八年级下学期初二数学二次根式练习题
八年级下册二次根式计算题
八年级下册二次根式计算题一、二次根式计算题20题及解析。
1. 计算:√(12) - √(3)- 解析:- 先将√(12)化简,√(12)=√(4×3)=2√(3)。
- 则原式= 2√(3)-√(3)=√(3)。
2. 计算:√(27)+√(48)- 解析:- 化简√(27)=√(9×3)=3√(3),√(48)=√(16×3)=4√(3)。
- 原式= 3√(3)+4√(3)=7√(3)。
3. 计算:√(18)-√(8)- 解析:- √(18)=√(9×2)=3√(2),√(8)=√(4×2)=2√(2)。
- 原式= 3√(2)-2√(2)=√(2)。
4. 计算:√(50)-√(32)- 解析:- √(50)=√(25×2)=5√(2),√(32)=√(16×2)=4√(2)。
- 原式= 5√(2)-4√(2)=√(2)。
5. 计算:√(frac{1){2}}+√(frac{1){8}}- √(frac{1){2}}=(√(1))/(√(2))=(√(2))/(2),√(frac{1){8}}=(√(1))/(√(8))=(√(2))/(4)。
- 原式=(√(2))/(2)+(√(2))/(4)=(2√(2)+ √(2))/(4)=(3√(2))/(4)。
6. 计算:√(12)+√(frac{1){3}}- 解析:- √(12)=2√(3),√(frac{1){3}}=(√(1))/(√(3))=(√(3))/(3)。
- 原式= 2√(3)+(√(3))/(3)=(6√(3)+√(3))/(3)=(7√(3))/(3)。
7. 计算:(√(3)+1)(√(3)-1)- 解析:- 根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=√(3),b = 1。
- 原式=(√(3))^2-1^2=3 - 1=2。
8. 计算:(√(5)+√(2))^2- 解析:- 根据完全平方公式(a + b)^2=a^2+2ab + b^2,这里a=√(5),b=√(2)。
八年级数学下册《二次根式》综合练习题含答案
八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。
(完整版)八年级数学下册二次根式单元测试题及答案,推荐文档
验证: 2 2 23 23 2 2 2 22 1 2 2 2
33
22 1
22 1
3
Hale Waihona Puke 式②: 3 3 3 38
8
验证: 3 3 33 33 3 3 3 32 1 3 3 3
88
32 1
32 1
8
⑴ 针对上述式①、式②的规律,请再写出一条按以上规律变化的式子;
C. x 2 2x 1 x 1
D. (2.5)2 ( 2.5)2
9.化简 8 2( 2 2) 得(
)
A.—2 B. 2 2 C.2 D. 4 2 2
10.如果数轴上表示 a、b 两个数的点都在原点的左侧,且 a 在 b 的左侧,则
a b (a b)2的值为( )A. 2b B. 2b C. 2a D. 2a
21、在实数范围内分解因式:(每小题 4 分)
(1) 9a4 25
(2) a4 4a2 4
(5) ( 1 )1 ( 3 2)0 4 2
2
8
(7) ( 3 2)2010 ( 3 2)2011
(4)
6. 2
b
ab5
3 2
a3b
3
b a
(8) 2 9x (x 1 x )
3
x
22.计算:((每小题 4 分))
x2
1 x2
2
的值。(5
分)
29.阅读下面问题: 1 1 ( 2 1) 2 1
1 2 ( 2 1)( 2 1)
建议收藏下载本文,以便随时1 学 习3! 2 3 2; 3 2 ( 3 2)( 3 2)
25.若10 17的整数部分是a,小数部分是b,求2ab b2的值 。(5 分)
【初二数学】二次根式练习题(共4页)
二次根式练习题(1)____班 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( ) A .m≤3 B .m <3 C .m≥3 D .m >32.下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个 3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个5.化简二次根式352⨯-)(得 ( ) A .35- B .35 C .35± D .306.对于二次根式92+x ,以下说法不正确的是 ( ) A .它是一个正数 B .是一个无理数 C .是最简二次根式 D .它的最小值是3 7.把aba 123分母有理化后得 ( )A .b 4B .b 2C .b 21D . b b 2 8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:ab ab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义. 13.比较大小:23-______32-.14.=⋅baa b 182____________;=-222425__________. 15.计算:=⋅b a 10253___________.16.计算:2216acb =_________________. 17.当a=3时,则=+215a ___________.18.若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -. 20.(12分)计算:⑴))((36163--⋅-; ⑵63312⋅⋅; ⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-. 21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..;⑶521312321⨯÷; ⑷)(ba b b a 1223÷⋅.22.(8分)把下列各式化成最简二次根式:⑴27121352722-; ⑵ba c abc 4322-.23.(6分)已知:2420-=x ,求221xx +的值.参考答案: 一、选择题1.A ;2.C ;3.B ;4.A ;5.B ;6.B ;7.D ;8.C ;9.D ;10.A . 二、填空题11.≤31;12.≤43;13.<;14.31,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3. 三、解答题19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18.1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角。
人教版八下二次根式训练卷
人教版八下二次根式训练卷一.选择题(共10小题)1.(2021秋•市中区期末)若二次根式有意义,则x的取值范围是()A.x≥0B.x≥2C.x≥﹣2D.x≤2 2.(2021秋•惠安县期末)若有意义,则a的取值范围是()A.正数B.负数C.非正数D.非负数3.(2021秋•鼓楼区校级期末)若代数式有意义的m的取值范围为()A.m≥2B.m≤2C.m<2D.m>2 4.(2021秋•漳州期末)二次根式中字母x的取值可以是()A.x=5B.x=3C.x=2D.x=1 5.(2021秋•双峰县期末)若代数式有意义,则x必须满足条件()A.x≥0B.x>﹣1C.x≥﹣1D.x为任意实数6.(2021秋•麦积区期末)下列各式中,一定是二次根式的是()A.B.C.D.7.(2021秋•海口期末)若二次根式在实数范围内有意义,则x的取值范围是()A.x≤4B.x<4C.x≤﹣4D.x≥4 8.(2021秋•岳阳期末)二次根式在实数范围内有意义,则实数x的取值范围是()A.x≥﹣1B.x≠0C.x≥1D.x>0 9.(2021秋•雨花区期末)二次根式有意义,那么()A.x>﹣1B.x>1C.x≥﹣1D.x≥1 10.(2021秋•汝阳县期末)二次根式有意义,则x满足的条件是()A.x<2B.x>2C.x≥2D.x≤2二.填空题(共10小题)11.(2021秋•开封期末)若分式有意义,则x的取值范围为.12.(2021秋•信都区期末)若是二次根式,则a的取值范围是;若是正整数,则正整数a的最小值是.13.(2021秋•武冈市期末)已知y=+x﹣2,则=.14.(2022•东城区校级开学)若在实数范围内有意义,则实数x的取值范围是.15.(2021秋•姜堰区期末)若a、b是实数,且|a|=+4,则a+b的值是.16.(2021秋•茶陵县期末)使式子有意义的x的取值范围是.17.(2021秋•兰考县期末)如果有意义,那么m能取的最小整数是.18.(2021秋•丛台区校级期末)若分式有意义,则x的取值范围是.19.(2021秋•平昌县期末)若代数式有意义,则实数x的取值范围是.20.(2021秋•门头沟区期末)如果二次根式有意义,那么x的取值范围是.三.解答题(共5小题)21.(2021秋•九台区期末)已知x、y都是实数,且,求y x的平方根.22.(2021春•东营区校级月考)已知x、y为实数,且y=++1,求(﹣y)x的值.23.(2021秋•毕节市月考)已知+3=n﹣6.(1)求m的值;(2)求m2﹣n2的平方根.24.(2021秋•高州市期中)已知|2018﹣a|+=a,求a﹣20182+2020的值.25.(2021春•高邮市校级期末)已知a、b满足,求的平方根.。
(完整)八年级二次根式综合练习题及答案解析.docx
填空题1. 使式子x 4 有意义的条件是。
【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。
【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。
m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。
【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。
【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。
【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。
2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。
【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。
1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。
八年级下册二次根式的计算专题
八年级下册二次根式的计算专题八年级下册二次根式的计算专题一.解答题(共30小题)1.(2016·太仓市模拟)计算:√(3-2√2) + √(3+2√2)2.(2016·丹东模拟)计算:√(7+4√3) - √(7-4√3)3.(2016·海南校级一模)1)计算:√(2-√3) - √(5-2√3) + 32)化简:(2+√3)×(3-√3)4.(2016·崇明县二模)计算:√(5+2√6) + √(7+2√6)5.(2016春·罗定市期中)计算:√(10+4√6) - √(10-4√6)6.(2016春·津南区校级期中)计算:(√5-√3)/(√5+√3)7.(2016春·萧山区期中)1)计算:(√3+1)/(√2-1) - 2√22)化简:(2√6+√2)/(√6-√2)8.(2016春·台安县期中)计算:√(3+2√2) + √(7-4√3)9.(2016春·封开县期中)计算:√(2+√3)×√(3-√2)10.(2016春·中山市期中)计算:√(5+√24) - √(3+√8)11.(2016春·江门校级期中)计算:5/√8 + 3/√3212.(2016春·浦东新区期中)计算:2√5 + √45 - 3√213.(2016春·临沭县期中)1)计算:(√5+√2)/(√5-√2) + (√5-√2)/(√5+√2)2)化简:√(3+2√2) + √(3-2√2) - √(7+4√2)14.(2016春·新昌县校级期中)1)计算:2√(2+√3) - √(2-√3)2)化简:(√2+√3)/(√2-√3) - (√2-√3)/(√2+√3)15.(2016春·蓟县期中)1)计算:(√3+√2)/(√3-√2)+ (√3-√2)/(√3+√2) 2)化简:√(5+2√6) + 2√(5-2√6)16.(2016春·定州市期中)1)计算:4+√(7+4√3)/(2+√3) + √(7-4√3)/(2-√3) 2)化简:(√2-1)/(√3-2) - (√2+1)/(√3+2)17.(2016春·固始县期中)1)计算:4√2/(√6-√2)2)计算:(√5-1)/(√5+1)÷(√2-1)×(√2+1)18.(2016春·蚌埠期中)1)计算:(√5+1)/(√5-1) - (√3+1)/(√3-1)2)化简:√(2+√3) + √(6-2√3) - √(4-√3)19.(2016春·泰兴市期中)1)计算:√(5+2√6) - √(5-2√6) + √(7+4√3)2)化简:(√2+√3)/(√2-√3) + (√3+1)/(√3-1)20.(2016春·浦东新区期中)计算:(√3+√2)² - (√3-√2)²21.(2016春·东湖区期中)1)计算:(√2+√3)² - 3(√2-√3)²2)计算:√(3+2√2)×√(3-2√2) + √(7+4√2)22.(2016春·邹城市校级期中)1)计算:(√2+√3)/(√2-√3) - (√3-√2)/(√3+√2)2)化简:(√5+√3)/(√5-√3) - (√5-√3)/(√5+√3)23.(2016春·安陆市期中)1)计算:√(3+√2)×√(2-√2)2)化简:√(5+2√3) + 2√(5-2√3) - √(7+4√6)24.(2016春·微山县期中)1)计算:2√2×(√2+√3) - √2×(√2-√3)2)化简:√(7+4√2) - √(5+2√6) + 2√(3-2√2)25.(2016春·天津校级期中)1)计算:√(7+4√3) - √(7-4√3)÷√(5+2√3)2)化简:(√3+√2)×(√3-√2) + (√5+√2)×(√5-√2)26.(2016春·杭州期中)1)计算:√(7+4√3) + √(7-4√3) - 2√32)化简:(√3+√2)×(√3-√2) - (√5-√2)×(√5+√2)27.(2016春·召陵区期中)1)计算:√(a²+2a+1) - √(a²-2a+1)2)化简:(√a-√b)²28.计算与化简:1)2)3) ÷ - ÷ 3 - + × × +4) ÷ (x+2).改写:计算并化简以下式子:1)2)3) ÷ - ÷ 3 - + × × +4) ÷ (x+2).29.计算:1) 32) (23)4) ( - +3 ×6 + ) (2 ÷ )+(-1 2-3 ÷ 2 )2 ÷)×5) 2-3+2×+(1)-(2).改写:计算以下式子:1) 32) (23)4) ( - +3 ×6 + ) (2 ÷ )+(-1 2-3 ÷ 2 )2 ÷)×5) 2-3+2×+(1)-(2).30.计算1)3)1|-π+() (2) (1- ×(4)+2-1)( -( +1)+( -)-1)2. 改写:计算以下式子:1)3)1|-π+() (2) (1- ×(4)+2-1)( -( +1)+( -)-1)2.分析】(1)先合并同类二次根式,再进行分数运算;(2)先化简二次根式,再合并同类二次根式,最后进行分数运算.解答】解:(1)原式=2+13;2)原式=2﹣+1+23+14.点评】此题综合考查了二次根式的加减和分数的加减乘除运算,需要正确掌握运算法则和化简方法.注意分母中含有二次根式时需要进行有理化处理.14.计算:$2\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{3}$。
(完整版)八年级数学下册二次根式单元测试题及答案
C. x 2 2x 1 x 1
D. (2.5)2 ( 2.5)2
9.化简 8 2( 2 2) 得(
)
A.—2 B. 2 2 C.2 D. 4 2 2
10.如果数轴上表示 a、b 两个数的点都在原点的左侧,且 a 在 b 的左侧,则
a b (a b)2的值为( )A. 2b B. 2b C. 2a D. 2a
⑵ 请写出满足上述规律的用 n(n 为任意自然数,且 n≥2)表示的等式,并加以验
证
3
The shortest way to do many things is to only one thin
《二次根式》测试题
11
A.
B. 30 330
330
C.
D. 30 11
30
30
一、选择题(每小题 3 分,共 30 分)
8.下列各式中,一定能成立的是(
)
1.下列各式中① a ;② b 1 ; ③ a 2 ; ④ a 2 3 ; ⑤ x 2 1 ;
52
5 2。
5 2 ( 5 2)( 5 2)
1-2a + a2 26.先化简再求 a-1 -
的值,其中 a= (5 分)
试求:(1) 1 的值;(2) 1 的值
7 6
3 2 17
30、观察下列各式及验证过程:
27.若代数式 2x 1 有意义,则 x 的取值范围是什么? 1 | x |
28.若 x,y 是实数,且 y x 1 1 x 1 ,求 | 1 y | 的值。
A. x 2 9 x 3 x 3
B. a 2 ( a )2
⑥ x 2 2x 1 一定是二次根式的有(
)个。
A.1 个
八年级下册数学二次根式测试题及答案(2套,高分必做)
初中数学二次根式测试题(一)判断题:(每小题1分,共5分).1.2)2(=2.……() 2.21x --是二次根式.……………( )3.221213-=221213-=13-12=1.( )4.a ,2ab ,ac1是同类二次根式.……( )5.b a +的有理化因式为b a -.…………()(二)填空题:(每小题2分,共20分)6.等式2)1(-x =1-x 成立的条件是_____________.7.当x ____________时,二次根式32-x 有意义.8.比较大小:3-2______2-3.9.计算:22)21()213(-等于__________.10.计算:92131·3114a =______________. 11.实数a 、b 在数轴上对应点的位置如图所示: a o b 则3a -2)43(b a -=______________.12.若8-x +2-y =0,则x =___________,y =_________________. 13.3-25的有理化因式是____________.14.当21<x <1时,122+-x x -241x x +-=______________. 15.若最简二次根式132-+b a 与a b -4是同类二次根式,则a =_________,b =__________. (三)选择题:(每小题3分,共15分)16.下列变形中,正确的是………( )(A )(23)2=2×3=6 (B )2)52(-=-52 (C )169+=169+ (D ))4()9(-⨯-=49⨯17.下列各式中,一定成立的是……( )(A )2)(b a +=a +b (B )22)1(+a =a 2+1(C )12-a =1+a ·1-a (D )ba =b1ab18.若式子12-x -x 21-+1有意义,则x 的取值范围是………………………( ) (A )x ≥21 (B )x ≤21 (C )x =21(D )以上都不对19.当a <0,b <0时,把ba化为最简二次根式,得…………………………………( )(A )ab b 1 (B )-ab b 1 (C )-ab b-1 (D )ab b20.当a <0时,化简|2a -2a |的结果是…( )(A )a (B )-a (C )3a (D )-3a(五)计算:(每小题5分,共20分)23.(48-814)-(313-5.02);24.(548+12-76)÷3;25.50+122+-421+2(2-1)0;26.(b a 3-ba +2ab +ab )÷ab .(六)求值:(每小题6分,共18分)27.已知a =21,b =41,求ba b --ba b+的值.28.已知x =251-,求x 2-x +5的值.29.已知y x 2-+823-+y x =0,求(x +y )x 的值.(七)解答题:30.(7分)已知直角三角形斜边长为(26+3)cm ,一直角边长为(6+23)cm ,求这个直角三角形的面积.31.(7分)已知|1-x |-1682+-x x =2x -5,求x 的取值范围.试卷答案【答案】1.√;2.×;3.×;4.√;5.×. 6.【答案】x ≤1. 7.【提示】二次根式a 有意义的条件是什么?a ≥0.【答案】≥23. 8.【提示】∵243=<,∴ 023<-,032>-.【答案】<.9.【提示】(321)2-(21)2=?【答案】23.10.【答案】92aa . 11.【提示】从数轴上看出a 、b 是什么数?[a <0,b >0.]3a -4b 是正数还是负数? [3a -4b <0.]【答案】6a -4b .12.【提示】8-x 和2-y 各表示什么?[x -8和y -2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x -8=0,y -2=0.]【答案】8,2.13.【提示】(3-25)(3+25)=-11.【答案】3+25.14.【提示】x 2-2x +1=( )2;41-x +x 2=( )2.[x -1;21-x .]当21<x <1时,x -1与21-x 各是正数还是负数?[x -1是负数,21-x 也是负数.]【答案】23-2x . 15.【提示】二次根式的根指数是多少?[3b -1=2.]a +2与4b -a 有什么关系时,两式是同类二次根式?[a +2=4b -a .] 【答案】1,1.16.【答案】D .17.【答案】B .18.【答案】C .19.【答案】B .20.【答案】D .23.【答案】33.24.22-221.25.52.26.a 2+a -ba+2. 27.【解】原式=))(()()(b a b a b a b b a b +---+=b a b ab b ab -+-+=b a b -2.当a =21,b =41时,原式=4121412-⨯=2. 28.【提示】本题应先将x 化简后,再代入求值. 【解】∵ x =251-=4525-+=25+.∴x 2-x +5=(5+2)2-(5+2)+5=5+45+4-5-2+5=7+45.29.【解】∵y x 2-≥0,823-+y x ≥0,而 y x 2-+823-+y x =0, ∴⎩⎨⎧=-+=-.082302y x y x 解得 ⎩⎨⎧==.12y x ∴ (x +y )x =(2+1)2=9.30.【解】在直角三角形中,根据勾股定理:另一条直角边长为:22)326()362(+-+=3(cm ).∴ 直角三角形的面积为:S =21×3×(326+)=23336+(cm 2)答:这个直角三角形的面积为(23336+)cm 2.31.【解】由已知,等式的左边=|1-x |-2)4(-x =|1-x |-|x -4 右边=2x -5.只有|1-x |=x -1,|x -4|=4-x 时,左边=右边.这时⎩⎨⎧≤-≤-.0401x x 解得1≤x ≤4.∴x 的取值范围是1≤x ≤4.二次根式一、选择题(共20分):1、下列各式中,不是二次根式的是( )A B 2、下列根式中,最简二次根式是( )3、计算:3÷6的结果是 ( )A 、12B 、62C 、32 D 、 2 4、如果a 2=-a ,那么a 一定是 ( )A 、负数B 、正数C 、正数或零D 、负数或零 5、下列说法正确的是( )A 、若 ,则a <0B 、若 ,则a >0C 、D 、5的平方根是6、若2m-4与3m-1是同一个数的平方根,则m 为( ) A 、-3 或1 D 、-18X C.6X 3 D.X 2+1a 2=- a a 2= a 5a 4b 8=a 2b 47、能使等式 成立的x 值的取值范围是( )A 、x ≠2B 、x ≥0C 、x >2D 、x ≥2 8、已知xy >0,化简二次根式2x yx -的正确结果是( )9、已知二次根式2x 的值为3,那么x 的值是( ) A 、3B 、9C 、-3D 、3或-310、若a =,5b =,则a b 、两数的关系是( )A 、a b =B 、5ab =C 、a b 、互为相反数D 、a b 、互为倒数 二、填空题(共30分):11、当a=-3时,二次根式1-a 的值等于 。
八年级下学期二次根式习题及答案
二次根式21.1 二次根式:1. 使式子4x -有意义的条件是 。
2. 当__________时,212x x ++-有意义。
3. 若11m m -++有意义,则m 的取值范围是 。
4. 当__________x 时,()21x -是二次根式。
5. 在实数范围内分解因式:429__________,222__________x x x -=-+=。
6. 若242x x =,则x 的取值范围是 。
7. 已知()222x x -=-,则x 的取值范围是 。
8. 化简:()2211x x x -+ 的结果是 。
9. 当15x ≤ 时,()215_____________x x -+-=。
10. 把1a a-的根号外的因式移到根号内等于 。
11. 使等式()()1111x x x x +-=-+ 成立的条件是 。
12. 若1a b -+与24a b ++互为相反数,则()2005_____________a b -=。
13. 在式子()()()230,2,12,20,3,1,2xx y y x x x x y +=--++ 中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )A. 7-B. 32mC. 21a +D. a b15. 若23a ,则()()2223a a ---等于( )A. 52a -B. 12a -C. 25a -D. 21a - 16. 若()424A a =+,则A =( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a ≤,则()31a -化简后为( )A. ()11a a --B. ()11a a --C. ()11a a --D. ()11a a -- 18. 能使等式22xxx x =--成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥ 19. 计算:()()222112a a -+-的值是( )A. 0B. 42a -C. 24a -D. 24a -或42a - 20. 下面的推导中开始出错的步骤是( )()()()()()222323121232312223233224=⨯=⋅⋅⋅⋅⋅⋅-=-⨯=∴=-∴=-A. ()1B. ()2C. ()3D. ()4 21. 若2440x y y y -+-+=,求xy 的值。
八年级数学二次根式32道典型题(含答案和解析)
八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。
人教版八年级数学下二次根式章节练习题
第16章二次根式单元测试一、单选题(共10题;共30分)1.下列二次根式中,与也是同类二次根式的是()A. B. C. D.2.•-3 ,贝U x与y关系是(A.x> yB.x= yC.k yD.xy= 13.若av 1,化简的—IX -1=()A.a-2B.2-aC.aD.-a4.下列各式中是二次根式的是()A. B. C.D.& (xv 0)5.卜列计算正确的是()A. + =2 B也-也=0C归也=4 D火一疥。
36.计算也.柝的结果是:( )A.12B.2C.2D.47.卜列一次根式中,最简二次根式是()A.;必B.C.D.8. (2016?来宾)卜列计算正确的是()A;-后也B.3 2/3=6^1? C. (2 也)2=16 D丙=1 9. 下列根式中,是最简二次根式的有()① &云;② 辰二?;③/T?;④性;⑤;⑥虹2A. ②③⑤B.②③⑥C.②③④⑥D.①③⑤⑥10. 若也有意义,贝U a的取值范围是()A. 一切数B.正数C非负数D.非零数、填空题(共8题;共24分)11. 化简混=.12. 函数近;中,自变量x的取值范围是y=、13. 计算-七耗的结果是、5沛14. 计算:=- = _____________15. 若式子J_ 4在实数范围内有意义,贝U x的取值范围是16. 计算:厄X0 =.17. =.三、解答题(共6题;共48分)18. 实数a、b在数轴上的位置如图所示,化简:而—时-化-厅,f .__.__._I 8 G-2 -1 0 1 2 319. 已知实数a满足|a - 1|+ 血-2 =a,求a的值.20. 若x, y都是实数,且y』£-4 +1,求&+3y的值.21. 已知实数a, b, c在数轴上的位置如图所示,化简:- l a+c l+T —b l -22. 已知A=2辰耳,B寸由门,C^Jl/S十1)其中A, B都是最简二次根式,且A+B=C,分别求出a和x的值.23. 计算修—俺;答案解析、单选题1、【答案】B【考点】同类二次根式【解析】A、爪三=2饵与也被开方数不同,故不是同类二次根式;B、拘=3也与也被开方数相同,是同类二次根式・c、k4=2瓶与ys被开方数不同,不是同类二次根式;D、标=3也与「被开方数不同,不是同类二次根式;故选B2、【答案】B【考点】分母有埋化左* 、L 2 —JI 、【解析】「n,而*+由,故选B.【分析】先把y进行分母有理化得到- Ji,即可得到x与y的关系.3、【答案】D【考点】二次根式的性质与化简【解析】【解答】解:临_ 1- T=|a - 1| - 1,.. av 1,a- 1 v 0,.,•原式=|a - 1| - 1= (1 - a) - 1 = - a,故选:D.【分析】根据公式WW=|a|可知:- 1=|a - 1| - 1,由于av 1,所以a - 1< 0,再去绝对值,化简.【考点】二次根式的定义【解析】【解答】解:A、审的根指数为3,不是二次根式;B、Q的被开方数-1V 0,无意义;C、也的根指数为2,且被开方数2>0,是二次根式;D、依的被开方数xv 0,无意义;故选:C.【分析】根据二次根式的定义逐一判断即可.5、【答案】B【考点】二次根式的混合运算【解析】【解答】解::也+也=卒^ ,故选项A错误;••,占―丙=0,故选项B正确;^2^2=2,故选项C错误;.火-3)' =3,故选项D错误;故选B.【分析】计算出各个选项中式子的正确结果,即可得到哪个选项是正确.6、【答案】B【考点】二次根式的乘除法【解析】【解答】解:也 &=但6 =整,故选B.【分析】根据二次根式的乘法法则把被开方数相乘,再根据二次根式的性质化成最简即可.7、【答案】D【考点】最简二次根式【解析】【解答】解:B错误;C错误;^3?是最简二次根式,D正确,故选:D.【分析】根据最简二次根式的概念进行判断即可.【考点】二次根式的混合运算【解析】【解答】解:A、$—饵不能化简,所以此选项错误;B、3 &X 20=6 招,所以此选项正确;C、(2也)2=4 X 2=8所以此选项错误;本题选择正确的,故选B.【分析】A、'和£不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;G二次根式的乘方,把每个因式分别平方,再相乘;D、次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.9、【答案】B【考点】最简二次根式【解析】【解答】解:② 限T ;③批;⑥g[是最简二次根式, 故选:B.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.10、【答案】C【考点】二次根式有意义的条件【解析】【解答】解:也有意义,贝U aAQ 故选:C.【分析】根据二次根式中的被开方数是非负数可得答案.、填空题11、 【答案】/应【考点】二次根式的化简求值【解析】[解答]- /和- 2口考点:二次根式的性质与化简.【分析】原二次根式的被开方数中含有未开尽方的因数 4a,因此要将它开方到根号外.12、 【答案】xv 1 且x^O【考点】 二次根式有意义的条件【解析】【解答】由题意得:1-xx^Q解得x< 1且x 乒0.【分析】让二次根式的被开方数为非负数,分母不为 0列式求解即可.13、 【答案】匹 2【考点】 二次根式的加减法【解析】【解答】解:胃6-4皿?=击-4乂明=冬.故答案为:. 2【分析】首先化简二次根式进而合并求出即可.14、 【答案】后1【考点】二次根式的乘除法故答案为:X A £ . J故答案为:【分析】根据二次根式的乘除法,即可解答.15、【答案】x >J【考点】 二次根式有意义的条件【解析】【解答】解:由题意得, 3x- 4>Q 解得,xf,【分析】根据二次根式有意义的条件列出不等式,解不等式即可.16、【答案】6【考点】二次根式的乘除法【解析】【解答】解:原式=2「寸=6. 故答案为:6.【分析】先将二次根式化为最简,然后再进行二次根式的乘法运算即可.17、【答案】2【考点】算术平方根【解析】【解答】解:... 22=4,..也=2.故答案为:2【分析】如果一个数X的平方等于a,那么X是a的算术平方根,由此即可求解.三、解答题18、【答案】解:由实数a、b在数轴上的位置知,a<0 , b>0=-a-b-(b-a)=-2b.【考点】二次根式的化简求值【解析】【分析】由实数a、b在数轴上的位置确定a、b的正负,从而根据二次根式的性质化简 ,19、【答案】解:根据二次根式有意义的条件可得a-2AQ 解得:a*|a - 1|+在-N =a,a- 1+ =a,,:您-二=1,a=3.【考点】二次根式有意义的条件【解析】【分析】根据二次根式有意义的条件可得a-2>0,解不等式可得a的取值范围,进而可得a- 1> 0,根据绝对值的性质可得a - 1寸2-2 =a,整理可得血底=1,进而可得a的值.fr-4> 020、【答案】解:由题意得:,解得:X=4,则y=1,&+3y=2+3=5.【考点】二次根式有意义的条件【解析】【分析】首先根据二次根式有意义的条件可得:L [巾,解不等式组可得x=4,然后t4-X > 0再代入y=^!q +,4、x+1可得y的值,进而可得&+3y的值.21、【答案】解:由图可知,av 0, CV0, b> 0,且|c| v |b| ,所以,a+cv 0, c- bv 0,-|a+c|+ Ac-br - | -b|,=-a+a+c+b- c— b,=0.【考点】二次根式的性质与化简【解析】【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.22、【答案】解:•. A=20+ 3 , B寸汕],A, B都是最简二次根式,诘山必成十1) , A+B=C,... a+3=3a- 1,解得:a=2,A=2.技,B=.* ,••• A+B=3,. • A+B=Cr I =320 (x+1) =180,x=8.【考点】最简二次根式【解析】【分析】根据最简二次根式的定义得出关于a的方程,求出a的值,求出A和B,得出HlthO+I) =3& ,求出方程的解即可.=2a.【考点】二次根式的乘除法【解析】【分析】把二次根式的被开方数相除,再根据二次根式的性质开出来即可.。
初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)
《二次根式》常考练习题及参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+43.(2019春•徐州期末)下列计算正确的是()A.B.C.D.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3 5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±46.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.37.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4 10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.211.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4 12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣515.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.025.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣227.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣128.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=330.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±1131.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.2033.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.234.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.1535.(2019春•许昌期末)已知x=+1,y=﹣1,则x2+xy+y2的值为()A.10 B.8 C.6 D.436.(2014•张家港市模拟)已知实数x,y满足x+y=﹣2a,xy=a(a≥1),则的值为()A.a B.2a C.a D.237.(2012秋•富顺县校级月考)若实数x、y满足x2+y2﹣4x﹣2y+5=0,则的值是()A.1 B.+C.3+2D.3﹣238.(2013•宁波自主招生)设等式在实数范围内成立,其中a、x、y是三个不同的实数,则的值是()A.3 B.C.2 D.39.(2019春•西湖区校级月考)如果f(x)=并且f()表示当x=时的值,即f()==,f()表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+40.(2019秋•天心区校级期末)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)二、填空题(共30小题)41.(2019春•曲靖期末)若是一个正整数,则正整数m的最小值是.42.(2018秋•杨浦区期中)计算:=.43.(2019•聊城二模)计算﹣的结果是.44.(2019春•东至县期末)与最简二次根式是同类二次根式,则m=.45.(2017秋•南开区期末)二次根式与的和是一个二次根式,则正整数a的最小值为;其和为.46.(2016春•寿光市期末)若最简二次根式与是同类二次根式,则a =.47.(2013秋•罗平县校级期中)等式=成立的条件是.48.(2012•山西模拟)若规定符号“*”的意义是a*b=ab﹣b2,则2*()的值是.49.(2015秋•达州校级月考)设的整数部分为a,小数部分为b,则的值等于.50.(2015•鄂州)若使二次根式有意义,则x的取值范围是.51.(2019•岳池县模拟)要使代数式有意义,x的取值范围是.52.(2018秋•松桃县期末)若代数式有意义,则实数x的取值范围是.53.(2018•陇南)使得代数式有意义的x的取值范围是.54.(2019春•西湖区校级月考)已知y=+8x,则的算术平方根为.55.(2014•吴江市模拟)设a=,b=2+,c=,则a、b、c从小到大的顺序是.56.(2013秋•南通月考)在下列二次根式,中,最简二次根式的个数有个.57.(2013春•阳谷县期末)若和都是最简二次根式,则m=,n=.58.(2012秋•集贤县期中)若两个最简二次根式与可以合并,则x=.59.(2018•皇姑区二模)化简的结果是.60.(2014秋•慈利县校级期末)若m<0,化简2n=.61.(2015春•崆峒区期末)已知a,b,c为三角形的三边,则=.62.(2018春•襄城区期中)化简的结果为.63.(2019春•睢县期中)已知a,b,c为三个整数,若,,,则a,b,c的大小关系是.64.(2013•江都市一模)若二次根式=4﹣x,则x.65.(2018秋•牡丹区期末)若的整数部分是a,小数部分是b,则a2+(1+)ab=.66.(2019春•江汉区期末)已知xy=2,x+y=4,则+=.67.(2019秋•兰考县期中)当a<﹣b<1时,化简÷的结果为.68.(2013•沙市区一模)已知m=1+,n=1﹣,则代数式的值为.69.(2011•内江)若m=,则m5﹣2m4﹣2011m3的值是.70.(2019春•成武县期末)如图,在矩形ABCD中,不重叠地放上两张面积分别是5cm2和3cm2的正方形纸片BCHE和AEFG.矩形ABCD没被这两个正方形盖住的面积是.三、解答题(共30小题)71.(2019春•伊通县期末)计算:×﹣(+)(﹣)72.(2016•夏津县自主招生)计算:.73.(2015春•赵县期末)化简:(1);(2).74.(2018春•新泰市期末)计算(1)(2﹣1)2+(+2)(﹣2)(2)(﹣2)×﹣6.75.(2019秋•浦东新区校级月考)已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.76.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?77.(2014秋•石鼓区校级期中)若3,m,5为三角形三边,化简:﹣.78.(2012秋•罗田县期中)化简求值:已知:x=,求x2﹣x+1的值.79.(2013秋•崇阳县期末)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.80.(2018秋•新华区校级月考)阅读下列解题过程:;请回答下列问题:(1)观察上面的解题过程,化简:①②(2)利用上面提供的解法,请计算:.81.(2019秋•长宁区期中)计算:2÷•.82.(2014春•巢湖市月考)已知x为奇数,且,求的值.83.(2013秋•婺城区校级月考)若代数式有意义,则x的取值范围是什么?84.(2019秋•景县期末)已知y=+﹣4,计算x﹣y2的值.85.(2018春•黄冈期中)若a,b为实数,a=+3,求.86.(2013秋•仪征市期末)某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.87.(2019秋•兰考县期中)若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.88.(2018春•罗平县期末)已知实数a,b,c在数轴上的位置如图所示,化简|a|﹣+﹣.89.(2019春•黄石期中)已知a,b,c为实数且c=,求代数式c2﹣ab的值.90.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.91.(2013•金湾区一模)观察下列各式及证明过程:(1);(2);(3).验证:;.a.按照上述等式及验证过程的基本思想,猜想的变形结果并进行验证;b.针对上述各式反映的规律,写出用n(n≥1的自然数)表示的等式,并验证.92.(2014春•陕县校级月考)已知:x=,求x2+的值.93.(2017春•江津区期中)已知x=﹣2,y=+2,求:(1)x2y+xy2;(2)+的值.94.(2019春•潮南区期末)已知a=,求的值.95.(2019春•鞍山期末)已知:,,求代数式x2﹣xy+y2值.96.(2015春•饶平县期末)先化简,再求值:•,其中.97.(2017春•黄冈期中)化简求值:,求的值.98.(2014春•霸州市期末)先化简,后求值:,其中.99.(2019春•襄州区期末)先化简,再求值:(+b),其中a+b=2.100.(2015春•重庆校级期末)先化简,再求值.,其中.参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.【知识考点】二次根式的定义.【思路分析】根据二次根式的定义作出选择:式子(a≥0)叫做二次根式.【解答过程】解:A、是三次根式;故本选项符合题意;B、被开方数﹣10<0,不是二次根式;故本选项不符合题意;C、被开方数a2+1>0,符合二次根式的定义;故本选项符合题意;D、被开方数a<0时,不是二次根式;故本选项不符合题意;故选:C.【总结归纳】本题主要考查了二次根式的定义.式子(a≥0)叫做二次根式,特别注意a≥0,a是一个非负数.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+4【知识考点】二次根式的定义.【思路分析】直接利用二次根式的定义分别分析得出答案.【解答过程】解:A、3﹣π<0,则3﹣π不能作为二次根式被开方数,故本选项不符合题意;B、a的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;C、a2+1一定大于0,能作为二次根式被开方数,故本选项符合题意;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;故选:C.【总结归纳】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.3.(2019春•徐州期末)下列计算正确的是()A.B.C.D.【知识考点】二次根式的加减法.【思路分析】结合选项根据二次根式的加减法的运算法则求解即可.【解答过程】解:A、﹣=2﹣=,故本选项符合题意;B、+≠,故本选项不符合题意;C、3﹣=2≠3,故本选项不符合题意;D、3+2≠5,故本选项不符合题意.故选:A.【总结归纳】本题考查了二次根式的加减法,解答本题的关键是掌握其运算法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3【知识考点】二次根式的加减法.【思路分析】原式各项合并得到结果,即可做出判断.【解答过程】解:A、2+不能合并,故本选项不符合题意;B、5﹣=4,故本选项不符合题意;C、5+=6,故本选项符合题意;D、+2不能合并,故本选项不符合题意,故选:C.【总结归纳】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±4【知识考点】二次根式的加减法.【思路分析】方程左边化成最简二次根式,再解方程.【解答过程】解:原方程化为:=10,合并得:=10∴=2,即2x=4,∴x=2.故选:C.【总结归纳】本题考查了二次根式的加减法.掌握二次根式的加减运算法则是解题的关键,先化为最简二次根式,再将被开方数相同的二次根式进行合并.解无理方程,需要方程两边平方,注意检验算术平方根的结果为非负数.6.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【知识考点】二次根式的加减法.【思路分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答过程】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.【总结归纳】关键是会表示的整数部分和小数部分,再二次根式的加减运算,即将被开方数相同的二次根式进行合并.7.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.【知识考点】二次根式的性质与化简.【思路分析】根据被开方数是非负数,可得a的取值范围,根据二次根式的性质,可得答案.【解答过程】解:由被开方数是非负数,得﹣a≥0.﹣a=×=,故选:B.【总结归纳】本题考查了二次根式的性质与化简,利用被开方数是非负数得出a的取值范围是解题关键.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质1和性质2逐一判断即可得.【解答过程】解:A.=2,故本选项不符合题意;B.()2=2,故本选项符合题意;C.﹣=﹣2,故本选项不符合题意;D.(﹣)2=2,故本选项不符合题意;故选:B.【总结归纳】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质1与性质2.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质列出不等式,解不等式即可.【解答过程】解:∵=4﹣b,∴4﹣b≥0,解得,b≤4,故选:D.【总结归纳】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.2【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的意义化简.【解答过程】解:若x<0,则=﹣x,∴===2,故选:D.【总结归纳】本题考查了二次根式的性质与化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.11.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4【知识考点】二次根式的性质与化简;二次根式的乘除法.【思路分析】直接利用二次根式的性质分别分析得出答案.【解答过程】解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.【总结归纳】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.【知识考点】二次根式的乘除法.【思路分析】根据二次根式的性质及二次根式成立的条件解答.【解答过程】解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.【总结归纳】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣【知识考点】二次根式的乘除法.【思路分析】直接进行分母有理化即可求解.【解答过程】解:原式===﹣.故选:C.【总结归纳】本题考查了二次根式的乘除法,解答本题的关键是进行分母有理化.14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣5【知识考点】分母有理化.【思路分析】根据平方差公式,可分母有理化,根据实数的大小比较,可得答案.【解答过程】解:b===+,a=+,故选:A.【总结归纳】本题考查了分母有理化,利用平方差公式将分母有理化是解题关键.15.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等【知识考点】实数的性质;分母有理化.【思路分析】求出ab的乘积是多少,即可判断出a与b的关系.【解答过程】解:∵ab=×==1,∴a与b互为倒数.故选:C.【总结归纳】此题主要考查了分母有理化的方法,以及实数的性质和应用,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.【知识考点】最简二次根式.【思路分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答过程】解:A、﹣=﹣,被开方数含分母,故本选项不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故本选项符合题意;C、=4,被开方数含能开得尽方的因数或因式,故本选项不符合题意;D、=2,被开方数含能开得尽方的因数或因式,故本选项不符合题意;故选:B.【总结归纳】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】最简二次根式应满足的条件:①被开方数的因数是整数,因式是整式;②被开方数的因式的指数必须小于根指数2.【解答过程】解:A、不符合上述条件②,即=2,不是最简二次根式,故本选项不符合题意;B、符合上述条件,是最简二次根式,故本选项符合题意;C、不符合上述条件①,即=,不是最简二次根式,故本选项不符合题意;D、不符合上述条件②,即=|x|,不是最简二次根式,故本选项不符合题意.故选:B.【总结归纳】此题考查了最简二次根式应满足的条件.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.【知识考点】最简二次根式.【思路分析】根据二次根式的性质化简,根据最简二次根式的概念判断.【解答过程】解:A、=,不是最简二次根式,故本选项不符合题意;B、,是最简二次根式,故本选项符合题意;C、=|2a+1|,不是最简二次根式,故本选项不符合题意;D、=,不是最简二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查的是最简二次根式的概念、二次根式的性质,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行判断,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答过程】解:A、=|a|,可化简,不是最简二次根式,故本选项不符合题意;B、==,可化简,不是最简二次根式,故本选项不符合题意;C、==3,可化简,不是最简二次根式,故本选项不符合题意;D、=,不能开方,符合最简二次根式的条件,故本选项符合题意.故选:D.【总结归纳】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】先化简二次根式,再根据被开方数相同进行解答即可.【解答过程】解:A、不能与合并,故本选项不符合题意;B、=3,可以与合并,故本选项符合题意;C、=,不能与合并,故本选项不符合题意;D、=2,不能与合并,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式【知识考点】同类二次根式.【思路分析】根据同类二次根式的概念判断.【解答过程】解:A、被开方数不同的二次根式可以是同类二次根式,故本选项不符合题意;B、化简后被开方数完全相同的二次根式才是同类二次根式,故本选项不符合题意;C、同类二次根式不一定都是最简二次根式,故本选项不符合题意;D、两个最简二次根式不一定是同类二次根式,故本选项符合题意;故选:D.【总结归纳】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】根据同类二次根式的定义逐个判断即可.【解答过程】解:=2,A、不能和合并为一个二次根式,故本选项不符合题意;B、能和合并为一个二次根式,故本选项符合题意;C、不能和合并为一个二次根式,故本选项不符合题意;D、=5不能和合并为一个二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,能熟记同类二次根式的定义是解此题的关键.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定【知识考点】二次根式有意义的条件;二次根式的性质与化简.【思路分析】首先求出x的取值范围,再利用绝对值以及二次根式的性质化简求出即可.【解答过程】解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.【总结归纳】本题主要考查了二次根式与绝对值的性质,正确化简二次根式是解题关键.24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.0【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答过程】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【总结归纳】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.25.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.【知识考点】数轴;二次根式有意义的条件.【思路分析】根据二次根式中的被开方数必须是非负数,否则二次根式无意义.【解答过程】解:在数轴上,右边的数总大于左边的数,∴a>b,即a﹣b>0,根据二次根式的性质,被开方数大于等于0,可知二次根式有意义.故选:B.【总结归纳】本题主要考查了二次根式的意义和性质,掌握和理解二次根式的概念和性质是解题的关键.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣2【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解答过程】解:代数式有意义,故x+2>0,解得:x>﹣2.故选:C.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.27.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣1【知识考点】二次根式有意义的条件.【思路分析】依据二次根式有意义的条件即可求得k的范围.【解答过程】解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤﹣≤0 ②①+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选:C.【总结归纳】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.28.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.【知识考点】二次根式有意义的条件.【思路分析】根据有理数的性质以及平方数非负数对各选项分析判断后利用排除法求解.【解答过程】解:A、x≤0时,﹣6x≥0,有意义,故本选项不符合题意;B、x=0时,﹣x2=0,有意义,故本选项不符合题意;C、x为任何数,﹣x2﹣1≤﹣1,无意义,故本选项符合题意;D、﹣x2≥﹣1时,﹣x2+1≥0,有意义,故本选项不符合题意.故选:C.【总结归纳】本题考查了二次根式有意义的条件,判断出各选项中被开方数的正负情况是解题的关键.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=3【知识考点】二次根式的混合运算.【思路分析】根据二次根式的运算法则对每一项分别进行判断,即可得出正确答案.【解答过程】解:A、﹣=2﹣=,故本选项不符合题意;B、2+3=5,故本选项不符合题意;C、÷=,故本选项符合题意;D、(+1)(﹣1)=2﹣1=1,故本选项不符合题意;故选:C.【总结归纳】本题考查了二次根式的运算,关键是熟练掌握二次根式的运算法则,注意把二次根式进行化简.30.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±11【知识考点】二次根式的混合运算.【思路分析】根据二次根式混合运算法则,一一判断即可.【解答过程】解:A、2﹣=,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、==,故本选项不符合题意;D、=11,故本选项不符合题意;故选:B.【总结归纳】本题考查二次根式的混合运算,乘法公式等知识,解题的关键是熟练掌握二次根式的化简以及混合运算法则,属于中考常考题型.31.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+【知识考点】二次根式的混合运算.【思路分析】先利用积的乘方得到原式=[(﹣2)(+2)]2018•(+2),然后根据平方差公式计算.【解答过程】解:(2﹣)2018(2+)2019=[(﹣2)(+2)]2018(+2)=(5﹣4)2018(+2)=1×(+2)=2+.故选:D.【总结归纳】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.20【知识考点】二次根式的混合运算.【思路分析】根据题目所给的运算法则进行求解.【解答过程】解:∵3>2,∴3※2=﹣,∵8<12,∴8※12=+=2×(+),∴(3※2)×(8※12)=(﹣)×2×(+)=2.故选:B.【总结归纳】本题考查了二次根式的混合运算,解答本题的关键是根据题目所给的运算法则求解.33.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.2【知识考点】二次根式的化简求值.【思路分析】首先把原式变为,再进一步代入求得答案即可.【解答过程】解:∵a=3+,b=3﹣,∴a+b=6,ab=4,∴===2.故选:C.【总结归纳】此题考查二次根式的化简求值,抓住式子的特点,灵活利用完全平方公式变形,使计算简便.34.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15【知识考点】二次根式的化简求值.。
(完整版)八年级下册数学二次根式测试题及答案(2套-高分必做),推荐文档
-1- x 2132 -122132 a ab 2 a + b a - b (x -1)2 2x -3 3 3 4 a 3 11(3a -4b )2x -8 y - 2 5 x 2 - 2x +1 1- x + x 2 44b - a 3 (- 2 )259 +16 9 16(-9) ⨯(-4) (a + b )2 a 2 -1 a +1 a -1 a ba 248 1 8 130.5 122 1a初中数学二次根式测试题(一)判断题:(每小题 1 分,共 5 分).1. ( 2)2 =2.……( )2.是二次根式.……………( )3.=- =13-12=1.( )4., , c是同类二次根式.……()5. 的有理化因式为 .…………()(二)填空题:(每小题 2 分,共 20 分)6. 等式 =1-x 成立的条件是.7. 当 x时,二次根式有意义.8.比较大小: -2 2- .9. 计算:(3 1 )2 - ( 1 )2 等于 .1 10. 计算:3 2 2 1 2 ·= .9 11. 实数 a 、b 在数轴上对应点的位置如图所示:aob则 3a - = .12.若+ =0,则 x = ,y =.13.3-2的有理化因式是.114.当 <x <1 时, -=.215.若最简二次根式3b -1a + 2 与是同类二次根式,则 a =,b = .(三)选择题:(每小题 3 分,共 15 分)16 A 2 2 2 3 6B .下列变形中,正确的是………()( )(2 5) = × =( )=- (C )= + (D )= 9 ⨯ 17. 下列各式中,一定成立的是……()(A )=a +b(B )=a 2+11(C ) =·(D )= b18. 若式子 2x -1 -+1 有意义,则 x 的取值范围是………………………()11 1(A )x ≥(B )x ≤(C )x =(D )以上都不对22 219.当 a <0,b <0 时,把化为最简二次根式,得…………………………………( )(A (B )1 (C ) - b - ab (D ) b 20.当 a <0 时,化简|2a - |的结果是…()(A )a (B )-a(C )3a (D )-3a(五)计算:(每小题 5 分,共 20 分)23.(- 4)-( 3 - 2 ); 1- 2x 4(a 2 +1)2ababab48 12 3 122 a 3b a b ab ba5 - 25 x - 2 y 3x + 2 y - 86 3 6 3 724.(5+ - 6 )÷ ;2-4+2( -1)0;26.( -+2 + )÷ .(六)求值:(每小题 6 分,共 18 分)1 1bb27. 已 知 a = ,b = ,求-的值.2 4128. 已知 x =,求 x 2-x +的值.+29. 已知+ =0,求(x +y )x 的值.(七)解答题:30.(7 分)已知直角三角形斜边长为(2+ )cm ,一直角边长为( +2 )cm ,求这个直角三角形的面积.a -b 25. 50 +2 +1b ax 2 - 8x +16 a 3 3x -8 y - 2 5 5 5 3 21 25 5 5 5 5 5 5 x - 2 y 3x + 2 y - 8 x - 2 y 3x + 2 y - 8 (26 + 3)2 - ( 6 + 2 3)231.(7 分)已知|1-x |-=2x -5,求 x 的取值范围.试卷答案【答案】1.√;2.×;3.×;4.√;5.×. 6. 【答案】x ≤1.37. 【提示】二次根式有意义的条件是什么?a ≥0.【答案】≥ .28.【提示】∵ 3 < 4 = 2 ,∴ - 2 < 0 ,2 - 1 9.【提示】(3 )2-( )2=?【答案】2 .2 2 10.> 0 .【答案】<. 11. 【提示】从数轴上看出 a 、b 是什么数?[ a <0,b >0. ] 3a -4b 是正数还是负数? [ 3a -4b <0. ]【答案】6a -4b .12. 【提示】和 各表示什么?[x -8 和 y -2 的算术平方根,算术平方根一定非负,]你能得到什么结论?[x -8=0,y -2=0.]【答案】8,2. 13.【提示】(3-2)(3+2 )=-11.【答案】3+2 .1 1114.【提示】x 2-2x +1=()2;-x +x 2=( )2.[x -1;-x .]当 <x <1 时,422113 x -1 与 -x 各是正数还是负数?[x -1 是负数, -x 也是负数.]【答案】 -2x .2 2215. 【提示】二次根式的根指数是多少?[3b -1=2.]a +2 与 4b -a 有什么关系时,两式是同类二次根式?[a +2=4b -a .] 【答案】1,1.16. 【答案】D .17.【答案】B .18.【答案】C .19.【答案】B .20.【答案】D .23.【答案】3.a24.22-2.25.5 .26.a 2+a -+2.bb ( a + b ) - b ( a - b )ab + b - ab + b2b27. ==.2 ⨯ a - ba - b当 a = 1 ,b = 1 时,原式= 4 =2.241 - 12 4 28. 【提示】本题应先将 x 化简后,再代入求值.1【解】∵ x =- 2 5 + 2==5 - 4+ 2 .∴ x 2-x + =( +2)2-( +2)+ =5+4 +4- -2+ =7+4 .29.【解】∵≥0, ≥0,而+ =0,⎧x - 2 y = 0 ∴ ⎨ ⎧x = 2 解得 ⎨ y = 1. ∴ (x +y )x =(2+1)2=9.⎩3x + 2 y - 8 = 0. ⎩30.【解】在直角三角形中,根据勾股定理:另一条直角边长为:=3(cm ).3 5 566 3 (x - 4)23 ⎩数学八年级(下) 复习测试题∴ 直角三角形的面积为:S = 1×3×(+ 2 2 3答:这个直角三角形的面积为( 2)= + 3 2+ 3 )cm 2.(cm 2) 31.【解】由已知,等式的左边=|1-x |- =|1-x |-|x -4 右边=2x -5.⎧1 - x ≤ 0只有|1-x |=x -1,|x -4|=4-x 时,左边=右边.这时⎨x - 4 ≤ 0. 解得 1≤x ≤4.∴ x 的取值范围是 1≤x ≤4.3 3 6453 -a 2 + 2x 2X 38X6X 3 yxx-2 x x-2 - y x 2 -yy二次根式一、选择题(共 20 分):1、下列各式中,不是二次根式的是( )A 、B 、C 、D 、2、下列根式中,最简二次根式是()A.B. C. D.3、计算:3÷ 16的结果是 ( ) A 、2 B 、 2C 、 2D 、4、如果 a2=-a ,那么 a 一定是 ( )A 、负数B 、正数C 、正数或零D 、负数或零5、下列说法正确的是() a 2=- aa 2= aA 、若,则 a <0 B 、若,则 a >0C 、 a 4b 8=a 2b 4D 、5 的平方根是6、若 2m-4 与 3m-1 是同一个数的平方根,则 m 为( )A 、-3B 、1C 、-3 或 1D 、-17、能使等式=成立的x 值的取值范围是( )A 、x≠2B 、x≥0C 、x >2D 、x≥28、已知 xy >0,化简二次根式 x 的正确结果是()A. B. C.- D.-9、已知二次根式 的值为 3,那么 x 的值是()A 、3B 、9C 、-3D 、3 或-31 26 32 X 2+15-yx - 2 3 - x x - 2 x -1 x + y 3 2 - 12 3 - 23 24 - 34 3 25 3 3 a 2b1 5(x - 2)(3 - x ) 2 - x (-3)22 2 (a-3)210、若 a = , b = ,则 a 、b 两数的关系是( )5A 、 a = bB 、 ab = 5C 、 a 、b 互为相反数D 、a 、b 互为倒数二、填空题(共 30 分):11、当 a=-3 时,二次根式 1-a 的值等于。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下学期初二数学《二次根式》练习题
一、选择题
1.下列计算正确的是( )
A.⎝ ⎛⎭
⎪⎫13-2
=9 B.(-2)2=-2 C .(-2)0=-1 D .|-5-3|=2 2.下列式子中二次根式的个数有 ( )
⑴31;⑵3-;⑶12+-x ;⑷38;⑸23
1)(-;⑹)(11>-x x ;⑺322++x x A .2个 B .3个 C .4个 D .5个
3.当22
-+a a 有意义时,a 的取值范围是( )
A .a≥2
B .a >2
C .a≠2
D .a≠-2
4.计算48-91
3的结果是 ( ) A .- 3 B. 3 C .-113 3
D.113 3 5.把ab a
123化简后,得( )
A .b 4
B .b 2
C .b 2
1 D . b b
2 6.若一元一次不等式组3x x a
>⎧⎨>⎩的解集为3x >.则a 的取值范围是( ) A .3a > B .a ≥3 C .a ≤3 D .3a <
7.下列二次根式中,最简二次根式是( ) A .23a B .3
1 C .153 D .143
8.计算:
ab ab b a 1⋅÷等于( ) A .ab ab 21
B .ab ab
1 C .ab b 1 D .ab b 9、若x <y <0,则222y xy x +-+222y xy x ++=( )
(A )2x (B )2y (C )-2x (D )-2y
10、若不等式组0,122x a x x +⎧⎨->-⎩
≥有解,则a 的取值范围是( ) A .1a >- B .1a -≥ C .1a ≤ D .1a <
11.化简a
a 3
-得( ) (A )a - (B )-a (C )-a - (D )a
12.当a <0,b <0时,-a +2ab -b 可变形为( )
(A )2)(b a + (B )-2)(b a -
(C )2)(b a -+- (D )2)(b a ---
二、填空题
13.当x___________时,x 43-在实数范围内有意义.
14.比较大小:23-______32-.
15、计算32-12的结果是________.
16、已知实数x ,y 满足|x -4|+y -8=0,则以x ,y 的值为两边长的直角三角形的斜边上的高是________.
17、化简2÷(2-1)的结果是
18、若不等式组220
x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += . 19.若x x x x --=--3232成立,则x 满足_____________________.
20、把a a 1-
中根号外面的因式移到根号内的结果是________________ 三、解答题
21.计算:
5.(235+-)(235--)
6.
33
-(3)2+(π+3)0-27+|3-2|
22.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 3
22,3215只有4个整数解,求a 的取值范围.
23.已知关于x ,y 的方程组⎩
⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.
24.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元;
(1)符合公司要求的购买方案有几种?请说明理由;
(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上那种购买方案?。