江苏省2015年普通高校对口单招文化统考数学试卷和答案(最新)
2015届对口单招数学模拟试卷
f (x) 0
的
x
的
取
值
范
围
(▲) A. (1,1)
B. (, 1) (1, ) C. (1, 0) (1, ) D. (1, 0) (0,1)
9.已知函数 f (x) 是以 3 为周期的周期函数,且当 x (0,1) 时, f (x) 2x 1,则
f (log2 10) 的值为 ( ▲ )
C.. y x2 1
D. y lg | x | (▲ )
A.—40
B.40
C.80
D.-80
7.已知函数 y log 1 x 与 y kx 的图象有公共点 A,且点 A 的横坐标为 2,则 k 等于( ▲ )
2
1
A.
4
B. 1 4
1
C.
2
D. 1 2
8.已知函数 f (x) 是定义在 R 上的奇函数,当 x (0, ) 时, f (x) x 1 ,则使
2015 届对口单招数学模拟试卷
注意事项: 1.本试卷分选择题、填空题、解答题三部分.试卷满分 150 分.考试时间 120 分钟. 2.答题前,考生务必将自己的姓名、学校、考试号用 0.5mm 黑色签字笔填写在答题卡
规定区域. 3.选择题作答:用 2B 铅笔把答题卡上相应题号中正确答案的标号涂黑. 4.非选择题作答:用 0.5mm 黑色签字笔直接答在相应题号的答题区域内,否则无效. 5.试卷中可能用到的公式:
bn
的前n项和
Sn
.
20.(本小题满分 12 分)在一次百米比赛中,甲、乙等 6 名同学采用随机抽签的方式决定各 自的跑道,跑道编号为 1 至 6,每人一条跑道.求:
(1)甲在 1 或 2 跑道且乙不在 5、6 跑道的概率; (2)甲乙之间恰好间隔两人的概率.
江苏省南通市2015年职业学校对口单招高三第一次调研考试数学试题Word版含..
南通市2015年职业学校对口单招高三年级第一次调研考试数学试卷注意事项:1.本试卷分选择题、填空题、解答题三部分.试卷满分150分.考试时间120分钟. 2.答题前,考生务必将自己的姓名、学校、考试号用0.5mm 黑色签字笔填写在答题卡规定区域.3.选择题作答:用2B 铅笔把答题卡上相应题号中正确答案的标号涂黑.4.非选择题作答:用0.5mm 黑色签字笔直接答在相应题号的答题区域内,否则无效. 一、选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,请在答题卡上将所选的字母标号涂黑)1.已知全集U={Z x x x Î<£,60 } },,集合A={1,3,5},B={1,4},A={1,3,5},B={1,4},则则BC A C uuU等于 ( ( ▲▲ ) A. A.{{1,3,4,51,3,4,5}}B. B.{{0,20,2}}C.C.{{0,2,3,4,50,2,3,4,5}}D. D.{{1}2. 2. 已知向量已知向量(1,2)a =,(2,3)b x =-,若a ⊥(a +b ),则x= ( x= ( ▲▲ ) A.3B.-21C.-3D.21 3. 3. 若点若点P )4,(m -是角a 终边上一点,且53cos -=a ,则m 的值为的值为( ( ▲▲ ) . A. 3 B. -3 C. 3± D.5 4. 81()x x-的二项展开式中,2x 的系数是的系数是 ( ( ▲▲ )A.70B.-70C.28D.-285. 5. 设设23 (1)() (12)3 (2)x x f x x x x x ---ìï=-<<íïî≤≥,若()9f x =,则x = ( ( ▲▲ ) A.-12B. B.±±3C.-12或±或±3 3D.-12或36.6.已知已知a ,b 为正实数,且a+b=1a+b=1,则,则ba 22log log +的最大值为的最大值为 ( ( ▲▲ ) A.2B.-2C.21D.-21 7.7.若函数若函数f (x+3x+3)的定义域为()的定义域为(-1,1-1,1)),则函数f (x )的定义域为)的定义域为( ( ▲▲ ) A.A.((-4-4,,-2-2)) B. B. ((-1,1-1,1)) C. C.((2,42,4)) D. D.((0,1)8.8.已知抛物线已知抛物线221y x =上一点P 的横坐标为1,则点P 到该抛物线的焦点F 的距离为的距离为( ( ▲▲ )A.89 B.23C.2D.459.9.如图,在正方体如图,在正方体1111ABCD A B C D -中,1O 为底面的中心,则1O A 与上底面1111D C B A所成角的正切值是( ( ▲▲ ) A.1 B.22C.2D.22 10. ()3sin(2)3f x x p=-的图象为C ,以下结论不正确的是,以下结论不正确的是 (( ▲ ) A .图象C 关于直线1112x p =对称对称 B .图象C 关于点2(,0)3p 对称对称 C .函数()f x 在区间5(,)1212p p-上是增函数上是增函数D .由3sin2y x =的图象向右平移3p个单位,就可以得到图象C二、填空题(本大题共5小题,每小题4分,共20分) 11.11.化简逻辑函数式化简逻辑函数式AB BC C B B A +++= ▲ .12.若某算法框图如图所示,则输出的结果为则输出的结果为 ▲ . 13.13. 某工程的工作明细表如下:某工程的工作明细表如下:工作代码工作代码 紧前工作紧前工作 紧后工作紧后工作工期工期//天 A B 、E --- 1 BC A 5 C --- B 、D 3 D CE 2 EDA1则完成这项工程的最短工期为则完成这项工程的最短工期为______▲▲________天天.14.14.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,成绩某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,成绩(百分制)如下表:如下表:如果公司要求形体、口才、专业水平、创新能力按照5%、30%、35%、30%计算总分,那么候选人候选人 面试面试 笔试笔试 形体形体 口才口才 专业水平专业水平 创新能力创新能力 甲 86 90 96 92 乙92889593将录取将录取 ▲ .15.15.圆圆)(sin cos 1为参数a a a îíì=+=y x 上的点到直线)(1为参数t t y t x îíì+==的最大距离为的最大距离为▲▲ . 三、解答题(本大题共8小题,共90分)16.(本题满分6分)已知c bx ax ++2<0的解集为1|{x <x <}2,求b ax ->0的解集的解集. .17.17.(本题满分(本题满分10分)已知复数z 满足i z z 48+=+-, 其中i 为虚数单位为虚数单位. . (1)(1)求复数求复数z . . ((2)求复数1+z 的三角形式的三角形式. .18. 18. (本题满分(本题满分12分)已知函数21cos sin 3sin )(2-+=x x x x f (1)求函数)(x f 的最小正周期的最小正周期. .(2)已知c b a ,,分别为ABC D 的内角C B A 、、的对边,其中A 为锐角,1)(4,32===A f c a 且,求的面积及ABC b D .19. 19. (本题满分(本题满分12分)分) 已知数列{}n a 满足341=a ,132,n n a a n N ++=+Î.(1)求证)求证::数列{}1-na 为等比数列为等比数列. .(2)设13log (1)n nb a =-,求数列þýüîíì´+11n n b b 的前n 项和n S .20. 20. (本题满分(本题满分12分)已知二次函数()f x 满足(2)(2)f x f x -+=--,且()f x =x 有等根,()f x 的图像被x 轴截得的线段长为4. (1)求()f x 的解析式.的解析式.(2)若[]2,3-Îx ,求函数()f x 的最值21. 21. (本题满分(本题满分1212分)某工厂分)某工厂20142014年第一季度生产的年第一季度生产的A A 、B 、C 、D 四种型号的产品产量用条形图表示如图,现用分层抽样的方法从中选取形图表示如图,现用分层抽样的方法从中选取5050件样品参加四月份的一个展销会件样品参加四月份的一个展销会. . (1)问)问A A 、B 、C 、D 四种型号的产品中各应抽取多少件?四种型号的产品中各应抽取多少件? (2)从)从5050件样品中随机地抽取件样品中随机地抽取22件,求这件,求这22件产品恰好是不同型号产品的概率;件产品恰好是不同型号产品的概率;20015010050DCBA(3)从)从A A 、C 型号的产品中随机地抽取型号的产品中随机地抽取33件,求抽取件,求抽取A A 种型号的产品2件的概率种型号的产品2件的概率..22. 22. (本题满分(本题满分12分)某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成道工序完成..已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?少张,才能获得利润最大?23. 23. (本题满分(本题满分14分)已知焦点在x 轴上的椭圆C 的离心率为36,短轴长为2. (1)求椭圆C 的方程;的方程;(2)若将坐标原点平移到'O (-1,1),求椭圆C 在新坐标系下的方程;在新坐标系下的方程; (3)斜率为1的直线l 与椭圆C 交于,P Q 两点,若6=PQ ,求直线l 的方程.的方程.全市中等职业学校对口单招 2015届高三年级第一轮复习调研测试数学试卷参考答案及评分标准一、选择题一、选择题1.C2.D3.A4.A5.D6.B7.C8.B9.C 10.D 二、填空题二、填空题11.A+B 12.63 13.9 14.甲 15.12+ 三、解答题三、解答题16.解:由题意得ïîïíì=-30ab a > •………………………………………………•………………………………………………11分 ∴∴3-=ab∴由∴由b ax ->0得abx > (3)3分 ∴∴3->x ………………………………………………………………55分 ∴∴b ax ->0的解集为(的解集为(-3-3,,+∞)………………………………∞)………………………………66分 17.解:(1)设),(R b a bi a z Î+= ………………………………………………………………11分 ∴∴i b a bi a z z 4822+=+++=+-………………………………………………………………33分∴∴ïîïíì==++4822b b a a 解得îíì==43b a ∴∴i z 43+= ........................................................................55分 (2)i i z 441431+=++=+ (6)6分 ∴∴24|1|=+z ,4)1arg(p=+z ………………………………………………………………99分∴∴)4sin 4(cos 241p p i z ++的三角形式为 (10)10分18.解:(1))62sin(212sin 2322cos 121cos sin 3sin )(2p -=-+-=-+=x x x x x x x f ………………………………………………………………44分 ∴周期p p==22T ………………………………………………………………55分 (2)1)62sin()(=-=p A A f (6)6分 ∴Z k k A Î+=-,2262p p p∴∴Z k k A Î+=,3p p ∵为锐角A∴∴3p=A (8)8分 又由C Cc A a sin 43sin32,sin sin ==p 得 ………………………………………………………………99分解得2p=C (10)10分 ∴△∴△ABC ABC 为Rt Rt△△∴222=-=a c b 3221==D abSABC………………………………………………………………1212分19.(1)证明:311)1(31113231111=--=--+=--+n n n n n n a a a a a a (4)4分 ∴数列∴数列{}1-na 为等比数列为等比数列 ………………………………………………………………55分 (2)由()由(11)得数列{}1-na 为等比数列,且公比为31 ∴∴nnn n n a a )31()31()1(1111=´-=-- (7)7分 ∴∴n a b nn n ==-=)31(log )1(log 3131 (8)8分 ∴∴111)1(111+-=+=´+nn n n b bn n ………………………………………………………………99分 ∴∴11111113121211+=+-=+-++-+-=n n n n nS n L (12)12分 20. 解:(1)∵()()x f x f --=+-22∴()x f 的图像的对称轴为x =-2 =-2 (2)2分 又∵()f x 的图像被x 轴截得的线段长为4. ∴图像过点(∴图像过点(-4-4,,0),(0,00,0)) ………………………………………………………………44分 ∴设()()x x a x f 4+==ax ax 42+ ………………………………………………………………55分 又()f x =x 有等根有等根 即ax ax 42+=xx a ax )14(2-+=0有等根有等根 ∴()0142=-=D a (7)7分 ∴41=a ∴∴()x x x f +=241 …………………………………………………………88分 (2)由()由(11)得对称轴为x =-2[]2,3-Î∴当x =-2时()f x 取最小值-1 当x =2时()f x 取最大值3. ………………………………………………………………1212分 21.解:(1)由图可知A:B:C:D=100:200:50:150 =2:4:1:3 ∴A=1010250=´ B=2010450=´ C=510150=´D=1510350=´………………………………………………44分 ((2)设事件A=A={取得{取得2件产品恰好是不同型号产品}()250215252202101C C C C C A p +++-==75 ………………………………………………………………88分 ((3)设事件B=B={{A 、C 中抽取3件抽到A 种型号的产品2件}()315115210C C C B p ==9145........................................................................1212分 22. . 解:设每天生产解:设每天生产A 型桌子x 张,B 型桌子y 张. . (1)1分 则ïîïíì³³£+£+,09382y x y x y x ………………………………………………………………44分 目标函数为:z =2x +3y ………………………………………………………………55分 作出可行域:域:………………………………………………………………88分把直线l :2x +3y =0向右上方平移至l ′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z =2x +3y 取最大值取最大值. .解方程îíì=+=+9382y x y x得M 的坐标为(的坐标为(22,3). . ………………………………………………………………1111分 答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润张才能获得最大利润. . …………………………1212分 23. 解:(1)∵22,36==b e∴3=a 又焦点在又焦点在x 轴上轴上 所以1322=+y x ………………………………3分(2)∵坐标原点平移到(-1,1)()ïîí+3x23-,433-= 又6=PQ ,所以6=2122124)(1x x x x k-++=433449222-´-m m。
江苏对口单招数学试卷和答案
江苏省 2015 年普通高校对口单招文化统考数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分.)1 •已知集合 M 二{-1,1,2},N 二{a 1,a2 3}若 M - N ={2},则实数 a=()A 、OB 、1C 、2D 、32 •设复数z 满足iz =1 - i ,则z 的模等于()A 、1B 、 3C 、2D 、123 •函数f (x ) =sin (2X _4)在区间[0,才上的最小值是()4. 有3名女生和5名男生,排成一排,其中3名女生排在一起的所有排法是()A 、 2880B 、 3600C 、 4320D 、 72011 tan 35. 若 sin (j '' •■■■)= -, sinC --)=-则 二()2 3 ta n 。
3B 、2C 、 2 36. 已知函数f (x ) = a x 「1(a 且a =1)的图象恒过定点P ,且P 在直线2mx ,ny-4 = 0上, 则m n 的值等于()A 、-1B 、2C 、1D 、37. 若正方体的棱长为2,则它的外接球的半径为()A 、乜B 、2、、3C 、 3D 、 、.6 2 flog 2X (0 e x 兰 1)8.函数f (x )二 1 x 的值域是()!㈡仏別) 29. 已知过点P ( 2,2)的直线与圆(x-1)2 y^5相切,且与直线ax -y ,1=0垂直,则a 的 值是()1 (0,-)D 、( 」:,0)A、 D 、_!B、—2C、、-22 2已知函数f(x) = lgx,若0 va <b且f(a)= f(b),则2a + b的最小值是() 10.、填空题2,2C、3.2 D、4 2(本大题共5小题,每小题4分,共20分)11.逻辑式ABC ABC AB A=。
12 .题12图是一个程序框图,则输出的值是。
I结束题12图13.14. 某班级从甲、乙、丙三名同学中选一名代表在开学典礼上发言,全班同学参加了投票,得票情况统计如题14表及题14图,则同学乙得票数为。
2015年江苏省对口高考试卷
绝密★启用前江苏省2015年普通高校对口单招文化统考机电专业综合理论试卷本试卷分为第Ⅰ卷(客观题)和第Ⅱ卷(主观题)两部分。
第Ⅰ卷l 页至4页。
第Ⅱ卷5页 至16页。
两卷满分300分。
考试时间150分钟。
第Ⅰ卷(共85分)注意事项:1.答第Ⅰ卷前。
考生务必按规定要求填写答题卡上的姓名、考试证号。
2.必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后。
再选涂其他答案。
答案不涂写在答题卡上无效。
一、判断题(本大题共14小题,每小题2分,共28分。
下列各小题表述正确的在答题卡上将A 涂黑,错误的将B 涂黑)1.求电路中某元件的功率时,不论电压与电流的正方向是否相同,都可用公式P=UI 。
2.电热等于电功是电路的普遍规律。
3.基尔霍夫定律仅适用于线性电路。
4.电容器串联后,电容器组的耐压不一定大于每个串联电容器的耐压。
5.因为H =μB,所以磁场强度H 反比于媒介质的磁导率μ。
6.相位决定了正弦交流电瞬时值的大小和方向。
7.由式|Z|=221⎪⎭⎫ ⎝⎛-+C L R ωω可知,在RLC 串联电路中,角频率ω增大时,|Z|一定增大。
8.中线的存在,是为了保证星形连接的三相不对称负载,各相均有对称的电源相电压。
9.三极管电流放大作用的实质是基极电流对集电极电流的控制作用。
10.OC 门是集电极开路门,是特殊的TTL 门。
多个OC 门的输出端直接相连,具有线与功 能。
11.可调间隙式滑动轴承的两种形式中,内柱外锥的回转精度高。
12.为了保证曲轴的工艺性能和力学性能,应选用灰铸铁来制造。
13.若V 带传动的中心距变大,不仅会使传动结构变大,传动时还会使v 带颤动。
14.气动三大件都属于气动控制元件。
二、单项选择题(本大题共19小题,每小题3分,共57分。
在下列每小题l 中,选出一个正确答案。
在答题卡上将所选项的字母标号涂黑)15.题15图中,a 、b 、c 、d 四条曲线,分别代表了a 、b 、c 、d 四个电压源的端电压U 随 各自的负载 R 变化的关系。
2015年苏南五市单招二模卷--数学
2015年苏南五市职业学校对口单招第二次调研性统测数学 试卷一、选择题(本大题共10小题,每小题4分,共40分。
每小题列出的四个选项中,只有一项符合要求,将答题卡上相应题号中正确答案的字母标号涂黑)1.若集合{|22,}A x x x Z =-<≤∈,集合{}1,B x x a a A ==+∈,则集合A B =I ( )A .{}0,1,2B .{}22,x x x Z -<≤∈ C .{}1,0,1- D .{}1,0,1,2- 2.已知x ∈(-2π,0),cos x =54,则tan x 等于 ( )A .43B .43-C .34D .34-3.抛物线y =4x 2的焦点坐标为 ( ) A .(1, 0) B .(0, 1) C .1(,0)16 D .1(0,)164.在首项为正数的等比数列{}n a 中,若4a 、6a 是二次方程240x mx -+=的两个根,则5a =( ) A .m B .2 C .-2 D .±25. 若0,0,0<+<>n m m n 且,则下列不等式中成立的是 ( ) A .n m n m -<<<- B .n m m n -<<-< C .m n n m <-<<- D .m n m n <-<-<6. 已知一元二次方程20(,)x px q p q R ++=∈的一个根是12i -,则复数q pi +对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7. 已知函数12log y x =与y kx =的图象有公共点A ,且点A 的横坐标为2,则k 等于( )A .14 B . 14- C .12- D .128. 某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A 和一般项目B 至少有一个被选中的不同选法种数 ( ) A .75 B .80 C .60 D .659. 对于直线m 和平面,αβ,其中直线m 在平面α内,则“//m β”是“//αβ”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件10.已知函数()f x 是定义在R 上的奇函数,当(0,)x ∈+∞时,()1f x x =-,则使()0f x >的x 的取值范围 ( )A .(1,1)-B .(,1)(1,)-∞-+∞ C .(1,0)(1,)-+∞ D .(1,0)(0,1)-二、填空题(本大题共5小题,每小题4分,共20分,把答案填写在题中的横线上.) 11.平面向量a =(1,3),b =(-3,x ),若a ⊥b+= .12.在平面直角坐标系xoy 中,已知双曲线C(1,则双曲线C 的标准方程为________.13.若圆2cos 12sin x y αα=⎧⎨=+⎩(α为参数)上存在A ,B 两点关于点P (1,2)成中心对称,则直线AB 的方程为 .14.设,x y 满足条件023020x x y x y ≥⎧⎪-+≥⎨⎪-≤⎩,则2x y+的最大值为_________.15.若将圆心角为120,面积为3π的扇形,作为圆锥的侧面,则圆锥的体积为___.三、简答题(本大题共8小题,共90分)16.(本题满分6分)解不等式23log (2)1x x -<.17.(本题满分10分)已知函数()(01)x f x ab b b =>≠且的图象经过点A (0,1)和B (11,2).(1)求函数()f x 的解析式;(2)若函数2()2x x x ϕ=-,求函数(())f x ϕ的值域.18.(本题满分12分)在ABC ∆中,角A 、B 、C 所对的边 分别为a 、b 、c ,且()2cos sin()22A A f A π=-22sin cos 22A A+-. (1)求函数()f A 的最大值;(2)若()0f A =,512C π=,a =b 的值.19.(本题满分12分) 已知正项数列{}n a 的首项11a =,函数()12xf x x=+. (1)若数列{}n a 满足1()(1,)n n a f a n n N ++=≥∈,证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)若数列{}n b 满足21nn a b n =+,求数列{}n b 的前n项和n S .20.(本题满分10分)为了对某课题进行研究,用分层抽样的方法从三所高校A,B,C的相关人中抽取若干人组成研究小组,有关数据如下表(单位:人).(1)求x,y;(2)若从高校B,C抽取的人中选2人作专题发言,求这2人均来自高校C的概率.21.(本题满分10分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为了鼓励销售商多订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件就降低0.02元,但实际出厂价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂价恰降为51元?(2)设一次订购量为x个,零件的实际出厂价为p元,写出)x的表达式;p(f(3)当销售商一次订购400个时,该厂的利润是多少元?如果一次订购1000个,该厂的利润又是多少元?22.(本题满分14分)在直角坐标系中,以原点O为圆心,以r为半径的圆与直线:3x-y+4=0相切.(1) 求圆O的方程;(2) 圆O与x轴相交于A、B两点(B在A右侧),动点P满足|PA|+|PB|=4r,求动点P的轨迹方程;(3) 过点B有一条直线l,l与直线3x-y+4=0平行,且l与动点P的轨迹相交于C、D两点,求△OCD的面积.23.选做题(本题只能从下列四个备选题中选做两题,若多做,则以前两题计分!) 23—1.(本题满分8分)(1)将十进制数83化成二进制: ; (2)化简:ABC AB ABC ++= .23—2.(本题满分8分)如图给出的是计算2016142+⋅⋅⋅+++的值的一个程序框图.(1)其中①处不完整,此处应选用___ _框;A .B .C .D . (2)判断框②内应填入的条件是 . 3—3.(本题满分8分)某工程的工作明细表如下:(1)则该工程的关键路径为 ; (2)完成该项工程的最短总工期为 天. 23—4.(本题满分8分)某学习小组期中考试成绩分析图表如下:人 数(1)则该小组英语在70分及以上的人数是 ;(2)若60分及60分以上为及格,则高等数学的及格率是 .23-2题①②2015年苏南五市职业学校对口单招第二次调研性统测数学试卷 答案及评分参考一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共5小题,每空4分,共20分)11. 12.221y x -= 13.30x y +-= 14. 8 15三、解答题(本大题共8小题,共90分) 16(本题满分6分)解:222023x x x x ⎧->⎪⎨-<⎪⎩ ------------------2分∴2013x x x ><⎧⎨-<<⎩或---------------------2分∴1023x x -<<<<或∴不等式的解集为(1,0)(2,3)-U ----------2分17(本题满分10分)解:(1)0112ab ab ⎧=⎪⎨=⎪⎩ ------------2分解得112a b =⎧⎪⎨=⎪⎩----------------2分∴1()()2x f x = -------------1分(2)∵2()2x x x ϕ=- ∴221(())()2x x f x ϕ-= ----------1分令22t x x =- ∴2(1)11t x =--≥- ----------1分∴ 1110()()22t -<≤=2 ----------2分即 函数(())f x ϕ的值域为(0,2] ----------1分18(本题满分12分) 解:(1)22()sin (cos sin )22A A f A A =-- =sin cos A A -)4A π- --------------2分∵0A π<< ∴3444A πππ-<-<∴sin()14A π<-≤ --------------2分∴1)4A π-<-≤∴函数()f A--------------2分(2)∵())04f A A π=-=,3444A πππ-<-<∴4A π=--------------2分∴54123B AC πππππ=--=--= --------------1分 在ABC V 中 ∵sin sin a b A B =∴sin 33sin sin 4a Bb A ππ=== --------------3分19(本题满分12分) 解:(1)由题可知112n n na a a +=+,所以112112n n n n a a a a ++==+ ----------------2分即1112n n a a +-=,所以数列1n a ⎧⎫⎨⎬⎩⎭是等差数列。
江苏省2015年高职院校单独招生文化联合测试数学及答案(word版)
江苏省2015年高职院校单独招生文化联合测试试卷数学及答案参考公式:锥体的体积公式为Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.一、选择题(本大题共10小题,每小题4分,共40分)1.若集合}3,2,1{=A ,},4,1{m B =,且}3,1{=B A I ,则m 的值为( ) A.1; B.2; C.3; D.4 【答案】C ;2.已知i 为虚数单位,i i bi a )2(-=+,R b a ∈,,则ab 的值为( ) A.1-; B.2; C.1-; D.1 【答案】B ;3.某工厂生产甲、乙、丙三种不同型号的产品,其产量之比为2:3:6.现用分层 抽样的方法抽取一个容量为n 的样本,若样本中甲种型号的产品有24件,则 n 的值为( )A.44;B.88;C.120;D.132 【答案】D ;4.抛物线x y 82-=的焦点坐标为( )A.(2,0);B.(4,0);C.(-2,0);D.(-4,0) 【答案】C ;5.如图,正方体1111D C B A ABCD -中,异面直线1AD 与BD 所成角的大小为( ) A.︒30; B.︒45; C.︒60; D.︒90【答案】C ;6.已知函数)(x f y =的图象如图所示,则不等式0)2(>+x f 的解集是( ) A.)1,3(-; B.),1()3,(+∞--∞Y ; C.)3,1(-; D.),3()1,(+∞--∞Y 【答案】A ;7.若“a x >”是“1->x ”的充分不必要条件,则a 的值可以是( ) A.8-; B.23-; C.1-; D.21- 【答案】D ;8.若数列}{n a 的通项公式是420232+-=n n a n ,则该数列的最小项等于( ) A.3188-; B.2125-; C.62-; D.60- 【答案】B ;9.我国2014年10月24日发射了嫦娥五号“探路者”,其服务舱与返回器于2014 年11月1日分离,然后服务舱拉升轨道开展拓展试验,首先完成了远地点54 万公里、近地点600公里的大椭圆轨道拓展试验(注:地球半径约为6371公里), 则该大椭圆( )A.离心率接近于1,形状比较扁;B.离心率接近于1,形状比较圆;C.离心率接近于0,形状比较扁;D.离心率接近于0,形状比较圆 【答案】A ;10.已知)(x f y =是定义在R 上的偶函数,当0≥x 时,)()3(x f x f =+,且)3,0[∈x 时,)1(log )(2+=x x f ,则)2015()2016(f f +-的值等于( ) A.3; B.6log 2; C.3log 2; D.1 【答案】C ;二、填空题(本大题共5小题,每小题4分,共20分) 11.根据如图所示的流程图,若输入x 的值为3, 则输出y 的值是 . 【答案】8;12.已知某运动员在一次射击中,射中10环、9环、8环、7环、7环以下的概率分别为0.24、0.28、0.19、0.16、0.13, 则该运动员在一次射击中,至少射中8环的概率是 . 【答案】0.71;13.如图,海岸线上A 处是一个码头,海面上停 泊着两艘轮船,甲船位于码头A 的北偏东︒75 方向的B 处,与A 相距3海里;乙船位于码头A 的南偏东︒45方向的C 处,与A 相距8海里,则两船之间的距离为 海里. (第13题) 【答案】7;10.在平面直角坐标系xOy 中,椭圆C :221123y x +=和直线l :90x y -+=.在l 上取点M ,经过点M 且与椭圆C 有共同焦点的椭圆中,长轴最短的椭圆的标准方程为 ▲ 10.答案:2214536y x +=14.与x 轴垂直的动直线l 分别与函数x y =和x y 3-=的图象相交于点P 和Q ,则线段PQ 长的最小值为 . 【答案】32;15.在平面直角坐标系xOy 中,)0,1(A ,)2,0(B ,点P 在线段AB 上运动,则⋅ 的取值范围为 . 【答案】]4,201[-. 三、解答题(本大题共5小题,共40分,解答时写出步骤)16.(满分6分)设向量=a ρx (cos ,)sin x ,=b ρ1(,)3.(1)若b a ρρ//,求x tan 的值;(2)求b a x f ρρ⋅=)(的最大值及对应x 的值. 【解答】(1)因为b a ρρ//,=a ρx (cos ,)sin x ,=b ρ1(,)3,所以0cos 3sin 1=⨯-⨯x x ,……………………………1分 即x x cos 3sin =,所以3tan =x . ……………………2分(2)函数x x b a x f sin 3cos )(+=⋅=ρρ ……………………3分)sin 23cos 21(2x x +=)3cos(2π-=x , …………………4分所以2)(max =x f ,…………………………………………5分 此时ππk x 23=-,即32ππ+=k x ,)(Z k ∈. …………6分17.(满分6分)如图,在正四棱锥ABCD P -中,O 为底面ABCD 的中心,E 为线段PA 的中点. (1)求证:PCD OE 面//;(2)若4==AC PC , 求正四棱锥ABCD P -的体积. 【证明】(1)∵正四棱锥ABCD P -,∴ABCD 是正方形,∴O 为BD 的中点,又∵E 为PA 的中点,∴PC OE //,…………………………1分 ∵PCD OE 面⊄,PCD PC 面⊂,∴PCD OE 面//. ………………………………………………3分 (2)∵正四棱锥ABCD P -, ∴PC PA =,⊥PO 面ABCD ,又∵4==AC PC ,∴PAC ∆是正三角形,∴32=PO ,2=AO ,………………………………………4分 ∵ABCD 是正方形,∴22=AB ,∴82==AB S ABCD ,……………………………………………5分 ∴331631=⋅⋅=-PO S V ABCD ABCD P . …………………………6分18.(满分8分)已知以)0,2(-C 为圆心的圆与直线04=-+y x 相切.(1)求圆C 的方程; (2)若)0,(a A ,)0,(b B (b a <)是定点,对于圆C 上的动点),(y x P ,恒有3822=+PB PA ,求b a ,的值. 【解答】(1)圆C 的的半径为2311|402|22=+-+-=r ,…………1分所以圆C 的方程为18)2(22=++y x . ……………………3分 (2)因为3822=+PB PA ,所以38)()(2222=+-++-y b x y a x ,即038)(2222222=-+++-+b a x b a y x , ① ……………5分 又因),(y x P 在圆C 上,所以18)2(22=++y x ,……………6分 即x x y 41422--=,代入①得010)4(22=-++++-b a x b a 恒成立, ……………………7分所以⎩⎨⎧=-+=++0100422b a b a , 又b a <,求得3-=a ,1-=b . ……………………………8分17.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m 的围墙.现有两种方案:方案①多边形为直角三角形AEB (∠AEB=90°),如图1所示,其中AE +EB=30m ; 方案②多边形为等腰梯形AEFB (AB >EF ),如图2所示,其中AE=EF=BF=10m . 请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.【考点】定积分在求面积中的应用;基本不等式.【分析】设方案①,②的多边形苗圃的面积分别为S 1,S 2,根据基本不等式求出S 1的最大值,用导数求出S 2的最大值,比较即可.【解答】解:设方案①,②的多边形苗圃的面积分别为S 1,S 2, 方案①,设AE=x ,则S 1=x (30﹣x )≤ []2=,当且仅当x=15时,取等号,方案②,设∠BAE=θ,则S 2=100sinθ(1+cosθ),θ∈(0,),由S2′=100(2cos2θ+cosθ﹣1)=0得cosθ=(cosθ=﹣1舍去),∵θ∈(0,),∴θ=,当S2′>0,解得0<x<,函数单调递增,当S2′<0,解得<x<,函数单调递减,∴当θ=时,(S2)max=75,∵<75,∴建立苗圃时用方案②,且∠BAE=.19.(满分10分)设函数xy=在点))f,1(f处的切(x1(xxf ln)(=.(1)求曲线)线方程;(2)求函数)(x f 的极值;(3)若关于x 的方程x a x f =)(在区间],1[e e(e 为自然对数的底数)上有两个相异的实根,求实数a 的取值范围. 【解答】(1)因为1ln )(+='x x f ,所以1)1(='=f k 切,………1分又01ln 1)1(=⨯=f ,所以切点为)0,1(, …………………2分 所以切线方程为)1(10-⋅=-x y ,即01=--y x . ………3分 (2)函数x x x f ln )(=的定义域为),0(+∞, …………………4分令01ln )(=+='x x f ,得e x 1=, …………………………5分列表如下:所以函数)(x f 的极小值为ee e ef ln )(-=⨯=.……………6分(3)方程xax f =)(可化为a x x =ln 2,设x x x g ln )(2=,a x h =)(, 令0ln 2)(=+='x x x x g ,得],1[1e e ex ∈=,………………8分 列表如下:画函数x x x g ln )(2=与a x h =)(的图象,由图象知,………9分 当2121ea e -≤<-时,)(x g 与)(x h 的图象有两个交点,即方程x a x f =)(在区间],1[e e上有两个相异的实根. ………10分20.(满分10分)记数列}{n a 的前n 项和为n S ,2+=nnn a S b ,其中*N n ∈. (1)若}{n a 是首项为1,公比为2的等比数列,求321,,b b b 的值; (2)若}{n b 是公差为21的等差数列,且21=a ,求数列}{n a 的通项公式; (3)若}{n a ,}{n b 是公比分别为q p ,的等比数列,求实数q p ,的值. 【解答】(1)因为}{n a 是首项为1,公比为2的等比数列,所以4,2,1321===a a a ,7,3,1321===S S S , ……………1分 所以32111=+=a Sb ,272222=+=a S b ,4152333=+=a S b .……2分 (2)因为21=a ,所以32111=+=a S b , 因为}{n b 是公差为21的等差数列, 所以25221)1(3+=⨯-+=n n b n ,即2+n n a S 252+=n , ………3分所以n n a n S ⋅+=21,1122++⋅+=n n a n S , 两式相减得=+1n a 122+⋅+n a n n a n ⋅+-21, ……………………4分所以n a n ⋅+2112+⋅=n a n,即n n a a n n 11+=+, ……………………5分 所以n n na a a a a a a a n n n 2123122123121=-⨯⨯⨯⨯=⨯⨯⨯⨯=-ΛΛ. …6分 (3)因为}{n a ,}{n b 是公比分别为q p ,的等比数列, 所以31=b ①,pp p a p a a q b 1321111+=++=, ②2221211121132pp p p a p a p a a q b ++=+++=, ③………………7分 将①代入②得pp q 133+=, ④ 将①代入③得222133p p p q ++=, ⑤ ……………………8分由④得pp q 313+=代入⑤得223169p p p ++2213p p p ++=, ……9分 解得32=p ,代入p p q 313+=得23=q .所以实数q p ,的值分别为32,23. ……………………………10分。
2015年江苏高考数学试题及答案
2015年普通高等学校招生全国统一考试(江苏卷)数学试题及答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{}123A =,,,{}245B =,,,则集合A B 中元素的个数为_______. 【答案】52.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】63.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.4.根据如图所示的伪代码,可知输出的结果S 为________. 【答案】75.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 【答案】566.已知向量()21a =,,()2a =-1,,若()()98ma nb mn R +=-∈,,则m-n 的值为______. 【答案】-37.不等式224x x -<的解集为________. 【答案】(-1,2)8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______.【答案】39.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.10.在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 . 【答案】22(1)2x y -+=11.数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 .【答案】201112.在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点.若点P 到直线01=+-y x 的距离对c 恒成立,则是实数c 的最大值为 .13.已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为 .【答案】414.设向量)12,,2,1,0)(6cos 6sin ,6(cos =+=k k k k a k πππ,则∑=+1101)(k k k a a 的值为 .【答案】二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.(第4题图)在ABC V 中,已知2,3,60.AB AC A ===o(1)求BC 的长; (2)求sin 2C 的值.解:(1)由余弦定理得,BC =(2)由正弦定理得,sin 2C =16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,已知1,AC BC BC CC ⊥=,设1AB 的中点为D,11.B C BC E ⋂= 求证:(1)11//DE AACC 平面 (2)11BC AB ⊥ 证明:(1)只需证明DE//AC;(2)需先证AC ⊥平面11BCC B ,再证1BC ⊥平面1AB C.17.(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边界曲线为C,计划修建的公路为l,如图所示,M,N 为C 的两个端点,测得点M 到12l l ,的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l ,所在的直线分别为x,y 轴,建立平面直角坐标系xOy,假设曲线C 符合函数2ay x b=+(其中a,b 为常数)模型. (I)求a,b 的值;(II)设公路l 与曲线C 相切于P 点,P 的横坐标为t.①请写出公路l 长度的函数解析式()f t ,并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度. 解:(1)由题意知,点,M N 的坐标分别为(5,40),(20,2.5), 将其分别代入2ay x b =+中得,10000a b =⎧⎨=⎩ (2)由勾股定理得,()[5,20]f t t =∈由基本不等式可知,当t =,min ()f t =P如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>且右焦点F 到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.解:(1)2212x y += (2)分AB 与x 轴垂直和不垂直两种情况讨论, 得直线AB 的方程为10x y --=或10x y +-=19.(本小题满分16分)已知函数32()(,)f x x ax b a b =++∈R ; (1)试讨论)(x f 的单调性;(2)若a c b -=(实数c 是与a 无关常数),当函数)(x f 有三个不同零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-+∞求c 的值 解:(1)当0a <时,()f x 在2(0,)3a -上递减,在2(,0),(,)3a-∞-+∞上递增; 当0a =时,()f x 在(,)-∞+∞上递增; 当0a >时,()f x 在2(,0)3a -上递减,在2(,),(0,)3a-∞-+∞上递增. (2)1c =20.(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2aaaa依次成等比数列(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由(3)是否存在1,a d 及正整数,n k ,使得351234,,,n n k n k n k a a a a +++依次成等比数列,并说明理由解:(1)证明:因为11222(1,2,3)2n n n na a a d a n ++-===是同一个常数,所以31242,2,2,2a a a a构成等比数列.(2)用假设法,可证不存在1,a d ,使得2341234,,,a a a a 依次成等比数列.(3)用假设法,可证不存在1,a d 及正整数,n k ,使得351234,,,n n k n k n k aa a a +++依次成等比数列.附加题21、(选做题)本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤. A 、[选修4-1:几何证明选讲](本小题满分10分)如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D 求证:ABD ∆≈AEB ∆ 证明:只需证ABD E ∠=∠,而BAE ∠为公共角,易证.B 、[选修4-2:矩阵与变换](本小题满分10分) 已知R y x ∈,,向量⎥⎦⎤⎢⎣⎡-=11α是矩阵⎢⎣⎡⎥⎦⎤=01y x A 的属性特征值2-的一个特征向量,矩阵A 以及它的另一个特征值. 解:1120A ⎡-⎤=⎢⎥⎦⎣,另一个特征值为1 C.[选修4-4:坐标系与参数方程]已知圆C的极坐标方程为2sin()404πρθ+--=,求圆C 的半径. 解:r =D .[选修4-5:不等式选讲]解不等式|23|3x x ++≥ 解:1(,5][,)3-∞--+∞22.如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2,1PA AD AB BC ====(1)求平面PAB 与平面PCD所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长 BQ =23.已知集合*{1,2,3},{1,2,3,,}()n X Y n n N ==∈,设},,|),{(n n Y b X a a b b a b a S ∈∈=整除或整除,令()f n 表示集合n S 所含元素个数. (1)写出(6)f 的值; (6)13f =(2)当6n ≥时,写出()f n的表达式,并用数学归纳法证明. 略A第21——APA BC DQ 第22题。
江苏省历年(2001-2013)普通高校对口单招文化统考数学试卷(部分年份附有答案)——免费下载
AF DE ,F 为垂足。 (1)如果 AB 2a ,求三棱锥 D ABE 的体积; (2)求异面直线 AF 与 DB 所成角。
27、过抛物线 y 2 2 px( p 0) 的焦点,作一直线交抛物线于 A、B 两点。以 AB 为直径的圆与抛物线的准线相切于点 C (2,2) 。求: (1)抛物线的方程; (2)直线 AB 的方程; (3)圆的方程。
12、双曲线
x2 y2 1 的渐近线方程和离心率分别是( ) 4 5
B.y=±
A.y=±
3 5 x, 2 5
3 5 y, 2 2
3 5 x, 2 2
C.x=±
D.x=±
3 5 y, 2 5
13、下列函数中,其图象关于直线 x=
) 3 C.y=sin(x+ ) 6
A.y=sin(x-
1 9
x
1 的定义域是____________。
21、一圆锥的母线长为 50 ㎝,高为 40 ㎝,则该圆锥的侧面积为_____㎝ 2。 22、已知函数 f(x)=
m 2x 1 为奇函数,则 m 的值等于____________。 2x 1
三、解答题(本大题共 5 题,共 62 分。 )
2
D.32
11、 x R ,不等式 8 x A. 0 a 1
2 ax
83 x a 恒成立,则实数 a 的取值范围是( )
3 3 3 C. 0 a D. a 4 4 4 12、 从 8 台不同的收录机和 6 台不同的电视机选出 5 台收录机和 4 台电视机 摆成一排,则电视机不相邻的排法总数为( )
B. a
A. P8 P8
5
4
B.
C C P
江苏省2015年普通高校对口单招数学试卷和答案(最全)
江苏省2015年普通高校对口单招数学试卷和答案(最全)江苏省2015年普通高校对口单招文化统考数学试卷注意事项考生在答题前请认真阅读本注意事项及各题答题要求。
1.本试卷共4页,包含选择题(第1题-第10题,共10题)、非选择题(第11题-第23题,共13题)两部分。
试卷满分150分。
考试时间120分钟。
考试结束后,请将本试卷及答题卡一并交回。
2.答题前,请务必将自己的姓名、考试证号用0.5mm黑色签字笔填写在试卷及答题卡的规定区域。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、考试证号与您本人是否相符。
4.作答选择题(第1题-第10题)必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑,如需改动,请用橡皮擦干净后,再选图其它答案。
作答非选择题,必须用0.5mm黑色签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,请用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
一、单项选择题(本大题共10小题,每小题4分,共40分)1.已知集合M={-1,1,2},若M∩N={2},则实数a=()A、-B、1C、2D、32.设复数z满足|z-i|=1-i,则z的模等于()A、B、3C、2D、23.函数f(x)=sin(2x-π/4)在区间[0,π/2]上的最小值是()A、-1/2B、-1/√2C、1/2D、1/√24.有3名女生和5名男生,排成一排,其中3名女生排在一起的所有排法是()A、2880B、3600C、4320D、7205.若sin(α+β)=3/5,sin(α-β)=1/5,则tanα/tanβ=()A、31/32B、55/23C、11/32D、5/236.已知函数f(x)=ax-1+1(a>0且a≠1)的图象恒过定点P,且P在直线2mx+ny-4=0上,则m+n的值等于()A、-1B、2C、1D、37.若正方体的棱长为2,则它的外接球的半径为()A、√3B、2/3C、3D、68.函数f(x)={log2x(01)}的值域是()A、(-∞,0)B、(0,∞)C、(0,)D、(-∞,0)∪(0,∞)9.已知过点P(2,2)的直线与圆(x-1)²+y²=5相切,且与直线ax-y+1=0垂直,则a的值是()A、-1B、-2C、2D、2删除明显有问题的段落)江苏省2015年普通高校对口单招文化统考数学试卷注意事项:1.本试卷共4页,包含选择题(第1题-第10题,共10题)、非选择题(第11题-第23题,共13题)两部分。
江苏省历年普通高校对口单招文化统考数学试卷及答案().doc
江苏省历年普通⾼校对⼝单招⽂化统考数学试卷及答案().doc江苏省2012年普通⾼校对⼝单招⽂化统考数学试卷⼀、单项选择题(本⼤题共12⼩题,每⼩题4分,共48分.在下列每⼩题中,选出⼀个正确答案,请在答题卡上将所选的字母标号涂⿊) 1.若集合{1,2}M =, {2,3}N =,则M N U 等于() A . {2} B . {1} C . {1,3} D . {1,2,3}2.若函数()cos()f x x ?=+(π?≤≤0)是R 上的奇函数,则?等于() A .0 B .4π C .2πD .π 3.函数2()f x x mx n =++的图象关于直线1x =对称的充要条件是() A .2m =- B .2m = C . 2n =- D .2n =4.已知向量(1,)a x =r ,(1,)b x =-r .若a b ⊥r r ,则||a r等于()A . 1BC .2D .45.若复数z 满⾜(1)1i z i +=-,则z 等于() A .1i + B .1i - C .i D .i -6.若直线l 过点(1,2)-且与直线2310x y -+=平⾏,则l 的⽅程是() A .3280x y ++= B .2380x y -+= C .2380x y --= D .3280x y +-=7.若实数x 满⾜2680x x -+≤,则2log x 的取值范围是()A . [1,2]B . (1,2)C . (,1]-∞D . [2,)+∞8.设甲将⼀颗骰⼦抛掷⼀次,所得向上的点数为a ,则⽅程012=++ax x 有两个不相等实根的概率为() A .32 B .31 C .21 D . 1259.设双曲线22221x y a b-=(0,0)a b >>的虚轴长为2,焦距为⽅程为()A .y =B .2y x =±C .2y x =±D .12y x =± 10.若偶函数()y f x =在(,1]-∞-上是增函数,则下列关系式中成⽴的是()A .3()2f -< (1)f -< (2)f B .(1)f - <3()2f - <(2)f C .(2)f < (1)f -< 3()2f - D .(2)f <3()2f - <(1)f -11.若圆锥的表⾯积为S ,且它的侧⾯展开图是⼀个半圆,则这个圆锥的底⾯直径为()A B . C D .12.若过点(3,0)A 的直线l 与圆C :22(1)1x y -+=有公共点,则直线l 斜率的取值范围为()A . (B .[C .(33-D . [33-⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分)13.sin150?= . 14.已知函数()f x 11x =+,则[(1)]f f = . 15.⽤数字0,3,5,7,9可以组成个没有重复数字的五位数(⽤数字作答). 16.在ABC ?中,====B A b a 2cos ,23sin ,20,30则. 17.设斜率为2的直线l 过抛物线22y px = (0)p >的焦点F ,且与y 轴交于点A .若OAF ?(O 为坐标原点)的⾯积为4,则此抛物线的⽅程为.18.若实数x 、y 满⾜220x y +-=,则39xy+的最⼩值为.三、解答题(本⼤题7⼩题,共78分)19.(6分)设关于x 的不等式||x a -<1 的解集为(,3)b ,求a b +的值. 20.(10分)已知函数x x x f cos )tan 31()(+=.(1)求函数()f x 的最⼩正周期;(2)若21)(=αf ,)3,6(ππα-∈,求αsin 的值。
2015年江苏高考数学真题及答案
绝密★启用前2015年普通高等学校招生全国统一考试(江苏卷)数学I 参考公式: 圆柱的体积公式:sh V =圆柱,其中s 为圆柱的表面积,h 为高.圆锥的体积公式:sh V 31=圆锥,其中s 为圆锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡...相应位置上...... 1. 已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A Y 中元素的个数为▲ .2. 已知一组数据4, 6, 5, 8, 7, 6,则这组数据的平均数为▲ .3. 设复数z 满足i z 432+=(i 是虚数单位),则z 的模为 ▲ .4. 根据如图所示的伪代码,可知输出的结果S 为 ▲ .5. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄 球. 从中一次随机摸出2只球,则这2只球颜色不同的概率为 ▲ .6. 已知向量a =)1,2(,b=)2,1(-, 若ma +nb =)8,9(-(R n m ∈,), n m -的值为 ▲ .7. 不等式422<-x x 的解集为 ▲ .8. 已知2tan -=α,71)tan(=+βα,则βtan 的值为 ▲ .9. 现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个. 若将它们重新制作成总体积和高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 ▲ .10. 在平面直角坐标系x O y 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 ▲ .11. 设数列{}n a 满足11=a ,且11+=-+n a a n n (*N n ∈), 则数列⎭⎬⎫⎩⎨⎧n a 1前10项的和为 ▲ .12. 在平面直角坐标系x O y 中,P 为双曲线122=-y x 右支上的一个动点,若点P 到直线01=+-y x 的距离大于c 恒成立,则实数c 的最大值为 ▲ .13. 已知函数x x f ln )(=,⎪⎩⎪⎨⎧>--≤<=,1,24,10,0)(2x x x x g ,则方程1)()(=+x g x f 实根的个数为 ▲ .14. 设向量a k =(6cos 6sin ,6cos πππk k k +),(12,,2,1,0Λ=k ),则∑=+⋅111)(k k k a a 的值为▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知ο60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值. 16.(本题满分14分)如图,在直三棱柱111C B A ABC -中,已知BC AC ⊥,1CC BC =,设1AB 的中点为D ,E BC C B =11I .求证:(1)C C AA DE 11//平面; (2)11AB BC ⊥. 17.(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点MBDABC到12l l ,的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l ,所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2ay x b=+ (其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P ①请写出公路l 长度的函数解析式()f t ,并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b+=>>的离心率为2,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程. M Nl 2l 1y CPl已知函数),()(23R b a b ax x x f ∈++=. (1)试讨论)(x f 的单调性;(2)若a c b -=(实数c 是a 与无关的常数),当函数)(x f 有三个不同的零点时,a的取值范围恰好是),23()23,1()3,(+∞--∞Y Y ,求c 的值.20.(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2a a a a 依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得k n k n k n n a a a a 342321,,,+++依次成等比数列,并说 明理由.2015年普通高等学校招生全国统一考试(江苏卷)数学II21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A.(选修4—1:几何证明选讲)如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D 求证:ABD ∆∽AEB ∆B .(选修4—2:矩阵与变换)已知R y x ∈,,向量⎥⎦⎤⎢⎣⎡-=11α是矩阵⎢⎣⎡⎥⎦⎤=01y x A 的属性特征值2-的一个特征向量,矩阵A 以及它的另一个特征值.C .(选修4—4:坐标系与参数方程)已知圆C的极坐标方程为2sin()404πρθ+--=,求圆C 的半径.D.(选修4—5:不等式选讲) 解不等式|23|3x x ++≥【必做题】第22、23题,每小题10分,计20分.请把答案写在答题....卡.的指定区域.....E(第21——A内.. 22.(本小题满分10分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯 形,2ABC BAD π∠=∠=,2,1PA AD AB BC ====(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长23.(本小题满分10分)已知集合{}3,2,1=X ,{})(,,3,2,1*N n n Y n ∈=Λ,{,),(a b b a b a S n 整除或整除=}n Y b X a ∈∈,,令()f n 表示集合n S 所含元素的个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明. 2020-2-8P A BCDQ。
扬州市2015年对口单招期终考试数学试卷
2015年扬州市13级对口单招班期末考试数学试卷一、选择题(本大题共10小题,每题4分,共40分)1、已知集合{}2,1,1-=M ,{}3,12++=a a N ,且{}2=⋂N M ,则实数a 的值为 A 、0 B 、1 C 、2 D 、32、已知函数()11+=-x a x f 恒过点P ,且点P 在直线0=+-n y mx 上,则n m +的值是A 、1-B 、2C 、1D 、33、函数()⎪⎩⎪⎨⎧>⎪⎭⎫ ⎝⎛≤<=1,2110,log 2x x x x f x的值域为A 、⎪⎭⎫ ⎝⎛∞-21,B 、⎪⎭⎫ ⎝⎛+∞,21C 、⎪⎭⎫⎢⎣⎡21,0 D 、()0,∞- 4、已知函数()x x f lg =,若b a <<0,且()()b f a f =,则b a +2的最小值是 A 、2 B 、22 C 、23 D 、24 5.已知集合{}2,1=M ,{}3,2x N =,若{}1=⋂N M ,则实数x 的值为 A .1- B .0 C .1 D .2 6.若函数()⎩⎨⎧≤>=0,30,log 2x x x x f x,则()()0f f 等于 A .3- B .0 C .1 D .37.若b a ,是实数,且4=+b a ,则ba 33+的最小值是A .9B .12C .15D .18 8.若函数()()R x x f ∈的图象过点()1,1,则函数()3+x f 的图象必过点 A .()1,4 B .()4,1 C .()1,2- D .()2,1-9、若集合}02|{>+=x x M ,}03|{<-=x x N ,则N M ⋂等于 A .(-∞,-2) B .(-∞,3) C .(-2,3) D .(3,+∞) 10.若0<<b a ,则下列不等式成立的是 A .b a 33< B .b a 11< C .a a -->43 D .b a )41()41(< 二、填空题(本大题共5小题,每题4分,共20分)11.若b a ,是方程0100302=+-x x 的两个实根,则=+b a lg lg .12.若函数⎩⎨⎧<≥=0,00,1)(x x x f ,则=))((x f f .13.若实数y x ,满足022=-+y x ,则y x 93+的最小值为 . 14.若曲线x y a log =与直线()1,01≠>=+a a ay ax 只有一个交点,则a 的取值范围是 .15.若曲线12+=x y 与直线b y =没有公共点,则b 的取值范围是 . 三、解答题(本大题共9小题,共90分)16.设关于x 的不等式1<-a x 的解集为()3,b ,求b a +的值.17.已知函数()()21222-----=a x a a x x f 在[)+∞,1上是增函数. (1)求实数a 的取值范围; (2)试比较()1f 与()02f 的大小.18.已知函数()()1,0log ≠>+=a a x k x f a 的图象过点()2,8A 和点()1,1-B , (1)求常数k 和a 的值;(2)求()()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++715131753f f f f f f 的值.19.设二次函数()m x x f +-=221图象的顶点为C ,与x 轴的交点分别为B A ,.若ABC ∆中的面积为28.(1)求m 的值; (2)求函数()x f 在区间[]2,1-上的最大值和最小值.20.已知二次函数()c bx ax x f ++=2的图象经过坐标原点,满足()()x f x f -=+11且方程()x x f =有两个相等的实根.(1)求该二次函数的解析式; (2)求上述二次函数在区间[]2,1-上的最大值和最小值.21.对于函数()x f ,若实数0x 满足()00x x f =,则称0x 是()x f 的一个不动点.已知()()()112-+++=b x b ax x f .(1)当2,1-==b a 时,求函数()x f 的不动点; (2)假设21=a ,求证:对任意实数b ,函数()x f 恒有两个相异的不动点.22.已知函数()x f 是定义在R 上的奇函数,且当0≥x 时,()()m x x f x +-+=+2113(1)求实数m 的值; (2)求不等式032<+-m x x 的解集.23.设二次函数a b x b ax x f 32)2()(2-+-+=是定义在]2,6[a -上的偶函数. (1)求b a ,的值;(2)解不等式x x f 2)(2)21(->; (3)若函数4)()(++=mx x f x g 的最小值为4-,求m 的值.24.某工厂有一个容量为10吨的水池,水池中有进水管和出水管各一个,某天早晨同时打开进水管和出水管阀门,开始时池中蓄满了水,设经过x (小时)进水量P (吨)和出水量Q (吨)分别为x P 2=,x Q 8=.(1)问经过多少小时,水池中的蓄水量y (吨)最小?并求出最小量;(2)为防止水池中的水溢出,当水池再次蓄满水时,应关闭进水管阀门,问经过多少小时应关闭进水管阀门?。
江苏省苏南五市对口单招第二次模拟试卷数学
2015年苏南五市职业学校对口单招第二次调研性统测数学 试卷本试卷分第Ⅰ卷(客观题)和第Ⅱ卷(主观题)两部分。
第Ⅰ卷1页至2页,第Ⅱ卷3页至8页。
两卷满分150分。
考试时间120分钟。
第Ⅰ卷(共40分)注意事项:1.答第Ⅰ卷前,考生务必按规定要求填涂答题卡上的姓名、考试证号、考试科目等项目。
2.用2B 铅笔把答题卡上相应题号中正确答案的标号涂黑。
答案不涂写在答题卡上无效。
一、选择题(本大题共10小题,每小题4分,共40分。
每小题列出的四个选项中,只有一项符合要求,将答题卡上相应题号中正确答案的字母标号涂黑)1.若集合{|22,}A x x x Z =-<≤∈,集合{}1,B x x a a A ==+∈,则集合A B =I ( ▲ )A .{}0,1,2B .{}22,x x x Z -<≤∈ C .{}1,0,1- D .{}1,0,1,2- 2.已知x ∈(-2π,0),cos x =54,则tan x 等于 ( ▲ ) A .43 B .43- C .34 D .34-3.抛物线y =4x 2的焦点坐标为 ( ▲ )A .(1, 0)B .(0, 1)C .1(,0)16 D .1(0,)164.在首项为正数的等比数列{}n a 中,若4a 、6a 是二次方程240x mx -+=的两个根,则5a =( ▲ )A .mB .2C .-2D .±25. 若0,0,0<+<>n m m n 且,则下列不等式中成立的是 ( ▲ ) A .n m n m -<<<- B .n m m n -<<-< C .m n n m <-<<- D .m n m n <-<-< 6. 已知一元二次方程20(,)x px q p q R ++=∈的一个根是12i -,则复数q pi +对应的点位于( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限7. 已知函数12log y x =与y kx =的图象有公共点A ,且点A 的横坐标为2,则k 等于( ▲ )A .14 B . 14- C .12- D .12姓名_____________ 考试证号……封…………线…………内…………不…………要…………答…………题………………………8. 某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A 和一般项目B 至少有一个被选中的不同选法种数 ( ▲ ) A .75 B .80 C .60 D .659. 对于直线m 和平面,αβ,其中直线m 在平面α内,则“//m β”是“//αβ”的 ( ▲ ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件10.已知函数()f x 是定义在R 上的奇函数,当(0,)x ∈+∞时,()1f x x =-,则使()0f x >的x 的取值范围 ( ▲ )A .(1,1)-B .(,1)(1,)-∞-+∞UC .(1,0)(1,)-+∞UD .(1,0)(0,1)-U2015年苏南五市职业学校对口单招第二次调研性统测数学 试卷第Ⅱ卷(共110分)注意事项:1.答第Ⅱ卷前,考生务必按规定将密封线内的各项目填写齐全.2.第Ⅱ卷共6页,考生须用钢笔或圆珠笔将答案直接答在试卷上,作图可用铅笔. 3.考试结束,考生将第Ⅱ卷、第Ⅰ卷和答题卡一并交回.二、填空题(本大题共5小题,每小题4分,共20分,把答案填写在题中的横线上.) 11.平面向量=(1,3), =(-3,x ),若⊥+= .12.在平面直角坐标系xoy 中,已知双曲线C,则双曲线C 的标准方程为________.13.若圆2cos 12sin x y αα=⎧⎨=+⎩(α为参数)上存在A ,B 两点关于点P (1,2)成中心对称,则直线AB 的方程为 .14.设,x y 满足条件023020x x y x y ≥⎧⎪-+≥⎨⎪-≤⎩,则2x y+的最大值为_________.15.若将圆心角为120o,面积为3π的扇形,作为圆锥的侧面,则圆锥的体积为___三、简答题(本大题共8小题,共90分) 16.(本题满分6分)解不等式23log (2)1x x -<.17.(本题满分10分)已知函数()(01)x f x ab b b =>≠且的图象经过点A (0,1)和B (11,2).(1)求函数()f x 的解析式;(2)若函数2()2x x x ϕ=-,求函数(())f x ϕ的值域.18.(本题满分12分)在ABC ∆中,角A 、B 、C 所对的边 分别为a 、b 、c ,且()2cos sin()22A A f A π=-22sin cos 22A A+-. (1)求函数()f A 的最大值;(2)若()0f A =,512C π=,a =b 的值.19.(本题满分12分) 已知正项数列{}n a 的首项11a =,函数()12xf x x=+. (1)若数列{}n a 满足1()(1,)n n a f a n n N ++=≥∈,证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)若数列{}n b 满足21nn a b n =+,求数列{}n b 的前n项和n S .20.(本题满分10分)为了对某课题进行研究,用分层抽样的方法从三所高校A,B,C的相关(1)求x,y;(2)若从高校B,C抽取的人中选2人作专题发言,求这2人均来自高校C的概率.21.(本题满分10分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为了鼓励销售商多订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件就降低0.02元,但实际出厂价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂价恰降为51元?(2)设一次订购量为x个,零件的实际出厂价为p元,写出)x的表达式;p(f(3)当销售商一次订购400个时,该厂的利润是多少元?如果一次订购1000个,该厂的利润又是多少元?22.(本题满分14分)在直角坐标系中,以原点O 为圆心,以r 为半径的圆与直线:3x -y +4=0相切.(1) 求圆O 的方程;(2) 圆O 与x 轴相交于A 、B 两点(B 在A 右侧),动点P 满足|P A |+|PB |=4r ,求动点P 的轨迹方程;(3) 过点B 有一条直线l ,l 与直线3x -y +4=0平行,且l 与动点P 的轨迹相交于C 、D 两点,求△OCD 的面积.23.选做题(本题只能从下列四个备选题中选做两题,若多做,则以前两题计分!) 23—1.(本题满分8分)(1)将十进制数83化成二进制: ; (2)化简:ABC AB ABC ++= .23—2.(本题满分8分)如图给出的是计算201614121+⋅⋅⋅+++的值的一个程序框图. (1)其中①处不完整,此处应选用___ _框;A .B .C .D .(2)判断框②内应填入的条件是 .23—3.(本题满分8分)某工程的工作明细表如下:工作代码紧前工作 工期(天)A 无 1B A 3C 无 5D B 、C 2E D 5 FD2(1)则该工程的关键路径为 ; (2)完成该项工程的最短总工期为 天. 23—4.(本题满分8分)某学习小组期中考试成绩分析图表如下:人 数23-2题①②(1)则该小组英语在70分及以上的人数是;(2)若60分及60分以上为及格,则高等数学的及格率是 .。
2015年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)
更多优质资料请关注公众号:诗酒叙华年2015年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)一、填空题:本大题共14个小题,每小题5分,共70分.1.已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A Y 中元素的个数为_______. 【答案】5 【解析】试题分析:{123}{245}{12345}5A B ==U U ,,,,,,,,,个元素 考点:集合运算2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】6考点:平均数3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______. 5 【解析】试题分析:22|||34|5||5||5z i z z =+=⇒=⇒=考点:复数的模4.根据如图所示的伪代码,可知输出的结果S 为________.【答案】7 【解析】S ←1 I ←1 While I <10 S ←S +2 I ←I +3 End While Print S(第4题图)更多优质资料请关注公众号:诗酒叙华年试题分析:第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7.S = 考点:循环结构流程图5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 【答案】5.6考点:古典概型概率6.已知向量a =)1,2(,b=)2,1(-, 若m a +n b =)8,9(-(R n m ∈,), n m -的值为______. 【答案】3- 【解析】试题分析:由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 考点:向量相等 7.不等式224x x-<的解集为________.【答案】(1,2).- 【解析】试题分析:由题意得:2212x x x -<⇒-<<,解集为(1,2).- 考点:解指数不等式与一元二次不等式 8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3 【解析】试题分析:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 考点:两角差正切公式9. 现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2015年普通高校对口单招文化统考
数 学 试 卷
一、单项选择题(本大题共10小题,每小题4分,共40分.)
1.已知集合{1,1,2}M =-,2{1,3}N a a =++,若{2}M N ⋂=,则实数a =( ) A 、0 B 、1 C 、2 D 、3
2.设复数z 满足1iz i =-,则z 的模等于( ) A 、1
B
C 、2
D
3.函数()sin(2)4f x x π
=-
在区间[0,]2
π
上的最小值是( )
A
、
B 、12-
C 、12 D
4.有3名女生和5名男生,排成一排,其中3名女生排在一起的所有排法是( )
A 、2880
B 、3600
C 、4320
D 、720
5.若1sin()2αβ+=
,1sin()3αβ-=则
tan tan β
α=
( ) A 、
32 B 、23
C 、35
D 、15
6.已知函数1
()1(01)x f x a a a -=+>≠且的图象恒过定点P ,
且P 在直线0=+-n y mx 上,则m n +的值等于( )
A 、1-
B 、2
C 、1
D 、3
7.若正方体的棱长为2,则它的外接球的半径为( ) A
、
2 B
、 C
D
8.函数2log 01)
()11)2x x x f x x <≤⎧⎪
=⎨⎛⎫>⎪⎪⎝⎭
⎩,(,(的值域是( )
A 、1(,)
2-∞ B 、1(,)2+∞ C 、⎢⎣⎡⎪⎭
⎫
210, D 、(,0)-∞
9.已知过点P (2,2)的直线与圆22(1)5x y -+=相切,且与直线10ax y -+=垂直,则
a 的值是( )
A 、12-
B 、2-
C 、1
2
D 、2
10.已知函数()lg f x x =,若0a b <<且()()f a f b =,则2a b +的最小值是( )
A
B
、
C
、
D
、
二、填空题(本大题共5小题,每小题4分,共20分) 11.逻辑式ABC ABC AB A +++= 。
12.题12图是一个程序框图,则输出的值是 。
13. 题13表给出了某项工程的工作明细表,则完成此项工程所需总工期的天数是_________。
题12图
14.某班级从甲、乙、丙三名同学中选一名代表在开学典礼上发言,全班同学都参加了投票,得票情况统计如题14表及题14图,则同学乙得票数为 。
题14表 题14图
15.在平面直角坐标系xoy 中,已知ABC ∆的两个顶点为A (-4,0)和C (4,0),第三个
顶点B 在椭圆
22
1259
x y +=上,则sin sin sin B A C =+ 。
三、解答题(本大题共8小题,共90分)
16.(8分)设函数()f x 是定义在实数集R 上的奇函数,且当0x ≥时
12()3(1)x f x x m +=+-+。
(1)求实数m 的范围;
(2)求2
30x x m -+<不等式的解集。
17.(10分)已知函数()log (0,1)a f x k x a a =+>≠的图象过点(8,2)A 和点(1,1)B -。
(1)求常数k a 和的值;
(2)求1
11(3)(5)(7)()()()357
f f f f f f +++++的值。
18.(12分)在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足222()AB AC a b c =-+。
(1)求角A 的大小;
(2)若a =ABC ∆的面积为b 和c 的值。
19.(12分)盒中共装有9张各写一个字母的卡片,其中4张卡片上的字母是x ,3张卡片上的字母是y ,2张卡片上的字母是z ,现从盒中任取3张卡片,求下列事件的概率。
(1)A ={3张卡片上的字母完全相同}; (2)B ={3张卡片上的字母互不相同}; (3)C ={3张卡片上的字母不完全相同}。
20.(12分)已知数列{}n a 的前n 项和为n S ,11a =,且满足121()n n a S n N ++-=∈。
(1)求数列{}n a 的通项公式;
(2)设31log n n b a +=,求数列{}n b 的前n 项和n T ; (3)设1
2n n
c T =
,求数列{}n c 的前100项和100R 。
21.(10分)某职校毕业生小李一次性支出72万元购厂创业,同年另需投入其它经费12万元,以后每年比上一年多投入4万元,假设每年的销售收入都是50万元,用()f n 表示前n 年的总利润。
(注:()f n =前n 年的总收入-前n 年的其它经费支出-购厂支出)。
(1)问:小李最短需要多长时间才能收回成本;
(2)若干年后,为转型升级,进行二次创业。
现有如下两种处理方案:
方案一,年平均利润最大时,以48万元出售该厂;
方案二,纯利润总和最大时,以15万元出售该厂。
问,采取哪种方案更好? 22.(12分)某学校租用车辆接送188名师生参观爱国主义教育基地,若租车公司现有6辆中巴和8辆大巴可用。
每辆中巴可载客18人,大巴40人。
已知租用一辆中巴的费用为110元,大巴250元,问学校应租用中巴、大巴各多少辆,才能使费用最少?最少费用是多少元?
23.(14分)在平面直角坐标系xoy 中,已知椭圆E :22
221x y a b +=(0)a b >>的离心率
e =
,过右焦点()0,c F ,且垂直于x 轴的直线被椭圆E 截得弦长为,设直线(0)y t t =>与椭圆E 交于不同的两点A 、B ,以线段AB 为直径作圆M 。
(1)求椭圆E 的标准方程;
(2)若圆M 与x 轴相切,求圆M 的方程;
(3)过点P 作圆M 的弦,求最短弦的长。
江苏省2015年普通高校对口单招文化统考
数 学答案
1.B
2.D
3.A
4.C
5.D
6.B
7.C
8.A
9.D 10.B
11.1 12.2111 13.36 14.22
15.45
16.答:(1)m =-4,(2)(1,4)- 17.答:(1)1,2k a =-=,(2)6-
18.答:(1)2
3
A π=
,(2)4b c == 19.答(1)33
433
95
()84
C C P A C +==,(2)111432392()7C C C P B C ==,(3)79()1()84P C P A =-= 20.答(1)13n n a -=,(2)(1)2n n n T +=
,(3)100
101
21.解(1)2(1)
()50[124]72240722
n n f n n n n n -=-+
⨯-=-+- ()0218f n n >⇒<<,所以,小李最短需要2年时间才能收回成本。
(2)方案一:年平均利润2()2407236
402()4022616f n n n n n n n
-+-==-+≤-⨯⨯= 当且仅当36
n n
=即6n =时,年平均利润最大为16万元,此时总利润为16648144⨯+=万元;
方案二:22()240722(10)128f n n n n =-+-=--+
当10n =时,纯利润总和最大128万元,此时总利润为12815143+=万元;
因为144>143,所以方案一更好。
22.解:设应租用中巴、大巴分别为,x y 辆,费用为z
则min 110250z x y =+
184018806
08x y x y +≥⎧⎪
≤≤⎨⎪≤≤⎩
当6,2x y ==时,min 1160z =元
23.解:(1)
22
1124
x y += (2)因为点(,)t t 在椭圆上,
所以22
1,124
t t t +==所以圆M
的方程为22(3x y += (3
)因为22332+=<
,所以点P 在圆M 内。
圆M的圆心为M
最短弦过点P且垂直于MP,
弦长===。