普通高校专升本考试高等数学模拟试题及答案

合集下载

高数专升本真题及答案

高数专升本真题及答案

高数专升本真题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个不是周期函数?A. y = sin(x)B. y = x^2C. y = cos(x)D. y = tan(x)2. 函数f(x) = x^3 - 6x^2 + 9x + 2在区间[1, 3]上的最大值是:A. 2B. -1C. 12D. 153. 曲线y = x^3在点(1,1)处的切线斜率是:A. 1B. 2C. 3D. 44. 无穷小量o(x)与x的关系是:A. o(x)/x → 0 当x → ∞B. o(x)/x → 1 当x → ∞C. o(x)/x → ∞ 当x → ∞D. o(x)/x → x 当x → ∞5. 以下哪个级数是收敛的?A. 1 - 1/2 + 1/3 - 1/4 + ...B. 1 + 2 + 3 + 4 + ...C. 1 - 1/2^2 + 1/3^2 - 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...6. 函数f(x) = ln(x)的原函数是:A. x^2B. e^xC. x ln(x)D. x7. 已知函数f(x) = 3x^2 + 2x - 1,求f'(1)的值是:A. 7B. 5C. 3D. 18. 以下哪个选项是微分方程dy/dx + 2y = 6x的解?A. y = 3x^2 + CB. y = 2x + CC. y = x^2 + CD. y = 3x + C9. 曲线y = x^2在点(1,1)处的法向量是:A. (1, -1)B. (1, 1)C. (-1, 1)D. (-1, -1)10. 以下哪个选项是二阶偏导数的连续性条件?A. fxx = fyyB. fxx + fyy = 0C. fxx - fyy = 0D. fxx * fyy = 1二、填空题(每空2分,共20分)11. 若函数f(x) = 2x^3 - 5x^2 + 3x + 1,则f'(x) =____________。

高等数学 专升本考试 模拟题及答案

高等数学 专升本考试 模拟题及答案

高等数学(专升本)-学习指南一、选择题1.函数2222ln 24z xyxy 的定义域为【D 】A .222xyB .224x yC .222x yD .2224xy解:z 的定义域为:420402222222yxyxy x ,故而选D 。

2.设)(x f 在0x x 处间断,则有【D 】A .)(x f 在0x x 处一定没有意义;B .)0()0(0xf x f ; (即)(lim )(lim 0x f x f x x xx );C .)(lim 0x f x x 不存在,或)(lim 0x f xx ;D .若)(x f 在0x x 处有定义,则0x x时,)()(0x f x f 不是无穷小3.极限2222123lim n n nnnn【B 】A .14B .12C .1 D. 0解:有题意,设通项为:222212112121122n Sn nnnn nnn n n原极限等价于:22212111lim lim222nnn nnnn4.设2tan y x ,则dy【A 】A .22tan sec x xdxB .22sin cos x xdx C .22sec tan x xdx D.22cos sin x xdx解:对原式关于x 求导,并用导数乘以dx 项即可,注意三角函数求导规则。

22'tan tan 2tan 2tan sec y x d x xdxx x 所以,22tan sec dy x x dx,即22tan sec dyx xdx5.函数2(2)yx 在区间[0,4]上极小值是【D 】A .-1B .1 C.2D .0解:对y 关于x 求一阶导,并令其为0,得到220x ;解得x 有驻点:x=2,代入原方程验证0为其极小值点。

6.对于函数,f x y 的每一个驻点00,x y ,令00,xx A f x y ,00,xy B f x y ,00,yy Cf x y ,若20ACB,则函数【C 】A .有极大值B .有极小值C .没有极值D .不定7.多元函数,f x y 在点00,x y 处关于y 的偏导数00,y f x y 【C 】A .000,,limx f x x y f x y xB.000,,limx f x x y y f x y xC .00000,,limy f x y y f x y yD.0000,,limy f x x y yf x y y8.向量a 与向量b 平行,则条件:其向量积0a b 是【B 】A .充分非必要条件B .充分且必要条件C .必要非充分条件 D .既非充分又非必要条件9.向量a 、b 垂直,则条件:向量a 、b 的数量积0a b 是【B 】A .充分非必要条件B .充分且必要条件C .必要非充分条件 D .既非充分又非必要条件10.已知向量a 、b 、c 两两相互垂直,且1a ,2b ,3c ,求a b a b【C 】A .1 B.2 C .4 D.8解:因为向量a 与b 垂直,所以sin ,1a b ,故而有:22sin ,22114a a ba ba a -a b+b a -b b b ab a b 11.下列函数中,不是基本初等函数的是【B 】A .1xyeB .2ln yxC .sin cos x yxD .35yx解:因为2ln x y 是由u yln ,2x u复合组成的,所以它不是基本初等函数。

2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案一、选择题(每小题5分,共25分)1. 下列函数中,是奇函数的是()A. y = x^3B. y = x^2C. y = x^4D. y = x^2 + 12. 下列数列中,是等差数列的是()A. 1, 3, 5, 7,B. 1, 2, 4, 8,C. 1, 3, 9, 27,D. 1, 2, 3, 4,3. 下列不等式中,正确的是()A. 2x + 3 > 5x 1B. 3x 4 < 2x + 5C. 4x + 7 > 5x 2D. 5x 3 < 4x + 14. 下列立体图形中,是圆柱的是()A. 圆锥B. 球体C. 长方体D. 圆柱5. 下列积分中,正确的是()A. ∫(x^2 + 1)dx = (1/3)x^3 + x + CB. ∫(x^3 + 1)dx = (1/4)x^4 + x + CC. ∫(x^4 + 1)dx = (1/5)x^5 + x + CD. ∫(x^5 + 1)dx = (1/6)x^6 + x + C二、填空题(每小题5分,共25分)1. 函数y = x^2 4x + 3的顶点坐标是______。

2. 等差数列1, 3, 5, 7, 的前10项和是______。

3. 不等式3x 4 < 2x + 5的解集是______。

4. 圆柱的体积公式是______。

5. 积分∫(x^3 + 1)dx的值是______。

三、解答题(每小题10分,共50分)1. 解方程组:\[\begin{align}2x + 3y &= 8 \\4x 5y &= 10\end{align}\]2. 求函数y = x^3 6x^2 + 9x 1的极值。

3. 求证:等差数列1, 3, 5, 7, 的前n项和是n(n + 1)/2。

4. 求圆柱的表面积。

5. 计算积分∫(x^4 + 1)dx。

四、证明题(每小题10分,共20分)1. 证明:对于任意实数x,都有x^2 ≥ 0。

专升本高等数学(含答案)

专升本高等数学(含答案)

高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。

A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。

2024浙江专升本高数模拟卷2

2024浙江专升本高数模拟卷2

2024浙江•专升本高数•模拟卷2考试时间: 120分钟 班次: ____________姓名:___________一、单选题 (共5小题20分)1.x =0是f(x)={e x +1x <0,2x =0ln(1+x)x >0的( )A.可去间断点B.跳跃间断点C.连续点D.无穷间断点2.设a 1=x(cos √x −1),a 2=√xln(1+√x 3),a 3=√x +13−1, 当x →0+时,以上3个无穷小量按照从低阶到高阶的排序是( ) A.a 1,a 2,a 3 B.a 2,a 3,a 1 C.a 2,a 1,a 3D.a 3,a 2,a 13.设f(x)在(−∞,+∞)连续,下列说法正确的是( ) A.dd x [∫f(x)d x]=f(x)+C,C 为任意常数B.若f(x)在[a,b]上连续, 则f(x)在(a,b)上必有最大值和最小值C.对任意常数a,b , 总有∫a bf(x)d x =∫a bf(a +b −x)d x 成立 D.若f(x)为偶函数, 则f(x)的原函数一定是奇函数4.级数∑n=1∞(−1)n (1−cos βn )(β为常数且大于0)( )A.发散B.条件收敛C.绝对收玫D.收敛性与β有关5.设P =∫−1212cos 2x ∙ln 1−x1+x d x,N =∫−1212[cosx 2+ln 1−x1+x ]d x,M =∫−1212[xsin 2x −cos 2x ]d x , 则有( ) A.N <P <M B.M <P <N C.N <M <PD.P <M <N二、填空题 (共10小题40分)6.已知函数f(x)={x,x <0,0,x =0e x −2,x >0,则f[f(1)]=________.7.lim x→+∞x 3+x 2+12x+x 3sinx =_______ . 8.函数f(x)=13x 3−3x 2+9x 在区间[0,4]上的最大值为________.9.设y =f(x)由方程xy +2lnx =y 4确定,则曲线y =f(x)在点(1,1)处的切线方程为_______.10.极限lim n→∞1n (ln 2πn +ln 22πn +⋯+ln 2nπn )用定积分表示为________.11.lim x→0+(sinx x )11−cosx =_______.12.已知f(x)在x =1处可导, 且limΔx→0f(1+2Δx)−f(1)4Δx =2, 则f ′(1)=________.13.已知y =cos (x +lnx 2), 则d y =_______.14.设函数f(x)在(−∞,+∞)上连续, 且∫01f(x)d x =3, 则∫0π2cosxf(sinx)d x=__________.15.位于曲线y =1x (1+ln 2x )(e ⩽x <+∞)下方以及x 轴上方的无界区域的面积为_________.三、计算题 (共8小题60分)16.求极限limx→0e x2−e 2−2cosx x 4. 17.设f(x)={x1+e 1x,x ≠0,0,x =0,判断f(x)在x =0处的连续性与可导性.18.设y =(2x+3)4∙√x−6√x+13, 求y ′.19.求∫xtan 2x d x .20.∫−11(sin 3x +x 2)e −|x|d x . 21.一平面经过直线l:x+53=y−21=z4,且垂直于平面x +y −z +15=0, 求该平面的方程.22.求xy ′−y =2023x 2满足y |x=1=2024的特解.23.已知定义在(−∞,0)∪(0,+∞)上的可导函数f(x)满足方程f(x)−4x∫1xf(t)d t =x 2,试求: 该函数的单调区间、极值. 四、综合题 (共3小题20分)24.求∑n=1∞(−1)n−1n(2n−1)x2n 的收敛区间及其和函数. 25.设直线y =ax(0<a <1)与拋物线y =x 2围成图形D 1面积记作A 1;由直线y =ax(0<a <1)、抛物线y =x 2及直线x =1围成图形D 2面积记作A 2.26.设函数f(x)在[0,2]连续,(0,2)可导, 且f(0)=0,∫02f(x)d x =2, 试证明: 至少存在ξ∈(0,2), 使得f ′(ξ)=f(ξ)−ξ+1.。

最新专升本考试高等数学模拟题10套(含答案解析)

最新专升本考试高等数学模拟题10套(含答案解析)

1
1.若 f x
1 ex
1
,则 x 0 是 f x 的(
1
x 3n
10.幂级数
的收敛域为
n1 n
。 。
4 1y4
11.交换二次积分的积分次序 dy 2 f x, ydx = 0 4 y
y 12.函数 z ln 在点(2,2)处的全微分 dz =
x
三、计算题(本大题共 8 小题,每小题 8 分,满分 64 分)
sin x sin(sin x)
1 x , y , x 2及x 轴所围成的平面区域。
x
D
yx
20.求微分方程 y y 2x 1满足 lim 1的特解。 x0 x
四、证明题(本大题共 2 小题,每小题 9 分,共 18 分)
21.证明:当 x 0 时, ex x 2 cos x 。
2 x2
1
cos
x
x0
22.设函数
(1)求常数 k 的值,使 D1 与 D2 的面积相等; (2)当 D1 与 D2 的面积相等时,求 D1 绕 y 轴旋转一周所成的旋转体体积Vy 和 D2 绕 x 轴旋
转一周所成的旋转体体积Vx 。
全真模拟测试卷2
一、选择题(本大题共 6 小题,每小题 4 分,共 24 分。在每小题给出的四个选项中,只
ln1 x2
x0
2.设 f (x) x
,其中 (x) 是有界函数,则f (x)在x =0处( )。
x2x x 0
A.极限不存在 B.极限存在但不连续 C.连续但不可导 D.可导
3.设 f x 的导数为 ex ,且 f (0) 0 ,则 f xdx =( )。
A. ex x C B. ex x C C. ex x C D. ex x C

专升本高数考试题及答案

专升本高数考试题及答案

专升本高数考试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2+3x+2的导数是()A. 2x+3B. x^2+3C. 2x+6D. 2x2. 极限lim(x→0) (sin(x)/x)的值是()A. 0B. 1C. 2D. 33. 以下哪个选项是无穷小量()A. 1/xB. x^2C. sin(x)/xD. x^34. 曲线y=x^3在点(1,1)处的切线斜率是()A. 3B. 1C. 3/2D. 1/35. 定积分∫(0 to 1) x dx的值是()A. 1/2B. 1C. 2D. 0二、填空题(每题4分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的极值点是______。

2. 函数f(x)=e^x的不定积分是______。

3. 函数y=ln(x)的导数是______。

4. 函数y=x^2-4x+4的最小值是______。

5. 曲线y=x^2在点(2,4)处的法线方程是______。

三、解答题(每题10分,共60分)1. 计算极限lim(x→2) (x^2-4)/(x-2)。

2. 求函数f(x)=x^3-3x+1在区间[-1,2]上的最大值和最小值。

3. 计算定积分∫(0 to 2) (2x+3) dx。

4. 求曲线y=x^3-6x^2+9x+1在点(1,4)处的切线方程。

5. 计算二重积分∬(D) xy dA,其中D是由x=0, y=0, x=2, y=2x围成的区域。

6. 解微分方程dy/dx=2x+y。

四、附加题(每题10分,共10分)1. 证明:如果函数f(x)在区间[a,b]上连续,并且f(a)f(b)<0,则至少存在一个c∈(a,b),使得f(c)=0。

答案:一、选择题1. A2. B3. C4. A5. A二、填空题1. x=1, x=22. e^x+C3. 1/x4. 05. x+2y-8=0三、解答题1. 极限lim(x→2) (x^2-4)/(x-2) = 42. 最大值f(2)=3,最小值f(-1)=-53. 定积分∫(0 to 2) (2x+3) dx = 84. 切线方程:y-4=12(x-1),即y=12x-85. 二重积分∬(D) xy dA = 46. 解微分方程dy/dx=2x+y,得到y=e^(-2x)(C-1)+1四、附加题1. 证明略。

专升本高数试题及答案

专升本高数试题及答案

专升本高数试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x)=x^2-6x+8,求f(3)的值。

A. 1B. 5C. 9D. 11答案:C2. 计算定积分∫(0,2) (x^2-3x+2)dx的值。

A. 2B. 4C. 6D. 8答案:B3. 设函数f(x)=x^3-3x+1,求f'(x)。

A. 3x^2-3B. x^2-3C. 3x^2-1D. x^2+3答案:A4. 求极限lim(x→0) [sin(x)/x]。

A. 0B. 1C. -1D. ∞答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=x^2-4x+c,若f(1)=0,则c的值为______。

答案:32. 已知等比数列的前三项分别为2,4,8,则该数列的公比q为______。

答案:23. 设函数f(x)=ln(x),求f'(x)=______。

答案:1/x4. 计算级数1+2+3+...+100的和为______。

答案:5050三、解答题(每题15分,共30分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。

答案:首先求导数f'(x)=3x^2-12x+11。

令f'(x)=0,解得x=1或x=11/3。

检查二阶导数f''(x)=6x-12。

当x=1时,f''(1)<0,说明x=1是极大值点。

当x=11/3时,f''(11/3)>0,说明x=11/3是极小值点。

2. 计算定积分∫(0,1) x^2 dx。

答案:∫(0,1) x^2 dx = [x^3/3](0,1) = 1/3。

四、证明题(每题10分,共20分)1. 证明:若x>0,y>0,则x+y≥2√(xy)。

答案:证明:(x+y)^2 = x^2 + 2xy + y^2 ≥ 4xy(因为x^2 + y^2 ≥ 2xy)。

所以,x+y ≥ 2√(xy)。

2024年专升本高数试题

2024年专升本高数试题

2024年专升本高数试题一、下列关于函数极限的说法,正确的是:A. 若函数在某点的左右极限相等,则该点处函数极限存在B. 无穷大是函数极限的一种,表示函数值可以无限增大或减小C. 有界函数的极限一定存在D. 函数在某点极限存在,则该函数在该点一定连续(答案:B)二、设函数f(x) = x2 - 3x + 2,则f(x)在区间[1,3]上的最小值为:A. -1B. 0C. 2D. 5(答案:B)三、下列关于导数的说法,错误的是:A. 导数描述了函数值随自变量变化的速率B. 常数的导数为0C. 函数的导数在其定义域内一定连续D. 直线斜率的数学表达就是导数(答案:C)四、设f(x) = ex,则f'(x) =A. exB. xexC. e(x+1)D. 1(答案:A)五、下列关于定积分的说法,正确的是:A. 定积分是函数在某一区间上所有函数值的和B. 定积分的值与积分变量的选取无关C. 定积分可以看作是由无穷多个小矩形面积的和逼近得到的D. 定积分只能用于计算面积(答案:C)六、设函数f(x) = x3 - x2,则f(x)在x=1处的切线斜率为:A. 1B. 2C. 3D. 0(答案:B)七、下列关于微分方程的说法,错误的是:A. 微分方程是含有未知函数及其导数的方程B. 微分方程的解是满足方程的函数C. 微分方程的阶数指的是方程中最高阶导数的阶数D. 所有微分方程都有唯一解(答案:D)八、设函数f(x) = sin(x) + cos(x),则f'(x) =A. sin(x) - cos(x)B. cos(x) - sin(x)C. -sin(x) + cos(x)D. sin(x) + cos(x)(答案:B)。

数学专升本考试试题(含答案解析)

数学专升本考试试题(含答案解析)

数学专升本考试试题(含答案解析)一、选择题(每题2分,共20分)1. 若函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值为M,最小值为m,则Mm的值为()A. 2B. 4C. 6D. 8答案:C解析:函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值和最小值分别为f(1)和f(3),计算可得M = f(1) = 0,m = f(3) = 0,所以Mm = 00 = 0,故选C。

2. 若等差数列{an}的前n项和为Sn,且S5 = 25,则数列{an}的公差d为()A. 2B. 3C. 4D. 5答案:A解析:等差数列的前n项和公式为Sn = n/2 (a1 + an),代入S5 = 25,得到5/2 (a1 + a5) = 25,又因为a5 = a1 + 4d,所以5/2 (a1 + a1 + 4d) = 25,化简得到a1 + 2d = 5。

又因为S5 =5/2 (a1 + a5) = 5/2 (2a1 + 4d) = 5(a1 + 2d),代入S5 = 25,得到5(a1 + 2d) = 25,解得a1 + 2d = 5。

联立两个方程,得到d = 2,故选A。

3. 若圆x^2 + y^2 = 1上的点到原点的距离为r,则r的取值范围是()A. 0 < r < 1B. 0 ≤ r ≤ 1C. r > 1D. r ≥ 1答案:B解析:圆x^2 + y^2 = 1上的点到原点的距离为r,即r^2 = x^2 + y^2,因为x^2 + y^2 = 1,所以r^2 = 1,即0 ≤ r ≤ 1,故选B。

4. 若函数f(x) = ax^2 + bx + c在x = 1时的导数为2,则b的值为()A. 2B. 3C. 4D. 5答案:A解析:函数f(x) = ax^2 + bx + c在x = 1时的导数为2,即f'(1) = 2,计算f'(x) = 2ax + b,代入x = 1,得到f'(1) = 2a +b = 2,解得b = 2 2a,故选A。

湖北省专升本(高等数学)模拟试卷13(题后含答案及解析)

湖北省专升本(高等数学)模拟试卷13(题后含答案及解析)

湖北省专升本(高等数学)模拟试卷13(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数y=arcsin的定义域为( )A.[-1,1]B.[0,1]C.(-∞,1]D.[-2,1]正确答案:B解析:要使函数有意义,须,求解得:0≤x≤1,选项B正确.2.函数f(x)=2-xcosx在[0,+∞)内是( )A.偶函数B.单调函数C.有界函数D.奇函数正确答案:C解析:因f(-x)=2xcosx≠f(x),也不等于-f(x),即f(x)非奇非偶,选项A、D错误;事实上,x≥0时,0<2-x≤1,而cosx处处有界,进而2-xcosx是x ≥0区间内的有界函数,选项C正确.又f’(x)=2-x.(-1)ln2.cosx+2-x.(-sinx)=-2-x(ln2.cosx+sinx),在x≥0的区间内,f’(x)有正、有负,进而f(x)无一致的单调性.3.当x→0时,x-arctanx是x2的( )A.高阶无穷小B.低阶无穷小C.等价无穷小D.同阶无穷小,但非等价无穷小正确答案:A解析:因所以x→0时,x-arctanx是比x2高阶无穷小,选项A正确.4.对于函数y=,下列结论正确的是( )A.x=-1是第一类间断点,x=1是第二类间断点;B.x=-1是第二类间断点,x=1是第一类间断点;C.x=-1是第一类间断点,x=1是第一类间断点;D.x=-1是第二类间断点,x=1是第二类间断点;正确答案:C解析:首先肯定,x=±1皆为函数的间断点,因此两点处函数皆无定义.又x→1时,y→0,所以x=-1是函数的第一类间断点;又x→1+时,y→-π;x →1-时,y→π;故x=1也为函数的第一类间断点.故选项C正确.5.设f(x)在x=1处可导,且f’(1)=1,则= ( )A.B.1C.2D.4正确答案:A解析:因f’(1)=1.所以6.函数y=x4-4x上切线平行于x轴的点为( )A.(0,0)B.(1,1)C.(1,-3)D.(2,8)正确答案:C解析:令y’=4x3-4=0,得x=1,于是所求的点为(1,f(1)),即(1,-3).7.设f(u)可导,且y=f(ex),则dy= ( )A.f’(ex)dxB.f’(ex).exdxC.f’(ex)D.f(ex)dx正确答案:B解析:因y=f(ex),故dy=f’(ex).exdx,选项B正确.8.设f(x)=ln(x+1)在[0,1]上满足拉格朗日中值定理的条件,则定理结论中的ξ=( )A.ln2B.ln2-1C.D.正确答案:C解析:因定理结论为:f(b)-f(a)=f’(ξ)(b-a),(a<ξ<b)所以,对已知的函数及区间,应有:ln2-lnl=(1-0),进而ξ=-1;选项C正确.9.函数u=x+在[-5,1]上的最大值为( )A.B.C.D.正确答案:B解析:因y’=1-,于是得y’=0,得驻点x=,又有不可导点:x=1.进而计算点x=,x=1,x=-5处的函数值有:;f(1)=1,f(-5)=-5+,故函数在[-5,1]上的最大值为,选项B正确.10.函数f(x)=x-极值点的个数是( )A.1B.2C.3D.4正确答案:B解析:因f’(x)=,于是,f(x)有驻点x=1;有不可导点x=0.对于点x=0:当-∞<x<0,f’(x)>0;0<x<1时f’(x)<0,故x=0为f(x)的一个极大值点;f’’(x)>0,故x=1为f(x)的一个极小值点.对于点x=1:当0<x<1时,f’(x)<0;x>1时综上所述,故f(x)的极值点有2个.11.设∫f(x)dx=x2e2x+C,则f(x)= ( )A.2xe2xB.2x2e2xC.2x(1+x)e2xD.正确答案:C解析:由不定积分的概念知,f(x)=(x2.e2x+C)=2x.e2x+x2.e2x.2=2x(1+x)e2x,选项C正确.12.设f(x)=e-x,则= ( )A.+CB.-lnx+CC.+CD.lnx+C正确答案:C解析:因=∫f’(lnx)d(lnx)=f(lnx)+C,又f(x)=e-x,故=e-lnx+C++C,故选项C正确.13.= ( )A.arctanxB.C.arctanb-arctanaD.0正确答案:D解析:因为定积分∫abarctanxdx是一常数,所以其导数为0,选项D正确.14.设f(x)连续,F(x)=f(t2)dt,则F’(x)= ( )A.f(x4)B.x2f(x4)C.2xf(x4)D.2xf(x2)正确答案:C解析:F’(x)=f(x4).(x2)’=2xf(x4),故选项C正确.15.下列式子正确的是( )A.∫12lnxdx>∫12(lnx)2dxB.∫12lnxdx=∫34lnxdxC.∫34lnxdx>∫34(lnx)2dxD.∫12(lnx)2dx=∫34(lnx)dx正确答案:A解析:因当1<x<2时,0<lnx<1,进而,lnx>ln2x,于是由定积分的不等性有:∫12lnxdx>∫12ln2xdx,故选项A正确;而当3<x<4时,1<lnx<2,进而,lnx<ln2x,于是∫34lnxdx<∫34ln2xdx,选项C错误;而对于B选项,由于lnx为递增函数,且1<x<2时,0<lnx<1;3<x<4时,1<lnx<2,故∫12lnxdx<∫34lnxdx,所以B错误;D选项也错误,因∫12ln2xdx<∫12lnxdx<∫34lnxdx.16.设,则∫01f(x)dx= ( )A.B.1-ln2C.1D.ln2正确答案:D解析:因,从而,∫01f(x)dx==ln(1+x)|01=ln2.选项D正确.17.空间直线与平面4x+3y+3z+1=0的位置关系是( )A.互相垂直B.互相平行C.不平行也不垂直D.直线在平面上正确答案:B解析:因空间直线的方向向量s={3,1,-5};而平面4x+3y+3z+1=0的法向量n={4,3,3},于是s.n=3×4+1×3+(-5)×3=0,从而,s⊥n;又取直线上的点(-2,2,-1),代入平面方程验证可知,点(-2,2,-1)不在已知的平面内,故直线与平面平行,而不在平面内.选项B正确.18.方程z=x2+y2表示的二次曲面是( )A.椭球面B.柱面C.圆锥面D.抛物面正确答案:D解析:该曲面z=x2+y2可看做曲线绕z轴旋转形成的旋转抛物面.19.已知z=,n∈N+,则= ( )A.1B.nC.D.以上都不对正确答案:C解析:20.设z=exy,则dz= ( )A.exy(xdx+ydy)B.exy(xdx-ydy)C.exy(ydx+xdy)D.exy(ydx-xdy)正确答案:C解析:因z=exy,故dz=exy(ydx+xdy),选项C正确.21.设I=,交换积分次序后,I= ( )A.B.C.D.正确答案:A解析:因积分区域d为:,如图所示.区域D又可表示为:,故积分I交换积分次序后为I=∫04dy f(x,y)dx,选项A正确.22.二次积分∫01dx∫01ex+ydy= ( )A.e-1B.2(e-1)C.(e-1)2D.e2正确答案:C解析:∫01dx∫01ex+ydz=∫01exdx∫01eydy=(e-1)2.23.积分区域D为x2+y2≤1,则xdxdy= ( )A.0B.1C.D.正确答案:A解析:积分区域D:x2+y2≤1可用极坐标表示为:从而=0,选项A正确.24.设L为抛物线y=x2上从点A(0,0)到点B(2,4)的一段弧,则∫L(x-2xy2)dx+(y-2x2y)dy= ( )A.54B.-54C.45D.-45正确答案:B解析:将路径L的方程代入曲线积分的被积表达式中计算∫L(x-2xy2)dx+(y-2x2y)dy=∫02[(x-2x5)+2(x2-2x4)x]dx =∫02(x+2x3-6x5)dx==-54.25.下利级数中,收敛的是( )A.B.C.D.正确答案:C解析:对于选项A:un=,显然,于是级数具有相同的敛散性;而是p-级数,发散,故A选项中的级数发散;对于选项B:,故级数发散;对于选项C:,即选项C中的级数是公比大于0小于1的等比级数,收敛;对于选项D:,故级数发散.仅选项C正确.26.下列级数中,绝对收敛的是( )A.B.C.D.正确答案:A解析:对于选项A:其绝对值级数为,这是p=>1的p-级数,故收敛,即原级数绝对收敛,选项A为正确选项.对于选项B:un=,显然,un0,(n→∞),故该级数发散;对于选项C:其绝对值级数为,因发散,故绝对值级数也发散,即原级数不绝对收敛;对于选项D:其绝对值级数为,这是p=<1的p-级数,发散,即原级数不绝对收敛.27.幂级数的收敛区域为( )A.(0,2)B.(0,2]C.[0;2)D.[0,2]正确答案:D解析:这四个选项中,区间端点相同,故只须验证级数在区间端点是否收敛即可得答案.对于x=0,对应的数项级数为:,这是绝对收敛的级数,即幂级数在x=0处收敛;对于x=2,对应的数项级数为:,这是绝对收敛的级数,即幂级数在x=0处收敛;对于x=2,对应的数项级数为:,这是p=2>1的p-级数,收敛,故收敛域为闭区间[0,2],选项D正确.28.下列微分方程中,为一阶线性方程的是( )A.y’’=exB.y’+x2y=cosxC.y’=xeyD.yy’=x正确答案:B解析:选项A中的方程是二阶微分方程,不合要求;选项B中的方程,是一阶微分方程且x2y皆为一次的表达式,该方程符合要求;选项C中的方程中,含y的指数运算,不是线性运算,不合要求;选项D中,含yy’项,不是线性.29.微分方程yy’=x2满足初始条件y|x=0的特解为( )A.B.C.D.正确答案:A解析:原方程可化为:(y2)’=x2,于是方程的通解为:,将初始条件y|x=0=2代入通解中,得C=2,故特解为:.选项A正确.30.微分方程y’’+2y’+y=0的通解为( )A.y=Ce-xB.y=C1e-x+C2C.y=(C1+C2x)D.y=e-x(C1+C2x)正确答案:D解析:因微分方程的特征方程为:r2+2r+1=0,于是有特征根:r1.2=-1,故微分方程的通解为:y=(C1+C2x).e-x.选项D正确.填空题31.极限=________.正确答案:解析:32.设函数f(x)=在(-∞,+∞)上连续,则a=________.正确答案:-1解析:=1+2a,令1+2a=a,则a=-1,即当a=-1时,f(x)在x=0处连续,进而区间(-∞,+∞)上连续.33.若f(x)=且g(0)=g’(0)=0,则f’(0)=________.正确答案:0解析:f’(0)==0(根据无穷小量与有界变量乘积仍为无穷小量).34.已知函数f(x)=(x-1)(x-2)(x-3)(x-4),则方程f’(x)=0有________个根.正确答案:3解析:函数f(x)在闭区间[1,2]上满足罗尔定理的条件,则至少存在一点ξ1∈(1,2),使f’(ξ1)=0,即方程f’(x)=0在区间(1,2)上至少有一个根,同理f’(x)=0在区间(2,3),(3,4)上分别至少各存在一根,再由于f’(x)为三次多项式,即方程f’(x)=0至多有三个根.综上所述,方程f’(x)=0有三个根分别位于区间(1,2),(2,3),(3,4)内.35.设函数y=y(x)由方程ln(x2+y2)=x3y+sinx确定,则=________.正确答案:1解析:方程两端y对x求导(2x+y’)=3x2y+x3y’+cosx,当x=0时,y=1,代入可得y’|x=0=1.36.不定积分=________.正确答案:ln|sinx+cosx|+C解析:d(sinx+cosx)=ln|sinx+cosx|+C.37.设f(t)dt=x(x>0),f(x)连续,则f(2)=________.正确答案:解析:方程两端对x求导:f(x2+x3).(2x+3x2)=1,取x=1,则f(2)=38.曲线y=xe-x的单调增区间为________,凸区间为________.正确答案:(-∞,1),(-∞,2)解析:因y=xe-x,所以y’=e-x-xee-x=(1-x)e-x,y’’=e-x-(1一x)e-x=(x-2)e-x 令y’>0,得曲线的递增区间为(-∞,1);令y’’<0,得曲线的凸区间为(-∞,2).39.方程表示________.正确答案:两条平行直线解析:由于圆柱面x2+y2=4的母线平行z轴且被一平行z轴的平面y=1去截,显然截痕为两条平行直线。

专升本高数试题及详解答案

专升本高数试题及详解答案

专升本高数试题及详解答案一、选择题(本题共5小题,每小题3分,共15分)1. 下列函数中,不是偶函数的是()。

A. y = x^2B. y = |x|C. y = cos(x)D. y = sin(x)2. 函数f(x) = 2x^3 - 6x^2 + 9x + 5在区间(-∞,+∞)内的最大值是()。

A. 5B. 9C. 12D. 无法确定3. 设曲线y = x^2上点P(-1, 1),则过点P的切线方程为()。

A. y = -2x - 1B. y = -x - 2C. y = x - 2D. y = 2x + 14. 以下哪个级数是收敛的?()A. ∑((-1)^n)/nB. ∑n^2C. ∑(1/n)D. ∑((-1)^(n+1))/n^25. 若函数f(x)在点x=a处连续,则必有()。

A. f(a)存在B. f(a) = 0C. lim(x->a-) f(x) = f(a)D. lim(x->a+) f(x) = f(a)二、填空题(本题共5小题,每小题2分,共10分)1. 若函数f(x) = 3x - 5,则f(2) = _______。

2. 曲线y = x^3在点(1,1)处的切线斜率为 _______。

3. 设数列{an}是等差数列,且a3 = 7,a5 = 13,则该数列的公差d= _______。

4. 若级数∑an收敛,则级数∑(an/2^n) _______(填“收敛”或“发散”)。

5. 利用定积分的几何意义,计算曲边梯形的面积,若y = 2x + 1在[0, 2]上的面积为 _______。

三、解答题(本题共4小题,共75分)1. (15分)求函数f(x) = x^2 - 4x + 3的单调区间,并证明。

2. (15分)设函数f(x) = ln(x + 2),求f(x)的n阶导数f^(n)(x)。

3. (20分)计算定积分∫[0, 4] (2x^2 - 3x + 1) dx,并说明其几何意义。

高等数学模拟试题及答案

高等数学模拟试题及答案

武汉高校网络教化入学考试专升本 高等数学 模拟试题一、单项选择题1、在实数范围内,下列函数中为有界函数的是( b )A.x y e =B.1sin y x =+C.ln y x =D.tan y x =2、函数23()32x f x x x -=-+的间断点是( c )A.1,2,3x x x ===B.3x =C.1,2x x ==D.无间断点3、设()f x 在0x x =处不连续,则()f x 在0x x =处( b )A. 肯定可导B. 必不行导C. 可能可导D. 无极限4、当x →0时,下列变量中为无穷大量的是( D )A.sin x xB.2x -C.sin xxD. 1sin xx+ 5、设函数()||f x x =,则()f x 在0x =处的导数'(0)f = ( d )A.1B.1-C.0D.不存在.6、设0a >,则2(2)d aa f a x x -=⎰( a )A.0()d af x x -⎰ B.0()d af x x ⎰ C.02()d af x x ⎰ D.02()d af x x -⎰7、曲线23x xy e--=的垂直渐近线方程是( d ) A.2x = B.3x = C.2x =或3x = D.不存在8、设()f x 为可导函数,且()()000lim22h f x h f x h→+-=,则0'()f x = ( c ) A. 1 B. 2 C. 4 D.09、微分方程''4'0y y -=的通解是( d )A. 4x y e =B. 4x y e -=C. 4x y Ce =D.412x y C C e =+10、级数1(1)34nn nn ∞=--∑的收敛性结论是( a )A. 发散B. 条件收敛C. 肯定收敛D. 无法判定11、函数()f x =( d )A. [1,)+∞B.(,0]-∞C. (,0][1,)-∞⋃+∞D.[0,1] 12、函数()f x 在x a =处可导,则()f x 在x a =处( d )A.极限不肯定存在B.不肯定连续C.可微D.不肯定可微13、极限1lim(1)sin nn e n →∞-=( c)A.0B.1C.不存在D. ∞ 14、下列变量中,当x →0时与ln(12)x +等价的无穷小量是( )A.sin xB.sin 2xC.2sin xD. 2sin x 15、设函数()f x 可导,则0(2)()limh f x h f x h →+-=( c )A.'()f x -B.1'()2f x C.2'()f x D.016、函数32ln 3x y x +=-的水平渐近线方程是( c )A.2y =B.1y =C.3y =-D.0y =17、定积分0sin d x x π=⎰( c )A.0B.1C.πD.218、已知x y sin =,则高阶导数(100)y 在0x =处的值为( a )A. 0B. 1C. 1-D. 100.19、设()y f x =为连续的偶函数,则定积分()d aa f x x -⎰等于( c )A. )(2x afB.⎰adxx f 0)(2 C.0 D.)()(a f a f --20、微分方程d 1sin d yx x =+满意初始条件(0)2y =的特解是( c )A. cos 1y x x =++B. cos 2y x x =++C. cos 2y x x =-+D. cos 3y x x =-+ 21、当x →∞时,下列函数中有极限的是( C )A.sin xB.1xe C.211x x +- D.arctan x22、设函数2()45f x x kx =++,若(1)()83f x f x x --=+,则常数k 等于 ( a )A.1B.1-C.2D.2-23、若0lim ()x x f x →=∞,lim ()x x g x →=∞,则下列极限成立的是( b )A. lim[()()]ox x f x g x →+=∞B.lim[()()]0x x f x g x →-=C.1lim()()x x f x g x →=∞+ D. 0lim ()()x x f x g x →=∞24、当x →∞时,若21sin x 与1k x 是等价无穷小,则k =( b ) A.2 B.12 C.1 D. 325、函数()f x =[0,3]上满意罗尔定理的ξ是( a )A.0B.3C. 32 D.2 26、设函数()y f x =-, 则'y =( c )A. '()f xB.'()f x -C. '()f x -D.'()f x --27、定积分()d ba f x x⎰是( a )A.一个常数B.()f x 的一个原函数C.一个函数族D.一个非负常数28、已知n axy x e =+,则高阶导数()n y =( c ) A. n ax a e B. !n C. !ax n e + D. !n axn a e +29、若()()f x dx F x c=+⎰,则sin (cos )d xf x x⎰等于( b )A. (sin )F x c +B. (sin )F x c -+C. (cos )F x c +D. (cos )F x c -+ 30、微分方程'3xy y +=的通解是( b )A. 3c y x =- B. 3y c x =+ C. 3c y x =-- D. 3c y x =+31、函数21,y x =+(,0]x ∈-∞的反函数是( c )A. 1,[1,)y x =∈+∞B. 1,[0,)y x =∈+∞C. [1,)y =∈+∞D. [1,)y =∈+∞32、当0x →时,下列函数中为x 的高阶无穷小的是( a )A. 1cos x -B. 2x x + C. sin x33、若函数()f x 在点0x 处可导,则|()|f x 在点0x 处( c )A. 可导B. 不行导C. 连续但未必可导D. 不连续34、当0x x →时, α和(0)β≠都是无穷小. 当0x x →时下列可能不是无穷小的是( d )A. αβ+B. αβ-C. αβ⋅D. αβ35、下列函数中不具有极值点的是( c )A. y x =B. 2y x = C. 3y x = D. 23y x=36、已知()f x 在3x =处的导数值为'(3)2f =, 则0(3)(3)lim2h f h f h →--=( b )A.32B.32-C.1D.1-37、设()f x 是可导函数,则(())f x dx '⎰为( d )A.()f xB. ()f x c +C.()f x 'D.()f x c '+38、若函数()f x 和()g x 在区间(,)a b 内各点的导数相等,则这两个函数在该区间内( d )A.()()f x g x x -=B.相等C.仅相差一个常数D.均为常数二、填空题1、极限20cos d limxx t tx →⎰ =2、已知 102lim()2ax x x e -→-=,则常数 =a . 3、不定积分2d x x e x -⎰= .4、设()y f x =的一个原函数为x ,则微分d(()cos )f x x = .5、设2()d f x x x C x =+⎰,则()f x = . 6、导数12d cos d d x t t x-=⎰ .7、曲线3(1)y x =-的拐点是 .8、由曲线2y x =,24y x =与直线1y =所围成的图形的面积是 . 9、已知曲线()y f x =上任一点切线的斜率为2x 并且曲线经过点(1,2)- 则此曲线的方程为 . 10、已知22(,)f xy x y x y xy +=++,则f f x y∂∂+=∂∂ . 11、设(1)cos f x x x +=+,则(1)f = .12、已知 112lim(1)x x a e x --→∞-=,则常数 =a .13、不定积分2ln d xx x =⎰.14、设()y f x =的一个原函数为sin 2x ,则微分d y = .15、极限022arcsin d limxx t t x →⎰ = .16、导数2d sin d d x a t t x =⎰ .17、设0d xt e t e=⎰,则x = .18、在区间[0,]2π上由曲线cos y x =与直线2x π=,1y =所围成的图形的面是.19、曲线sin y x =在点23x π=处的切线方程为 .20、已知22(,)f x y x y x y -+=-,则f f x y ∂∂-=∂∂ .21、极限01lim ln(1)sinx x x →+⋅ =22、已知 21lim()1axx x e x -→∞-=+,则常数 =a .23、不定积分d x e x =⎰ .24、设()y f x =的一个原函数为tan x ,则微分d y = . 25、若()f x 在[,]a b 上连续,且()d 0baf x x =⎰, 则[()1]d baf x x +=⎰ .26、导数2d sin d d xxt t x =⎰ .27、函数224(1)24x y x x +=++的水平渐近线方程是 . 28、由曲线1y x =与直线y x=2x =所围成的图形的面积是 .29、已知(31)x f x e '-=,则()f x = .30、已知两向量(),2,3a λ→=,()2,4,b μ→=平行,则数量积a b ⋅= .31、极限20lim(1sin )xx x →-=32、已知973250(1)(1)lim 8(1)x x ax x →∞++=+,则常数=a .33、不定积分sin d x x x =⎰.34、设函数sin 2xy e =, 则微分d y = .35、设函数()f x 在实数域内连续, 则0()d ()d xf x x f t t -=⎰⎰ .36、导数2d d d x ta te t x =⎰ .37、曲线22345(3)x x y x -+=+的铅直渐近线的方程为 .38、曲线2y x =与22y x =-所围成的图形的面积是 .三、计算题1、求极限:22lim(11)x x x x x →+∞++--+. 解:22lim (11)x x x x x →+∞++--+=22lim (11)x x x x x →+∞++--+/2x=2、计算不定积分:2sin 2d 1sin xx x+⎰ 解:3、计算二重积分sin d d Dxx y x⎰⎰D 是由直线y x =与抛物线2y x =围成的区域解:4、设2ln z u v = 而x u y=32v x y =-. 求z x∂∂z y∂∂解:5、求由方程221x y xy +-=确定的隐函数的导数d d y x. 解:6、计算定积分: 20|sin | d x x π⎰. 解:7、求极限:xx x e x 20)(lim +→.解:8、计算不定积分:212d 1x xx++.解:9、计算二重积分22()Dx y d σ+⎰⎰其中D 是由y x =,y x a =+,y a=3y a =(0a >)所围成的区域解:10、设2u v z e -=, 其中3sin ,u x v x ==,求dzd t .解:11、求由方程ln y x y =+所确定的隐函数的导数d d yx .解:,12、设2,01,(),1 2.x x f x x x ⎧≤≤=⎨<≤⎩. 求0()()d x x f t t ϕ=⎰在[0, 2]上的表达式.解:13、求极限:22lim11xxx→-+.解:14、计算不定积分:dln ln lnxx x x⋅⋅⎰.解:15、计算二重积分(4)dDx yσ--⎰⎰D是圆域222x y y+≤解:16、设2x yzx y-=+,其中23y x=-,求dzd t.解:17、求由方程1yy xe =+所确定的隐函数的导数d d yx .解:18、设1sin ,0,2()0,x x f x π⎧≤≤⎪=⎨⎪⎩其它. 求0()()d xx f t t ϕ=⎰在(),-∞+∞内的表达式.解:19、求极限:4x →解:20、计算不定积分:arctan1d1xxxx⋅+⎰解:21、计算二重积分2Dxy dσ⎰⎰D是由抛物线22y px=和直线2px=(0p>)围成的区域解:22、设yzx=而tx e=,21ty e=-求dzd t.解:四、综合题与证明题1、函数21sin , 0,()0, 0x x f x x x ⎧≠⎪=⎨⎪=⎩在点0x =处是否连续?是否可导?2、求函数32(1)y x x =-的极值.解:3、证明:当0x >时 221)1ln(1x x x x +>+++.证明:4、要造一圆柱形油罐体积为V问底半径r和高h 等于多少时才能使表面积最小?这时底直径与高的比是多少?解:5、设ln(1),10,()11,01x xf xx x x+-<≤⎧⎪=⎨+--<<⎪⎩探讨()f x在0x=处的连续性与可导性解:,6、求函数32(1)xyx=-的极值.解:7、证明: 当20π<<x 时 sin tan 2x x x +>.证明:8、某地区防空洞的截面拟建成矩形加半圆(如图) 截面的面积为5m 2 问底宽x 为多少时才能使截面的周长最小 从而使建立时所用的材料最省?解:9、探讨21, 0,21, 01,()2, 12,, 2x x x f x x x x x ≤⎧⎪+<≤⎪=⎨+<≤⎪⎪>⎩在0x =,1x =,2x =处的连续性与可导性解:10、确定函数23(2)()y x a a x =--(其中0a >)的单调区间.解:;11、证明:当20π<<x 时331tan x x x +>. 证明:12、一房地产公司有50套公寓要出租 当月租金定为1000元时 公寓会全部租出去 当月租金每增加50元时 就会多一套公寓租不出去 而租出去的公寓每月需花费100元的修理费 试问房租定为多少可获最大收入?解:13、函数21, 01,()31, 1x x f x x x ⎧+≤<=⎨-≤⎩在点x 1处是否可导?为什么?解:14、确定函数x x x y 6941023+-=的单调区间.解:。

专升本模拟试题高数及答案

专升本模拟试题高数及答案

专升本模拟试题高数及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2-4x+3在区间[0,5]上的最大值是:A. 1B. 2C. 3D. 42. 已知某函数的导数为f'(x)=3x^2-2x,那么f(x)的原函数是:A. x^3 - x^2 + CB. x^3 - x + CC. x^3 + x^2 + CD. x^3 + x + C3. 曲线y=x^3-2x^2+x在点(1,0)处的切线斜率是:A. -1B. 0B. 1D. 24. 定积分∫[0,1] x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 15. 函数y=sin(x)的周期是:A. πB. 2πC. 3πD. 4π6. 函数f(x)=|x-1|在x=1处的连续性是:A. 连续B. 可导C. 不连续D. 不可导7. 若f(x)=e^x,g(x)=ln(x),则f(g(x))=:A. e^(ln(x))B. ln(e^x)C. xD. 1/x8. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. ∞D. 不存在9. 级数∑[1/n^2](n从1到∞)是:A. 收敛B. 发散C. 条件收敛D. 无界10. 函数y=x^2在x=2处的泰勒展开式为:A. x^2 - 4x + 4B. x^2 - 4 + 4C. x^2 - 4x + 4 + O(x^3)D. x^2 - 4x + 4 + O(x^2)二、填空题(每题2分,共20分)11. 若函数f(x)=2x^3-3x^2+x-5,求f'(1)=________。

12. 定积分∫[1,2] (2x+1)dx=________。

13. 函数y=ln(x)在x=e处的导数值是________。

14. 函数y=x^2+3x+2在x=-1处的极小值是________。

15. 函数y=cos(x)的周期是________。

16. 函数y=x^3-6x^2+11x-6在x=2处的切线方程是________。

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)高等数学专升本试卷(含答案)第一部分:选择题1. 在两点之间用直线段所构成的最短路径称为什么?选项:A. 曲线B. 斜线C. 弧线D. 线段答案:D. 线段2. 下列哪个函数在定义域内是递增的?选项:A. f(x) = x^2B. f(x) = e^xC. f(x) = ln(x)D. f(x) = 1/x答案:B. f(x) = e^x3. 下列级数中收敛的是:选项:A. ∑(n=1→∞) (-1)^n/nB. ∑(n=1→∞) n^2/n!C. ∑(n=1→∞) (1/n)^2D. ∑(n=1→∞) (1/2)^n答案:C. ∑(n=1→∞) (1/n)^24. 若函数f(x)在区间[0,1]上连续,则下列哪个不等式恒成立?选项:A. f(0) ≤ f(x) ≤ f(1)B. f(0) ≥ f(x) ≥ f(1)C. f(0) ≥ f(x) ≤ f(1)D. f(0) ≤ f(x) ≥ f(1)答案:A. f(0) ≤ f(x) ≤ f(1)第二部分:填空题1. 设函数f(x) = 2x^3 + 5x^2 - 3x + 2,那么f'(x) = ______。

答案:6x^2 + 10x - 32. 若a, b为实数,且a ≠ b,则a - b的倒数是 ________。

答案:1/(a - b)3. 设y = ln(x^2 - 4),则dy/dx = _______。

答案:2x/(x^2 - 4)4. 若两条直线y = 2x + a与y = bx + 6的夹角为60°,那么b的值为_______。

答案:√3第三部分:计算题1. 求极限lim(x→0) (sin^2(x) - x^2)/(x^4 + cos^2(x))。

解:由泰勒展开,sin(x) ≈ x,cos(x) ≈ 1 - x^2/2,当x→0时,忽略高阶无穷小,得到:lim(x→0) (sin^2(x) - x^2)/(x^4 + cos^2(x)) = lim(x→0) (x^2 - x^2)/(x^4 + (1 - x^2/2)^2)= lim(x→0) (0)/(x^4 + (1 - x^2/2)^2)= 0/(1) = 0答案:02. 求定积分∫(0→1) (x^2 + 3x + 2) dx。

高等数学模拟试题及答案[1]

高等数学模拟试题及答案[1]

武汉大学网络教育入学考试 专升本 高等数学 模拟试题一、单项选择题1、在实数范围内,下列函数中为有界函数的是( b )A.xy e = B.1sin y x =+ C.ln y x =D.tan y x =2、函数23()32x f x x x -=-+的间断点是( c ) A.1,2,3x x x === B.3x = C.1,2x x == D.无间断点3、设()f x 在0x x =处不连续,则()f x 在0x x =处( b )A. 一定可导B. 必不可导C. 可能可导D. 无极限 4、当x →0时,下列变量中为无穷大量的是( D ) A.sin x x B.2x-C.sin x x D. 1sin xx+ 5、设函数()||f x x =,则()f x 在0x =处的导数'(0)f = ( d )A.1B.1-C.0D.不存在. 6、设0a >,则2(2)d aaf a x x -=⎰( a )A.0()d af x x -⎰B.0()d af x x ⎰ C.02()d af x x ⎰ D.02()d af x x -⎰7、曲线23x xy e--=的垂直渐近线方程是( d ) A.2x = B.3x = C.2x =或3x = D.不存在8、设()f x 为可导函数,且()()000lim22h f x h f x h→+-=,则0'()f x = ( c ) A. 1 B. 2 C. 4 D.0 9、微分方程''4'0y y -=的通解是( d )A. 4x y e =B. 4x y e -=C. 4xy Ce = D. 412x y C C e =+10、级数1(1)34nn nn ∞=--∑的收敛性结论是( a )A. 发散B. 条件收敛C. 绝对收敛D. 无法判定 11、函数()f x =( d )A. [1,)+∞B.(,0]-∞C. (,0][1,)-∞⋃+∞D.[0,1]12、函数()f x 在x a =处可导,则()f x 在x a =处( d )A.极限不一定存在B.不一定连续C.可微D.不一定可微 13、极限1lim(1)sin nn e n →∞-=( c)A.0B.1C.不存在D. ∞ 14、下列变量中,当x →0时与ln(12)x +等价的无穷小量是( )A.sin xB.sin 2xC.2sin xD. 2sin x15、设函数()f x 可导,则0(2)()limh f x h f x h →+-=( c )A.'()f x -B.1'()2f x C.2'()f x D.016、函数32ln 3x y x +=-的水平渐近线方程是( c )A.2y =B.1y =C.3y =-D.0y =17、定积分sin d x x π=⎰( c )A.0B.1C.πD.218、已知x y sin =,则高阶导数(100)y 在0x =处的值为( a )A. 0B. 1C. 1-D. 100. 19、设()y f x =为连续的偶函数,则定积分()d aaf x x-⎰等于( c )A. )(2x afB.⎰adxx f 0)(2C.0D. )()(a f a f --20、微分方程d 1sin d yx x =+满足初始条件(0)2y =的特解是( c )A. cos 1y x x =++B. cos 2y x x =++C. cos 2y x x =-+D. cos 3y x x =-+ 21、当x →∞时,下列函数中有极限的是( C )A.sin xB.1x eC.211x x +- D.arctan x22、设函数2()45f x x kx =++,若(1)()83f x f x x --=+,则常数k 等于 ( a ) A.1 B.1- C.2 D.2- 23、若0lim ()x x f x →=∞,lim ()x x g x →=∞,则下列极限成立的是( b )A. lim[()()]ox x f x g x →+=∞B.lim[()()]0x x f x g x →-=C.1lim()()x x f x g x →=∞+ D. 0lim ()()x x f x g x →=∞24、当x →∞时,若21sin x 与1k x 是等价无穷小,则k =( b )A.2B.12C.1D. 325、函数()f x =[0,3]上满足罗尔定理的ξ是( a )A.0B.3C. 32 D.2 26、设函数()y f x =-, 则'y =( c )A. '()f xB.'()f x -C. '()f x -D.'()f x --27、定积分()d baf x x⎰是( a )A.一个常数B.()f x 的一个原函数C.一个函数族D.一个非负常数 28、已知naxy x e =+,则高阶导数()n y=( c )A. n axa e B. !n C. !axn e + D. !n axn a e + 29、若()()f x dx F x c =+⎰,则sin (cos )d xf x x ⎰等于( b )A. (sin )F x c +B. (sin )F x c -+C. (cos )F x c +D. (cos )F x c -+ 30、微分方程'3xy y +=的通解是( b )A. 3c y x =- B. 3y c x =+ C. 3c y x =-- D. 3c y x =+31、函数21,y x =+(,0]x ∈-∞的反函数是( c )A. 1,[1,)y x =∈+∞B. 1,[0,)y x =∈+∞C. [1,)y =∈+∞D. [1,)y =∈+∞ 32、当0x →时,下列函数中为x 的高阶无穷小的是( a )A. 1cos x -B. 2x x + C. sin xD.33、若函数()f x 在点0x 处可导,则|()|f x 在点0x处( c )A. 可导B. 不可导C. 连续但未必可导D. 不连续 34、当x x →时,α和(0)β≠都是无穷小. 当0x x →时下列可能不是无穷小的是( d )A. αβ+B. αβ-C. αβ⋅D. αβ35、下列函数中不具有极值点的是( c ) A.y x= B. 2y x = C. 3y x = D. 23y x =36、已知()f x 在3x =处的导数值为'(3)2f =, 则0(3)(3)lim2h f h f h →--=( b )A.32B.32-C.1D.1-37、设()f x 是可导函数,则(())f x dx '⎰为( d )A.()f xB. ()f x c +C.()f x 'D.()f x c '+38、若函数()f x 和()g x 在区间(,)a b 内各点的导数相等,则这两个函数在该区间内( d ) A.()()f x g x x -= B.相等 C.仅相差一个常数 D.均为常数二、填空题 1、极限20cos d limxx t tx →⎰=2、已知 102lim()2ax x x e -→-=,则常数 =a .3、不定积分2d xx ex -⎰= .4、设()y f x =的一个原函数为x ,则微分d(()cos )f x x = .5、设2()d f x x x C x=+⎰,则()f x = . 6、导数12d cos d d x t t x-=⎰ . 7、曲线3(1)y x =-的拐点是 .8、由曲线2y x =,24y x =及直线1y =所围成的图形的面积是 .9、已知曲线()y f x =上任一点切线的斜率为2x , 并且曲线经过点(1,2)-, 则此曲线的方程为 .10、已知22(,)f xy x y x y xy +=++,则f f x y∂∂+=∂∂ . 11、设(1)cos f x x x +=+,则(1)f = .12、已知 112lim(1)x x a e x --→∞-=,则常数 =a .13、不定积分2ln d x x x =⎰.14、设()y f x =的一个原函数为sin 2x ,则微分d y = .15、极限22arcsin d limxx t t x →⎰ =.16、导数2d sin d d x a t t x =⎰ .17、设d xt e t e=⎰,则x = .18、在区间[0,]2π上, 由曲线cos y x =与直线2x π=,1y =所围成的图形的面是 .19、曲线sin y x =在点23x π=处的切线方程为 . 20、已知22(,)f x y x y x y -+=-,则f fx y ∂∂-=∂∂ .21、极限01limln(1)sinx x x →+⋅ =22、已知21lim()1axxxex-→∞-=+,则常数=a.23、不定积分x=⎰.24、设()y f x=的一个原函数为tan x,则微分d y=.25、若()f x在[,]a b上连续,且()d0baf x x=⎰, 则[()1]dbaf x x+=⎰.26、导数2dsin ddxxt tx=⎰.27、函数224(1)24xyx x+=++的水平渐近线方程是.28、由曲线1yx=与直线y x=2x=所围成的图形的面积是.29、已知(31)xf x e'-=,则()f x= .30、已知两向量(),2,3aλ→=,()2,4,bμ→=平行,则数量积a b⋅=.31、极限2lim(1sin)x xx→-=32、已知973250(1)(1)lim8(1)xx axx→∞++=+,则常数=a.33、不定积分sin dx x x=⎰.34、设函数y=则微分d y=.35、设函数()f x在实数域内连续, 则()d()dxf x x f t t-=⎰⎰.36、导数2dddx tate tx=⎰.37、曲线22345(3)x xyx-+=+的铅直渐近线的方程为.38、曲线2y x=与22y x=-所围成的图形的面积是.三、计算题1、求极限:lim x →+∞.解:lim x →+∞=lim x →+∞/2x=2、计算不定积分:2sin 2d 1sin xx x +⎰解:3、计算二重积分sin d d Dx x y x ⎰⎰, D 是由直线y x =及抛物线2y x =围成的区域. 解:4、设2ln z u v =, 而x u y =, 32v x y =-. 求z x ∂∂, zy∂∂. 解:5、求由方程221x y xy +-=确定的隐函数的导数d d yx. 解:6、计算定积分: 20|sin | d x x π⎰.解:7、求极限:xxx e x 20)(lim +→.解:8、计算不定积分:x.解:9、计算二重积分22()Dx y d σ+⎰⎰, 其中D 是由y x =,y x a =+,y a =, 3y a =(0a >)所围成的区域. 解:10、设2u vz e -=, 其中3sin ,u x v x ==,求dz d t .解:11、求由方程lny x y=+所确定的隐函数的导数ddyx.解:,12、设2,01,(),1 2.x xf xx x⎧≤≤=⎨<≤⎩. 求0()()dxx f t tϕ=⎰在[0, 2]上的表达式.解:13、求极限:2 0x→解:14、计算不定积分:dln ln lnxx x x⋅⋅⎰.解:15、计算二重积分(4)dDx yσ--⎰⎰,D是圆域222x y y+≤.解:16、设2x yzx y-=+,其中23y x=-,求dzd t.解:17、求由方程1yy xe=+所确定的隐函数的导数ddyx.解:18、设1sin,0,2()0,x xf xπ⎧≤≤⎪=⎨⎪⎩其它.求0()()dxx f t tϕ=⎰在(),-∞+∞内的表达式.解:19、求极限:x→解:20、计算不定积分:1d 1xx +解:21、计算二重积分2Dxy dσ⎰⎰,D是由抛物线22y px=和直线2px=(p>)围成的区域.解:22、设yzx=,而tx e=,21ty e=-,求dzd t.解:四、综合题与证明题1、函数21sin,0,()0,0x xf x xx⎧≠⎪=⎨⎪=⎩在点0x=处是否连续?是否可导?2、求函数(y x=-.解:3、证明:当0x >时, 221)1ln(1x x x x +>+++.证明:4、要造一圆柱形油罐, 体积为V , 问底半径r 和高h 等于多少时, 才能使表面积最小?这时底直径与高的比是多少?解:5、设ln(1),10,()01x x f x x +-<≤⎧⎪=<<, 讨论()f x 在0x =处的连续性与可导性. 解:,6、求函数32(1)x y x =-的极值.解:7、证明: 当20π<<x 时, sin tan 2x x x +>. 证明:8、某地区防空洞的截面拟建成矩形加半圆(如图), 截面的面积为5m 2, 问底宽x 为多少时才能使截面的周长最小, 从而使建造时所用的材料最省?解:9、讨论21, 0,21, 01,()2, 12,, 2x x x f x x x x x ≤⎧⎪+<≤⎪=⎨+<≤⎪⎪>⎩在0x =,1x =,2x =处的连续性与可导性.解:10、确定函数y =(其中0a >)的单调区间.解:;11、证明:当20π<<x 时, 331tan x x x +>. 证明:12、一房地产公司有50套公寓要出租. 当月租金定为1000元时, 公寓会全部租出去. 当月租金每增加50元时, 就会多一套公寓租不出去, 而租出去的公寓每月需花费100元的维修费. 试问房租定为多少可获最大收入?解:13、函数21, 01,()31, 1x x f x x x ⎧+≤<=⎨-≤⎩在点x =1处是否可导?为什么?解:14、确定函数x x x y 6941023+-=的单调区间. 解:。

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽省普通高校专升本招生考试试题高等数学考试真题还原(以下真题来自学生考试后的回忆,或有部分不准确)一、单项选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、当x →0+时,比sin x 更低阶的无穷小是()A、1-cos xB、3xD、In(1+x )参考答案:C 2、若函数sin ,0()2,=0ln(12),0x x ax f x x x x bx ⎧⎪⎪=⎨⎪+⎪⎩<>,在x =0处连续,其中a ,b 为常数,则()A、22a b ==,B、112a b ==,C、21a b ==,D、122a b ==,参考答案:B 3、已知21sin ()x xf x x x +=+,则()A、0()x f x =是的可去间断点,1()x f x =-是的无穷间断点B、0()x f x =是的可去间断点,1()x f x =-是的跳跃间断点C、0()x f x =是的跳跃间断点,1()x f x =-是的无穷间断点D、0()x f x =是的无穷间断点,1()x f x =-是的可去间断点参考答案:B4、设函数()f x 在[,b]a 上连续,在(,b)a 上可导,且()()f a f b >,则在(,b)a 内至少存在一点ξ,使得()A、'()f ξ<0B、'()f ξ>0C、'()=f ξ0D、'()f ξ不存在参考答案:A5、已知函数()x f x xe -=,则()A、()f x 在(1),-∞内单调减少B、()f x 在(1)+,∞内单调增加C、()f x 在1x =处取得极大值D、()f x 在1x =处取得极小值参考答案:C6、若函数4cos y x =,则dy =()A、3424sin x x dxB、3424sin x x dx -C、2422sin x x dx D、2422sin x x dx -参考答案:D7、已知2x 是()f x 的一个原函数,则2(1)fxf x dx -=()A、22x C -+B、-22x C-+C、222x C -+D、222x C--+参考答案;B8、下列广义积分收敛的是()A、143dx e xin x+⎰∞B、1dxe xinx +⎰∞C、123e xin x+⎰∞D、inx dxe x +⎰∞参考答案:A9、函数2ln z x y x =+在点(1,1)处的全微分(1,1)dz =()A、3dx dy +B、3dx dy+C、2dx dy +D、2dx dy+参考答案:A10、设n 阶方阵A 满足2,A A A E =且≠,其中E 为n 阶单位矩阵,则()A、A 是零矩阵B、齐次线性方程组0AX =只有零解C、A 是可逆矩阵D、A 的秩小于n参考答案:D 11、设随机事件A 与B 互不相容,则()A、(AB)0P =B、(A B)0P =C、(AUB)1P =D、(AB)1P =参考答案:D 12、设随机变量X 的概率密度函数2(1)4()x f x +-=其中()x -∞<<+∞,且{}{}P X c P X c ≥=≤,则常数C=()A、-2B、2C、-1D、1参考答案:C 二、填空题(本大题共6小题,每小题4分,共24分)13、函数323y x x =-在拐点处的切线方程为_____________参考答案:31y x =-+14、由曲线y e x =,直线1,0,0x x y =-==,所围成的封闭图形绕x 轴旋转所形成的旋转体体积参考答案:212)e --π(15、已知(,)z f x y =由方程221x t z Inz y e dt ++=⎰确定,则z x∂∂=_____________参考答案:21xze z +16、已知113122023x-=,则x =_____________参考答案:-117、同时投两个质地均匀的骰子,则两个骰子点数和为7的概率为_____________参考答案:1618、已知13X ~B(3,),则{x }p <D(X)=_____________参考答案:827三、计算题(本大题共7小题,共78分,计算应写出必要的计算步骤)19、2x →参考答案:120、求解不定积分2ln(1)d x x x +⎰参考答案:332111ln |1|c 33111ln()963x x x x x x ++++-+-21、求解:D xd σ⎰⎰,其中积分区域D 由曲线2y x =,直线2y x =-,和0y =所围成的封闭图形参考答案:111222、已知123,,a a a 线性无关,112321233123===a a a a a a a a a βββ+--+--,,,证明:向量组123βββ,,线性无关参考答案:存在一组常数123,,k k k ,使得1122330k k k βββ++=,证明:123,,k k k 全为零即可23、某工地拟建造截面为矩形加半圆的通风口,已知截面面积为2平方米时,则底长x 为多少米时,截面的周长最短。

专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)

专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)

专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.= ( )A.0B.C.一D.+∞正确答案:B解析:.知识模块:多元函数积分学2.关于函数f(x,y)=下列表述错误的是( ) A.f(x,y)在点(0,0)处连续B.fx(0,0)=0C.fy(0,0)=0D.f(x,y)在点(0,0)处不可微正确答案:A解析:,随k取不同数值而有不同的结果,所以不存在,从而f(x,y)在(0,0)点不连续,因此选项A是错误的,故选A.知识模块:多元函数积分学3.设函数z=3x2y,则= ( )A.6yB.6xyC.3xD.3x2正确答案:D解析:因为z=3x2y,则=3x2.知识模块:多元函数积分学4.设二元函数z== ( )A.1B.2C.x2+y2D.正确答案:A解析:因为z==1.知识模块:多元函数积分学5.已知f(xy,x-y)=x2+y2,则= ( )A.2B.2xC.2yD.2x+2y正确答案:A解析:因f(xy,x—y)=x2+y2=(x—y)2+2xy,故f(x,y)=y2+2x,从而=2.知识模块:多元函数积分学6.设z=f(x,y)=则下列四个结论中,①f(x,y)在(0,0)处连续;②fx’(0,0),fy’(0,0)存在;③fx’(x,y),fy’(x,y)在(0,0)处连续;④f(x,y)在(0,0)处可微.正确结论的个数为( ) A.1B.2C.3D.4正确答案:C解析:对于结论①,=0=f(0,0)f(x,y)在(0,0)处连续,所以①成立;对于结论②,用定义法求fx’(0,0)==0.同理可得fy’(0,0)=00②成立;对于结论③,当(x,y)≠(0,0)时,用公式法求因为当(x,y)→(0,0)时,不存在,所以fx’(x,y)在(0,0)处不连续.同理,fy’(x,y)在(0,0)处也不连续,所以③不成立;对于结论④,fx’(0,0)=0,fy’(0,0)=0,△z=f(0+△x,0+△y)-f(0,0)=((△x)2+(△y)2).sin=ρ2故f(x,y)在(0,0)处可微,所以④成立,故选C.知识模块:多元函数积分学7.设函数z=μ2lnν,而μ=,ν=3x一2y,则= ( )A.B.C.D.正确答案:A解析:知识模块:多元函数积分学8.曲面z=F(x,y,z)的一个法向量为( )A.(Fx,Fy,Fz一1)B.(Fx一1,Fy一1,Fz一1)C.(Fx,Fy,Fz)D.(一Fx,一Fy,1)正确答案:A解析:令G(x,y,z)=F(x,y,z)一z,则Gx=Fx,Gy=Fy,Gz=Fz一1,故法向量为(Fx,Fy,Fz一1).知识模块:多元函数积分学9.曲面z=x2+y2 在点(1,2,5)处的切平面方程为( )A.2x+4y—z=5B.4x+2y—z=5C.z+2y一4z=5D.2x一4y+z=5正确答案:A解析:令F(x,y,z)=x2+y2一z,Fx(1,2,5)=2,Fy(1,2,5)=4,Fz(1,2,5)=一1切平面方程为2(x一1)+4(y一2)一(z一5)=02x+4y—z=5,也可以把点(1,2,5)代入方程验证,故选A.知识模块:多元函数积分学10.函数f(x,y)=x2+xy+y2+x—y+1的极小值点是( )A.(1,一1)B.(一1,1)C.(一1,一1)D.(1,1)正确答案:B解析:∵f(x,y)=x2+xy+y2+x—y+1,∴fx(x,y)=2x+y+1,fy(x,y)=x+2y一1,∴令得驻点(-1,1).又A=fxx(x,y)=2,B=fxy=1,C=fyy=2,∴B2一AC=1—4=一3<0,又A=2>0,∴驻点(一1,1)是函数的极小值点.知识模块:多元函数积分学11.函数z=x2一xy+y2+9x一6y+20有( )A.极大值f(4,1)=63B.极大值f(0,0)=20C.极大值f(一4,1)=一1D.极小值f(一4,1)=一1正确答案:D解析:因z=x2-xy+y2+9x-6y+20,于是=一x+2y-6,令=0,得驻点(-4,1),又因=2,故对于点(-4,1),A=2,B=一1,C=2,B2一AC=-3<0,且A>0,因此z=f(x,y)在点(一4,1)处取得极小值,且极小值为f(一4,1)=一1.知识模块:多元函数积分学填空题12.已知函数f(x+y,ex-y)=4xyex-y,则函数f(x,y)=________.正确答案:(x2一ln2y)y解析:由于f(x+y,ex-y)=[(x+y)2一ln2ex-y].ex-y,所以f(x,y)=(x2一ln2y)y.知识模块:多元函数积分学13.设z=xy,则dz=________.正确答案:yxy-1dx+xylnxdy解析:z=xy,则=yxy-1,=xylnx,所以dz=yxy-1dx+xylnxdy.知识模块:多元函数积分学14.设f(x,y)=sin(xy2),则df(x,y)=________.正确答案:y2cos(xy2)dx+2xycos(xy2)dy解析:df(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy.知识模块:多元函数积分学15.已知z=(1+xy)y,则=________.正确答案:1+2ln2解析:由z=(1+xy)y,两边取对数得lnz=yln(1+xy),则,所以=1+2ln2.知识模块:多元函数积分学16.设f’’(x)连续,z=f(xy)+yf(x+y),则=________.正确答案:yf’’(xy)+f’(x+y)+yf’’(x+y)解析:f’(xy).y+yf’(x+y),f’f’’(xy).x+f’(x+y)+yf’’(x+y)=yf’’(xy)+f ’(x+y)+yf’’(x+y).知识模块:多元函数积分学17.设z==________.正确答案:解析:知识模块:多元函数积分学18.曲面x2+3z2=y在点(1,一2,2)的法线方程为________.正确答案:解析:记F(x,y,z)=x2+3z2一y,M0(1,一2,2),则取n=(2,一1,12),所求法线方程为.知识模块:多元函数积分学19.二元函数f(x,y)=x2(2+y2)+ylny的驻点为_______.正确答案:(0,)解析:fx’(x,y)=2x(2+y2),fy’(x,y)=2x2y+lny+1.令解得唯一驻点(0,).知识模块:多元函数积分学20.设f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处取得极值的必要条件是_______.正确答案:fx’(x0,y0)=fy’(x0,y0)=0解析:f(x,y)在点(x0,y0)处可微,则偏导数fx’(x0,y0),fy’(x0,y0)存在,f(x,y)在点(x0,y0)处取得极值,则有fx’(x0,y0)=fy’(x0,y0)=0;反之不成立.知识模块:多元函数积分学解答题21.求函数z=arcsin的定义域.正确答案:对于≤1,即x2+y2≤4;在中,应有x2+y2≥1,函数的定义域是以上两者的公共部分,即{(x,y)|1≤x2+y2≤4}.涉及知识点:多元函数积分学22.设函数z=x2siny+yex,求.正确答案:=2xsiny+yex,=2siny+yex,=2xcosy+ex.涉及知识点:多元函数积分学23.已知z=ylnxy,求.正确答案:涉及知识点:多元函数积分学24.设2sin(x+2y一3z)=x+2y一3z,确定了函数z=f(x,y),求.正确答案:在2sin(x+2y一3z)=x+2y一3z两边对x求导,则有2cos(x+2y —3z).,整理得.同理,由2cos(x+2y一3z),得=1.也可使用公式法求解:记F(x,y,z)=2sin(x+2y一3z)一x一2y+3z,则Fx=2cos(x+2y一3z).(一3)+3,Fy=2cos(x+2y一3z).2—2,Fx=2cos(x+2y一3z)一1,故=1.涉及知识点:多元函数积分学25.设μ=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ez一xz=0所确定,求.正确答案:.方程exy一y=0两边关于x求导,有exy,方程ez一xz=0两边关于x求导,有ez,由上式可得.涉及知识点:多元函数积分学26.设z=μ2ν一μν2,而μ=xcosy,ν=xsiny,求.正确答案:由于所以=(2μν一ν2)cosy+(μ2一2μν)siny=(2x2cosysiny—x2sin2y)cosy+(x2cos2y一2x2cosysiny)siny=2x2sinycos2y—x2sin2ycosy+x2sinycos2y一2x2sin2ycosy=3x2sinycosy(cosy—siny).=(2μν一ν2)(一xsiny)+(μ2一2μν)xcosy=(2x2cosysiny—x2sin2y)(一xsiny)+(x2cos2y一2x2cosysiny)xcosy=一2x3sinycosy(siny+cosy)+x3(siny+cosy)(sin2y—sinycosy+cos2y)=x3(siny+cosy)(1—3sinycosy).涉及知识点:多元函数积分学27.设f(x—y,x+y)=x2一y2,证明=x+y.正确答案:f(x—y,x+y)=x2一y2=(x+y)(x—y),故f(x,y)=xy.=x+y.涉及知识点:多元函数积分学28.设函数z(x,y)由方程=0所确定,证明:=z —xy.正确答案:涉及知识点:多元函数积分学29.求曲面ez一z+xy=3过点(2,1,0)的切平面及法线.正确答案:设F(x,y,z)=ez一z+xy一3则Fx=y,Fy=x,Fz=ez一1,所以切平面的法向量为n=(1,2,0).所求切平面为x一2+2(y一1)=0,即x+2y一4=0,法线为.涉及知识点:多元函数积分学30.求椭球面x2+2y2+3z2=21上某点M处的切平面π的方程,且π过已知直线L:.正确答案:令F(x,y,z)=x2+2y2+3z2一21,则Fx’=2x,Fy’=4y,Fz’=6z.椭球面的点M(x0,y0,z0)处的切平面π的方程为2x0(x—x0)+4y0(y—y0)+6z0(z—z0)=0,即x0x+2y0y+3z0z=21.因为平面π过直线L上任意两点,比如点应满足π的方程,代入有6x0+6y0+z0=21,z0=2.又因为x02+2y02+3z02=21,解上面方程有:x0=3,y0=0,z0=2及x0=1,y0=2,z0=2.故所求切平面的方程为x+2z=7和x+4y+6z=21.涉及知识点:多元函数积分学31.求旋转抛物面z=x2+y2一1在点(2,1,4)处的切平面及法线方程.正确答案:F(x,y,z)=x2+y2一z一1,n|(2,1,4)=(2x,2y,一1)|(2,1,4)=(4,2,一1).切平面方程为4(x一2)+2(y一1)一(z一4)=0,即4x+2y一z—6=0.法线方程为.涉及知识点:多元函数积分学32.确定函数f(x,y)=3axy—x3一y3(a>0)的极值点.正确答案:=0,联立有解得x=y=a或x=y=0,在(0,0)点,△>0,所以(0,0)不是极值点.在(a,a)点,△<0,且=-6a <0(a>0),故(a,a)是极大值点.涉及知识点:多元函数积分学33.某工厂建一排污无盖的长方体,其体积为V,底面每平方米造价为a 元,侧面每平方米造价为b元,为使其造价最低,其长、宽、高各应为多少?正确答案:设长方体的长、宽分别为x,y,则高为,又设造价为z,由题意可得z=axy+2b(x+y)(x>0,y>0),由于实际问题可知造价一定存在最小值,故x=y=就是使造价最小的取值,此时高为.所以,排污无盖的长方体的长、宽、高分别为时,工程造价最低.涉及知识点:多元函数积分学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高校专升本考试高等数学模拟试题及答案
普通高等教育福建专升本考试
《高等数学》模拟试题及答案
一、选择题
1、函数的定义域为
A,且B, C, D,且
2、下列各对函数中相同的是:
A, B,
C,D,
3、当时,下列是无穷小量的是:
A, B, C, D,
4、是的
A、连续点
B、跳跃间断点
C、可去间断点
D、第二类间断点
5、若,则
A、-3
B、-6
C、
-9 D、-12
6. 若可导,则下列各式错误的是
A B
C D
7. 设函数具有阶导数,且,则
A B
C 1 D
8. 设函数具有阶导数,且,则
A 2 B
C D
9. 曲线
A 只有垂直渐近线
B 只有水平渐近线
C 既有垂直又有水平渐近线 D既无垂直又无水平渐近线
10、下列函数中是同一函数的原函数的是:
A, B, C, D,
11、设,且,则
A, B, +1 C,3 D,
12、设,则
A, B, C, D,13、,则
A,B,C,
D,
14. 若,则
A B C D
15.下列积分不为0的是
A B C D
16. 设在上连续,则
A B
C D
17.下列广义积分收敛的是___________.
A
B C
D
18、过(0,2,4)且平行于平面的直线方程为
A, B,
C, D,无意义
19、旋转曲面是
A,面上的双曲线绕轴旋转所得 B,面上的双曲线绕轴旋转所得
C,面上的椭圆绕轴旋转所得 D,面上的椭圆绕轴旋转所得
20、设,则
A,0 B, C,不存在 D,1
21、函数的极值点为
A,(1,1) B,(—1,1) C,(1,1)和(—1,1) D,(0,0)
22、设D:,则
A,B,C,
D,
23、交换积分次序,
A, B,
C, D,
24. 交换积分顺序后,__________。

A B
C D
25. 设为抛物线上从点到点的一段弧,则
A B C D。

相关文档
最新文档