复变函数论第三版钟玉泉第五章
复变函数钟玉泉讲义大学复变函数课件
复变函数钟玉泉讲义大学复变函数课件复变函数第一节解析函数的概念及C.-R.方程1、导数、解析函数定义2.1:设是在区域内确定的单值函数,并且。
如果极限存在,为复数,则称在处可导或可微,极限称为在处的导数,记作,或。
定义2.2:如果在及的某个邻域内处处可导,则称在处解析;如果在区域内处处解析,则我们称在内解析,也称是的解析函数。
解析函数的导(函)数一般记为或。
注解1、语言,如果任给,可以找到一个与有关的正数,使得当,并且时,,则称在处可导。
注解2、解析性与连续性:在一个点的可导的函数必然是这个点的连续函数;反之不一定成立;注解3、解析性与可导性:在一个点的可导性是一个局部概念,而解析性是一个整体概念;注解4、函数在一个点解析,是指在这个点的某个邻域内解析,因此在此点可导;反之,在一个点的可导性不能得到在这个点解析。
解析函数的四则运算:和在区域内解析,那么,,(分母不为零)也在区域内解析,并且有下面的导数的四则运算法则:。
复合求导法则:设在平面上的区域内解析,在平面上的区域内解析,而且当时,,那么复合函数在内解析,并且有求导的例子:(1)、如果(常数),那么;(2)、,;(3)、的任何多项式在整个复平面解析,并且有(4)、在复平面上,任何有理函数,除去使分母为零的点外是解析的,它的导数的求法与是实变量时相同。
2、柯西-黎曼条件可微复变函数的实部与虚部满足下面的定理:定理2.1 设函数在区域内确定,那么在点可微的充要条件是:1、实部和虚部在处可微;2、和满足柯西-黎曼条件(简称方程)证明:(必要性)设在有导数,根据导数的定义,当时其中,。
比较上式的实部与虚部,得因此,由实变二元函数的可微性定义知,,在点可微,并且有因此,柯西-黎曼方程成立。
(充分性)设,在点可微,并且有柯西-黎曼方程成立:设则由可微性的定义,有:令,当()时,有令,则有所以,在点可微的。
定理2.2 设函数在区域内确定,那么在区域内解析的充要条件是:1、实部和虚部在内可微;2、)和在内满足柯西-黎曼条件(简称方程)关于柯西-黎曼条件,有下面的注解:注解1、解析函数的实部与虚部不是完全独立的,它们是方程的一组解,它们是在研究流体力学时得到的;注解2、解析函数的导数形式更简洁:公式可避免利用定义计算带来的困难。
复变函数论_钟玉泉_第三版_高教_答案_清晰版
n 1
z z 0 nM n1 , 故对 0 ,
n
只需取
nM
n 1
,于是当 z z 0 时,就有 z n z 0 .
(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此 f ( z ) 在
z 平面上除使分母为零点外都连续.
arg z, z 0 13.证明:令 f ( z ) arg z 0, z 0
2
2
z 3 z1 为实数. z 2 z1
10.解:(1)令 z x yi t (1 i) ,得 x y ,即曲线为一,三象限的角平分线. (2)令 z x yi a cos t ib sin t , 得 x a cos t , y b sin t ,则有
2
.
因而对任何自然数 p ,也有 z n p z 0
2
.
利用三角不等式及上面两不等式, 当 n N 时,有
z n p z n z n p z 0 z n z 0
充分性 :设对 0, N ( ) 0 ,当 n, n p N 时,有 z n p z 0 ,由定义 得
12.证明:(1)首先考虑函数 f ( z ) z n 在 z 平面上的连续性. 对复平面上任意一点 z 0 ,来证明 lim z n z 0
z z0 n
不妨在圆 z M z 0 1 内考虑. 因为 z n z 0 z z 0 ( z
n n 1
z
n2
z0 z0
3
2k
(k 0,1,2,)
1 i 2
复变函数论_钟玉泉_第三版_高教_答案_清晰版
z0
, 因此总可以选取 Argzn 的一个值 arg z n . 当
n N 时,有 arg z n 0 ( ) ,因 0 时, ( ) 0 .因而, 总可以选取 ,
使 ( ) 小于任何给定的 0 , 即总有 arg z arg z 0 . 因此 f ( z ) 在 z 0 连 续. 综上讨论得知, f ( z ) 除原点及负实轴上的点外处处连续. 14. 证 明 : 由 于 f ( z ) 的 表 达 式 都 是 x, y 的 有 理 式 , 所 以 除 去 分 母 为 零 的 点
y 0 y x 1 0 arg( z 1) 0 arctan (4)由 4 得 x 1 4 即 2 x3 2 x3 2 Re z 3
可知 z 点的轨迹是一梯形(不包括上,下边界);不是区域. (5) z 点的轨迹是以原点为圆心,2 为半径以及(3,0)为圆心,1 为半径得两闭圆的 外部.是区域. (6) z 点的轨迹的图形位于直线 Im z 1 的上方(不包括直线 Im z 1 )且在以原点 为圆心,2 为半径的圆内部分(不包括圆弧);是区域. (7) z 点的轨迹是 arg z
2
2
z1 z 2 z1 z 2
2
2
2( z1 z 2 )
2
2
几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第 4 题知 z1 z 2 z1 z 2 由题目条件
2 2
2( z1 z 2 )
2
2
z1 z 2 z 3 0 知 z1 z 2 z 3
z 0 , f ( z ) 是连续的,因而只须讨论 f ( z ) 在 z 0 的情况.
复变函数论第5章第2节
并且只有当f ( z) eia z 时等号才成立.
4 极点
1) 定义 如果洛朗级数中只有有限多个 z z0 的
m 负幂项, 其中关于 ( z z0 ) 的最高幂为 ( z z0 ) ,
1
即
f ( z ) cm ( z z0 )m c2 ( z z0 )2 c1 ( z z0 )1
z a
z a
由函数极限的性质, f ( z)在点a的某去心邻域内有界;
"(3) (1)" 设 f ( z) M , z K {a} 考察f ( z)在点a的主要部分 c n ( z a) n n 1 1 f ( ) c n d , (n 1, 2,...) ( n ) 1 2 i ( a) 而为K内的圆周 a , 可以充分小, 于是由 f ( ) 1 1 M c n d 2 ( n ) 1 ( n ) 1 2 a 2
2)极点的判定方法
(1) 由定义判别
f ( z ) 的洛朗展开式中含有 z z0 的负幂项为有 限项.
(2) 由定义的等价形式判别
g( z ) 在点 z0 的某去心邻域内 f ( z ) ( z z0 ) m
其中 g ( z ) 在 z0 的邻域内解析, 且 g ( z0 ) 0. (3) 利用极限 lim f ( z ) 判断(但不知道阶数) .
3) 如果f ( z )在点a主要部分为无穷多项,则称a为
f ( z ) 的本质奇点.
sin z z2 z4 z 2n n , 如: 1 (1) z 3! 5! (2n 1)!
0 点. z
2 n 2 sin z 1 1 z 2 z n ( 1) , 3 2 z z 3! 5! (2n 1)!
复变函数四五六七章总复习钟玉泉
若a为f (z)的孤立奇点,则在K {a}内可展成Laurent级数
f (z) cn (z a)n cn (z a)n
cn (z a)n
n
n1
n0
f (z)在a的主要部分 f (z)在a的正则部分
f (z)在点a的奇点性质体现在K内收敛于一解析函数
定义5.3 设a为f (z)孤立奇点
(1) fn (z)(n 1, 2,...)在区域D内解析;
(2) fn (z)在D内内闭一致收敛于函数f (z)
n1
f (z) fn(z).
n1
则 (1) 函数f (z)在区域D内解析;
(2) f ( p) (z)
f
( n
p)
(
z),
(
z
D,
p
1,
2,
).
n1
第二节 幂级数
1. 幂级数的敛散性 阿贝尔(Abel)定理
i z
1,
z 1. 2
f
(z)
(z
1 i)(z
2)
1 2
i
z
1
i
2
1
z
1 2i
1 z1
i z
1 21
2z
1 2
i
(i)n zn1
n0
n0
zn 2n1
1 2
i
n0
( i )n z n1
1 2
i
n0
zn 2n1 .
(2) 在 2 z 内,
i 1, 2 1
1ezຫໍສະໝຸດ n01 n!zn ,
所以
1
z2e z
z21
1 z
1 2! z 2
1 n! z n
复变函数答案 钟玉泉 第五章习题全解
(z 2 1)2 4(z i)2 n0
2i
1 4(z i)2
(1)n (n 1)( z i)n )n
n0
2i
(0
z i
2)
1
(2) z 2e z
1 z n2
1 1 (0 z )
n0 n!
n2(n 2)! z n
e e e (3) 令 1 ,则 z
1
1z
1
2
(1 ...) 2
f (z) w0 解 析 , 即 为整函数 . 又 因 f (z) 非 常 数 , 所 以 g(z) 非常 数 , 其值全 含于一圆
g(z) 1 之内,与刘维尔定理矛盾. 0
11.证明:由题意, f (z) 在 z0 的去心邻域内的洛朗展开式可设为
f (z)
c1 z z0
cn (z z0 )n
(a)
0
6.证明:令 g(z) (z a)k f (z) 。由题设, g(z) 在 k {a}: 0 | z a | R 内有界。由
定理 5.3(3),a 为 g(z) 的可去奇点,则 a 为 g(z) 的解析点。又由定理 5.4(2),
若
a
为
f
(z) 的
m
级极点,则在点
a
的某去心邻域内能表成
正好是以 1 为中心的无穷远点的去心领域。所以根据题中的洛朗展式,只能判
定 z 是 f (z) 的可去奇点。
3.证明:由孤立奇点的定义,又有 f (z) 在点 a 解析,故知 a 为 g(z) 的孤立奇点,
且 lim g(z) lim f (z) f (a) f (a) g(a) ,故 a 为 g(z) 的可去奇点。故在 a 业
(充分性) 若
《复变函数论》课程教学标准
《复变函数论》课程教学标准第一部分:课程性质、课程目标与要求《复变函数论》课程是我院数学与应用数学、信息与计算科学本科专业的必修课程,是数学与应用数学专业的专业主干课程。
复变函数(主要是单复变函数)是十九世纪数学最独特,最富有成果的创造,它差不多统治了整个十九世纪的数学。
在这个领域,数学家们进行了深刻,富有成效的研究,使复变函数逐渐发展成为一门相对成熟的学科,内容丰富而完美。
现在复变函数已经深入到代数学、微分方程、概率统计、拓扑学和解析数论等数学分支。
并且广泛应用于理论物理、电学、流体力学、空气动力学、弹性力学和自动控制等领域。
开设本课程的基本目的是使学生掌握复变函数的基本理论和方法,进一步培养学生的逻辑思维能力,扩展学生视野,为将来从事相关领域的科学研究和教学工作培养兴趣,做好准备。
教学时间应安排在第四学期。
作为数学分析课程的一门后继课程,在教学过程中应注意复变函数论与数学分析在概念方法上的相似与联系、区别与发展,强调知识的系统性。
第二部分:教材与学习参考书本课程拟采用由四川大学钟玉泉编写的、高等教育出版社2004年出版的《复变函数论》第三版一书,作为本课程的主教材。
为了更好地理解和学习课程内容,建议学习者可以进一步阅读以下几本重要的参考书:1、钟玉泉,复变函数学习指导书,高等教育出版社,19982、孙清华,赵德修,新编复变函数题解,华中科技大学出版社,20013、余家荣,复变函数,高等教育出版社(第二版),19924、郑建华,复分析,清华大学出版社,20005、方企勤,复变函数教程,北京大学出版社,1996第三部分:教学内容纲要和课时安排第一章复数与复变函数本章介绍的是复变函数的一些最基本的概念,是中学学习的复数相关概念的衔接和发展。
首先引入复数域与复平面的概念,其次引入复平面上的点集、区域、Jordan 曲线以及复变函数的极限与连续等概念;最后还要引入复球面与无穷远点的概念。
通过这一章的学习,学习者要掌握复数的三种表示;区别辐角与主辐角;熟练掌握复数的四则运算,乘方、开方运算;对复平面上各种点集定义能够形象理解切实掌握;充分理解复球面和无穷远点与扩充复平面的对应。
复变函数论第三版钟玉泉第五章
(3)
(1).
因主要部分的系数
cn
1
2i
f
a n1
d
其中 : a , 可任意小,故
cn
1
2
f
a n1
d
1
2
M
n1
2
M n
cn 0 n 1,2,
13
2020/7/9
复变函数
华中科技大学数学与统计学院
3. 施瓦茨(Schwarz)引理
Schwarz引理 如果函数f(z)在单位圆|z|<1内解析, 并且满足条件 f(0)=0,|f(z)|<1(|z|<1),则在单位圆 |z|<1内恒有|f(z)|≤|z|,且有 | f (0) |1. 如果上式等号成立,或在圆|z|<1内一点z0≠0 处前一式等号成立,则(当且仅当)
12
2020/7/9
复变函数
华中科技大学数学与统计学院
证 (1) (2). 由(1)有
f z c0 c1z a c2z a2 0 z a R
因此 lim za
(2) (3).
f
z
因
c0
lim
f z
b
则
0,
za
0, z
:0
|
z
a
| ,有 |
f
(z) b |
,
于是,有 | f (z) || b | ,即f (z)在a的去心邻域内有界。
ez z3
展开成洛朗级数.
例2 求函数
f
z
sinh z2
z
在 0 z
内的洛朗级数。
例3 试问函数 f 洛朗级数?
z
tan
《复变函数论》教学大纲
通过本章的学习,使学生掌握复变函数的积分的定义,复积分的性质与计算方法,柯西 积分定理及其等价形式和两种推广形式以及它们的应用,不定积分特别是由变上限积分确定 的单值解析函数,会用牛顿-莱布尼兹公式计算复定积分,柯西积分公式与高阶导数公式, 解析函数的平均值定理、无穷可微性以及它的第二个等价刻划定理,柯西不等式、刘维尔定 理、摩勒拉定理调和函数与共轭调和函数的概念,由解析函数的实部(或虚部)求虚部(或 实部)的两种方法。
4.教学内容 第一节 复级数的基本性质
1. 复数项级数 2. 一致收敛的复数项级数 3. 解析函数项级数
第二节 幂级数
1. 幂级数的敛散性 2. 收敛半径的求法,柯西-阿达马公式 3. 幂级数和的解析性
第三节 解析函数的泰勒展式
1. 泰勒定理 2. 幂级数的和函数在其收敛圆上的状况 3. 一些初等函数的泰勒展式
第三章 复变函数的积分
1.教学基本要求
理解复变函数的积分的定义,掌握复积分的性质与计算方法。掌握柯西积分定理及其等
价形式和两种推广形式以及它们的应用,掌握不定积分特别是由变上限积分确定的单值解析 函数,会用牛顿-莱布尼兹公式计算复定积分。熟练掌握柯西积分公式与高阶导数公式,掌 握解析函数的平均值定理、无穷可微性以及它的第二个等价刻划定理,掌握柯西不等式、刘 维尔定理、摩勒拉定理。掌握调和函数与共轭调和函数的概念,理解解析函数与调和函数的 关系,掌握由解析函数的实部(或虚部)求虚部(或实部)的两种方法。
掌握儒歇定理及其应用。
2.要求学生掌握的基本概念、理论、原理
通过本章的学习,使学生掌握留数的定义与留数定理,熟练掌握留求法。掌握用留数计算三角函数有理式在一个周期上的积分、有理函
[VIP专享]复变函数论第三版课后习题答案[1]46
第一章习题解答(一)1.设,求及。
z z Arcz 解:由于3z e π-==所以,。
1z =2,0,1,3Arcz k kππ=-+=± 2.设,试用指数形式表示及。
121z z ==12z z 12z z 解:由于6412,2i i z e z i e ππ-====所以()64641212222i i iiz z e eeeπππππ--===。
54()146122611222ii i i z e ee z e πππππ+-===3.解二项方程。
440,(0)z a a +=>解:。
12444(),0,1,2,3k i za e aek πππ+====4.证明,并说明其几何意义。
2221212122()z z z z z z ++-=+证明:由于2221212122Re()z z z z z z +=++ 2221212122Re()z z z z z z -=+- 所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z ,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又 )())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z 故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数论钟玉泉第三版高教答案清晰版
第一章 复变与复变函数(一)1.解:1)23()21(22=-+=zArgz=argz+πk 2=πππk k 232)3arctan(+-=+- ),2,1,0( ±±=k2.解:因为i ei z e i z 6423,2121ππ-=-==+=所以iie z z e z z 1251221,22121ππ==⋅ 3.解:由044=+a z 得44a z -= 则二项方程的根为a w k k ⋅-=)1(4 )3,2,1,0(=k a e e i i k ⋅⋅=442ππ )3,2,1,0(=k因此 )1(20i a w +=,)1(21i a w +-=)1(22i a w --=,)1(23i a w -=4.证明:因为)Re(2212221221z z z z z z ++=+)R e (2212221221z z z z z z -+=-两式相加得)(22221221221z z z z z z +=-++几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第4题知)(22221221221z z z z z z +=-++由题目条件 0321=++z z z 知321z z z -=+可有 321z z z =+ 于是 3)(2)(22322212212221221=-+=--+=-z z z z z z z z z同理 3213232=-=-z z z z所以 3133221=-=-=-z z z z z z 因此321,,z z z 是内接宇单位圆的等边三角形的顶点. 6.解:(1)表示z 点的轨迹是1z 与2z 两点连线的中垂线;不是区域. (2)令yi x z +=,由4-≤z z 得yi x yi x +-≤+)4(,即2222)4(y x y x +-≤+,得2≤x因此, z 点的轨迹是以直线2=x 为右界的右半平面(包括直线);不是区域.(3)同(2)yi x z +=,得0>x ,故z 点的轨迹是以虚轴为左界的右半平面(包括虚轴;是区域.(4)由⎪⎩⎪⎨⎧≤≤<-<3Re 24)1arg(0z z π 得⎪⎩⎪⎨⎧≤≤<-<3241arctan 0x x y π 即⎩⎨⎧≤≤-<<3210x x y 可知z 点的轨迹是一梯形(不包括上,下边界);不是区域.(5)z 点的轨迹是以原点为圆心,2为半径以及(3,0)为圆心,1为半径得两闭圆的外部.是区域.(6)z 点的轨迹的图形位于直线1Im =z 的上方(不包括直线1Im =z )且在以原点为圆心,2为半径的圆内部分(不包括圆弧);是区域. (7)z 点的轨迹是4arg π=z ,半径为2的扇形部分;是区域.(8)z 点的轨迹是以)2,0(i 为圆心,21为半径以及)23,0(i 为圆心, 21为半径的两闭圆的外部.是区域.7.证明:已知直线方程一般式为),,(0c b a c by ax =++为实常数,b a ,不全为零. 以 izz y z z x 2,2-=+= 代入化简得0)(21)(21=+++-c z bi a z bi a 令 0)(21≠=+αbi a 得 0=++c z z αα反之(逆推可得).8.证明: 因为Z 平面上的圆周可以写成()0z z -=γγ>0 其中0z 为圆心,γ为半径 所以 ()()200z z z z z z 2γ=-=--0000z z z z z z z z =⋅-⋅-⋅+⋅ 令2001,,A B z C z 2==-=-γ,从而圆周可以写成 0A Z Z B Z B ZC +++=,A C 为实数,且22200B z z AC 2=>-γ=9.证明:可证1213z z z z --为实数. 10.解:(1)令)1(i t yi x z +=+=,得y x =,即曲线为一,三象限的角平分线. (2)令,sin cos t ib t a yi x z +=+=得t b y t a x sin ,cos ==,则有12222=+by a x ,故曲线为一椭圆.(3)令)0(≠+=+=t i t t yi x z ,可得ty t x 1,==,则1=xy ,故曲线为一双曲线.(4)令22tt yi x z +=+=,得221,t y t x ==,即1=xy )0,0(>>y x ,故曲线为双曲线在第一象限内的一支. 11.解:(1)由于4222==+z y x ,又有)(411122yi x y x yi x yi x z w -=+-=+== 所以 ,4,4y v x u -==则41)(1612222=+=+y x v u这表示在w 平面上变成的曲线是以原点为圆心,21为半径的圆周. (2)将x y =代入yi x w +=1,即yix iv u +=+1中得 xi x x i i x iv u 22121)1(1-=--=+=+于是,21,21xv x u -==因此u v -=,故曲线为w 平面上二,四象限的角分线. (3)同上将1=x 代入变换yix iv u +=+1得 21111yyiyi iv u +-=+=+ 于是,1,1122yy v y u +-=+=且u y y y v u =+=++=+22222211)1(1 故解得41)21(22=+-v u ,这表示曲线变成w 平面上的一个以)0,21(为圆心,21为半径的圆周.(4)因1)1(22=+-y x ,即可得0=--z z z z 将wz w z 1,1==代入得01111=--⋅w w w w ,即ww w w w w +=1,因此1=+w w所以这表示曲线变成w 平面上的一条过)0,21(且平行于虚轴的直线.12.证明:(1)首先考虑函数n z z f =)(在z 平面上的连续性. 对复平面上任意一点0z ,来证明nn z z z z 00lim =→不妨在圆10+=≤z M z 内考虑. 因为10102100(-----≤+++-≤-n n n n nn nM z z z z zzz z z z ,故对0>∀ε,只需取1-≤n nM εδ,于是当δ<-0z z 时,就有ε<-nn z z 0.(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此)(z f 在z 平面上除使分母为零点外都连续. 13.证明:令ππ<<-⎩⎨⎧=≠=z z z z z f arg 0,00,arg )(分情况讨论:(1) 若00=z ,由于当z 沿直线)(arg 00πθπθ<<-=z 趋于原点时,)(z f 趋于0θ,这里0θ可以取不同值,因而)(z f 在00=z 处不连续.(2) 若)0(0<=x z 由定义当z 从上半平面趋于0z 时, )(z f 趋于π,当z 从下半平面趋于0z 时, )(z f 趋于π-,所以)(z f 在实轴上不连续.(3) 其他点0z ,作一个以0z 为中心δ为半径的圆,只要δ充分小,这个圆总可以不与负实轴相交.任取0Argz 的一个值0θ,以0z 为中心δ为半径的圆,因0z z n →,故存在自然数N ,当N n >时,n z 落入圆内,从原点引此圆的两条切线,则此两条切线夹角为)(2δϕ,0arcsin)(z δδϕ=,因此总可以选取n Argz 的一个值n z arg .当N n >时,有)(arg 0δϕθ<-n z ,因0→δ时,0)(→δϕ.因而,总可以选取δ,使)(δϕ小于任何给定的0>ε,即总有ε<-0arg arg z z .因此)(z f 在0z 连续.综上讨论得知, )(z f 除原点及负实轴上的点外处处连续.14.证明:由于)(z f 的表达式都是y x ,的有理式,所以除去分母为零的点0=z ,)(z f 是连续的,因而只须讨论)(z f 在0=z 的情况.当点yi x z +=沿直线kx y =趋于0=z 时, 222211)(kkk k y x xy z f +→+=+=这个极限值以k 的变化而不同,所以)(z f 在0=z 不连续.15.证明:由z z f =)(连续即得.16.证明:1z -在1z <内连续且不为0,故11z-在1z <内连续 011,0,2εδδ⎛⎫∃=∀>< ⎪⎝⎭,均存在121,142z z δδ=-=-使得124z z δδ-=<()()1212112111f z f z z z δ-=-=>-- 故()f x 在1z <内非一致连续17.证明:必要性:设i y x z n 000lim +==∞→,由定义0,0>∃>∀N ε,当N n >时,恒有ε<-0z z n ,从而由定义知 ε<-≤-00z z x x n n ε<-≤-00z z y y n n 即)(,00∞→→→n y y x x n n 充分性:由定义得00000)()(y y x x i y y x x z z n n n n n -+-≤-+-=- 因此,当)(,00∞→→→n y y x x n n 时,必有)(0∞→→n z z n . 18.证明:利用第17题,及关于实数列收敛的柯西准则来证明.必要性:设0lim z z n n =∞→.则由定义对0)2(,0>=∃>∀εεN N ,当N n >时,恒有20ε<-z z n .因而对任何自然数p ,也有20ε<-+z z p n .利用三角不等式及上面两不等式, 当N n >时,有 ε<-+-≤-++00z z z z z z n p n n p n充分性:设对0)(,0>∃>∀εεN ,当N p n n >+,时,有ε<-+0z z p n ,由定义得 ε<-≤-++n p n n p n z z x xε<-≤-++n p n n p n z z y y由此根据实数序列的柯西准则,必存在两个实数00,y x ,使)(,00∞→→→n y y x x n n ,有i y x i y x z n n n 00+→+=19.证明:设)),3,2,1(( =≤+=n M z i y x z n n n n ,因为M z y x n n n ≤≤,,所以{}{}n n y x ,都有界.根据实数列的致密性定理,知{}n x 有收敛于某常数a 的子序列{}k n x ,相地在),2,1( =+k i y x k k n n 中,{}k n y 任有界,因而{}k n y 也有以收敛于某一常数b 的子序列{}kj n y ,在),2,1( =+=j i y x z kj kj kj n n n 中, {}k n x 任收敛于a ,因此所设序列有一收敛于bi a +的子序列.20.证明:(1)若00=z ,则由定义对N ∃>∀,0ε,当N n >时有{}2ε<n z而 nz z z n z z z n z z z z nN N N n n +++++++=+++='++ 212121 固定N ,取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+++=nz z z q N N 2102,max ,则当0N n >时,有221ε<++n z z z N故 ε<+++++≤'++n z z z n z z z z n N N N n 2121(2)若00≠z ,则当0)(lim 0=-∞→z z n n ,000010)()(z n nz z z z z z z n n -+-+-=-'0)()(001→-+-=nz z z z n(二)1.解:ii i e e e i i ϕϕϕϕϕϕϕ193)3(2532)()()3sin 3(cos )5sin 5(cos ==-+- 2.解:由于it e z =,故nt i nt e z nt i nt e z nti n nti n sin cos ,sin cos -==+==-- 因此 nt zz nt z z n nn n sin 21,cos 21=-=+ 3.证明:已知(155122cos sin 2233nnn n n n n n x iy i ⎛⎫⎛⎫+=-=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭ππ 因此 552cos ,2sin33n n n n n n x y ππ== 11n n n n x y x y ---()()151515522cos sin sin cos 3333n n n n n n ππππ---⎡⎤=-⎢⎥⎣⎦()215152sin 33n n n ππ--⎛⎫=- ⎪⎝⎭4.证明:第一个不等式等价于2222)(21y x z y x +=≤+,即)(222222y x y x y x +≤++,即0)(2>-y x 这是显然的,因此第一个不等式成立. 第二个不等式等价于2222222)(y y x x y x y x z ++=+≤+= ,即02≥y x 这是显然的,因此第二个不等式成立. 5.证明:利用公式 )Re(2212221221z z z z z z -+=-以及z z =Re6.证明: 因为21,az b az b az bz bz a bz a bz a+++==⋅+++所以22221a abz abz b b abz abz a+++==+++故1az bbz a+=+7.解:设0z 为对角线→31z z 的中点,则 i z z z 21)(21310+=+=分别左旋及右旋向量30z z 各2π,写成复数等式后,即可由此解得顶点2z 的坐标为(4,1); 顶点4z 的坐标为(-2,3).8.证明:由于123z z z ∆与123w w w ∆同向相似的充要条件是33,z w ∠=∠且23231313z z w w z z w w --=--,而23313arg ,z z z z z -∠=-2313arg w w w w w -∠=-,于是有23231313z z w w z z w w --=--,即1122331101z w z w z w =.9.证明:123,,z z z 4,z 四点共圆或共直线的充要条件为1233410z z z z z z ∠+∠=或π但3212321argz z z z z z z -∠=-,1434143arg z zz z z z z -∠=- 3232141421432143a r g a r g a r g z z z z z z z z z z z z z z z z ----+=⋅----, 因此1234,,,z z z z 共圆周或共直线的充要条件为34141232:z z z z z z z z ----为实数. 10.证明:由21Oz Oz ⊥知2arg arg 21π±=-z z故i z zz z 2121±=,两边平方即得02121=+z z z z ,反之亦然. 11.证明:因为2221k z z z z =--,从而22121k z z z z zz z z =⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-- 所以 ()2222221112z z z z k z z z z z z +-=+--即 212222122122)()()1(z z k z k z z z k z z k z -=-----亦即 2222122221122122222221)1()1()(1k z z k k z z z z z z k k z k z z --=---+=---故有 221222111kz z k k z k z z --=---,此为圆的方程,该圆圆心为222101k z k z z --=,半径为2211kz z k--=ρ ),10(21z z k ≠≠<. 12.证明:2222)1()1(11111b a b a z z zz+--<+-⇔+<-⇔<+- 022)1()1(2222>⇔<-⇔+--<+-⇔a a a b a b a几何意义:右半平面上的点到(1,0)的距离a 小于到(-1,0)点的距离b ;到(1,0)的距离a 小于到(-1,0)点的距离b 的点在右半平面上.第二章 解析函数(一)1.证明:0>∃δ,使{}0001/),(t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的对应去心邻域内无重点,即能够联结割线()(10t z t z ,是否就存在数列{}01t t n →,使)()(01t z t z n =,于是有0)()(lim )(0101001=--='→t t t z t z t z n n t t n此与假设矛盾.01001),(t t t t t >⇒+∈δ因为 [])()(a r g)()(a r g 010101t z t z t t t z t z -=-- 所以 []])()(lim arg[)()(arglim )()(arg lim 0101010101010101t t t z t z t t t z t z t z t z t t t t t t --=--=-→→→因此,割线确实有其极限位置,即曲线C 在点)(0t z 的切线存在,其倾角为)(arg 0t z '.2.证明:因)(),(z g z f 在0z 点解析,则)(),(00z g z f ''均存在.所以 )()()()()()(lim )()()()(lim )()(lim 00000000000z g z f z z z g z g z z z f z f z g z g z f z f z g z f z z z z z z ''=----=--=→→→3.证明:()()()()()3322,0,0,,0,00x y x y u x y x y x y ≠⎧-⎪=+⎨⎪=⎩()()()()()3322,0,0,,0,00x y x y v x y x y x y ≠⎧+⎪=+⎨⎪=⎩于是()()()00,00,00,0limlim 1x x x u x u xu xx →→-===,从而在原点()f z 满足C R -条件,但在原点,()()()()()'0,00,0x x u iv u iv f f z z z +-+-= ()()()()()()333311i x y i zx y z ⎡⎤+--+⎣⎦=⎡⎤+⎣⎦当z 沿0y x =→时,有()()()'212f f z i z x --+= 故()f z 在原点不可微.4.证明:(1)当0≠z 时,即y x ,至少有一个不等于0时,或有y x u u ≠,,或有y x u u ≠-,故z 至多在原点可微.(2)在C 上处处不满足C R -条件. (3)在C 上处处不满足C R -条件. (4)221yx yix z z z z ++==,除原点外, 在C 上处处不满足C R -条件. 5.解:(1) y x y x v xy y x u 22),(,),(==,此时仅当0==y x 时有 xy v xy u x v y u x y y x 22,22-=-===== 且这四个偏导数在原点连续,故)(z f 只在原点可微. (2) 22),(,),(y y x v x y x u ==,此时仅当y x =这条直线上时有 00,22=-=====x y y x v u y v x u且在y x =这四个偏导数连续,故)(z f 只在y x =可微但不解析. (3) 333),(,2),(y y x v x y x u ==,且00,9622=-=====x y y x v u y v x u 故只在曲线0212312=-x y 上可微但不解析.(4) 32233),(,3),(y y x y x v xy x y x u -=-=在全平面上有 xy v xy u y x v y x u x y y x 66,33332222-=-=-=-==-= 且在全平面上这四个偏导数连续,故可微且解析. 6.证明:(1)y y x x iu v iv u z f D yi x z -=+='=∈+=∀)(0,(2)设().f z u iv =+则()f z u iv =-,由()f z 与()f z 均在D 内解析知,,x y y x u v u v ==-,,x y y x u v u v =-=结合此两式得0x y x y u u v v ====,故,u v 均为常数,故)(z f 亦为常数. (3)若0)(=≡C z f ,则显然0)(≡z f ,若0)(≠≡C z f ,则此时有0)(≠z f ,且2)()(C z f z f ≡,即)()(2z f C z f ≡也时解析函数,由(2)知)(z f 为常数. (4)设().f z u iv =+,若C y x u ≡),(,则0,0≡≡y x u u ,由C R -条件得 0,0≡=≡-=x y y x u v u v 因此v u ,为常数, 则)(z f 亦为常数.7.证明:设,f u iv g i f p iQ =+==+则,,f u iv g v iu =-=-由 ()f z 在D 内解析知,x y y x u v u v ==-从而 ,x x y v y y x p v u Q p v u Q x ==-====- 因而()g z 亦D 内解析.8.解:(1)由32233),(,3),(y y x y x v xy x y x u -=-=,则有 222233,6,6,33y x v xy v xy u y x u y x y x -==-=-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 22236)33()(z xyi y x i v u z f x x =+-=+='(2) ()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-⋅=- ()cos sin cos x x y u e x y y y y v =-+=()s i n s i n c o s x y x u e x y y y y v =--+=- 故()f z 在z 平面上解析,且()()()'cos 1sin sin 1cos x xf z e y x y y ie y x y y =⋅+-+⋅+-⎡⎤⎡⎤⎣⎦⎣⎦(3)由xshy y x v xchy y x u cos ),(,sin ),(==,则有x c h yv x s h y v x s h y u x c h y u y x y x c o s ,s i n ,s i n ,c o s =-=== 故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z x s h y i x c h y i v u z f x x c o s s i n c o s )(=-=+=' (4)由xshy y x v xchy y x u sin ),(,cos ),(-==,则有x c h y v x s h y v x s h y u x c h y u y x y x s i n ,c o s ,c o s ,s i n -=-==-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z x s h y i x c h y i v u z f x x s i n c o s s i n )(-=--=+=' 9.证明:设,i z x yi re θ=+=则cos ,sin ,x r y r θθ== 从而cos sin ,sin cos r x y x y u u u u u r u r θθθθθ=+=-+cos sin ,sin cos ,r x y x y v u v v v r v r θθθθθ=+=-+再由11,r r u v v u r rθθ==-,可得,x y y x u v u v ==-,因此可得()f z 在点z 可微且()()()'11cos sin sin cos x y r r f z u iu r u u i r u u r r θθθθθθ=-=--+()()1c o s s i n s i n c o s r i u i ur θθθθθ=--+ ()()c o s s i n s i n c o s r r i u ivθθθθ=-++ ()()c o s s i n r r i u iv θθ=-+()()1c o s s i n r r r r ru i v u i v i zθθ=+=++10.解:(1)x y i x z i e e e 2)21(22--+--== (2)222222y zxyiy zz e e e -+-==(3) 22222211x yi xy ix iyx yx yx y ze eeee--++++===⋅所以22221Re cos x yx y x y z e e ++⎛⎫= ⎪⎝⎭11.证明:(1)因为)sin (cos y i y e e e e e x yi x yi z z +=⋅==+ 因此 )sin (cos y i y e e x z -=而)sin (cos y i y e e e e e x yi x yi z z -=⋅==--,得证.(2)因为 ie e z iziz 2sin --=所以 z ie e i e e z iziz z i z i sin 22sin =+=-=---(3)因为2cos iziz e e z -+=所以z e e e e z iziz z i z i cos 22cos =+=+=--12.证明:分别就m 为正整数,零,负整数的情形证明,仅以正整数为例 当1=m 时,等式自然成立. 假设当1-=k m 时,等式成立.那么当k m =时,kz z k z k z e e e e =⋅=-1)()(,等式任成立. 故结论正确.13.解:(1) )1sin 1(cos 333i e e e e i i +=⋅=+(2) ()()()11cos 12i i i i e ei ---+-=()112i i i e e-+++=c o s 11s i n 1122e i e e e ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭14.证明:(1)由于z z g z z f ==)(,sin )(在点0=z 解析 且01)0(,0)0()0(≠='==g g f 因此 11cos sin lim0===→z z zz z(2)由于0)(,1)(=-=z g e z f z 在点0=z 解析,且01)0(,0)0()0(≠='==g g f因此 11lim 00==-=→z zz z e ze(3)由于z z z g z z z z f sin )(,cos )(-=-=在点0=z 解析, 且1)0(,0)0()0(,0)0()0(,0)0()0(='''=''=''='='==g g f g f g f 因此 3cos 1sin cos 1lim sin cos lim00=-+-=--→→zzz z z z z z z z z 15.证明:2cos iziz e e z -+=)c o s ()c o s (c o s nb a b a a +++-+=222)()()()(nb a i nb a i b a i b a i ia ia e e e e e e +-++-+-++++++ =⎥⎦⎤⎢⎣⎡--⋅+--⋅+-+ibbn i ia ib b n i ia e e e e e e 111121)1()1( =)2cos(2sin 21sinnb a b bn ++=右边同理证明(2).16.证明:(1) z i e e i i e e i e e iz zz z z iz i iz i sinh 222)sin()()(=-⋅=-=-=--- (2) z e e e e iz z z iz i iz i cosh 22)cos()()(=+=+=-- (3) z i ie e i e e iz iziz iz iz sin 22)sinh(=-⋅=-=--(4) z z iz i iz cos )cos()cos()cosh(=-=⋅= (5) z i zzi iz iz iz tanh cosh sinh )cos()sin()tan(===(6) z i zzi iz iz iz tan cos sin )cosh()sinh()tanh(===17.证明:(1) 1)(sin )(cos )(222222=+=+=-iz iz ishz z ch z sh z ch(2) 111sec 2222222=+=+=+zch zsh z ch z sh z ch z th z h (3) )sin()sin()cos()cos()cos()(21212121iz iz iz iz iz iz z z ch -=+=+ 2121s h z s h z c h z c h z += 18.证明:(1) xshy i xchy iy x yi x yi x z cos sin )sin(cos )cos(sin )sin(sin +=+=+= (2) xshy i xchy iy x yi x yi x z sin cos )sin(sin )cos(cos )cos(cos +=-=+= (3) y x y xsh y xch xshy i xchy z 22222222sinh sin cos sin cos sin sin +=+=+= (4) y x y xsh y xch xshy i xchy z 22222222sinh cos sin cos sin cos cos +=+=-=19.证明: chz e e e e shz zz z z =+='-='--2)2()( s h z e e e e c h z zz z z =-='+='--2)2()(20.解:(1) )31arg(31ln )31ln(i i i i z +++=+= )23(2ln ππk i ++= ),1,0( ±=k(2)由于2ln iz π=,则有i i e z i=+==2sin2cos2πππ(3)由于)2(1ππk e e i z +=-=,故)2(ππk i z += (4)z z sin cos -=,即1tan -=z ,所以 ππk i i i z +-=+-=411ln 21(5) 设,z x iy =+由12tgz i =+得()()sin 122cos iz iz iz iz zi e e i e e z--=+→-=-+ 2255izi e →=-+22cos 25y e x -→=-,1sin 25x =41ln 5,54y e y -→==且1112,222tg x x arctg π⎡⎤⎛⎫=-=-+ ⎪⎢⎥⎝⎭⎣⎦11ln 5224z arctg i π⎡⎤⎛⎫→=-++ ⎪⎢⎥⎝⎭⎣⎦ 21.证明:因)1arg(1ln )1ln()1ln(-+-=-=-θθθi i i re i re re z ,所以)cos 21ln(21)sin ()1(ln 1ln )]1Re[ln(222θθθθr r r re re z i i -+=+-=-=- 22.解: 32)(3)()(πθk z ik ez r z w +=,)2,1,0;2)(0;(=<<∈k z G z πθ利用i i w -=)(定2,=k k ,再计算)(2i w -23.解: 2,22ππii e i e ==-,由32)2(-=-w 定1,=k k ,再计算i ei w π451)(=24.解: )24(2ln )]2)1(arg(1[ln )1ln()1(πππk i k i i i i i i i eeei +-+++++===+)24(2ln ππk i ee+-⋅= ),2,1,0( ±±=kππk i k i i i i e e e e 23ln )]23(arg 3[ln 3ln 3-++⋅=== ),2,1,0( ±±=k25.解:z 在z 平面上沿0=z 为圆心,1>R 为半径的圆周C 从A 走到B ,经过变换4z w =,其象点w 在w 平面上沿以0=w 为心,14>R 为半径的象圆周从A '走到B ',刚好绕1+=w w 的支点-1转一整周,故它在B '的值为B w '+1.因此1)()(4+-=-=R z f z f AB.26.证明:()f z =0,1,∞由于 3|12+,故()f z 的支点为0,1z =,因此在将z 平面沿实轴从0到期割开后,就可保证变点z 不会单绕0或者说转一周,于是在这样割开后的z 平面上()f z 就可以分出三个单值解析分支. 另由已知 ()a r g f z π=得()()a r g c i f zi f i e e π∆=()2a r g 1a rg 3c c i z z e ⎡⎤∆-+∆⎣⎦=32342i ππ⎡⎤+⋅⎢⎥⎣⎦=712i e π=.(二)1.证明:由()21z f z z =-得()()2'2211z f z z +=-,从而于是()f z 在D 必常数()()()()()()22'2222111111z zf z zz f z z z z+-+⋅==---()4242121Re m z I z i z z -+=+- 所以 ()()4'421Re 12Re zf z z f z z z ⎛⎫-⋅= ⎪ ⎪+-⎝⎭由于1z <,因此410,z ->且()24422212Re 1210z z z z z +-≥+-=->故()()'Re 0f z z f z ⎛⎫⋅> ⎪ ⎪⎝⎭.2.证明:同第一题221Im 2111)()(1zzi z z z z f z f z -+-=-+='''+. 3.证明:题目等价域以下命题:设1,E E 为关于实轴对称的区域,则函数在E 内解析)(z f ⇒在1E 内解析.设)(z f 在E 内解析,对任意的10E z ∈,当1E z ∈时,有E z E z ∈∈,0,所以 )()()(lim )()(lim0000000z f z z z f z f z z z f z f z z z z '=--=--→→ 这是因为)(z f 在E 内解析,从而有)()()(lim 0000z f z z z f z f z z '=--→,由0z 的任意性可知, )(z f 在1E 内解析. 4.证明:(1)由于)(21),(21z z iy z z x -=+=,根据复合函数求偏导数的法则,即可得证. (2))(21)(21x vy u i y v x u z v i z u z f ∂∂+∂∂+∂∂-∂∂=∂∂+∂∂=∂∂ 所以x v y u y v x u ∂∂-=∂∂∂∂=∂∂,,得 0=∂∂zf5.证明: x y sh y sh x y xch yi x z 222222sin )sin 1(sin )sin(sin +=-+=+= 所以 z x y sh shy sin sin 22=+≤ 而 z y s h y Im =≥ ,故左边成立.右边证明可应用z sin 的定义及三角不等式来证明. 6.证明:有 R ch y ch y sh y sh x z 2222221sin sin ≤=+≤+=即 c h R t ≤s i n又有 R ch y ch y sh y x z 2222221sinh cos cos ≤=+≤+= 7.证明:据定义,任两相异点21,z z 为单位圆1<z ,有212221212121)32()32()()(z z z z z z z z z f z f -++-++=--0112222121=-->--≥++=z z z z 故函数)(z f 在1<z 内是单叶的.8.证明:因为)(z f 有支点-1,1,取其割线[-1,1],有(1) 10182)(,8)(arg ie c e i f z f ππ-=-=∆(2) i c c e i f z f i z f 852)(,85)(arg ,811)(arg 32πππ=--=∆-=∆ 9.解: 因为)(z f 有支点∞±,,1i ,此时支割线可取为:沿虚轴割开],[i i -,沿实轴割开],1[+∞,线路未穿过支割线,记线路为C ,)]arg())(arg()1arg([21)(arg i z i z z z f c c c c ⋅∆+--∆+-∆=∆ 2]0[21ππ-=-= 故 i z f 5)(-=.10.证明:因为()f z =0,1,z =∞,由题知()f z 的支点为0,1,z =于是在割去线段0Re 1≤≤的平面上变点就不可能性单绕0或1转一周,故此时可出两二个单值解析分支,由于当z 从支割线上岸一点出发,连续变动到1z =-时,只z 的幅角共增加2π,由已知所取分支在支割线上岸取正值,于是可认为该分支在上岸之幅角为0,因而此分支在1z =-的幅角为2π,故()21i f e π-==,i f 162)1(-=-''.第三章复变函数的积分(一)1.解:)10(≤≤=x x y 为从点0到1+i 的直线方程,于是∫∫+++−=+−iC yi x d ix y x dz ix y x 1022)()()(∫∫+=++−=102102)1()()(dx x i i ix x d ix x x 31013)1(3i x i −−=⋅−=2.解:(1)11,:≤≤−=x x z C ,因此111==∫∫−C dx x dz z (2)θi e z C =:,θ从π变到0,因此200===∫∫∫πθπθθd e i de dz z i C i (3)下半圆周方程为πθπθ2,≤≤=i e z ,则202===∫∫∫πθππθθd ie i de dz z i C i 3.证明:(1)11,0:≤≤−=y x C 因为1)(222≤=+=iy i y x z f ,而积分路径长为2)(=−−i i 故2)()(2222≤+=+∫∫−i i C dz iy x dz iy x .(2)0,1:22≥=+x y x C 而1)(4422≤+=+=y x iy x z f ,右半圆周长为π,所以π≤+∫−ii dz iy x )(22.4.解:(1)因为距离原点最近的奇点2π±=z ,在单位圆1≤z 的外部,所以zcos 1在1≤z 上处处解析,由柯西积分定理得0cos =∫C zdz .(2)1)1(122122++=++z z z ,因奇点i z +−=1在单位圆1≤z 的外部,所以2212++z z 在1≤z 上处处解析,由柯西积分定理得0222=++∫C z z dz .(3))3)(2(652++=++z z e z z e zz ,因奇点3,2−−=z 在单位圆1≤z 的外部,所以652++z z e z 在1≤z 上处处解析,由柯西积分定理得0652=++∫C z z z dz e .(4)因为2cos z z 在1≤z 上处处解析,由柯西积分定理得0cos 2=∫C dz z z .5.解:(1)因2)2()(+=z z f 在z 平面上解析,且3)2(3+z 为其一原函数,所以3223)2()2(3222i i z dz z i −=−+−+=+∫+−−(2)设t i z )2(+=π,可得dt e e e e i dt i t i dz z t i t t i t i)(22)2)(22cos(2cos 1010220∫∫∫−−+++=++=ππππππ1−+=e e 6.解:220(281)az z dz π++∫=2320243|a z z z π⎡⎤++⎢⎥⎣⎦=3322281623a a a πππ++7.证明:由于)(),(z g z f 在单连通区域D 内解析,所以])()([),()(′z g z f z g z f 在D 内解析,且)()()()(])()([z g z f z g z f z g z f ′+′=′仍解析,所以)()(z g z f 是)()()()(z g z f z g z f ′+′的一个原函数.从而∫=′+′βααβ)]()([)]()()()([z g z f dz z g z f z g z f 因此得∫∫′−=′βαβααβdz z g z f z g z f dz z g z f )()()]()([)()(.8.证明:||1||1,02z dz z z ==∴=+∫Q 设,i i z e dz ie d θθθ==⇒222200(cos sin )[(cos 2)sin ]0(cos 2)sin 2i i i d i i d e e θππθθθθθθθθθ−+−==+++∫∫=202sin (12cos )54cos i d πθθθθ−+++∫于是2012cos 0,54cos d πθθθ+=+∫故012cos 054cos d πθθθ+=+∫.9.解:(1)因为12)(2+−=z z z f 在2≤z 上是解析的,且21≤∈=z z ,根据柯西公式得iz z i dz z z z z z ππ4)12(21121222=+−=−+−=≤∫(2)可令12)(2+−=z z z f ,则由导数的积分表达式得i z f i dz z z z z z ππ6)(2)1(121222=′=−+−==∫10.解:(1)若C 不含±z=1,则201zdz z π=−∫c sin4(2)若C 含z=1但不含有z=-1,则22212zdz i i z ππ=⋅=−∫c sin4(3)若C 含有z=-1,但不含z=1,则:221zdz i zπ=−∫c sin4(4)若C 含有1z =±,则2111sin (12411c zdz z dz z z z ππ=−−−+∫∫c sin42(222i iπ==11.证明:θθθθθπθθπθθ∫∫∫−=++=+20sin cos 20sin cos )()sin (cos sin cos id e e i d i e dz ze i i C z ∫⋅+−=πθθθθθ20cos cos )cos(sin )sin(sin d ie e 再利用柯西积分公式i d e dz z e C C z πξξξ20=−=∫∫则∫=πθπθθ20cos 2)cos(sin d e ,由于)cos(sin cos θθe 关于πθ=对称,因此∫=πθπθθ0cos )cos(sin d e 12.解:令173)(2++=ξξξϕ,则)173(2)(2)()(2++⋅==−=∫z z i z i d zz f C πϕπξξξϕ则)76(2)(+=′z i z f π因此)166(2)766(2)1(i i i i f +−=++=+′ππ13.证明:利用结论:)(z f 在D 内单叶解析,则有0)(≠′z f 由题知,))((:b t a t z z C ≤≤=为D 内光滑曲线,由光滑曲线的定义有1)C 为若尔当曲线,即21t t ≠时,)()(21t z t z ≠;2)0)(≠′t z ,且连续于[a,b]要证Γ为光滑曲线,只须验证以上两条即可.而在)(z f w =的变换下,C 的象曲线下的参数方程为))](([)(:b t a t z f t w w ≤≤==Γ1)因21t t ≠时,)()(21t z t z ≠,又因)(z f 在D 内单叶解析,所以当21t t ≠时,)()(21z f z f ≠.因此当21t t ≠时,有)()(21t w t w ≠.2)因为0)(≠′t z 且连续于[a,b],又因0)(≠′z f ,则由解析函数的无穷可微性知)(z f ′′在D 内也存在,所以)(z f ′在D 内也连续,则由复合函数求导法则0)()()(≠′′=′t z z f t w ,且连续于[a,b].14.证明:由上题知C 和Γ均为光滑曲线,因)(w Φ沿Γ连续以及)(),(z f z f ′′在包含C 的区域D 内解析,因此)()]([z f z f ′Φ也连续,故公式中的两端积分存在.则dtt z t z f t z f dz z f z f C b a)())(())](([)()]([′′Φ=′Φ∫∫∫∫ΓΦ=′Φ=b adw w dt t w t w )()()]([15.证明:应用刘维尔定理,因)(z f 恒大于一正的常数,则)(1z f 必恒小于一正的常数,则)(1z f 为常数,故)(z f 为常数.16.解:(1)因为22u x xy y =+−,所以有22x y u x y v x y=+⇒=+22()2y v xy c x ⇒=++2()2x y v y c x u y x′⇒=+=−=−2()()2x x x c x D ′⇒=−⇒=−+c 2222()()(2)22y x f z x xy y xy D i ⇒=+−++−+由已知12Di D ⇒+⇒=i f(i)=-1+i -1+i=-1+222221()()(2)222y x f z x xy y i xy ⇒=+−++−+(2)由C R −条件,coy e y y y x e u v x x x y +−==)sin cos (,则∫+−=dycoy e y y e y xe v x x x )sin cos (∫−+=ydyy e y e y xe x x x sin sin sin )(cos sin x y y e y xe x x ϕ++=又因x y v u −=,故))(cos sin sin (cos sin sin x y e y xe y e y y e y e y e x x x x x x Φ′+++−=−−−即C x x =Φ=Φ′)(,0)(,故)cos sin ()sin cos ()(C y y e y xe i y y y x e z f x x x +++−=又因,0)0(=f 故00)0(=⇒==C iC f ,所以)cos sin ()sin cos ()(y y e y xe i y y y x e z f x x x ++−=(3)由C R −条件,222)(2y x xy v u x y +=−=,所以∫++−=+=)()(222222x y x x dy y x xy u ϕ又因x y u v =,故y x y x y x y x x )()()(2222′+=′+′+−ϕ,即0)(=′x ϕ.所以C x =)(ϕ,故2222)(y x y i C y x x z f ++++−=又因为0)2(=f ,所以21=C ,故222221)(y x y i y x x z f ++++−=17.证明:设222()4()4()x y f z u iv f z u v ′=+⇒=+2()f z =22u v +,2()22y x f z uu vv x ∂=+∂2222222()2222x x x x f z u uu v vv x∂=+++∂同理可得:2222222()2222y y y y f z u uu v vv y∂=+++∂于是结合C R −条件及,u v 为调和函数可得:22222222222()()4()2()2()x x x y x y f z u v u u u v v v x y∂∂+=+++++∂∂=4(22x x u v +)=42()f z ′18.证明:)(z f 在D 内解析,则)(z f ′在D 内也解析.已知0)(≠′z f ,则)(ln z f ′在D 内解析,于是其实部)(ln z f ′为D 内的调和函数.19.解:∫−==z z i z k dz z v z f 022)()(势函数和流函数分别为kxy y x =),(ϕ)(2),(22y x k y x −−=ϕ故势线和流线为双曲线.20.解:根据流量和环量的定义来计算i y x y x xy y x y x y x z z f 22222222222224)1(24)1(111)(+−−−+−−−−=−=环量04)1(24)1(111222222222222=+−−−+−−−−=Γ∫dy y x y x xy dx y x y x y x C C 流量为04)1(24)1(11222222222222=+−−++−−−−∫dx y x y x xy dy y x y x y x C 同理,在32,C C 处也为0.(二)1.答:)(z f 不必需要在0=z 解析,如zz f 1)(=在0=z 处不解析.2.解:若沿负实轴]0,(−∞隔开z 平面,z 就能分成两个单值解析分支,即)1,0,arg ()(22arg =<<−=+k z e z z k z i k πππ(1)在πθθ≤≤=0,:1i e z C 上,z 取主值支.这时(1)式中argz 代换为0,=k θ,则2θi e z =,故i zdz C 221+−=∫.(2)在πθθ≤≤=−0,:2i e z C 上,z 取主值支.这时(1)式中argz 代换为0,=−k θ,则i zdz C 222−−=∫.3.证明:利用积分估值定理及三角不等式212112111≤−+≤−+=−+z z z z 且由积分估值定理有π811≤−+∫C dz z z 4.证明:因为sz e z f =)(在单连通区域z 平面上解析,则ττ∫=−ba s as bs d se e e 由积分估值定理有ab M d se ba s −≤∫ττ其中M 可由ττστσττ⋅+⋅≤⋅⋅=⋅=⋅=),max()(b a it t it s s e s e e s e s e s se 得出.5.解:设i z e α=,1c 为0到1的直线段,2c 为1到z 的圆弧,则由柯西积分定理12222111C dz dz dz c c z z z =++++∫∫∫=1220011i i dx ie d x e θαθθ+++∫∫=214C dz RE z π=+∫6.解:z e z f z sin )(=在圆周a z =内解析,故其积分值与路径无关,只与起点终点有关,而积分路径为封闭的圆周,故∫=Cz zdz e 0sin 因此,原式=∫∫∫==−C C Cz a adz zdz e dz z 22sin π7.证明:因为()f z 在||1z ≤上连续,所以()f z 在||1z ≤一致连续,因此0ε∀>,0δ∃>,使当11r δ−<<时均有|()()|,2i i f e f re θθεπ−<(02)θπ<<于是:||1||1||1|()||()()|z z z rf z dz f z dz f z dz r ====−∫∫22001|()()|i i i i f e ie d f re rie d r ππθθθθθθ=−∫∫20|()()|i i f e f re d πθθθε≤−<∫所以||1()0z f z dz ==∫.8.证明:首先由题设积分∫r K dz z f )(存在,应用积分估值定理.rr M dz z f r K π2)()(⋅≤∫而由题设(3)0)(lim =⋅+∞→r r M r ,故得证.9.证明:(1)参见教材(3.16)式的证明.因为)(z f 在点0=z 的邻域内连续,则对0ε∀>,0δ∃>,0=∈∀z z 的邻域,有ε<−)0()(f z f 所以∫∫−=−πθπθθθπθ2020))0()(()0(2)(d f d re f f d re f i i∫∫=<−≤ππθπεθεθθ20202)0()(d d f d re f i 故)0(2)(lim 0f d re f i r πθθ=→(2)取(1)中的0=a ,再利用圆周的参数方程化简(1)中等式左端即证.10.证明:||111[2()]()2z dz z f z i z zπ=±+∫=2||112()()()]2z f z f z f z dz i z zπ=±±∫=2(0)(0)2(0)f f f ′′±=±11.证明:由题设,)(z f ′在D 内含C 之单连通区域内解析,∫∫′≤′=−ba ba dz z f dz z f a fb f )()()()(考虑到)(z f ′在有界闭集C 上的连续性,必存在点C ∈ξ,使得)(ξf ′是)(z f ′在C 上的最大值.∫∫−′≤′b a b a a b f dz z f )()(ξ由上得ab f a f b f −′≤−)()()(ξ如果C ∈∀η,都有0)(=′ηf ,则沿C ,0)(≡′z f ,于是沿C ,)(z f 为常数,故)()(a f b f =,题中等式成立.如果存在C ∈ξ使0)(≠′ξf ,且是)(z f ′在C 上的最大值,则可令))(()()(a b f a f b f −′−=ξλ,则题中等式成立.12.证明:取圆周1<=ρz 由于)(z f 在1<z 内解析,故知)(z f 在ρ≤z 上解析,且有ρ−=−≤1111)(z z f 由柯西不等式,知)1(!)(!)0()(ρρρρ−=≤n n n n M n f 对于ρ在(0,1)上,当1+=n n ρ时,)1(ρρ−n 取最大值)11()1(n n n n n +−+于是得)1(!ρρ−n n 的最小值为n n n n )1()!1(++,当∞→n 时e n n n 1)1(→+所以有)0()(n f 的估值为e n f n )!1()0()(+≤.13.证明:由柯西不等式nn R R M n a f )(!)()(≤,其中L ,2,1,)(max )(===−n z f R M R a z 可知∫∫==⋅≤=′1212)(21)(21)0(z z dzz z f dz z z f i f ππ1112112=≤∫=z dz π14.证明:应用反证法假设满足R z >且M z f >)(的z 不存在,则必存在某正数M R ,,使得对于任意的z ,R z >时,M z f ≤)(,又由)(z f 的连续性.则当R z ≤时,)(z f 必有最大值,设其为1M ,令{}10,max M M M =,则在∞<z 时有0)(M z f ≤,于是得到)(z f 在全平面上是有界的,则由刘维尔定理,)(z f 必为常数,与题矛盾,假设错误.15.解:由22()(4)2(),v x y x xy y x y µ+=−++−+得22(4)()(24)2x x v x xy y x y x y µ+=+++−+−=223362x y xy −+−两式相加并结合C R −条件得:22332x x y µ=−−从而323232,32x y x x v y x y y µ=−−=−+−故322332(32)f x y x x i x y y y =−−+−−16.解:在D 内,由条件(1),(2)已知满足柯西积分公式的条件,故得在D 内)()(21z f z f =在C 上,由条件(3)知)()(21z f z f =故综合得在C D D +=上有)()(21z f z f =.第四章 解析函数的幂级数表示法(一)1.解:(1)其部分和数列14151311()414121(4--++-++++-=n i n S n由交错级数收敛性判别及极限运算法则知n n S 4lim ∞→存在,设为l S n n =∞→4lim ,又有,0241,0142414→+-=→+=++n a n i a n n 由此得知l S n n =∞→lim ,因此级数收敛,但非绝对收敛.(2)∑∑∑∞=∞=∞=≤=+111!)34(!1!)53(n n n nn n n b n n i ,可知原级数绝对收敛. (3)由于1226251251lim lim >=+=+=∞→∞→i ia nnn nn n ,故原级数发散. 2.解:(1)11lim lim1=+==∞→+∞→n n c c R n n n n(2)212lim lim 1=+==∞→+∞→n nc c R n n n n(3)01limlim 1==∞→∞→n c R n n nn 3.证明:(1)如果∞≠=+∞→λn n n c c 1lim,则∞≠=+∞→λnn n c c1lim ,则级数的收敛半径为⎪⎩⎪⎨⎧∞+==+∞→n n n c c R 1lim 1λ 00=≠λλ(2)由(1)可证其收敛半径为R . (3)由(1)可证其收敛半径为R .4.证明:因为∑∑∞=∞==0n nn n nn R c z c 收敛,而当R z ≤时,∑∑∞=∞=≤0n n n n nnR c z c,因此级。
复变函数论三钟玉泉PPT课件
k 1
k 1
2022/4/24
5
第5页/共78页
26022/4/24
(5)取极限
记 m1kaxn{sk }, 当n 无限增加且 0 时,
这里 zk zk zk1 , sk zk1zk的长度,
如果不论对C 的分法及 k 的取法如何, Sn 有唯
一极限, 那么称这极限值为函数f (z) 沿曲线C 的积分, 记为
k 1
n
i [v(k ,k )xk u(k ,k )yk ]
k 1
C f (z)dz C udx vdy iC vdx udy
公式 f (z)dz udx vdy i vdx udy
C
C
C
在形式上可以看成是
f (z) u iv 与dz dx idy 相乘后求积分得到
2022/4/24
25
故
1 dz 25 .
5 3
ds 25
C
5
3
C z i
3
2022/4/24
17
第17页/共78页
计算积分CRe z dz ;
其中积分路径C为 (1)连接由点O到点1 i的直线段; (2)先沿着正实轴从O到1,再沿着平行于
虚轴的方向从1到1 i
1+i
2022/4/24
o
1
18
第18页/共78页
C
C1
C2
Cn
在今后讨论的积分中, 总假定被积函数是连续的, 曲线 C 是按段光滑的.
第12页/共78页
例1 计算 zdz, C : 从原点到点 3 4i 的直线段.
解
C
直线方程为 x 3t, y 4t,0 t 1,
在 C 上, z (3 4i)t,
复变函数课件1-1资料
10
法国著名的物理学家、数学家和 天文学家。1717 年11月 17 日生 于巴黎,1783年10月29日卒于同 地。他是圣让勒隆教堂附近的一 个弃婴 ,被一位玻璃匠收养,后
称为虚数单位. 对虚数单位的规定: (1) i2 1; (2) i 可以与实数在一起按同样的法则进行
四则运算.
16
虚数单位的特性:
i1 i;
i2 1;
i3 i i2 i;
i4 i 2 i 2 1;
i5 i4 i1 i;
i6 i4 i 2 1;
i7 i4 i3 i;
课程概况
课程名称 复变函数
教材 总学时
《复变函数论》 高教第三版(钟玉泉编)
76学时
1
第一章 复数与复变函数
8
第二章 解析函数
12
第三章 复变函数的积分
12
第四章 解析函数的幂级数表示法
10
第五章 解析函数罗朗展示与孤立奇点 12
第六章 留数理论及其应用
12
第七章 共形映射(选学)
10
2
课程简介
13
第一章 复数与复变函数
第一节 复数 第二节 复平面上的点集 第三节 复变函数 第四节 复球面与无穷远点
14
第一节 复数
•1 复数域 •2 复平面 •3 复数的模与辐角 •4 复数的乘幂与方根 •5 共轭复数 •6 复数在几何上的应用举例
15
复变函数论教学大纲
复变函数论课程教学大纲一、课程说明1、课程性质《复变函数》是数学与应用数学专业的一门专业主干课程,是数学分析的后续课程。
本课程的主要内容是讨论单复变量的复值可微函数的性质,其主要研究对象是全纯函数,即复解析函数。
复变函数论又称复分析,是数学分析的推广和发展。
因此它不仅在内容上与数学分析有许多类似之处,而且在逻辑结构方面也非常类似。
复变函数论是一门古老而富有生命力的学科。
早在19世纪,Cauchy、Weierstrass 及Riemann等数学巨匠就已经给这门学科奠定了坚实的基础。
复变函数论作为一种强有力的工具,已经被广泛应用于自然科学的众多领域,如理论物理、空气动力学、流体力学、弹性力学以及自动控制学等,目前也被广泛应用于信号处理、电子工程等领域。
复变函数论作为一门学科,有其自身的特点,有其特有的研究方法。
在学习过程中,应注意将所学的知识融汇贯通,并通过与微积分理论的比较加深理解,掌握它自身所固有的理论和方法。
2、课程教学目标与要求(1)通过本课程的教学,使学生掌握复变函数论的基本理论和方法,获得独立地分析和解决某些相关理论和实际问题的能力。
为进一步学习其他课程,并为将来从事教学,科研及其他实际工作打好基础。
(2)通过基本概念的正确讲解,基本理论的系统阐述,基本运算能力的严格训练,逐步提高学生的数学修养。
同时注意扩展学生的学习思路,使他们了解更多的和现代生活息息相关的数学应用知识。
(3)作为师范专业,在有关内容方面注重高等数学对初等数学的提高和指导意义,使学生在今后工作中有较高的起点。
3、先修课程与后续课程先修课程:数学分析,解析几何,高等代数后续课程:数学建模,概率论与数理统计,拓扑学,解析数论等4、教学时数分配表5、使用教材:《复变函数论》(第三版),钟玉泉编;高等教育出版社。
6、教学方法与手段(1)学与思的结合:既要了解相关内容,又要对此进行深入的思考与分析;(2)听与说的结合:要求学生既要认真听老师的讲解,又要勇于单独发表自己的见解;(3)知与做的结合:通过对数学方法的掌握,解决与之相关的其他数学问题;(4)理论与实践的结合:通过本课程理论学习形成的数学思想方法,应用于实际之中,同时加深对其他数学专业课的理解。
《复变函数》课程教学大纲
《复变函数》课程教学大纲适用专业:数学与应用数学执笔人:王小灵审定人:王宏勇系负责人:张从军南京财经大学应用数学系《复变函数》课程教学大纲课程代码:200072英文名:Complex Variable Function课程类别:专业选修课适用专业:数学与应用数学前置课:数学分析后置课:概率论、数学物理方程、偏微分方程学分:2学分课时:54课时主讲教师:王小灵等选定教材:钟玉泉,复变函数论(第三版)[M].北京:高等教育出版社,2003.课程概述:复变函数的主要内容是讨论复数之间的相互依赖关系,其主要研究对象是解析函数。
复变函数是在数学分析的基础上,复变函数又称复分析,也称为解析函数论.是实变函数微积分的推广和发展。
因此它不仅在内容上与实变函数微积分有许多类似之处,而且在研究问题的方面与逻辑结构方面也非常类似。
复变函数是一门古老而富有生命力的学科。
早在19世纪,Cauchy、Weierstrass及Riemann 等人就已经给这门学科奠定了坚实的基础。
复变函数不但是我们所学数学分析的理论推广,而且作为一种强有力的工具,已经被广泛的应用于自然科学的众多领域,如理论物理、空气动力学、流体力学、弹性力学以及自动控制学等,目前也被广泛应用于信号处理、电子工程等领域。
复变函数作为一门学科,有其自身的特点和研究方法与研究工具,在学习过程中,应注意与微积分理论的比较,从而加深理解,同时也须注意复变函数本身的特点,并掌握它自身所固有的理论和方法,抓住要点,融会贯通。
教学目的:复变函数是微积分学在复数域上的推广和发展,通过复变函数的学习能使学生对微积分学的某些内容加深理解,提高认识。
教学方法:教学过程宜采用以章为主的单元组织教学法,以课堂讲授为主,结合多媒体教学软件辅助教学,教学中应强调理论与实际并重,各章应安排一定课时的习题课,课后教师需安排时间集中对学生辅导答疑,学生必须完成一定量的作业。
本课程可根据需要安排课堂讨论。
复变函数论第5章第2节
的负幂项,则称 a 为 f (z) 的 本质奇点 . 下面,分别讨论三类孤立奇点的特性 .
2、可去奇点
如果 a 是 f (z) 的可去奇点, 则有
f (z) c0 c1(z a) cn(z a)n .
负幂项 ,则称 a 为 f (z) 的 可去奇点 .
(2) 若在 f (z) 洛朗展式中只有有限多个z a的 负幂项, 其中关于 (z a)1 的最高幂为 (z a)m ,
即 f (z) cm(z a)m c2(z a)2 c1(z a)1 c0 c1(z a) (m 1, cm 0)
说明 此引理为判断函数的极点提供了一个较为
简便的方法. 1
例2 函数 sin z 有些什么奇点, 如果是极点, 指出 它的阶.
解 函数的奇点是使 sin z 0 的点,
这些奇点是 z k (k 0, 1, 2), 是孤立奇点.
因为 (sin z) zk cos z zk (1)k 0, 所以 z k是sin z的一阶零点,即 1 的一阶极点.
孤立奇点 洛朗级数特点 可去奇点 无负幂项 (主要部分为零)
lim f (z)
za
存在且为 有限值
含有限个负幂项
m级极点 关于 (z a)1的最高幂
为 (z a)m
本质奇点 含无穷多个负幂项
不存在 且不为
6、皮卡(Picard)定理
魏尔斯特拉斯 1876 年给出下面的定理 ,描述 解析函数在本质奇点邻域内的特性 .
f (z)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 施瓦茨(Schwarz)引理
Schwarz引理 如果函数f(z)在单位圆|z|<1内解析, 并且满足条件 f(0)=0,|f(z)|<1(|z|<1),则在单位圆 |z|<1内恒有|f(z)|≤|z|,且有 | f (0) |1. 如果上式等号成立,或在圆|z|<1内一点z0≠0 处前一式等号成立,则(当且仅当)
f (z) ei z(| z | 1), 其中α为一实常数.
14
2019/12/29
复变函数
华中科技大学数学与统计学院
4. 极点的性质
定理5.4 如果f(z)以a为孤立奇点,则下列三条是等价
的。因此,它们中的任何一条都是m阶极点的特征。
(1)
f(z)在a点的主要部分为
cm (z a)m
cn(z z0 )n
令 (z z0 )1
cn n
n1
若
n1
R1 时收敛, 收敛域为 z z0
1 r
R1
cn(z z0 )n的收敛半径为R, 收敛域为 z z0 R
n0
若 (1) r R : 两收敛域无公共部分,
(2) r R :两收敛域有公共部分H: r z z0 R.
因此 lim za
(2) (3).
f
z
因
c0
lim
f z
b
则
0,
za
0, z
:0
|
z
a
| ,有 |
f
(z) b
| ,
于是,有 | f (z) || b | ,即f (z)在a的去心邻域内有界。
(3)
(1).
因主要部分的系数
cn
1
2i
f
a n1
d
其中 : a , 可任意小,故
cn
1
2
f
a n1
d
1
2
M
n1
2
M n
cn 0 n 1,2,
13
2019/12/29
复变函数
华中科技大学数学与统计学院
则称为f(z)的孤立奇点.
如果a为f(z)的一个孤立奇点,则f(z)在
点a的某一去心邻域K-{a}:0<|z-a|<R内能展
成洛朗级数。将函数展成洛朗级数的常用方法。
1. 直接展开法: 利用定理公式计算系数 cn
cn
1
2πi C (
f
(
z0
) )n1
d
(n
0, 1, 2,)
充分小去心邻域内不为零,则z=a亦必为
1 f (z)
的本性奇点.
16
2019/12/29
复变函数
可去奇点
华中科技大学数学与统计学院
孤立奇点 极点
(单值函数的)
本性奇点 奇点 非孤立奇点
支点
(多值函数的)
17
2019/12/29
复变函数
华中科技大学数学与统计学院
6. Picard(皮卡)定理
定理5.8 如果a为f(z)的本性奇点,则对于
(1) f(z)在点a的主要部分为零; (2) lim f (z) b( ) (3) fz(za)在点a的某去心邻域内有界。
12
2019/12/29
复变函数
华中科技大学数学与统计学院
证 (1) (2). 由(1)有
f z c0 c1z a c2z a2 0 z a R
(3)f(z)在 z 的某去心邻域N-{∞}内有界.
22
2019/12/29
复变函数
华中科技大学数学与统计学院
定理5.4/(对应于定理5.4)f(z)的孤立奇点z =∞为m
级极点的充要条件是下列三条中的任何一条成立:
复变函数
华中科技大学数学与统计学院
第五章 解析函数的洛朗展式与孤立奇点
第一节 解析函数的洛朗展式
1. 双边幂级数 2. 解析函数的洛朗展式 3. 洛朗级数与泰勒级数的关系
4. 解析函数在孤立奇点邻域内的洛朗展式 5. 典型例题
1
2019/12/29
复变函数
华中科技大学数学与统计学院
1. 双边幂级数
10
2019/12/29
复变函数
华中科技大学数学与统计学院
1. 孤立奇点的分类
如a为f(z)的孤立奇点,则f(z)在a的某去心邻域
K-{a}内可以展成罗朗级数
f (z) cn (z a)n cn (z a)n cn (z a)n .
n
n1
c(m1) (z a)m1
c1 za
(cm
0),
则称a为f(z)的m阶极点,一阶极点也称为简单极点;
(3)如果f(z)在点a的主要部分有无限多项,则称a为f(z)
的本性奇点.
11
2019/12/29
复变函数
2.可去奇点的性质
华中科技大学数学与统计学院
定理5.3 若a为f(z)的孤立奇点,则下列三条是等价 的。因此,它们中的任何一条都是可去奇点的特征。
(3) lim f (z) lim(z'), 或两个极限都不存在.
z
z0
20
2019/12/29
复变函数
华中科技大学数学与统计学院
定义5.5 若z/=0为 (z') 的可去奇点(解析点)、 m级极点或本性奇点,则相应地称z=∞为f(z) 的可去奇点(解析点)、m级极点或本性奇点.
设在去心邻域 K {0}: 0 | z |1/ r 内将(z')
定理5.5 f(z)的孤立奇点a为极点 lim f (z) za
15
2019/12/29
复变函数
华中科技大学数学与统计学院
5. 本性奇点的性质
定理5.6 f(z)的孤立奇点a为本性奇点
lim
f
(
z)
b(有
限
数),
即lim
f
(
z)广义不
存 在.
za
za
定理5.7 若z=a为f(z)的本性奇点,且在点a的
例2 求函数
f
z
sinh z2
z
在 0 z
内的洛朗级数。
例3 试问函数 f 洛朗级数?
z
tan
1 z
能否在
0 z R 内展成
9
2019/12/29
复变函数
华中科技大学数学与统计学院
第二节 解析函数的有限孤立奇点
1. 孤立奇点的分类
2. 孤立奇点的性质 3. Picard定理 4 . Schwarz引理
zz
f z z z 1 1
2 z 3 z 12/ z 13/ z
2n
3n
3n 2n
z z n
n
n0
n0
zn
n1
6
2019/12/29
复变函数
华中科技大学数学与统计学院
例2
求函数
f
z
sin z z2
在 0
z
内的洛朗级数。
c1 za
(cm
0);
(2)f(z)在点a的某去心邻域内能表示成
f
(
z
)
(
(z)
z a)m
其中λ(z) 在点a的邻域内解析,且λ(a)≠0
(3)
g(z)
f
1 (z)
以点a为m阶零点。
注意 第(3)条表明:f(z)以点a为m阶极点的充要条件是
f 1(z)以点a为m阶零点。
在去心邻域:
K
z'
{0}:0 |z' Nhomakorabea1
(如r
0规定
1
)
r
r
内解析,则 z 0就为(z)的孤立奇点。
19
2019/12/29
复变函数
华中科技大学数学与统计学院
注:(1)对于扩充z平面上无穷远点的去心邻域 N-{∞},有扩充z/平面上的原点的去心邻域;
(2)在对应点z与z/上,函数 f (z) (z')
展成罗朗级数: (z') cn z'n n
21
2019/12/29
复变函数
华中科技大学数学与统计学院
定理5.3/ (对应于定理5.3)f(z)的孤立奇点z=∞为可
去奇点的充要条件是下列三条中的任何一条成立:
(1)f(z)在 z 的主要部分为零;
(2) lim f (z) b( ); z
(r≥0,R≤+∞)内解析的函数f(z)必可展成双边
幂级数 f (z) cn (z a)n
(2)
其中 1
cn 2 i
n
(
f ( )
a)n
1d
,(n
0,
1, 2, ),
(3)
为圆周| a | (r R),并且展式是
然后写出 f (z) cn(z z0 )n .
2. 间接展开法 n
根据正、负幂项组成的的级数的唯一性, 可
用代数运算、代换、求导和积分等方法去展开 .
8
2019/12/29
复变函数
华中科技大学数学与统计学院