲线标准方程研究几何性质的步骤1.将双曲线方程化为标准方程形式; 2.判断焦点的位置; 3.写出a 2与b 2的值; 4.写出双曲线的几何性质.1.求双曲线x 2-3y 2+12=0的实轴长、虚轴长、焦点坐标、渐近线方程和离心率. [解] 将方程x 2-3y 2+12=0化为标准方程为y 24-x 212=1,∴a 2=4,b 2=12,∴a =2,b =23, ∴c =a 2+b 2=16=4,∴双曲线的实轴长2a =4,虚轴长2b =43,焦点坐标为F 1(0,-4),F 2(0,4),顶点坐标为A 1(0,-2),A 2(0,2),渐近线方程为y =±33x ,离心率e =2. 求双曲线的标准方程【例2】 求适合以下条件的双曲线的标准方程. (1)两顶点间的距离为6,渐近线方程为y =±32x ;(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2).[思路探究] 利用待定系数法,当渐近线方程时,可利用双曲线设出方程进展求解. [解] (1)设以直线y =±32x 为渐近线的双曲线方程为x 24-y29=λ(λ≠0),当λ>0时,a 2=4λ,∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-y 2814=1或y 29-x 24=1.(2)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=λ(λ≠0),将点(2,-2)代入双曲线方程,得λ=222-(-2)2=-2.∴双曲线的标准方程为y 22-x 24=1.双曲线方程的求解方法1.根据双曲线的几何性质求双曲线的标准方程时,一般采用待定系数法,首先要根据题目中给出的条件,确定焦点所在的位置,然后设出标准方程的形式,找出a ,b ,c 的关系,列出方程求值,从而得到双曲线的标准方程.2.以y =±n m x 为渐近线的双曲线方程可设为x 2m 2-y 2n2=λ(λ≠0),以此求双曲线方程可防止分类讨论.2.求适合以下条件的双曲线的标准方程. (1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为y =±12x ,且经过点A (2,-3).[解] (1)依题意可知,双曲线的焦点在y 轴上,且c =13,又c a =135,∴a =5,b =c 2-a 2=12,故其标准方程为y 225-x 2144=1.(2)法一:∵双曲线的渐近线方程为y =±12x ,假设焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),那么b a =12.①∵A (2,-3)在双曲线上,∴4a 2-9b2=1. ②由①②联立,无解.假设焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),那么a b =12.③∵A (2,-3)在双曲线上,∴9a 2-4b2=1. ④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1.法二:由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0).∵A (2,-3)在双曲线上, ∴2222-(-3)2=λ,即λ=-8. ∴所求双曲线的标准方程为y 28-x 232=1.求双曲线的离心率及其取值范围ABC ABC A B C 曲线的离心率为________.(2)双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,假设过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,求双曲线离心率的取值范围.[思路探究] (1)根据图形并由双曲线的定义确定a 与c 的关系,求出离心率;(2)可以通过图形借助直线与双曲线的关系,因为过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,那么必有b a≥tan 60°.(1)1+32 [由题意2c =AB =BC ,∴AC =2×2c ×sin 60°=23c , 由双曲线的定义,有2a =AC -BC =23c -2c ⇒a =(3-1)c , ∴e =c a=13-1=1+32.] (2)[解] 因为双曲线渐近线的斜率为k =b a, 直线的斜率为k =tan 60°=3,故有b a≥3,所以e =ca =a 2+b 2a 2≥1+3=2, 所以所求离心率的取值范围是[2,+∞).双曲线离心率的求法1.求双曲线的离心率就是求a 和c 的关系,一般可以采用几何观察法和代数关系构造法来寻求a ,b ,c 三者中两者的关系,进而利用c 2=a 2+b 2进展转化.2.求双曲线离心率的取值范围,一般可以从以下几个方面考虑:(1)与范围联系,通过求值域或解不等式来完成.(2)通过判别式Δ>0来构造.(3)利用点在双曲线内部形成不等关系.(4)利用解析式的特征,如c >a ,或c >b .3.F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.[解] 设F 1(c,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,那么y =±b 2a.由PF 2=QF 2,∠PF 2Q =90°, 知PF 1=F 1F 2,∴b 2a=2c ,∴b 2=2ac ,∴c 2-2ac -a 2=0,∴⎝ ⎛⎭⎪⎫c a 2-2×c a-1=0, 即e 2-2e -1=0.∴e =1+2或e =1-2(舍去). 所以所求双曲线的离心率为1+ 2.1.渐近线是双曲线特有的性质.两方程联系密切,把双曲线的标准方程x 2a 2-y 2b 2=1(a >0,b >0)右边的常数1换为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ(λ≠0),再结合其他条件求得λ,可得双曲线方程.2.准确画出几何图形是解决解析几何问题的第一突破口.利用双曲线的渐近线来画双曲线特别方便,而且较为准确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.1.判断(正确的打“√〞,错误的打“×〞)(1)双曲线虚轴的两个端点,不是双曲线的顶点.( ) (2)等轴双曲线的渐近线是y =±x .( ) (3)双曲线的实轴长一定大于虚轴长.( ) [答案] (1)√ (2)√ (3)×2.双曲线x 2a 2-y 23=1(a >0)的离心率为2,那么a =( )A .2B .62 C .52D .1 D [由题意得e =a 2+3a=2,∴a 2+3=2a ,∴a 2+3=4a 2,∴a 2=1,∴a =1.]3.假设双曲线的渐近线方程为y =±3x ,它的一个焦点是(10,0),那么双曲线的方程是________.x 2-y 29=1 [双曲线的焦点在x 轴上,那么c =10,b a∵a 2+b 2=c 2,解得a 2=1,b 2=9, ∴方程为x 2-y 29=1.]4.求适合以下条件的双曲线的标准方程.(1)焦点在x 轴上,虚轴长为8,离心率为53;(2)两顶点间的距离是6,两焦点的连线被两顶点和中心四等分.[解] (1)设所求双曲线的标准方程为x 2a 2-y 2b 2=1,由题意知2b =8,e =c a =53,从而b =4,c =53a ,代入c 2=a 2+b 2,得a 2=9,故双曲线的标准方程为x 29-y216=1. (2)由两顶点间的距离是6,得2a =6,即a 2c =4a =12,即c =6,于是b 2=c 2-a 2=62-32=27.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为x 29-y 227=1或y 29-x 227=1.。

第二章 2.3.2 双曲线的简单几何性质

第二章 2.3.2 双曲线的简单几何性质

2.3.2双曲线的简单几何性质学习目标 1.掌握双曲线的简单几何性质.2.理解双曲线离心率的定义、取值范围和渐近线方程.3.了解直线与双曲线相交的相关问题.知识点一双曲线的性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a y≤-a或y≥a对称性对称轴:坐标轴;对称中心:原点顶点坐标A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±ba x y=±ab x离心率e=ca,e∈(1,+∞),其中c=a2+b2a,b,c间的关系c2=a2+b2(c>a>0,c>b>0)知识点二等轴双曲线实轴和虚轴等长的双曲线,它的渐近线方程是y=±x,离心率为 2.1.双曲线x2a2-y2b2=1与y2a2-x2b2=1(a>0,b>0)的形状相同.(√)2.双曲线x2a2-y2b2=1与y2a2-x2b2=1(a>0,b>0)的渐近线相同.(×)3.等轴双曲线的渐近线互相垂直,离心率e= 2.(√)4.椭圆的离心率与双曲线的离心率取值范围相同.(×)5.双曲线有四个顶点,分别是双曲线与其实轴及虚轴的交点.(×)一、由双曲线方程研究其几何性质例1 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率、渐近线方程. 解 将9y 2-4x 2=-36化为标准方程为x 29-y 24=1,即x 232-y 222=1, 所以a =3,b =2,c =13.因此顶点坐标为A 1(-3,0),A 2(3,0), 焦点坐标为F 1(-13,0),F 2(13,0), 实轴长2a =6,虚轴长2b =4, 离心率e =c a =133,渐近线方程为y =±b a x =±23x .延伸探究求双曲线nx 2-my 2=mn (m >0,n >0)的实半轴长、虚半轴长、焦点坐标、离心率、顶点坐标和渐近线方程. 解 把方程nx 2-my 2=mn (m >0,n >0)化为标准方程为x 2m -y 2n=1(m >0,n >0), 由此可知,实半轴长a =m , 虚半轴长b =n ,c =m +n ,焦点坐标为(m +n ,0),(-m +n ,0),离心率e =ca=m +nm=1+n m, 顶点坐标为(-m ,0),(m ,0), 所以渐近线方程为y =±n mx ,即y =±mn m x .反思感悟 由双曲线的方程研究几何性质的解题步骤 (1)把双曲线方程化为标准形式是解决此类题的关键.(2)由标准方程确定焦点位置,确定a,b的值.(3)由c2=a2+b2求出c的值,从而写出双曲线的几何性质.跟踪训练1 求双曲线9y 2-16x 2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.解 把方程9y 2-16x 2=144化为标准方程为 y 242-x 232=1. 由此可知,实半轴长a =4,虚半轴长b =3; c =a 2+b 2=42+32=5,焦点坐标是(0,-5),(0,5);离心率e =c a =54;渐近线方程为y =±43x .二、由双曲线的几何性质求标准方程 例2 根据以下条件,求双曲线的标准方程. (1)过点P (3,-5),离心率为2;(2)与椭圆x 29+y 24=1有公共焦点,且离心率e =52;(3)与双曲线x 29-y 216=1有共同渐近线,且过点(-3,23).解 (1)若双曲线的焦点在x 轴上, 设其方程为x 2a 2-y 2b 2=1(a >0,b >0),∵e =2,∴c 2a2=2,即a 2=b 2.①又双曲线过P (3,-5),∴9a 2-5b 2=1,②由①②得a 2=b 2=4,故双曲线方程为x 24-y 24=1. 若双曲线的焦点在y 轴上, 设其方程为y 2a 2-x 2b 2=1(a >0,b >0),同理有a 2=b 2,③ 5a 2-9b 2=1,④ 由③④得a 2=b 2=-4(舍去). 综上,双曲线的标准方程为x 24-y 24=1.(2)由椭圆方程x 29+y 24=1,知半焦距为9-4=5,∴焦点是F 1(-5,0),F 2(5,0). 因此双曲线的焦点为(-5,0),(5,0). 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由已知条件,有⎩⎪⎨⎪⎧c a =52,a 2+b 2=c 2,c =5,解得⎩⎪⎨⎪⎧a =2,b =1.∴所求双曲线的标准方程为x 24-y 2=1.(3)设所求双曲线方程为x 29-y 216=λ(λ≠0),将点(-3,23)代入得λ=14,∴双曲线方程为x 29-y 216=14,即双曲线的标准方程为x 294-y 24=1.反思感悟 (1)根据双曲线的某些几何性质求双曲线方程,一般用待定系数法转化为解方程(组),但要注意焦点的位置,从而正确选择方程的形式. (2)巧设双曲线方程的六种方法与技巧①焦点在x 轴上的双曲线的标准方程可设为x 2a 2-y 2b 2=1(a >0,b >0).②焦点在y 轴上的双曲线的标准方程可设为y 2a 2-x 2b2=1(a >0,b >0).③与双曲线x 2a 2-y 2b 2=1共焦点的双曲线方程可设为x 2a 2-λ-y 2b 2+λ=1(λ≠0,-b 2<λ<a 2).④与双曲线x 2a 2-y 2b 2=1具有相同渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).⑤渐近线为y =kx 的双曲线方程可设为k 2x 2-y 2=λ(λ≠0). ⑥渐近线为ax ±by =0的双曲线方程可设为a 2x 2-b 2y 2=λ(λ≠0). 跟踪训练2 求适合下列条件的双曲线的标准方程:(1)焦点在x 轴上,虚轴长为8,离心率为53;(2)渐近线方程为y =±12x 且过点A (2,-3).解 (1)设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意知2b =8,e =c a =53,从而b =4,c =53a ,代入c 2=a 2+b 2,得a 2=9, 故双曲线的标准方程为x 29-y 216=1.(2)方法一 ∵双曲线的渐近线方程为y =±12x ,若焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则b a =12.①∵A (2,-3)在双曲线上,∴4a 2-9b 2=1.②由①②联立,无解.若焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),则a b =12.③∵A (2,-3)在双曲线上,∴9a 2-4b 2=1.④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1.方法二 由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0),∵A (2,-3)在双曲线上, ∴2222-(-3)2=λ,∴λ=-8 ∴所求双曲线的标准方程为y 28-x 232=1.三、双曲线的离心率例3 设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为________.答案 53解析 不妨设P 为双曲线右支上一点, |PF 1|=r 1,|PF 2|=r 2.根据双曲线的定义,得r 1-r 2=2a , 又r 1+r 2=3b ,故r 1=3b +2a 2,r 2=3b -2a 2.又r 1·r 2=94ab ,所以3b +2a 2·3b -2a 2=94ab ,解得b a =43(负值舍去),故e =c a =a 2+b 2a 2=⎝⎛⎭⎫b a 2+1 =⎝⎛⎭⎫432+1=53. 反思感悟 求双曲线离心率的两种方法(1)直接法:若已知a ,c 可直接利用e =ca求解,若已知a ,b ,可利用e =1+⎝⎛⎭⎫b a 2求解.(2)方程法:若无法求出a ,b ,c 的具体值,但根据条件可确定a ,b ,c 之间的关系,可通过b 2=c 2-a 2,将关系式转化为关于a ,c 的齐次方程,借助于e =ca ,转化为关于e 的n 次方程求解.跟踪训练3 (1)已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点P 在双曲线上,则双曲线的离心率是( ) A .4+2 3 B .23-1 C.3+12D.3+1答案 D解析 因为MF 1的中点P 在双曲线上,所以|PF 2|-|PF 1|=2a ,因为△MF 1F 2为正三角形,边长都是2c ,所以3c -c =2a, 所以e =c a =23-1=3+1.(2)如果双曲线x 2a 2-y 2b 2=1右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是________. 答案 (2,+∞)解析 如图,因为AO =AF ,F (c ,0),所以x A =c2,因为A 在右支上且不在顶点处,所以c 2>a ,所以e =c a>2.1.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为( ) A .4 B .-4 C .-14D.14答案 C解析 由双曲线方程mx 2+y 2=1,知m <0, 则双曲线方程可化为y 2-x 2-1m=1, 则a 2=1,a =1,又虚轴长是实轴长的2倍, ∴b =2,∴-1m =b 2=4,∴m =-14,故选C.2.中心在原点,焦点在x 轴上,且一个焦点在直线3x -4y +12=0上的等轴双曲线的方程是( )A .x 2-y 2=8B .x 2-y 2=4C .y 2-x 2=8D .y 2-x 2=4答案 A解析 令y =0,得x =-4, ∴等轴双曲线的一个焦点为(-4,0), ∴c =4,a 2=b 2=12c 2=12×16=8,故选A.3.双曲线x 2-y 2m=1的离心率大于2的充要条件是( ) A .m >12B .m ≥1C .m >1D .m >2 答案 C解析 由题意得,a 2=1,b 2=m >0,∴c 2=m +1 ∴e =c a=m +1>2,∴m >1.4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为233,则其渐近线方程为________________.答案 y =±33x解析 由题意知,e =c a =233,得c 2a 2=43.又c 2=b 2+a 2,所以b 2+a 2a 2=43. 故b 2a 2=13. 所以b a =33,所以该双曲线的渐近线方程为y =±33x .5.若直线y =kx 与双曲线4x 2-y 2=16相交,则实数k 的取值范围为________. 答案 (-2,2)解析 易知k ≠±2,将y =kx 代入4x 2-y 2=16得关于x 的一元二次方程(4-k 2)x 2-16=0,由Δ>0可得-2<k <2.1.知识清单: (1)双曲线的几何性质. (2)双曲线的离心率的求法.2.方法归纳:定义法、函数与方程、数形结合. 3.常见误区:忽略双曲线中x ,y 的范围.1.已知双曲线x 2a 2-y 25=1(a >0)的右焦点为(3,0),则双曲线的离心率等于( )A.31414B.324C.32D.43答案 C解析 由题意知a 2+5=9,解得a =2,e =c a =32.2.双曲线x 2-y 2=1的顶点到其渐近线的距离等于( ) A.12 B.22 C .1 D. 2 答案 B解析 双曲线x 2-y 2=1的渐近线方程为x ±y =0,顶点坐标为(1,0),(-1,0),故顶点到渐近线的距离为22. 3.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则双曲线C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x答案 C解析 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,故有a 2+b 2a 2=54,所以b 2a 2=14,解得b a =12. 故双曲线C 的渐近线方程为y =±12x ,故选C. 4.已知双曲线方程为x 2-y 24=1,过点P (1,0)的直线l 与双曲线只有一个公共点,则l 共有( ) A .4条 B .3条 C .2条 D .1条答案 B解析 因为双曲线方程为x 2-y 24=1,则P (1,0)是双曲线的右顶点,所以过P (1,0)并且和x 轴垂直的直线是双曲线的一条切线,与双曲线只有一个公共点,另外两条就是过P (1,0)分别和两条渐近线平行的直线,所以符合要求的有3条.5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则双曲线C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 答案 A解析 双曲线C 的渐近线方程为y =±b a x ,点P (2,1)在渐近线上,∴4a 2-1b 2=0,即a 2=4b 2, 又a 2+b 2=c 2=25,解得b 2=5,a 2=20,故选A.6.过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于________.答案 4 3解析 由题意知,双曲线x 2-y 23=1的渐近线方程为y =±3x ,将x =c =2代入得y =±23,所以|AB |=4 3.7.已知双曲线方程为8kx 2-ky 2=8(k ≠0),则其渐近线方程为________________. 答案 y =±22x解析 由已知令8kx 2-ky 2=0,得渐近线方程为y =±22x .8.过双曲线x 2-y 23=1的左焦点F 1作倾斜角为π6的弦AB ,则|AB |=________.答案 3解析 易得双曲线的左焦点F 1(-2,0),∴直线AB 的方程为y =33(x +2), 与双曲线方程联立,得8x 2-4x -13=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12,x 1x 2=-138, ∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+13×⎝⎛⎭⎫122-4×⎝⎛⎭⎫-138=3. 9.求适合下列条件的双曲线的标准方程.(1)两顶点间的距离是6,两焦点所连线段被两顶点和中心四等分;(2)渐近线方程为2x ±3y =0,且两顶点间的距离是6.解 (1)由两顶点间的距离是6,得2a =6,即a =3.由两焦点所连线段被两顶点和中心四等分可得2c =4a =12,即c =6,于是有b 2=c 2-a 2=62-32=27.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为x 29-y 227=1或y 29-x 227=1. (2)设双曲线方程为4x 2-9y 2=λ(λ≠0),即x 2λ4-y 2λ9=1(λ≠0),由题意得a =3. 当λ>0时,λ4=9,λ=36, 双曲线方程为x 29-y 24=1; 当λ<0时,-λ9=9,λ=-81, 双曲线方程为y 29-x 2814=1. 故所求双曲线的标准方程为x29-y24=1或y29-x2814=1.10.过双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,求双曲线C的离心率.解如图所示,不妨设与渐近线平行的直线l的斜率为ba,又直线l过右焦点F(c,0),则直线l的方程为y=ba(x-c).因为点P的横坐标为2a,代入双曲线方程得4a2a2-y2b2=1,化简得y=-3b或y=3b(点P在x轴下方,故舍去),故点P的坐标为(2a,-3b),代入直线方程得-3b=ba(2a-c),化简可得离心率e=ca=2+ 3.11.如图,双曲线C:x29-y210=1的左焦点为F1,双曲线上的点P1与P2关于y轴对称,则|P2F1|-|P1F1|的值是()A.3 B.4 C.6 D.8答案 C解析 设F 2为右焦点,连接P 2F 2(图略),由双曲线的对称性,知|P 1F 1|=|P 2F 2|,所以|P 2F 1|-|P 1F 1|=|P 2F 1|-|P 2F 2|=2×3=6.12.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点,若M ,O ,N 将椭圆的长轴四等分,则双曲线与椭圆的离心率的比值是()A .3B .2 C. 3 D. 2答案 B解析 设椭圆与双曲线的标准方程分别为x 2a 2+y 2b 2=1(a >b >0), x 2m 2-y 2n 2=1(m >0,n >0), 因为它们共焦点,所以设它们的半焦距均为c ,所以椭圆与双曲线的离心率分别为e 1=c a ,e 2=c m, 由点M ,O ,N 将椭圆长轴四等分可知m =a -m ,即2m =a ,所以e 2e 1=c m c a=a m=2. 13.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.答案 44解析 由双曲线C 的方程,知a =3,b =4,c =5,∴点A (5,0)是双曲线C 的右焦点,且|PQ |=|QA |+|P A |=4b =16,点P ,Q 在双曲线的右支上,由双曲线的定义,得|PF |-|P A |=6,|QF |-|QA |=6.∴|PF |+|QF |=12+|P A |+|QA |=28,∴△PQF 的周长为|PF |+|QF |+|PQ |=28+16=44.14.设双曲线x 2-y 22=1上有两点A ,B ,AB 中点M (1,2),则直线AB 的方程为________________. 答案 y =x +1解析 方法一 (用根与系数的关系解决)显然直线AB 的斜率存在.设直线AB 的方程为y -2=k (x -1),即y =kx +2-k ,由⎩⎪⎨⎪⎧y =kx +2-k ,x 2-y 22=1,得(2-k 2)x 2-2k (2-k )x -k 2+4k -6=0,当Δ>0时,设A (x 1,y 1),B (x 2,y 2),则1=x 1+x 22=k (2-k )2-k 2, 所以k =1,满足Δ>0,所以直线AB 的方程为y =x +1.方法二 (用点差法解决)设A (x 1,y 1),B (x 2,y 2), 则⎩⎨⎧ x 21-y 212=1,x 22-y 222=1,两式相减得(x 1-x 2)(x 1+x 2)=12(y 1-y 2)(y 1+y 2). 因为x 1≠x 2,所以y 1-y 2x 1-x 2=2(x 1+x 2)y 1+y 2, 所以k AB =2×1×22×2=1, 所以直线AB 的方程为y =x +1,代入x 2-y 22=1满足Δ>0. 所以直线AB 的方程为y =x +1.15.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( ) A.43 B.53 C .2 D.73答案 B解析 ∵P 在双曲线的右支上,∴由双曲线的定义可得|PF 1|-|PF 2|=2a , ∵|PF 1|=4|PF 2|,∴4|PF 2|-|PF 2|=2a ,即|PF 2|=23a , 根据点P 在双曲线的右支上,可得|PF 2|=23a ≥c -a , ∴53a ≥c ,又∵e >1,∴1<e ≤53, ∴此双曲线的离心率e 的最大值为53. 16.已知双曲线C 1:x 2-y 24=1. (1)求与双曲线C 1有相同的焦点,且过点P (4,3)的双曲线C 2的标准方程;(2)直线l :y =x +m 分别交双曲线C 1的两条渐近线于A ,B 两点,当OA →·OB →=3时,求实数m的值.解 (1)双曲线C 1的焦点坐标为(5,0),(-5,0),设双曲线C 2的标准方程为x 2a 2-y 2b 2=1(a >0,b >0), 则⎩⎪⎨⎪⎧ a 2+b 2=5,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1, 所以双曲线C 2的标准方程为x 24-y 2=1. (2)双曲线C 1的渐近线方程为y =2x ,y =-2x ,设A (x 1,2x 1),B (x 2,-2x 2),由⎩⎪⎨⎪⎧ x 2-y 24=0,y =x +m ,消去y 化简得3x 2-2mx -m 2=0, 由Δ=(-2m )2-4×3×(-m 2)=16m 2>0,得m ≠0.因为x 1x 2=-m 23, OA →·OB →=x 1x 2+2x 1(-2x 2)=-3x 1x 2=m 2, 所以m 2=3,即m =±3.。

2.3.2双曲线的几何性质2

2.3.2双曲线的几何性质2
F1
B2
O
A1
B1
A2
F2
x
线围成一个矩形 图2.2 7 .
图2 . 2 7 b 直线的方程是 y x. a 2 2 x y 双曲线 2 2 1的各支向处延伸时 , 与这两 a b 条直线逐渐接近, 我们把这两条直线叫做
双曲线的渐近线 .
也就是说, 双曲线与它的 渐近线无限接近 但永远不相交 , .
作业:P41 习题 7、10
§ . 3. 2 双曲线的几何性质(2) 2
学习目标:
了解双曲线的渐近线和离心率
自学指导:
1.双曲线的渐近线是什么样的线?有几条? 2.如何画双曲线的草图? 3.双曲线的离心率与椭圆的有什么不同? 它 主要描述双曲线的什么特征? 自学检测:P41 练习 3
4 渐近线
信息技术应用
y
如图 , 经过 A1 , A2 作y轴的平 行线 x a, 经过 B1 , B2 作 x 轴的平行线 y b,四条直 矩形的两条对角线 所在的
x a x a b b 或 y x y x a a b b y x y x a a
y2 x2 2 1(a 0, b 0) 2 a b
y a y a b b 或 y x y x a a b b y x y x a a
y x 例1:求双曲线 2 2 1的离心率和 . 3 渐近线方程 4
2
2
例题2 :已知双曲线的中心在原 , 焦点在y轴上, 点 4 焦距为 , 离心率为 , 求双曲线的方程 16 . 3
双曲线的两个标准方程的几何性质与特征比较 焦点的位置 标准方程 范围

2.3.2双曲线的简单几何性质(二)()

2.3.2双曲线的简单几何性质(二)()
( x c )2 y 2 a2 x c
a a2 解:∵点 M ( x, y) 到定直线 : x 的距离 d x , c c
MF ( x c ) y ,
2 2
MF c ∴ , 依题意 d a
c ①, a
令 c 2 a 2 b2 ,方程②化为
x2 y2 1② 方程①两边平方化简整理得 2 2 2 c a a 2 2
x y 0; a b
反之 , 若已知双曲线的渐近线 方程是
x y x y ± 0, 则可设双曲线方程为 2 2 l a b a b 若已知双曲线的渐近线 方程是 2 2 2 2 ax ± 0, 则可设双曲线方程为 a x b y l by
x2 y 2 x2 y 2 2 1与 2 2 l 2 a b a b
30°的直线交双曲线于A,B两点,求|AB|
分析:求弦长问题有两种方法: 法一:如果交点坐标易求,可直接 用两点间距离公式代入求弦长; 法二:但有时为了简化计算,常设 而不求,运用韦达定理来处理.
法一:设直线AB的方程为 y
3 ( x 3) 3
y
F1
O
B A
F2 x
9 2 3 (3, 2 3),( , ) 与双曲线方程联立得A、B的坐标为 5 5
双曲线的简单几何性质(二)
复习与回顾
方程 图形
o x
x2 y2 2 1(a , b 0) 2 a b
y
x2 y2 2 2 1(a , b 0) b a
y o x
顶点
对称 范围 焦点 离心率 渐近线
(±a , 0 ) ( 0, ±a ) x 轴、y 轴、原点 ( 原点是双曲线的中心 ) |x|≥a |y|≥a (±c , 0 )

双曲线的简单几何性质2 课件高二上学期数学人教A版(2019)选择性必修第一册

双曲线的简单几何性质2 课件高二上学期数学人教A版(2019)选择性必修第一册
a2
的距离的比是常数
结论:点 M ( x , y ) 与定点 F (c , 0 ) (c 0 ) 的距离和它到定直线 : x
c
c c
( 1),则点 M 的轨迹是一条双曲线.
a a
其中定点 F ( c , 0) 是双曲线的一个焦点,
c
a2
定直线 : x
是对应于焦点 F (c , 0) 的一条准线, 常数 是双曲线的离心率 e .
(5)若直线 = + 与双曲线 − =4两支各有一个公共点,求的取值范围.
直线与双曲线的位置关系
2
2
x
y
例 2.已知过双曲线

1 的右焦点 F2 ,倾斜角为 30 的直线交双曲线于 A, B 两
3
6
点,求 AB 和 F1AB的面积 .
归纳:求弦长问题的两种解决方法
(1)联立方程组,解出直线与圆锥曲线的交点,再利用两点距离公式来求解;
1
1
x 1即y x
2
2
y
2
M
2
1
x2 y 2
把y x 代入
1得
2
4
2
9
x 2 2 x 0其中 5 0 直线 l 与双曲线没有交点与所设矛盾
4
以 N (1 ,1 ) 为弦的中点的直线不存 在 .
2
o
..N
2
2
x
直线与双曲线的位置关系
常数 e
a
的比是__________.
那么反过来满足这个条件的点的轨迹是什么呢?
2
2
双曲线 的性质
a2
例 4. 动点 M ( x , y ) 与定点 F ( c , 0)(c 0)的距离 和它 到定 直线 : x

高中数学第2章2.3.2双曲线的简单几何性质课件新人教A选修21.ppt

高中数学第2章2.3.2双曲线的简单几何性质课件新人教A选修21.ppt

【解】 (1)由已知设双曲线的标准方程为xa22-by22 =1(a>0,b>0).则 2a=8,∴a=4.
由 e=ac=54得 c=5. ∴b2=c2-a2=52-42=9. ∴所求双曲线方程为1x62 -y92=1. (2)当焦点在 x 轴上时,
设所求双曲线方程为xa22-by22=1(a>0,b>0).
知新益能
双曲线的几何性质
标准方程
xa22-by22=1 (a>0,b>0)
ay22-xb22=1 (a>0,b>0)
图形
范围
__|x_|≥__a__
__|y_|_≥__a_
_)、__F__2(_c_,0_)_ _F_1_(_0_,-__c_)_、__F_2_(0_,_c_) _A_1_(-__a_,_0_)_、__A_2_(a_,_0_) _A_1_(_0_,-__a_)_、__A_2_(0_,_a_)
例2 分别求适合下列条件的双曲线的标准方程: (1)顶点在 x 轴上,两顶点间的距离为 8,离心率 是54; (2)焦距为 20,渐近线方程为 y=±12x; (3)与双曲线 x2-2y2=2 有公共渐近线,且过点
M(2,-2).
【思路点拨】 分析双曲线的几何性质 → 求a,b,c
→ 确定讨论焦点位置 → 求双曲线的标准方程
例4 已知双曲线3x2-y2=3,直线l过其右焦点 F2,与双曲线交于A、B两点,且倾斜角为45°, 试问A、B两点是否位于双曲线的同一支上?并 求出线段AB的长. 【思路点拨】 先写出直线方程,代入双曲线方 程,利用根与系数的关系判断.
【解】 ∵a=1,b= 3,c=2, 又直线 l 过点 F2(2,0),且斜率 k=tan 45°=1, ∴l 的方程为 y=x-2. 由y3=x2-x-y22=3 消去 y 并整理得 2x2+4x-7=0. 设 A(x1,y1),B(x2,y2),

【新教材精创】3.2.2 双曲线的简单几何性质(2) 教学设计-人教A版高中数学选择性必修第一册

【新教材精创】3.2.2 双曲线的简单几何性质(2) 教学设计-人教A版高中数学选择性必修第一册

3.2.2双曲线的简单几何性质 (2)本节课选自《2019人教A 版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习双曲线的简单几何性质学生在已掌握双曲线的定义及标准方程之后,反过来利用双曲线的标准方程研究其几何性质。

它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定细解析几何观念,提高学生的数学素质。

坐标法的教学贯穿了整个“圆锥曲线方程”一章, 运动变化和对立统一的思想观点在这节知识中得到了突出体现,重点:直线与双曲线的位置关系. 难点:直线与双曲线的位置关系.多媒体x≤-a或x≥a y∈R例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m ,塔顶直径为90m ,塔的最小直径(喉部直径)为60m ,喉部标高112.5m ,试建立适当的坐标系,求出此双曲线的标准方程( 精确到1m )解:设双曲线的标准方程为()222210,0x y a b a b -=>>,如图所示: AB 为喉部直径,故30a m =,故双曲线方程为2221900x y b -=. 而M 的横坐标为塔顶直径的一半即45m ,其纵坐标为塔的总高度与喉部标高的差即137.5112.525m -=, 故()45,25M , 故22245251900b-=,所以2500b =,故双曲线方程为221900500x y -=. 例5.已知点(,)M x y 到定点()5,0F 的距离和它到定直线l:165x =的距离的比是54,则点M 的轨迹方程为? 解:设点(,)M x y ,由题知45=MF d,22(5)41655x y x -+=-, 即222(5)161625()5x y x -+=-.整理得:221169x y -=.请你将例5与椭圆一节中的例最窄处即双曲线两顶点间221x y -=引导学生类比直线与椭圆位置关系的判断,让学生自主探究直线与双曲线的位置关系,凡是难度不大,经过学习学生自己能解决的问题,应该让学生自己解决,这样有利于调动学生学习的积极性,激发他们的学习积极性,同时也有利于学习建立信心,使他们的主动性得到充分发挥,从中提高学生的思维能力和解决问题的能力。

2.3.2 双曲线的简单几何性质 2

2.3.2 双曲线的简单几何性质  2

(2)直线的方程: y=±-x a
x
渐渐接近但永不相交
x a
2 2
-
y b
2 2
= 1

y
N Q B2 A1 O M
5.离心率
(1)概念:焦距与实轴长之比
c (2)定义式: e=-
b A2 a
B1
a
x
(3)范围: e>1 (c>a) (4)双曲线的形状与e的关系
k = b a = c - a a
第二章 圆锥曲线与方程
2.3.2 双曲线的简单几何性质
一.复习引入
• 1.双曲线的定义是怎样的?
• 2.双曲线的标准方程是怎样的?
x a
2y a
2 2
-
x b
2 2
= 1
• 思考回顾 椭圆的简单几何性质 ? ①范围; ②对称性; ③顶点; ④离心率等 回想:我们是怎样研究上述性质的?
x a
2

2
-
y b
2 2
= 1
k=
b a
=
c - a a
2
2
=
e - 1
2
即:e越大,渐近线斜率越大,其开口越阔.
例1 求双曲线 9 y 16 x 144 的实半轴长,虚半轴长,
2 2
焦点坐标,离心率.渐近线方程。 解:把方程化为标准方程: 可得:实半轴长 a=4 虚半轴长 b=3 半焦距 c= 4 2 32 5 焦点坐标是 (0,-5),(0,5) 离心率
2 2
=
e - 1
2
即:e越大,渐近线斜率越大, 其开口越阔.
y
L!
y
B
图形
A1

2.3.2_双曲线的简单几何性质_(1-3)

2.3.2_双曲线的简单几何性质_(1-3)

离心率e 2的双曲线是等轴双曲线
c (5) e a
c a b
2 2
2
在a、b、c、e四个参数中,知二可求 二
例题讲解
例1 :
2 2 144 的实半轴长,虚半轴长, 9 y 16 x 求双曲线
焦点坐标,离心率.渐近线方程。
分析:把方程化为标准方程
y2 x2 2 1 2 4 3
Y
相交:两个交点
相切:一个交点
O X
相离:0个交点
Y
相交:一个交点
2 2
x y 1 (a 0,b 0 ) a b
2 2
a xa
b y b
x a 或 x a,y R
对称性 关于x轴、y轴、原点对称 顶点 离心率 渐进线
A1(- a,0),A2(a,0) B1(0,-b),B2(0,b)
关于x轴、y轴、原点对称
A1(- a,0),A2(a,0)
⑴法一: 直接设标准方程,运用待定系数法考虑.(一般要分类讨论) 4 x2 y2 解: 双曲线 1的渐近线为 y x ,令 x=-3,y=±4,因 2 3 4 , 3 9 16 4 故点 ( 3, 2 3) 在射线 y x (x≤0)及 x 轴负半轴之间, 3 x2 y2 ∴ 双曲线焦点在 x 轴上,∴设双曲线方程为 2 2 1 (a>0,b>0), a b b 4 2 9 2 2 a x y a 3 ∴ 解之得 1 4 ,∴ 双曲线方程为 2 2 9 4 b2 4 ( 3) (2 3) 1 2 2 4 a b
λ>0表示焦点在x轴上的双曲线; λ<0表示焦点在y轴上的双曲线。
2
2

人教版高中数学选修(2-1)-2.3《双曲线的简单几何性质(第2课时)》教学设计

人教版高中数学选修(2-1)-2.3《双曲线的简单几何性质(第2课时)》教学设计

2.3.2 双曲线的简单几何性质(第2课时)(杨军君)一、教学目标(一)学习目标1.掌握双曲线的几何性质,能利用几何性质解决实际问题;2.掌握直线与双曲线的位置关系的判断.(二)学习重点1.双曲线的几何性质;2.双曲线各元素之间的相互依存关系.(三)学习难点1.双曲线的离心率、渐近线问题;2.直线与双曲线位置关系.二、教学设计(一)预习任务设计1.预习任务(1)读一读:阅读教材第59页至第61页.(2)想一想:直线与双曲线的问题关系有哪些?如何判定?(3)写一写:与22221(0,0)x y a b a b-=>>共焦点的双曲线方程:22221()()x y a b λλ-=+-. 与22221(0,0)x y a b a b-=>>共渐近线的双曲线方程:2222x y a b λλ-=≠(0). 2.预习自测1.下面说法正确的是( )A.若直线与双曲线交于一点,则直线与双曲线相切.B.过点(1,0)A 作直线l 与双曲线221x y -=只有一个公共点,这样的直线可作2条.C.直线:l y x =与双曲线22:12y C x -=有两个公共点.D.过双曲线外一点可以作双曲线的两条不同切线.答案:C解析:【知识点】直线与双曲线的位置关系【解题过程】直线与双曲线交于一点,两者可能是相切,也可能是相交,故A 错误;过(10)A ,且与渐近线平行的直线也与双曲线221x y -=只有一个交点,故B 错误;过原点不能作任何直线与双曲线相切,故D 错误.点拨:直线与双曲线问题需注意考虑特殊情况,比如与渐近线平行的直线等等.(二)课堂设计1.知识回顾复习双曲线的几何性质:(1)范围:由双曲线的标准方程得,222210y x b a=-≥,进一步得:x a ≤-,或x a ≥.这说明双曲线在不等式x a ≤-,或x a ≥所表示的区域;(2)对称性:由以-x 代x ,以-y 代y 和-x 代x ,且以-y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;(3)顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴,焦点不在的对称轴叫做虚轴;(4)渐近线:直线b y x a =±叫做双曲线22221x y a b-=的渐近线; (5)离心率: 双曲线的焦距与实轴长的比ac e =叫做双曲线的离心率(e >1). 【设计意图】为准确地运用新知,作必要的铺垫.2.新知讲解探究一:方程与几何性质●活动① 师生互动,深入理解问题1:椭圆22464x y +=的焦点是?问题2:双曲线的一条渐近线方程是0x =,则可设双曲线方程为? 问题3:若双曲线与22464x y +=有相同的焦点,它的一条渐近线方程是。

2.3.2双曲线的简单几何性质 课件

2.3.2双曲线的简单几何性质 课件
小结 讨论双曲线的几何性质, 先要将双曲线方程化为 标准形式, 然后根据双曲线两种形式的特点得到几何性 质.
研一研· 问题探究、课堂更高效
2.3.2
跟踪训练 1 求双曲线 9y2-4x2=-36 的顶点坐标、焦点 坐标、实轴长、虚轴长、离心率和渐近线方程.
2 2 x y 解 将 9y2-4x2=-36 变形为 9 - 4 =1, x2 y2 即32-22=1,∴a=3,b=2,c= 13,
2 2
2
2
2
2
2
2
研一研· 问题探究、课堂更高效
2.3.2
例 1 求双曲线 9y2- 16x2=144 的半实轴长和半虚轴长、 焦点坐标、离心率、渐近线方程.
2 2 y x 把方程 9y2-16x2=144 化为标准方程42-32=1.

由此可知,半实轴长 a=4,半虚轴长 b=3; c= a2+b2= 42+32=5, 焦点坐标是(0,-5),(0,5); 4 c 5 离心率 e=a=4;渐近线方程为 y=± 3x.
则 c2=10k,b2=c2-a2=k. x2 y2 y2 x2 于是, 设所求双曲线方程为9k- k =1①或9k- k =1② 把(3,9 2)代入①,得 k=-161 与 k>0 矛盾,无解; 把(3,9 2)代入②,得 k=9, y2 x2 故所求双曲线方程为81- 9 =1.
研一研· 问题探究、课堂更高效
(2)对称性:双曲线关于 x 轴、y 轴和原点都是对称的; (3)顶点:双曲线有两个顶点 A1(-a,0),A2(a,0).
研一研· 问题探究、课堂更高效
2.3.2
问题 2 椭圆中,椭圆的离心率可以刻画椭圆的扁平程度, 在双曲线中,双曲线的“张口”大小是图象的一个重要 特征,怎样描述双曲线的“张口”大小呢? x y 答案 如问题 1 中图,作直线a± b=1,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)当 b2-a2k2=0,即 k=±ba时,直线 l 与双曲线的渐近线 平行,直线 l 与双曲线交于一点.
第2页
高考调研 ·新课标 ·数学选修2-1
(2)当 b2-a2k2≠0,即 k≠±ba时,Δ=(-2a2mk)2-4(b2- a2k2)(-a2m2-a2b2).
若 Δ>0⇒l 与 C 有两个公共点,此时相交. 若 Δ=0⇒l 与 C 有一个公共点,相切. 若 Δ<0⇒l 与 C 无公共点,相离.
第5页
高考调研 ·新课标 ·数学选修2-1
授人以渔
第6页
高考调研 ·新课标 ·数学选修2-1
题型一 由位置关系求参数的值 例 1 已知直线 l:y=k(x-1),双曲线 x2-y2=4,试讨论实 数 k 的取值范围. (1)直线 l 与双曲线有两个公共点; (2)直线 l 与双曲线有且只有一个公共点; (3)直线 l 与双曲线没有公共点.
高考调研 ·新课标 ·数学选修2-1
2.3.2 双曲线的几何性质(二) (专题研究 直线与双曲线)
第1页
高考调研 ·新课标 ·数学选修2-1
1.一般地,设直线 l:y=kx+m(m≠0),双曲线 C:xa22-yb22= 1,联立、化简,得(b2-a2k2)x2-2a2mkx-a2m2-a2b2=0.
第4页
高考调研 ·新课标 ·数学选修2-1
3.解决与双曲线的中点有关问题的两种方法. (1)根与系数的关系法:联立直线方程和双曲线方程构成方程 组,消去一个未知数,利用一元二次方程根与系数的关系以及中 点坐标公式解决; (2)点差法:利用端点在曲线上,坐标满足方程,将端点坐标 分别代入双曲线方程,然后作差,构造出中点坐标和斜率的关系, 可求斜率 k=yx11--xy22.
第8页
高考调研 ·新课标 ·数学选修2-1
(1)当41(-4k-2≠30k,2)>0,即-23 3<k<233且 k≠±1 时,直线 与双曲线有两个公共点.
(2)当41- -3kk2≠2=00,,即 k=±233时,直线与双曲线只有一个公 共点.
(3)当41- -3kk2≠2<00,,即 k<-233或 k>233时,直线与双曲线 无公共点.
第3页
高考调研 ·新课标 ·数学选修2-1
2.直线与双曲线相交所得弦长的两种求法. 方法一:利用距离公式. 求出直线和双曲线的两个交点坐标,利用两点间距离公式求 弦长.
方法二:利用弦长公式. 设斜率为 k(k≠0)的直线 l 与双曲线相交于 A(x1,y1),B(x2, y2),则|AB|= 1+k2|x1-x2|= 1+k2 (x1+x2)2-4x1x2 = 1+k12|y1-y2| = 1+k12 (y1+y2)2-4y1y2.
思考题 1 直线 l:y=kx+1 与双曲线 C:2x2-y2=1 的右 支交于不同的两点 A,B,求实数 k 的取值范围.
第12页
高考调研 ·新课标 ·数学选修2-1
【解析】 将直线 l 的方程 y=kx+1 代入双曲线 C 的方程 2x2-y2=1 后,整理,得(k2-2)x2+2kx+2=0.
探究 1 直线与双曲线的位置关系的判断思路: 利用交轨法解决直线与双曲线的公共点问题,要注意讨论转 化以后的方程的二次项系数.即若二次项系数为 0,则直线与双 曲线的渐近线平行或重合;若二次项系数不为 0,则进一步研究 二次方程的根的判别式 Δ,得到直线与双曲线的公共点个数.
第11页
高考调研 ·新课标 ·数学选修2-1
第9页
高考调研 ·新课标 ·数学选修2-1
综上所述,(1)当-233<k<-1 或-1<k<1 或 1<k<233 时,直线与双曲线有两个公共点;
(2)当 k=±1 或 k=±233时,直线与双曲线有且只有一个公共 点;
(3)当 k<-233或 k>233时,直线与双曲线无公共点.
第10页
高考调研 ·新课标 ·数学选修2-1
第7页
高考调研 ·新课标 ·数学选修2-1
【解析】 由yx=2-ky(2=x-4 1),消去 y,得 (1-k2)x2+2k2x-k2-4=0.① 当 1-k2=0,即 k=±1 时,直线 l 与双曲线的渐近线平行. 方程①化为 2x=5,只有一个实数解,即直线与双曲线相交, 且只有一个交点. 当 1-k2≠0,即 k≠±1 时, Δ=(2k2)2-4(1-k2)(-k2-4)=4(4-3k2).
第15页
高考调研 ·新课标 ·数学选修2-1
思考题 2 (1)经过点 P(12,2)且与双曲线 4x2-y2=1 仅交 于一点的直线条数是( )源自A.4 C.2B.3 D.1
第16页
高考调研 ·新课标 ·数学选修2-1
【解析】 如图所示,过点 P 可引双曲线的两条切线,也可 作两条与渐近线平行的直线,故所求的直线有 4 条.
依题意,直线 l 与双曲线 C 的右支交于不同两点,故 k2-2≠0, Δ=(2k)2-8(k2-2)>0, -k22-k 2>0, k2-2 2>0. 解得 k 的取值范围为-2<k<- 2.
第13页
高考调研 ·新课标 ·数学选修2-1
题型二 确定直线条数
例 2 已知双曲线 C:x2-y42=1,过点 P(1,1)作直线 l,使
l 与 C 有且只有一个公共点,则满足上述条件的直线 l 共有( )
A.1 条
B.2 条
C.3 条
D.4 条
第14页
高考调研 ·新课标 ·数学选修2-1
【解析】 设直线 l:y-1=k(x-1),代入曲线 C,得 4x2-k2(x-1)2-2k(x-1)-1=4. 整理,得(4-k2)x2+(2k2-2k)x-(k2-2k+5)=0. 令 Δ=(2k2-2k)2+4(4-k2)(k2-2k+5)=0, 即 8k=20,得 k=52. 又显然 x=1 也符合题意, 又过 P(1,1)可作两条与渐近线平行的直线, 所以符合题意的直线共 4 条,故选 D. 【答案】 D
【答案】 A
第17页
高考调研 ·新课标 ·数学选修2-1
(2)过双曲线 x2-y2=4 的右焦点作直线 l 交双曲线于 A,B 两点,若|AB|=4,则这样的直线可作________条;若|AB|=5, 这样的直线可作________条.
相关文档
最新文档