模糊数学理论建模(讲义8)
模糊数学(讲义)
模糊数学及其应用引言任何新生事物的产生和发展,都要经过一个由弱到强,逐步成长壮大的过程,一种新理论、一种新学科的问世,往往一开始会受到许多人的怀疑甚至否定。
模糊数学自1965年L.A.Zadeh教授开创以来所走过的道路,充分证实了这一点,然而,实践是检验真理的标准,模糊数学在理论和实际应用两方面同时取得的巨大成果,不仅消除了人们的疑虑,而且使模糊数学在科学领域中,占有了自己的一席之地。
经典数学是适应力学、天文、物理、化学这类学科的需要而发展起来的,不可能不带有这些学科固有的局限性。
这些学科考察的对象,都是无生命的机械系统,大都是界限分明的清晰事物,允许人们作出非此即彼的判断,进行精确的测量,因而适于用精确方法描述和处理。
而那些难以用经典数学实现定量化的学科,特别是有关生命现象、社会现象的学科,研究的对象大多是没有明确界限的模糊事物,不允许作出非此即彼的断言,不能进行精确的测量。
清晰事物的有关参量可以精确测定,能够建立起精确的数学模型。
模糊事物无法获得必要的精确数据,不能按精确方法建立数学模型。
实践证明,对于不同质的矛盾,只有用不同质的方法才能解决。
传统方法用于力学系统高度有效,但用于对人类行为起重要作用的系统,就显得太精确了,以致于很难达到甚至无法达到。
精确方法的逻辑基础是传统的二值逻辑,即要求符合非此即彼的排中律,这对于处理清晰事物是适用的。
但用于处理模糊性事物时,就会产生逻辑悖论。
如判断企业经济效益的好坏时,用“年利税在100万元以上者为经济效益好的企业”表达,否则,便是经济效益不好的企业。
根据常识,显而易见:“比经济效益好的企业年利税少1元的企业,仍是经济效益好的企业”,而不应被划为经济效益不好的企业。
这样,从上面的两个结论出发,反复运用经典的二值逻辑,我们最后就会得到,“年利税为0者仍为经济效益好的企业”的悖论。
类似的悖论有许多,历史上最著名的有“罗素悖论”。
它们都是在用二值逻辑来处理模糊性事物时产生的。
课件数学建模(模糊数学方法建模).docx
第十四章模糊数学方法建模在生产实践.科学实验以及日常生活中,人们经常会遇到模糊概念(或现象)。
例如,大与小.轻与重.快与慢.动与静.深与浅.美与丑等都包含着一定的模糊概念。
随着科学技术的发展,各学科领域对于这些模糊概念有关的实际问题往往都需要给出定量的分析,这就需要利用模糊数学这一工具来解决。
模糊数学是一个较新的现代应用数学学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科。
统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定性的领域扩大到了模糊领域,即从精确现象到模糊现象。
在各科学领域中,所涉及的各种量总是可以分为确定性和不确定性两大类。
对于不确定性问题,又可分为随机不确定性和模糊不确定性两类。
模糊数学就是研究属于不确定性,而又具有模糊性的量的变化规律的一种数学方法。
本章对于实际中具有模糊性的问题,利用模糊数学的理论知识建立数学模型解决问题。
14. 1.1模糊集与隶属函数1.模糊集与隶属函数一般来说,我们对通常集合的概念并不陌生,如果将所讨论的对象限制在一定的范围内,并记所讨论的对象的全体构成的集合为则称之为论域(或称为全域、全集、空间、话题)。
如果U是论域,贝仏的所有子集组成的集合称之为〃的幕集,记作W)。
在此,总是假设问题的论域是非空的。
为了与模糊集相区别,在这里称通常的集合为普通集。
对于论域〃的每一个元素氏U和某一个子集AuU , 有X"或躍A,二者有且仅有一个成立。
于是,对于子集A定义映射心:U T{0,1}即小)七X::[0, A,则称之为集合人的特征函数,集合A可以由特征函数唯一确定。
所谓论域"上的模糊集人是指:对于任意总以某个程度"A(以〔0,11)属于A ,而不能用氏人或兀e A描述。
若将普通集的特征函数的概念推广到模糊集上,即得到模糊集的隶属函数。
定义14.1设U是一个论域,如果给定了一个映射“人:"一> [0,1 ] X I 心(x) W [ 0,1 ]则就确定了一个模糊集A ,其映射d称为模糊集人的隶属函数,“人称为*对模糊集人的隶属度。
模糊数学ppt课件
1 2
,则有rij'
பைடு நூலகம்[0,1]
。也可以
用平移—极差变换将其压缩到[0,1]上,从而得到模糊相似矩阵
R (rij )nm
(2)绝对值指数法. 令
m
rij exp{ xik x jk }(i, j 1, 2, , n) k 1
则 R (rij )nm
(3)海明距离法. 令
rij
1
d (xi , x j )
(6)主观评分法:设有N个专家组成专家组,让每一位专家对
所研究的对象 x i 与 x j 相似程度给出评价,并对自己的自信度
作出评估。如果第k位专家 Pk 关于对象 x i与 x j 的相似度评价
为 rij (k ),对自己的自信度评估为aij (k ) (i, j 1,2,, n),则相关 系数定义为
)2
(i, j 1,2,, n)
其中E为使得所有 rij [0,1](i, j 1, 2, , n) 的确定常数.则 R (rij )nm
(5)切比雪夫距离法. 令
rij
d (xi ,
1 xj)
Q
d
m
k 1
( xi xik
,
x
j ), x jk
(i, j 1,2,, n)
其中Q为使所有 rij [0,1](i, j 1, 2, , n) 的确定常数.则 R (rij )nm
第三步. 聚类 所谓模糊聚类方法是根据模糊等价矩阵将所研究的对象进
行分类的方法。对于不同的置信水平 [0,1] ,可以得到不同 的分类结果,从而形成动态聚类图。 (一)传递闭包法
通常所建立的模糊矩阵R 只是一个模糊相似矩阵,即R 不 一定是模糊等价矩阵。为此,首先需要由R 来构造一个模糊等
数学建模-模煳数学理论
1)模糊统计方法 它可以算是一种比较客观的方法,主要是基于
模糊统计实验的基础上,根据隶属度的客观存在 性来确定的。
模糊统计试验的四要素为:
假设我们做n次模糊统计试验,则可算出 当n不断增大时,其频率的稳定值称为x0对A的隶属
2)模糊等价矩阵 3)模糊相似关系与模糊相似矩阵
2.3 截矩阵与传递矩阵 1)截矩阵
2)模糊传递矩阵
3 模糊聚类分析
所谓聚类分析,就是用数学的方法把事物按一定要求 和规律进行分类,它有广泛的实际应用。在模糊数学产生 之前,聚类分析已是是数理统计中研究“物以类聚”的一 种多元分析方法,它通过数学工具定量地确定、划分样品 的亲疏关系,从而客观地、合理地分型划类。由于客观事 物之间在很多情况下并没有一个截然区别的界限,又由于 分类时所依据的数据指标的变化也大都是连续的,同时许 多客观事物之间的界限往往不一定很清晰,使传统的基于 数理统计原理的聚类分析方法遇到了困难。因此用模糊数 学观点解决聚类分析问题,必然会更符合于实际情况。这 种基于建立模糊相似关系对客观事物进行分类的方法,称 为模糊聚类分析。
多级模糊综合评判的具体方法步骤:
应用模糊数学方法 分析2000年数学建模A题
1) 问题的简述 2) 问题的分析
3) DNA模糊序列的分类
4) 用F统计量确定满意分类
5) 模型的评价与分析
注明:用F统的两种方法,即直 接方法和间接方法。
4.1 最大隶属原则 1)最大隶属原则Ⅰ
2)最大隶属原则Ⅱ 4.2 择近原则
5 模糊综合评判
5.1 模糊综合评判的一般方法步骤
数学建模-模糊数学ppt课件
0.5 0.2
0 0..3 6,B0 0 0...5 3 1
0 0..4 2,则 0.6
AB0.5 0.3
0.6 0.3
B0.1 A0.3来自0.40.2 0.3 0.5
0.2 0.3 0.5
模糊集合及其运算
〔3〕模糊矩阵的转置 定义:设 A(aij)mn, 称 AT(aijT)mn为A的
转置矩阵,其中 aijT aji 。
模糊集合及其运算
2、指派方法 这是一种客观的方法,但也是用得最普遍的一种
方法。它是根据问题的性质套用现成的某些方式的模 糊分布,然后根据丈量数据确定分布中所含的参数。
3、其它方法 德尔菲法:专家评分法;
二元对比排序法:把事物两两相比,从而确定顺序, 由此决议隶属函数的大致外形。主要有以下方法: 相对比较法、择优比较法和对比平均法等。
制约着 A* 的运动。A* 可以覆盖 u0 , 也可以不覆盖 u0 , 致使 u 0 对A的隶属关系是不确定的。
模糊集合及其运算
特点:在各次实验中,u 0 是固定的,而 A* 在随机变动。 模糊统计实验过程:
〔1〕做n次实验,计算出 u0对 A的隶属 u0 频 A* n 的 率次数
〔2〕随着n的增大,频率呈现稳定,此稳定值即为 u 0 对A的隶属度: A(u0)ln i mu0A*n的次数
模糊集合及其运算二模糊集合及其运算美国控制论专家zadeh教授正视了经典集合描述的非此即彼的清晰现象提示了现实生活中的绝大多数概念并非都是非此即彼那么简单而概念的差异常以中介过渡的形式出现表现为亦此亦彼的模糊现象
Part2: 模糊数学
一 模糊集合及其运算 二 模糊聚类分析 三 模糊综合评判 四 模糊线性规划
A:U{0,1} uA(u),
模糊数学模型
第十九章 模糊数学方法模糊数学是研究和处理模糊现象的一种数学方法,它也同其它的学科一样,主要是来源 于实际的需要.在社会实践中,模糊概念(或现象)无处不在.例如:在日常生活中的好与坏、大与小、厚与薄、快与慢、长与短、轻与重、高与低、贵与贱、软与硬、深与浅、美 与丑、黑与白、早与晚、生与熟、动与静、穷与富、疏与密等等都包含着一定的模糊概念.随着科学技术的发展,各学科领域对与这些模糊概念有关的实际问题往往都需要给出定量的分析,因此,这就要求人们研究和处理这些模糊概念(或现象)的数学方法.模糊数学是一个较新的现代应用数学学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科.统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定领域扩大到了模糊领域,即从精确现象到模糊现象.我们知道,在各科学领域中,所涉及到的各种量总是可以分为确定性的和不确定性的两大类,模糊数学就是研究属于不确定性,而又具有模糊性的量的变化规律的一种数学方法.实际中,我们处理现实对象的数学模型可以分为三大类:第一类是确定性的数学模型,即模型的背景具有确定性,对象之间具有必然的关系.第二类是随机性的数学模型,即模型的背景具有随机性和偶然性.第三类是模糊性模型,即模型的背景及关系都具有模糊性.我们这里所说的模糊数学建模方法就是针对实际中具有模糊性的问题,建立数学模型所需要的模糊数学的理论和知识.19.1 模糊数学的基本概念19.1.1 模糊集与隶属函数1. 模糊集与隶属函数的概念一般说来,我们对通常集合的概念并不陌生,如果将所讨论的对象限制在一定的范围内,并记所讨论的对象全体构成的集合为U ,称之为论域,在此,总是假设问题的论域是非空的.如果U 是论域,则U 的所有子集组成的集合称为U 的幂集,记作)(U F .例如:},,{c b a U =,则{}},,}{,{},,{},,{},{},{},{,)(c b a c b c a b a c b a U F Φ=.为了与模糊集相区别,在这里称通常的集合为普通集.对于论域U 的每一个元素U x ∈和某一个子集U A ⊂,有A x ∈,或A x ∉,二者有且仅有一个成立.于是,对于子集A 定义映射{}1,0:→U A μ, 即⎩⎨⎧∉∈=A x Ax x A ,0,1)(μ则称之为集合A 的特征函数,集合A 可以由特征函数唯一确定.所谓论域U 上的模糊集A 是指:对任意U x ∈总以某个程度])1,0[(∈A μ属于A ,而非A x ∈或A x ∉.也可以将普通集的特征函数的概念推广到模糊集,即模糊集的隶属函数.定义19.1 设U 是一个论域,如果给定了一个映射]1,0[)(]1,0[:∈→x x U A A μμ则就确定了一个模糊集A ,其映射A μ称为模糊集A 的隶属函数,)(x A μ称为x 对模糊集A 的隶属度.使5.0)(=x A μ的点0x 称为模糊集A 的过渡点,即是模糊性最大的点.对一个确定的论域U 可以有多个不同的模糊集,记U 上的模糊集的全体为)(U F ,即]}1,0[:|{)(→=U A U F A μ则)(U F 就是论域U 上的模糊幂集,显然)(U F 是一个普通集合,且)(U F U ⊆.2. 模糊集的表示法对于有限的论域},,,{21n x x x U =,A 是U 上的任一个模糊集,其隶属度为)(i A x μ),,2,1(n i =,则模糊集的表示形式有(1) Zadeh 表示法nn A A A ni ii A x x x x x x x x A )()()()(22111μμμμ+++==∑=这里“i i A x x )(μ”不是分数,“+”也不表示求和,只是符号,它表示点i x 对模糊集A 的隶属度是)(i A x μ.(2) 序偶表示法 {}))(,(,)),(,()),(,(2211n A n A A x x x x x x A μμμ =(3) 向量表示法())(,),(),(21n A A A x x x A μμμ =对于论域U 为无限集的情况,则U 上的模糊集A 可以表示为 ⎰=UA xx A )(μ,这里“⎰”不是积分号,“xx A )(μ”也不是分数.3.模糊集的运算模糊集与普通集有相同的运算和相应的运算规律.定义19.2 设模糊集)(,U F B A ∈,其隶属函数为)(),(x x B A μμ.(1) 若对任意U x ∈,有)()(x x A B μμ≤,则称A 包含B ,记A B ⊆; (2) 若B A ⊆且A B ⊆,则称A 与B 相等,记为A B =.定义19.3 设模糊集)(,U F B A ∈,其隶属函数为)(),(x x B A μμ,则称B A 和BA 为A 与B 的并集和交集;称cA 为A 的补集或余集.它们的隶属函数分别为))(),(max()()()(x x x x x B A B A B A μμμμμ=∨=))(),(min()()()(x x x x x B A B A B A μμμμμ=∧= )(1)(x x A A cμμ-=其中“∨”和“∧”分别表示取大算子和取小算子.并且,并和交运算可以直接推广到任意有限的情况,同时也满足普通集的交换律、结合律、分配律等运算〔1,2,3,4〕.19.1.2 隶属函数的确定方法我们知道,模糊数学的基本思想是隶属程度的思想.应用模糊数学方法建立数学模型的关键是建立符合实际的隶属函数.然而,如何确定一个模糊集的隶属函数至今还是尚未完全解决的问题.这里仅介绍几种常用的确定隶属函数的方法.1. 模糊统计方法模糊统计方法可以算是一种客观方法,主要是基于模糊统计试验的基础上根据隶属度的客观存在性来确定的.所谓的模糊统计试验必须包含下面的四个要素:(1) 论域U ;(2) U 中的一个固定元素0x ;(3) U 中的一个随机变动的集合*A (普通集);(4) U 中的一个以*A 作为弹性边界的模糊集A ,对*A 的变动起着制约作用.其中*0A x ∈,或*0A x ∈,致使0x 对A 的隶属关系是不确定的.假设我们做n 次模糊统计试验,则可计算出:0x 对A 的隶属频率=n A x 的次数*0∈事实上,当n 不断增大时,隶属频率趋于稳定,其频率的稳定值称为0x 对A 的隶属度,即∞→=n A x lim)(0μn A x 的次数*0∈2. 指派方法指派方法是一种主观的方法,它主要依据人们的实践经验来确定某些模糊集隶属函数的一种方法.如果模糊集定义在实数域R 上,则模糊集的隶属函数称为模糊分布.所谓的指派方法就是根据问题的性质主观地选用某些形式的模糊分布,再依据实际测量数据确定其中所包含的参数.常用的模糊分布如表19-1所示.实际中,根据问题对研究对象的描述来选择适当的模糊分布.偏小型模糊分布一般适合于描述像“小”、“少”、“浅”、“淡”、“冷”、“疏”、“青年”等偏向小的程度的模糊现象.偏大型模糊分布一般适合于描述像“大”、“多”、“深”、“浓”、“热”、“密”、“老年”等偏向大的程度的模糊现象.而中间型模糊分布一般适合于描述像“中”、“适中”、“不太多”、“不太少”、“不太深”、“不太浓”、“暖和”、“中年”等处于中间状态的模糊现象.但这些方法所给出的隶属函数都是近似的,应用时需要对实际问题进行分析,逐步地进行修改完善,最后得到近似程度更好的隶属函数.表19-1: 常用的模糊分布(a) 偏小型 (b) 中间型 (c) 偏大型矩形分布⎩⎨⎧>≤=a x a x x A ,0,1)(μ⎩⎨⎧><≤≤=b x a x b x a x A 或,0,1)(μ⎩⎨⎧<≥=a x a x x A ,0,1)(μ梯形分布⎪⎪⎩⎪⎪⎨⎧>≤≤--<=bxbxaabxbaxxA,0,,1)(μ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<≤--<≤<≤--=dxaxdxccdxdcxbbxaabaxxA,,0,,1,)(μ⎪⎪⎩⎪⎪⎨⎧>≤≤--<=bxbxaabaxaxxA,1,,)(μ正态分布⎪⎩⎪⎨⎧>≤=⎪⎭⎫⎝⎛--axeaxx a xA,,1)(2σμ2)(⎪⎭⎫⎝⎛--=σμaxAex⎪⎩⎪⎨⎧>-≤=⎪⎭⎫⎝⎛--axeaxx a xA,1,)(2σμk次抛物型分布⎪⎪⎩⎪⎪⎨⎧>≤≤⎪⎭⎫⎝⎛--<=bxbxaabxbaxxkA,,,1)(μ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<<≤⎪⎭⎫⎝⎛--<≤<≤⎪⎭⎫⎝⎛--=dxaxdxccdxdcxbbxaabaxxkkA,,,,1,)(μ⎪⎪⎩⎪⎪⎨⎧>≤≤⎪⎭⎫⎝⎛--<=bxbxaabaxaxxkA,1,,)(μГ型分布⎩⎨⎧≥><=--axekaxxaxkA,)0(,1)()(μ⎪⎩⎪⎨⎧≥><≤<=---bxekbxaaxexbxkaxkA,)0(,1,)()()(μ⎩⎨⎧≥-><=--axekaxxaxkA,1)0(,)()(μ柯西型分布⎪⎪⎩⎪⎪⎨⎧>>>-+≤=)0,0(,)(11,1)(βααμβaxaxaxxA且为偶数),0()(11)(>>-+=βααμβaxxA⎪⎪⎩⎪⎪⎨⎧>>>-+≤=-)0,0(,)(11,)(βααμβaxaxaxxA3.其它方法实际中,用来确定模糊集的隶属函数的方法是多种多样的,主要是根据问题的实际意义来确定.譬如,在经济管理、社会管理中,可以直接借助于已有的“客观尺度”作为模糊集的隶属度.如果论域U 表示机器设备,在U 上定义模糊集=A “设备完好”,则可以用“设备完好率”作为A 的隶属度.如果U 表示产品,在U 上定义模糊集=A “质量稳定”,则可用产品的“正品率”作为A 的隶属度.如果U 表示家庭,在U 上定义模糊集A =“家庭贫困”,则可以用Engel 系数总消费食品消费=作为A 的隶属度.另外,对于有些模糊集而言,直接给出隶属度有时是很困难的,但可以利用所谓的“二元对比排序法”来确定,即首先通过两两比较确定两个元素相应隶属度的大小排出顺序,然后用数学方法加工处理得到所需要的隶属函数.19.2 模糊关系与模糊矩阵19.2.1 模糊关系与模糊矩阵的概念定义19.4 设论域V U ,,则称乘积空间V U ⨯上的一个模糊子集)(~V U F R ⨯∈为从U 到V 的模糊关系.如果~R的隶属函数为]1,0[:~→⨯V U R μ),(),(~y x y x R μ则称隶属度),(~y x R μ为),(y x 关于模糊关系~R的相关程度.由于模糊关系就是乘积空间V U ⨯上的一个模糊子集,因此,模糊关系同样具有模糊集的运算及性质.设},,,{},,,,{2121n m y y y V x x x U ==,~R是由U 到V 的模糊关系,其隶属函数 为),(~y x R μ,对任意的V U y x j i ⨯∈),(有),,2,1;,,2,1](1,0[),(~n j m i r y x ij j i R ==∈=μ,记n m ij r R ⨯=)(,则R 就是所谓的模糊矩阵,于是有下面的一般性定义.定义19.5 设矩阵nm ij r R ⨯=)(,且),,2,1;,,2,1](1,0[n j m i r ij ==∈,则称R 为模糊矩阵.特别地,如果),,2,1;,,2,1}(1,0{n j m i r ij ==∈,则称R 为布尔(Bool)矩阵.当1=m ,或1=n 时,则相应的模糊矩阵为),,,(21n r r r R =,或Tm r r r R ),,,(21 =,则分别称为模糊行向量和模糊列向量.19.2.2 模糊等价与模糊相似定义19.6 若模糊关系)(~V U F R ⨯∈,且满足:(1) 自反性:=),(~x x R μ1;(2) 对称性:),(),(~~x y y x R R μμ=;(3)传递性:~~~R R R ⊆ (()),(),(),(),(~~~~~y x y z z x y x RR R V z R R μμμμ≤∧∨=⇔∈ ).则称~R 是U 上的一个模糊等价关系,其隶属度函数),(~y x R μ表示),(y x 的相关程度.当论域为},,,{21n x x x U =时,U 上的模糊等价关系可表示为n n ⨯阶模糊等价矩阵nn ij r R ⨯=)(.定义19.7 设论域为},,,{21n x x x U =,I 为单位矩阵,如果模糊矩阵n n ij r R ⨯=)(满足:(1) 自反性:),,2,1,1(n i r R I ii ==⇔≤;(2) 对称性:),,2,1,;(n j i r r R R ji ij T ==⇔=;(3)传递性:R R R ≤ (()),,2,1,;1n j i r r r ij kj ik nk =≤∧⇔∨=).则称R 为模糊等价矩阵.实际中,要建立一个模糊等价关系或模糊等价矩阵往往是困难的,这主要是由于传递性难已满足.但是,对于满足自反性和对称性的模糊关系~R与模糊矩阵R ,则分别称为模糊相似关系与模糊相似矩阵.19.2.3 λ-截矩阵与传递矩阵定义19.8 设nm ij r R ⨯=)(为模糊矩阵,对任意的]1,0[∈λ.(1) 如果令⎪⎪⎭⎫⎝⎛==⎪⎩⎪⎨⎧<≥=n j m i r r r ij ij ij ,,2,1,,2,1,0,1)( λλλ则称()n m ij r R ⨯=)(λλ为R 的λ-截矩阵. (2) 如果令⎪⎪⎭⎫⎝⎛==⎪⎩⎪⎨⎧≤>=n j m i r r r ij ij ij ,,2,1,,2,1,0,1)( λλλ则称()nm ij r R ⨯=)(λλ为R 的λ-强截矩阵.显然,对任意的]1,0[∈λ,λ-截矩阵是布尔矩阵. 定义19.9 设R 是n n ⨯阶的模糊矩阵,如果满足R R R R ≤=2(()),,2,1,;1n j i r r r ij kj ik nk =≤∧⇔∨=则称R 为模糊传递矩阵.将包含R 的最小的模糊传递矩阵称为R 的传递包,记为)(R t .事实上,对于任意的模糊矩阵n n ij r R ⨯=)(,则n n k ij n k nk kr R R t ⨯==⎪⎭⎫⎝⎛∨==)(11)( .特别地, 当R 为模糊相似矩阵时,则存在一个最小的自然数)(n k k ≤,使得kR R t =)(,对任意自然数k l >都有kl R R =,此时)(R t 一定为模糊等价矩阵.19.3 模糊聚类分析方法在许多工程技术和经济管理中,常常需要对某些指标按一定的标准(相似的程度、亲疏关系等)进行分类处理.例如,根据生物的某些性态对其进行分类、根据空气的性质对空气质量进行分类,以及工业上对产品质量的分类、工程上对工程规模的分类、图像识别中对图形的分类、地质学中对地质土壤的分类、水资源中的水质分类等等.这种对客观事物按一定标准进行分类的数学方法主要就是聚类分析法,而模糊聚类分析法就是根据事物的某些模糊性质进行分类的一种数学方法.下面给出模糊聚类分析方法的一般步骤.19.3.1 数据标准化(1) 获取数据:设论域},,,{21n x x x U =为所需分类研究的对象,每个对象又由m 个指标表示其性态,即),,2,1}(,,,{21n i x x x x im i i i ==,于是,可以得问题的原始数据矩阵为()mn ij x A ⨯=.(2) 数据的标准化处理:在实际问题中的数据可能有不同的性质和不同的量纲,为了使原始数据能够适合模糊聚类的要求,需要将原始数据矩阵A 做标准化的处理,即通过适当的数据变换和压缩,将其转化为模糊矩阵.常用的方法有以下两种: (ⅰ) 平移-标准差变换如果原始数据之间有不同的量纲,则可以采用这种变换后使每个变量的均值为0,标准差为1,即可以消除量纲的差异的影响.即令),,2,1;,,2,1(m j n i s x x x jjij ij==-='其中),,2,1()(1,121121m j x x n s x n x n i j ij j n i ij j =⎥⎦⎤⎢⎣⎡-==∑∑==.(ⅱ) 平移-极差变换如果经过平移-标准差变换后还有某些]1,0[∈'ijx ,则还需对其进行平移-极差变换,即令{}{}{}),,2,1(min max min 111m j xx x x x ijni ijni ij ni ijij='-''-'=''≤≤≤≤≤≤显然所有的]1,0[∈''ijx ,且也不存在量纲因素的影响,从而可以得到模糊矩阵()m n ijx R ⨯''=.19.3.2 建立模糊相似矩阵设论域},,,{21n x x x U =,),,2,1}(,,,{21n i x x x x im i i i ==,即数据矩阵为()mn ij x A ⨯=,如果i x 与j x 的相似程度为),,2,1,)(,(~n j i x x R r j i ij ==,则称之为相似系数,确定相似系数ij r有多种不同的方法.(1) 数量积法对于U x x x x im i i i ∈=},,,{21 ,令⎪⎭⎫⎝⎛⋅=∑=≠m k jk ik j i x x M 1max ,则取⎪⎩⎪⎨⎧≠⋅==∑=j i x x M j i r m k jk ik ij ,1,11,显然]1,0[∈ij r .若出现有某些0<ij r ,可令21+='ij ij r r ,则有]1,0[∈'ijr .也可以用平移-极差变换将其压缩到]1,0[上,即可以得到模糊相似矩阵()mn ij r R ⨯=.(2) 夹角余弦法: 令),,2,1,(12121n j i xx x xr mk jkmk ikmk jkikij =⋅=∑∑∑===则()nn ij r R ⨯=.(3) 相关系数法: 令()()()()),,2,1,(12121n j i x xx xx x x xr mk jjkmk iikmk j jk i ikij =-⋅---=∑∑∑===其中∑==m k ik i x m x 11,∑==mk jk j x m x 11,则()n n ij r R ⨯=. 注意:},,,{21im i i ix x x x =中的样本ik x 属于同一个样本空间i X ),,2,1(m k =.(4) 指数相似系数法: 令∑=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--=m k k jk ik ij s x x m r 122)(43exp 1其中()∑=-=ni k ik k x x n s 121,∑==ni ikk x n x 11),,2,1(m k =.则()n n ij r R ⨯=. 注意:},,,{21im i i i x x x x =中的样本ik x 属于不同的样本空间k X ,即),,2,1(m k X x k ik =∈.(5) 最大最小值法: 令()()),,2,1,;0(11n j i x x xx x r ij mk jkikmk jk ikij =>∨∧=∑∑==则()nn ij r R ⨯=.(6) 算术平均值法: 令()()),,2,1,;0(2111n j i x x x x xr ij mk jk ik mk jk ikij =>+∧=∑∑==则()nn ij r R ⨯=.(7) 几何平均值法:令()),,2,1,;0(11n j i x x x x xr ij mk jkik mk jk ikij =>⋅∧=∑∑==则()nn ij r R ⨯=.(8) 绝对值倒数法:令⎪⎩⎪⎨⎧≠⎪⎭⎫⎝⎛-==-=∑ji x x M j i r m k jk ik ij ,,111其中M 为使得所有),,2,1,](1,0[n j i r ij =∈的确定常数,则()n n ij r R ⨯=.(9) 绝对值指数法:令),,2,1,(exp 1n j i x x r m k jk ik ij =⎭⎬⎫⎩⎨⎧--=∑=则()nn ij r R ⨯=.(10) 海明距离法:令),,2,1,(),(),(11n j i x x x x d x x d H r m k jkik j i j i ij =⎪⎩⎪⎨⎧-=⋅-=∑=其中H 为使得所有),,2,1,](1,0[n j i r ij =∈的确定常数.则()nn ij r R ⨯=.(11) 欧氏距离法:令()),,2,1,(),(),(112n j i x x x x d x x d E r m k jk ik j i j i ij =⎪⎩⎪⎨⎧-=⋅-=∑=其中E 为使得所有),,2,1,](1,0[n j i r ij =∈的确定常数.则()nn ij r R ⨯=.(12) 契比雪夫距离法:令),,2,1,(),(),(11n j i x x x x d x x d Q r jkik m k j i j i ij =⎪⎩⎪⎨⎧-=⋅-=∨=其中Q 为使得所有),,2,1,](1,0[n j i r ij =∈的确定常数.则()nn ij r R ⨯=.(13) 主观评分法:设有N 个专家组成专家组},,,{21N p p p ,让每一位专家对所研究的对象i x 与j x 相似程度给出评价,并对自己的自信度作出评估.如果第k 位专家k p 关于对象i x 与j x 的相似度评价为)(k r ij ,对自己的自信度评估为),,2,1,)((n j i k a ij =,则相关系数定义为()),,2,1,()()()(11n j i k ak r k ar Nk ijNk ij ijij =⋅=∑∑==则()nn ij r R ⨯=. 综上所述,以上给出了实际中能够使用的一些方法,具体地选择要根据具体问题的性质和使用的方便来确定.19.3.3 聚类所谓的聚类方法就是依据模糊矩阵将所研究的对象进行分类的方法,对于不同的置信水平]1,0[∈λ,可得不同的分类结果,从而可以形成动态聚类图.常用的方法可以分为两类,一类是基于模糊等价矩阵的聚类方法,另一类是直接聚类方法.(1) 传递闭包法用上节的方法所建立的模糊矩阵R 一般只是一个模糊相似矩阵,即R 不一定是模糊等价矩阵.为此,首先需要由R 来构造一个模糊等价矩阵*R ,根据传递闭包的性质,可以用平方法求出R 的传递包*=R R t )(,即为一模糊等价矩阵.然后,由大到小取一组]1,0[∈λ值,确定相应的λ-截矩阵,则可以将其分类,同时也可构成动态聚类图〔1〕.(2) 布尔矩阵法设论域为},,,{21n x x x U =,R 是U 上的模糊相似矩阵,对于确定的λ水平要求U 中元素的分类.首先,由于模糊相似矩阵R 作出其λ-截矩阵))((λλij r R =,即λR 为布尔矩阵.然后,依据λR 中的1元素可以将其分类. 如果λR 为等价矩阵,则R 也为等价矩阵,即可以直接将其分类. 如果λR 不是等价矩阵,则首先按一定的规则将λR 改造成一个等价的布尔矩阵,然后再进行分类.例如:0元素和1元素互换方法等.(3) 直接聚类法所谓直接聚类法是一种直接由模糊相似矩阵,求出聚类图的方法,具体步骤如下:1) 取11=λ(最大值),对每个i x 作相似类:{}1|][==ij j R i r x x ,即将满足1=ij r 的i x 与j x 视为一类,构成相似类.相似类与等价类有所不同,不同的相似类可能有公共元素,即可能有Φ≠R j R i x x ][][ ,实际中,对于这种情况可以将R i x ][与R j x ][合并为一类,即可得到11=λ水平上的等价分类.2) 取)(12λλ<为次大值,从R 中直接找出相似程度为2λ的元素对),(j i x x (即2λ=ij r ),并相应地将对应于11=λ的等价分类中i x 与j x 所在的类合并为一类,即可得到2λ水平上的等价分类.3) 依次取 >>>321λλλ,按第2)步的方法依次类推,直到合并到U 成为一类为止,最后可以得到动态聚类图.19.4 模糊模式识别方法将事物的整体划分为若干类型而得到一组标准模式,对于一个确定的对象识别它属于哪一类的问题称为模式识别.如果整体被划分的类型与被识别的对象之中至少有一个是用模糊集表示的模式识别问题,则称为模糊模式识别.实际中有很多问题都属于这一类问题,例如:像自动分拣机对信件上邮政编码的识别;医生针对病人的主要症状诊断过程;根据学生的德、智、体等因素对学生进行分类;对某种产品等级的分类,以及指纹识别和汽车车牌号码的识别等问题.这里主要介绍两种最基本的模糊模式识别方法――最大隶属原则和择近原则.19.4.1 模式识别中的最大隶属原则定义19.8 设论域},,,{21n x x x U =上的m 个模糊子集m A A A ,,,21 ,其隶属度函数为),,2,1)((m i x iA =μ,而模糊向量集合族),,,(21m A A A A =对于普通向量),,,()0()0(2)0(1)0(m x x x x =,则称{})()()0(1)0(i A mi x x iμμ=∧=为)0(x 对模糊向量集合族A 的隶属度.实际中向量)0(x 对模糊向量集合族A 的隶属度也可以定义为∑==m i i A x n x i 1)0()0()(1)(μμ.1. 最大隶属原则Ⅰ 设在论域},,,{21n x x x U =上有m 个模糊子集m A A A ,,,21 (即m 个模式)一起构成一个标准模式库,若对任一个U x ∈)0(,存在)1(00m k k ≤≤使得{})()()0(1)0(0x x kA mk k μμ=∨=,则可视为)0(x 相对隶属于0k A.2. 最大隶属原则Ⅱ设在论域},,,{21n x x x U =上确定一个标准模式0A ,对于n 个待识别的对象U x x x n ∈,,,21 ,如果有某个k x 满足)1()(1)(00n k i x A mi k x A ≤≤⎭⎬⎫⎩⎨⎧=∨=μμ,则k x 优先隶属于0A .19.4.2 模式识别中的择近原则设论域},,,{21n x x x U =,由U 上的m 个模糊子集m A A A ,,,21 (即m 个模式)构成一个标准模式库,对U 上的另一个模糊子集0A ,问题是0A 与),,2,1(m i A i=中的哪一个最贴近?这是另一类模式识别问题,主要是研究两个模糊集的贴近程度.1. 贴近度的概念设论域U 上的模糊子集)(,21U F A A ∈,则定义))()((2121x x A A A A Ux μμ∧=∨∈为1A 与2A 的内积;类似的定义 ))()((2121x x A A A A Ux μμ∨=⊗∧∈为1A 与2A 的外积.定义19.9 设有论域U 上的模糊子集)(,21U F A A ∈,则称[])1(21),(212121A A A A A A N ⊗-+=为1A 与2A 的贴近度. 显然的,如果1A 与2A 的贴近度),(21A A N 越大,则说明1A 与2A 越贴近.而且贴近度有下列性质:(1) 1),(021≤≤A A N ;(2) 0),(=ΦU N ,))((1),(U F A A A N ∈∀=.实际中,可以用贴近度来描述模糊集之间的贴近程度,但是,根据所研究问题的性质,还可以给出其它形式的贴近度定义.2. 单个特性的择近原则设论域U 上的m 个模糊子集m A A A ,,,21 (m 个模式)构成一个标准模式库{}m A A A ,,,21 ,模糊子集0A 为待识别的模式,若存在)1(00m k k ≤≤使得),(),(0100A A N A A N k mk k ∨==则0A 与0k A 最贴近,或者说把0A 可归并到0k A类.3. 多个特性的择近原则根据实际问题的需要,依据对象的多个特性的模式识别问题,即要研究两个模糊向量集合族的贴近度问题,可以有多种不同的定义,常用的有以下几种形式:对于论域U 上的两个模糊向量集合族),,,(),,,,(2121m m B B B B A A A A ==,则A 与B 的贴近度可定义为(1) ),(),(1k k mk B A N B A N ∧==; (2)),(),(1k k mk B A N B A N ∨==;(3)),(),(1k k mk k B A N a B A N ∑==,其中]1,0[∈k a ,且11=∑=mk k a ;(4)()),(),(1k k k mk B A N a B A N ⋅=∨=,其中]1,0[∈k a ,且11=∑=mk k a ;(5)()),(),(1k k k mk B A N a B A N ∧=∨=,其中]1,0[∈k a ,且11=∑=mk k a .实际中,选择哪一种形式,完全根据实际问题的需要确定,也可以用其它更合适的形式. 多个特性的择近原则:设由论域U 上的n 个模糊子集n A A A ,,,21 构成一个标准模式库{}n A A A ,,,21 ,每个模式k A 都可用m 个特性描述,即),,2,1)(,,,(21n k A A A A km k k k ==待识别的模式为),,,(002010m A A A A =.如果两个模糊向量集合族的贴近度最小值为),,2,1)(,(01n k A A N n i ki mi k ==∧=并有自然数)1(00n k k ≤≤使得knk k n n ∧==10,则模式0A 隶属于k A.最后值得我们注意的是模式识别与模糊聚类分析的关系和区别.首先,二者都是研究模糊分类问题的方法,但二者既有关联,又有差别.模糊聚类分析所研究的对象是一组样本,没事先确定的模式标准,只是根据对象的特性进行适当的分类.而模糊模式识别所讨论的问题事先已知若干标准模式,或标准模式库,据此,对要待识别的对象进行识别,看它应属于哪一类.因此,模糊聚类分析是一种无标准模式的分类方法,而模糊模式识别是一种有标准模式的分类方法.另一方面,模糊聚类分析与模糊模式识别也是有关系的.实际中,我们用模糊聚类分析法进行判别、预测的过程,事实上就是模糊聚类与模糊识别综合运用的过程.模糊识别中的标准模式就是在模糊聚类分析过程中得到的,即模糊聚类为模糊识别提供了标准模式库.19.5 模糊综合评判方法模糊综合评判是模糊决策中最常用的一种有效方法.在实际中,常常需要对一个事物做出评价(或评估),一般都涉及到多个因素或多个指标,此时就要求我们根据这些因素对事物做出综合评价,这就是所谓的综合评判,即综合评判就是要对受多个因素影响的事物(或对象)做出全面的评价,故模糊综合评判又称为模糊综合决策或模糊多元决策.传统的评判方法有总评分法和加权评分法.总评分法:根据评判对象的评价项目),,2,1(n i u i =,首先,对每个项目确定出评价的等级和相应的评分数),,2,1(n i s i=,并将所有项目的分数求和∑==ni is S 1,然后,按总分的大小排序,从而确定出方案的优劣.加权评分法:根据评判对象的诸多因素(或指标)),,2,1(n i u i =所处的地位或所起的作用一般不尽相同.因此,引入权重的概念,求其诸多因素(指标)评分),,2,1(n i s i=的加权和∑==ni ii s w S 1.其中i w 为第),,2,1(n i i =个因素(指标)的权值.19.5.1 模糊综合评判的一般方法1. 模糊综合评判的一般提法 设},,,{21n u u u U =为研究对象的n 种因素(或指标),称之为因素集(或指标集).},,,{21m v v v V =为诸因素(或指标)的m 种评判所构成的评判集(或称语集、评价集、决策集等),它们的元素个数和名称均可根据实际问题的需要和决策人主观确定.实际中,很多问题的因素评判集都是模糊的,因此,综合评判应该是V 上的一个模糊子集)(),,,(21V F b b b B m ∈=其中k b 为评判k v 对模糊子集B 的隶属度:),,,2,1()(m k b v k k B ==μ,即反映了第k 种评判k v 在综合评价中所起的作用.综合评判B 依赖于各因素的权重,即它应该是U 上的模糊子集)(),,,(21U F a a a A n ∈= ,且11=∑=ni ia,其中i a表示第i 种因素的权重.于是,当权重A 给定以后,则相应地就可以给定一个综合评判B .2. 模糊综合评判的一般步骤(1) 确定因素集},,,{21n u u u U =; (2) 确定评判集},,,{21m v v v V =;(3) 确定模糊评判矩阵mn ij r R ⨯=)(:首先,对每一个因素i u 做一个评判),,2,1)((n i u f i =,则可以得U 到V 的一个模糊映射f ,即)(),,,()()(:21V F r r r u f u U F U f im i i i i ∈=→然后,由模糊映射f 可以诱导出模糊关系)(V U F R f ⨯∈,即),,2,1;,,2,1())((),(m j n i r v u f v u R ij j i j i f ====因此,可以确定出模糊评判矩阵mn ij r R ⨯=)(.而且称),,(R V U 为模糊综合评判模型,R V U ,,称为该模型的三要素.(4) 综合评判:对于权重)(),,,(21U F a a a A n ∈= ,用模型),(∨∧M 取最大-最小合成运算,可以得到综合评判),,2,1),((1m j r a b R A B ij i ni j =∧=⇔=∨=注意到:关于评判集V 的权重),,,(21n a a a A =的确定在综合评判中起重要的作用,通常情况下可以由决策人凭经验给出,但往往带有一定的主观性.要从实际出发,或更客观地反映实际情况可采用专家评估法、加权统计法和频数统计法,或更一般的模糊协调决策法、模糊关系方法等来确定.19.5.2 综合评判模型的构成如果模糊综合评判模型为),,(R V U ,对于权重)(),,,(21U F a a a A n ∈= ,模糊评判矩阵为mn ij r R ⨯=)(,则用模型)(∨∧,M 运算得综合评判为)(),,,(21V F b b b R A B m ∈== ,其中),,2,1()(1m j r a b ij i n i j =∧=∨=.事实上,由于11=∑=ni ia,对于某些情况可能会出现iji r a ≤,即iij i a r a =∧.这样可能导致模糊评判矩阵R 中的许多信息的丢失,即人们对某些因素i u 所作的评判信息在决策中未得到充分的利用.从而导致综合评判结果失真.为此,实际中可以对模型)(∨∧,M 进行改进.(1) 模型)(∨∙,M 法:对于)(),,,(21U F a a a A n ∈= 和m n ij r R ⨯=)(,则用模型)(∨∙,M 运算得R A B *=,即),,2,1()(1m j r a b ij i ni j =∙=∨=.(2) 模型)(+∧,M 法:对于)(),,,(21U F a a a A n ∈= 和m n ij r R ⨯=)(,则用模型)(+∧,M 运算得R A B *=,即),,2,1()(1m j r a b ni ij i j =∧=∑=.(3) 模型)(+∙,M 法:对于)(),,,(21U F a a a A n ∈= 和m n ij r R ⨯=)(,则用模型)(+∙,M 运算得R A B *=,即),,2,1()(1m j r a b ni ij i j =∙=∑=.在实际应用时,主因素(即权重最大的因素)在综合中起主导作用时,则可首选“主因素决定型”模型)(∨∧,M ;当模型)(∨∧,M 失效时,再来选用“主因素突出型”模型)(∨∙,M 和)(+∧,M ;当需要对所有因素的权重均衡时,可选用加权平均模型)(+∙,M .在模型的选择时,还要特别注意实际问题的需求.19.5.3 多层次模糊综合评判对于实际中的许多问题往往都是涉及因素多,各因素的权重分配较为均衡的情况,此时,可采用将诸因素分为若干个层次进行研究.即首先分别对单层次的各因素进行评判,然后再对所有的各层次因素作综合评判.这里仅就两个层次的情况进行说明,具体方法如下:(1) 将因素集},,,{21n u u u U =分成若干个组)1(,,,21n k U U U k ≤≤ 使得ki iU U 1==,且)(j i U U j i ≠=Φ ,称},,,{21k U U U U =为一级因素集.不妨设);,,2,1}(,,,{1)()(2)(1n n k i u u u U k i i i n i i i i===∑= ,称之为二级因素集.(2) 设评判集},,,{21m v v v V =,对二级因素集},,,{)()(2)(1i n i i i i u u u U =的i n 个因素进行单因素评判,即建立模糊映射),,2,1)(,,,()()(:)()(2)(1)()(i i jm i j i j i j i i j i i n j r r r u f u V F U f ==→于是得到评判矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)()(2)(1)(2)(22)(21)(1)(12)(11i m n i n i n i mi i i mi i i i i i r r r r r r r r r R 不妨设},,,{)()(2)(1i n i i i iu u u U =的权重为},,,()()(2)(1i n i i i ia a a A =,则可以求得综合评判为),,2,1)(,,,()()(2)(1k i b b b R A B i m i i i i i ===其中)(i j b 由模型)(∨∧,M ,或)(∨∙,M 、)(+∧,M 、)(+∙,M 确定. (3) 对于一级因素集},,,{21k U U U U =作综合评判,不妨设其权重),,,(21k a a a A =,总评判矩阵为T k B B B R ],,,[21 =.按模型)(∨∧,M ,或)(∨∙,M 、)(+∧,M ,、)(+∙,M 运算得到综合评判)(),,,(21V F b b b R A B m ∈== .19.6 中介服务机构的信誉评估问题[10]19.6.1问题的提出近年来,社会上出现了很多不同规模、不同性质的中介服务机构,但目前还缺少规范统一管理的政策和法规,有些地方由此产生了许多社会问题.为了加强对这些机构的管理,政府有关部门需要对这些机构的“信誉”做出客观地评价,以便制定相应的政策和法规.表19-1:各级因素及其权值 主要因素二级因素 权 重 模糊矩阵 三 级 因 素权 重 (A) 法 纪 情 况 0.3(A 1)遵纪 守法情况 a 1=0.3 R A1 (A 11)经营活动 a 11=0.5 (A 12)财务制度a 12=0.5 (A 2) 纳 税 情 况 a 2=0.5R A2(A 21)所纳税与应纳税的比率 a 21=0.6 (A 22)逃税次数a 22=0.2 (A 23)逃税罚金与所纳税的比率a 23=0.2 (A 3)奖惩 情 况 a 3=0.1R A3 (A 31)奖励的次数 a 31=0.5 (A 32)惩罚的次数a 32=0.5 (A 4)治安 情 况a 4=0.1R A4 (A 41)发生治安案件的次数 a 41=0.4 (A 42)发生行事案件的次数 a 42=0.6 (B)(B 1)履行 合同情况 b 1=0.2 R B1 (B 11)履行合同与全部合同比率 b 11=0.6 (B 12)主动违约占合同的比率 b 12=0.4 (B 2)(B 21)中介服务的成功率b 21=0.6。
模糊数学模型
定义 2 对于论域 X 上的模糊集 A , B ,其隶属函数分别为 μA (x) , μB (x) 。
i) 若对任意 x ∈ X ,有 μB (x) ≤ μA (x) ,则称 A 包含 B ,记为 B ⊆ A ; ii) 若 A ⊆ B 且 B ⊆ A ,则称 A 与 B 相等,记为 A = B 。 定义 3 对于论域 X 上的模糊集 A , B , i) 称 Fuzzy 集 C = A U B ,D = A I B 为 A 与 B 的并(union)和交(intersection),
假设做n次模糊统计试验则可计算出0x对a的隶属频率nax的次数0实际上当n不断增大时隶属频率趋于稳定其频率的稳定值称为0x对a的隶属度即0xanaxn的次数0lim2指派方法262指派方法是一种主观的方法它主要依据人们的实践经验来确定某些模糊集隶属函数的一种方法
第二十二章 模糊数学模型
§1 模糊数学的基本概念 1.1 模糊数学简介 1965 年,美国著名计算机与控制专家查德(L.A.Zadeh)教授提出了模糊的概念,并
x
>
a
⎧1,
x≤a
柯 西
μA
=
⎪ ⎨
1
⎪⎩1 + α (x − a)β
,
x
>
a
型
(α > 0, β > 0)
表 1 常用的模糊分布
中间型
μA
=
⎧1, ⎩⎨0,
a≤ x≤b x < a或x > b
⎧ ⎪ ⎪
x b
− −
a a
,
a≤ x≤b
μA
=
⎪1,
⎨ ⎪
d
⎪d
− −
x c
数学建模模糊数学讲义
模糊数学经历了数十年的发展, 逐渐形成了完善的理论体系,并 在各个领域得到广泛应用。
当前模糊数学的研究热点包括模 糊逻辑、模糊推理、模糊系统优 化等方向。
模糊数学的应用前景与挑战
应用前景
模糊数学在人工智能、模式识别、决策分析等领域具有广阔的应用前景,为解决复杂问题 提供了新的思路和方法。
挑战与问题
数学建模模糊数学讲义
• 引言 • 模糊集合论基础 • 模糊逻辑与模糊推理 • 模糊聚类分析 • 模糊决策分析 • 模糊控制系统 • 总结与展望
01
引言
模糊数学简介
模糊数学是一门研究模糊现象和模糊事物的数学分支,它提供了一种处理 不确定性和不精确性的方法。
模糊数学通过引入模糊集合的概念,将经典集合论中的确定性界限扩展到 模糊性界限,从而能够更好地描述现实世界中的模糊现象。
尽管模糊数学取得了一定的成果,但仍面临一些挑战和问题,如模糊规则的制定、模糊推 理的精度和稳定性等。
未来发展方向
未来模糊数学的发展方向包括与其他数学分支的交叉融合、模糊系统与机器学习的结合等 ,以推动其在更多领域的应用和发展。
THANKS
感谢观看
模糊逻辑运算
模糊逻辑运算是对传统逻辑运算的扩展,如并、 交、非等运算。
模糊逻辑的运算与推理
模糊集合的运算
包括模糊集合的交、并、补等基 本运算,以及更复杂的运算如模 糊化、去模糊化等。
模糊推理
基于模糊逻辑的推理方法,通过 建立模糊规则和模糊前提,得出 模糊结论。
模糊推理系统
一种基于模糊逻辑的控制系统, 通过建立模糊控制器和模糊规则 库来实现对系统的控制。
根据系统特性和要求,设计合适的模糊逻辑 和推理规则。
系统仿真与优化
模糊数学模型分析--讲义共174页
在模糊数学中,我们称没有明确边界(没有清晰外延) A B 的集合为模糊集合。常用大写字母下加波浪线的形式来表示, B A 如 、 等。
元素属于模糊集合的程度用隶属度或模糊度来表示。 用于计算隶属度的函数称为隶属函数,即模糊集的特征函数。 隶属度即论域元素属于模糊集合的程度。用 A ( xi ) 来表示。 隶属度的值为[0,1]闭区间上的一个数,其值越大,表示该 元素属于模糊集合的程度越高,反之则越低。 计算隶属度的函数称为隶属函数。用 A ( x) 表示。 隶属度和隶属函数的表示形式看起来很相似,但是它 们的意义是完全不一样的。 A ( xi ) 指论域中特定元素xi属于 A的隶属度,而 A ( x) 中的x是一个变量,可表示论域中的任 一元素。
我国的模糊技术研究
1) 70年代后期传到我国,起步晚,但发展快,“国际四强” 2) 理论研究居世界领先地位,但应用与发达国家有差距 3)“模糊技术产业化” 3) 近几年国内掀起了模糊控制技术的研究与开发热,成绩喜人 - 企业:大型家电集团已成功开发了国产模糊控制洗衣机 如: “小天鹅”,“海尔”,“小鸭”,“金羚” 等名牌智能洗衣机 - 研究机构,高校:郑州轻工业学院模糊控制中心 清华大学热能工程系 北京师范大学模糊控制中心 西南交通大学智能控制中心
借助于下意识的联想灵感来展开思路抓住问题的个别条件或关键词展开联想或猜想综合所得到的联想和猜想得到一些结论进一步思考找出新思路和方法不要对交流失去信心建模思想模糊数学研究和处理模糊性现象的数学概念与其对立面之间没有一条明确的分界线模糊分类问题已知若干个相互之间不分明的模糊概念需要判断某个确定事物用哪一个模糊概念来反映更合理准确模糊相似选择按某种性质对一组事物或对象排序是一类常见的问题但是用来比较的性质具有边界不分明的模糊性与模糊数学相关的问题二模糊聚类分析根据研究对象本身的属性构造模糊矩阵在此基础上根据一定的隶属度来确定其分类关系模糊综合评判综合评判就是对受到多个因素制约的事物或对象作出一个总的评价如产品质量评定科技成果鉴定某种作物种植适应性的评价等都属于综合评判问题
模糊数学建模
R1 = (0.2,0.5,0.3,0)
同理,对存储容量 u 2 ,运行速度 u3 ,外设配置
u4 和价格
u5 分别作出单因素评价,得
R2 = (0.1,0.3,0.5,0.1)
R3 = (0,0.4,0.5,0.1)
R4 = (0,0.1,0.6,0.3)
R5 = (0.5, 0.3, 0.2, 0.0)
= ((0.1 ∧ 0.2) ∨ (0.1 ∧ 0.1) ∨ (0.3 ∧ 0.0) ∨ (0.15 ∧ 0.0) ∨ (0.35 ∧ 0.5), (0.1 ∧ 0.5) ∨ (0.1 ∧ 0.3) ∨ (0.3 ∧ 0.4) ∨ (0.15 ∧ 0.1) ∨ (0.35 ∧ 0.3), (0.1 ∧ 0.3) ∨ (0.1 ∧ 0.5) ∨ (0.3 ∧ 0.5) ∨ (0.15 ∧ 0.6) ∨ (0.35 ∧ 0.2), (0.1 ∧ 0.0) ∨ (0.1 ∧ 0.1) ∨ (0.3 ∧ 0.1) ∨ (0.15 ∧ 0.3) ∨ (0.35 ∧ 0.0)) = (0.1 ∨ 0.1 ∨ 0.0 ∨ 0.0 ∨ 0.35, 0.1 ∨ 0.1 ∨ 0.3 ∨ 0.15 ∨ 0.2, 0.1 ∨ 0.1 ∨ 0.3 ∨ 0.1 ∨ 0.3, 0.0 ∨ 0.1 ∨ 0.1 ∨ 0.15 ∨ 0.0)
B = Ao R
0.5 0.3 0.4 0.1
0.0 0.1 0.1 0.3 0.3 0.2 0.0 0.3 0.5 0.5 0.6
= ((0.1 ∧ 0.2) ∨ (0.1 ∧ 0.1) ∨ (0.3 ∧ 0.0) ∨ (0.15 ∧ 0.0) ∨ (0.35 ∧ 0.5), (0.1 ∧ 0.5) ∨ (0.1 ∧ 0.3) ∨ (0.3 ∧ 0.4) ∨ (0.15 ∧ 0.1) ∨ (0.35 ∧ 0.3), (0.1 ∧ 0.3) ∨ (0.1 ∧ 0.5) ∨ (0.3 ∧ 0.5) ∨ (0.15 ∧ 0.6) ∨ (0.35 ∧ 0.2), (0.1 ∧ 0.0) ∨ (0.1 ∧ 0.1) ∨ (0.3 ∧ 0.1) ∨ (0.15 ∧ 0.3) ∨ (0.35 ∧ 0.0))
模糊数学方法_数学建模ppt课件
;
eA,B n AxiBxi2
i1
• 相对欧几里得距离:
A,B 1 eA,B
n
-
12
模糊集合的相似度
• 用1减去相对距离,则可以得到相似度的概念. • 相似度,也可以理解为贴近度.有多种理论模型.
-
13
【0,1】区间上的算子
• [0,1]区间上的一个二元运算称为算子. • 这里的二元运算是广义的二元运算.例如常规乘法
• 设以人的岁数作为论域U=[0,120],单位是“岁”, 那么“年轻”,“年老”,都是U上的模糊子集。 隶属函数如下:
• “年轻”(u)= 1
1u52521
0u25 25u120
• “年老”(u)= 1 1u52521
0u50 50u120
-
8
模糊集合与经典集合的联系
• 一就般叫λ地截,集用或Aλλ表 水示平集. Ax的x的集合,这个集合
• 支撑集,即所有λ>0的λ截集的并集 .
-
9
模糊集合的一个实际例子
• 假定有甲乙两个顾客商 场买衣服,他们主要考
虑三个因素:
• 花色式样(x1); • 耐穿程度(x2); • 价格(x3);
顾客甲 确定的 隶属度
顾客乙 确定的 隶属度
花色 式样 x1 0.8
0.6
耐穿 程度 x2 0.4
0.6
价格 x3 0.7
模糊数学方法
理学院 韩邦合
-
1
模糊数学:程度化 思想解决模糊概念
• 一个人有了10万根头发,当然不能算秃头。不是秃头的人, 掉了一根头发,仍然不是秃头。按照这个道理,让一个不 是秃头的人一根一根地减少头发,就得出一条结论:没有 一根头发的光头也不是秃头!
武彩萍模糊数学建模讲义 2015
先建立标准模型库中各种三角形的隶属函数.
直角三角形的隶属函数R(A,B,C)应满足下列 约束条件: (1) 当A=90时, R(A,B,C)=1; (2) 当A=180时, R(A,B,C)=0; (3) 0≤R(A,B,C)≤1.
因此,不妨定义R(A,B,C ) = 1 - |A - 90|/90. 则R(x0)=0.955.
模糊关系
X Y上的模糊集R称为从X到Y上的模糊关系.
( x, y) R( x, y) [0,1]表示x, y具有关系R的程度.
X Y时,R称为X上的模糊关系.
例4
G 远远大于,X Y R(实数) 0 x y 1 G ( x, y ) 100 1 x y 2 ( x y )
模糊集的运算
交: ( A B)( x) min( A( x), B( x)): ( A B)( x) max(A( x), B( x)) A( x) B( x)
A B表示A或B
余: Ac ( x) 1 A( x)
R(张三,李四) 0.8
例6
X {1.4, 1.5, 1.6, 1.7, 1.8} Y {40,50,60,70,80}
身高与体重之间的关系为:
1 0.8 0.2 0.8 1 0.8 R 0.2 0.8 1 0 0.1 0.2
0.1 0 0.2 0.1 0.8 0.2 0.8 1
模糊关系的运算
并、交、余、包含运算与模糊集运算完全相同
0.4 0.3 0.1 0.5 R2 R1 0.8 0.9 0.7 1 0.4 0.5 0.1 0.3 R1 R2 R1 R2 0.8 1 0.7 0.9 0.9 0.5 R 0.3 0
【精编】模糊数学课件PPT课件
❖ 说明:
❖ 1、R是集合X到集合Y的关系,记作 RXY
❖ 2、关系R的定义域,记为D(R) ❖ 3、关系R的值域,记为C(R) ❖ 4、所有的集合运算及其性质在关系中也适用
5、令集合X ={x1 , x2 ,…, xn} ,Y ={y1 , y2 ,…, ym}, X到Y存在关系R,则关系R的“关系矩阵”为 MR=(rij)n*m,其中
⑨排中律: A∪Ac = U, A∩Ac = ;
2.1.3 关系
定义2-5 X Y 的子集 R 称为从 X 到 Y 的二元关系, 特别地,当 X = Y 时,称之为 X 上的二元关系.二元关系 简称为关系.
若(x , y )R,则称 x 与 y 有关系,记为 R (x , y ) = 1;
若(x , y )R,则称 x 与 y 没有关系,记为 R (x , y ) = 0.
模糊数学课件
第一章 绪 论
1.1 模糊数学的发展 1.2 模糊性 1.3 模糊数学的应用
1.1 模糊数学的发展
1、数学的定义
19世纪之前:数学是关于物质世界的空间形式和 数量关系的科学。
近代科学的特点:用精确定义的概念和严格证明的 定理描述现代事物数量的关系和空间形式,用精 确的实验方法和精确的测量计算探索客观 世界的规律,建立严密的理论体系。
设A,B,C为论域U中的三个任意集合
①幂等律: A∪A = A, A∩A = A; ②交换律: A∪B = B∪A, A∩B = B∩A; ③结合律:( A∪B )∪C = A∪( B∪C ),
( A∩B )∩C = A∩( B∩C ); ④吸收律:A∪( A∩B ) = A,A∩( A∪B ) = A;
数学建模——模糊数学方法
• 模糊矩阵的λ-截矩阵
设A = (aij)m×n,对任意的∈[0, 1],称 A= (aij())m×n,为模糊矩阵A的 - 截矩阵, 其中
当aij≥ 时,aij() =1; 当aij< 时,aij() =0. 显然,A的 - 截矩阵为布尔矩阵.
1 0.5 0.2 0
1 1 0 0
A
0.5 0.2 0
还可用向量表示法 A=(0,0.2,0.4,0.6,0.8,1)
•模糊集的运算
相等:A = B A(x) = B(x); 包含:AB A(x)≤B(x); 并:A∪B的隶属函数为
(A∪B)(x)=A(x)∨B(x); 交:A∩B的隶属函数为
(A∩B)(x)=A(x)∧B(x); 余:Ac的隶属函数为
(0.3, 0.5, 0.2 , 0) 同样对声音有:0.4, 0.3, 0.2 , 0.1) 对价格为: (0.1, 0.1, 0.3 , 0.5) 所以有模糊评价矩阵:
0.3 0.5 0.2 0 P 0.4 0.3 0.2 0.1
0.1 0.1 0.3 0.5
设三个指标的权系数向量: A ={图像评价,声音评价,价格评价} =(0.5, 0.3, 0.2)
B=A⊙P(其中⊙为模糊乘法),根据运算⊙的 不同定义,可得到不同的模型
模型1 M(Λ,V)——主因素决定型
bj max{( ai pij ) |1 i n}( j 1,2,, n)
模型2 M(٠,ν)——主因素突出型
bj max{(ai pi j )1 i n}( j 1,2,, m)
例4: 利用模糊综合评判对20加制药厂经 济效益的好坏进行排序
因素集:
U={u1,u2,u3,u4}为反映企业经济效益的主 要指标
模糊数学模型分析--讲义共174页171页PPT
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
数学建模 模糊数学
模糊集的运算性质基本上与 经典集合一致,除了排中律以外, 即 A∪Ac U, A∩Ac . 模糊集不再具有“非此即彼” 的特点,这正是模糊性带来的本 质特征.
-截集:
模糊集的 - 截集 A 是一个经典 集合,由隶属度不小于 的成员构 成.即:
A= {x | A(x) ≥ }
模糊相似矩阵的性质
上述定理表明,任一个模 糊相似矩阵可诱导出一个模 糊等价矩阵.
平方法求传递闭包 t (R): RR2R4R8R16…
有限步之内可以求出
最后由模糊等价关系的-截集得到 等价关系,从而分类。不同的得 到的分类可能是不一样的。
在模糊聚类分析中,对于各个不同 的 ∈ [0,1] ,可得到不同的分类,从而 形成一种动态聚类图,这对全面了解样 本分类情况是比较形象和直观的.
经典二元关系
X Y 的子集 R 称为从 X 到 Y 的二 元关系,特别地,当 X = Y 时,称之为 X 上的二元关系,简称为关系. 若(x , y )R,则称 x 与 y 有关系, 记为R (x , y ) = 1; 若(x , y )R,则称 x 与 y 没有关系, 记为R (x , y ) = 0. 映射 R : X Y {0,1} 实际上是 X Y 的子集R的特征函数.
模糊数学基础
Fuzzy Mathematics
主讲人:韩邦合
实际生活中充满了模糊概念, 例如 , 要你某时到飞机场去迎接一个 “大胡子高个子长头发戴宽边黑色眼 镜的中年男人”. 精确概念:时间、地点、男人
模糊概念:大胡子、高个子、 长头发、宽边眼镜、中年人
模糊概念是存在的,也是 必须的,更是重要的。 人类大脑对于模糊性概念 具有较强的处理能力,模糊数学 研究处理模糊概念的理论和方法, 从而让机器人具有人一样的思维 能力,是人工智能的重要学科之 一。
数学建模-微分方程与模糊数学
韶关大学数学建模
不管是微分方程还是差分方程模型,有时 无法得到其解析解 (必要时,可以利用计算机 求其数值解 ),既使得到其解析解,尚有未知 参数需要估计 (这时可利用第二章参数估计方 法). 而在实际问题中,讨论问题的解的变化趋 势很重要,因此,以下只对其平衡点的稳定性 加以讨论.
韶关大学数学建模
微分方程组的平衡点的稳定性
代数方程组
dx f ( x, y ), dt dy g ( x, y ). dt
(4 3)
f ( x, y ) 0, g ( x, y ) 0.
的实根x = x0, y = y0称为方程(4-3)的平衡点, 记作 P0 (x0, y0). 它也是方程(4-3)的解.
韶关大学数学建模
差分方程模型 则 ① 当1, 2 是两个不同实根时,二阶常系 数线性差分方程的通解为 xn= x*+ C1(1)n + C2(2)n ; ② 当1, 2=是两个相同实根时,二阶常系 数线性差分方程的通解为 xn= x* + (C1 + C2 n)n;
韶关大学数学建模
一维微分方程模型平衡点的稳定性 设
dx f ( x) dt
(4 1)
称代数方程 f (x)=0 的实根x = x0为方程(4-1)的平 衡点(或奇点). 它也是方程(4-1)的解.
如果
t
lim x(t ) x0
则称平衡点x0是稳定的.
数学建模
微分与模糊专题
--数学建模李银课件--
专题板块系列
1 2
概率统计专题 优化专题 模糊方法及微分方程专题 图论专题
3 4
韶关大学数学建模
模糊数学建模方法
将原问题转化为普通的线性规划问题: 将原问题转化为普通的线性规划问题: 线性规划问题
max λ 3 x1 + 2 x2 + 50λ ≤ 1500 + 50 x1 + 5λ ≤ 400 + 5 s .t . x2 + 5λ ≤ 250 + 5 7 x + 3 x − 87.5λ ≤ 3250 2 1 m xZ = λ a λ , x1 , x2 ≥ 0 a ∑ x +d λ ≤ b +d
模糊线性规划转化成普通线性规划的规律
2. 模糊约束转化为普通约束 a) 当第 个模糊约束为 ix≥[bi ,di]时,转化为普通约束为 当第i个模糊约束为 个模糊约束为a 时 aix-diλ≥bi-di; b) 当第 个模糊约束为 ix ≤ [bi ,di]时,转化为普通约束为 当第i个模糊约束为 个模糊约束为a 时 aix+diλ≤ bi+di; c) 当第 个模糊约束为 ix = [bi ,di]时,现将 ix = [bi ,di]转化成 当第i个模糊约束为 个模糊约束为a 时 现将a 转化成 两个模糊约束a 两个模糊约束 ix≥[bi ,di]和aix ≤ [bi ,di],然后按 和b)处理 和 ,然后按a)和 处理
n
j
≤b i
b <∑ ij xj ≤ b +di a i i
∑a x
j=1 ij
n
j
> b +di i
其中d 是适当选择的常数,叫做伸缩指标。 其中 i是适当选择的常数,叫做伸缩指标。
目标函数的模糊化: 目标函数的模糊化: 先求普通的线性规划问题
m Z =C ax x X A ≤ b x ≥ 0 (1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在实际应用中,用来确定模糊集的隶属函数的方法示多种多样的,主
要根据问题的实际意义来确定。譬如,在经济管理、社会管理中,可以
借助于已有的“客观尺度”作为模糊集的隶属度。下面举例说明。
如果设论域表示机器设备,在上定义模糊集=“设备完好”,则可以
(1) 令 则称为模糊矩阵的截矩阵。
(2) 令 则称为模糊矩阵的强截矩阵。
显然,对于人员的,截矩阵是布尔矩阵。 例4 设,则
, 下面给出模糊矩阵的一个性质。 性质 设,是模糊自反矩阵(对角线上的元素都为1的模糊矩阵),是阶 单位矩阵,则 证:因为是模糊自反矩阵,即有,所以,又 即有。
第二节 模糊决策分析方法
分配 于是得到二级模糊综合评价模型为:
若每个子因素()仍有较多因素, 则可将再划分,于是有三级或更高级 模型. 2 多目标模糊综合评价决策法建模实例
科技成果模糊综合评价模型的建立及其有关参数的确定 2.2.1 科技成果综合评价的因素集(指标体系)的确定 根据科研成果的特点, 并经过专家调研, 设计以下一套综合评价指 标体系.
(5) 选择评价的合成算子,将与合成得到。 ,
常用的模糊算子有: ① , 即用代替,用代替. 式中为取小运算,代表取大运算; ② , 即用实数乘法代替, 用代替; ③ ,即用代替, 用代替, 其中; ④ ,即用实数乘法代替, 用代替。 经过比较研究, 对各因素按权数大小,统筹兼顾,综合考虑,比较 合理。 (6) 对模糊综合评价结果作分析处理。 ★★ 多目标模糊综合评价法建模实例 科技成果通常可用技术水平、技术难度、工作量、经济效益、社会 效益等5个指标进行评价,等级分为一等、二等、三等、四等。某项科 研成果经过评委会评定,得到单因素评判矩阵 若为了评定作者的学术成就,取权数分配
模糊是指客观事物差异的中间过渡中的“不分明性”或“亦此亦彼 性”。如高个子与矮个子、年轻人与老年人、热水与凉水、环境污染严 重与不严重等。在决策中,也有这种模糊的现象,如选举一个好干部, 但怎样才算一个好干部?好干部与不好干部之间没有绝对分明和固定不 变的界限。这些现象很难用经典的数学来描述。
模糊数学就是用数学方法研究与处理模糊现象的数学。它作为一门 崭新的学科,它是继经典数学、统计数学之后发展起来的一个新的数学 学科。经过短暂的沉默和争议之后,迅猛的发展起来了,而且应用越来 越广泛。如今的模糊数学的应用已经遍及理、工、农、医及社会科学的 各个领域,充分的表现了它强大的生命力和渗透力。
定义1 论域到闭区间上的任意映射 :
都确定上的一个模糊集合,叫做的隶属函数,叫做对模糊集的隶属度, 记为: 使的点称为模糊集的过渡点,此点最具模糊性。
显然,模糊集合完全由隶属函数来刻画,当时,退化为一个普通 集。 2.模糊集合的表示方法
当论域为有限集时,记,则上的模糊集有下列三种常见的表示形 式。
统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的 领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从 确定领域扩大到了模糊领域,即从精确现象到模糊现象。
实际中,我们处理现实的数学模型可以分成三大类:第一类是确定 性数学模型,即模型的背景具有确定性,对象之间具有必然的关系。第 二类是随机性的数学模型,即模型的背景具有随机性和偶然性。第三类 是模糊性模型,即模型的背景及关系具有模糊性。 二.基本概念 1.模糊集和隶属函数
表2 有序对指定的隶属度
V
x1
x2
x3
x4
x5
y u x
y1很好 0.45 0.30 0.50 0.60 0.56
y2较好 0.35 0.34 0.30 0.30 0.10
y3一般 0.15 0.10 0.10 0.05 0.20
y4不好 0.05 0.26 0.10 0.05 0.14
由此确定一个从到的模糊关系,这个模糊关系的隶属度函数是一个 5×4阶的矩阵,记为 则为一个模糊关系矩阵。 2.模糊矩阵的运算及其性质
目标层 准则层 指标层 图1 科技成果综合评价层次结构
2.2.2 科技成果的评语集的确定. 在评价科技成果时,可以将其分为一定的等级. 在此, 从“专家打 分”的角度把评价的等级分为“10分”、“8分”、“6分”、“4分”、“2分”五个 等级,因此评语集表示为:
元素相应隶属度的大小排出顺序,然后用数学方法加工处理得到所需的
隶属函数。
表1 常用的模糊分布
类 型
偏小型
中间型
偏大型
矩 阵 型
梯 形 型
次 抛 物 型
型
正 态 型
柯
西
(为正偶数)
型
三.模糊关系、模糊矩阵 1.基本概念
定义1 设论域,,乘积空间上上的一个模糊子集为从从集合到集合 的模糊关系。如果模糊关系的隶属函数为
(2) Fuzzy集为的补集或余集(complement),即 其隶属度
例3 已知 , , ,
则有 =, =, 。
4.隶属函数的确定方法 模糊数学的基本思想是隶属度的思想。应用模糊数学方法建立数学模
型的关键是建立符合实际的隶属函数。如何确定一个模糊集的隶属函数 至今还是尚未解决的问题。这里仅仅介绍几种常用的确定隶属函数的方 法。 4.1 模糊统计方法
用“设备完好率”作为的隶属度。如果表示产品,在上定义模糊集=“质
量稳定”,则可以用产品的“正品率”作为的隶属度。如果表示家庭,在
上定义模糊集=“家庭贫困”,则可以用“Engel系数=食品消费/总消
费”作为的隶属度。
另外,对于有些模糊集而言,直接给出隶属度有时是很困难的,但可
以利用所谓的“二元对比排序法”来确定,即首先通过两两比较确定两个
(1) zadeh表示法 当论域为有限集时,记,则上的模糊集可以写成 注:“ ”和“+”不是求和的意思,只是概括集合诸元的记号;“”不是分 数,它表示点对模糊集的隶属度是。 (2) 序偶表示法 (3) 向量表示法 当论域为无限集时,上的模糊集可以写成 注:“ ”也不是表示积分的意思,“”也不是分数。 例1 设论域(单位: cm)表示人的身高,上的一个模糊集“高个子”()的 隶属函数可定义为 用zadeh表示法, 用向量表示法, 例2 设论域,Fuzzy集表示“年老”,表示“年轻”,Zadeh给出、的隶 属度函数分别为
实际中,根据问题对研究对象的描述来选择适当的模糊分布: ① 偏小型模糊分布一般适合于描述像“小,少,浅,淡,冷,疏,
青年”等偏小的程度的模糊现象。 ② 偏大型模糊分布一般适合于描述像“大,多,深,浓,热,密,
老年”等偏大的程度的模糊现象。 ③ 中间型模糊分布一般适合于描述像“中,适中,不太多,不太
少,不太深,不太浓,暖和,中年”等处于中间状态的模糊现象。 但是,表1给出的隶属函数都是近似的,应用时需要对实际问题进
模糊数学理论建模
第一节 模糊数学的基本概念
一. 模糊数学简介 1965年,美国著名计算机与控制专家查德(L.A.Zadeh)教授提出了模
糊的概念,并在国际期刊《Information and Control》并发表了第一篇用 数学方法研究模糊现象的论文“Fuzzy Sets”(模糊集合),开创了模糊数学 的新领域。
模糊统计方法是一种客观方法,主要是基于模糊统计试验的基础上根
据隶属度的客观存在性来确定的。所谓的模糊统计试验包含以下四个要 素:
1) 论域; 2) 中的一个固定元素; 3) 中一个随机变动的几何(普通集); 4) 中一个以作为弹性边界的模糊集,对的变动起着制约作用。其中, 或者,致使对的关系是不确定的。 假设做次模糊统计试验,则可计算出
, 综合评判为
用算子计算得到成果仍模糊,成果评一、二、三等都行,无法分 辨。
用算子,得 用算子,得 用算子,得 由计算结果可见,用评价模型比较合理,成果应评为二等奖。
二.多目标模糊综合评价决策法
当被评价的对象有两个以上时,从多个对象中选择出一个最优的方 法称为多目标模糊综合评价决策法。
评价的步骤: ① 对每个对象按上面多个目标(因素)进行模糊综合评价; ② 将模糊评语量化,计算各对象的优先度。假设模糊评价评语量 化集(或评价尺度)为,则各对象的优先度为: ★★ 多目标模糊综合评价决策法建模实例 假定在上例中有两项科研成果,第一项科研成果为甲项,其模糊评 价结果为 现对科研成果乙进行同样的模糊评价,其评价矩阵为 各评价因素的权值分配为 所以,综合评价为
其中 ,表示因素对评语集中的某等级的隶属度(即可能性程度),. (5) 对每一个,分别作出综合决策.设中的各因素权重的分配(称为模糊
权向量)为
, 其中 . 若为单因素矩阵,则得到一级评价向量为: ,
(6) 将每个视为一个因素,记,于是又是单因素集, 的单因素判断矩 阵为 每个作为的一部分,反映了的某种属性,可以按他们的重要性给出权重
,即“70岁”属于“年老”的程度为0.94。又易知,,可认为“ =“年轻”= 3.模糊集的运算 常用取大“∨”和取小“∧”算子来定义Fuzzy集之间的运算。 定义2 对于论域上的模糊集,,其隶属函数分别为,。 (1) 若对任意,有,则称包含,记为; (2) 若且,则称与相等,记为。 定义3 对于论域上的模糊集,, (1) 称Fuzzy集,为与的并(union)和交(intersection),即 他们相应的隶属度被定义为
:, 则称隶属度为关于模糊关系的相关程度。
这是二元模糊关系的数学定义,多元模糊关系也可以类似定义。 设,,为从从到的模糊关系,其隶属函数为,对任意的有,,记, 则就是所谓的模糊矩阵。下面给出一般的定义。 定义2 设矩阵,且,,则称为模糊矩阵。 特别地,如果,,则称为布尔(Bool)矩阵。当模糊方阵的对角线上 的元素都为1时,称为模糊自反矩阵。 当或者时,相应地模糊矩阵为或者,则分别称为模糊行向量和模糊列 向量。 例1 设评定科研成果等级的指标集为,表示为科研成果发明或创 造、革新的程度,表示安全性能,表示经济效益,表示推广前景,表示 成熟性;表示定性评价的评语论域,分别表示很好、较好、一般、不 好。通过专家评审打分,按下表给出上每个有序对指定的隶属度。