高三12月月考试题(文数)

合集下载

河北省石家庄市辛集育才中学2024届高三上学期12月月考数学试题

河北省石家庄市辛集育才中学2024届高三上学期12月月考数学试题
(2)设 bn an 3 2n ,数列bn的前 n 项和为 Tn ,求 Tn .
试卷第 5页,共 5页
健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才
到目的地.则此人后 3 天共走的里程数为( )
A. 6
B.12
C.18
D. 42
11.已知等差数列an的公差 d 0 ,前 n 项和为 Sn ,若an的前 9 项之和大于前 20 项
之和,则( )
A. d 0
B. a1 0
π 2
3
B.将
y
f
x 的图象向右平移
π 3
个单位,得到
y
Asinx
的图象
C. x1, x2 R ,都有 f (x1)- f (x2 ) < 4
D.若方程
f
x
2m

π 2
,
0
上有两个不相等的实数根,则实数
m
1,
3
2
17.下列说法正确的是( )
A.函数 y ax2 2x a 0, a 1 的图象恒过定点 A2, 4
A.若 a b ,则 a b cc
B.若 ac2 bc2 ,则 a b
C.若 a b ,则 ac bc cc
D.若 a b ,则 a2 b2
5. sin
sin
1 , cossin 2
1 ,则 3
tan tan


A. 3 4
B.
4 3
3 C.
2
D.
2 3
6.函数
f
x
2sin x x3
则( )
试卷第 3页,共 5页
A.数列 an 为等差数列

四川省泸州市泸县部分高中2022-2023学年高三上学期12月第三次月考数学(文科)试题(解析版)

四川省泸州市泸县部分高中2022-2023学年高三上学期12月第三次月考数学(文科)试题(解析版)

泸县2020级高三(上)第三次学月考试数 学(文史类)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号. 回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3. 本试卷满分150分,考试时间120分钟. 考试结束后,请将答题卡交回。

一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合22{|log (6)},{|15}A x y x x B x x ==+-=<≤,则A B =A .(,3)(2,)-∞-+∞B .[1,5]C .(2,5]D .(1,5]2.若2i1ix -+是纯虚数,则|i |x += A .22B .22-C .5D .5-3.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是A .各月的平均最低气温都在0℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20℃的月份有5个4.下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是 A .22=14y x -B .22=14x y -C .22=14y x -D .22=14x y -5.函数2||2x y x e =-在[]–2,2的图象大致为A .B .C .D .6.设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则9a =A .-6B .-4C .-2D .27.若连续抛掷两次质地均匀的骰子,得到的点数分别为m ,n ,则满足2225+<m n 的概率是A .12 B .1336 C .49 D .5128.已知1sin 22α=,π0,4⎛⎫∈ ⎪⎝⎭α,则sin cos αα-=( )A B . C .12 D .12-9.设函数()y f x =,x R ∈,“()y f x =是偶函数”是“()y f x =的图象关于原点对称”A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 10.某种绿茶泡茶的最佳水温为85℃,饮茶的最佳温度为60℃.在标准大气压下,水沸腾的温度为100℃.把水煮沸后,在其冷却的过程中,只需要在最佳温度对应的时间泡茶、饮茶,就能喝到一杯好茶.根据牛顿冷却定律,一个物体温度的变化速度与这一物体的温度和所在介质温度的差值成比例,物体温度()f t 与时间t 的函数关系式为()()()00001tf t C T C a a =+-<<,其中0C 为介质温度,0T 为物体初始温度.为了估计函数中参数a 的值,某试验小组在介质温度024.3C =℃和标准大气压下,收集了一组数据,同时求出对应a0,则泡茶和饮茶的最佳时间分别是( )(结果精确到个位数)参考数据:lg0.8020.095≈-,lg0.4720.326≈-,lg91.7 1.962≈.A .3min ,9min B .3min ,8min C .2min ,8min D .2min ,9min11.ABC 中已知tan tan tan tan tan tan A B C A B C ⋅⋅=++且34A B π+=,则(1tan )(1tan )A B --=A .-2B .2C .-1D .1 12.已知44354,log 5,log 43x y z ⎛⎫=== ⎪⎝⎭,则x 、y 、z 的大小关系为( )A .y x z >>B .x y z >>C .z x y >>D .x z y >>二、填空题:本大题共4个小题,每小题5分,共20分.13.假定生男孩和生女孩是等可能的,某家庭有两个小孩,如果已经知道这个家庭有女孩,则这个两个小孩都是女孩的概率是__________.14.某学生在研究函数()3f x x x =-时,发现该函数的两条性质:①是奇函数;②单调性是先增后减再增.该学生继续深入研究后发现将该函数乘以一个函数()g x 后得到一个新函数()()()h x g x f x =,此时()h x 除具备上述两条性质之外,还具备另一条性质:③()00h '=.写出一个符合条件的函数解析式()g x =__________.15.陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成,以前的制作材料多为木头,现在多为塑料或铁,玩耍时可用绳子缠绕用力抽绳,使其直立旋转;或利用发条的弹力使其旋转,图中画出的是某陀螺模型的三视图,已知网格纸中小正方形的边长为1,则该陀螺模型的体积为______.16.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如图所示,则满足()()π5π0312f x f f x f ⎡⎤⎡⎤⎛⎫⎛⎫--> ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦的最小正整数x 的值为_______. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须答.第22、23题为选考题,考生根据要求作答. (一)必做题:共60分.17.(12分)2022年6月17日,我国第三艘航空母舰“中国人民解放军海军福建舰”下水试航,这是我国完全自主设计建造的首艘弹射型航空母舰,采用平直通长飞行甲板,配置电磁弹射和阻拦装置,满载排水量8万余吨.“福建舰”的建成,下水及试航,是新时代中国强军建设的重要成果.某校为纪念“福建舰”下水试航,增强学生的国防意识,组织了一次国防知识竞赛,共有100名学生参赛,成绩均在区间[]50,100上,现将成绩制成如图所示频率分布直方图(每组均包括左端点,最后一组包括右端点).(1)学校计划对成绩不低于平均分的参赛学生进行奖励,若同一组中的数据用该组区间的中点值为代表,试求受奖励的分数线的估计值;(2)对这100名参赛学生的成绩按参赛者的性别统计,成绩不低于80分的为“良好”,低于80分的为“不良好”得到如下未填写完整的列联表. (ⅰ)将列联表填写完整;(ⅱ)是否有95%以上的把握认为参赛学生的成绩是否良好与性别有关? 附:()()()()()22n ad bc K a b c d a c b d -=++++.18.(12分)如图,正方形ABCD 和直角梯形BEFC 所在平面互相垂直,,BE BC BE CF ⊥∥,且2,3AB BE CF ===.(1)证明:AE 平面DCF ;良好 不良好 合计 男 48 女 16 合计()2P K k ≥0.050 0.010 0.001k3.841 6.635 10.828(2)求四面体F ACE -的体积.19.(12分)已知数列{}n a 的前n 项和为n S ,且对任意的*n ∈N 有23n n S a n =+-.(1)证明:数列{}1n a -为等比数列; (2)求数列11n n a a +⎧⎫⎨⎬-⎩⎭的前n 项和n T .20.(12分)已知椭圆C :()2222 1x y a b c a b +=>>()2,1P . (1)求C 的方程;(2)若A ,B 是C 上两点,直线AB 与曲线222x y +=相切,求AB 的取值范围. 21.(12分)已知函数()()ln 1f x x a x x =--- (1)若0a =,求()f x 的极小值 (2)讨论函数()f x '的单调性;(3)当2a =时,证明:()f x 有且只有2个零点.(二)选做题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分. 22.(10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,点A 是曲线1C :22(2)4x y -+=上的动点,满足2OB OA =的点B 的轨迹是2C . (1)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,求曲线1C ,2C 的极坐标方程;(2)直线l 的参数方程是1cos sin x t y t αα=-+⎧⎨=⎩(t 为参数),点P 的直角坐标是()1,0-,若直线l 与曲线2C 交于M ,N 两点,当线段PM ,MN ,PN 成等比数列时,求cos α的值.23.(10分)选修4-5:不等式选讲已知a ,b ,R c ∈,且2223a b c ++=. (1)求证:3a b c ++≤;(2)若不等式()2121x x a b c -++≥++对一切实数a ,b ,c 恒成立,求x 的取值范围.2023届四川省泸县高三上学期第三学月考试数学(文)试题一、单选题1.已知集合22{|log (6)},{|15}A x y x x B x x ==+-=<≤,则A B =( )A .(,3)(2,)-∞-+∞B .[1,5]C .(2,5]D .(1,5]【答案】C【分析】利用对数函数的定义域化简集合A ,再根据集合交集的定义求解即可. 【详解】由对数函数的定义域可得2603x x x +->⇒<-或2x >, 所以{|3A x x =<-或2}x >, 所以{|25}A B x x ⋂=<≤, 故选:C. 2.若2i1ix -+是纯虚数,则|i |x +=( ) A .22 B .22-C .5D .5-【答案】C【分析】根据复数的除法运算,复数的概念,可得复数,即可求解复数的模.【详解】解:2i(2i)(1i)22i 1i (1i)(1i)22x x xx ----+==-++-,因为2i1ix -+是纯虚数,所以2x =,则22i 2i 215x +=+=+=.故选:C .3.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是A .各月的平均最低气温都在0℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20℃的月份有5个 【答案】D【详解】试题分析:由图可知各月的平均最低气温都在0℃以上,A 正确;由图可知在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在10C ︒,基本相同,C 正确;由图可知平均最高气温高于20℃的月份有7,8两个月,所以不正确.故选D . 【解析】统计图【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .4.下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是 A .22=14y x -B .22=14x y -C .22=14y x -D .22=14x y -【答案】C【详解】试题分析:焦点在y 轴上的是C 和D ,渐近线方程为ay x b=±,故选C . 【解析】1.双曲线的标准方程;2.双曲线的简单几何性质.5.函数2||2x y x e =-在[]–2,2的图象大致为( )A .B .C .D .【答案】D【详解】试题分析:函数2||()2x f x x e =-|在[–2,2]上是偶函数,其图象关于y 轴对称, 因为22(2)8e ,08e 1f =-<-<, 所以排除,A B 选项;当[]0,2x ∈时,4x y x e '=-有一零点,设为0x ,当0(0,)x x ∈时,()f x 为减函数, 当0(,2)x x ∈时,()f x 为增函数. 故选:D.6.设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则9a = A .-6 B .-4 C .-2 D .2【答案】A【详解】由已知得()11187842,{26 2.a d a d a d ⨯+=++=- 解得110,{2.a d ==-91810826a a d ∴=+=-⨯=-. 故选A .【解析】等差数列的通项公式和前n 项和公式.7.若连续抛掷两次质地均匀的骰子,得到的点数分别为m ,n ,则满足2225+<m n 的概率是( ) A .12 B .1336 C .49D .512【答案】B【分析】利用列举法列出所有可能结果,再根据古典概型的概率公式计算可得.【详解】解:设连续投掷两次骰子,得到的点数依次为m 、n ,两次抛掷得到的结果可以用(,)m n 表示, 则结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36种.其中满足2225+<m n 有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),共13种,所以满足2225+<m n 的概率1336P =. 故选:B8.已知1sin 22α=,π0,4⎛⎫∈ ⎪⎝⎭α,则sin cos αα-=( )A .2B .2-C .12D .12-【答案】B【分析】根据正弦的二倍角公式即可求解. 【详解】1sin22=α11sin212sin co 2s ∴-=-=ααα,即221sin 2sin cos cos 2-+=αααα, ()21sin cos 2∴-=αα, π0,4⎛⎫∈ ⎪⎝⎭α,sin cos ∴<αα,即sin cos 0-<αα,则sin cos -=αα 故选:B9.设函数()y f x =,x R ∈,“()y f x =是偶函数”是“()y f x =的图象关于原点对称” A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【分析】“y =f (x )的图象关于原点对称”,x ∈R ,可得y =|f (x )|是偶函数.反之不成立,例如f (x )=x 2.【详解】“y =f (x )的图象关于原点对称”,x ∈R ,可得y =|f (x )|是偶函数. 反之不成立,例如f (x )=x 2,满足y =|f (x )|是偶函数,x ∈R .因此,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的必要不充分条件. 故选B .【点睛】本题考查了函数的奇偶性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题. 10.某种绿茶泡茶的最佳水温为85℃,饮茶的最佳温度为60℃.在标准大气压下,水沸腾的温度为100℃.把水煮沸后,在其冷却的过程中,只需要在最佳温度对应的时间泡茶、饮茶,就能喝到一杯好茶.根据牛顿冷却定律,一个物体温度的变化速度与这一物体的温度和所在介质温度的差值成比例,物体温度()f t 与时间t 的函数关系式为()()()00001tf t C T C a a =+-<<,其中0C 为介质温度,0T 为物体初始温度.为了估计函数中参数a 的值,某试验小组在介质温度024.3C =℃和标准大气压下,收集了一组数据,同时求出对应参数a 的值,如下表,现取其平均值作为参数a 的估计值,假设在该试验条件下,水沸腾的时刻为0,则泡茶和饮茶的最佳时间分别是( )(结果精确到个位数)参考数据:lg0.8020.095≈-,lg0.4720.326≈-,lg91.7 1.962≈.A .3min ,9min B .3min ,8min C .2min ,8min D .2min ,9min【答案】A【分析】根据给定条件,求出参数a 的估计值,再利用给定模型分别求出泡茶和饮茶的最佳时间作答. 【详解】依题意,0.90450.91220.91830.92270.9271(53)0.917a ++++==,而024.3C =,0100T =,则()24.3(10024.3)0.24.9170.917375.7t t f t =+⨯=+-⨯,当85t =时,24.375.70.98517t +⨯=,有8524.30.80275.70.917t-=≈,lg 0.8020.0953lg 0.917 1.9622t -==≈-, 当60t =时,24.375.70.96017t +⨯=,有6024.30.47275.70.917t-=≈,lg 0.4720.3269lg 0.917 1.9622t -==≈-, 所以泡茶和饮茶的最佳时间分别是3min ,9min. 故选:A11.ABC 中已知tan tan tan tan tan tan A B C A B C ⋅⋅=++且34A B π+=,则(1tan )(1tan )A B --=( ) A .-2 B .2C .-1D .1【答案】B【分析】根据tan 1C =进行化简整理即可求得(1tan )(1tan )A B --的值. 【详解】由题意得4C π=,则有tan tan tan tan 1A B A B ⋅=++ ,整理得:()()tan 1tan 12A B --=,()()1tan 1tan 2A B --= 故选:B12.已知44354,log 5,log 43x y z ⎛⎫=== ⎪⎝⎭,则x 、y 、z 的大小关系为( ) A .y x z >> B .x y z >> C .z x y >> D .x z y >>【答案】D【分析】作商,由对数的性质、运算及基本不等式可比较出z y >,再由4334log 33=,可比较出43与z 的大小即可得出,x z 的大小关系. 【详解】43log 51,log 41y z =>=>,(()2222444444443log 5log 5log 3log 15log 5log 3log log 41log 422y z +⎛⎫⎛⎫∴==⋅≤==<= ⎪ ⎪⎝⎭⎝⎭,即z y >,4334log 33=,而344333381464⎛⎫==>= ⎪⎝⎭, 43334log 3log 43∴=>,又514444333⎛⎫⎛⎫=< ⎪ ⎪⎝⎭⎝⎭, x z ∴>,综上,x z y >>, 故选:D二、填空题13.假定生男孩和生女孩是等可能的,某家庭有两个小孩,如果已经知道这个家庭有女孩,则这个两个小孩都是女孩的概率是__________. 【答案】13【分析】首先列出样本空间,再判断题目为条件概率,然后根据条件概率的公式求解概率即可.【详解】观察两个小孩的性别,用b 表示男孩,g 表示女孩,则样本空间{},,,bb bg gb gg Ω= ,且所有样本点是等可能的.用A 表示事件“选择的家庭中有女孩”,B 表示事件“选择的家庭中两个小孩都是女孩”,则{},,A bg gb gg =,{}B gg =.“在选择的家庭有女孩的条件下,两个小孩都是女孩”的概率就是“在事件A 发生的条件下,事件B 发生”的概率,记为()|P B A .此时A 成为样本空间,事件B 就是积事件AB .根据古典概型知识可知,()()()1|3n A P A B n A B ==. 故答案为:1314.某学生在研究函数()3f x x x =-时,发现该函数的两条性质:①是奇函数;②单调性是先增后减再增.该学生继续深入研究后发现将该函数乘以一个函数()g x 后得到一个新函数()()()h x g x f x =,此时()h x 除具备上述两条性质之外,还具备另一条性质:③()00h '=.写出一个符合条件的函数解析式()g x =__________.【答案】2x (答案不唯一)【分析】由题意可知()g x 为常函数或为偶函数,然后分别令()1g x =或2()g x x =进行验证即可【详解】因为()3f x x x =-为奇函数,()()()h x g x f x =为奇函数,所以()g x 为常函数或为偶函数,当()1g x =时,()3h x x x =-,则'2()31h x x =-,此时'(0)10h =-≠,所以 ()1g x =不合题意,当2()g x x =时,53()h x x x =-,因为5353()()()()()h x x x x x h x -=---=--=-,所以()h x 为奇函数,'42()53h x x x =-,由'()0h x >,得155x <-或155x >,由'()0h x <,得151555x -<<,所以()h x 的增区间为15,5⎛⎫-∞- ⎪ ⎪⎝⎭和15,5⎛⎫+∞ ⎪ ⎪⎝⎭,减区间为1515,55⎛⎫- ⎪ ⎪⎝⎭,所以()h x 为先增后减再增, 因为()00h '=,所以2()g x x =满足题意,故答案为:2x (答案不唯一)15.陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成,以前的制作材料多为木头,现在多为塑料或铁,玩耍时可用绳子缠绕用力抽绳,使其直立旋转;或利用发条的弹力使其旋转,图中画出的是某陀螺模型的三视图,已知网格纸中小正方形的边长为1,则该陀螺模型的体积为______.【答案】32333π+ 【分析】根据三视图可知该陀螺模型的直观图,然后根据几何体的体积公式,简单计算,可得结果. 【详解】依题意,该陀螺模型由一个四棱锥、一个圆柱以及一个圆锥拼接而成,如图故所求几何体的体积2211442333233ππ=⨯⨯⨯+⨯⨯+⨯⨯⨯V 即32333π=+V . 故答案为:32333π+ 【点睛】本题考查三视图的还原以及几何体的体积,考验空间想象能力以及对常见几何体的熟悉程度,属基础题题.16.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如图所示,则满足()()π5π0312f x f f x f ⎡⎤⎡⎤⎛⎫⎛⎫--> ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦的最小正整数x 的值为_______.【答案】1【分析】先根据图像求得()π2sin(26f x x =+),再解()()π5π0312f x f f x f ⎡⎤⎡⎤⎛⎫⎛⎫--> ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦求得最小正整数x . 【详解】解:由题意得函数f (x )的最小正周期2ππ2π2π36T ω⎛⎫=⨯-== ⎪⎝⎭,解得2ω=,所以()()2sin 2f x x =+. 又π26f ⎛⎫= ⎪⎝⎭, 所以π2sin 226φ⎛⎫⨯+= ⎪⎝⎭, 即πsin 13φ⎛⎫+= ⎪⎝⎭, 所以ππ2πZ 32k k φ+=+∈,, 解得π2πZ 6k k φ=+∈,. 由π||2φ<,得π6φ=, 所以()π2sin(26f x x =+), 所以π5π5π2sin 103612f f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,. 由()π3f x f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦()5π012f x f ⎡⎤⎛⎫-> ⎪⎢⎥⎝⎭⎣⎦, 可得()()10f x f x ⎡⎤->⎣⎦,则()0f x <或()1f x >, 即πsin 206x ⎛⎫+< ⎪⎝⎭或1sin 262x π⎛⎫+> ⎪⎝⎭. ① 由sin 206x π⎛⎫+< ⎪⎝⎭, 可得()π2ππ22πZ 6n x n n -<+<∈, 解得()7ππππZ 1212n x n n -<<-∈, 此时正整数x 的最小值为2;② 由1sin 262x π⎛⎫+> ⎪⎝⎭, 可得()ππ5π222πZ 666k x k k π+<+<+∈, 解得()πππZ 3k x k k <<+∈, 此时正整数x 的最小值为1.综上所述,满足条件的正整数x 的最小值为1.故答案为:1.三、解答题17.2022年6月17日,我国第三艘航空母舰“中国人民解放军海军福建舰”下水试航,这是我国完全自主设计建造的首艘弹射型航空母舰,采用平直通长飞行甲板,配置电磁弹射和阻拦装置,满载排水量8万余吨.“福建舰”的建成,下水及试航,是新时代中国强军建设的重要成果.某校为纪念“福建舰”下水试航,增强学生的国防意识,组织了一次国防知识竞赛,共有100名学生参赛,成绩均在区间[]50,100上,现将成绩制成如图所示频率分布直方图(每组均包括左端点,最后一组包括右端点).(1)学校计划对成绩不低于平均分的参赛学生进行奖励,若同一组中的数据用该组区间的中点值为代表,试求受奖励的分数线的估计值;(2)对这100名参赛学生的成绩按参赛者的性别统计,成绩不低于80分的为“良好”,低于80分的为“不良好”得到如下未填写完整的列联表.良好不良好合计男48女16合计(ⅰ)将列联表填写完整;(ⅱ)是否有95%以上的把握认为参赛学生的成绩是否良好与性别有关?附:()()()()()22n ad bcKa b c d a c b d-=++++.()2P K k≥0.050 0.010 0.001k 3.841 6.635 10.828【答案】(1)73.8(2)(ⅰ)表格见解析;(ⅱ)没有,理由见解析.【分析】(1)利用频率之和为1列出方程,求出0.018a =,进而利用中间值求出平均值,得到受奖励的分数线的估计值为73.8;(2)完善列联表,计算出卡方,与3.841比较得到结论.【详解】(1)由频率分布直方图可知:()100.0060.0080.0260.0421a ++++=,解得0.018a =.所以平均分的估计值为0.08550.26650.42750.18850.069573.8⨯+⨯+⨯⨯+⨯=+,故受奖励的分数线的估计值为73.8.(2)(ⅰ)列联表如下表所示.良好 不良好 合计 男8 40 48 女16 36 52 合计24 76 100(ⅱ)由列联表得()2210083616406050 2.72 3.841247648522223K ⨯⨯-⨯==≈<⨯⨯⨯, 所以没有95%以上的把握认为参赛学生的成绩是否良好与性别有关.18.如图,正方形ABCD 和直角梯形BEFC 所在平面互相垂直,,BE BC BE CF ⊥∥,且2,3AB BE CF ===.(1)证明:AE 平面DCF ;(2)求四面体F ACE -的体积.【答案】(1)证明见解析(2)2【分析】(1)方法一:由线面平行的判定理可得AB平面DCF ,BE 平面DCF ,再由面面平行的判定可得平面ABE 平面DCF ,然后由面面平行的性质要得结论,方法二:在CF 取点G 使得2CG BE ==,连结EG DG 、,则可得四边形BEGC 是平行四边形,再结合已知条件可得四边形ADGE 是平行四边形,则AE DG ∥,由线面平行的判定可得结论;(2)由13F ACE A CEF CEF V V S h --==⨯求解,根据已知条件求出CEF S △和h ,从而可求出其体积.【详解】(1)证明:方法一:由正方形ABCD 的性质得:AB ∥CD .又AB ⊄平面,DCF CD ⊂平面DCF , AB ∴平面DCF .,BE CF BE ⊄∥平面,DCF CF ⊂平面DCF ,BE ∴平面DCF .,,AB BE B AB BE ⋂=⊂平面ABE ,∴平面ABE 平面DCF ,AE ⊂平面ABE ,AE ∴平面DCF ,方法二:在CF 取点G 使得2CG BE ==,连结EG DG 、,如图BE CF ∥,∴四边形BEGC 是平行四边形,故EG BC ∥,且EG BC =,又,AD BC AD BC =∥,,AD EG AD EG ∴=∥,∴四边形ADGE 是平行四边形,AE DG ∴∥.又AE ⊄平面,DCF DG ⊂平面DCF ,AE ∴平面DCF ,(2)由体积的性质知:13F ACE A CEF CEF V V S h --==⨯,平面BCFE ⊥平面ABCD ,平面BCFE ⋂平面ABCD BC =,,AB BC AB ⊥⊂平面ABCD ,AB ∴⊥平面BCFE .又2AB =,故点A 到平面CEF 的距离为2,即三棱锥A CEF -底面CEF 上的高2h =,由题意,知,BE BC BE CF ⊥∥且3,2CF BC ==, 132CEF SCF BC ∴=⨯=, 1132 2.33F ACE A CEF CEF V V S h --∴==⨯=⨯⨯=19.已知数列{}n a 的前n 项和为n S ,且对任意的*n ∈N 有23n n S a n =+-.(1)证明:数列{}1n a -为等比数列;(2)求数列11n n a a +⎧⎫⎨⎬-⎩⎭的前n 项和n T . 【答案】(1)证明见解析(2)2122+=-n n n T【分析】(1)令1n =可求得1a 的值,令2n ≥,由23n n S a n =+-可得1124n n S a n --=+-,两式作差可得出()1121n n a a --=-,结合等比数列的定义可证得结论成立;(2)求得111122n n n a a +=+-,利用分组求和法可求得n T . 【详解】(1)证明:当1n =时,1122a a =-,则12a =;.当2n ≥时,由23n n S a n =+-可得1124n n S a n --=+-.两式相减得1221n n n a a a -=-+,即121n n a a -=-,()1121n n a a -∴-=-.因为1110a -=≠,则212a -=,,以此类推可知,对任意的N n *∈,10n a -≠,所以,数列{}1n a -构成首项为1,公比为2的等比数列.(2)解:由(1)112n n a --=,故121n n a -=+,则1121111222n n n n n a a -++==+-. 所以,22111111111111222222222222n n n T ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++⋯++=++⋯++++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1112121222212n n n n -+=+⋅=--. 20.已知椭圆C :()2222 1x y a b c a b +=>>的离心率为2,且过点()2,1P . (1)求C 的方程;(2)若A ,B 是C 上两点,直线AB 与曲线222x y +=相切,求AB 的取值范围.【答案】(1)22163x y +=(2)⎡⎤⎣⎦【分析】(1)根据已知条件求得,,a b c ,由此求得椭圆C 的方程.(2)对直线AB 的斜率分成不存在,0k =,0k ≠三种情况进行分类讨论,结合弦长公式、基本不等式求得AB 的取值范围.【详解】(1)依题意22222411c aa b c ab a bc ⎧=⎪⎪⎪+=⇒===⎨⎪=+⎪⎪⎩所以椭圆C 的方程为22163x y +=. (2)圆222x y +=的圆心为()0,0,半径r =当直线AB 的斜率不存在时,直线AB的方程为xx =22163x y x y ⎧=⎪⇒=⎨+=⎪⎩22163x y x y ⎧=⎪⇒=⎨+=⎪⎩所以AB =当直线AB 的斜率为0时,直线AB的方程为yy =22163y x x y ⎧=⎪⇒=⎨+=⎪⎩22163y x x y ⎧=⎪⇒=⎨+=⎪⎩所以AB =当直线AB 的斜率0k ≠时,设直线AB 的方程为,0y kx b kx y b =+-+=,由于直线AB 和圆222x y +=()2221b k =+.22163y kx b x y =+⎧⎪⎨+=⎪⎩,消去y 并化简得()222124260k x kbx b +++-=, ()()222222164122648248k b k b k b ∆=-+-=+-()22248248213280k k k =+-⨯+=+>.设()()1122,,,A x y B x y 则2121222426,1212kb b x x x x k k --+=⋅=++,所以AB ====>另一方面,由于2214448k k ++≥=,当且仅当222114,2k k k ==时等号成立.所以3=,即3AB ≤.综上所述,AB 的取值范围是⎡⎤⎣⎦.21.已知函数()()ln 1f x x a x x =---(1)若0a =,求()f x 的极小值(2)讨论函数()f x '的单调性;(3)当2a =时,证明:()f x 有且只有2个零点.【答案】(1)2-(2)答案见解析(3)证明见解析【分析】(1)利用导数求得()f x 的极小值.(2)先求得()f x ',然后通过构造函数法,结合导数以及对a 进行分类讨论,从而求得函数()f x '的单调区间.(3)结合(2)的结论以及零点存在性定理证得结论成立.【详解】(1)当0a =时,()ln 1f x x x x =--,()f x 的定义域为()0,∞+,()ln 11ln f x x x '=+-=,所以在区间()()()0,1,0,f x f x '<递减;在区间()()()1,,0,f x f x '+∞>递增.所以当1x =时,()f x 取得极小值12f .(2)()()ln 1f x x a x x =---的定义域为()0,∞+,()ln 1ln x a a f x x x x x-'=+-=-. 令()()()221ln 0,a a x a h x x x h x x x x x +'=->=+=, 当0a ≥时,()0h x '>恒成立,所以()h x 即()f x '在()0,∞+上递增.当a<0时,在区间()()()0,,0,a h x h x '-<即()f x '递减;在区间()()(),,0,a h x h x '-+∞>即()f x '递增.(3)当2a =时,()()2ln 1f x x x x =---,()2ln f x x x'=-, 由(2)知,()f x '在()0,∞+上递增,()()22ln 210,3ln 303f f ''=-<=->, 所以存在()02,3x ∈使得()00f x '=,即002ln x x =. 在区间()()()00,,0,x f x f x '<递减;在区间()()()0,,0,x f x f x '+∞>递增.所以当0x x =时,()f x 取得极小值也即是最小值为()()()000000000242ln 1211f x x x x x x x x x ⎛⎫=---=-⨯--=-+ ⎪⎝⎭,由于0044x x +>=,所以()00f x <.11111122ln 12110e e e e e ee f ⎛⎫⎛⎫⎛⎫=-⋅--=----=-+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()()2222222e e 2ln e e 12e 4e 1e 50f =-⋅--=---=->,根据零点存在性定理可知()f x 在区间()00,x 和()0,x +∞各有1个零点,所以()f x 有2个零点.【点睛】本题第一问是简单的利用导数求函数的极值,第二问和第三问是连贯的两问,合起来可以理解为利用多次求导来研究函数的零点.即当一次求导无法求得函数的零点时,可考虑利用多次求导来解决. 22.在直角坐标系xOy 中,点A 是曲线1C :22(2)4x y -+=上的动点,满足2OB OA =的点B 的轨迹是2C . (1)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,求曲线1C ,2C 的极坐标方程;(2)直线l 的参数方程是1cos sin x t y t αα=-+⎧⎨=⎩(t 为参数),点P 的直角坐标是()1,0-,若直线l 与曲线2C 交于M ,N 两点,当线段PM ,MN ,PN 成等比数列时,求cos α的值.【答案】(1)1C : 4cos ρθ=,2C :2cos ρθ=;(2)cos α=【分析】(1)直接利用转换关系,在参数方程、极坐标方程和直角坐标方程之间进行转换.(2)利用(1)的结论,利用一元二次方程根和系数关系式的应用和等比数列的等比中项的应用求出结果.【详解】解:(1)点A 是曲线1C :()2224x y -+=上的动点, 根据222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,转换为极坐标方程为 4cos ρθ=,由于点B 满足2OB OA =的点B 的轨迹是2C .所以()2,A ρθ,则2C 的极坐标方程为2cos ρθ=.(2)直线l 的参数方程是1tcos sin x y t αα=-+⎧⎨=⎩(t 为参数),点P 的直角坐标是()1,0-, 若直线l 与曲线2C 交于M ,N 两点,2C 的极坐标方程为2cos ρθ=,转换为直角坐标方程为22(1)1x y -+=,即222x y x +=,得到()()()221cos sin 21cos t t t ααα=-++-+,化简得:24cos 30t t α-+=,所以124cos t t α+=,123t t =, 当线段PM ,MN ,PN 成等比数列时,则2MN PM PN =,整理得:()21212t t t t -=,故()212125t t t t +=,整理得cos α=23.已知a ,b ,R c ∈,且2223a b c ++=.(1)求证:3a b c ++≤;(2)若不等式()2121x x a b c -++≥++对一切实数a ,b ,c 恒成立,求x 的取值范围.【答案】(1)证明见解析(2)(][),33,∞∞--⋃+.【分析】(1)对2()a b c ++应用基本不等式可证; (2)由(1)只要解不等式1219x x -++≥,根据绝对值的定义分类讨论求解.【详解】(1)2222()222a b c a b c ab bc ca ++=+++++()222329a b c ≤+++=, 所以3a b c ++≤,当且仅当a b c ==时等号成立(2)由(1)可知()2121x x a b c -++≥++对一切实数a ,b ,c 恒成立, 等价于1219x x -++≥, 令3,11()1212,1223,2x x g x x x x x x x ⎧⎪≥⎪⎪=-++=+-<<⎨⎪⎪-≤-⎪⎩, 当1x ≥时,393x x ≥⇒≥, 当112x -<<时,297x x +≥⇒≥,舍去, 当12x ≤-时,393x x -≥⇒≤-,即3x ≥或3x ≤-. 综上所述,x 取值范围为(][),33,∞∞--⋃+.。

重庆市沙坪坝区2024届高三上学期12月月考数学试题含答案

重庆市沙坪坝区2024届高三上学期12月月考数学试题含答案

2023年重庆高2024届12月月考数学试题卷(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2101x A x x ⎧⎫+=≤⎨⎬-⎩⎭,集合(){}2ln 22B y y x x ==++,则A B = ()A.[]0,1 B.[)0,1 C.1,2⎡⎫-+∞⎪⎢⎣⎭D.1,12⎡⎤-⎢⎥⎣⎦【答案】B 【解析】【分析】解分式不等式求集合A ,求对数复合函数的值域求集合B ,应用集合交运算求结果.【详解】由(21)(1)0211011012x x x x x x +-≤⎧+≤⇒⇒-≤<⎨-≠-⎩,即1[,1)2A =-,由()2222111x x x ++=++≥,故[0,)B =+∞,所以[0,1)A B = .故选:B2.已知p :双曲线C 的方程为22194x y -=,q :双曲线C 的渐近线方程为23y x =±,则()A.p 是q 的充要条件B.p 是q 的充分不必要条件C.p 是q 的必要不充分条件D.p 是q 的既不充分也不必要条件【答案】B 【解析】【分析】根据双曲线的性质,判断充分必要条件,即可判断选项.【详解】若双曲线C 的方程为22194x y -=,则渐近线方程为23y x =±,若双曲线C 的渐近线方程为23y x =±,则双曲线的方程为()22094x y λλ-=≠,所以p q ⇒,但q p ⇒/,所以p 是q 的充分不必要条件.故选:B3.()1:sin3010l a x y +︒++=,)2:20l x y +︒+=,若12l l ⊥,则实数a 的值为()A.72-B.56-C.52D.16【答案】C 【解析】【分析】由直线垂直的充要条件列出方程结合特殊三角函数值运算即可.【详解】由题意12l l ⊥,则当且仅当()sin 3011tan1200a +⨯+=,即1302a +-=,解得52a =.故选:C.4.设22tan22.51tan 22.5a ︒=-︒,sin861cos86b ︒=+︒,c =,则有()A.b a c <<B.a c b <<C.c b a <<D.b c a<<【答案】C 【解析】【分析】由倍角公式化简为正切函数,再结合正切函数的单调性可得出答案.【详解】22tan22.5=tan 451tan 22.5a ︒=︒-︒,22sin862sin43cos432sin43cos43=tan 431cos8612cos 4312cos 43b ︒︒︒︒︒===︒+︒+︒-︒,cos 47.5sin 42.5=sin 47.5cos 42.5c ︒︒=︒︒因为tan y x =在π0,2⎛⎫⎪⎝⎭上单调递增,所以tan 42.5tan 43tan 45︒<︒<︒,即c b a <<,故选:C .5.已知在四面体-P ABC 中,底面ABC,D 为PA 的中点,则直线BP 与直线CD 所成角的余弦值为()A.24-B.24C.14-D.14【答案】B 【解析】【分析】利用中位线将异面直线所成角转化为相交直线DE 与DC 所成角,再利用余弦定理解三角形即可.【详解】取AB 中点E ,连接DE ,由D 为PA 中点,则//DE PB,且122DE PB ==;则EDC ∠(或其补角)即为直线BP 与直线CD 所成角.又底面三角形ABC是边长为的等边三角形,则中线长31522CE ==;在PAC △中,设中线长DC m =,则cos cos 0ADC PDC ∠+∠=,由余弦定理得,222222022DA DC AC DP DC PC DA DC DP DC +-+-+=⋅⋅,所以222222202m ⎛⎫+--= ⎪ ⎪⎝⎭,化简得23m =,解得m =,则有DC =,在DEC 中,由余弦定理得,222115324cos 224DE DC EC EDC DE DC +-+-∠==-⋅,直线BP 与直线CD 所成角为锐角,则余弦值为24.故选:B .6.教务处准备给高三某班的学生排周六的课表,上午五节课,下午三节课.若准备英语、物理、化学、地理各排一节课,数学、语文各排两节课连堂,且数学不排上午的第一节课,则不同的排课方式有()A.216种B.384种C.408种D.432种【答案】D 【解析】【分析】由数学、语文不能同时安排在下午,分为数学(连堂)或语文(连堂)安排在下午、数学、语文都安排在上午,再应用分步计数及排列组合求不同的排课方式.【详解】由题意,数学、语文不能同时安排在下午,若数学(连堂)安排在下午,在英语、物理、化学、地理中选一种安排在下午有1242C A 8=种,再把余下的三科与语文(连堂)安排在上午,把上午看作四节课,则有44A 24=种,此时共有824192´=种;若语文(连堂)安排在下午,在英语、物理、化学、地理中选一种安排在下午有1242C A 8=种,再把余下的三科与数学(连堂)安排在上午,且数学不排上午的第一节课,把上午看作四节课,数学只能安排在后三节有13C 3=种,其余三科全排有33A 6=种,此时共有836144⨯⨯=种;若数学、语文都安排在上午,在英语、物理、化学、地理中选一种安排在上午有14C 4=种,将上午看作三节课,且数学不排上午的第一节课,有1222C A 4=种,再把余下的三科安排在下午作全排有33A 6=种,此时共有44696⨯⨯=种;综上,共有19214496432++=种.故选:D7.已知{}n a 为正项等比数列,且10121a =,若函数()212ln 1x f x x x -=-+,则()()()122023f a f a f a ++⋅⋅⋅+=()A.2023B.2024C.20232D.1012【答案】A 【解析】【分析】由等比数列的性质可得222311202322012020211a a a a a a a ⋅=⋅=⋅===L ,再由题意可得出()12f x f x ⎛⎫+= ⎪⎝⎭,由倒序相加法可求出答案.【详解】因为{}n a 为正项等比数列,且10121a =,所以222311202322012020211a a a a a a a ⋅=⋅=⋅===L ,由()212ln 1x f x x x -=-+可得22111112ln 12ln 11x x f x x x x x⎛⎫- ⎪-⎛⎫⎝⎭=-+=++ ⎪⎝⎭,所以()12f x f x ⎛⎫+=⎪⎝⎭,所以设()()()122023S f a f a f a =++⋅⋅⋅+,则()()()202320221S f a f a f a =++⋅⋅⋅+,所以两式相加可得:222023S =⨯,故2023S =,故选:A .8.已知a = ,1= b ,0a b ⋅= ,4c a c a ++-= ,2430d b d -⋅+= ,则c d - 的最大值为()A.22113+ B.4C.23+ D.313【答案】A 【解析】【分析】由题意首先得出c d -为两外切的圆和椭圆上的两点间的距离,再由三角形三边关系将问题转换为椭圆上点到另一个圆的圆心的最大值即可.【详解】如图所示:不妨设)()()()()13,0,0,1,,,,,3,0a OA b OB OC m n OD p q A ======-,满足3a = ,1= b ,0a b ⋅= ,又4c a c a ++-=()()22221334223m n m n a c A A ++-+=>=,由椭圆的定义可知点C 在以1,A A 为焦点,长轴长为4的椭圆上运动,222,3,431a c b a c ===--,所以该椭圆方程为2214x y +=,而2430d b d -⋅+= ,即22430p q q +-+=,即()2221p q +-=,这表明了点D 在圆()2221x y +-=上面运动,其中点()0,2E为圆心,1r =为半径,又1c d OC OD CD CE ED CE -=-=≤+=+,等号成立当且仅当,,C D E 三点共线,故只需求CE 的最大值即可,因为点C 2214x y +=在椭圆上面运动,所以不妨设()2cos ,sin C θθ,所以()()222224cos sin 241sin sin 4sin 43sin 4sin 8CE θθθθθθθ=+--+-+--+,所以当()42sin 233θ-=-=-⨯-且,,C D E 三点共线时,c d - 有最大值max113CE +==+.故选:A.【点睛】关键点睛:解题的关键是将向量问题转换为圆锥曲线中的最值问题来做,通过数学结合的方法巧妙的将几何问题融入代数方法,从而顺利得解.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知左、右焦点分别为1F ,2F 的椭圆222:13x y C a +=的长轴长为4,过1F 的直线交椭圆于P ,Q 两点,则()A.离心率2e =B.若线段PQ 垂直于x 轴,则3PQ =C.2PQF 的周长为8D.2PQF 的内切圆半径为1【答案】BC 【解析】【分析】首先由题意把参数a 求出来,根据平方关系、离心率公式运算即可判断A ;由题意将=1x -代入椭圆方程求出弦长即可判断B ;由椭圆定义即可判断C ;由2PQF 的周长是定值,但面积会随着直线的倾斜程度而变化,由此即可判断D.【详解】对于A ,由题意椭圆222:13x y C a +=的长轴长为4,所以124a =,解得22112,43a a b ==>=,所以12,1a a c =====,离心率为12c e a ==,故A 错误;对于B ,由A 可知椭圆方程为22143x y +=,由题意若直线PQ 的方程为=1x -,将其代入椭圆方程可得32y =±,即33322PQ ⎛⎫=--= ⎪⎝⎭,故B 正确;对于C ,2PQF 的周长为()()2212122248PQ QF F P PF PF QF QF a a a ++=+++=+==,故C 正确;对于D ,由题意直线PQ 斜率不为0且经过点()1,0-,不妨设直线()()1122:1,,,,PQ x my P x y Q x y =-,将其与椭圆方程22143x y +=联立消去x 得()2234690m y my +--=,()()2221212226936363414410,,3434m m m m y y y y m m -∆=++=+>+==++,一方面()()()()222221212121222222363413612142343434PQF m m m S F F y y y y y y m m m ++=-=+-++++ ,另一方面,由C 选项分析可知228PQ QF F P ++=,不妨设2PQF 的内切圆的半径为r ,所以()222142PQF S PQ QF F P r r =++= ,对比两式可知223134m r m +=+,即r 与m 有关,故D 错误.故选:BC.10.与二项式定理()0C nnk n k k n k a b a b -=+=∑类似,有莱布尼兹公式:()()()()()()()()()()()()0112200120C C C C C nn n n n n n k kn k nnnnn n uv u vuv uv u vuv ---==+++⋅⋅⋅+=∑,其中()k u (0,1k =,2,…,n )为u 的k 阶导数,()0u u =,()0v v =,则()A.1C2nknnk ==∑ B.1351C C C 2n n n n -+++⋅⋅⋅=C.()()()()nnuv vu = D.()6e x f x x =,则()()606!f =【答案】BCD 【解析】【分析】由二项式定理,分别赋值,a b ,即可判断AB ;再根据莱布尼兹公式,结合组合数公式和性质,即可判断CD .【详解】A.由二项式定理可知,当1a b ==时,()0C 1111C 2nnnnk n k k k nn k k -==+===∑∑,1C221nkn n k n n C ==-=-∑,故A 错误;B.由二项式定理可知,当1,1a b ==-时,()012345.1C C C C C C .1.nn n n n n n =-+-+-+-()()024135C C C ...C C C ...0n n n n n n =+++-+++=,所以024135C C C ...C C C ...n n n n n n +++=+++又由A 可知,012345C C C C C C ...2nn n n n n n ++++++=,所以1351C C C 2n n n n -+++⋅⋅⋅=,故B 正确;C.()()()()()()()()()()011220012C C C ...C nn n n n n n n n n uv u v u v u v u v--=++++()()()()()()()()()()011220012C C C ...C nn n n n n n n n n vu v u v u v u v u--=++++,由组合数的性质可知,0C C n n n =,11C C n n n -=,22C C n n n -=,……,可知,()()()()n nuv vu =,故C 正确;D.()()()()()()()()()()()()()()()()()()6605142066061626666666e C e C e C e ...C e x xx xx x x x x x =++++,因为()()e e n xx =,()()066x x =,()()1656x x =,()()26465x x =⋅⋅,()()363654x x =⋅⋅⋅,()()4626543x x =⋅⋅⋅⋅,()()5665432x x =⋅⋅⋅⋅⋅,()()666543216!x =⋅⋅⋅⋅⋅=,所以()()606!f =,故D 正确.故选:BCD11.全球有0.5%的人是高智商,他们当中有95%的人是游戏高手.在非高智商人群中,95%的人不是游戏高手.下列说法正确的有()A.全球游戏高手占比不超过10%B.某人既是游戏高手,也是高智商的概率低于0.1%C.如果某人是游戏高手,那么他也是高智商的概率高于8%D.如果某人是游戏高手,那么他也是高智商的概率低于8.5%【答案】AC 【解析】【分析】利用全概率公式和条件概率定义进行计算.【详解】A 项,高智商中有的人是游戏高手概率为0.0050.950.00475⨯=,非高智商人群中是游戏高手的概率为0.9950.050.04975⨯=,所以全球游戏高手占比为0.004750.049750.05450.1+=<,所以A 项正确;B 项,既是游戏高手,也是高智商的概率为0.0050.950.004750.001⨯=>,所以B 项错误;C 项,设事件A 为某人是游戏高手,事件B 为某人是高智商,则()0.0545P A =,则()()()0.0050.9519|0.0870.080.0545218P AB P B A P A ⨯===≈>,所以C 项正确;D 项,由C 项知,()19|0.0870.085218P B A =≈>,所以D 项错误.故选:AC.12.已知定义在()0,∞+上的函数()f x 满足()()2ln ln 2xf x f x x x +'+=,()11f =,且实数()a f x <对任意0x >都成立(ln20.693≈,ln3 1.098≈),则()A.()18f ''= B.()f x 有极小值,无极大值C.()f x 既有极小值,也有极大值D.23<a 【答案】ABD 【解析】【分析】将题设条件化为()222[][ln ]x f x x x ''=,进而有()222ln x f x x x C =+,其中C 为常数,()0,x ∈+∞,根据已知求得()221ln f x x x =+,对函数求导判断A 、B 、C ;问题化为()0,x ∈+∞上()min a f x <,结合()f x 的极值()2200222000111ln (f x x x x x =+=+且0(1,2)x ∈求参数范围判断D.【详解】由题设()()222(ln ln )f x xf x x x =+'+,则()()2222(ln ln )xf x x f x x x x x +'+=,所以()222[][ln ]x f x x x ''=,故()222ln x f x x x C =+,其中C 为常数,()0,x ∈+∞,又()11f =,则()11f C ==,所以()222ln 1x f x x x =+,即()221ln f x x x=+,所以()32ln 2x f x x x '=-,故()242(1ln )6x f x x x-''=+,则()18f ''=,A 对;由()232(ln 1)x x f x x -'=且()0,x ∈+∞,令21ln ()x x x g =-在()0,x ∈+∞上递增,(1)10g =-<,1ln 20.4430)4(2g -=≈>,故0(1,2)x ∃∈使0()0g x =,即0201ln x x =,0(0,)x 上()0g x <,即()0f x '<,()f x 递减;0(,)x +∞上()0g x >,即()0f x ¢>,()f x 递增;所以()f x 有极小值,无极大值,B 对,C 错;由题设,()0,x ∈+∞上()min a f x <,即()2200222000111ln ()f x x a x x x =+=+>,令2011(,1)4t x =∈,则()20f x y t t ==+在1(,1)4t ∈上递增,故()05(,2)16f x y =∈,所以52163a ≤<,D 对.故选:ABD【点睛】关键点睛:根据题设条件得到()222[][ln ]x f x x x ''=,进而求得()221ln f x x x =+为关键.三、填空题(本大题共4小题,每小题5分,共20分)13.已知数列{}n a 满足211n n n a a a +-+=,且113a =,则9a =______.【答案】13【解析】【分析】先求得数列的周期性,再应用周期性求值即可.【详解】由211n n n a a a +-+=,得2421111211211nn n nn n n n n a a a a a a a a a +++---+====-+++,则95113a a a ===.故答案为:13.14.已知()220x x m m -+=∈R 的两共轭虚根为1x ,2x,且12x x +=,则m =______.【答案】3【解析】【分析】由根与系数关系有12122x x mx x =⎧⎨+=⎩,设11i x a =+,21i x a =-且R a ∈,结合题设和复数模长、乘法运算求参数.【详解】由题设12122x x mx x =⎧⎨+=⎩,可令11i x a =+,21i x a =-且R a ∈,所以2122x x a +==⇒=,所以21213x x a m =+==.故答案为:315.已知圆()()22:344C x y -+-=,过直线:4310l x y ++=上一动点P 作圆C 的两条切线,切点分别为A ,B ,则PA PB +的最小值为______.【答案】425【解析】【分析】首先利用图形,解决向量的运算,再利用PC 的最小值,即可求解.【详解】如图,连结,CA CB ,CA PA ⊥,CB PB ⊥,AB 和CP 交于点D ,2PA PB PD += ,因为2PA PD PC =,所以2244PAPC PD PC PCPCPC-===-,设4y x x=-,易知其在()0,∞+为增函数,则PC 的最小值为圆心()3,4C 到直线:4310l x y ++=的距离5d ==,所以PD 的最小值为421555-=,那么PA PB + 的最小值为425.故答案为:42516.正方体1111ABCD A B C D -棱长为2,E ,F 分别是棱CD ,1DD 的中点,M 是正方体的表面上一动点,当四面体BEFM 的体积最大时,四面体BEFM 的外接球的表面积为______.【答案】11π【解析】【分析】根据题意只需M 点离平面1BEFA 最远即可,构建空间直角坐标系,应用向量法求各点到面1BEFA 距离得到M 与1C 重合,再将1EFC △置于如下直角坐标系中求1EFC △外接圆圆心,进而确定空间坐标系中外接球球心O 坐标,即可求球的表面积.【详解】如下图,11////EF CD BA ,即1,,,B E F A 四点共面,要使四面体BEFM 的体积最大,只需M 点离平面1BEFA 最远即可,显然点D 、线段1CD 上点到平面1BEFA 距离都相等,构建下图空间直角坐标系D xyz -,则(0,1,0),(0,0,1),(2,2,0)E F B ,所以(0,1,1),(2,1,0)EF EB =-= ,若面1BEFA 的一个法向量为(,,)m x y z =,则020EF m y z EB m x y ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ ,令2y =,则(1,2,2)m =- ,而11(0,2,0),(0,2,2),(2,0,0),(2,2,2)C C A B ,则(0,2,0)AB = ,(0,1,0)EC =,1(0,1,2)EC = ,1(0,0,2)BB =,所以A 到面1BEFA 距离为||43||m AB m ⋅= ,C 到面1BEFA 距离为||23||m EC m ⋅= ,1C 到面1BEFA 距离为1||2||m EC m ⋅= ,1B 到面1BEFA 距离为1||43||m BB m ⋅=,综上,正方体的表面上1C 到面1BEFA 距离最远,故四面体BEFM 的体积最大,M 与1C重合,首先确定1EFC △外接圆圆心1O 坐标,将1EFC △置于如下直角坐标系中,则1(2,2),(0,1),(1,0)C F E ,则1O 是直线1:DC y x =与1FC 的垂直平分线l 的交点,由112FC k =,则2l k =-,且1FC 中点为3(1,)2,故3:2(1)2l y x -=--,即:4270l x y +-=,联立76427076x y x x y y ⎧=⎪=⎧⎪⇒⎨⎨+-=⎩⎪=⎪⎩,即177(,)66O 对应到空间直角坐标系的坐标为177(0,,66O ,由四面体BEFM 的外接球球心O 在过1O 垂直于面1EFC 的直线上,设77(,,66O n ,由||||OB OE ==76n =,=24π11π⨯=.故答案为:11π【点睛】关键点点睛:利用向量法求出正方体的表面上到面1BEFA 距离最远的点为关键.四、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.疫情结束之后,演唱会异常火爆.为了调查“喜欢看演唱会和学科是否有关”,对本年级的100名老师进行了调查.附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.()20P k χ≥0.0500.0100.0010k 3.8416.63510.828(1)完成下列22⨯列联表,并判断是否有95%的把握认为本年级老师“喜欢看演唱会”与“学科”有关;喜欢看演唱会不喜欢看演唱会合计文科老师30理科老师40合计50(2)三楼大办公室中有11名老师,有4名老师喜欢看演唱会,现从这11名老师中随机抽取3人,求抽到的3人中恰有1人喜欢看演唱会的概率.【答案】(1)列联表见解析,有95%的把握认为本年级老师“喜欢看演唱会”与“学科”有关(2)2855【解析】【分析】(1)根据表格进行运算即可得到完整的列联表,再根据卡方计算公式运算对比临界值即可求解.(2)根据超几何分布的概率计算公式进行运算即可求解.【小问1详解】由表可知喜欢看演唱会的理科老师有503020-=人,理科老师共有204060+=人,文科老师共有1006040-=人,不喜欢看演唱会的文科老师有403010-=人,不喜欢看演唱会的人有104050+=人,完成22⨯列联表如下表所示:喜欢看演唱会不喜欢看演唱会合计文科老师301040理科老师204060合计5050100()()()()()()22210012002005016.667 3.841406050503n ad bc a b c d a c b d χ-⨯-===≈>++++⨯⨯⨯,故有95%的把握认为本年级老师“喜欢看演唱会”与“学科”有关.【小问2详解】由题意11名老师中,有4名老师喜欢看演唱会,有7名老师不喜欢看演唱会,若从这11名老师中随机抽取3人,求抽到的3人中恰有1人喜欢看演唱会,则只能从4名喜欢看演唱会的老师中抽取1人,从7名不喜欢看演唱会的老师中抽取2人,即所求的概率为1247311C C 42128C 16555p ⨯===.18.如图,在直三棱柱111ABC A B C -中,18AA =,6AB =,E ,F 为1CC 上分别靠近C 和1C 的四等分点,若多面体11AA B BEF 的体积为40.(1)求EF 到平面11AA B B 的距离;(2)求二面角1E AB B --的大小.【答案】(1)2;(2)π4.【解析】【分析】(1)由直三棱柱结构特征有11//CC AA ,应用线面平行判定证1//CC 面11AA B B ,问题化为求C 到面11AA B B 的距离,再结合面ABC ⊥面11AA B B ,进一步化为求ABC 中AB 上的高h ,根据多面体体积列方程求结果;(2)过C 作CD AB ⊥于D ,过E 作EH ⊥面11AA B B 于H ,连接,DH DE ,证AB ⊥面CEHD ,进而有EDH ∠为二面角1E AB B --的平面角,即可求大小.【小问1详解】直三棱柱111ABC A B C -中11//CC AA ,1CC ⊄面11AA B B ,1AA ⊂面11AA B B ,所以1//CC 面11AA B B ,即//EF 面11AA B B ,只需求C 到面11AA B B 的距离,又面ABC⊥面11AA B B ,面ABC ⋂面11AA B B AB =,则C 在面11AA B B 上的射影在直线AB 上,即C 到面11AA B B 距离为ABC 中AB 上的高h ,又E ,F 为1CC 上分别靠近C 和1C 的四等分点,且多面体11AA B BEF 的体积为40,所以111118622640232AA B BEF V h h =⨯⨯-⨯⨯⨯⨯=,可得2h =,即EF 到平面11AA B B 的距离为2.【小问2详解】过C 作CD AB ⊥于D ,过E 作EH ⊥面11AA B B 于H ,连接,DH DE ,由(1)分析易知:,//CD EH CD EH =,即四边形CEHD 为平行四边形,由1CC ⊥面ABC ,AB ⊂面ABC ,则1CC AB ⊥,由1CD CC C = ,1,CD CC ⊂面CEHD ,则AB ⊥面CEHD ,而,DE DH ⊂面CEHD ,则AB DH ⊥,AB DE ⊥,故EDH ∠为二面角1E AB B --的平面角,由(1)知:2EH CD h ===,2CE DH ==,所以tan 1EH EDH DH ∠==,故锐二面角1E AB B --为π4.19.已知数列{}n a 满足12a =,23a =,且()*2123n n n a a a n +++=∈N.(1)求证:数列{}1n n a a +-为等比数列;(2)若()1111nn n n b a a +⎛⎫=-+⎪⎝⎭,求数列{}n b 的前n 项的和n S .【答案】(1)证明见解析(2)1(1)221n n--++【解析】【分析】(1)根据已知等式变形得()2112n n n n a a a a +++-=-,利用等比数列的定义证明即可;(2)对项数n 分奇偶讨论,由裂项相消法求和可得.【小问1详解】()*2123n n n a a a n +++=∈N ,且12a =,23a =,()()*2112n n n n a a a a n +++∴=-∈-N ,且2110a a -=≠,()*2112n n n na a n a a +++=--∈∴N ,故数列{}1n n a a +-是以1为首项,2为公比的等比数列.【小问2详解】由(1)知,112n n n a a -+-=,则有211a a -=,322a a -=,21,2n n n a a ---= ,各式相加得122111212222112n n n n a a ----=++++==--- ,又12a =,则121n n a -=+.()1111n n n n b a a +⎛⎫=-+ ⎪⎝⎭,则当n 为奇数时,122334111111111111n n n n n a a a S a a a a a a a -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++-+++-+ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111221n n a a +=--=--+;当n 为偶数时,122334111111111111n n n n n a a a S a a a a a a a -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++-++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 111111221n n a a +=-+=-++;综上所述,1(1)221n n n S -=-++.20.在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a ,b ,a c +成等比数列.(1)若π5A =,求角C ;(2)若ABC 的面积为S ,求2Sa 的取值范围.【答案】(1)2π5C =;(2)13(,22.【解析】【分析】(1)由题设可得22b a ac -=,结合余弦定理可得2cos c a a B =+,应用正弦边角关系、三角恒等变换可得sin()sin B A A -=,进而有B A A -=,即可求角C ;(2)由(1)有2B A =,结合锐角三角形得ππ64A <<,应用三角形面积公式、三角恒等变换可得2222tan (3tan )(1tan )S A A a A -=+,令tan 3t A =∈,利用导数求等式右侧单调性,再求值域即得范围.【小问1详解】由题设2()b a a c =+,即22b a ac -=,且π()C A B =-+,由2222cos 2cos b a c ac B a c a B =+-⇒=-,即2cos c a a B =+,所以sin sin 2sin cos C A A B =+,即sin()sin 2sin cos A B A A B +=+,所以cos sin sin sin cos A B A A B =+,故sin()sin B A A -=,所以B A A -=或πB A A -=-(舍),可得2π25B A ==,故2π5C =.【小问2详解】由(1)知2B A =,ABC 为锐角三角形,则π02π022π0π32A A A ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,可得ππ64A <<,又1sin 2S ac B =,则2sin sin sin sin(3)sin(2)22sin 2sin S c B C B A A a a A A===,所以221sin(3)cos sin cos cos 2cos sin 2sin 2(cos 2)2S A A A A A A A A A a ==+=+,又22tan sin 21tan A A A =+,221tan cos 21tan A A A -=+,故22222tan 1tan 1()1tan 1tan 2S A A a A A -=⨯+++,整理得2222tan (3tan )(1tan )S A A a A -=+,令3tan 3t A =∈,则32223()(1)S t t f t a t -==+,所以2423312()(1)t t f t t -+'=+,令42()123g t t t =-+,则2()4(6)0g t t t '=-<,故()g t在,1)3t ∈上递减,8()()039g t g <=-<,即()0f t '<,所以()f t在(,1)3t ∈上递减,故322231()(,)(1)22S t t f t a t -==∈+.21.已知抛物线2:4y x Γ=的准线l 交x 轴于M ,过()1,1P -作斜率为1k 的直线1l 交Γ于,C D ,过()1,1Q --作斜率为2k 的直线2l 交Γ于,E G .(1)若抛物线的焦点2F l ∈,判断直线l 与以EG 为直径的圆的位置关系,并证明;(2)若,,C E M 三点共线,①证明:21k k -为定值;②求直线1l 与2l 夹角θ的余弦值的最小值.【答案】(1)相切,证明见解析(2)①1;②35【解析】【分析】(1)将直线EG 和抛物线联立,利用韦达定理,求出线段EG 的中点和长度,即可得以EG 为直径的圆的方程,通过判断圆心与直线l 的距离与半径的大小关系来去顶直线与圆的位置关系;(2)①设221212,,,44y y C y E y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,通过,,C E M 三点共线即斜率相等可得124y y =,再将其代入21212221111144y y k k y y +--=-++计算即可;②设直线12,l l 的倾斜角分别为,αβ,()2121tan tan tan tan 1tan tan 1k k k k βαθβαβα--=-==++,通过21,k k 的关系代入消2k ,通过直线和抛物型线相交,利用判别式求出1k 的范围,进而可得最值.【小问1详解】若抛物线的焦点2F l ∈,则直线EG 即为直线QF ,又()1,0F 故()10:111EG l y x --=---,整理得:210EG l x y --=联立22104x y y x--=⎧⎨=⎩,消去x 得2840y y --=,6416800D =+=>则8E G y y +=,124y y =-,所以()2218E G E G x x y y +=++=,且20EG =,故以EG 为直径的圆的圆的方程为()()2294100x y -+-=,其圆心为()9,4,半径为10,所以以EG 为直径的圆的圆心到直线l 的距离为9110+=,故直线l 与以EG 为直径的圆相切;【小问2详解】①设221212,,,44y y C y E y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,又()()()1,0,1,1,1,1M P Q ----,因为,,C E M 三点共线,所以CE CM k k =,即1212221211444y y y y y y -=-+,整理得124y y =,所以()()2212212121222221211111441111114444y y y y y y k k y y y y ⎛⎫⎛⎫++--+ ⎪ ⎪+-⎝⎭⎝⎭-=-=⎛⎫⎛⎫++++ ⎪⎪⎝⎭⎝⎭()222212112212122122222211221112444444121441644y y y y y y y y y y y y y y y y y y ⎛⎫+++-+-- ⎪++⎝⎭===+++++,即21k k -为定值1;②设直线12,l l 的倾斜角分别为,αβ,则()()21221111tan tan 11tan tan 1tan tan 1111324k k k k k k k βαθβαβα--=-====++++⎛⎫++ ⎪⎝⎭由已知可得()11:11l y k x =++,联立()12114y k x y x⎧=++⎨=⎩,消去x 得2114440y y k k -++=,所以21144440k k ⎛⎫⎛⎫∆=-+> ⎪ ⎪⎝⎭⎝⎭,解得11122k ---+<<,当112k =-时,()max 14tan 334θ==,此时θ最大,cos θ最小,此时由22sin 4cos 3sin cos 1θθθθ⎧=⎪⎨⎪+=⎩,解得3cos 5θ=.即直线1l 与2l 夹角θ的余弦值的最小值为35.【点睛】关键点睛:本题关键是在解答第(2)①中设出点的坐标,将条件和目标式都坐标化,从而可以真正的通过计算得出结论.22.已知()()()2341e 3x f x x kx kx k =--+∈R (1)当0k =时,求()f x 过点()()1,1f 的切线方程;(2)若对[]1,2k ∀∈,[]0,x k ∈,不等式()f x a ≤恒成立,求实数a 的取值范围.[参考不等式:()21e 102x x x x ≥++≥]【答案】(1)22e e 0x y --=;(2)452e 3a ≥-.【解析】【分析】(1)利用导数的几何意义求切线方程;(2)构造()2()1e x g x x =-、343()kx kx h x =-并应用导数研究单调性,进而判断[]0,x k ∈上()()()f x g x h x =-最大值所在区间,利用导数研究()f x 在1(,]2x k ∈的最值,得到242max 4()(1)e 3k f x k k k =--+,利用导数求右侧最大值,即可得参数范围.【小问1详解】由题设()()21e x f x x =-,则()()221e xf x x '=-,所以()10f =,()21e f '=,故过点()()1,1f 的切线方程为2(e 1)y x =-,即为22e e 0x y --=.【小问2详解】下述过程均在[]1,2k ∈且[]0,x k ∈条件下,令()2()1e x g x x =-,则()2()21e xg x x '=-,令1()02g x x '=⇒=,故1[0,)2x ∈上()0g x '<,()g x 递减,1(,]2x k ∈上()0g x '>,()g x 递增,且21e (0)1,(,()(1)e 22k g g g k k =-=-=-,令343()kx kx h x =-,则2)()(41x h x k '-=,令1()02h x x '=⇒=,故1[0,)2x ∈上()0h x '<,()h x 递减,1(,]2x k ∈上()0h x '>,()h x 递增,且2214(0)0,(),()(1)233k h h h k k k ==-=-,由()()()f x g x h x =-,而11(0)((0)()22h h g g >>>,故1[0,2x ∈上()0f x <,32k =时33e 39()()()()2222g k g h k h ==>==,故1(,]2x k ∈上可能存在()0f x >(特殊值法判断最大值可能区间),要使不等式()f x a ≤恒成立,即max ()a f x ≥,只需找到1(,]2x k ∈上max ()f x ,在1(,]2x k ∈上2(21)(e 2)()x f x kx k x =-'--,显然210x ->,且()010f =-<,令22()e x kx k x ϕ=--且1(,]2x k ∈,则2e )0()2(x x k ϕ=->'且为增函数,若e [1,]2k ∈时01()()22e k x ϕϕ>=≥-,即()0f x '≥,()f x 递增,则max ()()f x f k =;若e (,2]2k ∈时e 01()22k ϕ=<-,22112(220))12(k k k k k k ϕ≥++⋅--=+>,所以01(,]2x k ∃∈使0200e 20()x x k x k ϕ--==,即020e 2x kx k =+,此时01(,)2x x ∈上()0f x '<,()f x 递减,0(,]x x k ∈上()0f x '>,()f x 递增,1e 0232k f ⎛⎫=-< ⎪⎝⎭,故01(,)2x x ∈上()0f x <,只需()0f k >则必为最大值,此时max ()f x 在0(,]x x k ∈上右侧端点上取得;综上,在[]1,2k ∈上确定2424()(1)e 3kf k k k k =--+的最大值即可,令2424()(1)e 3k k k k k φ=--+,[]1,2k ∈,则2316()(21)e 23k k k k k φ'=--+,令()()k k ηφ'=,则2()4(e 4)2k k k k η'=-+,对于2e 4k y k =-有22e 40k y '=->,即2e 4k y k =-在[]1,2k ∈上递增,所以22e 4e 40k y k =->->,即()0k η'>,则()()k k ηφ'=递增,所以216()(1)e 203k φφ''>=+->,即()k φ递增,则4max 52()(2)e 3k φφ==-,故4max 52()e 3f x =-,即452e 3a ≥-.【点睛】关键点睛:第二问,构造中间函数研究()f x 最大值位置,进而得到max ()f x 关于参数k 的表达式为关键.。

2024届天津市南开中学高三上学期12月月考数学试题及答案

2024届天津市南开中学高三上学期12月月考数学试题及答案

2024南开中学高三数学第二次月考一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}ln A x y x ==,{}21B y y x ==+,则()R A B ⋂=ð( )A. ()0,1 B. (]0,1 C. [)0,1 D. []0,12. 设数列{}n a 的公比为q ,则“10a >且01q <<”是“{}n a 是递减数列”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 函数()2cos e ex x x x f x -+=-的大致图像为( )A. B.C. D.4. 设5log 2a =,ln 2b =,0.20.5c -=,则a ,b ,c 的大小关系为( )A. a c b <<B. a b c <<C. b<c<aD. c a b <<5. 设n S 为正项等比数列{}n a 的前n 项和,5a ,33a ,4a 成等差数列,则84S S 的值为( )A. 116 B. 117 C. 16D. 176. 已知35a b =且211a b +=,则a 的值为( )A. 3log 15 B. 5log 15 C. 3log 45 D. 5log 457. 我国古代数学名著《九章算术》中记载“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何?”这里的“羡除”,是指由三个等腰梯形和两个全等的三角形围成的五面体.在图1所示羡除中,////AB CD EF ,10AB =,8CD =,6EF =,等腰梯形ABCD 和等腰梯形ABFE 的高分别为7和3,且这两个等腰梯形所在的平面互相垂直.按如图2的分割方式进行体积计算,得该“羡除”的体积为( )A. 84B. 66C. 126D. 1058. 记()n a τ表示区间[],n n a 上的偶数的个数.在等比数列{}n a n -中,14a =,211a =,则()4a τ=( )A. 39B. 40C. 41D. 429. 将函数πsin 24y x ⎛⎫=+ ⎪⎝⎭图象上所有点向右平移π4个单位长度,得到函数()y g x =的图象,则( )A. ()g x 为奇函数 B. ()3πcos 24g x x ⎛⎫=- ⎪⎝⎭C. ()g x 最小正周期为2πD. ()g x 的单调递增区间为5πππ,π88k k ⎡⎤-+-+⎢⎥⎣⎦,Zk ∈二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 设i 是虚数单位,()12a i i bi +=+(,a b ∈R ),则b a -=_____.11. 在5223x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数是______.12. 已知直线():20l y kx k =->与圆221x y +=相切,且被圆()()2240x y a a ++=>截得的弦长为k =______;=a ______.13. 锐角α,β满足2π23αβ+=,tan tan 22αβ=-α和β中的较小角等于______.14. D 为ABC 的边AB 一点,满足2AD DB = .记CA a = ,CB b = ,用a ,b 表示CD = ______;若的的1CD = ,且ABC 的面积为98,则ACB ∠的最小值为______.15. 若二次函数()()2121f x ax b x a =+---在区间[]2,3上存在零点,则22a b +的最小值为______.三.解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16. 在ABC 中,,,A B C 对应的边为,,a b c .已知1cos 2a C cb +=.(Ⅰ)求A ;(Ⅱ)若4,6b c ==,求cos B 和()cos 2A B +的值.17. 如图,在直三棱柱111ABC A B C -中,AB BC ⊥,12AB BC BB ===,D 为棱AB 中点.M 为线段1BC 的中点.(1)求证:1//BC 平面1ACD ;(2)求平面1ACD 与平面1C DC 的夹角的余弦值;(3)求点M 到平面1ACD 的距离.18. 椭圆22221x y a b+=的左、右顶点分别为A ,B ,上顶点为()0,2C ,左、右焦点分别为1F ,2F ,且1AF ,12F F ,1F B 成等比数列.(1)求椭圆的方程;(2)过1F 的直线l 与椭圆交于M ,N 两点,直线CM ,CN 分别与x 轴交于P ,Q 两点.若CMN CPQ S S =△△,求直线l 的斜率.19. 已知数列{}n a 是首项为1的等差数列,数列{}n b 是公比不为1的等比数列,满足122a a b +=,233a a b +=,454a a b +=.(1)求{}n a 和{}n b 的通项公式;的(2)求数列{}n n a b 的前n 项和n S ;(3)若数列{}n d 满足11d =,1n n n d d b ++=,记12nk n i k d T b ==∑.是否存在整数m ,使得对任意*n ∈N 都有212n n nd mT b ≤-<成立?若存在,求出m 的值;若不存在,说明理由.20. 已知函数()2e xf x a x =-,0a >且1a ≠.(1)当e a =时,求曲线()y f x =在1x =处的切线方程;(2)若1a >,且()f x 存在三个零点1x ,2x ,3x .(i )求实数a 的取值范围;(ii )设123x x x <<,求证:1233x x x ++>.的2024南开中学高三数学第二次月考一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】A【3题答案】【答案】A【4题答案】【答案】B【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】B二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.【10题答案】【答案】3.【11题答案】【答案】720【12题答案】【答案】①. ②. 4【13题答案】【答案】π6##30︒【14题答案】【答案】 ① 1233a b + ②. π2【15题答案】【答案】125三.解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.【16题答案】【答案】(Ⅰ)π3A =(Ⅱ)1114-【17题答案】【答案】(1)证明见解析;(2; (3.【18题答案】【答案】(1)22154x y += (2)12-或0【19题答案】【答案】(1)21n a n =-,2n n b =(2)()12326n n S n +=-⋅+(3)存在5m =,理由见解析【20题答案】【答案】(1)e e 0x y -+=(2)(i)1a <<,(ii )证明见解析.。

2023届福建省南安市柳城中学高三上学期12月月考数学试题(解析版)

2023届福建省南安市柳城中学高三上学期12月月考数学试题(解析版)

2023届福建省南安市柳城中学高三上学期12月月考数学试题一、单选题 1.已知复数i2iz =+,i 为虚数单位,则z 的共轭复数为( ) A .12i 55+B .12i 55-C .21i 55+D .21i 55-【答案】B【分析】根据复数的运算公式求复数z 的代数形式,再求其共轭复数即可. 【详解】()()()i 2i i 12i 12=i 2i 2i 2i 555z -+===+++-, 所以z 的共轭复数为12i 55-,故选:B.2.已知集合()(){}120A x x x =+-<,{}Z 1B x x =∈≥,则()A B =R ( ) A .[]{}1,21⋃- B .[]1,2C .{}1,1,2-D .{}1,2【答案】C【分析】解一元二次不等式求得集合A ,解绝对值不等式求得集合B ,由此求得()A B ⋂R . 【详解】由120x x,得1x <-或2x >,所以[]1,2R A =-;由1x ≥,得1x ≤-或1x ≥,所以{Z|1B x x =∈≤-或}1x ≥, 从而(){}1,1,2A B ⋂=-R . 故选:C3.已知随机变量X 服从正态分布()23,N σ,若()()12436P X P X >=⋅<,则()23P X <<=( ) A .13B .14C .16D .19【答案】A【分析】利用对称性可得(2)(4)P X P X <=>结合条件可求()2P X <,再由 1(2)(4)(23)2P X P X P X -<-><<=求解.【详解】因为随机变量X 服从正态分布()23,N σ,又()()12436P X P X >=⋅<, 所以1(2)(4)6P X P X <=>=, 故1111(2)(4)166(23)223P X P X P X =---<-><<==. 故选:A.4.已知某圆锥的侧面展开图为半圆,该圆锥的体积为,则该圆锥的表面积为( )A .27πB .C .D .16π【答案】A【分析】根据条件先算出母线长与底面半径的关系,再根据体积计算出底面半径即可.【详解】设圆锥底面半径为r ,母线长为l ,则r l 2π=π,所以2l r =,=,所以213r π⨯=,解得3r =,故其表面积291827S r rl πππππ=+=+=;故选:A .5.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16B .14C .13D .12【答案】C【分析】先由平移求出曲线C 的解析式,再结合对称性得,232k k ωππππ+=+∈Z ,即可求出ω的最小值.【详解】由题意知:曲线C 为sin sin()2323y x x ππωππωω⎡⎤⎛⎫=++=++ ⎪⎢⎥⎝⎭⎣⎦,又C 关于y 轴对称,则,232k k ωππππ+=+∈Z ,解得12,3k k ω=+∈Z ,又0ω>,故当0k =时,ω的最小值为13.故选:C.6.已知抛物线212,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=【答案】C【分析】由已知可得出c 的值,求出点A 的坐标,分析可得112AF F F =,由此可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线245y x =的准线方程为5x =-,则5c =,则()15,0F -、()25,0F ,不妨设点A 为第二象限内的点,联立b y x a x c⎧=-⎪⎨⎪=-⎩,可得x c bc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a,可得2ba =,所以,22225ba c c ab ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得125a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C.7.如图,在正三棱柱111ABC A B C 中,13AA =,2AB =,则异面直线1A B 与1B C 所成角的余弦值为( )A .513B .713C .913D .1213【答案】B【分析】在三棱锥内构造直线使其平行于1A B ,然后构造三角形,运用异面直线夹角的定义求解即可.【详解】取11A C 的中点D ,连接1BC 交1B C 于点E ,连接DE , 则1//DE A B 且112DE A B =,则1DEB ∠为异面直线1A B 与1B C 所成的角或其补角. 易求1113A B BC =13B D ,则113DE B E ==, 所以222111113133744cos 21313132DE B E B D DEB DE B E +-+-∠===⋅⨯⨯. 故选:B .8.已知函数()f x 是定义域为R 的偶函数()1f x +为奇函数,当[]0,1x ∈时,()2xf x k a =⋅+,若()()036f f +=,则()2log 96f =( )A .2B .0C .-3D .-6【答案】C【分析】根据条件,可以证明()f x 是周期为4的周期函数,计算出a 和k ,由周期性可得()()22log 961log 3f f =+ ,再利用函数的对称性即可求解.【详解】因为()1f x +为奇函数,所以()()11f x f x -+=-+,又()f x 为偶函数, 所以()()11f x f x -+=-,所以()()11f x f x -=-+,即()()2=-+f x f x , 所以()()()42f x f x f x +=-+=,故()f x 是以4为周期的周期函数;由()()11f x f x -+=-+,易得()10f =,()()()3110f f f =-==,所以()06f =, 所以6k a +=,20k a +=,解得6k =-,12a =;所以()()()222log 965log 31log 3f f f =+=+()23log 2223log 31log 621232f f ⎛⎫⎛⎫=--=-=--⨯+=- ⎪ ⎪⎝⎭⎝⎭; 故选:C .9.已知0a b >>,0c d <<,则( ) A .a b d c> B .a b d c< C .ac bd < D .ac bd >【答案】BC【分析】利用不等式的基本性质判断不等关系. 【详解】因为0c d <<,所以0cd >,所以110d c <<,所以110d c->->,又0a b >>,所以a b d c ->-,所以a bd c<,故 A 错误,B 正确; 因为0a b >>,0c d ->->,所以ac bd ->-,所以.ac bd <故D 错误,C 正确. 故选:BC .10.已知数列{}n a 的前n 项和为n S ,则( ) A .若22n S n n =-,则{}n a 是等差数列 B .若121n n S +=-,则{}n a 是等比数列 C .若{}n a 是等差数列,则202310122023S a =D .若{}n a 是等比数列,且10a >,0q >,则221212n n n S S S -+⋅> 【答案】AC【分析】利用n a 与n S 的关系,结合等差数列与等比数列的定义,可得A 、B 的正误;根据等差中项以及等差数列求和公式,可得C 的正误;取1n =时的特殊情况验证不等式,可得D 的正误.【详解】对于A ,若22n S n n =-,则11a =,当2n ≥时,143n n n a S S n -=-=-,显然1n =时也满足43n a n =-, 故43n a n =-,由14n n a a --=,则{}n a 为等差数列,故A 正确;对于B ,若121n n S +=-,则13a =,2214a S S =-=,3328a S S =-=,显然3212a a a a ≠,所以{}n a 不是等比数列,故B 错误; 对于C ,因为{}n a 为等差数列,则()12023101220231012202320232202322a a a S a +⨯===,故C 正确;对于D ,当1n =时,()()222222132111110S S S a q q a q a q ⋅-=++-+=-<,故当1n =时,不等式不成立,即221212n n n S S S -+⋅>不成立,故D 错误.11.关于函数()()π3sin 21R 3f x x x ⎛⎫ ⎪⎝⎭=-+∈,下列说法正确的是( )A .若()()121f x f x ==,则()12πZ x x k k -=∈B .()y f x =的图像关于点2π,13⎛⎫⎪⎝⎭对称 C .()y f x =在π0,2⎛⎫⎪⎝⎭上单调递增D .()y f x =的图像向右平移π12个单位长度后所得图像关于y 轴对称【答案】BD【分析】对于A ,根据三角函数的对称中心性质即可判断; 对于B ,可根据对称中心对应的函数值特征即可判断; 对于C ,根据三角函数单调性判断即可;对于D ,求出平移后的解析式并根据偶函数的性质进行判断即可.【详解】对于A ,由()()121f x f x ==知()1,1x ,()2,1x 是()π3sin 213f x x ⎛⎫=-+ ⎪⎝⎭图象的两个对称中心,则12x x -是函数()f x 的最小正周期的整数倍,即()12πZ 2k x x k -=∈,故A 不正确; 对于B ,因为2π3sin π113f ⎛⎫=+= ⎪⎝⎭,所以2π,13⎛⎫⎪⎝⎭是()f x 的对称中心,故B 正确;对于C ,由()πππ2π22πZ 232k x k k -≤-≤+∈解得()π5πππZ 1212k x k k -≤≤+∈, 当0k =时,()f x 在π5π,1212⎡⎤-⎢⎥⎣⎦上单调递增,则()f x 在5π0,12⎡⎤⎢⎥⎣⎦上单调递增,在5ππ,122⎡⎤⎢⎥⎣⎦上单调递减,故C 不正确;对于D ,()y f x =的图象向右平移π12个单位长度后所得图象对应的函数ππ3sin 213cos 21123y x x ⎛⎫⎛⎫=--+=-+ ⎪ ⎪⎝⎭⎝⎭,x ∈R ()()3cos213cos21()f x x x f x ∴-=--+=-+=3cos 21y x =-+是偶函数,所以图象关于y 轴对称,故D 正确.故选:BD.12.将边长为2的正方形ABCD 沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,下列结论正确的有( )A .存在某个位置,使直线BD 与平面ABC 所成的角为45°B .当二面角D AC B --为23π时,三棱锥D ABC - C .当平面ACD ⊥平面ABC 时,异面直线AB 与CD 的夹角为60°D .O 为AC 的中点,当二面角D AO B --为23π时,三棱锥A OBD -外接球的表面积为10π 【答案】ACD【分析】A.当当平面ACD ⊥平面ABC ,即可判断;B.根据锥体体积公式,即可求解; C.将异面直线所成的角转化为相交直线所成的角,即可求解; D.将三棱锥补体为三棱柱,即可求球心和半径.【详解】A.当平面ACD ⊥平面ABC 时,取AC 的中点O ,连接,BO DO ,DO AC ⊥,DO ∴⊥平面ABC ,DBO ∴∠为直线BD 与平面ABC 所成的角, DBO 是等腰直角三角形,45DBO ∴∠=,故A 正确;B.DO AC ⊥,BO AC ⊥,DO BO O ⋂=,AC ∴⊥平面DBO ,且23DOB π∠=, AC ⊂平面ABC ,∴平面DBO ⊥平面ABC ,且交于BO ,∴点D 在平面ABC 的射影落在BO 上,∴点D 到平面ABC 的距离6sin 602d DO =⋅=,三棱锥D ABC -的体积1166223223V =⨯⨯⨯⨯=,故B 错误;C.取,BC BD 的中点,M N ,连接,,OM ON MN ,则//OM AB ,/MN DC ,所以OMN ∠或其补角是异面直线AB 与CD 的夹角,根据A 的证明可知()()22222BD =+=,112ON BD ==,且1OM MN ==,所以OMN 是等边三角形,60OMN ∠=,故C 正确;D.由条件可知AO ⊥平面DOB ,23DOB π∠=,且DO OB =,所以可以将四棱锥A DOB -补成底面是菱形的直棱柱因为四边形OBCD 是菱形,且23BOD π∠=,所以点C 是底面OBD 外接圆的圆心,取侧棱1CC 的中点E ,则E 是四棱柱外接球的球心,连结OE ,()222221022OE OC CE ⎛⎫=+=+ ⎪ ⎪⎝⎭所以四棱锥A OBD -外接球的半径10R =2410S R ππ==,故D 正确. 故选:ACD三、填空题13.已知向量()3,1a =-,(),2b m =,且()2a a b ⊥+,则+=a b ______. 85 【分析】由向量线性运算及垂直的数量积表示可得方程解出m ,即可由坐标计算向量模. 【详解】()()()23,12,223,5a b m m +=-+=-,由()2a a b ⊥+得()()()23,123,5a a b m ⋅+=-⋅-6950m =-++=,解得73m =. 则()723,1,2,333a b ⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭,故2228533a b ⎛⎫+=-+= ⎪⎝⎭85. 14.63x x ⎛⎝展开式的常数项为______.【答案】2160【分析】根据给定条件,求出二项式展开式的通项公式,再求出常数项作答.【详解】6(3x展开式的通项公式为36662166C (3)(3(2)C ,N,6r r r r r r rr T x x r r ---+==⋅-∈≤, 令3602r -=,解得4r =,则244563(2)C 916152160T =⋅-=⨯⨯=, 所以展开式的常数项为2160. 故答案为:216015.已知函数()()()10 ln f x x x =+≥,将()f x 的图象绕原点逆时针旋转(]()0,ααθ∈角后得到曲线C ,若曲线C 仍是某个函数的图象,则θ的最大值为______.【答案】π4##1π4【分析】求得()f x 在点()0,0处的切线方程,从而求得正确答案. 【详解】依题意0x ≥, ()11f x x '=+,所以()01f '=,故函数()f x 的图象在()()0,0f 处的切线为y x =, 切线向上的方向与y 轴正方向的夹角为π4,函数()f x 的图象绕原点旋转不超过π4时,仍为某函数图象,若超过π4,y 轴与图象有两个公共点,与函数定义不符,故θ的最大值为π4.故答案为:π416.有一种投掷骰子走跳棋的游戏:棋盘上标有第1站、第2站、第3站、…、第10站,共10站,设棋子跳到第n 站的概率为n P ,若一枚棋子开始在第1站,棋手每次投掷骰子一次,棋子向前跳动一次.若骰子点数小于等于3,棋子向前跳一站;否则,棋子向前跳两站,直到棋子跳到第9站(失败)或者第10站(获胜)时,游戏结束.则3P =_________;该棋手获胜的概率为__________. 【答案】34##0.75 85256【分析】根据题意找出(38)n P n ≤≤与21,n n P P --的关系即可求解. 【详解】由题311132224P =+⨯=,因为2111(38)22n n n P P P n --=+≤≤,故11112n n n n P P P P ----=--,由2112P P -=-,所以111,22n n n P P n --⎛⎫-=-≥ ⎪⎝⎭,累加可得:2878108111118518521,1222128225612P P P ⎛⎫-- ⎪⎛⎫⎛⎫⎛⎫⎝⎭=+-+-+⋅⋅⋅+-==== ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭-- ⎪⎝⎭.故答案为:34;85256.四、解答题17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,()22214cos a b B ab +-=-,且2cos c b B =.(1)求B ;(2)若ABC 的周长为423+,求BC 边上中线的长. 【答案】(1)π6B = (2)7.【分析】(1)已知条件结合余弦定理求得2π3C =,再由正弦定理求B . (2)由(1)求出角A ,利用三角形周长求出各边的长,再由余弦定理求BC 边上中线的长.【详解】(1)由()22214cos a b B ab +-=-,有22224cos a b b B ab +-=-,又2cos c b B =,所以2224cos c b B =,即222a b c ab +-=-, 由余弦定理,得2221cos 222a b c ab C ab ab +--===-. 又()0,πC ∈,所以2π3C =,由2cos c b B =及正弦定理,得sin 2sin cos C B B =,所以3sin 22B =, 由π0,3B ⎛⎫∈ ⎪⎝⎭,得2π20,3B ⎛⎫∈ ⎪⎝⎭,所以π23B =,解得π6B =.(2)由(1)可知π6B =,2π3C =,所以π2πππ636A =--=, 所以a b =,由2cos c b B =,得3c a =. 因为ABC 的周长为423+,所以3423a a a ++=+,解得2a =. 设BC 的中点为D ,则112CD BC ==,如图所示:AD==,所以BC.18.已知数列{}n a的前项和为n S,若()12n nnS n S+=+,且11a=.(1)求{}n a的通项公式;(2)设()2112nn nb na a-=≥,11b=,数列{}n b的前n项和为n T,求证32nT<.【答案】(1)n a n=(2)证明见解析【分析】(1)由已知等式可得12nnS nS n++=,采用累乘法可求得当2n≥时的nS,利用1n n na S S-=-可求得n a,检验首项后可得结论;(2)由(1)可得2n≥时nb的通项,由()()112122nbn n n n=<--,采用裂项相消法可求得11112nTn⎛⎫<+-⎪⎝⎭,由1n>可得结论.【详解】(1)由()12n nnS n S+=+得:12nnS nS n++=,则当2n≥时,()123211232111143123212n n n nn n nn nS S S S S S n n nS S S S S S n n n-----++-=⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅=---,又111S a==,()12nn nS+∴=,()()11122n n nn n n na S S n-+-∴=-=-=,经检验:11a=满足na n=;()na n n*∴=∈N.(2)由(1)得:当2n≥时,()()11111212221nbn n n n n n⎛⎫=<=-⎪---⎝⎭;123111111111112223341n n nT b b b b bn n-⎛⎫∴=+++⋅⋅⋅++<+-+-+-+⋅⋅⋅+-⎪-⎝⎭11112n⎛⎫=+-⎪⎝⎭,1n>,111n∴-<,1113111222nTn⎛⎫∴<+-<+=⎪⎝⎭.19.2018年9月10日,全国教育大会在北京召开,习近平总书记在会上提出“培养德智体美劳全面发展的社会主义建设者和接班人”.某学校贯彻大会精神,为学生开设了一门模具加工课,经过一段时间的学习,拟举行一次模具加工大赛,学生小明、小红打算报名参加大赛.(1)赛前,小明进行了一段时间的强化训练,加工完成一个模具的平均速度y (秒)与训练天数x (天)有关,经统计得到如下表数据:经研究发现,可用b y a x=+作为回归方程模型,请利用表中数据,求出该回归方程,并预测小明经过50天训练后,加工完成一个模具的平均速度y 约为多少秒?(2)小明和小红拟先举行一次模拟赛,每局比赛各加工一个模具,先加工完成模具的人获胜,两人约定先胜4局者赢得比赛.若小明每局获胜的概率为35,已知在前3局中小明胜2局,小红胜1局.若每局不存在平局,请你估计小明最终赢得比赛的概率.参考数据:(其中1i t x =) 参考公式:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线ˆvu αβ=+的斜率和截距的最小二乘估计公式分别为1221n i ii n i i u v nu v unu β==-⋅=-∑∑,v u αβ=-⋅. 【答案】(1)100013ˆ0=+yx;150; (2)513625. 【分析】(1)令1t x =,则可利用最小二乘法估计ˆˆˆy bt a =+,从而得到ˆˆˆb y a x=+,代入x =50即可预测小明经过50天训练后,加工完成一个模具的平均速度;(2)设比赛再继续进行X 局小明最终赢得比赛,最后一局一定是小明获胜,且最多再进行4局就结束比赛分出胜负,则小明赢得比赛得概率P =P (X =2)+P (X =3)+P (X =4).【详解】(1)由题意,()19909904503203002402105007y =++++++=,令1t x =,设y 关于t 的线性回归方程为ˆˆˆy bt a =+, 则7172217184570.37500ˆ10000.557i ii i i t y t y b tt ==-⋅-⨯⨯===-∑∑, 则ˆ50010000.37130=-⨯=a, ∴100013ˆ0=+yt , ∴y 关于x 的回归方程为100013ˆ0=+y x, 当50x =时,ˆ150=y, ∴预测小明经过50天训练后,加工完成一个模具的平均速度y 约为150秒;(2)设比赛再继续进行X 局小明最终赢得比赛,则最后一局一定是小明获胜,由题意知,最多再进行4局就有胜负,X 的可能取值为2、3、4.当2X =时,小明4∶1胜,∴()33925525P X ==⨯=; 当3X =时,小明4∶2胜,∴()12333363C 1555125P X ⎛⎫==⨯⨯-⨯= ⎪⎝⎭; 当4X =时,小明4∶3胜,∴()2133331084C 1555625P X ⎛⎫==⨯⨯-⨯= ⎪⎝⎭. ∴小明最终赢得比赛的概率为93610851325125625625++=. 20.如图,圆台下底面圆O 的直径为AB , C 是圆O 上异于,A B 的点,且30BAC ∠=,MN 为上底面圆O '的一条直径,MAC △是边长为23的等边三角形,4MB =.(1)证明:BC ⊥平面MAC ;(2)求平面MAC 和平面NAB 夹角的余弦值.【答案】(1)证明见解析313【分析】(1)线线垂直从而证明线面垂直.(2)利用向量法,即可求二面角的余弦值.【详解】(1)∵AB 为圆台下底面圆O 的直径,C 是圆O 上异于,A B 的点,故=90ACB ︒∠又∵=30BAC ︒∠,23AC =,∴4AB MB ==∵AC MC =,BC BC =∴ABC MBC ≅,∴=90BCM ︒∠∴BC MC ⊥,又∵BC AC ⊥,AC MCC ,,AC MC ⊂平面MAC ∴BC ⊥平面MAC(2)取AC 的中点,连接,DM DO ,则MD AC ⊥,由(1)可知,BC DM ⊥∵AC BC C =,∴DM ⊥平面ABC , 又∵OD AC ⊥∴以D 为原点,DA 为x 轴,DO 为y 轴,DM 为z 轴,建立如下图所示的空间直角坐标系,由题意可得(3,0,0)A ,(3,2,0)B -,∵OO '⊥平面ABC ,∴//'DM OO ,四边形ODMO '为矩形,∴(0,2,3)N平面MAC 的一个法向量为1(0,1,0)n =.设平面NAB 的一条法向量为2(,,)n x y z =,(23,2,0)AB =-,(3,2,3)AN =-由2200n AB n AN ⎧⋅=⎪⎨⋅=⎪⎩ 得23203230x y x y z ⎧-+=⎪⎨++=⎪⎩ 令3x =3y =,1z =-平面NAB 的一个法向量为2(3,3,1)n =-则平面MAC 与平面NAB的夹角的余弦值为1212·3nn n n ==∴平面MAC 和平面NAB 21.已知抛物线2:2(0)C x py p =>在点()01,M y 处的切线斜率为12. (1)求抛物线C 的方程;(2)若抛物线C 上存在不同的两点关于直线:2l y x m =+对称,求实数m 的取值范围.【答案】(1)24x y =;(2)94m >.【分析】(1)根据给定条件,求出切线方程,再与抛物线C 的方程联立,借助判别式计算作答.(2)设出抛物线C 上关于l 对称的两点A ,B 的坐标,并设出直线AB 的方程,再与抛物线C 的方程联立,借助判别式及韦达定理计算作答.【详解】(1)点1(1,)2M p ,则切线方程为:11(1)22y x p -=-,由221(1)2py p x x py -=-⎧⎨=⎩消去y 并整理得: 210x px p -+-=,依题意,24(1)0p p ∆=--=,解得2p =,所以抛物线C 的方程是24x y =.(2)设抛物线C 上关于l 对称的两点为1122(,),(,)A x y B x y ,则设直线AB 方程为:12y x t =-+, 由2124y x t x y⎧=-+⎪⎨⎪=⎩消去y 并整理得:2240x x t +-=,则有4160t '∆=+>,解得14t >-, 122x x +=-,12121()2212y y x x t t +=-++=+,显然线段AB 的中点1(1,)2t -+在直线l 上, 于是得122t m +=-+,即有52t m =-,而14t >-,因此,5124m ->-,解得94m >, 所以实数m 的取值范围是94m >. 【点睛】结论点睛:抛物线22(0)x py p =≠在点200(,)2x x p 处的切线斜率0x k p =; 抛物线22(0)y px p =≠在点2000(,)(0)2y y y p ≠处的切线斜率0p k y =. 22.某品牌轿车经销商组织促销活动,给出两种优惠方案,顾客只能选择其中的一种. 方案一:每满6万元,可减6千元;方案二:金额超过6万元(含6万元),可摇号三次,其规则是依次从装有2个幸运号、2个吉祥号的一号摇号机,装有2个幸运号、2个吉祥号的二号摇号机,装有1个幸运号、3个吉祥号的三号摇号机各摇号一次,每次摇出一个号. 其优惠情况为:若摇出3个幸运号打6折;若摇出2个幸运号打7折;若摇出1个幸运号打8折;若没摇出幸运号不打折.(1)若某型号的车正好6万元,两名顾客都选方案二,求至少有一名顾客比选方案一更优惠的概率;(2)若你朋友看中一款价格为10万元的轿车,请用所学知识帮助你朋友分析一下应选择哪种优惠方案.【答案】(1)247256(2)方案二【分析】(1)设顾客三次没摇出幸运号为事件A ,由独立事件概率乘法公式求得()P A ,则利用对立事件概率得所求概率为()21P A -; (2)方案二,设付款金额为X 万元,则{}6,7,8,10X ∈,求出X 的分布列,期望与方案一比较即可.【详解】(1)方案一相当于打9折,要使选择方案二比选择方案一更优惠,则需要至少摇出1个幸运号,设顾客不打折即三次没摇出幸运号为事件A ,则()223344416P A =⨯⨯=, 故所求的概率()2232471116256P P A ⎛⎫=-=-= ⎪⎝⎭. (2)若选择方案一,则需要付款100.69.4-=(万元)若选择方案二,设付款金额为X 万元,则{}6,7,8,10X ∈, ()322116416P X ⨯⨯===,()322322122157416P X ⨯⨯+⨯⨯+⨯⨯===, ()322322322178416P X ⨯⨯+⨯⨯+⨯⨯===,()31016P X ==, 故X 的分布列为所以()1573678107.93759.416161616E X =⨯+⨯+⨯+⨯=<(万元),所以选方案二划算.。

2023届黑龙江省尚志市尚志中学高三上学期12月月考数学试卷

2023届黑龙江省尚志市尚志中学高三上学期12月月考数学试卷

尚志中学2022-2023学年高三上学期12月月考数学试题一、单选题(共40分)1.设全集(){}*N 60U x x x =∈-≤,集合{}13,5A =,,{}0,2,4B =,则()AC B U ⋂=( )A .{}2,4B .{}0,2,4C .{}1,3,5D .{}0,2,4,62.若C z ∈,且22i 1z +-=,则22i z --的最小值是( )A .2B .3C .4D .53.已知函数()cos f x x x =,则()y f x =的大致图象是( )A .B .C .D .4.已知72cos()4πθ+=则sin2θ=( )A .2425-B .1225-C .1225D .24255.若12,e e 是夹角为60的两个单位向量,则122a e e =+与1232b e e =-+的夹角为( ) A .30°B .60°C .120°D .150°6.在数列{}n a 中,已知12a =,122n n naa a +=+,则n a =( )A .21n + B .2nC .1n +D .1n n+ 7.已知点F 是双曲线22221x y a b-=的左焦点,点E 是该双曲线的右顶点,过F 作垂直于x 轴的直线与双曲线交于G 、H 两点,若GHE △是锐角三角形,则该双曲线的离心率e 的取值范围是( ) A .(1,)+∞B .(1,2)C .(2,12)D .(1,12)8.函数()()221log 816,249,2a a x x x f x a x b x ⎧⎛⎫-+≥⎪ ⎪=⎝⎭⎨⎪-+<⎩,对任意[]4,2b ∈--,函数()f x 在上满足()()21210f x f x x x ->-,则的取值范围为( )A .()7,9B .[)7,9C .[]7,9D .(]7,9二、多选题(共20分)9.如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别为AD ,AB ,11B C 的中点,以下说法正确的是( )A .三棱锥C EFG -的体积为1B .1AC ⊥平面EFGC .11//AD 平面EFG D .平面EGF 与平面ABCD 310.函数π()sin(2)3f x x =-的图象向左平移π4个单位长度,得到函数()g x 的图象,则下列结论正确的有( )A .直线5π6x =-是()g x 图象的一条对称轴 B .()g x 在ππ(,)26-上单调递增C .若()g x 在(0,)α上恰有4个零点,则23π29π(,]1212α∈ D .()g x 在ππ[,]42上的最大值为1211.若正数,a b 满足31=++ab a b ,那么( ) A .ab 最小值是13B .ab 最小值是1C .a b +最小值是2D .a b +最小值是312.已知函数()22,02πsin ,242x x x f x x x ⎧-≤≤⎪=⎨<≤⎪⎩,则下列结论正确的有( )A .52()22f =-B .函数图像关于直线1x =对称C .函数的值域为[]1,0-D .若函数()y f x m =-有四个零点,则实数m 的取值范围是(]1,0-三、填空题(共20分) 13.已知点(0,1)A ,(1,2)B -,向量(4,1)AC =-,则BC =__________.14.如图,在三棱柱ABC -A 1B 1C 1中,所有棱长均为1,且AA 1⊥底面ABC ,则点B 1到平面ABC 1的距离为______.15.过抛物线()220y px p =>焦点F的直线与双曲线2213y x -=的一条渐近线平行,并交抛物线于,A B 两点,若AF BF>,且2AF =,则p 的值为__________ .16.已知函数()21ln --⋅=xxe ax xf x 在()∞+,0有两个不同的零点,则实数a 的取值范围是______. 四、解答题(共70分)17.(1)求展开式63331x x x x⎛⎫⎫⎪⎪⎭⎭中的常数项. (2)3名男生与4名女生,按照下列不同的要求,求不同的方案的方法总数.按要求列出式子,再计算结果,用数字作答. ①全体站成一排,男生不能站一起;②全体站成一排,甲、乙必须站在一起,而丙、丁不能站在一起;18.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知1sin sin cos sin 2B AC C -=. (1)求∠A ;(2)若2c =,D 为BC 边的中点,72AD =,求a 的值. 19.已知数列{}n a 的前n 项和nS 满足2392222n n S a n n =-+-. (1)求1a ,并证明数列{}3n a n +为等比数列;(2)若(3)nn b n a n =+,求数列{}n b 的前n 项和n T .20.如图,在四棱锥P ABCD -中,PA PD =,PA PD ⊥,侧面PAD ⊥底面ABCD ,底面ABCD 为矩形,E 为AB 上的动点(与,A B 两点不重合).(1)判断平面PAE 与平面PDE 是否互相垂直?如果垂直,请证明:如果不垂直,请说明理由; (2)若2AB AD ==,试求二面角D PE C --的余弦值的绝对值的取值范围.21.已知1F ,2F 是椭圆E :()222210y xa b a b+=>>的两个焦点,点()1,2A -在椭圆E 上,且12AF F △6(1)求椭圆E 的方程.(2)过点()2,0B 的直线l 与椭圆E 交于C ,D 两点,直线AC ,AD 分别与直线2x =交于M ,N 两点.若MBm =,NB n =,试问()2m n mn+是否为定值?若是,求出该定值;若不是说明理由. 22.已知函数()2ln f x x x x x =-+.(1)设()f x 的零点为m ,求曲线()y f x =在点()0m ,处的切线方程; (2)若不等式()()()22120af x a a x ax a ≤+--≠对1,e x ∞⎡⎫∈+⎪⎢⎣⎭恒成立,求的取值范围月考答案一.选择题:1-8ABAACBBB 9AB 10AC 11BC 12AC二.填空题(13)(14)(15)1 (16)(0,)三.解答题17(1)由题知:原式=,的通项为,令,得;令,得.即原式展开式中的常数项为:.(2)①先将女生全排有种,再从5个空隙中选出3个将3个男生插入到3个空隙中有种,由乘法原理共有种排法.②将甲乙捆在一起,与剩下的3人(除丙丁)全排,再将丙丁插空到5个空隙中的2个有种,再将甲乙交换位置有种,由乘法原理共有种.18(1)由题意得,所以,所以.因为,所以.因为,所以.(2)由,可得.因为,,,所以,解得.因为,所以.19(1)当时,,,当时,①,②,由②①得,,,∴是一个以2为首项,公比为2的等比数列.(2),,①②由①②,得,.20(1)平面平面,证明如下:平面平面,平面平面,,平面,平面,平面,,又,,平面,平面,平面,平面平面.(2)取中点,连接,,为中点,,平面平面,平面平面,平面,平面,又,平面,平面,则以为坐标原点,正方向为轴,可建立如图所示空间直角坐标系,,,,,,,,,设,则,,,设平面的法向量,则,令,解得:,,;设平面的法向量,则,令,解得:,,;,,,,,,,即,二面角的余弦值的绝对值的取值范围为.21(1)因为,所以,解得,将代入椭圆方程得,又,所以,,所以椭圆的方程为.(2)设直线的方程为,,,联立直线和椭圆方程得①,,解得,当时,,此时直线与椭圆相切,代入①得,所以,,,,直线:,将,代入得,所以,同理可得,则,,,所以是定值,定值为4.22(1)由题意可得的定义域为,,设函数,则在上是增函数,又,所以,因为,所以,且,所以曲线在点处的切线方程为即.(2)由对恒成立,得对恒成立,当时由,得,设函数,则,当时,,当时,所以在上是增函数,在上是减函数,所以的最大值为,则,又,解得.当时,由,得,当时,,当时,,所以的最小值为0,则,又,得,综上a的取值范围是.。

2024届河北省高三大数据应用调研联合测评高三上学期12月月考语文试题及答案解析

2024届河北省高三大数据应用调研联合测评高三上学期12月月考语文试题及答案解析

2024届河北省高三大数据应用调研联合测评高三上学期12月月考语文试题及答案解析注意事项:1.答卷前,考生务必将自己的学校、班级、姓名和考号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,共19分)阅读下面的文字,完成1~5题。

在1023年的时候,宋朝的穷人家会教小孩如何种稻或织布,有钱人家则是教男孩读经写字、骑马射箭,教女孩三从四德。

毫无疑问,这些技能到了1060年还是很重要。

相较之下,对于中国或世界其他地方到2060年会是什么样子,现在的我们却一无所知,唯一能确定的就是一切都会改变,但到那个时候,现在孩子学的各种技能,绝大多数可能没有什么用了。

随着改变的步伐加速,除了经济会改变,就连“作为一个人”的意义也可能不同。

想跟上2060年的世界,我们该教什么呢?被大量信息淹没的21世纪,老师最不需要教给学生的就是更多的信息。

学生需要的是能够理解信息、判断信息重要性,最重要的是能够结合点滴信息,形成一套完整的世界观。

尤其是要能够随机应变,学习新事物,在不熟悉的环境里仍然保持心智平衡。

人类得一次又一次地重塑自己。

从远古时代开始,人的一生分为两个阶段:学习阶段和工作阶段。

你在第一阶段累积各种信息、发展各种技能、建构起自己世界观的同时,也建立起稳定的身份认同。

人生的第二阶段,你依靠累积下来的技能闯荡世界,谋取生计,贡献社会。

但到2060年,由于改变速度的加快、人的寿命延长,这种传统模式将无以为继。

人一生之中的各个接缝处可能出现裂痕,不同时期的人生也不再紧紧相连。

“我是谁”会变成一个比以往更加紧迫也更加复杂的问题。

而这很可能会带来极大的压力,因为改变总是会造成压力。

2021-2022年高三上学期12月月考数学试卷(文科)含解析

2021-2022年高三上学期12月月考数学试卷(文科)含解析

2021年高三上学期12月月考数学试卷(文科)含解析一、选择题(每小题5分,共计50分)1.设i是虚数单位,复数( )A.3﹣2i B.3+2i C.2﹣3i D.2+3i2.集合A={x|x2﹣a≥0},B={x|x<2},若C R A⊆B,则实数a的取值范围是( ) A.(﹣∞,4] B.[0,4] C.(﹣∞,4)D.(0,4)3.已知a0=20.5,b=log32,c=log20.1,则( )A.a<b<c B.c<a<b C.c<b<a D.b<c<a4.下列四个结论:①若x>0,则x>sinx恒成立;②命题“若x﹣sinx=0则x=0”的逆命题为“若x≠0则x﹣sinx≠0”;③“命题p或q为真”是“命题p且q为真”的充分不必要条件;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”.其中正确结论的个数是( )A.1个B.2个C.3个D.4个5.直线x+my+1=0与不等式组表示的平面区域有公共点,则实数m的取值范围是( )A.[,]B.[﹣,﹣]C.[,3] D.[﹣3,﹣]6.已知某几何体的三视图,则该几何体的体积是( )A.12 B.24 C.36 D.487.设0<a<1,则函数y=的图象大致为( )A.B.C.D.8.已知向量=(0,sinx),=(1,2cosx),函数f(x)=•,g(x)=2+2﹣,则f(x)的图象可由g(x)的图象经过怎样的变换得到( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度9.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为( )A. B. C. D.10.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是( )A.(0,)B.(,e)C.(0,]D.[,)二、解答题(每小题5分共计25分)11.已知sinα﹣cosα=,α∈(0,π),tanα=__________.12.已知平面向量=(1,2),=(﹣2,m),且⊥,则2+3=__________.13.函数y=lg(1﹣)+的定义域是__________.14.设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且的值为__________.15.给出下列四个命题:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;②a、b、c是空间中的三条直线,a∥b的充要条件是a⊥c且b⊥c;③命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题;④对任意实数x,有f(﹣x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.其中的真命题是__________.(写出所有真命题的编号)三、解答题:16.已知函数f(x)=sinωxcosωx﹣cos2ωx﹣(ω>0,x∈R)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,sinB=3sinA,求a,b的值.17.已知数列{a n}前n项和S n满足:2S n+a n=1(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,数列{b n}的前n项和为T n,求证:T n<.18.已知函数.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值,并求出相应的x的值.19.如图正方形ABCD的边长为ABCD的边长为,四边形BDEF是平行四边形,BD与AC 交于点G,O为GC的中点,平面ABCD.(I)求证:AE∥平面BCF;(Ⅱ)若,求证CF⊥平面AEF.20.(13分)已知函数f(x)=lnx﹣mx,m∈R(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≤﹣2m+1在[1,+∞)上恒成立,求实数m的取值范围.21.(14分)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.xx山东省潍坊市寿光五中高三(上)12月月考数学试卷(文科)一、选择题(每小题5分,共计50分)1.设i是虚数单位,复数( )A.3﹣2i B.3+2i C.2﹣3i D.2+3i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则即可得出.【解答】解:复数===3﹣2i,故选:A.【点评】本题考查了复数的运算法则,属于基础题.2.集合A={x|x2﹣a≥0},B={x|x<2},若C R A⊆B,则实数a的取值范围是( )A.(﹣∞,4]B.[0,4]C.(﹣∞,4)D.(0,4)【考点】补集及其运算;集合的包含关系判断及应用.【专题】集合.【分析】根据集合的补集关系进行求解即可.【解答】解:∵A={x|x2﹣a≥0}={x|x2≥a},∴C R A={x|x2≤a},若a<0,则C R A=∅,满足C R A⊆B,若a≥0,则C R A={x|x2<a}={x|﹣<x<},若C R A⊆B,则≤2,解得0≤a≤4,综上a≤4,故选:A【点评】本题主要考查集合的基本运算和集合关系的应用,注意分类讨论.3.已知a0=20.5,b=log32,c=log20.1,则( )A.a<b<c B.c<a<b C.c<b<a D.b<c<a【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用指数函数和对数函数的单调性即可得出.【解答】解:∵a=20.5>20=1,0<b=log32<log33=1,c=log20.1<log21=0.∴c<b<a.故选:C.【点评】本题考查了指数函数和对数函数的单调性,属于基础题.4.下列四个结论:①若x>0,则x>sinx恒成立;②命题“若x﹣sinx=0则x=0”的逆命题为“若x≠0则x﹣sinx≠0”;③“命题p或q为真”是“命题p且q为真”的充分不必要条件;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”.其中正确结论的个数是( )A.1个B.2个C.3个D.4个【考点】命题的真假判断与应用.【专题】规律型;探究型;构造法;导数的概念及应用;简易逻辑.【分析】令f(x)=x﹣sinx,利用导数分析其单调性,可判断①;写出原命题的逆命题,可判断②;根据充要条件的定义,可判断③;写出原命题的否定,可判断④.【解答】解:令f(x)=x﹣sinx,则f′(x)=1﹣cosx≥0恒成立,故f(x)=x﹣sinx在R上为增函数,故x>0时,f(x)>f(0)=0,即x>sinx恒成立,故①正确;命题“若x﹣sinx=0,则x=0”的逆命题为“若x=0,则x﹣sinx=0”,故②错误;“命题p或q为真”时,“命题p且q为真”不一定成立,“命题p且q为真”时,“命题p或q为真”成立,故“命题p或q为真”是“命题p且q为真”的必要不充分条件,故③错误;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”,故正确.其中正确结论的个数是2个,故选:B【点评】本题考查的知识点是全称命题的否定,四种命题,复合命题,函数的单调性,难度中档.5.直线x+my+1=0与不等式组表示的平面区域有公共点,则实数m的取值范围是( )A.[,]B.[﹣,﹣]C.[,3] D.[﹣3,﹣]【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.【解答】解:即直线x+my+1=0过定点D(﹣1,0)作出不等式组对应的平面区域如图:当m=0时,直线为x=﹣1,此时直线和平面区域没有公共点,故m≠0,x+my+1=0的斜截式方程为y=x,斜率k=,要使直线和平面区域有公共点,则直线x+my+1=0的斜率k>0,即k=>0,即m<0,满足k CD≤k<k AB,此时AB的斜率k AB=2,由解得,即C(2,1),CD的斜率k CD==,由,解得,即A(2,4),AD的斜率k AD==,即≤k≤,则≤≤,解得﹣3≤m≤﹣,故选:D.【点评】本题主要考查线性规划以及斜率的应用,利用数形结合是解决本题的关键.6.已知某几何体的三视图,则该几何体的体积是( )A.12 B.24 C.36 D.48【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】利用三视图判断几何体的形状,通过三视图是数据,求出几何体的体积即可.【解答】解:三视图复原的几何体是底面为边长4、3的矩形,高为3的棱锥,高所在棱垂直底面矩形的一个得到,所以棱锥的体积为:=12.故选:A.【点评】本题主要考查关于“几何体的三视图”与“几何体的直观图”的相互转化的掌握情况,同时考查空间想象能力.7.设0<a<1,则函数y=的图象大致为( )A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】利用0<a<1,判断a x,x>0时的范围,以及x<0时的范围,然后求解a x﹣1的范围,倒数的范围,即可判断函数的图象.【解答】解:因为0<a<1,x>0时,0<a x<1,﹣1<a x﹣1<0,<﹣1,x<0时,a x>1,a x﹣1>0,>0,观察函数的图象可知:B满足题意.故选:B.【点评】本题考查指数函数的图象,解题时要认真审题,仔细解答,注意合理地进行等价转化,注意函数的值域以及指数函数的性质.8.已知向量=(0,sinx),=(1,2cosx),函数f(x)=•,g(x)=2+2﹣,则f(x)的图象可由g(x)的图象经过怎样的变换得到( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换;平面向量数量积的运算.【专题】平面向量及应用.【分析】由题意利用两个向量的数量积公式、诱导公式可得函数f(x)=sin2x,g(x)=sin2(x+),再根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:由题意可得函数f(x)=•=(2sinxcosx)=sin2x,g(x)=2+2﹣=sin2x+1+4cos2x﹣=3cos2x﹣=cos2x=sin(2x+)=sin2(x+),故把g(x)的图象向右平移个单位长度,可得f(x)的图象,故选:B.【点评】本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.9.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为( )A. B. C. D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,求出函数的解析式.再由f (x0)=3求出sin(x0+ )的值,可得cos(x0+ )的值,再由两角差的正弦公式求得sinx0 =sin[(x0+ )﹣]的值.【解答】解:由函数的图象可得A=5,且=,解得ω=1再由五点法作图可得1•+φ=,解得φ=.故函数的解析式为f(x)=5sin(x+ ).再由f (x0)=3,x0∈(,),可得5sin(1•x0+ )=3,解得sin(x0+ )=,故有cos(x0+ )=﹣,sinx0 =sin[(x0+ )﹣]=sin(x0+ )cos﹣cos(x0+ )sin=﹣(﹣)=.故选A.【点评】本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,两角差的正弦公式的应用,属于中档题.10.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是( )A.(0,)B.(,e)C.(0,]D.[,)【考点】根的存在性及根的个数判断;函数零点的判定定理.【专题】函数的性质及应用.【分析】首先,画出函数f(x)=|lnx|的图象,然后,借助于图象,结合在区间(0,3]上有三个零点,进行判断.【解答】解:函数f(x)=|lnx|的图象如图示:当a≤0时,显然,不合乎题意,当a>0时,如图示,当x∈(0,1]时,存在一个零点,当x>1时,f(x)=lnx,可得g(x)=lnx﹣ax,(x∈(1,3])g′(x)==,若g′(x)<0,可得x>,g(x)为减函数,若g′(x)>0,可得x<,g(x)为增函数,此时f(x)必须在[1,3]上有两个零点,∴解得,,在区间(0,3]上有三个零点时,,故选D.【点评】本题重点考查函数的零点,属于中档题,难度中等.二、解答题(每小题5分共计25分)11.已知sinα﹣cosα=,α∈(0,π),tanα=﹣1.【考点】同角三角函数间的基本关系.【专题】计算题;三角函数的求值.【分析】已知等式左边提取,利用两角和与差的正弦函数公式化简,求出sin(α﹣)的值为1,由α的范围,利用特殊角的三角函数值求出α的度数,即可求出tanα的值.【解答】解:∵sinα﹣cosα=sin(α﹣)=,∴sin(α﹣)=1,∵α∈(0,π),∴α﹣=,即α=,则tanα=﹣1.【点评】此题考查了同角三角函数间的基本关系,特殊角的三角函数值,以及两角和与差的正弦函数公式,熟练掌握公式及基本关系是解本题的关键.12.已知平面向量=(1,2),=(﹣2,m),且⊥,则2+3=(﹣4,7).【考点】平面向量的坐标运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】由向量=(1,2),=(﹣2,m),且⊥,求出m的值,则2+3的答案可求.【解答】解:∵向量=(1,2),=(﹣2,m),且⊥,∴﹣2+2m=0,解得m=1,则2+3=2×(1,2)+3×(﹣2,1)=(﹣4,7).故答案为:(﹣4,7).【点评】本题考查了平面向量数量积的运算,考查了平面向量的坐标运算,是基础题.13.函数y=lg(1﹣)+的定义域是[log23,+∞).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据函数成立的条件,即可求出函数的定义域.【解答】解:要使函数有意义,则,即,∴x≥log23,即函数的定义域为[log23,+∞),故答案为:[log23,+∞)【点评】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.14.设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且的值为.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积.【专题】空间位置关系与距离.【分析】设两个圆柱的底面半径分别为R,r,高分别为H,h,由=,得=,由它们的侧面积相等,得=,由此能求出.【解答】解:设两个圆柱的底面半径分别为R,r,高分别为H,h,∵=,∴=,∵它们的侧面积相等,∴=1,∴=,∴==()2×=.故答案为:.【点评】本题考查两个圆柱的体积的比值的求法,是中档题,解题时要注意圆柱的体积和侧面积计算公式的合理运用.15.给出下列四个命题:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;②a、b、c是空间中的三条直线,a∥b的充要条件是a⊥c且b⊥c;③命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题;④对任意实数x,有f(﹣x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.其中的真命题是①④.(写出所有真命题的编号)【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】①利用命题的否定即可判断出;②由a⊥c且b⊥c可得a∥b或相交或为异面直线,另一方面由a∥b,推不出a⊥c,b⊥c,即可判断出;③在△ABC中,A>B⇔a>b,由正弦定理可得:,可得sinA>sinB.④利用偶函数的性质即可得出.【解答】解:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”,正确;②a、b、c是空间中的三条直线,由a⊥c且b⊥c可得a∥b或相交或为异面直线,由a∥b,推不出a⊥c,b⊥c,因此“a⊥c且b⊥c”是a∥b的既不充分也不必要条件,因此②不正确;③在△ABC中,由A>B⇔a>b,由正弦定理可得:,因此sinA>sinB.可知逆命题为真命题,因此不正确;④对任意实数x,有f(﹣x)=f(x),可知函数f(x)是偶函数.由当x>0时,f′(x)>0,则当x<0时,f′(x)<0.正确.综上可知:只有①④正确.故答案为:①④.【点评】本题综合考查了空间中的线线位置关系、三角形的边角关系、函数的奇偶性单调性、简易逻辑等基础知识与基本技能方法,属于基础题.三、解答题:16.已知函数f(x)=sinωxcosωx﹣cos2ωx﹣(ω>0,x∈R)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,sinB=3sinA,求a,b的值.【考点】余弦定理;两角和与差的正弦函数;正弦函数的单调性.【专题】解三角形.【分析】(Ⅰ)f(x)解析式利用二倍角的正弦、余弦函数公式化简,整理为一个角的正弦函数,根据题意确定出ω的值,确定出f(x)解析式,利用正弦函数的单调性求出函数f(x)的单调递增区间即可;(Ⅱ)由f(C)=0,求出C的度数,利用正弦定理化简sinB=3sinA,由余弦定理表示出cosC,把各自的值代入求出a与b的值即可.【解答】解:f(x)=sin2ωx﹣(1+cos2ωx)﹣=sin(2ωx﹣)﹣1,∵f (x )图象上相邻两个最高点的距离为π,∴=π,即ω=1,则f (x )=sin (2x ﹣)﹣1,(Ⅰ)令﹣+2k π≤2x ﹣≤+2k π,k ∈Z ,得到﹣+k π≤x ≤k π+,k ∈Z ,则函数f (x )的单调递增区间为[﹣+k π,k π+],k ∈Z ;(Ⅱ)由f (C )=0,得到f (C )=sin (2C ﹣)﹣1=0,即sin (2x ﹣)=1,∴2C ﹣=,即C=,由正弦定理=得:b=,把sinB=3sinA 代入得:b=3a ,由余弦定理及c=得:cosC===,整理得:10a 2﹣7=3a 2,解得:a=1,则b=3.【点评】此题考查了正弦、余弦定理,以及二倍角的正弦、余弦函数公式,熟练掌握定理是解本题的关键.17.已知数列{a n }前n 项和S n 满足:2S n +a n =1(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =,数列{b n }的前n 项和为T n ,求证:T n <.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(I )利用递推式可得:.再利用等比数列的通项公式即可得出;(II )由(I )可得b n ==,;利用“裂项求和”即可得出数列{b n }的前n 项和为T n ,进而得到证明.【解答】(I )解:∵2S n +a n =1,∴当n ≥2时,2S n ﹣1+a n ﹣1=1,∴2a n +a n ﹣a n ﹣1=0,化为.当n=1时,2a 1+a 1=1,∴a 1=.∴数列{a n }是等比数列,首项与公比都为.∴.(II )证明:b n = ===,∴数列{b n }的前n 项和为T n =++…+=.∴T n <.【点评】本题考查了递推式的应用、等比数列的通项公式、“裂项求和”、不等式的证明,考查了推理能力与计算能力,属于中档题.18.已知函数.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值,并求出相应的x的值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【专题】三角函数的图像与性质.【分析】(1)利用三角函数的倍角公式和诱导公式化简函数f(x),然后直接由周期公式求周期;(2)通过函数的图象的平移求解函数g(x)的解析式为g(x)=,由x的范围求出的范围,从而求得函数g(x)的最值,并得到相应的x的值.【解答】解:(1)由,得==.∴f(x)的最小正周期为π;(2)∵将f(x)的图象向右平移个单位,得到函数g(x)的图象,∴=.∵x∈[0,)时,,∴当,即时,g(x)取得最大值2;当,即x=0时,g(x)取得最小值.【点评】本题考查了三角函数的倍角公式及诱导公式,考查了三角函数的图象平移,训练了三角函数的最值得求法,是中档题.19.如图正方形ABCD的边长为ABCD的边长为,四边形BDEF是平行四边形,BD与AC 交于点G,O为GC的中点,平面ABCD.(I)求证:AE∥平面BCF;(Ⅱ)若,求证CF⊥平面AEF.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;数形结合;数形结合法;空间位置关系与距离.【分析】(I)利用正方形,平行四边形的性质可得AD∥BC,DE∥BF,可证平面ADE∥平面BCF,即可证明AE∥平面BCF…5分(Ⅱ)由已知可证AC2=AF2+CF2,由勾股定理可得CF⊥AF,又FO⊥平面ABCD,可得FO⊥BD,又AC⊥BD,即可证明BD⊥平面AFC,结合EF∥BD,即可证明EF⊥CF,从而可证CF⊥平面AEF.【解答】证明:(I)∵四边形ABCD为正方形,四边形BDEF是平行四边形,∴AD∥BC,DE∥BF,∵AD∩DE=D,BC∩BF=B,∴平面ADE∥平面BCF,又∵AE⊂平面ADE,∴AE∥平面BCF…5分(Ⅱ)∵正方形ABCD边长为2,∴对角线AC=4,又∵O为GC中点,∴AO=3,OC=1又∵FO⊥平面ABCD,且FO=,∴AF2=AO2+OF2=9+3=12,CF2=OC2+OF2=1+3=4,又AC2=16,∴AC2=AF2+CF2,∴CF⊥AF,又FO⊥平面ABCD,BD⊂平面ABCD,∴FO⊥BD又∵AC⊥BD∴BD⊥平面AFC,又∵EF∥BD,∴EF⊥平面AFC∴EF⊥CF,又EF∩AF=F∴CF⊥平面AEF…12分【点评】本题主要考查了直线与平面垂直的判定,直线与平面平行的判定,考查了空间想象能力和推理论证能力,属于中档题.20.(13分)已知函数f(x)=lnx﹣mx,m∈R(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≤﹣2m+1在[1,+∞)上恒成立,求实数m的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】导数的概念及应用;导数的综合应用.【分析】(1)先对原函数求导数,然后通过解导数大于零或小于零的不等式得到原函数的单调区间;(2)先将原不等式归零化简,然后通过求函数的最值解决问题,只需利用导数研究函数的单调性即可,注意分类讨论.【解答】解:由题意可得,函数f(x)的定义域为(0,+∞),f′(x)=.(1)当m≤0时,f′(x)>0,此时函数f(x)在(0,+∞)上单调递增,当m>0时,令f′(x)>0,解得,令f′(x)<0,解得.所以当m≤0时,此时函数f(x)在(0,+∞)上单调递增;当m>0时,函数f(x)的单调递增区间为(0,),单调减区间为().(2)因为在[1,+∞)上恒成立.即在[1,+∞)上恒成立,令g(x)=,则,(1)当,即时,若,则g′(x)<0,g(x)是减函数,所以g(x)<g(1)=0,即g(x)≥0在[1,+∞)上不恒成立;(2)当,即时,若x>1,则g′(x)>0,g(x)是增函数,所以g(x)>g(1)=0,即,故当x≥1时,f(x)恒成立.综上所述,所求的正实数m的取值范围是.【点评】本题考查了利用导数研究函数的单调性的思路,以及不等式恒成立问题转化为函数的最值问题来解的基本思想.21.(14分)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.【考点】基本不等式在最值问题中的应用.【专题】不等式的解法及应用.【分析】(1)根据产品的利润=销售额﹣产品的成本建立函数关系;(2)利用基本不等式可求出该函数的最值,注意等号成立的条件.【解答】解:(1)由题意知,,将代入化简得:(0≤x≤a).…(2),当且仅当,即x=1时,上式取等号.…当a≥1时,促销费用投入1万元时,厂家的利润最大;当a<1时,在[0,a]上单调递增,所以x=a时,函数有最大值.即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元,厂家的利润最大.…【点评】本题主要考查了函数模型的选择与应用,以及基本不等式在最值问题中的应用,同时考查了计算能力,属于中档题.。

北京一六一中学2023—2024 学年度上学期12月月考高三语文试题及答案

北京一六一中学2023—2024 学年度上学期12月月考高三语文试题及答案

北京一六一中学2023—2024学年度上学期12月月考高三语文2023.12一、实用类文本阅读(本大题5小题,共18分)材料一历史如潮,大道如砥。

十年砥砺前行,化作惊艳跨步。

2020年,嫦娥五号顺利从月球带回约2公斤月壤。

自立项以来,中国探月工程“一张蓝图绘到底”,“一条龙”攻关攻坚,“一盘棋”协同推进,“一体化”迭代提升。

诗歌中的婵娟从书页来到现实,中华民族“九天揽月”的千年梦想得以实现。

2021年,“天问一号”探测器着陆火星,实现了从地月系到行星际的跨越;随后,“祝融号”火星车成功驶上火星表面开始巡视探测,我国首次火星探测任务一次实现了“绕、着、巡”三个目标。

同年,随着首颗太阳探测科学技术试验卫星“羲和号”成功发射,中国迈入“探日”时代。

“效法羲和驭天马,志在长空牧群星”,沿着上古神话中的“太阳女神”羲和的脚步,中国人的宇宙探索终于拓展到这颗始终照耀着华夏儿女的璀璨星球。

“问鼎苍穹”承载着中国人探索浩瀚宇宙的雄心与浪漫;“跨山越海”则改写了神州大地的时空格局,挺起了泱泱大国的发展骨架。

“逢山开路、遇水搭桥”。

港珠澳大桥、伶仃洋大桥、泉州湾大桥……一座座跨海大桥,让“天堑变通途”,创造了“当惊世界殊”的发展成就。

“原来去澳门一天只能跑一趟,现在一天可以跑四趟;通过香港机场走的航空货,原来要提前两天到达香港仓库,现在通过大桥仅需提前半天。

”对于在珠海从事跨境电商工作的郑太龙来说,被英国《卫报》誉为“现代世界七大奇迹之一”的港珠澳大桥让他运货花的时间更少了,收益更高了。

2022年9月5日,在建世界高速公路第一长隧——全长22.035公里的乌尉天山胜利隧道进口端三洞顺利穿越全线最大断层,为隧道顺利贯通和乌尉高速公路顺利通车创造了良好条件。

乌尉高速全线共设置隧道20座、桥梁117座,桥隧比达到40.37%,其通车将意味着南北疆交通屏障完全被打破。

走天山,独库公路、巴里坤至哈密公路、乌尉高速公路分卧西、东、中三线,物畅其流的通衢大道让丝绸古道焕新颜;越沙漠,和若铁路自2018年底正式开工建设到正式通车仅用时三年多,建设跑出加速度,铁路在塔克拉玛干沙漠“画”了一个圈。

2023届安徽省滁州市定远县民族中学高三年级上册学期12月月考数学试题【含答案】

2023届安徽省滁州市定远县民族中学高三年级上册学期12月月考数学试题【含答案】

2023届安徽省滁州市定远县民族中学高三上学期12月月考数学试题一、单选题1.已知集合{}32A x x =-≤≤,{}2230B x x x =+-≤,则()RAB =( )A .(]1,2B .[]1,2C .[)3,1-D .[]3,1-【答案】A【分析】求出集合B ,用补集和交集的运算性质计算即可.【详解】因为集合{}{}223031B x x x x x =+-≤=-≤≤,所以{}31R B x x x =-或.又{}32A x x =-≤≤,所以(){}12R A B x x ⋂=<≤. 故选:A .2.设函数()2log f x x =,若13log 2a f ⎛⎫= ⎪⎝⎭,()5log 2b f =,()0.2C f e =,则a ,b ,c 的大小为( )A .b a c <<B .c<a<bC .b<c<aD .a b c <<【答案】A【分析】由题可得()f x 为偶函数,且在(0,)+∞上为增函数,由此可得3(log 2)a f =,然后利用对数函数和指数函数的性质比较0.253log 2,log 2,e 的大小,从而可比较出a ,b ,c 的大小【详解】解:因为22()log log ()f x x x f x -=-==,所以()f x 为偶函数,所以1333(lo lo g 2)(log 22)g a f f f ⎛⎫==-= ⎪⎝⎭,当0x >时,2(x)log f x =在(0,)+∞上为增函数, 因为530log 2log 21<<<,0.201e e >=, 所以0.2530log 2log 2e <<<, 因为()f x 在(0,)+∞上为增函数,所以0.253(log 2)(log 2)()f f f e <<,所以b a c <<, 故选:A【点睛】此题考查对数函数和指数函数的性质,考查函数的奇偶性和单调性的应用,考查转化能力,属于基础题.3.已知()f x ,()g x 分别为定义域为R 的偶函数和奇函数,且()()e xf xg x +=,若关于x 的不等式()()220f x ag x -≥在()0,ln3上恒成立,则正实数a 的取值范围是( )A .15,8⎡⎫+∞⎪⎢⎣⎭B .40,9⎡⎫+∞⎪⎢⎣⎭C .400,9⎛⎤ ⎥⎝⎦D .150,8⎛⎤ ⎥⎝⎦【答案】D【分析】由奇偶性求得()f x ,()g x ,化简不等式,并用分离参数法变形为()()24e e eex x xx a --+≤-,设e e x x t -+=,换元后利用函数的单调性求得不等式右边的取值范围,从而可得a 的范围.【详解】解:已知()f x ,()g x 分别为定义域为R 的偶函数和奇函数,则()()()(),f x f x g x g x =-=--,又()()e x f x g x +=①,则()()()()e e x xf xg x f x g x ---+-=⇒-=②,由①②可得()()e e e e ,22x x x xf xg x --+-==, 则不等式()()220f x ag x -≥在()0,ln3上恒成立,转化为:()2e e e e 04x xx x a ---+-≥在()0,ln3上恒成立,因为()0,ln3x ∈,所以e e 0x x -->,即()()()()224e e 4e e e e e e 4x xxxx xxxa ----++≤=-+-,令e e x x t -+=,则24444t a t t t≤=--,e e x x t -=+,()0,ln3x ∈,则e e 0x x t -'=->,e e x x t -=+在()0,ln3上是增函数,102,3t ⎛⎫∈ ⎪⎝⎭,又4y t t =-在102,3t ⎛⎫∈ ⎪⎝⎭时是增函数,所以432015t t <-<,则41548t t >-, 又()()24e e ee x x xx a --+≤-在()0,ln3x ∈上恒成立,则158a ≤. 则正实数a 的取值范围是150,8⎛⎤⎥⎝⎦.故选:D .4.函数()(1)ln 1f x x x =+-的大致图像是( )A .B .C .D .【答案】B【分析】由1()02f ->排除两个选项,再由2x >时,()0f x >排除一个选项后可得正确选项.【详解】∵()(1)ln 1f x x x =+-,所以113()ln 0222f -=>,故排除C ,D ,当2x >时,()(1)ln(1)0f x x x =+->恒成立,排除A , 故选:B .5.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,4x π=-是函数的一个零点,且4x π=是其图象的一条对称轴.若,96ππ⎛⎫⎪⎝⎭是()f x 的一个单调区间,则ω的最大值为A .18B .17C .15D .13【答案】D【分析】由已知可得()221T k Z k π=∈+,结合2T πω=,得到21k ω=+(k Z ∈),再由96ππ⎛⎫⎪⎝⎭,是()f x 的一个单调区间,可得1692ππ-≤T ,即9T π≥,进一步得到8.5k ≤,然后对k 逐一取值,分类求解得答案.【详解】由题意,得()1+42442k T k Z πππ⎛⎫⎛⎫=--=∈ ⎪ ⎪⎝⎭⎝⎭,∴()221T k Z k π=∈+, 又2T πω=,∴21k ω=+(k Z ∈).∵96ππ⎛⎫⎪⎝⎭,是()f x 的一个单调区间,∴1692ππ-≤T ,即9T π≥,∵221T k π=+,∴2118k +≤,即8.5k ≤.①当8k =,即17ω=时,174k πϕπ-+=,k Z ∈,∴174k πϕπ=+,k Z ∈,∵||2ϕπ<,∴4πϕ=,此时()sin 174A x f x π⎛⎫=+ ⎪⎝⎭在96ππ⎛⎫ ⎪⎝⎭,上不单调,∴17ω=不符合题意; ②当7k =,即15ω=时,154k πϕπ-+=,k Z ∈,∴154k ϕππ=+,k Z ∈, ∵||2ϕπ<,∴4πϕ=-,此时()sin 154A x f x π⎛⎫=- ⎪⎝⎭在96ππ⎛⎫ ⎪⎝⎭,上不单调,∴15ω=不符合题意; ③当6k =,即13ω=时,134k πϕπ-+=,k Z ∈,∴134k ϕππ=+,k Z ∈. ∵||2ϕπ<,∴4πϕ=,此时()sin 134A x f x π⎛⎫=+ ⎪⎝⎭在96ππ⎛⎫ ⎪⎝⎭,上单调递增,∴13ω=符合题意,故选D .【点睛】本题主要考查正弦型函数的单调性,ω对周期的影响,零点与对称轴之间的距离与周期的关系,考查分类讨论的数学思想方法,考查逻辑思维能力与推理运算能力,结合选项逐步对系数进行讨论是解决该题的关键,属于中档题.6.如图所示,平面向量OA ,OB 的夹角为60°,22OB OA ==,点P 关于点A 的对称点Q ,点Q 关于点B 的对称点为点R ,则PR 为( )A 3B .3C .4D .无法确定【答案】B【分析】首先根据条件转化向量()2PR OB OA =-,再利用向量数量积求模. 【详解】()()222PR QR QP QB QA AB OB OA =-=-==-,()2222222PR OB OA OB OAOB OA OB OA ∴=-=-=+-⋅241221cos60=+-⨯⨯⨯3=.故选:B7.在等差数列{}n a 中,12022a =-,其前n 项和为n S ,若1082108S S -=,则2022S =( ) A .2021 B .-2021C .-2022D .2022【答案】C【分析】由等差数列前n 项和公式可得数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,根据1082108S S -=可得公差为1,即可求解20222022S的值,即可得出结论.【详解】解:因为数列{}n a 为等差数列,故1()2n n n a a S +=,则12n n S a an +=,当2n ≥时,11112n n S a a n --+=-,则111111222n n n n n n S S a a a a a an n ---++--=-=-, 所以数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,设其公差为d .又10822108S S d -==,即1d =,又1120221S a ==-,所以()202212023n S n n n =-+-=-+,所以20222023202212022S=-+=-,即20222022S =-. 故选:C.8.已知函数()f x 是定义在R 上的可导函数,对于任意的实数x ,都有()()2e xf x f x -=,当0x >时,()()0f x f x +'>,若()()1e 212a f a f a -+≥+,则实数a 的取值范围是( )A .[]1,1-B .[]22-,C .][(),11,-∞-⋃+∞D .][(),22,∞∞--⋃+【答案】C【分析】令()()e x g x f x =,根据()()2e xf x f x -=,可得()()g x g x -=,即()g x 为偶函数,再根据当0x >时,()()0f x f x +'>,利用导数判断函数()g x 在()0,∞+上得单调性,再根据()()1e 212a f a f a -+≥+,即()()212e21e 2a a f a f a +++≥+,即()()212g a g a +≥+,再根据函数的单调性即可得出答案.【详解】解:因为()()2e xf x f x -=,所以()()()e e ex x xf x f x f x --==-, 令()()e xg x f x =,则()()g x g x -=,所以()g x 为偶函数,当0x >时,()()0f x f x +'>,所以()()()e 0xg x f x f x ''=+>⎡⎤⎣⎦,所以函数()g x 在()0,∞+上单调递增,根据偶函数对称区间上单调性相反的性质可知()g x 在(),0∞-上单调递减, 因为()()1e212a f a f a -+≥+, 所以()()212e21e 2a a f a f a +++≥+,所以()()212g a g a +≥+, 即212a a +≥+, 解得1a ≤-或1a ≥. 故选:C.【点睛】本题重点考查利用函数的单调性与奇偶性解不等式,关键在于构造正确的函数,考查了利用导数判断函数在区间上的单调性,考查了数据分析能力,有一定的难度.二、多选题9.已知定义在R 上函数()f x 的图象是连续不断的,且满足以下条件:①x ∀∈R ,()()f x f x -=;②m ∀,()0,n ∈+∞,当m n ≠时,都有()()0f m f n m n-<-;③()10f -=.则下列选项成立的是( )A .()()34f f >-B .若()()12f m f -<,则()3,m ∈+∞C .若()0f x x<,()()1,01,x ∈-⋃+∞ D .x ∀∈R ,∃∈M R ,使得()f x M ≤【答案】ACD【分析】根据条件判断函数的奇偶性、单调性,对于A ,根据函数性质比较函数值大小;对于B ,()()12f m f -<,等价于12m ->,求得参数范围;对于C ,若()0f x x<,分类讨论求得不等式解集;对于D ,根据函数的性质知,函数存在最大值()0f ,从而满足条件.【详解】由①知函数()f x 为偶函数;由②知,函数()f x 在()0,x ∈+∞上单调递减; 则函数()f x 在(),0x ∈-∞上单调递增; 对于A ,()()3(3)4f f f =->-,故A 正确;对于B ,()()12f m f -<,则12m ->,解得()(,3,1)m ∈⋃-∞-+∞,故B 错误; 对于C ,若()0f x x<,由题知()1(1)0f f -==,则当0x >时,()0f x <,解得1x >;当0x <时,()0f x >,解得10x -<<,故C 正确;对于D ,根据函数单调性及函数在R 上的图形连续知,函数存在最大值()0f ,则只需()0M f ≥,即可满足条件,故D 正确; 故选:ACD10.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法正确的有( )A .166AC =B .BD ⊥平面1ACCC .向量1AA 与1B C 的夹角是60°D .直线1BD 与AC 6【答案】ABD【分析】利用空间向量法,根据空间向量的线性运算和数量积运算,及线面垂直的判定定理逐项分析即得.【详解】以{}1,,AB AD AA 为空间一组基底,则11AC AB AD AA =++, ()2211AC AB AD AA =++()2221112AB AD AA AB AD AD AA AB AA =+++⋅+⋅+⋅()3636362366cos60216=+++⨯⨯⨯︒=,所以166AC =A 选项正确;由题可知四边形ABCD 是菱形,所以⊥BD AC , 又BD AD AB =-,()1111BD CC AD AB AA AD AA AB AA ⋅=-⋅=⋅-⋅66cos6066cos600=⨯⨯︒-⨯⨯︒=,所以1BD CC ⊥,即1BD CC ⊥,由于1AC CC C ⋂=,AC ⊂平面1ACC ,1CC ⊂平面1ACC , 所以BD ⊥平面1ACC ,B 选项正确;由题可知1BB 与1B C 的夹角为120,也即1B C 与1AA 的夹角为120,C 选项错误;111BD AD AB AD AA AB =-=+-,()()22222111112BD AD AA ABAD AA AB AD AA AD AB AA AB =+-=+++⋅-⋅-⋅()363636266cos6066cos6066cos6072=+++⨯⨯⨯︒-⨯⨯︒-⨯⨯︒=,所以162BD =AC AB AD =+,()2222236266cos 6036108AC AB AD AB AB AD AD =+=+⋅+=+⨯⨯⨯︒+=,所以63AC =()()11BD AC AD AA AB AB AD ⋅=+-⋅+11AD AB AA AB AB AB AD AD AA AD AB AD =⋅+⋅-⋅+⋅+⋅-⋅ 266cos6036=⨯⨯⨯︒=,设直线1BD 与直线AC 所成角为θ,则111cos cos ,6BDAC BD AC BD ACθ⋅===⋅D 选项正确. 故选:ABD.11.关于函数()cos 2cos f x x x x =-⋅,则下列命题正确的是( ) A .存在1x 、2x 使得当12x x π-=时,12()()f x f x =成立 B .()f x 在区间[]63ππ-,上单调递增C .函数()f x 的图象关于点(0)12π,中心对称 D .将函数()f x 的图象向左平移512π个单位长度后与()2sin 2g x x =的图象重合. 【答案】AC【分析】化简f (x )的解析式,利用余弦型或正弦型函数的图像与性质即可逐项判断﹒【详解】()cos 2cos cos 222cos(2)3f x x x x x x x π=-⋅==+,A 选项,周期为22ππ=,根据f (x )图像的对称性知存在1x 、2x 使得当12x x π-=时,12()()f x f x =成立,A 对;B 选项,[],20,,2cos 633x x y t ππππ⎡⎤∈-⇒+∈=⎢⎥⎣⎦在[]0,t π∈上单调递减,故()f x 在区间[]63ππ-,上单调递减,B 错;C 选项,因为()2cos(2)012123f πππ=⨯+=,所以函数()f x 的图象关于点(0)12π,中心对称,C 对; D 选项,()f x 的图象向左平移512π个单位长度后为()52cos 22sin 22sin21233h x x x x πππ⎡⎤⎛⎫⎛⎫=++=-≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,D 错; 故选:AC.12.树人中学的“希望工程”中,甲、乙两个募捐小组暑假期间走上街头分别进行了为期两周的募捐活动.两个小组第1天都募得1000元,之后甲小组继续按第1天的方法进行募捐,则从第2天起,甲小组每一天得到的捐款都比前一天少50元;乙小组采取了积极措施,从第1天募得的1000元中拿出了600元印刷宣传材料,则从第2天起,第()*,2n n n ∈N 天募得的捐款数为1180012n -⎛⎫+ ⎪⎝⎭元.若甲小组前n 天募得捐款数累计为n S 元,乙小组前n 天募得捐款数累计为n T 元(需扣除印刷宣传材料的费用),则( ) A .66S T >B .甲小组募得捐款为9550元C .从第7天起,总有n n S T <D .121800800,2142n n nT n n --=+⋅≤≤且*n ∈N 【答案】AC【分析】利用等差数列求和公式求出甲小组两周的募捐的钱数,得到B 错误; 利用等比数列求和公式及分组求和,得到乙小组两周募捐的钱数,得到D 错误; 计算出66,S T ,比较得到大小;令21800252254002n n n n C T S n n -=-=--+,先计算出70C >,再结合数列单调性得到答案. 【详解】由题可知114n ≤≤且*n ∈N , 设n a 代表第n 天甲小组募得捐款,且0n a >,对于甲小组,11000,50a d ==-,所以()115010500n a a n d n =+-=-+>,所以120n ≤≤, 所以()12251025,142n n n a a S n n n +==-+且*n ∈N ,所以149450S =,故选项B 不正确;设n b 代表第n 天乙小组募得捐款,由题可知,11000,118001,22n n n b n -=⎧⎪=⎨⎛⎫⋅+≥ ⎪⎪⎝⎭⎩, 所以12321600111400800180018001222n n n T b b b b -⎛⎫⎛⎫⎛⎫=++++=+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-()231111140080018002222n n -⎛⎫=+-+++++ ⎪⎝⎭,*1800800400,22,14n n n n -=+-∈≤≤N ,故选项D 错误; 因为6665250,5175S T S ==<,故该选项A 正确;选项C ,令21800252254002n n n n C T S n n -=-=--+,所以737.50C =>, 而当7n ≥时,18005020002n n n C C n +-=+->, 所以数列{}n C 为递增数列,因此0n n S T -<,所以n n S T <,故选项C 正确. 故选:AC三、填空题13.有关数据显示,中国快递行业产生的包装垃圾在2021年为3000万吨,2022年增长率约为50%.有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从______年开始,快递业产生的包装垃圾超过30000万吨.(参考数据:lg20.3010≈,lg30.4771≈) 【答案】2027【分析】n 年后产生的垃圾为()3000150%n⨯+,得到不等式()3000150%30000n⨯+>,解得答案. 【详解】n 年后产生的垃圾为()3000150%n ⨯+,故()3000150%30000n⨯+>,即3102n⎛⎫> ⎪⎝⎭,即()lg3lg21n ->,即1 5.68lg 3lg 2n >≈-,故6n ≥, 故2027年开始快递业产生的包装垃圾超过30000万吨. 故答案为:202714.在三角形ABC 中,已知1tan 2A =,1tan 3B =,若2sin()sin()sin cos x A x B C x ++=,则tan x 的值为__________. 【答案】43-或12【分析】由tan 12A =,1tan 3B =解出A ,B ,C 的正余弦值,将等式化简后代入,解出tan x . 【详解】因为tan 12A =,1tan 3B =,A ,()0,πB ∈, 所以5sin 5A =,5cos 52A =,10sin 10B =,310cos 10B =,2sin sin()sin cos cos sin 2C A B A B A B =+=+=. ()()()()22sin sin sin cos cos sin sin cos cos sin sin cos cos x A x B x A x A x B x B C xx++++==,即()()25102sin cos 3sin cos 2510cos 2x x x x x ⨯++=, 所以()()2tan 13tan 15x x ++=,解得4tan 3x =-或1tan 2x =.故答案为:43-或12.15.如图所示,半圆的直径4AB =,O 为圆心,C 是半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则()PA PB PC +⋅的最小值是___________【答案】2-【分析】由向量的线性运算得2PA PB PO +=,因此()22PA PB PC PO PC PO PC +⋅=⋅=-⋅,只要求得PO PC ⋅的最大值即可,这可由基本不等式得结论. 【详解】解:因为O 为AB 的中点,所以2PA PB PO +=,从而()22PA PB PC PO PC PO PC +⋅=⋅=-⋅.又2PO PC OC +==为定值,再根据2()12PO PCPO PC +⋅≤=,可得22PO PC -⋅≥-,所以当且仅当1PO PC ==时,即P 为OC 的中点时,等号成立,()PA PB PC +⋅取得最小值是2-, 故答案为:2-. 16.若函数()21ln 2f x x ax x =-+存在平行于x 轴的切线,则实数a 取值范围是______. 【答案】[)2,+∞【分析】求出导函数,只需()0f x '=有正解,分离参数可得1a x x=+,利用基本不等式即可求解. 【详解】函数定义域为()0,∞+,导函数为()1f x x a x'=-+,使得存在垂直于y 轴的切线,即()0f x '=有正解,可得1a x x=+有解, 因为0x >,所以12a x x =+≥,当且仅当“1x x=,即1x =”时等号成立, 所以实数a 的取值范围是[)2,+∞ 故答案为:[)2,+∞四、解答题17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知1126sin sin A B +=3C π=,6c =. (1)求证:2a b +=; (2)求ABC 的面积. 【答案】(1)证明见解析 (2)33【分析】(1)由已知条件结合正弦定理可得sin A =sin B =再由11sin sin A B+=11a b += (2)由余弦定理结合(1)的结论可求得12ab =,从而可求出三角形的面积 【详解】(1)证明:3C π=,6c =,所以sin cC=根据正弦定理得sin A =sin B =,又11sin sin A B+=所以11a b +=2a b +=(2)由余弦定理得()2222222cos 3c a b ab C a b ab a b ab =+-=+-=+-, 由(1),得a b +=,结合6c =可得()26720ab ab --=. 即()()1260ab ab -+=,解得12ab =或6ab =- (舍去),所以1sin 2ABCSab C ==18.已知数列{}n a 的前n 项和为n S ,2n n S a n =+. (1)证明:{}1n a -为等比数列; (2)设1n n b =-,若不等式12233411111n n t b b b b b b b b ++++⋅⋅⋅+<对*n N ∀∈恒成立,求t 的最小值. 【答案】(1)见解析(2)14【解析】(1)利用1n n n a S S -=-得到1,n n a a -的递推公式再构造数列证明即可.(2)根据(1)可求得12nn a =-,进而求得2n b n =,再用裂项求和求解12231111n n b b b b b b +++⋅⋅⋅+进而求得t 的最小值【详解】解:(1)11221n n n n n a S S a a --=-=--()1121(2)n n a a n -⇒-=-≥, 故{}1n a -为等比数列.(2)令1n =,则有111211S a a =+⇒=-, 所以()111122n n n a a --=-⋅=-,所以12n n a =-,令122n n n b n =-==,令1111141n n n c b b n n +⎛⎫==- ⎪+⎝⎭, 所以122311*********...412231n n b b b b b b n n +⎛⎫++⋅⋅⋅+=-+-++- ⎪+⎝⎭()111111414414n n ⎛⎫=-=-< ⎪++⎝⎭.所以14t ≥. 故t 的最小值为14.【点睛】本题主要考查了根据递推公式证明等比数列的方法,同时也考查了裂项相消求和的方法与不等式的范围问题,属于中等题型.19.第二届中国(宁夏)国际葡萄酒文化旅游博览会于2022年9月6—12日在银川市成功举办,某酒庄带来了葡萄酒新品参展,与采购商洽谈,并计划大量销往海内外.已知该新品年固定生产成本40万元,每生产一箱需另投入100元.若该酒庄一年内生产该葡萄酒x 万箱且全部售完,每万箱的销售收入为()H x 万元,2803,020,()3000(2)90,20.(1)x x H x x x x x -<≤⎧⎪=-⎨+>⎪+⎩(1)写出年利润()M x (万元)关于年产是x (万箱)的函数解析式(利润=销售收入-成本); (2)年产量为多少万箱时,该酒庄的利润最大?并求出最大利润. 【答案】(1)()()2318040,020300021040,201x x x M x x x x x ⎧-+-<≤⎪=⎨--+->⎪+⎩(2)年产量为29万箱时,该公司利润最大,最大利润为2370万元【分析】(1)分020x <≤和20x >两种情况讨论,根据利润=销售收入-成本得到函数解析式; (2)根据二次函数及基本不等式求出函数的最大值,即可得解.【详解】(1)解:当020x <≤时,()()2280340100318040M x x x x x x =---=-+-,当20x >时,()()()()()30002300029010040104011x x M x x x x x x x ⎡⎤--=+--=-+-⎢⎥++⎢⎥⎣⎦, 故()()2318040,020300021040,201x x x M x x x x x ⎧-+-<≤⎪=⎨--+->⎪+⎩; (2)解:当020x <≤时,()223180403(30)2660M x x x x =-+-=--+,对称轴为30x =,开口向下,故()max ()202360M x M ==,当20x >时,()()()3000210401x M x x x -=-+-+()()300013 10401x x x +-=-+-+90001029601x x =--++ ()900010129701x x =-+-++ ()90002101297023701x x ≤-+⋅+=+, 当且仅当()90001011x x +=+,即29x =时,等号成立,因为 23702360>,所以当29x =时,利润最大,最大值为2370万元,故年产量为29万箱时,该公司利润最大,最大利润为2370万元.20.如图,在四棱锥P ABCD -中,四边形ABCD 为矩形,且22AB AD ==,2PA =,3PAB PAD π∠=∠=.(1)求线段PC 的长度;(2)求异面直线PC 与BD 所成角的余弦值; (3)若E 为AB 的中点,证明:PA ED ⊥. 【答案】3215(3)证明见解析【分析】(1)由已知角的三边作为空间向量的一组基底,由基底表示PC 再进行模长计算即可; (2)由基底表示PC 、BD ,再代入向量夹角公式计算即可; (3)由()AP DE AP AE AD ⋅=⋅-计算即可得结果. 【详解】(1)因为PC PA AC PA AB AD =+=++,所以222222244122213PC PA AB AD PA AB PA AD AB AD =+++⋅+⋅+⋅=++-⨯-⨯=, ∴||3PC =,所以线段PC(2)∵()()PC BD PA AB AD AD AB ⋅=++⋅-PA AD AB AB AD AD PA AB AB AD AD AB=⋅-⋅+⋅-⋅+⋅-⋅111222112200222=-⨯⨯-⨯+⨯+⨯⨯+-=-,||5BD =,∴cos ,3PC BD PC BD PC BD⋅-<>===⋅故异面直线PC 与BD . (3)因为E 为AB 的中点,所以AD AE =,又∵()AP DE AP AE AD AP AE AP AD ⋅=⋅-=⋅-⋅112121022=⨯⨯-⨯⨯=,∴AP DE ⊥,即PA ED ⊥. 21.已知向量()()23cos ,1,sin ,cos (0)m x n x x ωωωω=-=>,函数()f x m n =⋅图象相邻两条对称轴之间的距离为2π. (1)求()f x 的解析式;(2)若07,412x ππ⎡⎤∈⎢⎥⎣⎦且()012f x =,求0cos2x 的值.【答案】(1)1()sin(2)62f x x π=--;(2)【分析】(1)由题知,根据向量数量积运算求得()23cos sin cos f x m n x x x ωωω=⋅=-,化简,由条件22T ππω==求得参数1ω=,从而写出解析式.(2)由()012f x =得0sin(2)6x π-=,根据角的范围求得0cos(2)6x π-,从而有0000cos(2)cos(2)cos sin(2)sin 666666cos2x x x x ππππππ=-+=---,求得结果.【详解】(1)由题知,()23cos sin cos f x m n x x x ωωω=⋅=-1cos 212sin(2)262x x x ωπωω+=-=--, 又函数相邻两条对称轴之间的距离为2π.即22T ππω==,则1ω=,1()sin(2)62f x x π=--(2)由题知,0011()sin(2)622f x x π=--=,则0sin(2)6x π-=07,412x ππ⎡⎤∈⎢⎥⎣⎦,则02,63x πππ⎡⎤-∈⎢⎥⎣⎦,当02,632x πππ⎡⎤-∈⎢⎥⎣⎦时,0)6sin(2x π-∈,而0sin(2)6x π-=, 因此02,62x πππ⎡⎤-∈⎢⎥⎣⎦,此时0cos(2)6x π-= 则0000cos(2)cos(2)cos sin(2)sin 666666cos2x x x x ππππππ=-+=---12==22.已知函数()()1ln R f x x a ax=+∈在1x =处的切线与直线210x y -+=平行.(1)求实数a 的值,并判断函数()f x 的单调性;(2)若函数()f x m =有两个零点12x x ,,且12x x <,求证:121x x +>.【答案】(1)=2a ,()f x 在10,2⎛⎫ ⎪⎝⎭上是单调递减,()f x 在1,2⎛⎫+∞ ⎪⎝⎭上是单调递增;(2)证明见解析【分析】(1)求导函数,利用导数的几何意义求出a ,然后分析导函数的符号得出函数()f x 的单调性;(2)由已知得121211ln ,ln 22x m x m x x +=+=,两式相减,得121211ln ln 022x x x x -+-=,即有1212122ln x x x x x x -=,令12,x t x =构造函数()()12ln 01h t t t t t =--<<,求导函数,分析导函数的符号,得出函数()h t 的单调性和范围可得证.【详解】(1)函数()f x 的定义域:()0,∞+,由()1ln f x x ax =+可得()211f x x ax'=-, 所以由题意可得()11112f a=-=',解得=2a , ()1ln 2f x x x∴=+, ()22112122x f x x x x -'∴=-=, 令()0f x '<,解得102x <<,故()f x 在10,2⎛⎫⎪⎝⎭上是单调递减;令0fx,解得12x >,故()f x 在1,2⎛⎫+∞ ⎪⎝⎭上是单调递增; (2)由12,x x 为函数()f x m =的两个零点,得121211ln ,ln 22x m x m x x +=+=, 两式相减,可得121211ln ln 022x x x x -+-=即112212ln 2x x x x x x -=,1212122ln x x x x x x -=, 因此1211212ln x x x x x -=,2121212lnx x x x x -=,令12x t x =,由12x x <,得01t <<, 则121111+=2ln 2ln 2ln t t t t x x t t t---+=,构造函数()()12ln 01h t t t t t =--<<, 则()()22211210t h t t t t-=+-=>',所以函数()h t 在()0,1上单调递增,故()()1h t h <,即12ln 0t t t--<,可知112ln t t t->,故命题121x x +>得证【点睛】关键点点睛:本题考查导数的几何意义,用导数证明有关函数零点的不等式,解题思路是对两个零点120x x <<,引入参数1201x t x <=<,把有关12,x x 的表达式表示为t 的函数,然后再由导数研究新函数得证结论。

福建省南安名校2023届高三上学期12月月考数学试题(解析版)

福建省南安名校2023届高三上学期12月月考数学试题(解析版)

福建省南安名校2023届高三上学期12月月考数学试题一、单选题1.已知集合{}21log A x N x k =∈<<,集合A 中至少有2个元素,则( ) A .16k ≥B .16k >C .8k ≥D .8k >2.已知圆锥的轴截面是一个正三角形,则其侧面积与轴截面面积之比是( ) A .23B .233πC .23π D .32π 3.“函数tan y x =的图象关于0(,0)x 中心对称”是“0sin 0x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.若()()2i 2i 1z z -+=,则z 的最大值为( ) A .2B .3C .2D .35.已知等差数列{}n a 和等比数列{}n b 均为递增数列,且121a b ==,26a b =,若10k a b =,则k 的最小值为( ) A .3B .4C .5D .66.在ABC 中,点P 满足2BP PC =,过点P 的直线与AB ,AC 所在的直线分别交于点M ,N ,若AM x AB =,()0,0AN yAC x y =>>,则2x y +的最小值为( )A .3B .32C .1D .137.下图中的多边形均为正多边形,M ,N 是所在边的中点,双曲线均以1F ,2F 为焦点,且经过M ,N 两点.设图1,图2,图3中双曲线的离心率分别为1e ,2e ,3e ,则( )A .123e e e >>B .213e e e >>C .321e e e >>D .132e e e >>8.已知函数2()ln f x x x ax =+-有两个极值点m ,n ,且[1,2]m ∈,则()()f m f n -的最大值为( )A .2ln 23-B .2ln 23-C .3ln 24-D .3ln 24-二、多选题9.已知a ,b ,c 为非零实数,且0a b -≥,则下列结论正确的有( ) A .a c b c +≥+B .-≤-a bC .22a b ≥D .2211ab ba ≥10.设0ω>,函数()cos f x x x ωω=+在区间0,2π⎛⎤⎥⎝⎦上有零点,则ω的值可以是( )A .16B .56C .13D .2311.四边形ABCD 是边长为2的正方形,E 、F 分别为BC 、CD 的中点,分别沿AE 、AF 及EF 所在直线把AEB △、AFD △和EFC 折起,使B 、C 、D 三点重合于点P ,得到三棱锥P AEF -,则下列结论中正确的有( ). A .三棱锥P AEF -的体积为23B .平面APF ⊥平面EPFC .三棱锥中无公共端点的两条棱称为对棱,则三棱锥P AEF -中有三组对棱相互垂直D .若M 为AF 的中点,则过点M 的平面截三棱锥P AEF -的外接球,所得截面的面积的最小值为5π412.已知实数2a >,2b >,且a b ,若b a a b =,则a b -可能等于( )A .0.5B .1C .2D .3三、填空题13.同时将圆221x y +=和22240x y x y +--=的面积平分的直线的斜截式方程为________.14.12233445555555C 0.998C 0.998C 0.998C 0.998C 0.998++++≈_______(精确到0.01)15.已知定义R 上的函数()f x 满足()()()63f x f x f =-+,又()πf x +的图象关于点()π,0-对称,且()12022f =,则()2023f =______16.已知抛物线2:4C y x =,点()1,2P ,,,,A B M N 是抛物线C 上的四个动点,过点P 作分别作AB ,MN 的垂线,垂足分别为E ,F ,2PA PB PM PN k k k k +=+= ,则点E F 、距离的最大值为__________. 四、解答题17.记ABC 的内角,,A B C 的对边分别为,,a b c ,2sin sin sin()A C B A =+-. (1)证明:cos a A b=; (2)若2b ac =,求cos B .18.已知数列{}n a 满足113(1)1(1)1,22n nn n a a a +--+-==+. (1)设21n n b a -=,求数列{}n b 的通项公式; (2)求数列{}n a 的前2n 项和2n S .19.如图,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,//AD BC ,AB AD ⊥.24AB BC ==,E 是棱PD 上的动点(除端点外),,F M 分别为,AB CE 的中点.(1)求证://FM 平面PAD ;(2)若直线EF 与平面PAD 所成的最大角为30°,求平面CEF 与平面PAD 所成锐二面角的余弦值.20.某中学在一次考试后,对本年级学生物理成绩进行分析,随机抽取了300名同学的物理成绩(均在50~100分之间),将抽取的成绩分组为[)5060,,[)6070,,[)7080,,[)8090,,[]90100,,得到如图所示的频率分布直方图.(1)求这300名同学物理平均成绩x 与第三四分位数的估计值;(结果精确到1)(2)已知全年级同学的物理成绩服从正态分布()2N μσ,,其中μ取(1)中的x ,经计算,σ=11,现从全年级随机选取一名同学的物理成绩,求该成绩在区间()6295,的概率(结果精确到0.1);(3)根据(2)的条件,用频率估计概率,现从全年级随机选取n 名同学的物理成绩,若他们的成绩都在()6295,的概率不低于1%,求n 的最大值(n 为整数). 附:lg20.301≈,若()2~N ξμσ,,则()0.68P μσξμσ-<<+≈,()220.96P μσξμσ-<<+≈.21.已知椭圆()2222:10x y E a b a b +=>>2过坐标原点O 的直线交椭圆E 于,P A两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,PAC △2(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:APB ∠是否为定值,若是,求出这个定值;若不是,说明理由.22.某大学有A ,B 两个餐厅为学生提供午餐与晚餐服务,甲、乙两位学生每天午餐和晚餐都在学校就餐,近100天选择餐厅就餐情况统计如下: 选择餐厅情况(午餐,晚餐)(),A A(),A B(),B A(),B B甲30天20天40天10天假设甲、乙选择餐厅相互独立,用频率估计概率.(1)分别估计一天中甲午餐和晚餐都选择A 餐厅就餐的概率,乙午餐和晚餐都选择B 餐厅就餐的概率;(2)记X 为甲、乙在一天中就餐餐厅的个数,求X 的分布列和数学期望()E X ;(3)假设M 表示事件“A 餐厅推出优惠套餐”,N 表示事件“某学生去A 餐厅就餐”,()0P M >,一般来说在推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明:()()P M N P M N >.福建省南安名校2023届高三上学期12月月考数学试题一、单选题1.已知集合{}21log A x N x k =∈<<,集合A 中至少有2个元素,则( ) A .16k ≥ B .16k > C .8k ≥ D .8k >【答案】D【分析】由于集合A 中至少有2个元素,所以2log 3k >,从而可求出k 的取值范围 【详解】解:因为集合A 中至少有2个元素, 所以2log 3k >,解得8k >, 故选:D2.已知圆锥的轴截面是一个正三角形,则其侧面积与轴截面面积之比是( )A .23B C D 【答案】B【分析】分别计算侧面积和面积作比即可. 【详解】设底面圆的半径为r ,则母线长为2r , 得侧面积是212222r r r ππ⨯⨯=轴截面是一个正三角形,边长为2r , 则其面积2122sin6032r r r ⨯⨯⨯= .故选:B3.“函数tan y x =的图象关于0(,0)x 中心对称”是“0sin 0x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【分析】分别求出tan y x =与sin y x =的对称中心,比较两个中心关系.【详解】tan y x =的对称中心为(π,0),Z 2kk ∈,sin y x =的对称中心为(π,0),Z k k ∈,tan y x=的对称中心不一定为sin y x =的对称中心;sin y x =的对称中心一定为tan y x =的对称中心. 故选:B .4.若()()2i 2i 1z z -+=,则z 的最大值为( )A B C .2 D .3【答案】D【分析】根据题意结合共轭复数的概念运算整理的()2221b a -=+,即复数z 对应的点(),a b 在圆()2221x y +-=上,根据圆的性质求z 的最大值.【详解】设()=+i,,R z a b a b ∈,则()()2i=+2i,+2i=2i z a b z a b ----∵()()()()()222i 2i =2i 2i 21a b a b b z z a +----=⎡⎤⎡⎤=+⎣⎦+⎦⎣-∴复数z 对应的点(),a b 在圆()2221x y +-=上圆()2221x y +-=的圆心()0,2C ,半径=1r ,则z 的最大值为3OC r +=,其中O 为复平面的坐标原点 故选:D.5.已知等差数列{}n a 和等比数列{}n b 均为递增数列,且121a b ==,26a b =,若10k a b =,则k 的最小值为( ) A .3 B .4 C .5 D .6【答案】B【分析】由等差数列和等比数列的通项公式可得3k d =+,由0d >,即可得k 的最小值. 【详解】设等差数列{}n a 公差为d ,等比数列{}n b 公比为q , 则0d >,1q >,因为121a b ==,26a b =, 所以41d q +=①,而10k a b =, 所以81(1)k d q +-=②,由①②得:2(1)1(1)d k d +=+-, 即3k d =+,0d >,k *∈N ,所以k 的最小值为4. 故选:B6.在ABC 中,点P 满足2BP PC =,过点P 的直线与AB ,AC 所在的直线分别交于点M ,N ,若AM x AB =,()0,0AN yAC x y =>>,则2x y +的最小值为( )A .3B .32C .1D .13【答案】A【分析】由向量加减的几何意义可得233AB ACAP =+,结合已知有233AM AN AP x y =+,根据三点共线知21133x y+=,应用基本不等式“1”的代换即可求最值,注意等号成立的条件. 【详解】由题设,如下图示:23333BC AC AB AB ACAP AB BP AB AB -=+=+=+=+,又AM x AB =,()0,0AN yAC x y =>>,∴233AM AN AP x y=+,由,,M P N 三点共线,有21133x y +=, ∴21522522)23333333323(2)(x y x yx y y x x xy y y x +=+=⋅++≥++,当且仅当x y =时等号成立. 故选:A【点睛】关键点点睛:利用向量线性运算的几何表示,得到AP 、AM 、AN 的线性关系,根据三点共线有21133x y+=,再结合基本不等式求最值. 7.下图中的多边形均为正多边形,M ,N 是所在边的中点,双曲线均以1F ,2F 为焦点,且经过M ,N 两点.设图1,图2,图3中双曲线的离心率分别为1e ,2e ,3e ,则( )A .123e e e >>B .213e e e >>C .321e e e >>D .132e e e >>【答案】A【分析】由双曲线定义有122F F c =、122F N F N a -=,结合正多边形的性质求得12F N F N -关于c 的表达式,即可求各图对应双曲线的离心率.【详解】在图1中,122F F c =,又122(31)F N F N a c -==,则1232e =-在图2中,122F F c =,221210(2)2F N c c ⎛⎫=+ ⎪ ⎪⎝⎭,22F N =, 121022F N F N a --==,则2102e =-. 在图3中,122F F c =,212F N c =,由余弦定理得:2211221222cos 60F N F F F N F F F N =+-︒13=,121312F N F N a --==,则3131e =-. 因为232102131<,所以123e e e >>. 故选:A8.已知函数2()ln f x x x ax =+-有两个极值点m ,n ,且[1,2]m ∈,则()()f m f n -的最大值为( )A .2ln 23-B .2ln 23-C .3ln 24-D .3ln 24-【答案】C【分析】对()f x 求导得()f x ',得到m ,n 是2210x ax -+=两个根,由根与系数的关系可得m ,n 的关系,然后构造函数,利用导数求单调性,进而得最值.【详解】由2()ln f x x x ax =+-得:2121()2x ax f x x a x x-+=+-=' m ,n 是2210x ax -+=两个根,由根与系数的关系得:1,22a m n mn +==,故12n m=22222221()()ln ln lnln 24m f m f n m m am n n an m n m m n m-=+---+=-+=+-, 令[]2,1,4x m x =∈记[]1()ln 2,1,44g x x x x x =+-∈,则()222222111414()10444x x x g x x x x x----'=--==<,故()g x 在[]1,4x ∈上单调递减. ()()max 311n24g x g ==-故选:C二、多选题9.已知a ,b ,c 为非零实数,且0a b -≥,则下列结论正确的有( ) A .a c b c +≥+ B .-≤-a b C .22a b ≥ D .2211ab ba ≥ 【答案】ABD【解析】根据不等式的性质判断,错误的命题可举反例.【详解】因为0a b -≥,所以a b ≥.根据不等式的性质可知A ,B 正确; 因为a ,b 的符号不确定,所以C 不正确; 2222110a b ab ba a b --=≥. 可得2211ab ba ≥,所以D 正确. 故选:ABD .【点睛】本题考查不等式的性质,掌握不等式的性质是解题关键.10.设0ω>,函数()cos f x x x ωω=+在区间0,2π⎛⎤⎥⎝⎦上有零点,则ω的值可以是( )A .16B .56C .13D .23【答案】BCD【分析】由题得()2sin 6πω⎛⎫=-- ⎪⎝⎭f x x ,令6x k πωπ-=,求出,6k x ππωω=+解不等式062ππω<得解.【详解】由题得()cos 2sin 6f x x x x πωωω⎛⎫=+=-- ⎪⎝⎭,令6x k πωπ-=,解得,06k x ππωωω=+>,取k =0, 062ππω∴<,即13ω. 故选:BCD11.四边形ABCD 是边长为2的正方形,E 、F 分别为BC 、CD 的中点,分别沿AE 、AF 及EF 所在直线把AEB △、AFD △和EFC 折起,使B 、C 、D 三点重合于点P ,得到三棱锥P AEF -,则下列结论中正确的有( ). A .三棱锥P AEF -的体积为23B .平面APF ⊥平面EPFC .三棱锥中无公共端点的两条棱称为对棱,则三棱锥P AEF -中有三组对棱相互垂直D .若M 为AF 的中点,则过点M 的平面截三棱锥P AEF -的外接球,所得截面的面积的最小值为5π4【答案】BCD【分析】由条件结合线面垂直判定定理证明PA ⊥平面EFP ,根据面面垂直判定定理证明平面APF ⊥平面EPF ,判断B ,根据锥体体积公式求三棱锥P AEF -的体积判断A ,由线面垂直的性质判断C ,由球的截面的性质判断D.【详解】由已知22215F AE A =+22112=+=EF 翻折前AB BE ⊥,CE CF ⊥,AD DF ⊥, 翻折后,则有PA PE ⊥,PA PF ⊥,PE PF ⊥, 因为PA PE ⊥,PA PF ⊥,PE PF P =,,PE PF ⊂平面EFP ,所以PA ⊥平面EFP ,因为PA ⊥平面EFP ,PE PF ⊥,又1PE PF ==,2PA =,所以111123323P AEF A EFP EFPV V SAP --==⨯⨯=⨯⨯=,A 错误,因为PA ⊥平面EFP ,又PA ⊂平面APF ,所以平面APF ⊥平面EPF ,B 正确,因为PA ⊥平面EFP ,EF ⊂平面EFP ,所以PA EF ⊥, 因为PA PF ⊥,PE PF ⊥,PA PE P =,,PE PA ⊂平面PAE ,所以PF ⊥平面PAE ,又AE ⊂平面PAE ,所以PF ⊥AE , 同理可证PE AF ⊥,所以三棱锥P AEF -中有三组对棱相互垂直,C 正确, 将三棱锥P AEF -补成长方体PEQA FGNH -,则三棱锥P AEF -的外接球球心O 为体对角线PN 的中点, 且2226PN PE PF PA =++O 的半径为6R =, 所以,过点M 的平面截三棱锥P AEF -的外接球所得截面圆的半径设为r , 设球心O 到截面圆的距离为d ,则0d OM ≤≤, O 、M 分别为PN 、PH 的中点,则1122OM HN ==, 则102d ≤≤,又22r R d -12d =时,2r 取最小值54,所以过点M 的平面截三棱锥P AEF -的外接球,所得截面的面积的最小值为5π4,D 正确, 故选:BCD.12.已知实数2a >,2b >,且a b ,若b a a b =,则a b -可能等于( )A .0.5B .1C .2D .3【答案】AB【分析】问题可转化为,a b 是()ln xf x x=大于2的两个不同零点,利用导数研究单调性并作出图象,结合图象即可求解【详解】因为实数2a >,2b >,且a b ,若b a a b =,所以ln ln b a a b =,即ln ln b a a b =, 所以ln ln a ba b=, 令()ln xf x x=,()21ln xf x x -'=, 令0f x解得0e x <<,令()0f x '<解得e x >,所以()f x 在()0,e 单调递增,在()e,+∞上单调递减, 作出()ln xf x x=的图象如下:2a >,2b >,不妨设a b >,()()()()ln 2ln 4ln 22,4,24242f f f f ====, 由图象可知:e 4a <<,2e b <<,且422a b -<-=, 所以AB 正确,CD 错误; 故选:AB三、填空题13.同时将圆221x y +=和22240x y x y +--=的面积平分的直线的斜截式方程为________. 【答案】2y x =【分析】求出两圆圆心坐标,过两圆圆心的直线即为所求直线. 【详解】圆221x y +=的圆心为()0,0,圆22240x y x y +--=化为标准方程为:()()22125x y -+-=,其圆心为()1,2,同时将圆221x y +=和22240x y x y +--=的面积平分的直线过两圆圆心, 所以所求直线方程为()200010y x --=--,即2y x =. 故答案为:2y x =.14.12233445555555C 0.998C 0.998C 0.998C 0.998C 0.998++++≈_______(精确到0.01)【答案】30.84【分析】先利用二项式定理将原式化为5(10.998)1+-,再变形为5(20.002)1--,利用二项式定理展开,并近似计算.【详解】原式55(10.998)1(20.002)1=+-=--32051423255555555344C 2C 20.002C 20.002C 20.002C 20.002C 0.0021=-⨯+⨯-⨯+⨯-⨯-320.16130.84≈--=故答案为:30.84.15.已知定义R 上的函数()f x 满足()()()63f x f x f =-+,又()πf x +的图象关于点()π,0-对称,且()12022f =,则()2023f =______ 【答案】2022-【分析】根据()πf x +的图象关于点()π,0-对称判断函数为奇函数,再赋值法确定()3f 的值,进而得到函数是周期函数,找出()2023f 与()1f 的关系可得答案.【详解】()πf x +的图象关于点()π,0-对称,所以()f x 的图象关于点()0,0对称, 即()f x 为奇函数,在()()()63f x f x f =-+中,()()()()36333=0f f f f =-+∴,, 所以()()6f x f x =-,又()(),f x f x =--∴()()6f x f x --=-,()()6,f x f x ∴-=+()()()()612,12f x f x f x f x ∴-+=+∴=+, 所以()f x 是12T =的周期函数,()()()()()202312168776112022.f f f f f =⨯+==+=-=- 故答案为:2022-16.已知抛物线2:4C y x =,点()1,2P ,,,,A B M N 是抛物线C 上的四个动点,过点P 作分别作AB ,MN 的垂线,垂足分别为E ,F ,2PA PB PM PN k k k k +=+= ,则点E F 、距离的最大值为__________.【答案】【分析】设直线AB ,MN 的方程,与抛物线方程联立,运用韦达定理证明直线AB ,MN 是过定点的,运用几何意义即可求解.【详解】设直线AB 的方程为221212,,,,44y y x my n A y B y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,将x my n =+代入24y x =中有2440y my n --= ,故12124,4y y m y y n +==-,又1244,22PA PB k k y y ==++, 所以()()()121212124441442224212PA PB y y m k k y y y y y y m n++++=+===++++++-,解得1n =-, 故直线AB 过定点()1,0Q -.因此点E 在以PQ 为直径的圆上, 同理点F 在以PQ 为直径的圆上.PQ =; 故点E F 、距离的最大值为圆的直径故答案为:四、解答题17.记ABC 的内角,,A B C 的对边分别为,,a b c ,2sin sin sin()A C B A =+-. (1)证明:cos a A b=; (2)若2b ac =,求cos B . 【答案】(1)证明见解析..【分析】(1)将2sin sin sin()A C B A =+-化为2sin sin()sin()A B A B A =++-,利用两角和的正弦公式化简,结合正弦定理角化边,即可证明结论;(2)利用(1)的结论和题设,结合余弦定理可推出a c =,再用222cos 2a c b B ac +-=化简求值,可得答案.【详解】(1)由题意知,2sin sin()sin()A B A B A =++-, 所以2sin sin cos cos sin sin cos cos sin A B A B A B A B A =++-, 所以2sin 2sin cos A B A =,而(0,π),sin 0B B ∈≠ ,结合正弦定理,所以sin cos sin A aA B b==. (2)由(1)知:222cos 2a b c a A b bc+-==, 所以222ac ac c a =+-,即220a c ac -+=,所以2210a ac c+-=解得a c =(舍),所以2222211cos 11)2222a c b a c ac a c B ac ac c a +-+-⎛⎫===+-== ⎪⎝⎭. 18.已知数列{}n a 满足113(1)1(1)1,22n nn n a a a +--+-==+. (1)设21n n b a -=,求数列{}n b 的通项公式; (2)求数列{}n a 的前2n 项和2n S .【答案】(1)21nn b =-(2)123236n n S n +=⋅--【分析】(1)先化简()()1311122n nn n a a +--+-=+,再推导出111n n b b +++等于一个常数,即可求解;(2)结合第一问,先求出数列{}n a 的满足的规律,然后再求和.【详解】(1)由已知有:12=21,3(1)1(1)12,22n n n n n n a n k k Za a a n k k Z ++∈⎧--+-=+=⎨+=∈⎩,, 所以21+1+1n n b a -=,()1212212121111=2222222(1)2(1)n n n n n n n b a a a a a b ++---++=++=+=+=+=+, 其中11+1+12b a ==,所以数列{}1n b +为以2为首项,公比为2的等比数列. 所以11222n n n b -+=⨯=,得21n n b =-.(2)由(1)知:2121nn n b a -==-,22122(21)n n n a a -==-,所以1231232(21)(21)(21)(21)2[(21)(21)(21)(21)]n n n S =-+-+-++-+-+-+-++-1233[(21)(21)(21)(21)]n =-+-+-++-1233(2222)3n n =++++-2(12)3312n n -=⨯--13236n n +=⋅--.19.如图,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,//AD BC ,AB AD ⊥.24AB BC ==,E 是棱PD 上的动点(除端点外),,F M 分别为,AB CE 的中点.(1)求证://FM 平面PAD ;(2)若直线EF 与平面PAD 所成的最大角为30°,求平面CEF 与平面PAD 所成锐二面角的余弦值.【答案】(1)证明见解析 (2)9331【分析】(1)取CD 中点N ,连接,MN NF ,先明平面//MNF 平面PAD ,再证明结论;(2)先根据题意,建立空间直角坐标系,利用用向量数量积计算直线与平面成角正弦值,列方程求最值解,再用向量数量积求二面角的余弦值. 【详解】(1)证明:证明:取CD 中点N ,连接,MN NF , 因为M 为CE 中点,所以//MN DE , 因为MN ⊄平面PAD ,DE ⊂平面PAD 所以//MN 平面PAD ,又因为//AD BC ,F 为AB 中点, 所以//FN AD ,因为FN ⊄平面PAD ,AD ⊂平面PAD 所以//FN 平面PAD ,因为MN FN N ⋂=,MN 、FN ⊂平面MNF , 所以平面//MNF 平面PAD , 又因为MF ⊂平面MNF , 所以//MF 平面PAD .(2)解:建立如图所示的空间直角坐标系, 设4AD a =,()0,43E a t t -,()0,2t a ∈,则()0,0,0A ,()2,0,0F ,()4,2,0C , ()2,2,0FC →=,()2,4FE a t →=--,平面PAD 的法向量为()1,0,0m →=,直线EF 与平面PAD 所成的正弦值为FE mFE m→→→→⋅==⋅,当ta =1sin302=︒=, 解得1a =,(FE →=-, 设平面CEF 的法向量为(),,n x y z →=, 220230FC n x y FE n x y ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,令y=)n →=,3cos ,311n m n m n m⋅===⋅⋅ 所以平面CEF 与平面PAD20.某中学在一次考试后,对本年级学生物理成绩进行分析,随机抽取了300名同学的物理成绩(均在50~100分之间),将抽取的成绩分组为[)5060,,[)6070,,[)7080,,[)8090,,[]90100,,得到如图所示的频率分布直方图.(1)求这300名同学物理平均成绩x 与第三四分位数的估计值;(结果精确到1)(2)已知全年级同学的物理成绩服从正态分布()2N μσ,,其中μ取(1)中的x ,经计算,σ=11,现从全年级随机选取一名同学的物理成绩,求该成绩在区间()6295,的概率(结果精确到0.1);(3)根据(2)的条件,用频率估计概率,现从全年级随机选取n 名同学的物理成绩,若他们的成绩都在()6295,的概率不低于1%,求n 的最大值(n 为整数). 附:lg20.301≈,若()2~N ξμσ,,则()0.68P μσξμσ-<<+≈,()220.96P μσξμσ-<<+≈. 【答案】(1)73;79 (2)0.8 (3)20【分析】(1)利用题给条件和平均数与第三四分位数的定义即可求得这300名同学物理平均成绩x 与第三四分位数的估计值;(2)利用正态分布的性质即可求得该成绩在区间()6295,的概率; (3)利用独立事件同时发生的概率列出关于n 的不等式,解之即可求得n 的最大值. 【详解】(1)550.1650.3750.4850.1950.173x =⨯+⨯+⨯+⨯+⨯=. 35701078.7540+⨯=, 则这300名同学物理平均成绩x 与第三四分位数的估计值分别为73,79 (2)()()11629520.680.960.820.822P P ξμσξμσ<<=-<<+≈⨯+⨯=≈,(3)()0.80.01n≥,即0.8lg0.012log 0.0120.62lg0.83lg21n -≤==≈-, 故n 的最大值为20.21.已知椭圆()2222:10x y E a b a b +=>>过坐标原点O 的直线交椭圆E 于,P A两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,PAC △(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:APB ∠是否为定值,若是,求出这个定值;若不是,说明理由. 【答案】(1)22142x y += (2)APB ∠为定值90【分析】(1)由离心率可得,,a b c 之间关系,根据通径长可得2b PC a=,由2PACPOCS S=可构造方程求得22,a b ,由此可得椭圆方程;(2)设直线():0AP y kx k =>,结合斜率公式可求得2AC kk =,由此可得直线AC 方程,将其与椭圆方程联立,结合韦达定理可求得B 点坐标,利用向量数量积的坐标运算可求得0PA PB ⋅=,由此可得结论. 【详解】(1)椭圆离心率22c e a ==,2212c a ∴=,则222212b a c a =-=, 当C 为椭圆右焦点时,212b PC a a ==; 211122222224PACPOCSSc a ac a ==⨯⋅===,解得:24a =,22b ∴=,∴椭圆E 的方程为:22142x y +=.(2)由题意可设直线():0AP y kx k =>,()00,P x kx ,()11,B x y , 则()00,A x kx --,()0,0C x ,0002AC kx kk x x ∴==+,∴直线()0:2k AC y x x =-; 由()0222142k y x x x y ⎧=-⎪⎪⎨⎪+=⎪⎩得:()22222002280k x k x x k x +-+-=, 2001222k x x x k ∴-+=+,则2010222k x x x k =++, ()2300110002222222k x k x k k y x x x x k k ⎛⎫∴=-=+-= ⎪++⎝⎭,23000222,22k x k x B x k k ⎛⎫∴+ ⎪++⎝⎭;2002222,22k x kx PB k k ⎛⎫∴=- ⎪++⎝⎭,又()002,2PA x kx =--,()20000222222022k x kx PA PB x kx k k ⎛⎫∴⋅=-⋅+-⋅-= ⎪++⎝⎭,则PA PB ⊥,APB ∴∠为定值90.【点睛】思路点睛:本题考查直线与椭圆综合应用中的定值问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式; ②利用0∆>求得变量的取值范围,得到韦达定理的形式; ③结合韦达定理的结论表示出所求量; ④化简整理可得定值.22.某大学有A ,B 两个餐厅为学生提供午餐与晚餐服务,甲、乙两位学生每天午餐和晚餐都在学校就餐,近100天选择餐厅就餐情况统计如下:假设甲、乙选择餐厅相互独立,用频率估计概率.(1)分别估计一天中甲午餐和晚餐都选择A 餐厅就餐的概率,乙午餐和晚餐都选择B 餐厅就餐的概率;(2)记X 为甲、乙在一天中就餐餐厅的个数,求X 的分布列和数学期望()E X ;(3)假设M 表示事件“A 餐厅推出优惠套餐”,N 表示事件“某学生去A 餐厅就餐”,()0P M >,一般来说在推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明:()()P M N P M N >. 【答案】(1)0.3,0.4; (2)分布列见解析,1.9; (3)证明见解析.【分析】(1)由统计表确定甲午餐和晚餐都选择A 餐厅就餐频率和乙午餐和晚餐都选择B 餐厅就餐的频率,由频率估计概率即可;(2)由条件确定随机变量X 的可能取值,再求取各值的概率,根据期望的定义求期望;(3)由条件结合条件概率公式证明()()()P NM P N P M >⋅,由此证明()()P M N P M N >.【详解】(1)设事件C 为“一天中甲员工午餐和晚餐都选择A 餐厅就餐”, 事件D 为“乙员工午餐和晚餐都选择B 餐厅就餐”,因为100个工作日中甲员工午餐和晚餐都选择A 餐厅就餐的天数为30, 乙员工午餐和晚餐都选择B 餐厅就餐的天数为40, 所以()300.3100P C ==,()400.4100P D ==. (2)由题意知,甲员工午餐和晚餐都选择B 餐厅就餐的概率为0.1, 乙员工午餐和晚餐都选择A 餐厅就餐的概率为0.2,记X 为甲、乙两员工在一天中就餐餐厅的个数,则X 的所有可能取值为1、2, 所以()10.30.20.10.40.1P X ==⨯+⨯=,()()2110.9P X P X ==-==, 所以X 的分布列为:所以X 的数学期望()10.120.9 1.9E X =⨯+⨯=. (3)由题知()()P N M P N M >,即()()()()()()()1P NM P NM P N P NM P M P M P M ->=-,即()()()P NM P N P M >⋅,即()()()()()()()P NM P N P NM P N P M P N P NM ->⋅-, 即()()()()P NM P N P N P NM ⋅>⋅,即()()()()P NM P NM P N P N >,即()()P M N P M N >.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

远志高中高三12月月考试题(文数)
选择题:
1•复数z = i ( — 2-i )(i 为虚数单位)在复平面内所对应的点在(

A.第一象限B •第二象限 C •第三象限D •第四象限 2.
已知 A = {x|x + 1>0} , B = { — 2,— 1, 0, 1},则(?RA A B =(

A. { — 2,— 1} B . { — 2} C. { — 1, 0, 1} D . {0 , 1}
3.
设 a , b , c € R,且 a>b ,则( )
2,2
3.3
C . a >b
D . a >b 4. 关于x 的不等式x 1 2 3 4 5
— 2ax — 8a 2
<0(a>0)的解集为(x 1, X 2),且X 2 — x — 15,则
a =(
) 5 7 15 15
A.g
B. 2
C. ~4
D. y
1
5. “x>0” 是“x +—》2”的( )
x ' ‘
A. 充分但不必要条件
B. 必要但不充分条件
C. 充分且必要条件
D. 既不充分也不必要条件
6.函数 f(x) =1— 2x
+ 1
---- 的疋义域为

A.( —3,
0]
B.( —3, 1]
C.( ——OO —3) U
— 3, 0]
D.( ——OO —3) U — 3, 1] 7.下列函数中,既是偶函数又在区间(0 ,+^)上单调递减的是( )
9.设 l 为直线, a , B 是两个不同的平面,卜列命题中止确的是 ( A. 若 l // a , l // B ,贝 U a / B
1 —x
A. y = _ B . y = e
7
x 7
2
C. y = — x + 1 D . y = Ig |x|
8.已知点 A( — 1, 1) , B(1 , 2) , C( — 2,— 1) , D(3, 4),则向量 AB 在CD 方向
上的投影为( )
A. ac>bc
B. a<b
A. 3 :2 2
B.
3 15
2 3 15 2
B. 若l丄a ,l 丄B ,贝U a / B
C. 若l丄a ,l // B ,贝U a / B
D. 若a丄B ,l // a ,贝U l ± B
10.某三棱锥的三视图如图1—2所示,则该三棱锥的体积是()
1 A.6 B.
11. 在锐角△ ABC 中,角A , B 所对的边长分别为 a , b ,若2asin B = 3b , 则角A 等于( )
D.
C. 2 D . 3 、填空题: 「2x 6
, x<0,
13. 已知函数f(x) = n j — tanx , O w x<_2,
14.
若等比数列{a n }满足 a 2 + a 4 = 20, x + 2y < 8,
15.
若变量x , y 满足约束条件O w x <4,则x + y 的最大值为
0< y w 3,
6
(1) 求b 的值; (2) 求sin(2B -专)的值.
俯视图
图1-2
12. 函数f(x) = In x 的图像与函数
( )
g(x) = x * 2
- 4x + 4的图像的交点个数为
m
仃n F
则f f j.r ——.
a s + a 5 = 40,前 n 项和
18•设向量 a = ( 3sin x ,sin x) , b = (cos x , sin x)
⑴若|a|=|b|,求x 的值;
⑵设函数f(x) = a •b ,求f(x)的最大值.
19. 等差数列{a n }中,a 7=4, a i9= 2a_
(1)求{a n }的通项公式;
1
⑵设b n =,求数列{b n }的前n 项和S.
20. 在四棱锥 P — ABCD 中,AB// CD AB 丄AD , CD= 2AB,平面 PADL 底面 ABCD PAL AD E 和F 分别是CD 和PC 的中点.求证:
(1) PA 丄底面ABCD (2) BE // 平面 PAD
(3) 平面BEF 丄平面PCD.
,x € 0,于.
21. 在四棱锥P- ABCD中, PDL平面ABCD AB// DC AB丄AD,BO5,DO 3,
AE>4,Z PAt> 60°.
⑴若M为PA的中点,求证:DM/平面PBC
_ x 2
22. 已知函数f(x) = e (ax + b) —x —4x,曲线y= f(x)在点(0 , f(0)) 线
方程为y = 4x+ 4.
(1)求a, b的值;
⑵讨论f(x)的单调性,并求f(x)的极大值.
处的切
9 n
16.
已知一个正方体的所有顶点在一个球面上,若球的体积为 —,则

方体的棱长为 ________ .
第49起田
三、解答题:解答应写出文字说明,证明过程或演算步骤
17. 在厶ABC中,内角A, B, C所对的边分别是a, b, c.已知bsin A =
2
3csin B , a = 3, cos B = 3.。

相关文档
最新文档