聚酯及可生物降解类高分子
2024年聚3-羟基烷酸酯(PHA)市场分析现状
2024年聚3-羟基烷酸酯(PHA)市场分析现状简介聚3-羟基烷酸酯(Polyhydroxyalkanoates,PHA)是一类具有生物可降解性质的聚酯类高分子聚合物。
自20世纪80年代中期开始,PHA作为一种可持续发展的生物塑料受到了广泛的关注,具有广泛的应用前景。
本文将对PHA市场的分析现状进行介绍。
产业链分析PHA生产环节PHA的生产主要包括原料获取、菌种培养、发酵生产以及后续的提取和纯化过程。
生产工艺相对较为复杂,需要较高的技术水平和设备投资。
目前,PHA的主要生产企业还处于小规模试验阶段,工业化生产规模相对较小。
PHA市场链条PHA的市场链条主要包括原料供应商、PHA生产企业、加工制造商、分销商以及最终的使用者。
原料供应商主要提供PHA生产所需的原料,如植物油和废弃物等。
PHA生产企业将原料转化为PHA产品,并销售给加工制造商。
加工制造商将PHA作为替代传统塑料的材料,制造成各种塑料制品。
分销商将成品分销给最终的使用者,如包装、食品、医疗等领域。
市场概况市场规模目前,PHA市场规模较小,但呈逐步增长的趋势。
据统计,全球PHA市场规模在2020年约为1000万美元,预计到2025年将达到约3.5亿美元,年复合增长率约为30%。
应用领域PHA具有优异的生物可降解性能和物理性能,广泛应用于包装、农业、医疗、纺织、汽车等领域。
其中,包装领域是PHA的主要应用领域,占据了PHA市场的60%以上。
地理分布目前,PHA市场主要集中在北美、欧洲和亚洲地区。
北美地区以美国为主,欧洲地区以德国为主,亚洲地区以中国为主。
这些地区的PHA市场发展较为成熟,相关企业数量较多。
市场竞争态势PHA市场竞争主要分为两个方面:技术竞争和市场占有率竞争。
技术竞争PHA的生产技术是影响市场竞争力的重要因素。
目前,PHA生产技术主要包括微生物发酵法和生物合成法。
微生物发酵法是目前主流的生产技术,相对成熟,但仍存在成本较高的问题。
功能高分子-可降解生物材料PHAs
(如作为药物的缓适载体、手术缝线等)。
(2)在自然环境中酶降解 许多细菌和真菌可分泌外解聚酶,有些甚至可
以利用PHB作为唯一碳源生长。
PHAs展望
➢ PHAs作为一种生物可降解的热塑性材料,早 在60年代就已引起了人们的广泛关注,但由 于工业化生产的PHB与聚丙烯的价格相比高 出许多,缺乏相应的市场竞争能力。
可降解生物材料
-聚羟基脂肪酸酯(PHAs)
CONTENTS
1. PHAs简介 2. PHAs合成方法 3. PHAs生物降解 4. PHAs展望
PHAs简介
1.1 PHAs概述
➢ 聚羟基脂肪酸酯(polyhydroxyalkanoates,PHAs) 是原核微生物在受到某种基本营养成分(如N、 P、S、O 或 Mg)的供给限制时,将过量碳源 以碳源和能源形式储存而合成的一类胞内热塑 性聚酯,积累量可占到细胞干重的 30%~80%, 是一种天然的高分子生物材料。
• 容器、瓶、 袋、薄膜等包装材 料;
• 妇女卫生用品、 尿布等; • 合成手性化合物的前体原料。
PHAs简介
1.4 PHAs的应用
人 工 心 脏 瓣 膜
一 次 性 塑 料 制 品
骨 骼 软 组 织
医 用 纱 布
PHAs合成方法
合成 方法
Байду номын сангаас
生物合成法 化学合成法
微生物发酵法 转基因植物法
活性污泥法
1 在提取过程中尽可能减少聚 合物分子量的降低 2 纯度高
性能 改进
与其它可降解材料共混
1 进行侧链修饰,增大分子量 2 采用淬火工艺,解决脆性大 和易老化问题
医学知识一《药用高分子材料》之药用合成高分子
2.最低成膜温度 最低成膜温度(MFT)指树脂胶乳液在梯度加热干燥条件下形 成连续性均匀而无裂纹薄膜的最低温度限,在MFT以下,聚 合物粒子不能发生熔合变形成膜。在含有丙烯酸酯的树脂中, 丙烯酸酯比例越高,MFT越低。
(三)、卡波沫
(一)来源 是丙烯酸与丙烯基蔗糖交联的高分子聚合物,按粘度 不同分为 934 、 940 、 941 等规格,交联度不高, 微弱交联
化学结构:
[CH2-CH]n [C3H2 C12H21O12]m
COOH
(二)性质
1.性状 • 是一种吸湿性很强的白色松散粉末,微有特异臭味 2.溶解、溶胀及其凝胶特性 • 具有一定的亲水性,可分散于水,在水中迅速溶胀,
4.聚乙烯醇凝胶的药物控制释放 利用携带阿霉素和葡聚糖的PVA水凝胶作为药物释放体系, 不仅降低了药物的黏附,而且通过向腹膜腔释放活性的 阿霉素阻止了腹膜腔的感染。
5.用作透皮吸收制剂辅料 PVA凝胶透皮系统,目前已有硝酸甘油、可乐定等易于 透过皮肤的药物的透皮系统问世。
6.聚乙烯醇微球在医药中的应用 通过PVA上的羟基的反应活性,可以把药物分子共价键 或离子键合到PVA的側基上。如茶多酚的聚乙醇缓释胶 囊,不仅提高了茶多酚的稳定性,而且对茶多酚具有缓 释作用。
• 肠溶性树脂分子中的羧基比例越大,则需在pH更高的溶液 中溶解
• 胃崩型树脂和渗透性树脂中的酯基和季胺基在酸性和碱性环 境中均不解离,故不发生溶解。胃溶型树脂在胃酸环境溶解 取决于其叔胺碱性基团。
生物可降解材料
⽣物可降解材料可⽣物降解的材料有天然⾼分⼦、⽣物合成⾼分⼦、⼈⼯合成⾼分⼦、⽣物活性玻璃、磷酸三钙等。
天然⾼分⼦均为亲⽔性材料,如胶原、明胶、甲壳素、淀粉、纤维素、透明质酸等,它们在⼈体内的降解速度与材料在⼈体⽣理环境下的溶解特性有关。
例如明胶分⼦能够溶于与体液相似pH 值为714 的⽣理盐⽔中,因⽽必须先进⾏交联才能作为材料在⼈体中使⽤[4~6 ] ,其交联产物在⼈体内降解2溶解的速度很快,⼏天内就可被⼈体完全吸收。
与此相对应,在正常⽣理环境下不溶解的天然⾼分⼦,如甲壳素(在酸性环境下溶解) [7 ] ,其降解速率就要慢得多。
磷酸三钙具有良好的⽣物相容性、⽣物活性以及⽣物降解性,是理想的⼈体硬组织修复和替代材料,在⽣物医学⼯程学领域⼀直受到⼈们的密切关注。
医学上通常使⽤的是磷酸三钙的⼀种特殊形态—β-磷酸三钙。
β-磷酸三钙主要是由钙、磷组成,其成分与⾻基质的⽆机成分相似,与⾻结合好。
动物或⼈体细胞可以在β-磷酸三钙材料上正常⽣长,分化和繁殖。
通过⼤量实验研究证明:β-磷酸三钙对⾻髓造⾎机能⽆不良反应,⽆排异反应,⽆急性毒性反应,不致癌变,⽆过敏现象。
因此β-磷酸三钙可⼴泛应⽤于关节与脊柱融合、四肢创伤、⼝腔颌⾯的外科、⼼⾎管外科,以及填补⽛周的空洞等⽅⾯。
随着⼈们对β-磷酸三钙研究的不断深⼊,其应⽤形式也出现了多样化,幵在临床医学中体现了较好的性能。
梁⼽等通过实验发现其溶⾎程度<5%,当β-磷酸三钙被植⼊⼈体内后,其在体液中能发⽣降解和吸收,钙、磷被体液吸收后进⼊⼈体循环系统,⼀定时间后植⼊⼈体的β-磷酸三钙逐渐溶解消失,形成新⾻。
Arai等利⽤β-磷酸三钙多孔陶瓷填充8~15cm 的腓⾻节段缺损,获得了腓⾻再⽣。
平均术后2个⽉即可达到重建。
不会发⽣踝关节及胫⾻的移位。
郑承泽等将β-磷酸三钙与⾃体⾻髓复合应⽤于临床,修复包括肿瘤性⾻缺损和陈旧性⾻折⾻缺损,经术后调查,结果显⽰植⼊材料的成⾻作⽤明显,说明β-磷酸三钙与⾃体⾻髓复合是⼀种治疗⾻缺损理想的⽅法。
医用生物可降解型高分子材料
医用生物课降解型高分子材料1.聚己内酯(PCL)这种塑料具有良好的生物降解性,熔点是62℃。
分解它的微生物广泛地分布在喜气或厌气条件下。
作为可生物降解材料可把它与淀粉、纤维素类的材料混合在一起,或与乳酸聚合使用。
2.聚丁二酸丁二醇酯(PBS)及其共聚物以PBS(熔点为114℃)为基础材料制造各种高分子量聚酯的技术已经达到工业化生产水平。
日本三菱化学和昭和高分子公司已经开始工业化生产,规模在千吨左右。
中科院理化研究所也在进行聚丁二酸丁二醇酯共聚酯的合成研究。
目前中科院理化研究所正在筹建年产万吨的PBS生产线、广东金发公司建成了年产1000吨规模的生产线等。
3.聚乳酸(PLA)美国Natureworks公司在完善聚乳酸生产工艺方面做了积极有效的工作,开发了将玉米中的葡萄糖发酵制取聚乳酸,年生产能力已达1.4万吨。
日本UNITIKA公司,研发和生产了许多种制品,其中帆布、托盘、餐具等在日本爱知世博会被广泛使用。
我国目前产业化的有浙江海生生物降解塑料股份有限公司(规模5000千吨/年生产线),正在中试的单位有上海同杰良生物材料有限公司、江苏九鼎集团等。
4.聚羟基烷酸酯(PHA)目前国外实现工业化生产的主要为美国和巴西等国。
目前国内生产单位有宁波天安生物材料有限公司(规模2千吨/年),正在中试的单位有江苏南天集团股份有限公司、天津国韵生物科技有限公司等。
1 晶体结构PLA其主要合成方法有2种:乳酸的缩聚和丙交酯的开环聚合。
常用的高效催化剂为无毒的锡类化合物(如氯化锡和辛酸亚锡)。
乳酸或丙交酯在一定条件下聚合,都可得到全规、间规、杂规及不规则的PLA,依聚合单体的不同,可分为左旋聚乳酸(Z—PLA)、右旋聚乳酸(d—PLA)、内消旋聚乳酸(me—PLA)及外消旋聚乳酸(df—PLA)。
PLA只要PLA的立体规整度足够高,本体或溶液中的PLA就会结晶。
PLA结晶度、晶体大小和形态均影响制品的性能(如冲击强度、开裂性能、透明性等) 。
化学合成型生物降解高分子材料
第三阶段,在强度丧失之后,聚酯材料变成低聚酯的碎片,整体 重量开始减少。
第四阶段,低聚物进一步水解,变成尺寸更小的碎片,从而被吞 噬细胞吸收,或进一步水解为单体溶解在细胞中。研究表明, PLA植入在体内的完全吸收需要20个月到5年的时间。与PLA不 同,PGA首先在细胞外进行水解和酶促水解,所产生的碎片通 过吞噬作用进入细胞,在细胞内再水解成甘醇酸酯。PGA的完 全吸收需要6~17周。 第五阶段,PLA和PGA的最终降解产物,通过新陈代谢和呼吸作 业,被吸收或排出体外。
防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。如, PLA 薄膜正在用于三明治、饼干和鲜花等商品的包装上。还 有将PLA吹塑成瓶子用于包装水、汤、食品和食用油等方面的 应用。
20世纪80年代聚乳酸已成功用於人体骨材料,通过多年大量 的临床试验表明,聚乳酸作为植入人体内的固定材料,植入后 炎症发生率低、强度高以及手术后基本不出现感染等情况。目 前人体内使用的高分子材料需求日益增加,而且要求也越来越 高,用於人体内的高分子材料必须无毒、具合适的生物分解性、 良好的生物兼容性以及对某些具体的细胞有一定相互作用的能 力,而聚乳酸在性质上基本符合上述要求,虽然目前在医用领 域,采用的高分子材料主要有聚四氟乙烯。矽油和矽橡胶等材 料,但是这些材料还有许多不理想的地方,聚乳酸的出现,可 弥补这些产品的不足,将成为未来人体内使用的高分子材料的 主导品。
鉴于PLA和PGA的临床应用意义,大量研究集中在动物甚至人体 内,或者在模拟人体环境的缓冲溶液中,来观察聚酯是怎样在活性组 织内降解和吸收的。从化学的观点来看,PGA和PLA的降解可以分成 五个阶段,这五个阶段并不完全独立,有可能相互重叠。
第一阶段,水合作用。植入的PGA和PLA材料从周围环境中吸 收水分,这一过程要持续几天或数月,取决于植入材料的质量 和表面积。聚合物非晶区的水合作用比结晶区快。由于PGA
聚乳酸材料配方
聚乳酸(PLA)是一种可完全生物降解的聚酯类高分子材料,由乳酸缩聚制得。
其生产原料乳酸是一种天然有机酸,由可再生生物质资源中获得的糖通过发酵产生,其降解产物为二氧化碳和水,能够通过植物光合作用在自然界中实现绿色循环。
目前聚乳酸已被公认为最有前途的新型生态材料,其生产原料乳酸是一种天然有机酸,由可再生生物质资源中获得的糖通过发酵产生,其降解产物为二氧化碳和水,能够通过植物光合作用在自然界中实现绿色循环。
聚乳酸的第一代原料是玉米,其可溯源为:玉米一>淀粉一>糖一>乳酸一>聚乳酸。
只要含有淀粉、纤维素与半纤维素的天然生物质原料,都可用来生产乳酸,再经聚合生产聚乳酸。
为避免“与人争粮、与粮争地”,也可采用非粮作物(如木薯)作为原料,甚至稻草、秸秆等农业废弃物为原料来生产乳酸,进而生产聚乳酸。
此外,关于聚乳酸材料配方的问题,以一种可降解聚乳酸复合材料配方为例,其原料包括聚乳酸树脂、植物纤维、木棉纤维、聚乳酸粒子、海藻纤维、玻璃纤维、抗氧剂、润滑剂、成核剂和增韧剂等。
这种配方的环保性能好,制作工艺简单。
可生物降解高分子材料的分类及应用
可生物降解高分子材料的分类及应用可生物降解高分子材料是一类具有生物降解性能的高分子材料,它们能够在自然环境中通过微生物的作用或物理化学变化而分解降解,对环境影响较小。
下面将介绍可生物降解高分子材料的分类及应用。
一、分类:1. 天然高分子材料:包括纤维素、淀粉、蛋白质和天然胶等,这些材料具有良好的生物降解性能,并且可以再生、可持续利用。
2. 生物可降解聚合物:包括可降解聚酯、可降解聚乳酸、可降解聚酰胺等,这些材料是通过合成聚合物的方法制备而成,具有良好的生物降解性能,并可用于替代传统塑料制品。
3. 生物塑料:这是一类以可再生材料为原料制备的可降解高分子材料,如玉米淀粉、蔗糖等。
它们可以在一定条件下通过微生物的作用降解分解,对环境影响较小。
二、应用:1. 包装材料:可生物降解高分子材料可以广泛应用于包装领域,用于制备食品包装袋、包装盒等。
这些材料具有较好的可降解性能,降低了对环境的污染。
2. 农业与园艺:可生物降解高分子材料可以制备农膜和园艺覆盖膜,用于农业和园艺领域。
这些材料具有良好的降解性能,可避免农膜残留对土壤和植物造成的污染。
3. 医疗器械与生物医学材料:可生物降解高分子材料在医疗器械和生物医学材料领域具有广泛的应用。
例如可降解聚酸乳酸制备的缝合线、骨修复材料等,这些材料可以在体内发挥作用一定时间后降解,无需二次手术取出。
4. 纺织品:将可生物降解高分子材料应用于纺织品中,可以制备出具有良好降解性能的纺织品,如环保袋、生物降解纤维等。
这些纺织品可以在使用结束后通过自然环境的作用得到降解分解。
5. 环境修复:可生物降解高分子材料还可以应用于环境修复领域,例如用于污水处理、油污修复等。
这些材料具有良好的吸附性能和降解性能,可以对环境中的污染物起到清除和降解的作用。
可生物降解高分子材料具有良好的降解性能,对环境影响较小。
在包装、农业、医疗、纺织品和环境修复等领域具有广泛的应用前景。
随着环保意识的不断提高,可生物降解高分子材料将成为一种重要的替代材料,并推动可持续发展的进程。
乙醇酸(PGA)生产工艺介绍及下游应用
乙醇酸(PGA)生产工艺介绍及下游应用聚乙醇酸(PGA)介绍聚乙醇酸(PGA),又称聚羟基乙酸,是一种单元碳数最少、具有可完全分解的酯结构、降解速度最快的脂肪族聚酯类高分子材料。
PGA也是一种热塑性脂肪族聚酯,玻璃化转变温度温度为40℃,熔融温度约为225℃。
PGA对比与目前市场主流推广的PBAT、PLA等降解塑料而言,PGA目前价格相对比较高昂,其市场供应量较小。
PGA的主要性能特点以及应用1、全降解性以及良好的生物相容PGA为全生物降解材料,其降解条件温和,在水和微生物作用下,在自然环境中能实现快速降解,最终降解产物为二氧化碳和水。
除此之外,PGA还能在海水中进行降解,其降解产物对人体和环境皆是无害的。
因其降解性好,降解产物无害,PGA可以用于工业或家庭堆肥,PGA工业堆肥的降解速率与纤维素类似,120天后即可完全降解。
另外,PGA的海水降解性能优异,在28天时降解率与纤维素相当,达75.3%。
此外,PGA还是理想的生物降解诱发剂,通常将PGA与其他材料配合使用,以获得优异的综合性能。
比如利用PGA与PLA共混改性材料制备的一次吸管,不但具有耐水,耐油脂,耐高温的特点,其降解性能比纯的PLA产品更优异。
对于PGA具备良好的生物相容性,它在人体内可降解成水和二氧化碳,因此被广泛应用于医疗外科手术缝合线、骨折内固定、组织工程修复材料及药物控制释放体系等,是当前生物医药高分子的一个重要分支。
2、高机械强度PGA具有极高的机械强度,它的机械性能优于常见的通用塑料和其他的降解塑料,与工程塑料相当。
PGA具有较高的结晶度(45%~55%),其力学性能接近ABS等工程塑料,优于一些其他的可降解塑料。
据此,PGA可配合多种其它高分子材料用于挤出和注射成型,可同其它树脂共混制备聚合物合金材料,优良的机械性能有助于减量化。
3、高阻隔性PGA材料具有很好的汽/氧阻隔性能,是综合阻隔性最好的材料之一,其对水汽的阻隔性能较PLA高100倍,这与PE材料类似。
可生物降解高分子材料的分类及应用
可生物降解高分子材料的分类及应用
可生物降解高分子材料是一种可以被生物降解的高分子材料,具有较好的环保性能。
根据化学结构和供应商公布的数据,可生物降解高分子材料主要可分为聚酯类、聚乳酸类
和混合材料类。
聚酯类是指在聚合过程中使用环氧氯丙烷和环氧烷烃等化学品来进行交联反应,具有
较高的可生物降解性能。
这类材料可以广泛应用于生物包装、医疗器械和农业用品等领域。
实验结果表明,该类材料在极端环境下,如高温和湿度等,也能够保持良好的降解性能。
聚乳酸类是一种利用聚合物材料生物降解所需的微生物代谢过程来实现可生物降解的
高分子材料。
这些材料可以在生物体内被降解,释放出有益的物质,如营养物质、碳、氢
和氧气等。
此类材料已经被广泛应用于医疗、食品和塑料制品等领域,并通过了多项可持
续性实验。
混合材料类是指不同类型的聚合物材料混合而成的高分子材料。
这些混合材料可以使
可生物降解的性能更好。
例如,聚乳酸和聚己内酯可以混合制成具有良好降解性能的材料。
这类材料被广泛应用于包装材料、医用材料和农业用品等领域。
总之,可生物降解高分子材料是一种创新技术,在环保领域中具有较大的潜力。
随着
环保意识的日益增强,这种材料将会在更广泛的领域得到应用和发展。
毕业论文-生物降解高分子材料--聚己内脂合成的研究进展--黄敬新-广东石油化工学院
摘要综述了可生物降解高分子材料--聚己内酯的性质、合成与应用情况,重点介绍了由ε-己内酯合成聚己内酯所用的主要引发体系及聚己内酯与苯乙烯-丙烯腈共混相容性的研究进展。
聚己内酯作为一种可生物降解的聚酯材料,由于其具有在组织中可降解的能力,因此成为组织工程中可能被广泛应用的一种新材料。
文中对聚己内酯的一些特性和当前医学方面的应用进行了探讨,并指出在应用中存在的问题以及今后的研究方向。
关键词:生物降解;聚己内酯;合成;共混;应用AbstractThe properties, synthesis and application of biodegradable polymer material –polycaprolactone are reviewed. The main initiation systems of ε–caprolactone polymerization is introduced. It is summarized the advanced development of the compatibility study of blends of poly(-caprolacture) with copolyer of styrene and acryconitrile. Polycaprolactone as a biodegradable polymer, by virture of ability to naturally degrade in tissue, holds immense promise as a new type of material for application in tissue engineering. The article introduces some major properties of polycaprolactone and recently experimental progress in biomedical applications, it also points out the problems in application and the direction in the future.Key words: biodegradation; polycaprolactone; synthesis; blends; application引言近年来,人们对地球环境问题的关心日益高涨,不断增长的废弃高分子材料对环境的污染有日益加剧的趋势,而控制或限制高分子材料在各领域的消耗量显然是不现实的,因为它们具有优良的性能,在许多应用领域甚至是不可缺的。
2023年可生物降解聚酯行业市场需求分析
2023年可生物降解聚酯行业市场需求分析随着环境污染问题日益严峻,石化塑料产业受到越来越大的关注。
环保要求的不断提升,推动了可生物降解聚酯行业的发展。
可生物降解聚酯是指利用生物技术将天然有机物或废弃物转化为聚酯,且可以在自然环境下生物降解的新型高分子材料。
本文将通过市场需求分析,来探究可生物降解聚酯行业的市场前景。
一、产业趋势分析1、政策扶持随着全球对环境保护的重视,各国都加大了对可生物降解聚酯的政策扶持力度。
国内政策也出台了相关文件,支持可生物降解材料产业的发展。
例如《塑料污染治理攻坚战三年行动计划》、《全民减塑行动计划》等文件,都明确提到了可生物降解材料的发展方向和重要性。
2、需求增长随着消费市场的不断扩大,可生物降解聚酯也正在逐渐成为消费品市场的主流选择。
包装、医疗、纺织、建筑等多种领域都有可生物降解聚酯的应用。
消费者对环保产品的认可和需求不断上升,也在推动可生物降解聚酯的市场需求增长。
3、技术进步可生物降解聚酯技术的发展也在推动着行业的前进。
特别是生物技术的不断进步,使得可生物降解聚酯的制备更为高效、成本更低。
同时,可生物降解聚酯的性能和品质也在不断提升,为市场需求提供更多的选择和可持续的发展保障。
二、市场需求分析1、日用品市场可生物降解聚酯作为一种新型材料,对日常家居日用品的使用有着广泛影响。
例如,塑料袋、餐具、杯子等,可生物降解聚酯制品的应用可以有效减少废弃物、降低环境污染,得到广泛的市场认可和使用。
2、包装市场包装市场是可生物降解聚酯的主要市场之一。
可生物降解聚酯的使用可以显著减少通常用于包装的塑料的使用量。
例如,快递包裹、食品包装、饮料、化妆品等领域都有可生物降解聚酯的应用,市场需求也在不断上升。
3、医药市场医药行业也是可生物降解聚酯的主要市场之一。
其应用范围包括医用耗材、药品包装、医用纤维等。
其中,医用耗材是可生物降解聚酯的主要应用领域之一,因其可生物降解性、生物相容性、柔软性、透明度等优异性能而备受关注和重视。
可生物降解高分子材料的分类及应用
可生物降解高分子材料的分类及应用可生物降解高分子材料是一类能够被微生物分解为无害物质的高分子材料,具有生物可降解性和环境友好性。
它可以分为天然材料和合成材料两大类,根据材料来源的不同。
以下是对可生物降解高分子材料分类及应用的详细介绍。
1. 天然材料:天然材料是指从植物、动物和微生物等自然界中提取的有机材料。
常见的天然材料包括淀粉、纤维素、蛋白质等。
- 淀粉:淀粉是植物中常见的多糖,它由葡萄糖分子组成。
可生物降解的淀粉材料具有良好的生物可降解性和细菌降解性,适用于包装材料、农膜等领域。
- 蛋白质:蛋白质是生物体内功能最为复杂的有机化合物之一,它由氨基酸分子组成。
可生物降解的蛋白质材料在医疗领域具有广阔的应用前景,如可生物降解的缝线材料、药物控释材料等。
2. 合成材料:合成材料是通过化学合成方法制得的材料,常见的合成材料有聚乳酸、聚酯类、聚酰胺类等。
- 聚乳酸(PLA):聚乳酸是从可再生植物资源中提取的乳酸聚合而成的高分子材料。
聚乳酸具有良好的生物可降解性和可加工性,广泛应用于一次性餐具、土壤覆盖膜等领域。
- 聚酯类:聚酯类材料如聚丁二酸丙烯酯(PBS)、聚己内酯(PCL)等,具有良好的可生物降解性和降解速度可调性,适用于农膜、医疗材料等领域。
可生物降解高分子材料具有环境友好、可持续发展等优势,在包装、农业、医药等领域得到了广泛应用。
它不仅可以减少对环境的污染,还能促进资源循环利用,为解决环境污染和资源问题提供了可持续发展的解决方案。
可生物降解高分子材料仍面临一些挑战,如改善材料的性能和稳定性、提高制备工艺等。
未来需要进一步开展研究,以提高可生物降解高分子材料的应用性能和使用范围。
pla成分
pla成分PLA(聚乳酸)是一种由乳酸单体通过聚合制备的可生物降解高分子材料,它具有优异的可生物降解、可持续性和来源可再生等特性。
由于这些特性,PLA在包装、医疗、农业等领域受到广泛应用。
PLA的化学结构PLA是一种聚酯类高分子,其化学结构中包含有乳酸单体(L-和D-乳酸)的重复单元。
乳酸分为L-和D-两种异构体,其中L-乳酸又称为左旋乳酸,是一种自然形成的优势异构体,而D-乳酸则相对较少存在于自然界中。
PLA的性质与应用PLA具有低毒性、生态友好、可生物降解等特性,因此在许多领域都得到了广泛应用。
1.包装领域2.医疗领域PLA具有良好的生物相容性和可生物降解性质,包括可吸收缝合线、骨支架、输液袋、手术器械等均可采用PLA作为材料。
3.生活用品PLA可加工成各种生活用品,例如杯子、餐具、笔套、牙刷等。
与传统的合成塑料相比,PLA不会释放有害物质,在使用过程中更加安全健康。
4.纺织领域PLA可以采用纺织工艺制备成纤维材料,用于生产休闲服装、运动用品、床上用品等。
5.农业领域PLA可以用于生产生物填料、盆栽培育土、包装袋等农业用品,得到了广泛的应用。
PLA的制备方法PLA的制备方法主要有两种:乳酸环合聚合法和乳酸开环聚合法。
1. 乳酸环合聚合法乳酸环合聚合法是通过L或D乳酸单体的缩聚反应制备PLA的方法。
该方法需在惰性气体(如氮气)或真空条件下进行,以避免乳酸分解或氧化。
该方法可以使用金属盐催化剂(如锡2-乙酸盐)、碱催化剂(如钠乙醇)、有机催化剂(如4-二甲基氨基吡啶)等。
PLA的特性(如成分、分子量、分子结构等)受各种反应条件的影响。
乳酸开环聚合法是使用可生物降解聚酯(如PLA)、聚酰胺、环氧树脂、丙烯酸树脂、甲基丙烯酸甲酯等材料作为开环剂和催化剂,通过环氧开环反应或酸酐开环反应形成PLA。
这种方法可以在常压下或不同铃合激活剂的作用下进行,且反应条件温和。
在PLA的生产过程中,通常采用过程控制来控制其品质。
聚乳酸
新型包装材料——聚乳酸一、简介聚乳酸(polylactic acid, 简称PLA)是以乳酸为单体化学合成的,也称聚丙交酯,是具有可生物降解的高分子聚酯材料,其分子式为(C3H4O2)n。
聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。
由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,还具有聚苯乙烯(PS)相似的光泽度和加工性能,因此具有广阔的市场前景,用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。
美国和日本已开始工业化生产PLA。
意大利一公司使用美国生产的天然聚交酯(PLA)设计和制造新鲜农产品包装材料,这种新的包装材料将在欧洲的零售商店使用。
天然的PLA 是一种生物基的聚合物,由100%来自玉米淀粉的细菌发酵而成。
PLA不仅具有较高的强度和透明度,而且为零售商提供了包装天然产品使用天然基包装材料的机会。
二、PLA材料性能聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)使用可再生的植物资源(如玉米)所提出的淀粉原料制成。
淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。
其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,是公认的环境友好材料。
(2)机械性能及物理性能良好。
聚乳酸(PLA)含有有序排列的光学活性中心,其结晶性和刚性较高,制成的薄膜抗张强度是聚乙烯薄膜的数倍。
PLA还具有最良好的抗拉强度及延展度,适用于吹塑、热塑等各种加工方法,加工方便。
也可以采用各种普通加工方式生产,与目前广泛所使用的聚合物有类似的成形条件,此外它也具有与传统薄膜相同的印刷性能。
生物可降解聚酯材质开发方案(二)
生物可降解聚酯材质开发方案一、实施背景随着人们对环境保护意识的提高,传统塑料制品的污染问题日益严重,引起了全球的关注。
每年,大量的塑料垃圾进入自然生态,对土壤、水源、生物多样性都造成了不可逆的伤害。
为了解决这一问题,开发生物可降解聚酯材质成为了当前的重要任务。
它既可以满足日常用品的强度和耐用性要求,又可以实现生物降解,从根本上解决塑料污染问题。
二、工作原理生物可降解聚酯材质主要是利用微生物或酶的水解作用,将高分子聚合物分解为低分子化合物或单体。
这些微生物或酶可以是自然界中存在的,也可以是经过基因工程改造的。
通过控制反应条件,如温度、湿度、pH值和反应时间,可以得到不同分子量、不同性能的生物可降解聚酯。
三、实施计划步骤1.确定目标:首先明确开发的产品类型、性能指标和可降解性能的要求。
2.微生物或酶的选择与优化:根据目标,选择合适的微生物或酶进行试验,优化其水解条件和反应速率。
3.合成与制备:在实验室条件下,利用微生物或酶的水解作用合成生物可降解聚酯。
4.性能测试:对制备的生物可降解聚酯进行性能测试,包括力学性能、热稳定性、水解速率等。
5.优化生产工艺:根据性能测试结果,对生产工艺进行优化,提高产品的质量和产量。
6.中试生产:在实验室条件下进行中试生产,评估生产规模和经济效益。
7.工业化生产:根据中试结果,设计并建设工业化生产线,实现生物可降解聚酯的大规模生产。
四、适用范围生物可降解聚酯材质适用于以下领域:1.包装材料:取代传统塑料包装,降低环境污染。
2.一次性餐具:取代不可降解的一次性塑料餐具,减少白色污染。
3.3D打印材料:提供环保型的3D打印材料,减少废弃塑料的处理难度。
4.纺织品:用于制作环保服装和家居用品,提高环保性能。
5.建筑材料:用于制作环保建筑部件,如可生物降解的塑料门窗等。
五、创新要点1.利用微生物或酶的水解作用,实现生物可降解聚酯的合成与制备。
2.通过优化反应条件和生产工艺,提高产品的性能和产量,降低生产成本。
生物可降解材料
与以上两类材料的降解行为相比,人工合成高分子的降解速率有较大的变化。短的为一个月左右,长的可以达到几年;降解模式和特性也有着更为丰富的内容。人工合成高分子主要有脂肪族聚酯包括聚乳酸(PLA)、聚乙醇酸(PGA)、聚己内酯(PCL)、聚酸酐以及它们之间的共聚物等。在降解速率方面,聚酸酐的降解速率普遍高于聚酯[18 ] ;聚酯中,材料的降解速率随其亲水性的增加而增快,其中聚乙醇酸降解速率最快,约为一个月左右,聚乳酸次之,大约需要三到六个月,聚己内酯最慢,需要几年左右[19 ]。在降解模式方面,聚酯与聚酸酐也明显不同。聚酸酐的降解先从材料的表面进行,在表面部分材料被降解后,再逐渐深入到内层[20~24 ] ;聚酯则是本体降解行为,降解同时发生在材料的外部和内部[25~27 ]。此外,就聚酯材料而言,线形分子和网状分子材料的降解特性也不一样。线形材料的降解速率与重量损失不成线形关系,材料的机械强度在其失重很小时就发生大幅度的衰减;相比较而言,网状材料的降解行为更为理想一些,材料的机械强度的衰减与其重量损失成近似或良好的线形关系[28~32 ]。
可生物降解的材料有天然高分子、生物合成高分子、人工合成高分子、生物活性玻璃、磷酸三钙等。天然高分子均为亲水性材料,如胶原、明胶、甲壳素、淀粉、纤维素、透明质酸等,它们在人体内的降解速度与材料在人体生理环境下的溶解特性有关。例如明胶分子能够溶于与体液相似pH值为714的生理盐水中,因而必须先进行交联才能作为材料在人体中使用[4~6 ] ,其交联产物在人体内降解2溶解的速度很快,几天内就可被人体完全吸收。与此相对应,在正常生理环境下不溶解的天然高分子,如甲壳素(在酸性环境下溶解) [7 ] ,其降解速率就要慢得多。
聚乳酸的分类及用途
聚乳酸的分类及用途
聚乳酸(PLA)是一种生物降解性的高分子材料,具有良好的生物相容性和性能稳定性。
从化学结构上来看,聚乳酸是一种聚酯,可分为L、D和DL型,其中L型聚乳酸最为常用。
聚乳酸可以根据其旋光异构体进行分类,主要有左旋聚乳酸(PLLA)、右旋聚乳酸(PDLA)、外消旋聚乳酸(PDLLA)及内消旋聚乳酸(meso-PLA)。
具有不同比例手性基团的聚乳酸,其玻璃化转变温度、熔融温度、模量、结晶行为和降解性能等有所不同。
聚乳酸的用途广泛,主要包括以下几个方面:
1.医学领域:聚乳酸在医学领域中具有广泛的应用,可以用于制造缝合线、拟合板等医疗器械。
相较于传统的合成材料,聚乳酸具有更好的生物相容性和生物降解性,能够减少对人体的伤害和环境的污染。
此外,聚乳酸还可以作为药物运输材料、组织工程支架材料、骨修复材料等。
2.纤维制品:聚乳酸纤维具有很好的特性,如柔软、透气、吸湿、防静电、纤维强度高等。
可以制造成不同用途的纤维制品,如无纺布、过滤材料、服装、手套等。
3.环保领域:聚乳酸具有优异的环保性能,是一种可生物降解的高分子材料。
可以制造成塑料薄膜、玩具、包装材料等物品,节约资源、减少对环境的影响。
此外,聚乳酸还可以用于制造农用地膜,用来弥补传统地膜易碎且不可降解的缺陷。
4.其他用途:聚乳酸还可用于制造慢释肥料,实现农业领域的可持续发展。
此外,聚乳酸还可用于汽车行业的配件工程材料、建筑用绳索等领域。
总之,聚乳酸是一种重要的生物降解性材料,具有广泛的应用前景。
随着人们对环保和可持续发展的日益重视,聚乳酸的应用范围将不断扩大,为人类生活带来更多便捷和舒适。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚磷酸酯(polyphosphoester)
聚磷酸酯是把磷酸酯接到聚氨酯上,生成保持聚氨酯固有机械性能的 可降解材料。聚氨酯被用作与血液接触的生物材料、药物的控制释放。 通过把磷酸酯接到聚氨酯上,可提供一种即保持聚氨酯固有机械性能 又可降解的生物材料。 在生理条件下,聚合物的磷酸酯键易断裂,经水解生成磷酸盐、氨、 乙醇、二氧化碳。聚磷酸酯制剂的药物释放机理是扩散、溶胀、降解 的结合.Wenbin制备了适合腹腔给药的治疗卵巢癌的聚磷酸酯制剂, 该制剂延长了抗肿瘤试剂在体内的释放时间,提高了抗肿瘤试剂的生 物利用度。
线性脂肪族聚酯,有较高的结晶度,形成结晶状聚合 物,结晶度一般为40% ~80%,熔点在225℃左右, 不溶于常用的有机溶剂,只溶于像六氟代异丙醇这样 的强极性有机溶剂。 应用:医用缝合线、药物控释载体、骨折固定材料、 组织工程支架、缝合补强材料。
聚己内酯 (PCL)
•生物相容性
在体内与生物细胞相容性很好,细胞可在其基架上正常生长,并可降
5.局部植入给药是聚酸酐控释制剂应用的主要形式。主要作 为骨架型控释材料,目前已有人用其制备阿司匹林、肌红蛋 白、胰岛素植入片。这表明此类聚合物对分子量大小不同的 药物都具有适应性。释药先有一个时滞,以后速度近于恒定。
如:用热熔法和溶剂挥发法制备了聚酸酐-胰岛素纳米球, 用于糖尿病治疗。动物实验结果表明,尽管经过两步加工成 球过程,胰岛素仍保持活性,并能在3-4天维持正常糖水平。
聚乳酸的直接合成是相对于间接开环法发展起来的,它比间接法有许多优点,不仅可以避开二步 法繁琐的中间过程,而且可大大降低成本,这对于聚乳酸的工业化应用有很大的推动作用。我国开 展这方面的研究比较晚,报道的文献多数集中在传统工艺的探索,且得到产物相对分子质量不高, 极大限制了聚乳酸的实际应用。期望多途径的研究聚乳酸的合成,通过化学合成法得到较高相对分 子质量的聚乳酸,同时进一步开发低相对分子质量聚乳酸的用途,为聚乳酸的工业化生产和大规模 应用创造条件。 降低成本,提高竞争力是今后聚乳酸工业发展需要解决的问题。预计几年后聚乳酸价格可望达到与 所有热塑性树脂竞争的水平。
乳酸/羟基乙酸共聚物也主要用作注射用微 球、微囊以及埋植剂载体材料。
乙醇酸共聚物 (PLGA)
• 无定型聚合物,玻璃化转变温度为45~55℃, 特性粘数IV(dl/g)范围:0.10~2.0,分子量 0.5~30万。
• 可用作医用手术防粘连膜,注射用微胶囊、微 球及埋植剂等缓释制剂的辅料,同时可用作组 织工程细胞培养的多孔支架,孔隙率、孔径和 降解速率可调。
含磷聚合物
• 聚磷腈(polyphosphazene)
结构及反应机理:
RONa
Cl Cl
P
NN
Cl
Cl
PP
Cl N Cl
Cl
P=N n
Cl
1. RONa 2. RNH2
RNH2
OR P=N
n OR
OR P=N
n NHR
NHR P=N
n NHR
1.聚磷腈具有独特的磷-氮骨架和显著的合成多样性,侧 链降解而不是主链降解,水解最终产物为磷酸、氨、氨基酸和 乙醇等无毒物质。
熔融缩聚法
PLA的性质
聚乳酸能溶于有机溶剂,易加工。其降解是 水解反应,降解速度与分子量和结晶度有关。分 子量越大降解越慢。降解首先发生在无定型区, 约21天后,结晶区开始降解,50天后结晶区消失。
1 乳酸与乙醇酸共聚物 2 聚乳酸与聚乙二醇嵌段共聚物 3 聚乳酸及其共聚物在药物控释系统的应用
聚酯
发展历史
• 1989年 日本钟纺公司与岛津公司合作开发PLA纤维 1994年开发出lactron纤维 1998年开发出用此纤维制造的服饰产品 • 三井化学 固相缩聚直接合成PLA低聚物 在惰性气体中得到分子质量较高的
PLA • 帝人公司 纤维级耐热PLA Biofront 熔点210℃ • 德国STFI研究所和Leibniz聚合物研究所 以 PLA为原料的纺黏非织造布 • 国内 PLA 的生产技术仍处于起步阶段 2010年 南开大学 可代替金属材料的
聚酸酐类分类:
1.具有优良的生物相容性和表面溶蚀性
2.表面酸酐键的高度水不稳定性和疏水性阻止了水分的进 入,聚酐主要是进行表面侵蚀
3.聚酐主要由二元羧酸单体熔融缩聚制得,分子量常在 2000-200000之间。
4.药物释放中得到应用的:聚[1,3-双(对羧基苯氧基)丙烷 -癸二酸] ,聚(芥酸二聚体—癸二酸) 、聚(富马酸—癸二 酸) 等
使用后能被自然界 中 微生物完全降解 ,最 终生成二氧化碳和水
乳酸
聚乳酸
乳酸
CO2+H2O
药物释放材料
组织工程材料 (组织再生的支架与模板,聚合物材料在组织中具有诱导组
织再 生、调节细胞生长和功能分化的的材料。即相当于人工细胞外基质。
骨折固定件
其他
研究展望
虽然聚乳酸的合成工艺日益完善,但还有许多方面值得研究,比如催化剂体系及聚合机理的研究 仍是一个重要课题。研制无毒、高活性、反应条件温和、聚合物相对分子质量及分布可控的催化剂 尤其是活性聚合催化剂仍是今后研究的重点。另外,降低丙交酯的成本仍值得进一步研究。当丙交 酯的成本降低到一定程度后,聚乳酸将成为通用降解塑料的首选。
其他可生物降解聚合物
03
聚原酸酯
生物降解聚合物多应用于控制 02 释放制剂、人工器官、组织工 聚酸酐类
程。常用剂型为植入剂、皮下 注射或静脉注射用的微粒、微01聚酯类球、微等。04含磷聚合物
分类
聚酯类
聚乙醇酸(PGA)
来源:α-羟基酸,即乙醇酸 结构单元:-O-CH2-CO 理化性质:具有简单规整的线性分子结构,是简单的
• 2。把共聚物与药物的混合溶液或其他干燥物通过溶剂蒸发法等方法分散到水中, 即可得到药物的聚合物胶束。载药量与聚合物与药物间的相容性有关,相容性越好, 载药量越高。注意要控制共聚物中PLA的比列,当PLA比例超过70%时,共聚物较 难形成稳定的胶束。
表面活性剂一般为具有亲水与疏水基 团的有机两性分子,可溶于有机溶液 和水溶液。 • 3.PEG/PLA嵌段共聚物和表面活性剂相似,存在一形成胶束的临界浓度, 叫临界聚集浓度(CAC),但其数值远低于小分子表面活性剂的CAC值。
2.可通过侧基结构的变化和组合,调节聚磷腈降解的速度 从而控制药物释放速率,还可通过生物大分子及其组合体在聚 磷腈表面的固定化,达到生物功能化和智能化的目的。
如:聚(二羧基苯酚磷酸盐) 可使药物分子在温和环境下 包进聚磷腈微球中。 含羟苯甲酸和甲氧基、乙氧基侧基的聚磷腈被用作pH敏 感的水凝胶,通过改变两个侧基的比例可控制聚磷腈的 pH敏感性。
聚己内酯生产方法
聚己内酯应用领域:
药物缓释包衣
口罩
· 可控释药物载体、细胞、组织培养基架
· 完全可降解塑料手术缝合线
形状记忆夹板
· 高强度的薄膜丝状成型物
· 塑料低温冲击性能改性剂和增塑剂
· 医用造型材料、工业、美术造型材料、玩具、有机着色剂、热
复写墨水附着剂、热熔胶合剂。
几内酯/D,L-乳酸共聚物:兼具聚D,L-乳酸的渗透性 好和聚-已内酯的较高的玻璃化转变温度(60-70℃)的特 点,有较快的生物降解性,适于药物的控制释放。
聚酰胺
已报道的聚酰胺类物质: 聚谷氨酸、聚谷氨酸/聚谷氨酸乙酯共聚物、胶原、明胶等。 用于传递的药物: 抗体、纳1曲酮、黄体酮、睾丸素、前列腺素、甾体等。
聚原酸酯
O
OR
O
聚原酸酯
• 多元原酸或多元原酸酯与多元醇在无水条件下缩合 形成原酸酯键而制得的。
制备方法
① 二元醇与原酸酯或原碳酸酯经酯交换反应合成POE ② 双烯酮与多元醇反应制备POE ③ 烷基原酸酯与三元醇聚合,所用原酸酯主要有三甲基原 乙酸酯、三乙基原乙酸酯。
1.疏水性聚合物,不溶于水,也不发生溶胀。 2.降解是由于原酸酯键的水解引起的,产物为水溶性小分子, 易被生物体代谢掉。 3.毒性低,局部有刺激,FDA审批正在进行中。 4.POE基药物缓释体系,制成膜状、小片,用于长效释放苯 并噻嗪,二氯吩和胰岛素等药物;植入眼腔内,释放药物治 疗眼疾;还可以制成骨钉等短期体内植入物;POE的载药微 包囊与纳米包囊用于对癌症器官的靶向治疗。
• 6. PEG/PLLA嵌段共聚物胶束作为药物载体,可以有效的增溶疏水性药物,提 高药物的生物利用度,还可大大降低药物的毒副作用,增强药物的靶向作用
1 可降解塑料制品 2 药物释放材料
聚乳酸及其共聚物的应用
3 组织工程材料 4 骨折固定件 5 其他
可降解塑料制品
PLA对比塑料的优点
• 生物可降解性良好
• 4. PEG/PLA嵌段共聚物胶束水分散液稳定性好,受PH值影响较小,但在 较高浓度的电解质下也会发生聚沉。PEG/PLA嵌段共聚物胶束水分散液冷 冻干燥后能重新分散在水中形成胶束,胶束尺寸及粒径分布与冻干前相近, 因此,适用于制备冻干注射粉制剂。
• 5.PEG/PLLA嵌段共聚物的结晶性较强,降解速率和药物释放速率较慢,而 PEG/PDLLA中的PDLLA相是非晶态,具有较高的降解速率和药物释放速率, 因此用来做药物的纳米载体。
含有己内酯的双亲性嵌段共聚物:泊洛沙姆、PEG,能 够组装形成胶束,是疏水性药物的优良载体。
聚羟丁酸酯(PHB)
结构单元:-OCH(CH3)CH2CO硬而脆酶解,产物为3-羟基丁酸,为人体内源性成分,具有 良好的相容性。 PHB/聚羟戊酸酯:近无定型,适用制备整体溶蚀的骨架片 剂。
聚酸酐类
聚酸酐是一类新的可生物降解的高分子材料, 具有优良的生物相容性和表面溶蚀性,在医学领 域正得到愈来愈广的应用。
骨折内 固定钉
聚乳酸类聚合物
•
•
聚乳酸的结构
聚乳酸的制备方法
• 丙交酯的开环聚合和乳酸的直接缩聚 • 丙交酯的开环聚合是主要的聚合方法