2020-2021学年上海市杨浦区中考数学三模试卷及答案解析
2020-2021学年上海市中考数学第三次模拟试题及答案解析
最新上海市中考数学三模试卷一、选择题:本大题共6小题,每小题4分,满分24分1.下列分数中,能化为有限小数的是()A.B.C.D.2.下列运算正确的是()A.a+a=a2B.a2•a=2a3C.a3÷a2=a D.(a2)3=a53.如果=2a﹣1,那么()A.a B.a≤C.a D.a≥4.下列一组数据:﹣2、﹣1、0、1、2的平均数和方差分别是()A.0和2 B.0和C.0和1 D.0和05.下列四个命题中真命题是()A.矩形的对角线平分对角 B.菱形的对角线互相垂直平分C.梯形的对角线互相垂直 D.平行四边形的对角线相等6.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分二、填空题:本大题共12小题,每小题4分,共48分7.用代数式表示实数a(a>0)的平方根:.8.在实数范围内因式分解:x3﹣2x2y+xy2= .9.已知方程﹣=2,如果设y=,那么原方程转化为关于y的整式方程为.10.一次函数y=kx+b的图象如图所示,则当x的取值范围是时,能使kx+b>0.11.某公司承担了制作600个道路交通指引标志的任务,在实际操作时比原计划平均每天多制作了10个,因此提前了5天完成任务,如果设原计划x天完成,那么根据题意,可以列出的方程是:.12.一台组装电脑的成本价是4000元,如果商家以5200元的价格卖给顾客,那么商家的盈利率为.13.掷一枚质地均匀的正方体骰子,骰子的六个面上的点数分别为1到6的整数,那么掷出的点数小于3的概率为.14.已知=,=,那么= (用向量、的式子表示)15.已知,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD=2DB,BC=6,那么DE= .16.将某班级全体同学按课外阅读的不同兴趣分成三组,情况如表格所示,则表中a的值应该是.第一组第二组第三组频数12 16 a频率b c 20%17.将等边△ABC沿着射线BC方向平移,点A、B、C分别落在点D、E、F处,如果点E恰好是BC的中点,那么∠AFE的正切值是.18.如图,在△ABC中,AB=AC=10,BC=12,点P为BC边上一动点,如果以P为圆心,BP为半径的圆P与以AC为直径的圆O相交,那么点P离开点B的距离BP的取值范围是.三、解答题:本大题共7小题,共78分19.先化简,再求值:﹣﹣,其中x=.20.解方程组:.21.已知:在平面直角坐标系xOy中,过点A(﹣5,2)向x轴作垂线,垂足为B,连接AO,点C在线段AO上,且AC:CO=2:3,反比例函数y=的图象经过点C,与边AB交于点D.(1)求反比例函数的解析式;(2)求△BOD的面积.22.如图,A,B两地之间有一座山,汽车原来从A地到B地须经C地沿折线A﹣C﹣B行驶,全长68km.现开通隧道后,汽车直接沿直线AB行驶.已知∠A=30°,∠B=45°,则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果精确到0.1km)(参考数据:≈1.4,≈1.7)23.已知:Rt△ABC中,∠ACB=90°,CP平分∠ACB交边AB于点P,点D在边AC上.(1)如果PD∥BC,求证:AC•CD=AD•BC;(2)如果∠BPD=135°,求证:CP2=CB•CD.24.已知点A(2,﹣2)和点B(﹣4,n)在抛物线y=ax2(a≠0)上.(1)求a的值及点B的坐标;(2)点P在y轴上,且△ABP是以AB为直角边的三角形,求点P的坐标;(3)将抛物线y=ax2(a≠0)向右并向下平移,记平移后点A的对应点为A′,点B的对应点为B′,若四边形ABB′A′为正方形,求此时抛物线的表达式.25.已知,AB=5,tan∠ABM=,点C、D、E为动点,其中点C、D在射线BM上(点C在点D 的左侧),点E和点D分别在射线BA的两侧,且AC=AD,AB=AE,∠CAD=∠BAE.(1)当点C与点B重合时(如图1),联结ED,求ED的长;(2)当EA∥BM时(如图2),求四边形AEBD的面积;(3)联结CE,当△ACE是等腰三角形时,求点B、C间的距离.参考答案与试题解析一、选择题:本大题共6小题,每小题4分,满分24分1.下列分数中,能化为有限小数的是()A.B.C.D.【考点】有理数的除法.【分析】本题需根据有理数的除法法则分别对每一项进行计算,即可求出结果.【解答】解:A∵=0.3…故本选项错误;B、∵=0.2故本选项正确;C、=0.142857…故本选项错误;D、=0.1…故本选项错误.故选B.2.下列运算正确的是()A.a+a=a2B.a2•a=2a3C.a3÷a2=a D.(a2)3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、根据合并同类项的法则计算;B、根据同底数幂的乘法法则计算;C、根据同底数幂的除法计算;D、根据幂的乘方计算.【解答】解:A、a+a=2a,此选项错误;B、a2•a=a3,此选项错误;C、a3÷a2=a,此选项正确;D、(a2)3=a6,此选项错误.故选C.3.如果=2a﹣1,那么()A.a B.a≤C.a D.a≥【考点】二次根式的性质与化简.【分析】由二次根式的化简公式得到1﹣2a为非正数,即可求出a的范围.【解答】解:∵=|1﹣2a|=2a﹣1,∴1﹣2a≤0,解得:a≥.故选D4.下列一组数据:﹣2、﹣1、0、1、2的平均数和方差分别是()A.0和2 B.0和C.0和1 D.0和0【考点】方差;算术平均数.【分析】先求出这组数据的平均数,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.【解答】解:这组数据:﹣2、﹣1、0、1、2的平均数是(﹣2﹣1+0+1+2)÷5=0;则方差=[(﹣2﹣0)2+(﹣1﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]=2;故选A.5.下列四个命题中真命题是()A.矩形的对角线平分对角 B.菱形的对角线互相垂直平分C.梯形的对角线互相垂直 D.平行四边形的对角线相等【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:矩形的对角线不能平分对角,A错误;根据菱形的性质,菱形的对角线互相垂直平分,B正确;梯形的对角线不互相垂直,C错误;平行四边形的对角线平分,但不一定相等,D错误.故选B.6.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分【考点】三角形的外接圆与外心.【分析】根据等腰三角形三线合一的性质即可得出结论.【解答】解:∵圆O是△ABC的外接圆,∴点O在三边的垂直平分线上.∵AC=BC,∴当l平分∠C时,l也是AB边的垂直平分线.故选C.二、填空题:本大题共12小题,每小题4分,共48分7.用代数式表示实数a(a>0)的平方根:.【考点】平方根.【分析】根据开方运算,可得一个数的平方根.【解答】解:用代数式表示实数a(a>0)的平方根为:,故答案为:.8.在实数范围内因式分解:x3﹣2x2y+xy2= x(x﹣y)2.【考点】实数范围内分解因式;提公因式法与公式法的综合运用.【分析】这个多项式含有公因式x,应先提取公因式,然后运用完全平方公式进行二次分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2)…(提取公因式)=x(x﹣y)2.…(完全平方公式)9.已知方程﹣=2,如果设y=,那么原方程转化为关于y的整式方程为3y2﹣6y﹣1=0 .【考点】列代数式.【分析】由设出的y,将方程左边前两项代换后,得到关于y的方程,去分母整理即可得到结果.【解答】解:设y=,方程﹣=2变形为y﹣=2,整理得:3y2﹣6y﹣1=0.故答案为:3y2﹣6y﹣1=010.一次函数y=kx+b的图象如图所示,则当x的取值范围是x<2 时,能使kx+b>0.【考点】一次函数的图象.【分析】根据函数图象与x轴的交点坐标可直接解答.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知x<2时,y>0,即kx+b>0.11.某公司承担了制作600个道路交通指引标志的任务,在实际操作时比原计划平均每天多制作了10个,因此提前了5天完成任务,如果设原计划x天完成,那么根据题意,可以列出的方程是:﹣=5 .【考点】由实际问题抽象出一元一次方程.【分析】根据原计划时间﹣实际时间=5,列出方程即可.【解答】解:∵根据原计划时间﹣实际时间=5,∴﹣=5.故答案为﹣=5.12.一台组装电脑的成本价是4000元,如果商家以5200元的价格卖给顾客,那么商家的盈利率为30% .【考点】有理数的混合运算.【分析】根据利润率的公式:利润率=利润÷成本×100%进行计算.【解答】解:÷4000×100%=30%.答:商家的盈利率为30%.13.掷一枚质地均匀的正方体骰子,骰子的六个面上的点数分别为1到6的整数,那么掷出的点数小于3的概率为.【考点】概率公式.【分析】点数小于3的有2种情况,除以总个数6即为向上的一面的点数小于3的概率.【解答】解:∵共有6种情况,点数小于3的有2种,∴P(点数小于3)=.故答案为14.已知=,=,那么= ﹣(用向量、的式子表示)【考点】*平面向量.【分析】根据+=,即可解决问题.【解答】解:∵+=,∴=﹣.故答案为﹣.15.已知,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD=2DB,BC=6,那么DE= 4 .【考点】相似三角形的判定与性质;平行线分线段成比例.【分析】根据平行线分线段成比例定理即可解决问题.【解答】解:∵AD=2DB,∴AD:AB=2:3,∵DE∥BC,∴=,∵BC=6,∴=,∴DE=4.故答案为4.16.将某班级全体同学按课外阅读的不同兴趣分成三组,情况如表格所示,则表中a的值应该是7 .第一组第二组第三组频数12 16 a频率b c 20%【考点】频数与频率.【分析】首先根据各小组的频率之和等于1得出第一组与第二组的频率和,然后求出数据总数,从而求出a的值.【解答】解:∵1﹣20%=80%,∴(16+12)÷80%=35,∴a=35×20%=7.故答案为:7.17.将等边△ABC沿着射线BC方向平移,点A、B、C分别落在点D、E、F处,如果点E恰好是BC的中点,那么∠AFE的正切值是.【考点】等边三角形的性质;锐角三角函数的定义.【分析】根据题意画出图形,利用等边三角形的性质解答即可.【解答】解:连接AE,如图:,∵将等边△ABC沿着射线BC方向平移,点E恰好是BC的中点,∴设等边三角形的边长为a,∴AE=,AE⊥BF,∴∠AFE的正切值=,故答案为:18.如图,在△ABC中,AB=AC=10,BC=12,点P为BC边上一动点,如果以P为圆心,BP为半径的圆P与以AC为直径的圆O相交,那么点P离开点B的距离BP的取值范围是≤BP≤9 .【考点】圆与圆的位置关系.【分析】过点A作AD⊥BC,利用等腰三角形的性质得出CD的长,利用圆与圆的位置关系解答即可.【解答】解:①过点A作AD⊥BC,过O作OH⊥BC,如图∵在△ABC中,AB=AC=10,BC=12,∴CD=BD=6,∴AD=,设BP=r时,两圆相外切,则PO=r+5,PH=BC﹣r﹣CH又易求OH=4,CH=3;则有勾股定理(r+5)2=(9﹣r)2+42,解得r=②当两圆内切时,过点A作AD⊥BC,过O作OH⊥BC,如图易知OP=r﹣5,PH=9﹣r,OH=4同理由勾股定理求得r=9故答案为:≤BP≤9.三、解答题:本大题共7小题,共78分19.先化简,再求值:﹣﹣,其中x=.【考点】分式的化简求值.【分析】原式三项通分并利用同分母分式的加减法则计算得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=﹣﹣====,当x=﹣2时,原式==1+.20.解方程组:.【考点】高次方程.【分析】先将原方程组进行变形,利用代入法和换元法可以解答本题.【解答】解:,由①,得③,将①③代入②,得,设x2=t,则,即t2﹣10t+9=0,解得,t=1或t=9,∴x2=1或x2=9,解得x=±1或x=±3,则或或或,即原方程组的解是:或或或.21.已知:在平面直角坐标系xOy中,过点A(﹣5,2)向x轴作垂线,垂足为B,连接AO,点C在线段AO上,且AC:CO=2:3,反比例函数y=的图象经过点C,与边AB交于点D.(1)求反比例函数的解析式;(2)求△BOD的面积.【考点】待定系数法求反比例函数解析式;反比例函数的性质.【分析】(1)由A点的坐标结合中点的坐标公式可得出点C的坐标,将点C的坐标代入到反比例函数解析式即可求出k值,从而得出反比例函数的解析式;(2)AB⊥x轴于B,于是得到OB=5,根据三角形的面积公式即可得到结论.【解答】解:(1)∵AC:CO=2:3,点A(﹣5,2),∴C点的坐标为(﹣3,),将点C(﹣3,),代入到反比例函数y=中得:=,解得:k=﹣.∴反比例函数的解析式为y=﹣;(2)∵AB⊥x轴于B,∴OB=5,∴△BOD的面积=×5×=3.22.如图,A,B两地之间有一座山,汽车原来从A地到B地须经C地沿折线A﹣C﹣B行驶,全长68km.现开通隧道后,汽车直接沿直线AB行驶.已知∠A=30°,∠B=45°,则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果精确到0.1km)(参考数据:≈1.4,≈1.7)【考点】解直角三角形的应用.【分析】首先过点C作CD⊥AB,垂足为D,设CD=x,即可表示出AC,BC的长,进而求出x 的值,再利用锐角三角函数关系得出AD,BD的长,即可得出答案.【解答】解:如图,过点C作CD⊥AB,垂足为D,设CD=x.在Rt△ACD中,sin∠A=,AC==2x,在Rt△BCD中,sin∠B=,BC==x,∵AC+BC=2x+x=68∴x=≈=20.在Rt△ACD中,tan∠A=,AD==20,在Rt△BCD中,tan∠B=,BD==20,AB=20+20≈54,AC+BC﹣AB=68﹣54=14.0(km).答:隧道开通后,汽车从A地到B地比原来少走14.0千米.23.已知:Rt△ABC中,∠ACB=90°,CP平分∠ACB交边AB于点P,点D在边AC上.(1)如果PD∥BC,求证:AC•CD=AD•BC;(2)如果∠BPD=135°,求证:CP2=CB•CD.【考点】相似三角形的判定与性质.【分析】(1)根据角平分线的性质和平行线的性质证得∠CPD=∠PCA,得出PD=CD,然后证得△APD∽△ABC,根据相似三角形的性质即可证得结论;(2)根据三角形内角和定理求得∠B=∠CPD,即可证得△PCB∽△PDC根据相似三角形的性质即可证得结论.【解答】(1)证明:如图,∵PD∥BC,∴∠PCB=∠CPD,∵∠PCB=∠PCA,∴∠CPD=∠PCA,∴PD=CD,∵PD∥BC,∴△APD∽△ABC,∴=,∴AC•PD=AD•BC,∴AC•CD=AD•BC;(2)证明:∵Rt△ABC中,∠ACB=90°,CP平分∠ACB交边AB于点P,∴∠PCB=∠PCA=45°,∵∠B+45°+∠CPB=180°,∴∠B+∠CPB=135°,∵∠BPD=135°,∴∠CPB+∠CPD=135°,∴∠B=∠CPD,∴△PCB∽△PDC,∴=,∴CP2=CB•CD.24.已知点A(2,﹣2)和点B(﹣4,n)在抛物线y=ax2(a≠0)上.(1)求a的值及点B的坐标;(2)点P在y轴上,且△ABP是以AB为直角边的三角形,求点P的坐标;(3)将抛物线y=ax2(a≠0)向右并向下平移,记平移后点A的对应点为A′,点B的对应点为B′,若四边形ABB′A′为正方形,求此时抛物线的表达式.【考点】二次函数图象上点的坐标特征;坐标与图形变化-平移.【分析】(1)把点A(2,﹣2)代入y=ax2,得到a,再把点B代入抛物线解析式即可解决问题.(2)求出直线AB解析式,再分别求出过点A垂直于AB的直线的解析式,过点B垂直于直线AB 的解析式即可解决问题.(3)先求出点A′坐标,确定是如何平移的,再确定抛物线顶点的坐标即可解决问题.【解答】解:(1)把点A(2,﹣2)代入y=ax2,得到a=﹣,∴抛物线为y=﹣x2,∴x=﹣4时,y=﹣8,∴点B坐标(﹣4,﹣8),∴a=﹣,点B坐标(﹣4,﹣8).(2)设直线AB为y=kx+b,则有,解得,∴直线AB为y=x﹣4,∴过点B垂直AB的直线为y=﹣x﹣12,与y轴交于点P(0,﹣12),过点A垂直AB的直线为y=﹣x,与y轴交于点P′(0,0),∴点P在y轴上,且△ABP是以AB为直角边的三角形时.点P坐标为(0,0),或(0,﹣12).(3)如图四边形ABB′A′是正方形,过点A作y轴的垂线,过点B、点A′作x轴的垂线得到点E、F.∵直线AB解析式为y=﹣x﹣12,∴△ABF,△AA′E都是等腰直角三角形,∵AB=AA′==6,∴AE=A′E=6,∴点A′坐标为(8,﹣8),∴点A到点A′是向右平移6个单位,向下平移6个单位得到,∴抛物线y=﹣x2的顶点(0,0),向右平移6个单位,向下平移6个单位得到(6,﹣6),∴此时抛物线为y=﹣(x﹣6)2﹣6.25.已知,AB=5,tan∠ABM=,点C、D、E为动点,其中点C、D在射线BM上(点C在点D 的左侧),点E和点D分别在射线BA的两侧,且AC=AD,AB=AE,∠CAD=∠BAE.(1)当点C与点B重合时(如图1),联结ED,求ED的长;(2)当EA∥BM时(如图2),求四边形AEBD的面积;(3)联结CE,当△ACE是等腰三角形时,求点B、C间的距离.【考点】三角形综合题.【分析】(1)如图1中,延长BA交DE于F,作AH⊥BD于H,先证明BF⊥DE,EF=DF,再利用△ABH∽△DBF,得=,求出DF即可解决问题.(2)先证明四边形ADBE是平行四边形,根据S平行四边形ADBE=BD•AH,计算即可.(3)由题意AC≠AE,EC≠AC,只有EA=EC,利用四点共圆先证明四边形ADBE是平行四边形,求出DH、CH即可解决问题.【解答】解:(1)如图1中,延长BA交DE于F,作AH⊥BD于H.在RT△ABH中,∵∠AHB=90°,∴sin∠ABH==,∴AH=3,BH==4,∵AB=AD,AH⊥BD,∴BH=DH=4,在△ABE 和△ABD中,,∴△ABD≌△ABE,∴BE=BD,∠ABE=∠ABD,∴BF⊥DE,EF=DF,∵∠ABH=∠DBF,∠AHB=∠BFD,∴△ABH∽△DBF,∴=,∴DF=,∴DE=2DF=.(2)如图2中,作AH⊥BD于H.∵AC=AD,AB=AE,∠CAD=∠BAE,∴∠AEB=∠ABE=∠ACD=∠ADC,∵AE∥BD,∴∠AEB+∠EBD=180°,∴∠EBD+∠ADC=180°,∴EB∥AD,∵AE∥BD,∴四边形ADBE是平行四边形,∴BD=AE=AB=5,AH=3,∴S平行四边形ADBE=BD•AH=15.(3)由题意AC≠AE,EC≠AC,只有EA=EC.如图3中,∵∠ACD=∠AEB(已证),∴A、C、B、E四点共圆,∵AE=EC=AB,∴=,∴=,∴∠AEC=∠ABC,∴AE∥BD,由(2)可知四边形ADBE是平行四边形,∴AE=BD=AB=5,∵AH=3,BH=4,∴DH=BD﹣BH=1,∵AC=AD,AH⊥CD,∴CH=HD=1,∴BC=BD﹣CD=3.2016年6月3日。
2022年上海市杨浦区中考数学三模试题及答案解析
2022年上海市杨浦区中考数学三模试卷一、选择题(本大题共6小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 2的倒数是( )A. −2B. −12C. 12D. 22. 在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为( )A. (−3,2)B. (3,−2)C. (2,−3)D. (−2,3)3. 下列运算中,正确的是( )A. 2a+3a=5a2B. 2a3⋅3a2=6a6C. (−2a2)3=−8a6D. −4a2÷2a=2a4. 如果二次函数y=ax2+bx+c的图象全部在x轴的上方,那么下列判断中一定正确的是( )A. a>0,b>0B. a>0,b<0C. a>0,c<0D. a>0,c>05. 一个事件的概率不可能是( )A. 0B. 0.5C. 1D. 1.56. 如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是( )A. 5<OB<9B. 4<OB<9C. 3<OB<7D. 2<OB<7二、填空题(本大题共12小题,共48.0分)7. 用代数式表示:a的5倍与b的27的差:______ .8. 分解因式:x2−2x−15=______ .9. 已知函数f(x)=√x+6,那么f(3)=______.10. 计算:11+x +11−x=______.11. 已知△ABC 中,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ ,那么AC ⃗⃗⃗⃗⃗ =______.(结果用a ⃗ 、b ⃗ 表示)12. 如果二次函数y =x 2+2x −m +2图象的顶点在x 轴上,那么m 的值是______.13. 已知二次函数图象的对称轴在y 轴右侧,且在对称轴左侧函数y 的值随x 的值增大而增大.请写出一个符合上述条件的二次函数的解析式______.(只需写一个)14. 如果梯形的下底长为7,中位线长为5,那么其上底长为______ .15. 已知AB 是⊙O 的弦,如果⊙O 的半径长为5,AB 长为4,那么圆心O 到弦AB 的距离是______ .16. 从一栋二层楼的楼顶点A 处看对面的教学楼,探测器显示,看到教学楼底部点B 处的俯角为45°,看到楼顶部点C 处的仰角为60°,已知两栋楼之间的水平距离为6米,那么教学楼的高CB =______米.(结果保留根号)17. 新定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做等高底三角形,这条边叫做等底.如图,△ABC 是等高底三角形,BC 是等底,点A 关于直线BC 的对称点是点A′,联结AA′,如果点B 是△AA′C 的重心,那么ACBC的值是______.18. 如图,已知在△ABC中,∠C=90°,BC=8,cosB=45,点P是斜边AB上一点,过点P作PM⊥AB交边AC于点M,过点P作AC的平行线,与过点M作AB的平行线交于点Q.如果点Q恰好在∠ABC的平分线上,那么AP的长为______.三、计算题(本大题共2小题,共20.0分)19. 计算:|1−√2|+(π−2022)0−2sin45°+(−12)−2.20. 解方程:xx+1−4x2−1=1.四、解答题(本大题共5小题,共58.0分。
2020年上海市杨浦区中考数学三模试卷(含答案解析)
2020年上海市杨浦区中考数学三模试卷一、选择题(本大题共6小题,共18.0分)1.下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17的平方根是−√17,其中正确的是()A. 0个B. 1个C. 2个D. 3个2.下列各式中,√x−2的有理化因式是()A. √x+2B. √x−2C. √x+2D. √x−2.3.下列关于x的方程一定有实数解的是()A. x2−mx−1=0B. ax=3C. √x−6·√4−x=0D. 1x−1=xx−14. 4.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的()A. 中位数相等B. 平均数不同C. A组数据方差更大D. B组数据方差更大5.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6√2,∠C=45°,tan∠ABC=3,则BD的长为()A. 2B. 3C. 3√2D. 2√36.下列命题中,为真命题的是()A. 同位角相等B. 若a>b,则−2a>−2bC. 若a2=b2,则a=bD. 对顶角相等二、填空题(本大题共12小题,共36.0分)7.截止2016年4月28日,电影《美人鱼》的累计票房达到大约3390000000元,数据3390000000用科学记数法表示为______ .8.计算:(2a+b)(2a−b)+b(2a+b)=.9.不等式组{2x−3≥13−x<0的解集是______.10.方程2x2−x+a=0没有实数根,则a的取值范围是______ .11. 一次函数y =kx +b(k,b 是常数,k ≠0)的图象如图所示,则不等式kx +b >0的解集是______ .12. 把抛物线y =ax 2+bx +c 先向右平移2个单位,再向下平移5个单位得到抛物线y =x 2−2x −2,那么a +b +c =________.13. 学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计,他通过采集数据后,绘制一幅不完整的统计图(如图所示).已知骑车的人数占全班人数的30%,结合图中提供的信息,可得该班步行上学的有______ 人.14. 一个不透明的袋中装有除颜色外无其他仼何差别的12个红球和n 个黄球,从中随机摸出一个,摸到红球的概率是35,则n =______. 15. 如图,在△ABC 中,AD 是中线,G 是重心,AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,那么向量BG ⃗⃗⃗⃗⃗ 关于a ⃗ 、b ⃗ 的分解式为______.16. 某人沿着坡度为1:2.4的斜坡向上前进了130 m ,那么他的高度上升了 m.17. 若等腰三角形的一个内角为80°,则其顶角为________________.18. 在Rt △ABC 中,∠C =90°,AB =2,将这个三角形绕点C 旋转60°后AB 的中点D 落在点Dˈ处,那么DDˈ的长为________.三、计算题(本大题共1小题,共6.0分)19. (1)(2+2√3)(2√3−2)−(√3−√2)2(2)√24−1√3−2−(−13)−1÷√3−(√6−1)2四、解答题(本大题共6小题,共48.0分)20.已知方程组{ax+5y=a−12,3x−2y=10的解也是方程9x+4y=40的解,求a的值.21.如图,圆O的直径AB垂直弦CD于M,且M是半径OB的中点,CD=4√3,求直径AB的长.22.2018年6月28日,深湛高铁正式运营.从湛江到广州全程约468km,高铁开通后,运行时间比特快列车所用的时间减少了6ℎ.若高铁列车的平均速度是特快列车平均速度的3倍,求特快列车与高铁的平均速度.23.如图,四边形ABCD中,AD//BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.24.抛物线y=x2+(2t−2)x+t2−2t−3与x轴交于A、B两点(A在B左侧),与y轴交于点C.(1)如图1,当t=0时,连接AC、BC,求△ABC的面积;(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;(3)如图3,当−1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.25.已知:如图,四边形ABCD中,AD//BC,∠ABC=90°,AB=BC,AE⊥BD,EF⊥CE(1)试证明△AEF∽△BEC;(2)如图,过C点作CH⊥AD于H,试探究线段DH与BF的数量关系,并说明理由;(3)若AD=1,CD=5,试求出BE的值?【答案与解析】1.答案:A解析:解:①实数与数轴上的点一一对应,故①错误;②无理数是无限不循环小数,故②错误;③负数的立方根是负数,故③错误;④17的平方根是±√17,故④错误;故选:A .①根据实数与数轴的关系,可判断①,②根据无理数的定义,可判断②,③根据开立方,可得答案,④根据开平方,可得答案.本题考查了实数,注意负数的立方根是负数,负数没有平方根,一个正数有两个平方根. 2.答案:C解析:解:∵(√x −2)(√x +2)=x −4∴√x −2的有理化因式是√x +2,故选C .根据互为有理化因式的定义即可求出答案.本题考查互为有理化因式的定义,解题关键是熟练运用二次根式的性质,本题属于基础题型. 3.答案:A解析:本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得. 解:A.x 2−mx −1=0中Δ=m 2+4>0,一定有两个不相等的实数根,符合题意;B .ax =3中当a =0时,方程无解,不符合题意;C .由{x −6≥04−x ≥0知此方程组无解,不符合题意; D .1x−1=x x−1有增根x =1,此方程无解,不符合题意;故选:A.4.答案:D解析:分别求出两组数据的中位数、平均数、方差,比较即可得出答案.【详解】A组数据的中位数是:4,平均数是:(2+3+4+5+6)÷5=4,方差是:[(2−4)2+(3−4)2+(4−4)2+(5−4)2+(6−4)2]÷5=2;B组数据的中位数是:3,平均数是:(1+7+3+0+9)÷5=4,方差是:[(1−4)2+(7−4)2+(3−4)2+(0−4)2+(9−4)2]÷5=12;∴两组数据的中位数不相等,平均数相等,B组方差更大.故选D.本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键.5.答案:A解析:此题主要考查了解直角三角形,关键是掌握三角函数定义.根据三角函数定义可得AD=AC⋅sin45°,从而可得AD的长,再利用正切定义可得BD的长.解:∵AC=6√2,∠C=45°,=6,∴AD=AC⋅sin45°=6√2×√22∵tan∠ABC=3,=3,∴ADBD∴BD=AD=2,3故选A.6.答案:D解析:解:A、两直线平行,同位角相等,故为假命题;B、若a>b,则−2a<−2b,故为假命题;C、a2=b2,则a=±b,故为假命题;D、对顶角相等为真命题;故选:D.分别判断四个选项的正确与否即可确定真命题.主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.答案:3.39×109解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:3390000000=3.39×109,故答案为3.39×109.8.答案:2a(2a+b)解析:本题考查了因式分解的提公因式法,掌握提公因式的方法是解题的关键.按照提公因式法分解因式解答即可.解:原式=4a2−b2+2ab+b2=4a2+2ab=2a(2a+b).9.答案:x >3解析:解:{2x −3≥1 ①3−x <0 ②, 解不等式①得,x ≥2,解不等式②得,x >3,所以,不等式组的解集是x >3.故答案为:x >3先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10.答案:a >18解析:解:根据题意得△=(−1)2−8a <0,解得:a >18.故答案为:a >18.根据判别式的意义得到△=(−1)2−8a <0,然后解不等式即可.本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2−4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 11.答案:x >1解析:解:一次函数y =kx +b(k,b 是常数,k ≠0)的图象与x 轴的交点是(1,0),当x >1时,y >0.故答案为:x >1.根据一次函数的图象看出:一次函数y =kx +b(k,b 是常数,k ≠0)的图象与x 轴的交点是(1,0),得到当x >1时,y >0,即可得到答案.本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.12.答案:6.解析:本题主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.由y=x2−2x−2=(x−1)2−3,可知得到的抛物线顶点坐标为(1,−3),根据平移规律得到原抛物线顶点坐标为(1−2,−3+5),即(−1,2),抛物线平移时,二次项系数不变,可用顶点式写出原抛物线解析式,展开可得a、b、c的值,进而得解.解:∵y=x2−2x−2=(x−1)2−3,∴平移后抛物线顶点为(1,−3),根据平移规律可知平移前抛物线顶点坐标为(−1,2)又二次项系数为1,∴原抛物线解析式为y=(x+1)2+2=x2+2x+3,∴a=1,b=2,c=3,∴a+b+c=6,故答案为6.13.答案:8解析:解:由题意可得,调查的学生数为:12÷30%=40,故该班步行上学的学生有:40−20−12=8(人),故答案为:8.根据题意和统计图可知骑车的人数有12人占总数的30%,从而可以得到调查的学生总数,进而可以得到步行的学生人数.本题考查条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.14.答案:8解析:解:根据题意得:=20,,总个数=12÷35∴n =20−12=8,故答案为:8.用红球的个数除以红球的概率得出球的总个数,从而求出n 的值.此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15.答案:23b ⃗ −a ⃗解析:解:根据三角形的重心定理,AG =23AD ,于是AG ⃗⃗⃗⃗⃗ =23AD ⃗⃗⃗⃗⃗⃗ =23b ⃗ . 故BG ⃗⃗⃗⃗⃗ =AG ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =23b ⃗ −a ⃗ . 故答案为:23b ⃗−a ⃗ . 根据重心定理求出GD ⃗⃗⃗⃗⃗⃗ ,再利用三角形法则求出BG ⃗⃗⃗⃗⃗ 即可.此题考查了平面向量的三角形法则和重心定理(三角形的重心是各中线的交点,重心定理是说三角形顶点到重心的距离等于该顶点对边上中线长的23),难度不大. 16.答案:50解析:本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.根据坡度的定义可以求得AC 、BC 的比值,根据AC 、BC 的比值和AB 的长度即可求得AC 的值,即可解题.解:AB =130米,tanB =AC :BC =1:2.4,设AC =x ,则BC =2.4x ,则x 2+(2.4x)2=1302,解得x =50,故答案为50.17.答案:80°或20°解析:本题考查了等腰三角形的性质及三角形的内角和定理,属于基础题.分情况讨论,即可得解.解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°−80°×2=20°;综上,其顶角为80°或20°.故答案为80°或20°.18.答案:1解析:本题考查了直角三角形的性质、旋转的性质及等边三角形的判定和性质,主要考查了学生的计算能AB=1.再根据旋转的性质可知CD=CD′,力.由于D是Rt△ABC斜边AB的中点,得出CD=12∠DCD′=60°,由等边三角形的判定得出△DCD′是等边三角形,从而求出DD′=CD=1.解:如图,∵D是Rt△ABC斜边AB的中点,∴CD=1AB=1,2又∵将△ABC绕点C旋转60°后,AB的中点D落在点D′处,∴CD=CD′,∠DCD′=60°,∴△DCD′是等边三角形,∴DD′=CD=1,故答案为1.19.答案:(1)原式=(2√3)2−22−(3−2√6+2)=12−4−(5−2√6)=3+2√6(2)原式=2√6+(2+√3)+3÷√3−(7−2√6)=4√6+2√3−5解析:(1)根据平方差公式以及完全平方公式计算,然后再合并同类二次根式.(2)先根据分母有理化以及负整数指数幂计算化简,然后再合并同类二次根式.20.答案:解:因为方程组{ax+5y=a−12,3x−2y=10的解也是方程9x+4y=40的解,所以得到方程组{9x+4y=40, 3x−2y=10,解得{x=4, y=1,把{x=4,y=1,代入方程ax+5y=a−12,得4a+5=a−12,解得a=−117.解析:本题考查了解二元一次方程组,二元一次方程组的解的应用,能得出一个关于a的方程是解此题的关键.21.答案:解:连接OC,如图所示:∵直径AB⊥CD,CD=4√3,∴CM=DM=12CD=2√3,设圆O的半径是r,∵M是半径OB的中点,∴OM=12r,由勾股定理得:OC2=OM2+CM2∴r2=(12r)2+(2√3)2,解得:r=4,则直径AB=2r=8.解析:本题考查的是垂径定理,勾股定理有关知识,连接OC,根据垂径定理可求CM=DM=2√3,再运用勾股定理可求半径OC,则直径AB可求.22.答案:解:设特快列车的平均速度是x km/ℎ,由题意,得468x −4683x=6解得x=52经检验,x=52是原方程的解,且符合实际意义.3x=156答:特快列车的平均速度是52 km/ℎ.高铁的平均速度是156km/ℎ.解析:设特快列车的平均速度是xkm/ℎ,则高铁列车平均速度为3xkm/ℎ,根据高铁开通后,运行时间比特快列车所用的时间减少了6小时,列方程求解.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.23.答案:解:(1)∵AF//BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,{∠FBC=∠BFD ∠DCB=∠CDF DE=EC,∴△BCE≌△FDE;∴DF=BC,又∵DF//BC,∴四边形BCFD为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=√BD2−AD2=√3,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF=√AB2+AF2=2√3.解析:本题考查了全等三角形的判定与性质,平行四边形的判定与性质、菱形的判定与性质.关键是根据平行关系及中点证明两个三角形全等.(1)根据DE=EC,AF//BC,得出内错角相等,证明△BCE≌△FDE,可判断BC//DF且BC=DF,从而得出四边形BCFD为平行四边形,再根据菱形的判定求解即可;(2)根据菱形的性质得到BD=DF=BC=2,根据勾股定理可得AB,根据线段的和差关系可得AF,再根据勾股定理可得BF的长.24.答案:解:(1)将t=0代入抛物线解析式得:y=x2−2x−3.当x=0时,y=x2−2x−3=−3,∴点C的坐标为(0,−3);当y=0时,有x2−2x−3=0,解得:x1=3,x2=−1,∴点B的坐标为(3,0),点A的坐标为(−1,0).∴S△ABC=12AB⋅OC=12×[3−(−1)]×3=6.(2)由(1)知:B(3,0),C(0,−3),∴OB=OC,∴∠ABC=45°,∴∠ACB+∠CAB=135°.又∵∠PCB+∠CAB=135°,∴∠ACB=∠PCB.在图2中,过B作BM//y轴,交CP延长线于M.∴∠ABC =∠MBC .在△ABC 和△MBC 中,{∠ABC =∠MBC BC =BC ∠ACB =∠MCB, ∴△ABC≌△MBC(ASA),∴AB =MB =4,∴点M 的坐标为(3,−4),∴直线CM 解析式为:y =−13x −3(利用待定系数法可求出该解析式).联立直线CM 及抛物线的解析式成方程组,得:{y =−13x −3y =x 2−2x −3, 解得:{x 1=0y 1=−3(舍去),{x 2=53y 2=−329, ∴点P 的坐标为(53,−329).(3)当y =0时,有x 2+(2t −2)x +t 2−2t −3=0,即[x +(t −3)]⋅[x +(t +1)]=0,解得:x1=−t+3,x2=−t−1,∴点A的坐标为(−t−1,0),点B的坐标为(−t+3,0).当x=0时,y=x2+(2t−2)x+t2−2t−3=t2−2t−3,∴点C的坐标为(0,t2−2t−3).设直线AQ的解析式为:y=k1x+b1,直线BQ的解析式为:y=k2x+b2.∴点D的坐标为(0,b1),点E的坐标为(0,b2),∴CD=(t2−2t−3)−b1,CE=b2−(t2−2t−3).∵y=k1x+b1,y=x2+(2t−2)x+t2−2t−3,∴x2+(2t−2−k1)x+t2−2t−3−b1=0,∴x A⋅x Q=t2−2t−3−b1①.同理:x B⋅x Q=t2−2t−3−b2②.由②÷①,得:x Bx A =t2−2t−3−b2t2−2t−3−b1=−b2−(t2−2t−3)(t2−2t−3)−b1,∴CECD =−x Bx A=2,∴−t+3−t−1=−2,∴t=13.解析:本题考查了二次函数图象上点的坐标特征、三角形的面积、三角形内角和定理、全等三角形的判定与性质、待定系数法求一次函数解析式、解方程组、因式分解法解一元二次方程以及根与系数的关系,解题的关键是:(1)利用二次函数图象上点的坐标特征求出抛物线与坐标轴的交点坐标;(2)通过构造全等三角形找出直线PC的解析式;(3)利用根与系数的关系结合CE=2CD,找出关于t 的方程.(1)代入t=0可得出抛物线的解析式,利用二次函数图象上点的坐标特征可求出点A,B,C的坐标,再利用三角形的面积公式即可求出△ABC的面积;(2)由点B,C的坐标可得出∠ABC=45°,利用三角形内角和定理可得出∠ACB+∠CAB=135°,结合∠PCB+∠CAB=135°可得出∠ACB=∠PCB,过B作BM//y轴,交CP延长线于M,由平行线的性质可得出∠ABC=∠MBC,结合BC=BC即可证出△ABC≌△MBC(ASA),利用全等三角形的性质可得出AB=MB=4,进而可得出点M的坐标,根据点C,M的坐标,利用待定系数法可求出直线CM的解析式,再联立直线CM及抛物线的解析式成方程组,通过解方程组可求出点P的坐标;(3)利用二次函数图象上点的坐标特征及因式分解法解一元二次方程,可求出点A,B,C的坐标,设直线AQ的解析式为:y=k1x+b1,直线BQ的解析式为:y=k2x+b2,则CD=(t2−2t−3)−b1,CE=b2−(t2−2t−3),将直线解析式代入抛物线解析式中可得出关于x的一元二次方程,利用根与系数的关系可得出x A⋅x Q=t2−2t−3−b1①,x B⋅x Q=t2−2t−3−b2②,利用②÷①结合CE=2CD,即可得出关于t的方程,解之即可得出结论.25.答案:(1)证明:∵AE⊥BD,EF⊥CE,∴∠AEB=∠FEC=90°,∴∠AEF=∠BEC,∵∠ABC=90°,∴∠ABE+∠EBC=90°,∠ABE+∠FAE=90°,∴∠FAE=∠EBC,∴△AEF∽△BEC;(2)解:结论:DH=BF.理由:∵△AEF∽△BEC,∴AEBE =AFBC,∵∠ABE=∠ABD,∠AEB=∠BAD=90°,∴△ABE∽△DBA,∴AEBE =ADAB,∴AFBC =ADAB,∵BC=AB,∴AF=AD,∵∠ABC=∠BAD=∠H=90°,∴四边形ABCH是矩形,∵AB=BC,∴四边形ABCH是正方形,∴AB=AH,∵AF=AD,∴BF=DH.(3)设正方形的边长为x,在Rt△CDH中,DH=x−1,CH=x,CD=5,∴52=x2+(x−1)2,解得x=4,∴AB=4,AD=1,在Rt△ABD中,BD=√12+42=√17,∵12⋅AD⋅AB=12⋅BD⋅AE,∴AE=AD⋅ABBD =4√1717,在Rt△AEB中,BE=√AB2−AE2=16√1717.解析:(1)想办法证明∠AEF=∠BEC,∠FAE=∠EBC即可解决问题;(2)结论:DH=BF.利用比例的性质首先证明AD=AF,再证明四边形ABCH是正方形即可解决问题;(3)设正方形的边长为x,在Rt△CDH中,DH=x−1,CH=x,CD=5,可得52=x2+(x−1)2,解得x=4,再通过解直角三角形求出BE的长即可;本题考查相似三角形综合题、比例的性质、正方形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考压轴题.。
上海市杨浦区2019-2020学年中考第三次质量检测数学试题含解析
上海市杨浦区2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( ) A .26×105 B .2.6×102 C .2.6×106 D .260×1042.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( )A .32,31B .31,32C .31,31D .32,353.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m ,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加16002m ,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x (x-60)=1600B .x (x+60)=1600C .60(x+60)=1600D .60(x-60)=16004.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D . 5.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >2 6.下列计算,正确的是( )A .a 2•a 2=2a 2B .a 2+a 2=a 4C .(﹣a 2)2=a 4D .(a+1)2=a 2+1 7.若不等式组236x m x x <⎧⎨-<-⎩无解,那么m 的取值范围是( ) A .m≤2 B .m≥2 C .m <2 D .m >28.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A .–999×(52+49)=–999×101=–100899 B .–999×(52+49–1)=–999×100=–99900 C .–999×(52+49+1)=–999×102=–101898 D .–999×(52+49–99)=–999×2=–1998 9.下列各数中,最小的数是( )A .0B .2C .1D .π-10.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是( )A .480480420x x-=- B .480480204x x -=+ C .480480420x x -=+ D .480480204x x -=- 11.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是( )百合花 玫瑰花 小华6支 5支 小红 8支 3支A .2支百合花比2支玫瑰花多8元B .2支百合花比2支玫瑰花少8元12.若31x -与4x 互为相反数,则x 的值是( ) A .1 B .2 C .3 D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,四边形ABCD 内接于⊙O ,AD 、BC 的延长线相交于点E ,AB 、DC 的延长线相交于点F .若∠E +∠F =80°,则∠A =____°.14.如图,在△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B= ______15.计算20180(1)(32)---=_____.16.如图,小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得8CD =,20BC =米,CD 与地面成30°角,且此时测得1米的影长为2米,则电线杆的高度为=__________米.17.如图,在矩形ABCD 中,AB=8,AD=6,点E 为AB 上一点,AE=23,点F 在AD 上,将△AEF 沿EF 折叠,当折叠后点A 的对应点A′恰好落在BC 的垂直平分线上时,折痕EF 的长为_____.PF ⊥ON ,垂足分别为点E 、F ,那么称PE+PF 的值为点P 相对于∠MON 的“点角距离”,记为d (P ,∠MON ).如图乙,在平面直角坐标系xOy 中,点P 在坐标平面内,且点P 的横坐标比纵坐标大2,对于∠xOy ,满足d (P ,∠xOy )=10,点P 的坐标是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:22b a b -÷(a a b-﹣1) 20.(6分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?21.(6分)如图,在△ABC 中,∠ACB=90°,点D 是AB 上一点,以BD 为直径的⊙O 和AB 相切于点P .(1)求证:BP 平分∠ABC ;(2)若PC=1,AP=3,求BC 的长.22.(8分)如图,在平面直角坐标系中,一次函数1(0)y ax b a =+≠的图象与y 轴相交于点A ,与反比例函数2(0)k y k x=≠的图象相交于点(3,2)B ,(1,)C n -.(2)根据图象,直接写出12y y 时,x 的取值范围;(3)在y 轴上是否存在点P ,使PAB △为等腰三角形,如果存在,请求点P 的坐标,若不存在,请说明理由.23.(8分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x (单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m 的值和E 组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数24.(10分)如图,△ABC 内接与⊙O ,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于AC 点E ,交PC 于点F ,连接AF(1)判断AF 与⊙O 的位置关系并说明理由;(2)若⊙O 的半径为4,AF=3,求AC 的长.25.(10分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.26.(12分)如图,在四边形ABCD 中,AB ∥CD ,∠ABC=∠ADC ,DE 垂直于对角线AC ,垂足是E ,连接BE .(1)求证:四边形ABCD 是平行四边形;(2)若AB=BE=2,sin ∠ACD=32,求四边形ABCD 的面积.27.(12分)如图所示,一次函数y=kx+b 与反比例函数y=m x的图象交于A (2,4),B (﹣4,n )两点.分别求出一次函数与反比例函数的表达式;过点B 作BC ⊥x 轴,垂足为点C ,连接AC ,求△ACB 的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数260万=2600000=62.610⨯.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.C【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1.故选C .3.A【解析】试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x 米和(x -60)米,根据长方形的面积计算法则列出方程.考点:一元二次方程的应用.4.B【解析】【分析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0,【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.5.D【解析】【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x=的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1.故选:D .【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键.6.C【解析】【分析】【详解】解:A.224 .a a a ⋅=故错误;B.2222.a a a += 故错误;C.正确;D.()2212 1.a a a +=++故选C .【点睛】本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.7.A先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【详解】236x m x x <⎧⎨-<-⎩①② 由①得,x <m ,由②得,x >1,又因为不等式组无解,所以m≤1.故选A .【点睛】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.8.B【解析】【分析】根据乘法分配律和有理数的混合运算法则可以解答本题.【详解】原式=-999×(52+49-1)=-999×100=-1. 故选B .【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.9.D【解析】【分析】根据实数大小比较法则判断即可.【详解】π-<0<1,故选D .【点睛】本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.【分析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:原计划用时为:480x,实际用时为:48020x+.所列方程为:480480420x x-=+,故选C.【点睛】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.11.A【解析】【分析】设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.【详解】设每支百合花x元,每支玫瑰花y元,根据题意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∴2支百合花比2支玫瑰花多8元.故选:A.【点睛】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.12.D【解析】由题意得31x-+4x=0,去分母3x+4(1-x)=0,解得x=4.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.50【解析】试题分析:连结EF,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,∵四边形ABCD内接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考点:圆内接四边形的性质.14.【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD ⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=, C′D=×2=1,∴BC′=BD−C′D=−1. 故答案为:−1. 点睛: 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点. 15.0【解析】分析:先计算乘方、零指数幂,再计算加减可得结果.详解:())02018132--=1-1=0故答案为0.点睛:零指数幂成立的条件是底数不为0.16.(3【解析】【分析】过D 作DE ⊥BC 的延长线于E ,连接AD 并延长交BC 的延长线于F ,根据直角三角形30°角所对的直角边等于斜边的一半求出DE ,再根据勾股定理求出CE ,然后根据同时同地物高与影长成正比列式求出EF ,再求出BF ,再次利用同时同地物高与影长成正比列式求解即可.【详解】如图,过D 作DE ⊥BC 的延长线于E ,连接AD 并延长交BC 的延长线于F .∵CD=8,CD 与地面成30°角,∴DE=12CD=12×8=4, 根据勾股定理得:22CD DE -2242-2284-3∵1m 杆的影长为2m ,∴DE EF =12, ∴EF=2DE=2×4=8, ∴BF=BC+CE+EF=20+43+8=(28+43).∵AB BF =12, ∴AB=12(28+43)=14+23. 故答案为(14+23).【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB 的影长若全在水平地面上的长BF 是解题的关键.17.4或43.【解析】【分析】①当AF <12AD 时,由折叠的性质得到A′E=AE=23,AF=A′F ,∠FA′E=∠A=90°,过E 作EH ⊥MN 于H ,由矩形的性质得到MH=AE=23,根据勾股定理得到A′H=22=3A E HE '-,根据勾股定理列方程即可得到结论;②当AF >12AD 时,由折叠的性质得到A′E=AE=23,AF=A′F ,∠FA′E=∠A=90°,过A′作HG ∥BC 交AB 于G ,交CD 于H ,根据矩形的性质得到DH=AG ,HG=AD=6,根据勾股定理即可得到结论.【详解】①当AF <12AD 时,如图1,将△AEF 沿EF 折叠,当折叠后点A 的对应点A′恰好落在BC 的垂直平分线上,则3AF=A′F ,∠FA′E=∠A=90°,设MN是BC的垂直平分线,则AM=12AD=3,过E作EH⊥MN于H,则四边形AEHM是矩形,∴MH=AE=23,∵A′H=22=3A E HE'-,∴A′M=3,∵MF2+A′M2=A′F2,∴(3-AF)2+(3)2=AF2,∴AF=2,∴EF=22AF AE+=4;②当AF>12AD时,如图2,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,则3AF=A′F,∠FA′E=∠A=90°,设MN是BC的垂直平分线,过A′作HG∥BC交AB于G,交CD于H,则四边形AGHD是矩形,∴DH=AG,HG=AD=6,∴A′H=A′G=12HG=3,∴22A E A G'-'3∴3,∴22HF A H+'=6,∴22A E A F'+'=43综上所述,折痕EF的长为4或3故答案为:4或【点睛】本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键. 18.(6,4)或(﹣4,﹣6)【解析】【分析】设点P 的横坐标为x ,表示出纵坐标,然后列方程求出x ,再求解即可.【详解】解:设点P 的横坐标为x ,则点P 的纵坐标为x-2,由题意得,当点P 在第一象限时,x+x-2=10,解得x=6,∴x-2=4,∴P (6,4);当点P 在第三象限时,-x-x+2=10,解得x=-4,∴x-2=-6,∴P (-4,-6).故答案为:(6,4)或(-4,-6).【点睛】本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1a b+ 【解析】【分析】根据分式的混合运算法则把原式进行化简即可.【详解】原式=()()b a b a b +-÷(a a b -﹣a b a b--) =()()b a b a b +-÷a a b a b-+- =()()b a b a b +-•a b b-=1a b+. 【点睛】本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答此题的关键.20.(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解.试题解析:(1)由题意得,y =70020(45)x --=201600x -+;(2)P=(40)(201600)x x --+=220240064000x x -+-=220(60)8000x --+,∵x≥45,a=﹣20<0,∴当x=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)由题意,得220(60)8000x --+=6000,解得150x =,270x =,∵抛物线P=220(60)8000x --+的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在201600y x =-+中,20k =-<0,∴y 随x 的增大而减小,∴当x=58时,y 最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.考点:二次函数的应用.21.(1)证明见解析;(2)BC =【解析】试题分析:(1)连接OP ,首先证明OP ∥BC ,推出∠OPB=∠PBC ,由OP=OB ,推出∠OPB=∠OBP ,由此推出∠PBC=∠OBP ;(2)作PH ⊥AB 于H .首先证明PC=PH=1,在Rt △APH 中,求出AH ,由△APH ∽△ABC ,求出AB 、BH ,由Rt △PBC ≌Rt △PBH ,推出BC=BH 即可解决问题.试题解析:(1)连接OP ,∵AC 是⊙O 的切线,∴OP ⊥AC ,∴∠APO=∠ACB=90°,∴OP ∥BC ,∴∠OPB=∠PBC ,∵OP=OB ,∴∠OPB=∠OBP ,∴∠PBC=∠OBP ,∴BP 平分∠ABC ;(2)作PH ⊥AB 于H .则∠AHP=∠BHP=∠ACB=90°,又∵∠PBC=∠OBP ,PB=PB ,∴△PBC ≌△PBH ,∴PC=PH=1,BC=BH ,在Rt △APH 中,AH=2222AP PH -=,在Rt △ACB 中,AC 2+BC 2=AB 2∴(AP+PC)2+BC 2=(AH+HB)2,即42+BC 2=(22+BC)2,解得2BC =.22.(1)24y x =-; 6y x=;(2)10x -<<或3x >;(3)存在,(0,435)P -+或(0,435)P --或(0,8)P 或10,4P ⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C 坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分BP BA =、BP BA =、PA PB =三种情况讨论,即可得出结论.【详解】(1)Q 一次函数1y ax b =+与反比例函数k y x =,相交于点(3,2)B ,(1,)C n -, ∴把(3,2)B 代入k y x=得:23k =, ∴6k =, ∴反比例函数解析式为6y x =, 把(1,)C n -代入6y x =得:61n =-, ∴6n =-,∴点C 的坐标为(1,6)--, 把(3,2)B ,(1,6)C --代入y ax b =+得:23k b b k b =+⎧⎨-=-+⎩, 解得:24k b =⎧⎨=-⎩, ∴一次函数解析式为24y x =-;(2)根据函数图像可知:当10x -<<或3x >时,一次函数的图象在反比例函数图象的上方,∴当10x -<<或3x >时,12y y >;(3)存在(0,435)P -+或(0,435)P --或(0,8)P 或10,4P ⎛⎫-⎪⎝⎭时,PAB △为等腰三角形,理由如下: 过B 作BD y ⊥轴,交y 轴于D ,∵直线124y x =-与y 轴交于点A ,∴令0x =得,4y =-,∴点A 的坐标为(0,4)-,∵点B 的坐标为(3,2)B ,∴点D 的坐标为(0,2)D , ∴22(30)(24)AB =-++2236=+35=,①当AP AB =时,则35AP =,(0,4)A -Q ,∴点P 的坐标为:1(0,435)P -+、2(0,435)P --; ②当BP BA =时,BAP Q △是等腰三角形,BD AP ⊥,BD ∴平分AP ,2(4)6DA DP ∴==--=,∵点D 的坐标为(0,2)D ,∴点P 的坐标为(0,26)+,即3(0,8)P ;③当PA PB =时,如图:设PA PB x ==,则6DP DA PA x =-=-,Q 在Rt BDO △中,3DB =,6DP x =-,PB x =,∴由勾股定理得:222PB DB DP =+,2223(6)x x =+-,解得:154x =, (0,4)A -Q ,∴点P 的坐标为150,44⎛⎫-+ ⎪⎝⎭,即410,4P ⎛⎫- ⎪⎝⎭, 综上所述,当(0,435)P -+或(0,435)P --或(0,8)P 或10,4P ⎛⎫-⎪⎝⎭时,PAB △为等腰三角形. 【点睛】 本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x 的范围,解(3)的关键是分类讨论.23.略;m=40, 1.4°;870人.【解析】试题分析:根据A 组的人数和比例得出总人数,然后得出D 组的人数,补全条形统计图;根据C 组的人数和总人数得出m 的值,根据E 组的人数求出E 的百分比,然后计算圆心角的度数;根据D 组合E 组的百分数总和,估算出该校的每周的课外阅读时间不小于6小时的人数.试题解析:(1)补全频数分布直方图,如图所示.(2)∵10÷10%=100 ∴40÷100=40% ∴m=40 ∵4÷100=4% ∴“E”组对应的圆心角度数=4%×360°=1.4°(3)3000×(25%+4%)=870(人).答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.考点:统计图.24.解:(1)AF 与圆O 的相切.理由为:如图,连接OC ,∵PC为圆O切线,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF为圆O的切线,即AF与⊙O的位置关系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E为AC中点,即AE=CE=12AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=1.∵S△AOF=12•OA•AF=12•OF•AE,∴AE=245.∴AC=2AE=.【解析】试题分析:(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.试题解析:(1)连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,{32OA OCOF OF=∠=∠=,∴△OAF ≌△OCF (SAS ),∴∠OAF=∠OCF ,∵PC 是⊙O 的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA ⊥OA ,∴AF 是⊙O 的切线;(2)∵⊙O 的半径为4,AF=3,∠OAF=90°,∴OF=222234OF OA +=+=1∵FA ⊥OA ,OF ⊥AC ,∴AC=2AE ,△OAF 的面积=12AF•OA=12OF•AE , ∴3×4=1×AE , 解得:AE=125, ∴AC=2AE=245. 考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.25. (1)120;(2)42人;(3) 90°;(4)【解析】【分析】(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;(2)利用条形统计图以及样本数量得出喜欢广场舞的人数;(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;(4)利用树状图法列举出所有的可能进而得出概率.【详解】(1)这次参与调查的村民人数为:24÷20%=120(人);故答案为:120;(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;(4)如图所示:,一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.【点睛】此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.26.(1)证明见解析;(2)S平行四边形ABCD3.【解析】试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD∥BC,根据平行四边形的判定推出即可;(2)证明△ABE是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE和DE,得出AC的长,即可求出四边形ABCD的面积.试题解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵sin∠3ACD=60°,∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE是等边三角形,∴AE=AB=2,∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE=12CD=1,∴33AC=AE+CE=3,∴S平行四边形ABCD =2S△ACD327.(1)反比例函数解析式为y=8x,一次函数解析式为y=x+2;(2)△ACB的面积为1.【解析】【分析】(1)将点A坐标代入y=mx可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【详解】解:(1)将点A(2,4)代入y=mx,得:m=8,则反比例函数解析式为y=8x,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:2442k bk b+=⎧⎨-+=-⎩,解得:12kb=⎧⎨=⎩,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=12×2×1=1.【点睛】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.。
【中考冲刺】2021年上海市杨浦区中考数学模拟试卷(附答案)
别落在点6、G处,如果BB出AC,联结Cb交边AB于点D那么—的值为・
三、解答题
in■丄皆tan260°-2sin30°
4cos"45° +cot30
20.已知一个二次函数的图像经过点A(—1,0)、3(0,3)、C(2,3).
(1)求这个函数的解析式及对称轴;
(2)如果点Pg」)、。*))在这个二次函数图像上,且兀v0,那么儿
(1)如果点D为边BC的中点,求ZDAB的正切值;
(2)当点F在边AC上时,设CD = x, CF = y,求y关于x的函数解析式及定义域;
(3)联结£>尸如果与△4GE相似,求线段CD的长.
顶点G、尸分别在边AC.BC上,点D、E在斜边43上,那么正方形DEFG的边长
17.新定义:有一组对角互余的凸四边形称为对余四边形•如图,已知在对余四边形
试卷第2页,总5页
3
ABCD +, AB = 10, BC = 12, CD=5,tanB = -,那么边4£)的长为
18.如图,己知在'ABC中,ZB=45°, ZC二60。,将△ABC绕点A旋转,点B、C分
(1)如果点p与点c重合,求线段4P的长;
(2)如果抛物线经过原点,点0是抛物线上一点,tanZOPe = 3,求点0的坐标;
(3)如果直线与x轴的负半轴相交,求加的取值范围・
25・如图,己知在R仏ABC中,ZACB =90°,AC = BC = 4,点D为边BC上一动 点(与点E、C不重合),点E为边AB上一点,AEDB=ZADC,过点E作EF丄AD,垂足为点G,交射线4C于点F.
绝密★启用前
【中考冲刺】
案)
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
上海市杨浦区2021年中考数学三模考试试卷附答案
中考数学三模考试试卷一、单选题(共6题;共12分)1.在实数|﹣3|,﹣2,0,π中,最小的数是()A. |﹣3|B. ﹣2C. 0D. π2.下列各式的变形中,正确是( )A. (-x-y)(-x+y)=x2-y2B. -x=C. x2-4x+3=(x-2)2+1D. x÷(x2+x)=+13.将样本容量为100的样本编制成组号①~⑧的八个组,简况如表所示:那么第⑤组的频率是()A. 14B. 15C. 0.14D. 0.154.在平面直角坐标系中,点A的坐标是(﹣1,2),将点A向右平移4个单位,得到点A′,再作点A′关于y 轴的对称点,得到点A″,则点A″的坐标是( )A. (3,2)B. (3,﹣2)C. (﹣3,﹣2)D. (﹣3,2)5.下列说法中正确是( )A. 三角形三条角平分线的交点到三个顶点的距离相等B. 三角形三条角平分线的交点到三边的距离相等C. 三角形三条中线的交点到三个顶点的距离相等D. 三角形三条中线的交点到三边的距离相等6.如图,在四边形ABCD中,AC与BD相交于点O,∠BAD=90°,BO=DO,那么添加下列一个条件后,仍不能判定四边形ABCD是矩形的是( )A. ∠ABC=90°B. ∠BCD=90°C. AB=CDD. AB∥CD二、填空题(共12题;共13分)7.计算:(﹣2)9÷27=________.8.计算:=________.9.如果关于x的一元二次方程x2﹣6x+m﹣1=0有两个不相等的实数根,那么m的取值范围是________.10.函数y= 中自变量x的取值范围是________.11.一次函数y=kx+b(k≠0)的图象如图所示,如果y≤0,那么x的取值范围________.12.某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为________cm.13.在“石头、剪刀、布”的游戏中,两人打出相同标识手势的概率是________.14.某大型超市从生产基地以每千克a元的价格购进一种水果m千克,运输过程中重量损失了10%,超市在进价的基础上増加了30%作为售价,假定不计超市其他费用,那么售完这种水果,超市获得的利润是________元(用含m、a的代数式表示)15.如图,已知在▱ABCD中,E是边AB的中点,DE与对角线AC相交于点F.如果,,那么=________(用含、的式子表示).16.小明在空中距地面30米的热气球上看向地面上的一个雕塑,如果此时热气球与雕塑相距50米,那么小明看雕塑时的俯角约等于________度(备用数据:sin37°=cos53°≈0.6)17.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为________.18.如图,矩形ABCD中,AB=5,BC=12,将矩形绕着点D顺时针旋转,当点C落在对角线BD上的点E 处时,点A、B分别落在点G、F处,那么AG:BF:CE=________.三、解答题(共7题;共60分)19.先化简,再计算:,其中x=.20.已知:二次函数y=2x2+bx+c的图象经过点A(1,0),B(2,3).求:这个二次函数的解析式,及这个函数图象的对称轴.21.如图,已知某船向正东方向航行,在点A处测得某岛C在其北偏东60°方向上,前进8海里处到达点B 处,测得岛C在其北偏东30°方向上.已知岛C周围6海里内有一暗礁,问:如果该船继续向东航行,有无触礁危险?请说明你的理由.22.在女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数关系分別如图中线段OA和折线OBCD所示.(1)谁先到终点,当她到终点时,另一位同学离终点多少米?(请直接写出答案)(2)起跑后的60秒内谁领先?她在起跑后几秒时被追及?请通过计算说明.23.已知,在△ACB和△DCE中,∠ACB=∠DCE=90°,AC=BC,DC=EC,M为DE的中点,联结BE.(1)如图1,当点A、D、E在同一直线上,联结CM,求证:CM=;(2)如图2,当点D在边AB上时,联结BM,求证:BM2=( )2+( )2.24.在平面直角坐标系xOy中,第一象限内的点P在直线y=x上,过点P的直线交x轴正半轴于点A,交直线y=3x于点B,点B在第一象限内.(1)如图1,当∠OAB=90°时,求的值;(2)当点A的坐标为(6,0),且BP=2AP时,将过点A的抛物线y=﹣x2+mx上下方平移,使它过点B,求平移的方向和距离.25.△ABC中,∠ACB=90°,tan B=,AB=5,点O为边AB上一动点,以O为圆心,OB为半径的圆交射线BC于点E,以A为圆心,OB为半径的圆交射线AC于点G.(1)如图1,当点E、G分别在边BC、AC上,且CE=CG时,请判断圆A与圆O的位置关系,并证明你的结论;(2)当圆O与圆A存在公共弦MN时(如图2),设OB=x,MN=y,求y关于x的函数解析式,并写出定义域;(3)设圆A与边AB的交点为F,联结OE、EF,当△OEF为以OE为腰的等腰三角形时,求圆O的半径长.答案解析部分一、单选题1.【解析】【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故答案为:B.【分析】|﹣3|=3,由负数比正数和0都小,可得出答案。
上海市杨浦区名校2024届中考数学全真模拟试卷含解析
上海市杨浦区名校2024届中考数学全真模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数2.如图,在正三角形ABC 中,D,E,F 分别是BC,AC,AB 上的点,DE ⊥AC,EF ⊥AB,FD ⊥BC ,则△DEF 的面积与△ABC的面积之比等于( )A .1∶3B .2∶3C .3∶2D .3∶33.已知一个多边形的内角和是1080°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形4.在如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果 C 也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C 有( )A .6个B .7个C .8个D .9个5.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-.6.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )A.0.2 B.0.25 C.0.4 D.0.57.如图,O为直线AB上一点,OE平分∠BOC,OD⊥OE于点O,若∠BOC=80°,则∠AOD的度数是()A.70°B.50°C.40°D.35°8.计算111xx x---结果是( )A.0 B.1 C.﹣1 D.x9.下列运算正确的是()A.x2•x3=x6B.x2+x2=2x4C.(﹣2x)2=4x2D.(a+b)2=a2+b210.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4二、填空题(共7小题,每小题3分,满分21分)11.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.12.解不等式组11 21xx x-+-⎧⎨≥-⎩①②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.13.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S四边形ABCD=18,则BD的最小值为_________.14.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 .15.函数12x y x +=-中,自变量x 的取值范围是 . 16.分解因式:mx 2﹣4m =_____.17.分解因式:24xy x -=____三、解答题(共7小题,满分69分)18.(10分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整).类别分数段 A50.5~60.5 B60.5~70.5 C70.5~80.5 D80.5~90.5 E 90.5~100.5请你根据上面的信息,解答下列问题.(1)若A 组的频数比B 组小24,求频数直方图中的a ,b 的值;(3)若成绩在80分以上为优秀,全校共有2 000名学生,估计成绩优秀的学生有多少名?19.(5分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.20.(8分)对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点.(1)当直线m 的表达式为y =x 时,①在点()11,1P ,()20,2P ,322,22P ⎛⎫- ⎪ ⎪⎝⎭中,直线m 的平行点是______; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线3y x =的平行点,直接写出n 的取值范围.21.(10分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式 共享单车 步行 公交车 的士 私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.22.(10分)计算:8﹣4cos45°+(12)﹣1+|﹣2|.23.(12分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.24.(14分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B根据一次函数的定义,可得答案.【题目详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【题目点拨】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.2、A【解题分析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=2 DEAC⎛⎫⎪⎝⎭,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C,EC=cos∠C×DC=12 DC,又∵DC+BD=BC=AC=32 DC,∴332332DCDEAC DC==,∴△DEF与△ABC的面积之比等于:2231:33DEAC⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭故选A.点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DEAC之比,进而得到面积比.3、D【解题分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【题目详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【题目点拨】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4、A【解题分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【题目详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.【题目点拨】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.5、C【解题分析】直接利用反比例函数的性质分别分析得出答案.【题目详解】A、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-4x,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-4x,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-4x,当x>1时,y>-4,故此选项错误;故选C.【题目点拨】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.6、B【解题分析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.【题目详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是10.25 4=;故选:B.【题目点拨】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.7、B分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数. 详解:∵OE是∠BOC的平分线,∠BOC=80°,∴∠COE=12∠BOC=12×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故选B.点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=12∠AOB或∠AOB=2∠AOC=2∠BOC.8、C【解题分析】试题解析:11(1)1 1111x x xx x x x----===-----.故选C.考点:分式的加减法.9、C【解题分析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.【题目详解】A、x2•x3=x5,故A选项错误;B、x2+x2=2x2,故B选项错误;C、(﹣2x)2=4x2,故C选项正确;D、( a+b)2=a2+2ab+b2,故D选项错误,故选C.【题目点拨】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键10、A【解题分析】先将抛物线解析式化为顶点式,左加右减的原则即可.,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A .【题目点拨】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;二、填空题(共7小题,每小题3分,满分21分)11、2【解题分析】试题分析:设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得, 2πr=0208161π⨯,解得r=2cm . 考点:圆锥侧面展开扇形与底面圆之间的关系.12、详见解析.【解题分析】先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可.【题目详解】(Ⅰ)解不等式①,得:x <1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:﹣1≤x <1,故答案为:x <1、x≥﹣1、﹣1≤x <1.【题目点拨】本题考查了解一元一次不等式组的概念.13、6【解题分析】过A 作AM ⊥CD 于M ,过A 作AN ⊥BC 于N ,先根据“AAS”证明△DAM ≌△BAN ,再证明四边形AMCN 为正方形,可求得AC =6,从而当BD ⊥AC 时BD 最小,且最小值为6.【题目详解】如下图,过A 作AM ⊥CD 于M ,过A 作AN ⊥BC 于N ,则∠MAN =90°, ∠DAM +∠BAM =90°,∠BAM +∠BAN =90°, ∴∠DAM =∠BAN .∵∠DMA =∠N =90°,AB =AD ,∴△DAM ≌△BAN ,∴AM =AN ,∴四边形AMCN 为正方形,∴S 四边形ABCD =S 四边形AMCN =12AC 2, ∴AC =6,∴BD ⊥AC 时BD 最小,且最小值为6.故答案为:6.【题目点拨】本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键.14、4n ﹣1.【解题分析】由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,···那么第n 个就有阴影小三角形1+4(n ﹣1)=4n ﹣1个.15、x 1≥-且x 2≠.【解题分析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为01x +在实数范围内有意义,必须x+10x 1{{x 1x 20x 2≥≥-⇒⇒≥--≠≠且x 2≠. 考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.16、m (x+2)(x ﹣2)【解题分析】提取公因式法和公式法相结合因式分解即可.【题目详解】原式()24,m x =- ()()22.m x x =+-故答案为()()22.m x x +-【题目点拨】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.17、x(y+2)(y-2)【解题分析】原式提取x ,再利用平方差公式分解即可.【题目详解】原式=x (y 2-4)=x (y+2)(y-2),故答案为x (y+2)(y-2).【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题(共7小题,满分69分)18、(1)40(2)126°,1(3)940名【解题分析】(1)根据若A 组的频数比B 组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a 、b 的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解.【题目详解】(1)学生总数是24÷(20%﹣8%)=200(人),则a=200×8%=16,b=200×20%=40; (2)n=360×70200=126°. C 组的人数是:200×25%=1.;(3)样本D、E两组的百分数的和为1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19、解:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:=.【解题分析】(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.20、(1)①2P ,3P ;②()2,22,()22,2--,()22,2,()2,22--;(2)434333n -≤≤. 【解题分析】(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1.如图2,当点B 在原点下方时,同法可求;(2)如图,直线OE 的解析式为3y x =,设直线BC//OE 交x 轴于C ,作CD ⊥OE 于D. 设⊙A 与直线BC 相切于点F ,想办法求出点A 的坐标,再根据对称性求出左侧点A 的坐标即可解决问题;【题目详解】解:(1)①因为P 2、P 3到直线y =x 的距离为1,所以根据平行点的定义可知,直线m 的平行点是2P ,3P ,故答案为2P ,3P .②解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线.设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH =1.由直线m 的表达式为y =x ,可知∠OAB =∠OBA =45°.所以2OB =.直线AB 与⊙O 的交点即为满足条件的点Q .连接1OQ ,作1Q N y ⊥轴于点N ,可知110OQ =在1Rt OHQ ∆中,可求13HQ =.所以12BQ =.在1Rt BHQ ∆中,可求12NQ NB ==. 所以22ON =. 所以点1Q 的坐标为()2,22. 同理可求点2Q 的坐标为()22,2--.如图2,当点B 在原点下方时,可求点3Q 的坐标为()22,2点4Q 的坐标为()2,22--,综上所述,点Q 的坐标为()2,22,()22,2--,()22,2,()2,22--. (2)如图,直线OE 的解析式为3y x =,设直线BC ∥OE 交x 轴于C ,作CD ⊥OE 于D .当CD =1时,在Rt △COD 中,∠COD =60°,∴23sin 60CD OC ==︒, 设⊙A 与直线BC 相切于点F ,在Rt△ACE中,同法可得233 AC=,∴433 OA=,∴433n=,根据对称性可知,当⊙A在y轴左侧时,433n=-,观察图象可知满足条件的N的值为:434333n-≤≤.【题目点拨】此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.21、(1)800,240;(2)补图见解析;(3)9.6万人.【解题分析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.试题解析:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图22、4【解题分析】分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可. 详解:原式=42242⨯++=.点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:1ppaa-=(0a p≠,为正整数)”是正确解答本题的关键.23、(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣)、M2(﹣2,﹣、M3(﹣2,、M4(2,).【解题分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【题目详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=12OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣23);劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣23);劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,23);优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,23);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣23)、M2(﹣2,﹣23)、M3(﹣2,23)、M4(2,23).【题目点拨】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.24、证明见解析.【解题分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【题目详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【题目点拨】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.。
2020-2021学年上海市中考数学第三次模拟试题及答案解析
上海市黄浦区最新九年级中考三模数学卷一、选择题:(本大题共6题,每题4分,满分24分) 1.下列各数中无理数是().(A )2π; (B )227; (C (D 2.下列根式中是最简根式的是().(A(B C ; (D 3.将样本容量为100的样本编制成组号①~⑧的八个组,简况如下表所示:(A )14; (B )15; (C )0.14; (D )0.15.4.在长方体ABCD-EFGH 中,与面ABCD 平行的棱共有(). (A )1条; (B )2条; (C )3条; (D )4条.5.下列事件中,是必然事件的是().(A )购买一张彩票中奖一百万元;(B )打开电视机,任选一个频道,正在播新闻; (C )在地球上,上抛的篮球会下落;(D )掷两枚质地均匀的正方体骰子,点数之和一定小于6. 6.下列命题中正确的是 ( ).(A )平分弦的直径垂直于弦;(B )与直径垂直的直线是圆的切线;(C )对角线互相垂直的四边形是菱形;(D )联结等腰梯形四边中点的四边形是菱形. 二、填空题:(本大题共12题,每题4分,满分48分) 7.因式分解:228x -=.8.如果直线31y x a =+-在y 轴上的截距是3,那么a =.9.掷一枚质地均匀的正方体骰子,骰子的六个面分别标有1到6的点数,那么掷两次所得的点数之和等于5的概率为.10.以线段AB 为底边的等腰三角形顶点C 的轨迹是.11.函数()2f x x =-的定义域是.12.二次函数266y x x =-+图像的顶点坐标是.13.如图,已知在△ABC 中,点D 在边AC 上,CD ∶AD=1∶2,a BA =,b BC =,试用向量b a ,表示向量BD =.14.已知点C 是AB 的黄金分割点()AC BC <,AC =4,则BC 的长. 15.已知在ABC ∆中,点D 、E 分别在边AB 和AC 的反向延长线上,DE ∥BC ,31=AB AD ,那么ADE ∆与ABC ∆的面积之比是.16.已知正六边形的边长为6,那么边心距等于.17.将等腰ABC ∆绕着底边BC 的中点M 旋转30°后,如果点B 恰好落在原ABC ∆的边AB 上,那么∠A 的余切值等于. 18.如图,相距2cm 的两个点A 、B 在直线l 上,它们分别以2cm/s 和1cm/s 的速度在l 上同时向右平移,当点A 、B 分别平移到点A 1、B 1的位置时,半径为1cm 的圆A 1与半径为BB 1的圆B 相切,则点A 平移到点A 1所用的时间为s . 三、解答题:(本大题共7题,满分78分)19.127219-︒⎛⎫-+ ⎪⎝-⎭.20.解方程:213(2)4221x x x x -++=+-.21.(本题满分10分)已知:如图,Rt ABC ∆中,∠ACB=90°,P 是边AB 上一点,AD ⊥CP ,BE ⊥CP ,垂足分别为D 、E ,已知AB=63,BC=53,BE=5.求DE 的长.22.(本题满分10分,第(1)、(2)小题满分各5分)如图,折线表示一个水槽中的水量Q (升)与时间t (分)的函数关系。
中考数学2022年上海杨浦区中考数学三模试题(含答案详解)
2022年上海杨浦区中考数学三模试题 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC 中,90ACB ︒∠=,1BC =,=3AC ,将ABC 以点C 为中心顺时针旋转90︒,得到DEC ,连接BE 、AD .下列说法错误的是( )A .6ABD S =B .3ADE S ∆=C .BE AD ⊥ D .135AED ︒∠= 2、已知三个数为2、4、8,若再添加一个数,使这四个数能组成一个比例,那么这个数可以是( ) A .2 B .4 C .6D .8 3、扇形的半径扩大为原来的2倍,圆心角缩小为原来的12,那么扇形的面积( ) A .不变 B .扩大为原来的2倍 C .缩小为原来的12 D .扩大为原来的4倍 ·线○封○密○外4、下列说法中错误的是( )A .如果整数a 是整数b 的倍数,那么b 是a 的因数B .一个合数至少有3个因数C .在正整数中,除2外所有的偶数都是合数D .在正整数中,除了素数都是合数5、下列分数中不能化成有限小数的是( )A .916B .38 C .518 D .7506、如果1a =,2b =,4c =,那么下列说法正确的是( )A .a ,b ,c 的第四比例项是6B .2a ,2b ,2c 的第四比例项是18C .c 是a ,b 的比例中项D .b 是a ,c 的比例中项7、如果(x -2)(x +3)=x 2+px +q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-68、下列四组数不能组成比例的是( )A .1、2、3、4B .0.2、0.3、0.4、0.6C .23、34、43、112D .10、15、20、309、下面是嘉嘉和琪琪的对话,根据对话内容,则x 的值可能是( )嘉嘉:我能正确的化简分式22111x x x⎛⎫-÷ ⎪+-⎝⎭;琪琪:我给x 取一个值,使你化简分式后所得代数式的值大于0,你能猜出来我给x 取的值是几吗?A .-1B .1C .0D .2 10、比较23-与()32-的大小,正确的是( )A .大小不定B .()3232->-C .()3232-=-D .()3232-<- 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、一个圆形花坛,它的直径约为4米,那么它的面积约是________平方米. 2、已知ABC 中,,120,AB AC BAC FE =∠=︒垂直平分AB 交BC 于F ,垂足为E ,若2EF cm =,则BC =_______cm . 3、如果51183a +=,那么a =_______________ 4、一个两位数的十位上的数字为x ,个位上的数字为y ,则这个两位数表示为__________. 5、如图,在△ABC 中,AB =4,BC =6,∠B=60°,将△ABC 沿射线BC 的方向平移2个单位后,得到A B C ''',连接A C ',则A B C ''的周长为________.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,将一个直径AB 等于12厘米的半圆绕着点A 逆时针旋转60︒后,点B 落到点C 位置,半圆扫过部分的图形如阴影部分所示.求: ·线○封○密·○外(1)阴影部分的周长;(2)阴影部分的面积.2、三个容器各装相同重量的糖水.第一个容器中糖与水的重量比为2:3,第二个容器中糖与糖水的重量比为3:7,第三个容器中糖水与水的重量比为9:5,现把这三个容器中的糖水混合,求混合后的糖水的浓度.(保留一位小数)3、如图,抛物线y=﹣x2+bx+c与一条直线相交于A(﹣1,0),C (2,3)两点.(1)求抛物线和直线的解析式;(2)若动点P在抛物线上位于直线AC上方运动,求△APC的面积最大值.4、计算:531.9 124-+.5、计算:112(31)0.823÷--.-参考答案-一、单选题1、D【分析】根据旋转的性质可得CD=AC ,再根据三角形的面积公式即可对A 项进行判断;先求出AE 的长,进而可对B 项进行判断;如图,由旋转的性质和等腰直角三角形的性质可分别得出∠1、∠2、∠3、∠4的度数,进而可对C 项进行判断;由于∠CED ≠45°,即可对D 项进行判断. 【详解】 如图,延长BE 交AD 于点F , ∵ABC 以点C 为中心顺时针旋转90︒,得到DEC ,90ACB ︒∠=,1BC =,=3AC , ∴CD=AC =3,BC=EC =1,AE =2, ∴BD =1+3=4,∠1=∠2=45°,∠4=∠ADC =45°, ∴14362ABD S =⨯⨯=,12332ADE S ∆=⨯⨯=,∠3=∠2=45°, ∴∠AFE =90°,即BE AD ⊥, ∴A、B 、C 三项都是正确的; 而∠CED ≠45°,∴135AED ︒∠≠,∴D 选项是错误的. 故选D.【点睛】 本题考查了旋转的性质、等腰直角三角形的性质和三角形的面积等知识,难度不大,属于常考题型,熟练掌握旋转的性质和等腰直角三角形的性质是关键. 2、 B·线○封○密·○外【分析】比例的性质是:在比例里,两个内项的积等于两个外项的积.现在的三个数2、4、8中,2×8=16,所以16÷4=4,所以若再添加一个数,使这四个数能组成一个比例,那么这个数可以是4.据此选择即可.也可以通过计算比值的方法.【详解】现在的三个数2、4、8中,2×8=16,而16÷4=4,所以若再添加一个数能组成比例,此数可以是4.故选:B .【点睛】此题主要考查了有理数的除法,此题属于根据比例的意义或基本性质,判断四个数能否组成比例,一般运用比例的性质判断较为简便.3、B【分析】 扇形的面积=2360r π⨯圆心角度数,由此设原来扇形的半径为1,圆心角为2°,则变化后的扇形的半径为2,圆心角为1°,由此利用扇形的面积公式即可计算得出它们的面积,从而进行比较选择.【详解】设原来扇形的半径为1,圆心角为2°,则变化后的扇形的半径为2,圆心角为1°,根据扇形的面积公式可得: 原来扇形的面积为:2211360180ππ⨯⨯=; 变化后扇形面积为:211236090ππ⨯⨯=; 原来扇形面积:变化后扇形面积=11:18090ππ=1:2; 故选:B .【点睛】此题考查了扇形面积公式,解题的关键是熟知公式的灵活应用.4、D【分析】根据题意,逐项进行分析即可,进而得出结论.【详解】A.根据因数和倍数的意义可知:如果整数a是整数b的倍数,那么b是a的因数,故正确;B.根据合数的含义:除了1和它本身外,还能被其他整数整除,得出:一个合数至少有3个因数,故正确;C.因为正整数不包括0,所以除2外所有的偶数,都至少有1,2和本身3个约数,所以都是合数,说法正确;D.在正整数中,1既不是素数也不是合数,故在正整数中,除了素数就是合数,说法错误.故选:D.【点睛】本题主要考查了素数、合数、因数以及倍数,熟练掌握其概念是解题的关键.5、C【分析】把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】解:916分母中只含有质因数2,所以能化成有限小数;38分母中只含有质因数2,所以能化成有限小数;5 18分母中含有质因数3.所以不能化成有限小数;·线○封○密○外750分母中只含有质因数2和5,所以能化成有限小数; 故选:C .【点睛】本此题主要考查什么样的分数可以化成有限小数,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.6、D【分析】根据第四比例项和比例中项的性质作答即可.【详解】解:∵1a =,2b =,4c =,设a ,b ,c 的第四比例项为x ,则有:a c b x =,解得:2481bc x a ,故A 选项错误;设2a ,2b ,2c 的第四比例项为y ,则有:222a c by ,解得:2224161bc y a ,故B 选项错误;如果c 是a ,b 的比例中项,则有2c ab =,解得:122cab , 故C 选项错误;如果b 是a ,c 的比例中项,则有2b ac =,解得:142bac , 故D 选项正确;故选:D .【点睛】本题主要考查了第四比例项和比例中项的性质,熟悉相关性质是解题的关键.7、B【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p 、q 的值. 【详解】 解:∵(x-2)(x+3)=x 2+x-6, 又∵(x-2)(x+3)=x 2+px+q , ∴x 2+px+q=x 2+x-6, 8、A 【分析】 根据比例的定义去判断下列选项能否组成比例. 【详解】 A 选项不能; B 选项可以,0.2:0.30.4:0.6=; C 选项可以,2341::13432=; D 选项可以,10:1520:30=. 故选:A . 【点睛】 本题考查比例的定义,解题的关键是利用比例的定义去判断. 9、D 【分析】 先化简分式,然后列出不等式,解不等式即可. ·线○封○密·○外【详解】原式= 211112x x x x x +-⎛⎫-⋅ ⎪++⎝⎭ =1(1)(1)12x x x --+-=⋅+ =12x -, ∵102x ->, ∴x>1,故选D .【点睛】本题考查了分式化简与一元一次不等式,熟练掌握分式化简是解题的关键.分式加减的本质是通分,乘除的本质是约分.10、D【分析】根据有理数的大小比较及有理数的乘方直接排除选项即可.【详解】 解:()32=8,329---=-∴89-->即()3223-->. 故选D .【点睛】本题主要考查有理数的乘方及有理数的大小比较,熟练掌握负数的大小比较及乘方运算是解题的关键.二、填空题1、12.56【分析】根据圆的面积=πr 2即可求出结论.【详解】 解:3.14×(4÷2)2=3.14×4=12.56(平方米) 故答案为:12.56. 【点睛】 此题考查的是求圆的面积,掌握圆的面积公式是解决此题的关键. 2、12 【分析】 首先连接AF ,由EF 垂直平分AB ,可得AF =BF ,由△ABC 中,AB =AC ,∠BAC =120°,可求得∠B =∠C =∠BAF =30°,继而求得AF 与BF 的长,则可求得CF 的长,继而求得答案. 【详解】 如图,连接AF , △ABC 中,AB = AC ,∠BAC = 120°,∴∠B = ∠C = 30°, EF 垂直平分AB , ∴AF =BF , ∴∠BAF =∠B =30°,·线○封○密○外∴AF =BF = 2EF = 2 × 2 = 4cm ,∠CAF = ∠BAC -∠BAF = 90°,∴CF = 2AF = 8cm ,∴BC = BF + CF = 12 cm故答案为:12.【点睛】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质,此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3、1【分析】 由51183a +=可直接进行求解即可. 【详解】 解:51183a +=, ∴()3518a ⨯+=,解得1a =;故答案为1.【点睛】本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.4、10x y +##【分析】十位上的数字表示几个十,十位上的数字是x ,就是x 个十,即10x ,个位上的数字表示几个一,个位上的数字是y ,把十位和个位加起来就是这个两位数.【详解】解:十位上的数字是x ,就是x 个十,即x ×10=10x ,个位上的数字是y ,这两位数是10x y +.故答案为:10x y +.【点睛】本题考查列代数式,属于基础题型.5、12 【分析】 根据平移的性质得2BB '=,4A B AB ''==,=60A B C B ∠''∠=︒,则可计算624B C BC BB '=-'=-=,则4A B B C ''='=,可判断A B C ''△为等边三角形,继而可求得A B C ''△的周长. 【详解】 ABC 平移两个单位得到的A B C ''', 2BB ∴'=,AB A B ='', 4AB =,6BC =, 4A B AB ∴''==,624B C BC BB '=-'=-=, 4A B B C ∴''='=, 又60B ∠=︒, 60A B C ∴∠''=︒, A B C ∴''是等边三角形, A B C ∴''的周长为4312⨯=.故答案为:12.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是·线○封○密○外对应点.连接各组对应点的线段平行且相等.三、解答题1、(1)50.24厘米;(2)75.36平方厘米【分析】(1)根据2C C C =+半圆弧周长弧长,将数值代入计算即可;(2)根据S S S S S =+-=扇阴影半圆半圆形扇形,将数值代入计算即可.【详解】解:(1)160π12222π616π50.242180C C C ⨯=+=⨯⨯⨯+==弧长半圆弧周长(厘米) (2)260π1224π75.36360S S S S S ⨯⨯=+-====阴影半圆半圆扇形扇形(平方厘米) 【点睛】 本题考查了扇形的周长和面积,熟记公式是解题的关键.2、42.4%【分析】三杯相同重量的糖水,把它看作单位“1”, 第一个容器中糖与水的重量比是2:3,那么糖占的分率是22+3,水占的分率是32+3;第二个容器中糖与糖水的重量比为3:7,那么糖占的分率是37,水占的分率是47;第三个容器中糖水与水的重量比为9:5,那么糖占的分率是49,水占的分率是59;则将三个容器中的糖水混合,糖与糖水的重量之比是(22+3+37+49):(1+1+1),然后化简即可. 【详解】解: 234(++):(111)579++ =126135140(++):(111)315315315++=40113153⨯ =401945 42.4%≈ 【点睛】 此题考查比的意义,关键是根据糖和水的关系,分别表示出这两个杯子里糖和水的分率,再利用比的性质化简比. 3、(1)y =﹣x 2+2x+3;y =x+1;(2)△APC 的面积最大值为278. 【分析】 (1)利用待定系数法求抛物线和直线解析式; (2)设P 点坐标,过点P 作PQ⊥x 轴于点H ,交AC 于点Q ,用水平宽乘以铅垂高除以2表示APC △的面积,然后求最值. 【详解】 解:(1)由抛物线y =﹣x 2+bx+c 过点A (﹣1,0),C (2,3), 得:10423b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴抛物线的函数解析式为y =﹣x 2+2x+3, 设直线AC 的函数解析式为y =mx+n , 把A (﹣1,0),C (2,3)代入, 得023m n m n -+=⎧⎨+=⎩,解得11m n =⎧⎨=⎩, ∴直线AC 的函数解析式为y =x+1; (2)如图,过点P 作PQ⊥x 轴于点H ,交AC 于点Q , ·线○封○密○外设P(x,﹣x2+2x+3),则Q(x,x+1),∴PQ=﹣x2+2x+3﹣(x+1)=﹣x2+x+2,∴S△APC=S△APQ+S△CPQ=12PQ×3=32(﹣x2+x+2)=﹣32(x﹣12)2+278,∵﹣32<0,∴当x=12时,△APC的面积最大,最大值为278.【点睛】本题考查二次函数综合题,涉及解析式的求解,三角形面积的表示方法,解题的关键是掌握这些特定的解题方法进行求解.4、17 1 30【分析】先把第二项和第三项交换位置,再用结合律先算后面两项的差,最后算加法. 【详解】解:53 1.9124-+=5 1.90.7512+- =()5 1.90.7512+- =5 1.1512+ =5311220+ =25916060+ =34160 =17130 【点睛】 完成本题要注意分析式中数据,运用合适的简便方法计算. 5、0.7 【分析】 先计算括号内的,再把除法运算转化成乘法运算,最后计算加减即可. 【详解】 112(31)0.823÷-- 50.8235=÷- 50.8253=⨯- 1.50.8=- 0.7=. ·线○封○密·○外【点睛】本题考查了分数的四则混合运算,熟练掌握分数的运算法则是解题的关键.。
{3套试卷汇总}2020-2021上海市杨浦区中考数学第三次练兵模拟试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+5【答案】B【解析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B.【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.2.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB【答案】D【解析】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.3.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①12AF FD =;②S △BCE =36;③S △ABE =12;④△AEF ~△ACD ,其中一定正确的是( )A .①②③④B .①④C .②③④D .①②③【答案】D 【解析】∵在▱ABCD 中,AO=12AC , ∵点E 是OA 的中点,∴AE=13CE , ∵AD ∥BC , ∴△AFE ∽△CBE , ∴AF AE BC CE ==13, ∵AD=BC ,∴AF=13AD , ∴12AF FD =;故①正确; ∵S △AEF =4, AEFBCE S S =(AF BC )2=19, ∴S △BCE =36;故②正确;∵EF AE BE CE = =13, ∴AEFABE SS =13, ∴S △ABE =12,故③正确;∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误,故选D .4.下列命题中真命题是( )A .若a 2=b 2,则a=bB .4的平方根是±2C .两个锐角之和一定是钝角D .相等的两个角是对顶角【答案】B【解析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.5.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A.B.C.D.【答案】B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.6.某反比例函数的图象经过点(-2,3),则此函数图象也经过()A.(2,-3)B.(-3,3)C.(2,3)D.(-4,6)【答案】A【解析】设反比例函数y=kx(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.【详解】设反比例函数y=kx(k为常数,k≠0),∵反比例函数的图象经过点(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴点(2,-3)在反比例函数y=-6x的图象上.故选A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.4<8<1.9,所以8应在③段上.故选C考点:实数与数轴的关系8.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A.B.C.D.【答案】C【解析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【点睛】考核知识点:解不等式组.9.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC的大小是()A .55°B .60°C .65°D .70°【答案】C 【解析】连接OC ,因为点C 为弧BD 的中点,所以∠BOC=∠DAB=50°,因为OC=OB ,所以∠ABC=∠OCB=65°,故选C .10.如图,平行于BC 的直线DE 把△ABC分成面积相等的两部分,则BD AD的值为( )A .1B .22C 2-1D 2+1【答案】C 【解析】由DE ∥BC 可得出△ADE ∽△ABC ,利用相似三角形的性质结合S △ADE =S 四边形BCED ,可得出22AD AB =,结合BD=AB ﹣AD 即可求出BD AD的值. 【详解】∵DE ∥BC , ∴∠ADE=∠B ,∠AED=∠C ,∴△ADE ∽△ABC ,∴2ADE ABC S AD AB S ⎛⎫= ⎪⎝⎭,∵S △ADE =S 四边形BCED ,S △ABC =S △ADE +S 四边形BCED , ∴22AD AB =, ∴2212BD AB AD AD AD -===,故选C .【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.二、填空题(本题包括8个小题)11.已知点(﹣1,m)、(2,n )在二次函数y =ax 2﹣2ax ﹣1的图象上,如果m >n ,那么a____0(用“>”或“<”连接).【答案】>;【解析】∵2y ax 2ax 1=--=a(x-1)2-a-1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上,∵|−1−1|>|2−1|,且m >n ,∴a>0.故答案为>12.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.【答案】1【解析】观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.【详解】由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,个位数字1,3,1,5循环出现,四个一组,2019÷4=504…3,∴22019﹣1的个位数是1.故答案为1.【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键.13.,A B 两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B 地.甲、乙两车相距的路程y (千米)与甲车行驶时间x (小时)之间的关系如图所示,求乙车修好时,甲车距B 地还有____________千米.【答案】90【解析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B 地,设乙车出故障前走了t 1小时,修好后走了t 2小时,根据等量关系甲车用了122133t t ⎛⎫+++ ⎪⎝⎭小时行驶了全程,乙车行驶的路程为60t 1+50t 2=240,列方程组求出t 2,再根据甲车的速度即可知乙车修好时甲车距B 地的路程.【详解】甲车先行40分钟(402603=h ),所行路程为30千米, 因此甲车的速度为304523=(千米/时),设乙车的初始速度为V 乙,则有4452103V ⨯=+乙, 解得:60V =乙(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t 1小时,修好后走了t 2小时,则有121260502402145()4524033t t t t +=⎧⎪⎨⨯+++⨯=⎪⎩,解得:12732t t ⎧=⎪⎨⎪=⎩, 45×2=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.14.同圆中,已知弧AB 所对的圆心角是100°,则弧AB 所对的圆周角是_____.【答案】50°【解析】直接利用圆周角定理进行求解即可.【详解】∵弧AB 所对的圆心角是100°,∴弧AB 所对的圆周角为50°,故答案为:50°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____. 【答案】120°【解析】设扇形的半径为r ,圆心角为n°.利用扇形面积公式求出r ,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r ,圆心角为n°. 由题意:1816··233r ππ=, ∴r =4, ∴24163603n ππ= ∴n =120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.16.计算1x x +﹣11x +的结果为_____. 【答案】11x x -+. 【解析】根据同分母分式加减运算法则化简即可.【详解】原式=11x x -+, 故答案为11x x -+. 【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键.17.如图,在△ABC 中,∠C=120°,AB=4cm ,两等圆⊙A 与⊙B 外切,则图中两个扇形的面积之和(即阴影部分)为 cm 2(结果保留π).【答案】23π. 【解析】图中阴影部分的面积就是两个扇形的面积,圆A ,B 的半径为2cm ,则根据扇形面积公式可得阴影面积.【详解】()2260423603603A B πππ∠+∠⨯⨯==(cm 2). 故答案为23π. 考点:1、扇形的面积公式;2、两圆相外切的性质.18.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”).【答案】>【解析】分析:首先求得抛物线y=﹣x 2+2x 的对称轴是x=1,利用二次函数的性质,点M 、N 在对称轴的右侧,y 随着x 的增大而减小,得出答案即可.详解:抛物线y=﹣x 2+2x 的对称轴是x=﹣22-=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y 1>y 2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.三、解答题(本题包括8个小题)19.我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a =2n+1,b =2n 2+2n ,c =2n 2+2n+1(n 为正整数)是一组勾股数,请证明满足以上公式的a 、b 、c 的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a =12(m 2﹣n 2),b =mn ,c =12(m 2+n 2)(m 、n 为正整数,m >n 时,a 、b 、c 构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n =5,求该直角三角形另两边的长.【答案】 (1)证明见解析;(2)当n =5时,一边长为37的直角三角形另两边的长分别为12,1.【解析】(1)根据题意只需要证明a 2+b 2=c 2,即可解答(2)根据题意将n =5代入得到a =12 (m 2﹣52),b =5m ,c =12(m 2+25),再将直角三角形的一边长为37,分别分三种情况代入a =12 (m 2﹣52),b =5m ,c =12(m 2+25),即可解答 【详解】(1)∵a 2+b 2=(2n+1)2+(2n 2+2n)2=4n 2+4n+1+4n 4+8n 3+4n 2=4n 4+8n 3+8n 2+4n+1,c 2=(2n 2+2n+1)2=4n 4+8n 3+8n 2+4n+1,∴a 2+b 2=c 2,∵n 为正整数,∴a 、b 、c 是一组勾股数;(2)解:∵n =5∴a =12 (m 2﹣52),b =5m ,c =12(m 2+25), ∵直角三角形的一边长为37,∴分三种情况讨论,①当a=37时,12(m2﹣52)=37,解得m=±311(不合题意,舍去) ②当y=37时,5m=37,解得m=375(不合题意舍去);③当z=37时,37=12(m2+n2),解得m=±7,∵m>n>0,m、n是互质的奇数,∴m=7,把m=7代入①②得,x=12,y=1.综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,1.【点睛】此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键20.某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.【答案】(1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.【解析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.21.已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.【答案】见解析【解析】试题分析:已知AB∥CD,根据两直线平行,内错角相等可得∠B=∠ECD,再根据SAS证明△ABC≌△ECD全,由全等三角形对应边相等即可得AC=ED.试题解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS),∴AC=ED.考点:平行线的性质;全等三角形的判定及性质.22.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.【答案】(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.23.新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.【答案】(1)30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数);(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.【解析】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.24.如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.求抛物线的解析式;判断△ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【答案】(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(21)、(2,1)、(6,-3)或(6,-3).【解析】(1)根据题意得出方程组,求出b、c的值,即可求出答案;(2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;(3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案.【详解】解:(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB=32,BC=2,AC=25,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD =PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=12,∴P(1+2,1)或(1-2,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD =PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x=1±6,∴P(1+6,-3),或(1-6,-3),综上可知:点P的坐标为(1+2,1)、(1-2,1)、(1+6,-3)或(1-6,-3).【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键.25.为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P 在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:2≈1.414,3≈1.732)【答案】凉亭P到公路l的距离为273.2m.【解析】分析:作PD⊥AB于D,构造出Rt△APD与Rt△BPD,根据AB的长度.利用特殊角的三角函数值求解.【详解】详解:作PD⊥AB于D.设BD=x,则AD=x+1.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°•AD ,即DB=PD=tan30°•AD=x=3(1+x ), 解得:x≈273.2,∴PD=273.2.答:凉亭P 到公路l 的距离为273.2m .【点睛】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.26.如图,AB =AD ,AC =AE ,BC =DE ,点E 在BC 上. 求证:△ABC ≌△ADE ;(2)求证:∠EAC =∠DEB .【答案】(1)详见解析;(2)详见解析.【解析】(1)用“SSS”证明即可;(2)借助全等三角形的性质及角的和差求出∠DAB =∠EAC ,再利用三角形内角和定理求出∠DEB =∠DAB ,即可说明∠EAC =∠DEB .【详解】解:(1)在△ABC 和△ADE 中AB AD AC AE BC DE ⎧⎪⎨⎪⎩=,=,=, ∴△ABC ≌△ADE (SSS );(2)由△ABC ≌△ADE ,则∠D =∠B ,∠DAE =∠BAC .∴∠DAE ﹣∠ABE =∠BAC ﹣∠BAE ,即∠DAB =∠EAC .设AB 和DE 交于点O ,∵∠DOA =BOE ,∠D =∠B ,∴∠DEB =∠DAB .∴∠EAC =∠DEB .【点睛】本题主要考查了全等三角形的判定和性质,解题的关键是利用全等三角形的性质求出相等的角,体现了转化思想的运用.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 【答案】C【解析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A 、B 、C 到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,∴点A 到原点的距离最大,点C 其次,点B 最小,又∵AB=BC ,∴原点O 的位置是在点B 、C 之间且靠近点B 的地方.故选:C .【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.2.-4的绝对值是( )A .4B .14C .-4D .14- 【答案】A【解析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆. 3.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )A .73B .81C .91D .109【答案】C【解析】试题解析:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=1.故选C.考点:图形的变化规律.4.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c【答案】A【解析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.5.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°【答案】B【解析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.6.一、单选题如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【答案】A【解析】分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.7.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .60050x -=450x B .60050x +=450x C .600x =45050x + D .600x =45050x - 【答案】B【解析】设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【详解】设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,由题意得:60045050x x =+. 故选B .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A .方差B .中位数C .众数D .平均数 【答案】A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差9.下列说法正确的是( )A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨B .“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近 【答案】D 【解析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案. 【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A 不符合题意; B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B 不符合题意; C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C 不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D 符合题意; 故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.10.二次函数y=ax 2+bx+c(a≠0)的图象如图,则反比例函数y=a x与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知:开口向上,a >1;对称轴大于1,2b a>1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内;∵一次函数y =bx ﹣c 中,b <1,﹣c <1,∴一次函数图象经过第二、三、四象限.故选C.【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.二、填空题(本题包括8个小题)11.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为.【答案】-1.【解析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.【详解】∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,由根与系数关系:-1•x1=1,解得x1=-1.故答案为-1.12.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC =,那么矩形ABCD的周长_____________cm.【答案】36.【解析】试题分析:∵△AFE和△ADE关于AE对称,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC ==,∴可设EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC =8x.∵∠EFC+∠AFB=90°, ∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周长=8×2+10×2=36.考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.13.12的相反数是______.【答案】﹣12.【解析】根据只有符号不同的两个数叫做互为相反数解答.【详解】12的相反数是12-. 故答案为12-. 【点睛】本题考查的知识点是相反数,解题关键是熟记相反数的概念.14.若一个多边形的内角和是900º,则这个多边形是 边形. 【答案】七【解析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.15.如图,某小型水库栏水坝的横断面是四边形ABCD ,DC ∥AB ,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC 宽为2m ,坝高为6m ,则坝底AB 的长为_____m .【答案】(7+63)【解析】过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,得到两个直角三角形和一个矩形,在Rt △AEF 中利用DF 的长,求得线段AF 的长;在Rt △BCE 中利用CE 的长求得线段BE 的长,然后与AF 、EF 相加即可求得AB 的长.【详解】解:如图所示:过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,∵坝顶部宽为2m ,坝高为6m ,∴DC=EF=2m ,EC=DF=6m ,∵α=30°,∴BE=63tan30EC =︒(m ), ∵背水坡的坡比为1.2:1,。
上海市浦东新区2020年中考数学三模试卷含答案解析
2020年上海市浦东新区中考数学三模试卷一.选择题(共6小题)1.下列各运算中,正确的运算是()A.5+3=8B.(﹣3a3)3=﹣27a9C.a8÷a4=a2D.(a2﹣b2)2=a4﹣b42.如果a<b,那么下列结论不正确的是()A.a+3<b+3B.a﹣3<b﹣3C.3a<3b D.﹣3a<﹣3b 3.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5 4.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4B.﹣2C.2D.45.已知长方体ABCD﹣EFGH如图所示,那么下列各条棱中与棱GC平行的是()A.棱EA B.棱AB C.棱GH D.棱GF6.如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与点A、C重合),DE与AB相交于点F,那么与△BFD相似的三角形是()A.△BFE B.△BDC C.△BDA D.△AFD二.填空题(共12小题)7.﹣8的立方根是.8.方程组的解是.9.直线y=﹣2x﹣3的截距是.10.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是元(结果用含m的代数式表示).11.已知函数,那么f(﹣2)=.12.在五张完全相同的卡片上,分别画有:线段、正三角形、矩形、等腰梯形、圆,如果从中随机抽取一张,那么卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是.13.某班12名同学练习定点投篮,每人各投10次,进球数统计如表:进球数123457人数114231这12名同学进球数的众数是.14.已知扇形的弧长为8,如果该扇形的半径长为2,那么这个扇形的面积为.15.如图,点G是△ABC的重心,过点G作EF∥BC,分别交AB、AC于点E、F,如果,那么=.16.如果直角梯形的两腰长分别为8厘米和10厘米,较长的底边长为7厘米,那么这个梯形的面积是平方厘米.17.如图,已知在△ABC中,∠A=70°,⊙O截△ABC三边所得弦长相等,那么∠BOC=度.18.如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C旋转,点A、B、D的对应点分别为A′、B′、D′,当A′落在边CD的延长线上时,边A′D′与边AD的延长线交于点F,联结CF,那么线段CF的长度为.三.解答题(共7小题)19.计算:.20.解方程:=2.21.甲、乙两辆汽车沿同一公路从A地出发前往路程为100千米的B地,乙车比甲车晚出发15分钟,行驶过程中所行驶的路程分别用y1、y2(千米)表示,它们与甲车行驶的时间x(分钟)之间的函数关系如图所示.(1)分别求出y1、y2关于x的函数解析式并写出定义域;(2)乙车行驶多长时间追上甲车?22.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交边BC于点D,过点D作CA的平行线,交边AB于点E.(1)求线段DE的长;(2)取线段AD的中点M,联结BM,交线段DE于点F,延长线段BM交边AC于点G,求的值.23.已知:如图,点E为▱ABCD对角线AC上的一点,点F在线段BE的延长线上,且EF =BE,线段EF与边CD相交于点G.(1)求证:DF∥AC;(2)如果AB=BE,DG=CG,联结DE、CF,求证:四边形DECF是矩形.24.在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴相交于点C(0,3),抛物线的顶点为点D.(1)求抛物线的表达式及顶点D的坐标;(2)联结AD、AC、CD,求∠DAC的正切值;(3)如果点P是原抛物线上的一点,且∠P AB=∠DAC,将原抛物线向右平移m个单位(m>0),使平移后新抛物线经过点P,求平移距离.25.已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4.D是边AB的中点,点E为边AC上的一个动点(与点A、C不重合),过点E作EF∥AB,交边BC于点F.联结DE、DF,设CE=x.(1)当x=1时,求△DEF的面积;(2)如果点D关于EF的对称点为D′,点D′恰好落在边AC上时,求x的值;(3)以点A为圆心,AE长为半径的圆与以点F为圆心,EF长为半径的圆相交,另一个交点H恰好落在线段DE上,求x的值.参考答案与试题解析一.选择题(共6小题)1.下列各运算中,正确的运算是()A.5+3=8B.(﹣3a3)3=﹣27a9C.a8÷a4=a2D.(a2﹣b2)2=a4﹣b4【分析】根据二次根式的加减法对A进行判断;根据幂的乘方与积的乘方对B进行判断;根据同底数幂的除法法则对C进行判断;根据完全平方公式对D进行判断.【解答】解:A、5与3不能合并,所以A选项错误;B、(﹣3a3)3=﹣27a9,所以B选项正确;C、a8÷a4=a4,所以C选项错误;D、(a2﹣b2)2=a4﹣2a2b2+b4,所以D选项错误.故选:B.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了整式的运算和二次根式的加减法.2.如果a<b,那么下列结论不正确的是()A.a+3<b+3B.a﹣3<b﹣3C.3a<3b D.﹣3a<﹣3b 【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、两边都加3,不等号的方向不变,故A结论正确;B、两边都减3,不等号的方向不变,故B结论正确;C、两边都乘以3,不等号的方向不变,故C结论正确;D、两边都乘以﹣3,不等号的方向改变,故D结论不正确.故选:D.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【分析】本题用科学记数法的知识即可解答.【解答】解:0.0000046=4.6×10﹣6.故选:C.【点评】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.4.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4B.﹣2C.2D.4【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选:D.【点评】本题考查了数轴,主要利用了两点间的距离的表示,需熟记.5.已知长方体ABCD﹣EFGH如图所示,那么下列各条棱中与棱GC平行的是()A.棱EA B.棱AB C.棱GH D.棱GF【分析】首先确定与GC平行的棱,再确定选项即可求解.【解答】解:观察图象可知,与棱GC平行的棱有AE、BF、DH.故选:A.【点评】本题考查认识立体图形,平行线的判定等知识,解题的关键是理解题意,属于基础题.6.如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与点A、C重合),DE与AB相交于点F,那么与△BFD相似的三角形是()A.△BFE B.△BDC C.△BDA D.△AFD【分析】根据等边三角形的性质和相似三角形的判定定理即可得到结论.【解答】解:∵△ABC与△BDE都是等边三角形,∴∠A=∠BDF=60°,∵∠ABD=∠DBF,∴△BFD∽△BDA,∴与△BFD相似的三角形是△BDA,故选:C.【点评】本题考查了相似三角形的判定,等边三角形的性质,熟练掌握相似三角形的判定定理是解题的关键.二.填空题(共12小题)7.﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.8.方程组的解是,.【分析】观察方程组,选用代入法,即可达到降次的目的.【解答】解:,由①得x=y+3③,把③代入②式,整理得y2+3y+2=0,解得y1=﹣1,y2=﹣2.把y1=﹣1代入x=y+3,得x1=2,把y2=﹣2代入x=y+3,得x2=1.故原方程组的解为,.故答案为:,.【点评】此题考查了二元二次方程组,关键是熟练掌握运用代入法解二元二次方程组的方法.9.直线y=﹣2x﹣3的截距是﹣3.【分析】利用截距的定义,可找出直线y=﹣2x﹣3的截距.【解答】解:∵b=﹣3,∴直线y=﹣2x﹣3的截距为﹣3.故答案为:﹣3.【点评】本题考查一次函数的性质,牢记截距的定义是解题的关键.10.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是100(1﹣m)2元(结果用含m的代数式表示).【分析】现在的价格=第一次降价后的价格×(1﹣降价的百分率).【解答】解:第一次降价后价格为100(1﹣m)元,第二次降价是在第一次降价后完成的,所以应为100(1﹣m)(1﹣m)元,即100(1﹣m)2元.故答案为:100(1﹣m)2.【点评】本题难度中等,考查根据实际问题情景列代数式.根据降低率问题的一般公式可得:某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是100(1﹣m)2.11.已知函数,那么f(﹣2)=﹣..【分析】将﹣2代入已知的函数解析式即可求得函数值.【解答】解:f(﹣2)==﹣,故答案为﹣.【点评】本题主要考查求函数值,此题比较简单,注意(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.12.在五张完全相同的卡片上,分别画有:线段、正三角形、矩形、等腰梯形、圆,如果从中随机抽取一张,那么卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是.【分析】先判断出线段、正三角形、矩形、等腰梯形、圆中既是中心对称图形,又是轴对称图形的个数,再根据概率公式进行解答即可.【解答】解:∵在线段、正三角形、矩形、等腰梯形、圆这一组图形中既是中心对称图形,又是轴对称图形的是:线段、矩形、圆共3个,∴卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是.故答案为:.【点评】本题考查的是概率公式及中心对称图形和轴对称图形的概念,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P (A)=.13.某班12名同学练习定点投篮,每人各投10次,进球数统计如表:进球数123457人数114231这12名同学进球数的众数是3.【分析】根据统计表找出各进球数出现的次数,根据众数的定义即可得出结论.【解答】解:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3.故答案为:3.【点评】本题考查了众数的定义以及统计表,解题的关键是找出哪个进球数出现的次数最多.本题属于基础题,难度不大,解决该题型题目时,根据统计表中的数据,结合众数的定义找出该组数据的众数是关键.14.已知扇形的弧长为8,如果该扇形的半径长为2,那么这个扇形的面积为8.【分析】直接根据扇形的面积公式S扇形=lR进行计算.【解答】解:根据扇形的面积公式,得S扇形=lR=×8×2=8.故答案为:8.【点评】本题考查了扇形面积的计算,比较简单,解答本题的关键是熟练掌握扇形面积的计算公式.15.如图,点G是△ABC的重心,过点G作EF∥BC,分别交AB、AC于点E、F,如果,那么=﹣.【分析】如图,连接AG延长AG交BC于T.由G是△ABC的重心,推出AG=2GF,由EF∥BC,推出==2,推出=,推出==,由此即可解决问题.【解答】解:如图,连接AG延长AG交BC于T.∵G是△ABC的重心,∴AG=2GF,∵EF∥BC,∴==2,∴=,∴==,∵=,∴=,∴=﹣,故答案为﹣.【点评】本题考查三角形的重心,平行线分线段成比例定理,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如果直角梯形的两腰长分别为8厘米和10厘米,较长的底边长为7厘米,那么这个梯形的面积是32平方厘米.【分析】如图,作DE⊥BC,根据勾股定理得到CE==6,根据梯形的面积公式即可得到结论.【解答】解:如图,作DE⊥BC,已知AB=8,CD=10,BC=7,∴CE==6,∴AD=BC﹣EC=1,∴梯形的面积是:(AD+BC)•DE=(7+1)×8=32(cm2),答:这个梯形的面积是32平方厘米.故答案为:32.【点评】本题考查了梯形,勾股定理,梯形面积的计算,正确的作出辅助线构造直角三角形是解题的关键.17.如图,已知在△ABC中,∠A=70°,⊙O截△ABC三边所得弦长相等,那么∠BOC=125度.【分析】过点O作OH⊥DE于H,OK⊥FG于K,OP⊥MN于P,如图,由于DE=FG =MN,利用弦、圆心角和对应的弦心距的关系得到OH=OK=OP,则可判断OB平分∠ABC,OC平分∠OCB,然后根据角平分线的定义和三角形内角和求解.【解答】解:过点O作OH⊥DE于H,OK⊥FG于K,OP⊥MN于P,如图,∵DE=FG=MN,∴OH=OK=OP,∴OB平分∠ABC,OC平分∠OCB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣∠A)=90°+∠A=90°+×70°=125°.故答案为125.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等;在角的内部,到角的两边距离相等的点在这个角的平分线上.也考查了弦、弧、圆心角和弦心距的关系.18.如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C旋转,点A、B、D的对应点分别为A′、B′、D′,当A′落在边CD的延长线上时,边A′D′与边AD的延长线交于点F,联结CF,那么线段CF的长度为.【分析】由旋转的性质得CD=CD'=3,A'D'=AD=4,∠ADC=∠A'D'C=90°,由勾股定理得出A'C=5,则A'D=A'C﹣CD=5﹣3=2,证Rt△CDF≌Rt△CD'F(HL),得出DF=D'F,设DF=D'F=x,则A'F=4﹣x,在Rt△A'DF中,由勾股定理得出方程,解方程得DF=,由勾股定理即可得出CF的长度.【解答】解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠ADC=90°,∴∠A'DF=∠CDF=90°,由旋转的性质得:CD=CD'=3,A'D'=AD=4,∠ADC=∠A'D'C=90°,∴A'C==5,∴A'D=A'C﹣CD=5﹣3=2,在Rt△CDF和Rt△CD'F中,,∴Rt△CDF≌Rt△CD'F(HL),∴DF=D'F,设DF=D'F=x,则A'F=4﹣x,在Rt△A'DF中,由勾股定理得:22+x2=(4﹣x)2,解得:x=,∴DF=,∴CF===;故答案为:.【点评】本题考查了矩形的性质、旋转的性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和旋转的性质,证明三角形全等是解题的关键.三.解答题(共7小题)19.计算:.【分析】直接利用负整数指数幂的性质以及零指数幂的性质、二次根式的性质分别化简,合并得出答案.【解答】解:原式=1+2﹣+9+2=12+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.解方程:=2.【分析】本题考查用换元法解分式方程的能力,观察方程可得与互为倒数,所以可采用换元法将方程转化.【解答】解:设=y,则,则原方程为:y﹣=2,即:y2﹣2y﹣3=0,解得y1=3,y2=﹣1.当y1=3时,x=﹣1,当y2=﹣1时,x=.经检验,x1=﹣1,x2=是原方程的根.∴x1=﹣1,x2=.【点评】用换元法解分式方程是常用的一种方法,它能将方程化繁为简,因此要注意总结能够用换元法解的分式方程的特点.解分式方程时要注意根据方程特点选择合适的方法.21.甲、乙两辆汽车沿同一公路从A地出发前往路程为100千米的B地,乙车比甲车晚出发15分钟,行驶过程中所行驶的路程分别用y1、y2(千米)表示,它们与甲车行驶的时间x(分钟)之间的函数关系如图所示.(1)分别求出y1、y2关于x的函数解析式并写出定义域;(2)乙车行驶多长时间追上甲车?【分析】(1)根据函数图象中的数据,可以求得y1、y2关于x的函数解析式并写出定义域;(2)令(1)中的两个函数的函数相等,求出x的值,然后再减去15,即可得到乙车行驶多长时间追上甲车.【解答】解:(1)设y1关于x的函数解析为y1=kx,120k=100,得k=,即y1关于x的函数解析为y1=x(0≤x≤120),设y2关于x的函数解析为y2=ax+b,,得,即y2关于x的函数解析为y2=x﹣20(15≤x≤90);(2)令x=x﹣20,得x=40,40﹣15=25(分钟),即乙车行驶25分钟追上甲车.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交边BC于点D,过点D作CA的平行线,交边AB于点E.(1)求线段DE的长;(2)取线段AD的中点M,联结BM,交线段DE于点F,延长线段BM交边AC于点G,求的值.【分析】(1)根据平行线分线段成比例定理,列出比例式求解即可;(2)根据平行线分线段成比例定理,列出比例式求解即可.【解答】解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC=30°,在Rt△ACD中,∠ACD=90°,∠DAC=30°,AC=6,∴CD=2,在Rt△ACB中,∠ACB=90°,∠BAC=60°,AC=6,∴BC=6,∴BD=BC﹣CD=4,∵DE∥CA,∴,∴DE=4;(2)∵点M是线段AD的中点,∴DM=AM,∵DE∥CA,∴,∴DF=AG,∵DE∥CA,∴,∴,∵BD=4,BC=6,DF=AG,∴.【点评】考查了平行线分线段成比例定理,注意线段之间的对应关系.23.已知:如图,点E为▱ABCD对角线AC上的一点,点F在线段BE的延长线上,且EF =BE,线段EF与边CD相交于点G.(1)求证:DF∥AC;(2)如果AB=BE,DG=CG,联结DE、CF,求证:四边形DECF是矩形.【分析】(1)根据平行四边形的性质得到BO=DO,根据三角形的中位线定理即可得到结论;(2)根据平行四边形的性质得到AB∥CD,由平行线的性质得到∠BAE=∠GCE,求得∠GEC=∠GCE,得到GE=CG,推出四边形DECF是平行四边形,得到DG=CG=FG =GE,于是得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BO=DO,∵EF=BE,∴OE是△BDF的中位线,∴OE∥DF,即DF∥AC;(2)解:∵AB=BE,∴∠BAE=∠BEA,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠GCE,∵∠BEA=∠GEC,∴∠GEC=∠GCE,∴GE=CG,∵DF∥AC,∴=,∵DG=CG,∴FG=GE,∴四边形DECF是平行四边形,∵DG=CG,FG=GE,GE=CG,∴DG=CG=FG=GE,∴DC=EF,∴四边形DECF是矩形.【点评】本题考查了矩形的判定和性质,平行四边形的判定和性质,三角形的中位线定理,熟练掌握矩形的判定和性质定理是解题的关键.24.在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴相交于点C(0,3),抛物线的顶点为点D.(1)求抛物线的表达式及顶点D的坐标;(2)联结AD、AC、CD,求∠DAC的正切值;(3)如果点P是原抛物线上的一点,且∠P AB=∠DAC,将原抛物线向右平移m个单位(m>0),使平移后新抛物线经过点P,求平移距离.【分析】(1)利用待定系数法构建方程组即可解决问题.(2)利用勾股定理求出AD,CD,AC,证明∠ACD=90°即可解决问题.(3)过点P作x轴的垂线,垂足为H.设P(a,﹣a2﹣2a+3),可得PH=|﹣a2﹣2a+3|,AH=a+3,由∠P AB=∠DAC,推出tan∠P AB=tan∠DAC==.接下来分两种情形,构建方程求解即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴相交于点C(0,3),则有,解得,∴抛物线的解析式为y=﹣x2﹣2x+3,顶点D(﹣1,4).(2)∵A(﹣3,0),C(0,3),D(﹣1,4),∴AD==2,CD==,AC==3,∴AC2+CD2=AD2,∴∠ACD=90°,∴tan∠DAC==.(3)过点P作x轴的垂线,垂足为H.∵点P在抛物线y=﹣x2﹣2x+3上,∴设P(a,﹣a2﹣2a+3),可得PH=|﹣a2﹣2a+3|,AH=a+3,∵∠P AB=∠DAC,∴tan∠P AB=tan∠DAC==.①当a+3=3(﹣a2﹣2a+3),解得a=或﹣3(舍弃),∴P(,),过点P作x轴的平行线与抛物线交于点N,则点N与点P关于直线x=﹣1对称,根据对称性可知N(﹣,),∴平移的距离为.②当a+3=﹣3(﹣a2﹣2a+3),解得a=或﹣3(舍弃),∴P(,﹣),过点P作x轴的平行线交抛物线于点Q,则点Q与点P关于直线x=﹣1对称,根据对称性可知Q(﹣,﹣),∴平移的距离为,综上所述,平移的距离为或.【点评】本题属于二次函数综合题,考查了待定系数法,勾股定理的逆定理,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.25.已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4.D是边AB的中点,点E为边AC上的一个动点(与点A、C不重合),过点E作EF∥AB,交边BC于点F.联结DE、DF,设CE=x.(1)当x=1时,求△DEF的面积;(2)如果点D关于EF的对称点为D′,点D′恰好落在边AC上时,求x的值;(3)以点A为圆心,AE长为半径的圆与以点F为圆心,EF长为半径的圆相交,另一个交点H恰好落在线段DE上,求x的值.【分析】(1)如图1,过E作EM⊥AB于M,根据勾股定理计算AB=5,根据三角函数定义得sin∠A==,可得EM的长,由平行线分线段成比例定理可得EF的长,根据三角形面积公式可得结论;(2)如图2,过E作EN⊥AB于N,连接DD',交EF于Q,由对称得DD'⊥EF,QD=DD',先根据三角函数计算DD'==,得QD=,证明四边形ENDQ是矩形,则EN=QD=,最后利用三角函数可得结论;(3)如图3,连接AF,交ED于G,先表示CF=x,EF=x,计算AF的长,根据平行线分线段成比例定理可得AG的长,证明△AEG∽△AFC,得AG•AF=AC•AE,列方程解出即可.【解答】解:(1)如图1,过E作EM⊥AB于M,当x=1时,CE=1,AE=4﹣1=3,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,∴AB=5,sin∠A==,∴,∴EM=,∵EF∥AB,∴,即,∴EF=x=,∴△DEF的面积=•EM==;(2)如图2,过E作EN⊥AB于N,连接DD',交EF于Q,∵点D关于EF的对称点为D′,∴DD'⊥EF,QD=DD',∴∠EQD'=90°,∵EF∥AB,∴∠ADQ=∠EQD'=90°,∵D是AB的中点,∴AD=AB=,tan∠A=,∴DD'==,∴QD=,∵EF∥AB,EN⊥AB,QD⊥AB,∴∠END=∠NDQ=∠EQD=90°,∴四边形ENDQ是矩形,∴EN=QD=,Rt△AEN中,sin∠A=,∴,AE=4﹣x,∴x=;(3)如图3,连接AF,交ED于G,Rt△CEF中,∠ECF=90°,tan∠CEF=tan∠CAB=,∴,CF=x,∴EF=x,∴AF===,∵EF∥AB,∴,即=,∴,∴AG=,∵⊙A与⊙F相交于点E、H,且H在ED上,∴AF⊥DE,∴∠AGE=90°,∴∠AGE=∠ACF=90°,∵∠EAG=∠F AC,∴△AEG∽△AFC,∴,即AG•AF=AC•AE,∴=4(4﹣x),解得:x1=0(舍),x2=.【点评】本题考查了三角形的综合题,考查了直角三角形,矩形的性质和判定,勾股定理的应用,相似三角形的判定和性质,三角函数的定义等知识,熟练掌握相似三角形的判定定理和性质定理,三角函数的定义是解题的关键.。
∥3套精选试卷∥上海市杨浦区2020-2021中考单科质检数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '',连接'A A ,若120︒∠=,则B 的度数是( )A .70︒B .65︒C .60︒D .55︒【答案】B 【解析】根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C ,最后根据旋转的性质可得∠B =∠A′B′C .【详解】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C ,∴AC =A′C ,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C =∠1+∠CAA′=20°+45°=65°,∴∠B =∠A′B′C =65°.故选B .【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.2.二次函数y=x 2+bx –1的图象如图,对称轴为直线x=1,若关于x 的一元二次方程x 2–2x –1–t=0(t 为实数)在–1<x<4的范围内有实数解,则t 的取值范围是A .t≥–2B .–2≤t<7C .–2≤t<2D .2<t<7【答案】B 【解析】利用对称性方程求出b 得到抛物线解析式为y=x 2﹣2x ﹣1,则顶点坐标为(1,﹣2),再计算当﹣1<x <4时对应的函数值的范围为﹣2≤y <7,由于关于x 的一元二次方程x 2﹣2x ﹣1﹣t=0(t 为实数)在﹣1<x <4的范围内有实数解可看作二次函数y=x 2﹣2x ﹣1与直线y=t 有交点,然后利用函数图象可得到t 的范围.【详解】抛物线的对称轴为直线x=﹣2b =1,解得b=﹣2, ∴抛物线解析式为y=x 2﹣2x ﹣1,则顶点坐标为(1,﹣2),当x=﹣1时,y=x 2﹣2x ﹣1=2;当x=4时,y=x 2﹣2x ﹣1=7,当﹣1<x <4时,﹣2≤y <7,而关于x 的一元二次方程x 2﹣2x ﹣1﹣t=0(t 为实数)在﹣1<x <4的范围内有实数解可看作二次函数y=x 2﹣2x ﹣1与直线y=t 有交点,∴﹣2≤t <7,故选B .【点睛】本题考查了二次函数的性质、抛物线与x 轴的交点、二次函数与一元二次方程,把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程是解题的关键. 3.如图,反比例函数k y x(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为( )A .1B .2C .3D .4【答案】C 【解析】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、矩形OABC 的面积与|k|的关系,列出等式求出k 值.【详解】由题意得:E 、M 、D 位于反比例函数图象上,则OCE OAD k k S S 22∆∆==,,过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S □ONMG =|k|. 又∵M 为矩形ABCO 对角线的交点,∴S 矩形ABCO =4S □ONMG =4|k|,∵函数图象在第一象限,k >0,∴k k 94k 22++=. 解得:k=1.故选C .【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.4.如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )A .30tan α米B .30sinα米C .30tanα米D .30cosα米【答案】C【解析】试题解析:在Rt △ABO 中,∵BO=30米,∠ABO 为α,∴AO=BOtanα=30tanα(米).故选C .考点:解直角三角形的应用-仰角俯角问题.5.如图,点M 是正方形ABCD 边CD 上一点,连接MM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A 213B 313C .23D 13【答案】B【解析】首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到12•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.【详解】∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中BFA DEAABF EADAB DA∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF≌△DEA(AAS),∴BF=AE;设AE=x,则BF=x,DE=AF=1,∵四边形ABED的面积为6,∴111622x x x⋅⋅+⋅⨯=,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,222313BE=+=,∴313cos1313BFEBFBE∠===.故选B.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.6.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.4<8<1.9,所以8应在③段上.故选C考点:实数与数轴的关系7.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )A.M B.N C.P D.Q【答案】A【解析】解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.8.一、单选题如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【答案】A【解析】分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.9.已知一个多边形的内角和是1080°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形 【答案】D【解析】根据多边形的内角和=(n ﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n ,∴(n ﹣2)•180°=1080°,解得n =8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.如图,在平面直角坐标系中,△OAB 的顶点A 在x 轴正半轴上,OC 是△OAB 的中线,点B 、C 在反比例函数y=2x(x >0)的图象上,则△OAB 的面积等于( )A .2B .3C . 4D .6【答案】B 【解析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,∴BD ∥CE ,∴CE AE AC BD AD AB ==, ∵OC 是△OAB 的中线, ∴12CE AE AC BD AD AB ===, 设CE=x ,则BD=2x ,∴C的横坐标为2x ,B的横坐标为1x,∴OD=1x ,OE=2x,∴DE=OE-OD=2x ﹣1x=1x,∴AE=DE=1x,∴OA=OE+AE=213x x x+=,∴S△OAB=12OA•BD=12×32xx⨯=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.二、填空题(本题包括8个小题)11.观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为34,第3个图形中阴影部分的面积为916,第4个图形中阴影部分的面积为2764,…则第n个图形中阴影部分的面积为_____.(用字母n表示)【答案】3()4n﹣1(n为整数)【解析】试题分析:观察图形可得,第1个图形中阴影部分的面积=(34)0=1;第2个图形中阴影部分的面积=(34)1=34;第3个图形中阴影部分的面积=(34)2=916;第4个图形中阴影部分的面积=(34)3=2764;…根据此规律可得第n个图形中阴影部分的面积=(34)n-1(n为整数)•考点:图形规律探究题.12.若关于x的方程2x m2x22x++=--有增根,则m的值是▲【答案】1.【解析】方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于1的未知数的值求出x的值,然后代入进行计算即可求出m的值:方程两边都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x -2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.13.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .【答案】:k <1.【解析】∵一元二次方程220x x k -+=有两个不相等的实数根,∴△=24b ac -=4﹣4k >0,解得:k <1,则k 的取值范围是:k <1.故答案为k <1.14.分解因式:32a 4ab -= .【答案】()()a a 2b a 2b +-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式a 后继续应用平方差公式分解即可:()()()3222a 4ab a a 4ba a 2b a 2b -=-=+-.15.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是_____.【答案】27π 【解析】试题分析:设扇形的半径为r .则1206180r ππ=,解得r=9,∴扇形的面积=21209360π⨯=27π.故答案为27π.考点:扇形面积的计算.16.如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,PM=l ,则l 的最大值是【答案】4【解析】当CD ∥AB 时,PM 长最大,连接OM ,OC ,得出矩形CPOM ,推出PM=OC ,求出OC 长即可.【详解】当CD∥AB时,PM长最大,连接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M为CD中点,OM过O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC,∵⊙O直径AB=8,∴半径OC=4,即PM=4.【点睛】本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.17.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.【答案】3【解析】分析:由已知条件易得:EF∥AB,且EF:AB=1:2,从而可得△CEF∽△CAB,且相似比为1:2,设S△CEF=x,根据相似三角形的性质可得方程:194xx=+,解此方程即可求得△EFC的面积.详解:∵在△ABC中,点E,F分别是AC,BC的中点,∴EF是△ABC的中位线,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,设S△CEF=x,∵S △CAB =S △CEF +S 四边形ABFE ,S 四边形ABFE =9, ∴194x x =+, 解得:3x =,经检验:3x =是所列方程的解.故答案为:3.点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键. 18.小明把一副含45°,30°的直角三角板如图摆放,其中∠C =∠F =90°,∠A =45°,∠D =30°,则∠α+∠β等于_____.【答案】210°【解析】根据三角形内角和定理得到∠B =45°,∠E =60°,根据三角形的外角的性质计算即可.【详解】解:如图:∵∠C =∠F =90°,∠A =45°,∠D =30°,∴∠B =45°,∠E =60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B =∠A+∠B+∠2+∠3=90°+120°=210°,故答案为:210°.【点睛】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.三、解答题(本题包括8个小题)19.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)【答案】(1)袋子中白球有2个;(2)见解析,59.【解析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程:213xx=+,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x个,根据题意得:213xx=+,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.【点睛】此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.20.如图,在△ABC中,BC=12,tanA=34,∠B=30°;求AC和AB的长.【答案】8+63.【解析】如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;【详解】解:如图作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH =12BC =6,BH =22BC CH -=63, 在Rt △ACH 中,tanA =34=CH AH , ∴AH =8,∴AC =22AH CH +=10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A 市投资“改水工程”的年平均增长率;从2008年到2010年,A 市三年共投资“改水工程”多少万元?【答案】 (1) 40%;(2) 2616.【解析】(1)设A 市投资“改水工程”的年平均增长率是x .根据:2008年,A 市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.【详解】解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.22.计算:2sin30°﹣(π﹣2)0+|3﹣1|+(12)﹣1 【答案】1+3【解析】分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.详解:原式=2×12-1+3-1+2 =1+3.点睛:此题主要考查了实数运算,正确化简各数是解题关键.23.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). 请画出△ABC 向左平移5个单位长度后得到的△A B C ; 请画出△ABC 关于原点对称的△A B C ; 在轴上求作一点P ,使△PAB的周长最小,请画出△PAB ,并直接写出P 的坐标.【答案】(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0)【解析】(1)按题目的要求平移就可以了关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可(3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.【详解】(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,点P的坐标为:(2,0)【点睛】1、图形的平移;2、中心对称;3、轴对称的应用24.一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.【答案】 (1)14;(2)13. 【解析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为14; (2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.【详解】(1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,∴任取一个球,摸出球上的汉字刚好是“美”的概率P=14(2)列表如下:根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率13P =. 【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.25.先化简,再计算: 22444332x x x x x x x ++--÷++-其中3x =-+.【答案】23x -+; 【解析】根据分式的化简求值,先把分子分母因式分解,再算乘除,通分后计算减法,约分化简,最后代入求值即可.【详解】解:22444332x x x x x x x ++--÷++- =2(2)(2)(2)332x x x x x x x ++--÷++-=2(2)233(2)(2) x x xx x x x+--⋅+++-=233 x xx x+-++=23 x-+当322x=-+时,原式=223223-=--++.【点睛】此题主要考查了分式的化简求值,把分式的除法化为乘法,然后约分是解题关键.26.如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.【答案】(1)点B的坐标是(-5,-4);直线AB的解析式为:(2)四边形CBED是菱形.理由见解析【解析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.【详解】解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,得. ∴点B的坐标是(-5,-4)设直线AB的解析式为,将A(3,)、B(-5,-4)代入得,,解得:.∴直线AB的解析式为:(2)四边形CBED是菱形.理由如下:点D的坐标是(3,0),点C的坐标是(-2,0).∵ BE∥轴,∴点E的坐标是(0,-4).而CD =5,BE=5,且BE∥CD.∴四边形CBED是平行四边形在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD. ∴□CBED是菱形中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=3,则△ACE的面积为()A.1 B3C.2 D.3【答案】B【解析】由折叠的性质可得3DE=EF,AC=23由三角形面积公式可求EF的长,即可求△ACE 的面积.【详解】解:∵点F是AC的中点,∴AF=CF=12AC,∵将△CDE沿CE折叠到△CFE,∴3DE=EF,∴AC=3在Rt△ACD中,22AC CD.∵S△ADC=S△AEC+S△CDE,∴12×AD×CD=12×AC×EF+12×CD×DE∴3233,∴DE=EF=1,∴S△AEC=12×33故选B.【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键.2.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.6058【答案】D【解析】设第n个图形有a n个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a n=1+3n(n 为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有a n个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴a n=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【点睛】此题考查规律型:图形的变化,解题关键在于找到规律3.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是()A.90°B.60°C.45°D.30°【答案】B【解析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质. 4.下列条件中不能判定三角形全等的是( )A.两角和其中一角的对边对应相等B.三条边对应相等C.两边和它们的夹角对应相等D.三个角对应相等【答案】D【解析】解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D.5.下列关于x的方程中一定没有实数根的是()A.210=-D.220--=-+=C.2x xx mx x xx x--=B.24690【答案】B【解析】根据根的判别式的概念,求出△的正负即可解题.【详解】解: A. x2-x-1=0,△=1+4=5>0,∴原方程有两个不相等的实数根,B. 2-+=, △=36-144=-108<0,∴原方程没有实数根,4x6x90C. 2x x+=, △=1>0,∴原方程有两个不相等的实数根,=-, 2x x0D. 2x mx20--=, △=m2+8>0,∴原方程有两个不相等的实数根,故选B.【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.6.下列几何体中,俯视图为三角形的是( )A.B.C.D.【答案】C【解析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.7.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A.甲B.乙C.丙D.都一样【答案】B【解析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【详解】解:降价后三家超市的售价是:甲为(1-20%)2m=0.64m,乙为(1-40%)m=0.6m,丙为(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此时顾客要购买这种商品最划算应到的超市是乙.故选:B.【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.8.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,BD的长为43π,则图中阴影部分的面积为()A.4633π-B.8933π-C3323π-D.8633π【答案】D【解析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,∵B ,E 是半圆弧的三等分点,∴∠EOA =∠EOB =∠BOD =60°,∴∠BAD =∠EBA =30°,∴BE ∥AD ,∵BD 的长为43π , ∴6041803R ππ= 解得:R =4,∴AB =ADcos30°=3,∴BC =12AB =3 ∴AC 3=6,∴S △ABC =12×BC×AC =12×23=63 ∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC ﹣S 扇形BOE =2604863633603ππ⨯= 故选:D .【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.9.对于一组统计数据1,1,6,5,1.下列说法错误的是( )A .众数是1B .平均数是4C .方差是1.6D .中位数是6 【答案】D【解析】根据中位数、众数、方差等的概念计算即可得解.【详解】A 、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确; B 、由平均数公式求得这组数据的平均数为4,故此选项正确;C 、S 2=15[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确; D 、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D .考点:1.众数;2.平均数;1.方差;4.中位数.10.下列说法正确的是( )A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨B .“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近 【答案】D【解析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A 不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B 不符合题意; C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C 不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D 符合题意; 故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.二、填空题(本题包括8个小题)11.分解因式:x 2y ﹣4xy+4y =_____.【答案】y(x-2)2【解析】先提取公因式y ,再根据完全平方公式分解即可得.【详解】原式=2(44)y x x -+=2(2)y x -, 故答案为2(2)y x -.12.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.【答案】2【解析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【详解】设母线长为x ,根据题意得2πx÷2=2π×5,解得x=1.故答案为2.【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.13.如图,平行于x 轴的直线AC 分别交抛物线y 1=x 2(x≥0)与y 2=23x (x≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DE AB=______.【答案】33【解析】首先设点B 的横坐标,由点B 在抛物线y 1=x 2(x≥0)上,得出点B 的坐标,再由平行,得出A 和C 的坐标,然后由CD 平行于y 轴,得出D 的坐标,再由DE ∥AC ,得出E 的坐标,即可得出DE 和AB ,进而得解.【详解】设点B 的横坐标为a ,则()2,B a a∵平行于x 轴的直线AC∴()()220,,3,A a C a a 又∵CD 平行于y 轴∴)23,3D a a 又∵DE ∥AC∴()23,3E a a∴(33,DE a AB a ==∴DE AB=33【点睛】此题主要考查抛物线中的坐标求解,关键是利用平行的性质.14.设[x)表示大于x 的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是 ______ .(填写所有正确结论的序号)①[0)=0;②[x)−x 的最小值是0;③[x)−x 的最大值是0;④存在实数x ,使[x)−x=0.5成立.【答案】④【解析】根据题意[x)表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x ⩽1,即最大值为1,故本项错误;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.【点睛】此题考查运算的定义,解题关键在于理解题意的运算法则.15.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于_____.【答案】5π【解析】根据题意得出球在无滑动旋转中通过的路程为12圆弧,根据弧长公式求出弧长即可.【详解】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为14圆的周长,然后沿着弧O1O2旋转14圆的周长,则圆心O运动路径的长度为:112544π⨯⨯+×2π×5=5π,故答案为5π.【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.16.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则BE的长度为______.【答案】2 3π【解析】试题解析:连接AE,。
上海市杨浦区2019-2020学年中考数学三模试卷含解析
上海市杨浦区2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.152.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=03.3的倒数是()A.3B.3-C.13D.13-4.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.5.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或176.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O47.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数8.下列运算正确的是()A.a•a2=a2B.(ab)2=ab C.3﹣1=13D5510=9.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为( ) A .55×103 B .5.5×104 C .5.5×105D .0.55×10510.计算的结果是( )A .B .C .1D .211.如图,正六边形ABCDEF 内接于O e ,M 为EF 的中点,连接DM ,若O e 的半径为2,则MD 的长度为( )A .7B .5C .2D .112.下列图案中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.若分式方程2m2x 22x-=--有增根,则m 的值为______. 14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?设买美酒x 斗,买普通酒y 斗,则可列方程组为______________. 15.双曲线11y x =、23y x=在第一象限的图像如图,过y 2上的任意一点A ,作x 轴的平行线交y 1于B ,交y 轴于C ,过A 作x 轴的垂线交y 1于D ,交x 轴于E ,连结BD 、CE ,则BDCE= .16.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=3AEO=120°,则FC 的长度为_____.17.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得10,点D在量角器上的读数为60o,则该直尺的宽AD cm度为____________cm.18.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:收费方式月使用费/元包时上网时间/h 超时费/(元/min)A 7 25 0.01B m n 0.01设每月上网学习时间为x小时,方案A,B的收费金额分别为y A,y B.(1)如图是y B与x之间函数关系的图象,请根据图象填空:m=;n=;(2)写出y A与x之间的函数关系式;(3)选择哪种方式上网学习合算,为什么.20.(6分)如图1,抛物线y1=ax1﹣12x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,34),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1.(1)求抛物线y1的解析式;(1)如图1,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.21.(6分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.22.(8分)如图,在等腰直角△ABC中,∠C是直角,点A在直线MN上,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当C,B两点均在直线MN的上方时,①直接写出线段AE,BF与CE的数量关系.②猜测线段AF,BF与CE的数量关系,不必写出证明过程.(2)将等腰直角△ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程.(3)将等腰直角△ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度.23.(8分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE ∥AC ,CE ∥BD . (1)求证:四边形OCED 是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED 的面积.24.(10分)如图,∠AOB=45°,点M ,N 在边OA 上,点P 是边OB 上的点. (1)利用直尺和圆规在图1确定点P ,使得PM=PN ; (2)设OM=x ,ON=x+4,①若x=0时,使P 、M 、N 构成等腰三角形的点P 有 个;②若使P 、M 、N 构成等腰三角形的点P 恰好有三个,则x 的值是____________.25.(10分)如图,AC 是O e 的直径,点B 是O e 内一点,且BA BC =,连结BO 并延长线交O e 于点D ,过点C 作O e 的切线CE ,且BC 平分DBE ∠.()1求证:BE CE =;()2若O e 的直径长8,4sin BCE 5∠=,求BE 的长.26.(12分)观察规律并填空.21133(1)2224-=⨯=221113242(1)(1)2322333--=⨯⨯⨯=2221111324355(1)(1)(1)2342233448---=⨯⨯⨯⨯⨯=⋯⋯ 2222211111(1)(1)(1)(1)(1)2345n -----=L L ______(用含n 的代数式表示,n 是正整数,且 n ≥ 2) 27.(12分) 2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题: (1)本次被调查的学员共有 人;在被调查者中参加“3科”课外辅导的有 人. (2)将条形统计图补充完整;(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】试题解析:列表如下:∴共有20种等可能的结果,P (一男一女)=123=205. 故选B . 2.D 【解析】试题分析:根据题意得a≠1且△=2440ac -≥,解得4ac ≤且a≠1.观察四个答案,只有c =1一定满足条件,故选D .考点:根的判别式;一元二次方程的定义. 3.C 【解析】根据倒数的定义可知. 解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 4.D 【解析】A ,B ,C 只能通过旋转得到,D 既可经过平移,又可经过旋转得到,故选D. 5.D 【解析】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17. 故选项D 正确.考点:三角形三边关系;分情况讨论的数学思想6.A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B 来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.7.C【解析】【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.8.C【解析】【分析】根据同底数幂的乘法法则对A进行判断;根据积的乘方对B进行判断;根据负整数指数幂的意义对C进行判断;根据二次根式的加减法对D进行判断.【详解】解:A、原式=a3,所以A选项错误;B、原式=a2b2,所以B选项错误;C、原式=13,所以C选项正确;D、原式=25,所以D选项错误.故选:C.【点睛】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.9.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】55000是5位整数,小数点向左移动4位后所得的数即可满足科学记数法的要求,由此可知10的指数为4,所以,55000用科学记数法表示为5.5×104,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.A【解析】【分析】根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.【详解】.故选A.【点睛】本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.11.A【解析】【分析】连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM ,再由勾股定理求出MD 即可. 【详解】连接OM 、OD 、OF ,∵正六边形ABCDEF 内接于⊙O ,M 为EF 的中点, ∴OM ⊥OD ,OM ⊥EF ,∠MFO=60°, ∴∠MOD=∠OMF=90°, ∴OM=OF•sin ∠MFO=2×32=3, ∴MD=()2222327OM OD +=+=,故选A .【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM 是解决问题的关键. 12.B 【解析】 【分析】根据轴对称图形与中心对称图形的概念解答. 【详解】A .不是轴对称图形,是中心对称图形;B .是轴对称图形,是中心对称图形;C .不是轴对称图形,也不是中心对称图形;D .是轴对称图形,不是中心对称图形. 故选B . 【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.-1 【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m 的值.【详解】方程两边都乘(x-1),得x-1(x-1)=-m∵原方程增根为x=1,∴把x=1代入整式方程,得m=-1,故答案为:-1.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.14.2501030x y x y +=⎧⎨+=⎩【解析】【分析】设买美酒x 斗,买普通酒y 斗,根据“美酒一斗的价格是50钱、买两种酒2斗共付30钱”列出方程组.【详解】依题意得:2501030x y x y +=⎧⎨+=⎩. 故答案为2501030x y x y +=⎧⎨+=⎩. 【点睛】考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.15.23【解析】【详解】设A 点的横坐标为a ,把x=a 代入23y x =得23y a =,则点A 的坐标为(a ,3a). ∵AC ⊥y 轴,AE ⊥x 轴, ∴C 点坐标为(0,3a ),B 点的纵坐标为3a,E 点坐标为(a ,0),D 点的横坐标为a . ∵B 点、D 点在11y x =上,∴当y=3a 时,x=a 3;当x=a ,y=1a .∴B 点坐标为(a 3,3a ),D 点坐标为(a ,1a ). ∴AB=a -3a =2a 3,AC=a ,AD=3a -1a =2a ,AE=3a .∴AB=23AC ,AD=23AE . 又∵∠BAD=∠CAD ,∴△BAD ∽△CAD .∴BD AB 2CE AC 3==. 16.1【解析】【分析】先根据矩形的性质,推理得到OF=CF ,再根据Rt △BOF 求得OF 的长,即可得到CF 的长.【详解】解:∵EF ⊥BD ,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD 是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°-30°=30°,∴OF=CF ,又∵Rt △BOF 中,BO=12BD=12AC=3, ∴OF=tan30°×BO=1,∴CF=1,故答案为:1.【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分. 17.533【解析】【分析】连接OC,OD,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC,OD,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒cos30AE OA ==︒tan 30OE AE =⋅︒=直尺的宽度:CE OC OE =-==【点睛】考查垂径定理,熟记垂径定理是解题的关键.18.6.4【解析】【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】 解:由题可知:1.628=树高, 解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)10,50;(2)见解析;(3)当0<x <30时,选择A 方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x >30时,选择B 方式上网学习合算.【解析】【分析】(1)由图象知:m=10,n=50;(2)根据已知条件即可求得y A 与x 之间的函数关系式为:当x≤25时,y A =7;当x >25时,y A =7+(x ﹣25)×0.01;(3)先求出y B 与x 之间函数关系为:当x≤50时,y B =10;当x >50时,y B =10+(x ﹣50)×60×0.01=0.6x ﹣20;然后分段求出哪种方式上网学习合算即可.【详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)y A 与x 之间的函数关系式为:当x≤25时,y A =7,当x >25时,y A =7+(x ﹣25)×60×0.01,∴y A =0.6x ﹣8, ∴y A =7(025){0.68(25)x x x <≤->; (3)∵y B 与x 之间函数关系为:当x≤50时,y B =10,当x >50时,y B =10+(x ﹣50)×60×0.01=0.6x ﹣20, 当0<x≤25时,y A =7,y B =50,∴y A <y B ,∴选择A 方式上网学习合算,当25<x≤50时.y A =y B ,即0.6x ﹣8=10,解得;x=30,∴当25<x <30时,y A <y B ,选择A 方式上网学习合算,当x=30时,y A =y B ,选择哪种方式上网学习都行,当30<x≤50,y A >y B ,选择B 方式上网学习合算,当x >50时,∵y A =0.6x ﹣8,y B =0.6x ﹣20,y A >y B ,∴选择B 方式上网学习合算,综上所述:当0<x <30时,y A <y B ,选择A 方式上网学习合算,当x=30时,y A =y B ,选择哪种方式上网学习都行,当x >30时,y A >y B ,选择B 方式上网学习合算.【点睛】本题考查一次函数的应用.20.(1)y 1=-14x 1+12 x-14;(1)存在,T (1,34+),(1,(1,﹣778);(3)y=﹣12x+34或y=﹣1124x -. 【解析】【分析】(1)应用待定系数法求解析式;(1)设出点T 坐标,表示△TAC 三边,进行分类讨论;(3)设出点P 坐标,表示Q 、R 坐标及PQ 、QR ,根据以P ,Q ,R 为顶点的三角形与△AMG 全等,分类讨论对应边相等的可能性即可.【详解】解:(1)由已知,c=34, 将B (1,0)代入,得:a ﹣1324+=0, 解得a=﹣14,抛物线解析式为y1=14x1-12x+34,∵抛物线y1平移后得到y1,且顶点为B(1,0),∴y1=﹣14(x﹣1)1,即y1=-14x1+12x-14;(1)存在,如图1:抛物线y1的对称轴l为x=1,设T(1,t),已知A(﹣3,0),C(0,34),过点T作TE⊥y轴于E,则TC1=TE1+CE1=11+(34)1=t1﹣32t+2516,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=153 16,当TC=AC时,t1﹣32t+2516=15316,解得:t13137+,t13137-当TA=AC时,t1+16=15316,无解;当TA=TC时,t1﹣32t+2516=t1+16,解得t3=﹣778;当点T坐标分别为(1,31374+),(1,31374-),(1,﹣778)时,△TAC为等腰三角形;(3)如图1:设P (m ,2113424m m --+),则Q (m ,2111424m m -+-), ∵Q 、R 关于x=1对称 ∴R (1﹣m ,2111424m m -+-), ①当点P 在直线l 左侧时,PQ=1﹣m ,QR=1﹣1m ,∵△PQR 与△AMG 全等,∴当PQ=GM 且QR=AM 时,m=0,∴P (0,34),即点P 、C 重合, ∴R (1,﹣14), 由此求直线PR 解析式为y=﹣12x+34, 当PQ=AM 且QR=GM 时,无解;②当点P 在直线l 右侧时,同理:PQ=m ﹣1,QR=1m ﹣1,则P (1,﹣54),R (0,﹣14), PQ 解析式为:y=﹣1124x -; ∴PR 解析式为:y=﹣12x+34或y=﹣1124x -. 【点睛】本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键.21.(1)13;(2)这个游戏不公平,理由见解析.【解析】【分析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:13;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(甲胜)=59,P(乙胜)=49.∴P(甲胜)≠P(乙胜),故这个游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.(1)①AE+BF =EC;②AF+BF=2CE;(2)AF﹣BF=2CE,证明见解析;(3)FG=65.【解析】【分析】(1)①只要证明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四边形CEFD为正方形,即可解决问题;②利用①中结论即可解决问题;(2)首先证明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知FG AF EC AE,由此即可解决问题;【详解】解:(1)证明:①如图1,过点C 做CD ⊥BF ,交FB 的延长线于点D ,∵CE ⊥MN ,CD ⊥BF ,∴∠CEA=∠D=90°,∵CE ⊥MN ,CD ⊥BF ,BF ⊥MN ,∴四边形CEFD 为矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB ,即∠ACE=∠BCD ,又∵△ABC 为等腰直角三角形,∴AC=BC ,在△ACE 和△BCD 中,90ACE BCD AEC BDC AC BC ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ACE ≌△BCD (AAS ),∴AE=BD ,CE=CD ,又∵四边形CEFD 为矩形,∴四边形CEFD 为正方形,∴CE=EF=DF=CD ,∴AE+BF=DB+BF=DF=EC .②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE ,(2)AF-BF=2CE图2中,过点C 作CG ⊥BF ,交BF 延长线于点G ,∵AC=BC可得∠AEC=∠CGB ,∠ACE=∠BCG ,在△CBG 和△CAE 中,AEC CGB ACE BCG AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△CBG ≌△CAE (AAS ),∴AE=BG ,∵AF=AE+EF ,∴AF=BG+CE=BF+FG+CE=2CE+BF ,∴AF-BF=2CE ;(3)如图3,过点C 做CD ⊥BF ,交FB 的于点D ,∵AC=BC可得∠AEC=∠CDB ,∠ACE=∠BCD ,在△CBD 和△CAE 中,AEC CDB ACE BCD AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△CBD ≌△CAE (AAS ),∴AE=BD ,∵AF=AE-EF ,∴AF=BD-CE=BF-FD-CE=BF-2CE ,∴BF-AF=2CE .∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG ∥EC , ∴FG AF EC AE=,∴3 25 FG=,∴FG=65.【点睛】本题考查几何变换综合题、正方形的判定和性质、全等三角形的判定和性质、平行线分线段成比例定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23.(1)证明见解析;(1)23.【解析】【分析】(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=13,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=12BC=1,求出OE=1OF=1,求出菱形的面积即可.【详解】()1证明:CE//ODQ,DE//OC,∴四边形OCED是平行四边形,Q矩形ABCD,AC BD∴=,1OC AC2=,1OD BD2=,OC OD∴=,∴四边形OCED是菱形;()2在矩形ABCD中,ABC90o∠=,BAC30∠=o,AC4=,BC2∴=,AB DC23∴==,连接OE,交CD于点F,Q四边形OCED为菱形,F∴为CD中点,OQ为BD中点,1OF BC12∴==,OE2OF2∴==,OCED 11S OE CD 2232322∴=⨯⨯=⨯⨯=菱形. 【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.24.(1)见解析;(2)①1;②:x=0或x=42﹣4或4<x <42;【解析】【分析】(1)分别以M 、N 为圆心,以大于12MN 为半径作弧,两弧相交与两点,过两弧交点的直线就是MN 的垂直平分线;(2)①分为PM=PN ,MP=MN ,NP=NM 三种情况进行判断即可;②如图1,构建腰长为4的等腰直角△OMC ,和半径为4的⊙M ,发现M 在点D 的位置时,满足条件;如图4,根据等腰三角形三种情况的画法:分别以M 、N 为圆心,以MN 为半径画弧,与OB 的交点就是满足条件的点P ,再以MN 为底边的等腰三角形,通过画图发现,无论x 取何值,以MN 为底边的等腰三角形都存在一个,所以只要满足以MN 为腰的三角形有两个即可.【详解】解:(1)如图所示:(2)①如图所示:故答案为1.②如图1,以M 为圆心,以4为半径画圆,当⊙M 与OB 相切时,设切点为C ,⊙M 与OA 交于D ,∴MC ⊥OB ,∵∠AOB=45°,∴△MCO 是等腰直角三角形,∴MC=OC=4, ∴42OM ,=当M 与D 重合时,即424x OM DM =-=-时,同理可知:点P 恰好有三个;如图4,取OM=4,以M 为圆心,以OM 为半径画圆.则⊙M 与OB 除了O 外只有一个交点,此时x=4,即以∠PMN 为顶角,MN 为腰,符合条件的点P 有一个,以N 圆心,以MN 为半径画圆,与直线OB 相离,说明此时以∠PNM 为顶角,以MN 为腰,符合条件的点P 不存在,还有一个是以NM 为底边的符合条件的点P ;点M 沿OA 运动,到M 1时,发现⊙M 1与直线OB 有一个交点;∴当442x <<M 在移动过程中,则会与OB 除了O 外有两个交点,满足点P 恰好有三个; 综上所述,若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是:x=0或424x =或442x <<.故答案为x=0或424x =或442x <<.【点睛】本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法.25.(1)证明见解析;(2)25BE 6=.【解析】【分析】()1先利用等腰三角形的性质得到BD AC ⊥,利用切线的性质得CE AC ⊥,则CE ∥BD ,然后证明13∠=∠得到BE=CE ;()2作EF BC ⊥于F ,如图,在Rt △OBC 中利用正弦定义得到BC=5,所以1522BF BC ==,然后在Rt △BEF 中通过解直角三角形可求出BE 的长.【详解】()1证明:BA BC =Q ,AO CO =,BD AC ∴⊥,CE Q 是O e 的切线,CE AC ∴⊥,CE //BD ∴,12∠∠∴=. BC Q 平分DBE ∠,23∠∠∴=,13∠∠∴=,BE CE ∴=;()2解:作EF BC ⊥于F ,如图,O Q e 的直径长8,CO 4∴=.4OC sin 3sin 25BC∠∠∴===, BC 5∴=,BE CE Q =,15BF BC 22∴==, 在Rt BEF V 中,EF 4sin 3sin 1BE 5∠∠=== 设EF 4x =,则BE 5x =,BF 3x ∴=,即53x 2=,解得5x 6=,25BE 5x 6∴==. 故答案为(1)证明见解析;(2)256BE =. 【点睛】本题考查切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了解直角三角形.26.12n n+ 【解析】【分析】由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣12)和(1+1n )相乘得出结果. 【详解】 2222211111111112345n -----L L ()()()()() =1111111111111111223344n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⨯⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L =132431...22334n n+⨯⨯⨯⨯⨯⨯ =12n n+. 故答案为:12n n+. 【点睛】本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.27.(1)50,10;(2)见解析.(3)16.8万【解析】【分析】(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人. (3)因为参加“1科”和“2科”课外辅导人数占比为152050+,所以全市参与辅导科目不多于2科的人数为24×152050+ =16.8(万). 【详解】解:(1)本次被调查的学员共有:15÷30%=50(人),在被调查者中参加“3科”课外辅导的有:50﹣15﹣20﹣50×10%=10(人),故答案为50,10;(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,在被调查者中参加“4科”课外辅导的有:50×10%=5(人),补全的条形统计图如右图所示;(3)24×152050=16.8(万), 答:参与辅导科目不多于2科的学生大约有16.8人.【点睛】本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.。
2021年上海市杨浦区中考数学三模试卷(解析版)
【答案】
【解析】
【详解】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为 .
考点:概率公式.
14.已知直线 在 轴上的截距为3,且经过点 ,那么这条直线的表达式为________.
2021年上海市杨浦区中考数学三模试卷
一、选择题(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]
1.在下列四个实数中,最小的数是()
A. B. C.0D.
【答案】A
【解析】
【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
【答案】
【解析】
【分析】直接利用平方差公式进行求解即可.
【详解】
=(2a)2-b2
=4a2-b2
故答案为4a2-b2.
【点睛】本题考查了乘法公式——平方差公式,熟练掌握平方差公式的结构特征是解题的关键.
9.已知函数 ,那么 ________.
【答案】2
【解析】
【分析】根据已知直接将x=10代入求出答案.
7.当 时,化简: ________.
【答案】1-x
【解析】
【分析】正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.
【详解】解:∵x<1,
∴x-1<0,
∴原式=-(x-1)
=1-x
故答案为:1-x.
【点睛】本题考查了绝对值的性质,判断出x-1是负数是解题的关键.
{3套试卷汇总}2020-2021上海市杨浦区中考数学考前模拟题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】y 随x 的增大而减小,可得一次函数y=kx+b 单调递减,k <0,又满足kb<0,可得b>0,由此即可得出答案.【详解】∵y 随x 的增大而减小,∴一次函数y=kx+b 单调递减, ∴k <0, ∵kb<0, ∴b>0,∴直线经过第二、一、四象限,不经过第三象限, 故选C . 【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k 、b 是常数)的图象和性质是解题的关键.2.若数a 使关于x 的不等式组()3x a 2x 11x2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=ay 1-有整数解,则满足条件的所有整数a 的个数是( ) A .5 B .4C .3D .2【答案】D【解析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可.【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3, 即-2<a≤4,即a=-1,0,1,2,3,4, 分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个, 故选:D . 【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.3.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是 A .120100x x 10=- B .120100x x 10=+ C .120100x 10x =- D .120100x 10x=+ 【答案】A【解析】分析:甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100x x 10=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市杨浦区中考数学三模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.下列实数中,无理数是()A.B.C.D.2.0200200022.下列运算正确的是()A.B.C.D.3.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定的4.下列关于向量的等式中,正确的是()A.=B.+=C.+=+D.+(﹣)=5.顺次连结矩形四边中点所得的四边形一定是()A.菱形B.矩形C.正方形D.等腰梯形6.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d的取值范围是()A.d>8 B.d>2 C.0≤d<2 D.d>8或d<2二、填空题:(本大题共12题,每题4分,满分48分)7.化简:﹣= .8.a6÷a2= .9.如果关于x二次三项式x2﹣6x+m在实数范围内不能分解因式,那么m的取值范围是.10.不等式组的解集是.11.函数的定义域是.12.当k>2时,一次函数y=kx+k﹣1的图象经过象限.13.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市收银台排队付款的等待时间,并绘制成如图所示的频数分布直方图(图中等待时间0分钟到1分钟表示大于或等于0分钟而小于1分钟,其他类同).这个时间段内顾客等待时间不少于6分钟的人数为.14.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.15.如果一个正多边形的内角和等于1440°,那么这个正多边形的内角是度.16.如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为米.17.如图,矩形ABCD中,AB=2,BC=4,点A、B分别在y轴、x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标是.18.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为.三、解答题:(本大题共7题,满分78分)19.化简:,并求当时的值.20.解方程:21.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=6,求⊙O的半径长.22.甲乙两人同时登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟米,乙提速时距地面的高度b为米;(2)若乙提速后,乙的速度是甲登山速度的3倍,请求出乙提速后,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式,并写出相应的定义域.23.如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.求证:(1)四边形AFCE是平行四边形;(2)FG•BE=CE•AE.24.矩形OABC在平面直角坐标系中的位置如图所示,AC两点的坐标分别为A(6,0),C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若上抛物线y=ax2+bx(a≠0)经过A,D两点,试确定此抛物线的解析式;(3)设(2)中的抛物线的对称轴与直线AD交点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.25.如图1,已知AB⊥BM,AB=2,点P为射线BM上的动点,联结AP,作BH⊥AP,垂足为H,∠APM的平分线交BH的延长线于点D,联结AD.(1)若∠BAP=30°,求∠ADP的度数;(2)若S△ADP :S△ABP=3:2,求BP的长;(3)若AD∥BM(如图2),求BP的长.上海市杨浦区中考数学三模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.下列实数中,无理数是()A.B.C.D.2.020020002【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、=3是有理数,故A错误;B、=2是有理数,故B错误;C、是无理数,故C正确;D、2.0020002是有理数,故D错误;故选:C.【点评】本题考查了无理数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列运算正确的是()A.B.C.D.【考点】分数指数幂.【专题】推理填空题.【分析】求出=≠,即不等于3,即可判断A、B;求出==3,即可判断C、D.【解答】解:A、=≠3,故本选项错误;B、=≠±3,故本选项错误;C、==3,故本选项正确;D、=3≠±3,故本选项错误;故选C.【点评】本题考查了对分数指数幂的应用,主要考查了学生的辨析能力和计算能力,题目比较好,但是一道比较容易出错的题目.3.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定的【考点】根的判别式.【专题】计算题.【分析】先计算△=(﹣m)2﹣4×1×(﹣1)=m2+4,由于m2为非负数,则m2+4>0,即△>0,根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义即可判断方程根的情况.【解答】解:△=(﹣m)2﹣4×1×(﹣1)=m2+4,∵m2≥0,∴m2+4>0,即△>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.下列关于向量的等式中,正确的是()A.=B.+=C.+=+D.+(﹣)=【考点】*平面向量.【分析】根据相反向量的定义可知=﹣;由三角形法则可得+==﹣,根据平面向量的交换律可得+=+;又由+(﹣)=0,即可求得答案;注意掌握排除法在选择题中的应用.【解答】解:A、=﹣,故本选项错误;B、+==﹣,故本选项错误;C、+=+,故本选项正确;D、+(﹣)=0,故本选项错误.故选C.【点评】此题考查了平面向量的知识.注意掌握相反向量的定义与三角形法则的应用.5.顺次连结矩形四边中点所得的四边形一定是()A.菱形B.矩形C.正方形D.等腰梯形【考点】中点四边形.【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:A.【点评】本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.6.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d的取值范围是()A.d>8 B.d>2 C.0≤d<2 D.d>8或d<2【考点】圆与圆的位置关系.【分析】没有公共点的两个圆的位置关系,应该是内含和外离,外离,则d>R+r;内含,则d <R﹣r.【解答】解:没有公共点的两个圆的位置关系,应该是内含和外离,当内含时,这两个圆的圆心距d的取值范围是d<R﹣r,即d<2;当外离时,这两个圆的圆心距d的取值范围是d>R+r,即d>8.故选D.【点评】本题难度中等,主要是考查圆与圆的位置关系与数量关系间的联系.二、填空题:(本大题共12题,每题4分,满分48分)7.化简:﹣= .【考点】二次根式的加减法.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2=.故答案为:.【点评】本题考查了二次根式的加减运算,解答本题得关键是掌握二次根式的化简及同类二次根式的合并.8.a6÷a2= a4.【考点】同底数幂的除法.【分析】根据同底数幂的除法,可得答案.【解答】解:a6÷a2=a4.故答案为:a4.【点评】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.9.如果关于x二次三项式x2﹣6x+m在实数范围内不能分解因式,那么m的取值范围是m>9 .【考点】实数范围内分解因式.【专题】计算题.【分析】由题意知,二次三项式在实数范围内不能分解因式,所以方程x2﹣6x+m=0无解,即△<0,代入解答出即可.【解答】解:根据题意得,二次三项式在实数范围内不能分解因式,∴方程x2﹣6x+m=0无解,即△<0.∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m<0,解得,m>9.故答案为m>9.【点评】本题主要考查了实数范围内分解因式,二次三项式在实数范围内不能分解因式,即方程无解,也就是△<0,读懂题意是解答本题的关键.10.不等式组的解集是x>2 .【考点】解一元一次不等式组.【专题】计算题.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>;由②得,x>2,故此不等式组的解集为:x>2.故答案为:x>2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.函数的定义域是x≥﹣3 .【考点】函数自变量的取值范围.【专题】函数思想.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:x+3≥0,解得:x≥﹣3.故答案为:x≥﹣3.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.当k>2时,一次函数y=kx+k﹣1的图象经过一、二、三象限.【考点】一次函数图象与系数的关系.【分析】根据k>2,得出k>0,k﹣1>0进行解答即可.【解答】解:因为k>2,可得k>0,k﹣1>0,所以一次函数y=kx+k﹣1的图象经过一、二、三象限,故答案为:一、二、三【点评】本题考查的是一次函数的图象与系数的关系,解答此题时要根据k>2,得出k>0,k ﹣1>0进行解答.13.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市收银台排队付款的等待时间,并绘制成如图所示的频数分布直方图(图中等待时间0分钟到1分钟表示大于或等于0分钟而小于1分钟,其他类同).这个时间段内顾客等待时间不少于6分钟的人数为7 .【考点】频数(率)分布直方图.【专题】数形结合.【分析】利用频数分布直方图,最后2组的等待时间都不少于6分钟,而且可得它们的频数分别为5,2,然后计算这两组的人数之和.【解答】解:根据频数分布直方图得到最后2组的等待时间不少于6分钟,而它们的频数分别为5,2,所以这个时间段内顾客等待时间不少于6分钟的人数为5+2=7(人).故答案为7.【点评】本题考查了频数(率)分布直方图:频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.各组频率的和等于1,即所有长方形面积的和等于1;频数分布直方图可以清楚地看出落在各组的频数,各组的频数和等于总数.14.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【考点】概率公式;轴对称图形;中心对称图形.【分析】四边形,三角形,正方形,梯形,平行四边形,圆中任取一个图形共有6个结果,且每个结果出现的机会相同,其中既是轴对称图形又是中心对称图形的正方形和圆两个.【解答】解:∵在四边形,三角形,正方形,梯形,平行四边形,圆6个图形中,既是轴对称图形又是中心对称图形的正方形和圆两个.∴从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【点评】正确认识轴对称图形和中心对称图形以及理解列举法求概率是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.15.如果一个正多边形的内角和等于1440°,那么这个正多边形的内角是144 度.【考点】多边形内角与外角.【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=1440,即可求得n=10,再由多边形的内角和除以10,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=1440,解得:n=10,∴这个正多边形的每一个内角等于:1440°÷10=144°.故答案为:144.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.16.如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为36 米.【考点】解直角三角形的应用-坡度坡角问题.【专题】计算题.【分析】因为其坡比为1:,则坡角为30度,然后运用正弦函数解答.【解答】解:因为坡度比为1:,即tanα=,∴α=30°.则其下降的高度=72×sin30°=36(米).【点评】此题主要考查学生对坡度坡角的理解及运用.17.如图,矩形ABCD中,AB=2,BC=4,点A、B分别在y轴、x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标是(1+2,2).【考点】矩形的性质;坐标与图形性质.【专题】推理填空题.【分析】根据30°角所对的直角边等于斜边的一半求出OB的长度,然后过点C作CE⊥x轴于点E,根据直角三角形的性质求出∠CBE=30°,在Rt△BCE中求出CE、BE的长度,再求出OE的长度,即可得解.【解答】解:∵AB=2,∠OAB=30°,∴OB=AB=1,在矩形ABCD中,∠ABC=90°,∴∠OAB+∠ABO=90°,∠AB0+∠CBE=90°,∴∠CBE=∠OAB=30°,点C作CE⊥x轴于点E,在Rt△BCE中,CE=BC=×4=2,BE===2,∴OE=OB+BE=1+2,∴点C的坐标是(1+2,2).故答案为:(1+2,2).【点评】本题考查了矩形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出直角三角形是解题的关键.18.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为.【考点】翻折变换(折叠问题).【专题】压轴题.【分析】利用折叠的性质和勾股定理可知.【解答】解:由勾股定理得,MN=5,设Rt△PMN的斜边上的高为h,由矩形的宽AB也为h,根据直角三角形的面积公式得,h=PM•PN÷MN=,由折叠的性质知,BC=PM+MN+PN=12,∴矩形的面积=AB•BC=.【点评】本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②勾股定理,直角三角形和矩形的面积公式求解.三、解答题:(本大题共7题,满分78分)19.化简:,并求当时的值.【考点】分式的化简求值;零指数幂;负整数指数幂.【专题】探究型.【分析】先根据负整数指数幂及0指数幂的计算法则计算出各数,再根据分式混合运算的法则把原式进行化简,把x的值代入进行计算即可.【解答】解:原式=++1===.当x=+1时,原式===【点评】本题考查分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.解方程:【考点】换元法解分式方程;解一元二次方程-因式分解法.【专题】计算题;换元法.【分析】此题用换元法解答,设y=,把分式方程化为整式方程求解.【解答】解:设y=,则原方程化为y﹣﹣2=0,∴y2﹣2y﹣3=0,解得:y1=3,y2=﹣1.当y1=3时,=3,解得x1=﹣;当y2=﹣1时,=﹣1,解得x2=﹣.经检验,原方程的解是x1=﹣,x2=﹣.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=6,求⊙O的半径长.【考点】垂径定理;勾股定理.【分析】过点O分别作AB、CD的垂线OM、ON,则四边形OMEN是正方形,利用垂径定理即可求得OM,AM的长度,然后在直角△AOM中利用勾股定理即可求得OA的长度.【解答】解:过点O分别作AB、CD的垂线OM、ON,则四边形OMEN是矩形,连接OA.∵AB=CD,AB⊥CD,∴OM=ON,∴矩形OMEN是正方形.∵CE=2,ED=6,∴CD=2+6=8,∵ON⊥CD∴CN=CD=4,∴EN=OM=2,同理:AM=4.在直角△AMO中,OA===2.∴⊙O的半径长为2.【点评】本题考查了垂径定理,利用垂径定理可以把求弦长以及半径的计算转化成求直角三角形的边长的计算.22.甲乙两人同时登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟10 米,乙提速时距地面的高度b为30 米;(2)若乙提速后,乙的速度是甲登山速度的3倍,请求出乙提速后,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式,并写出相应的定义域.【考点】一次函数的应用.【分析】(1)甲的速度=(300﹣100)÷20=10,根据图象知道一分的时间,走了15米,然后即可求出A地提速时距地面的高度;(2)乙提速后,乙的速度是甲登山速度的3倍,所以乙的速度是30米/分.那么求出点B的坐标,加上点A的坐标代入一次函数解析式即可求出乙的函数解析式,把C、D坐标代入一次函数解析式可求出甲的函数解析式.【解答】解:(1)甲的速度为:(300﹣100)÷20=10米/分,根据图中信息知道乙一分的时间,走了15米,那么2分时,将走30米;故答案为:10;30(2)由图知:x=+2=11,∵C(0,100),D(20,300)=10x+100(0≤x≤20);∴线段CD的解析式:y甲∵A(2,30),B(11,300),=∴折线OAB的解析式为:y乙【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,关键是正确理解题意.23.如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.求证:(1)四边形AFCE是平行四边形;(2)FG•BE=CE•AE.【考点】相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的判定与性质.【分析】(1)根据已知首先证明△ADF≌△EDC,再利用AF=CE,AF∥BC得出即可;(2)利用已知得出△AFG∽△BEA,进而得出比例式,再利用平行四边形的性质求出即可.【解答】(1)证明:∵AF∥BC,∴∠AFD=∠DEC,∵∠FDA=∠CDE,D是AC的中点,∴△ADF≌△EDC,∴AF=CE,∵AF∥BC,∴四边形AFCE是平行四边形;(2)证明:∵四边形AFCE是平行四边形,∴∠AFC=∠AEC,AF=CE,∵AF∥BC,∴∠FAB=∠ABE,∴△AFG∽△BEA,∴,∴FG•BE=AF•AE,∴FG•BE=CE•AE.【点评】此题主要考查了平行四边形的判定与性质和相似三角形的判定与性质,根据已知得出证明等积式需证明△AFG∽△BEA是解决问题的关键.24.矩形OABC在平面直角坐标系中的位置如图所示,AC两点的坐标分别为A(6,0),C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若上抛物线y=ax2+bx(a≠0)经过A,D两点,试确定此抛物线的解析式;(3)设(2)中的抛物线的对称轴与直线AD交点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.【考点】二次函数综合题.【专题】应用题;综合题.【分析】(1)有题目所给信息可以知道,BC线上所有的点的纵坐标都是3,又有D在直线上,代入后求解可以得出答案.(2)A、D,两点坐标已知,把它们代入二次函数解析式中,得出两个二元一次方程,联立求解可以得出答案.(3)由题目分析可以知道∠B=90°,以P、A、M为顶点的三角形与△ABD相似,所以应有∠APM、∠AMP或者∠MAP等于90°,很明显∠AMP不可能等于90°,所以有两种情况.【解答】解:(1)∵四边形OABC为矩形,C(0,3)∴BC∥OA,点D的纵坐标为3.∵直线与BC边相交于点D,∴.∴x=2,故点D的坐标为(2,3)(2)∵若抛物线y=ax2+bx经过A(6,0)、D(2,3)两点,∴解得:∴抛物线的解析式为.(3)∵抛物线的对称轴为x=3,设对称轴x=3与x轴交于点P1,∴BA∥MP1,∴∠BAD=∠AMP1.M=∠ABD=90°,∴△ABD∽△MP1A.①∵∠AP1(3,0).∴P1=∠ABD=90°时,△ABD∽△MAP2.②当∠MAP2M=∠ADB∴∠AP2=AB,∠AP1P2=∠ABD=90°,∵AP1P2≌△ABD∴△AP1P2=BD=4.∴P1在第四象限,∴P2(3,﹣4).∵点P2答:符合条件的点P有两个,P1(3,0)、P2(3,﹣4).【点评】本题主要考查了二次函数的实际应用,以及三角形的性质等相关知识,属于综合类题目.25.如图1,已知AB⊥BM,AB=2,点P为射线BM上的动点,联结AP,作BH⊥AP,垂足为H,∠APM的平分线交BH的延长线于点D,联结AD.(1)若∠BAP=30°,求∠ADP的度数;(2)若S△ADP :S△ABP=3:2,求BP的长;(3)若AD∥BM(如图2),求BP的长.【考点】相似形综合题.【分析】(1)根据AB⊥BM、∠BAP=30°可得∠APB=60°、∠APM=120°,再由BH⊥AP、BH平分∠APM得∠BPA=∠DPA、PB=PD,证△ABP≌△ADP可得∠ADP=∠ABP=90°;(2)S △ADP :S △ABP =3:2可得HD :BH=3:2,设BH=2x ,DH=3x ,根据角平分线性质得DN=DH=3x ,在RT △BDN 中表示出tan ∠DBN ,由∠BAP=∠HBP 可得AB=,由AB=2可求出x的值;(3)过点D 作DN ⊥BM 于N ,根据已知条件知四边形ABND 是矩形可得DN=AB ,由角平分线性质得DH=DN ,故可证得△ABP ≌△DHA ,有BP=HA ,设BP=x ,再证△ABH ∽△APB 得AB 2=AH •AP ,可列出关于x 的方程,解方程即得.【解答】解:(1)∵AB ⊥BH ,∴∠ABP=90°,∵∠BAP=30°,∴∠APB=60°,∴∠APM=180°﹣60°=120°,∵PD 平分∠APM ,∴∠DPM=∠APM=60°,∵BH ⊥AP ,∴∠BHP=90°,∴∠HBP=30°,∵∠PBD+∠PDB=∠DPM ,∴∠PDB=60°﹣30°=30°,∴PB=PD ,在△ABP 和△ADP 中,∵,∴△ABP≌△ADP(SAS),∴∠ADP=∠ABP=90°;(2)如图1,过点D作DN⊥BM于N,∵BH⊥AP,∴S△ADP =AP•HD,S△ABP=AP•BH,∵S△ADP :S△ABP=3:2,∴HD:BH=3:2,设BH=2x,DH=3x,∵PD平分∠APM,BH⊥AP,DN⊥BM,∴DN=DH=2x,在△BND中,BD=5x,DN=3x,则BN=4x,∴tan∠DBN=,∴HP=2x•=x,∴BP=x,∵AB⊥BP,∴∠BAP+∠BPH=90°=∠HBP+∠APB,∴∠BAP=∠HBP,∴AB=,∵AB=2,∴x=,∴BP=x=;(3)如图2,过点D作DN⊥BM于N,∵AB⊥BN,AD∥BM,∴∠ABN=∠DNB=∠BAD=90°,∴四边形ABND是矩形,∴DN=AB=2,∵PD平分∠APM,∴DH=DN=2,在△ABP和△DHA中,,∴△ABP≌△DHA(ASA),∴BP=HA,设BP=x,∵∠BAH=∠PAB,∠ABP=∠AHB,∴△ABH∽△APB,∴AB2=AH•AP,∴4=x•,解得:x2=2﹣2,(负根已舍)∴BP=.【点评】本题主要考查全等三角形判定与性质、相似三角形的判定与性质、角平分线性质等知识点,将待求角和线段通过全等或相似转化到求另一个相等量是关键也是难点.。