中考数学复习动点问题的解题技巧

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学复习动点问题的

解题技巧

This model paper was revised by the Standardization Office on

December 10, 2020

在运动中分析在静态中求解

动态几何问题已成为中考试题的一大热点题型.这类试题以运动的点、线段、变化的角、图形的面积为基本条件,给出一个或多个变量,要求确定变量与其他量之间的关系,或变量在一定条件为定值时,进行相关的几何计算和综合解答,解答这类题目,一般要根据点的运动和图形的变化过程,对其不同情况进行分类求解,本文以一道中考题为例,谈谈此类问题的思路突破与解题反思,希望能给大家一些启发.

题目如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于点C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于点Q,作点P、Q关于直线OC 的对称点M、N.设点P运动的时间为t(0

(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示).

(2)设△MNC与△OAB重叠部分的面积为S.

①试求S关于t的函数关系式;

②在直角坐标系中,画出S关于t的函数图象,并回答:S是否

有最大值若有,写出S的最大值;若没有,请说明理由.

一、探求解题思路

1.利用基础知识轻松求解

由题意不难发现第1问是对基础知识的考查,有多种方法,考生可自行选择解法,

简解1 可通过作辅助线,过点C作CF上x轴于点F,CE⊥y轴于点E,由题意,易知四边形OECF为正方形,设正方形边长为x.由比例式求出

点C的坐标(4

3

4

3

).

简解2 由点A、B的坐标可得直线AB的解析式y=-2x+4;由OC是∠AOB的平分线可得直线OC的解析式y=x;联立方程组轻松解得点C的坐

标(4

3

4

3

).

关于求点M、N的坐标,是对相似及对称性的考查,根据相似可得P(0,

2t),Q(t,0),根据对称性可得M(2t,0),N(0,t).这样,第1问轻松获解.

2.动静结合找界点,分类讨论细演算

第2问的第一小题中,所求函数关系式为分段函数,需要分类讨论,这是本题的难点之一;而关键是动静结合找界点,得出t=1时重叠部分的关系会发生变化,这是本题的难点之二.解答时需动手画出草图,随着点M、N的位置的变化,△MNC的位置也随之发生变化,△MNC与△OAB重叠部分的面积S也发生变化.S可能会存在两种情形:①△OAB将△MNC全部覆盖;②△OAB将△MNC部分覆盖;点M从点O出发运动到点A时,即t=1时重叠部分的关系会发生变化,函数关系式也随之改变.

由t=1这个界点确定两个范围,以此界值进行分类讨论:

当0

S△CMN=S四边形CMON-S△OMN.

结合点C的坐标(4

3

4

3

),可得

S△CMN=-t2+2t;

当1

另一个关键是要用t的代数式表示D点的横坐标,即△BDN的高,这是本题的难点之

三.

由M(2t,0),N(0,t)可先用t的代数式表示直线MN的解析式y=-

1

2

x+t.

再结合直线AB的解析式y=-2x+4,联立方程组,解出D点的横坐标

为82

3

t

,则重叠部分面积为

S△CDN=S△BDN-S△BCN

综上所述,

由函数解析式及其自变量的取值范围可画出函数图象,观察图象可知,

当t=1时,S有最大值,最大值为1.

二、规范解答问题

(1)如图2,过点C作CF⊥x轴于点F,CE⊥y轴于点E,由题意,易知四边形OECF为正方形,设正方形边长为x.

∴OP=2DQ.

∵P(0,2t),∴Q(t,0).

∵对称轴OC为第一象限的角平分线,

∴对称点坐标为:M(2t,0),N(0,t).

(2)①当0

当1

设直线MN的解析式为y=kx+b,将M(2t,0)、N(0,t)代入,得

综上所述,

②画出函数图象,如图5所示:

观察图象可知,当t=1时,S有最大值,最大值为1.

三、解题反思

1、关键的一步

本题在突破第2问时,能否得出t=1时重叠部分的关系会发生变化,这是决定性的一步,否则就不知该如何分类讨论,解题就难以找到前进的方向.

2、解题难点

解决本题的主要困难首先是分类讨论,依据题意知点P运动的时间为

t(0

3、解题收获

解决此类与运动、变化有关的问题,重在运动中分析,变化中求解.首先,要把握运动规律,寻求运动中的特殊位置,在“动”中求“静”,在“静”中探求“动”的一般规律.

其次,通过探索、归纳、猜想,获得图形在运动过程中是否保留或具有某种性质,要用运动的眼光观察出各种可能的情况分类讨论,较为精确地将每种情况一一呈现出来.再次,要学会将动态问题静态化,即将动态情境化为几个静态的情境,从中寻找两个变量间的关系,用相关字母去表示几何图形中的长度、点的坐标等,很多情况下是与三角形的相似和勾股定理等联系

相关文档
最新文档