IGBT单相桥式无源逆变仿真
单相桥式整流逆变电路设计及仿真
辽宁工业大学电力电子技术课程设计(论文)题目:单相桥式整流/逆变电路的设计及仿真院(系):电气工程学院专业班级:自动化111班学号:110302030 ____________学生姓名:________________指导教师:______________________ (签字)起止时间:2013.12.30-2014.1.10课程设计(论文)任务及评语院(系):电气工程学院教研室:自动化整流电路是把交流电转换为直流电的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
逆变电路是把直流电变成交流电的电路,与整流电路相对应。
无源逆变电路则是将交流侧直接和负载连接的电路。
此次设计的单相桥式整流电路是利用二极管来连接成桥”式结构,达到电能的充分利用,是使用最多的一种整流电路。
无源逆变是指逆变器的交流侧不与电网连接,而是直接接到负载,即将直流电逆变为某一频率或可变频率的交流电供给负载。
关键词:交直流转换;桥式整流;无源逆变电路;目录第1章绪论 (1)第2章课程设计的方案 (2)2.1概述 (2)2.2系统组成方案 (2)2.2.1单相桥式整流电路的结构 (2)2.2.2单相桥式无源逆变电路的结构 (3)第3章主电路设计 (4)3.1单相桥式整流主电路 (4)3.1.1单相桥式整流主电路图 (4)3.1.2工作原理 (4)3.2单相桥式无源逆变电路主电路 (5)3.2.1单相桥式整流电路主电路图 (5)3.2.2工作原理 (6)第4章控制电路设计 (7)4.1单相桥式整流电路控制 (7)4.1.1触发电路 (7)4.1.2保护电路 (8)4.2单相桥式无源逆变电路控制电路 (9)4.2.1驱动电路 (9)4.2.2保护电路 (10)第5章MATLAB仿真 (12)5.1单相桥式整流电路的仿真 (12)5.2单相桥式无源逆变电路的仿真 (15)第6章课程设计总结 (17)参考文献 (18)第1章绪论整流电路就把交流电转换为直流电的电路。
IGBT单相桥式无源逆变电路设计(纯电阻负载)资料
湖北民族学院科技学院信息工程系课程设计报告书题目: IGBT单相全桥无源逆变电路设计课程:电力电子技术课程设计专业:电气工程及其自动化班级:K0312417学号:K031241723学生姓名:罗开元指导教师:曾仑明2015年 01月06日信息工程系课程设计任务书2015年 01月 06日信息工程学院系设计成绩评定表摘要本次课程设计的主要目的是设计一个带纯电阻负载的单相全桥逆变电路,然后得到负载两端的电压电流波形。
本次所设计的单相全桥逆变电路采用IGBT作为开关器件,将直流电压Ud逆变为频率为1KHZ的方波电压,并将它加到负载电路。
负载电路是由纯电阻构成的电路,通过电阻的电流波形也为方波。
而IGBT的导通,则由脉冲电路产生的触发脉冲来触发其导通。
在进行主电路的设计时,根据主电路的输入、输出参数来确定各个电力电子器件的参数,并进行器件的选择,以使设计的主电路能够达到要求的技术指标。
关键词:IGBT单相全桥无源逆变电路设计MATLAB仿真目录1.单相全桥逆变电路的设计 (1)2.MATLAB仿真 (4)3.总结 (6)4.参考文献 (7)1单相全桥逆变电路的设计1.1主电路及工作原理单相桥式逆变电路由4个全控型开关器件(本实验采用IGBT)、电阻构成,直流侧采用一个电容器即可,其电路图如下图所示:全控型开关器件T1和T4构成一对桥臂,T2和T3构成一对桥臂, T1和T4同时通、断,T2和T3同时通、断。
当T1、T4闭合,T2、T3断开时,负载电压为正,当T1、T4断开,T2、T3闭合时,负载电压为负,其波形如图a所示,因为是纯电阻负载,所以,电压电流波形相同,如图b所示。
实验时T1与T2,T3与T4的驱动信号需要互补,即当T1和T4有驱动信号时,T2,和T3无驱动信号,T2和T3有驱动信号时,T1和T4无驱动信号,两对桥臂各交替导通180°。
这样,就把直流电变成了交流电,改变两组开关的切换频率,就可以改变输出交流电的频率。
IGBT单相桥式无源逆变电路设计
IGBT单相桥式无源逆变电路设计IGBT单相桥式无源逆变电路是一种常用于将直流电转换成交流电的电路。
在没有任何主动元件的控制下,通过合适的电路设计可以实现直流到交流的转换。
本文将详细介绍IGBT单相桥式无源逆变电路的设计原理、电路组成以及相关参数的计算。
一、IGBT单相桥式无源逆变电路的设计原理IGBT(Insulated Gate Bipolar Transistor)是一种常用的功率开关元件,同时结合了MOSFET和BJT的优点,具有低开关损耗、高开关速度等特点。
单相桥式无源逆变电路是由四个IGBT和四个二极管组成的桥式整流电路,它可以将直流电源的电压转换成交流电,供给交流电动机等负载使用。
桥式无源逆变电路的工作原理是通过控制IGBT的导通和关断时间来生成脉冲调制信号,进而控制IGBT的输出电压波形。
通过合理的波形控制,可以实现直流到交流的转换。
二、IGBT单相桥式无源逆变电路的电路组成1.IGBT模块:IGBT模块由四个IGBT和四个二极管组成,承担了整流和逆变的功能。
2.LC滤波网络:LC滤波网络由电感器和电容器组成,用于平滑逆变后的脉冲信号,使其更接近于纯正弦波。
3.电源:电源为IGBT单相桥式无源逆变电路提供直流信号,可以采用整流桥或直流电源等形式。
4.纯电阻负载:纯电阻负载是指无感性和无容性的负载,用于测试和验证逆变电路的输出波形。
三、IGBT单相桥式无源逆变电路参数的计算1.IGBT参数的计算:IGBT的参数包括额定电压、额定电流、功率损耗等。
根据所需的载波频率、输入电压和输出功率等参数进行计算。
2.LC滤波网络参数的计算:根据所需的输出频率和负载电流等参数,计算出电感器和电容器的数值。
3.电源参数的计算:根据所需的输入电压、输出功率和效率等参数,选择合适的电源。
四、总结IGBT单相桥式无源逆变电路是一种常用的电路,用于将直流电转换成交流电供给负载使用。
本文介绍了该电路的设计原理、电路组成以及相关参数的计算方法。
igbt单相电压型半桥无源逆变电路设计
igbt单相电压型半桥无源逆变电路设计本文介绍了一种IGBT单相电压型半桥无源逆变电路设计,该电路采用半桥拓扑结构,通过IGBT管控制开关实现正负半周期无源逆变,具有高效、可靠、稳定等优点。
同时,本文还介绍了电路的设计流程和注意事项。
一、电路拓扑结构IGBT单相电压型半桥无源逆变电路采用半桥拓扑结构,如图1所示。
电路中,IGBT1和IGBT2分别代表上管和下管,L1和L2为变压器的两个线圈,C为输出滤波电容。
该拓扑结构有以下优点:1、半桥结构可以避免直流电离子飘移问题,提高电路的可靠性。
2、IGBT管负责开关电流,电压由变压器自行绝缘,可以避免功率管受到高频电磁干扰而损坏的问题。
3、半桥拓扑结构使得电路的效率较高,能够满足高效、小型化的需求。
二、电路设计1、选择IGBT管根据电路的工作电压和电流,选择适合的IGBT管是很重要的。
可以根据功率、电压承受能力、开关速度、漏电流等因素进行选择。
2、选择变压器变压器是半桥无源逆变电路的关键元件之一,变压器的参数需要根据电路需求进行选择。
如果输出功率较大,则需选择大功率变压器;如果需要较小的体积,则可以选择小型化的变压器。
3、选择输出电容电容可以用来过滤输出端的噪声和杂波。
根据输出电压、输出电流等参数选择适合的电容,并确保电容的电压承受能力充足。
4、电路参数计算根据电路的拓扑结构和工作参数,进行电路参数的计算。
需要计算的参数包括变压器的线圈数、电感值、电容容值等。
这些参数的计算需要根据电路需求进行合理设置。
三、注意事项在使用IGBT管时,需要防止温度过高和静电干扰等问题。
建议在使用IGBT管时加装散热器,并采用静电保护措施,以保证管子的正常工作。
总之,IGBT单相电压型半桥无源逆变电路是一种高效、可靠、稳定的电路结构,在工业自动化控制等领域有着广泛的应用。
IGBT单相半桥无源逆变电路设计
《单片机技术》课程设计说明书模板IGBT单相半桥无源逆变电路设计院、部:电子与信息工程学院学生姓名:指导教师:职称:博士专业:自动化班级:完成时间:2013年5月20日摘要本次课程设计的题目是IGBT单相半桥无源逆变电路设计,同时设计相应的触发电路。
根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。
当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。
本次设计中主要由交流电源,整流,滤波和半桥逆变电路四部分构成电路的主电路,驱动电路和驱动电源构成指挥主电路中逆变桥正确工作的控制电路。
设计中使用到的绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。
它是一种典型的全控器件。
它综合了GTR和MOSFET的优点,因而具有良好的特性。
现已成为中、大功率电力电子设备的主导器件。
本文对使用的IGBT单相半桥无源逆变电路进行了波形的仿真和分析。
关键词:IGBT;单相半桥;无源逆变ABSTRACTThe course design is the subject of IGBT single-phase half-bridge passive inverter circuit design, while the design of trigger circuit corresponding. According to the related knowledge of power electronics technology, single-phase bridge inverter circuit is a circuit common, compared with the rectifier circuit, the DC to AC inverter circuit become. When the AC side is connected to the power grid, called active inverter; when the AC side directly and load connected, called passive inverter, the inverter circuit is widely applied in real life.This design is mainly composed of AC power, rectifier, filter and half-bridge inverter circuit four parts of the main circuit circuit, driving circuit and power supply control circuit in the main circuit of inverter bridge command work properly. Insulated gate bipolar transistor to use in design (Insulated-gate Bipolar Transistor), the English abbreviation for IGBT. It is a typical control device. It combines the advantages of GTR and MOSFET, which has a good characteristic. Has now become the leading device, high power electronic equipment. This paper analyzed and simulated waveforms of IGBT single-phase half-bridge inverter circuit using passive.Keywords:IGBT; single-phase half-bridge; passive inverter第一章 系统方案设计及原理1.1 系统方案系统方案如图1所示,在电路原理框图中,交流电源、整流、滤波和半桥逆变电路四个部分构成电路的主电路,驱动电源和驱动电路两部分构成指挥主电路中逆变桥正确工作的控制电路。
IGBT单相桥式无源逆变电路设计资料
IGBT单相桥式无源逆变电路设计资料1.设计原理2.工作过程当输入电压正半周时,IGBT1和IGBT3导通,IGBT2和IGBT4截至,使得直流电源电压施加在纯电阻负载上,电流从A点流向B点。
当输入电压负半周时,IGBT2和IGBT4导通,IGBT1和IGBT3截至,电流从B点流向A点。
通过周期性地控制IGBT管的导通和截至,可以实现对输入电压的逆变转换。
3.性能分析在纯电阻负载情况下,IGBT单相桥式无源逆变电路具有以下特点:1)输出电压波形基本近似正弦波,谐波含量较低,可以满足很多电器设备对电源质量的要求。
2)输出电压最大值等于输入电压的峰值,输出电压最小值为0,可以满足正负半周的电压需求。
3)输出电压频率与输入电压频率相同,可以匹配大多数电器设备的工作频率。
4)可以通过改变IGBT管的导通时间和导通频率来调节输出电压的大小和频率。
5)由于使用了无源逆变,电路效率较高,损耗较小。
4.应用领域1)智能电网中的逆变器装置,用于将电网交流电转换为直流电,以供给电动汽车等设备使用。
2)变频空调、变频电机等设备的电源模块,用于将输入电源转换为合适的频率和电压,以满足设备的工作要求。
3)太阳能光伏逆变器,将太阳能电池板产生的直流电转换为交流电,以供给电网使用或给其他设备充电。
4)离网系统中的逆变器,用于将微型风力发电机或小型水力发电机产生的直流电转换为交流电,以供给独立的电力系统使用。
总结:IGBT单相桥式无源逆变电路是一种常用的电力转换器,适用于各种领域的电源转换应用。
在纯电阻负载情况下,该电路具有输出电压近似正弦波、频率可调、效率高等特点,因此被广泛应用于智能电网、变频设备、太阳能光伏逆变器和离网系统等领域。
IGBT单相桥式无源逆变电路课程设计
IGBT单相桥式无源逆变电路是一种常见的电力电子变换器拓扑结构,广泛应用于各种领域的电力控制和调节中。
本文将详细介绍IGBT单相桥式无源逆变电路的设计原理、电路结构、控制策略以及性能评估等方面,并通过课程设计来深入理解和实践这一电路的工作机制。
一、设计原理IGBT单相桥式无源逆变电路是一种将直流电压转换为交流电压的电力电子变换器。
其基本工作原理是通过控制IGBT管的导通和关断,调节输出电压的大小和频率,实现对负载端的功率调节。
在正半周和负半周分别通过两个IGBT管来实现电压的逆变,从而产生交流输出。
二、电路结构IGBT单相桥式无源逆变电路主要由四个IGBT管和四个二极管组成,其中两个IGBT管和两个二极管串联构成半桥,两个半桥串联形成全桥结构。
通过PWM控制方法,控制IGBT管的导通和关断,实现对输出电压的调节。
三、控制策略1. PWM控制:采用脉冲宽度调制(PWM)控制方法,通过改变PWM信号的占空比来调节输出电压的大小。
2. 电压闭环控制:通过采集输出电压信号,与设定的参考电压进行比较,控制PWM信号的占空比,实现稳定的输出电压控制。
3. 过流保护:设计合适的过流保护电路,当负载过大时及时切断IGBT 管的导通,以保护设备和负载不受损坏。
四、性能评估1. 效率评估:通过测量输入功率和输出功率,计算电路的效率,评估电路的能量转换效率。
2. 谐波分析:通过示波器等工具对输出波形进行谐波分析,评估谐波含量,检查输出波形的质量。
3. 动态响应:测试电路的动态响应特性,如瞬态响应时间、稳定性等,评估电路的动态性能。
五、课程设计内容1. 电路仿真:使用仿真软件搭建IGBT单相桥式无源逆变电路模型,进行电路仿真分析。
2. 硬件设计:根据电路原理图设计PCB电路板,选取合适的元器件进行电路搭建。
3. 控制程序编写:编写微控制器控制程序,实现对IGBT管的PWM 控制和电压闭环控制。
4. 性能测试与优化:进行电路性能测试,如效率测试、谐波分析、动态响应测试等,根据测试结果进行电路性能优化。
IGBT单相桥式无源逆变电路设计
IGBT单相桥式无源逆变电路设计IGBT单相桥式无源逆变电路是一种将直流电能转换为交流电能的电路,广泛应用于电力电子领域中。
无源逆变电路由于不需要任何外部能源,使得其工作更加简单和可靠。
本文将介绍IGBT单相桥式无源逆变电路的设计原理、主要组成部分以及其工作原理等内容。
在设计IGBT单相桥式无源逆变电路时,需要考虑以下几个关键因素:1.选择合适的IGBT管:IGBT管是无源逆变电路的关键部件,应选择具有适当的功率、电压和电流特性的IGBT管。
同时需要考虑其导通和关断速度,以确保电路的稳定性和工作效率。
2.设计适当的驱动电路:由于IGBT管需要在高频环境下工作,需要设计适当的驱动电路,以提供恰当的电压和电流波形,确保IGBT的正常工作。
3.控制策略设计:无源逆变电路的控制策略是确保电路能够实现所需输出的重要因素。
可以采用脉宽调制(PWM)控制策略,通过控制开关的导通和关断时间,来实现电压和频率的调节。
4.滤波电路设计:逆变电路产生的输出电压可能存在较高的谐波成分,需要设计适当的滤波电路来消除这些谐波,从而获得稳定的交流输出。
1.当输入直流电源施加在桥式电路的直流侧时,根据控制策略,对四个IGBT管进行相应的开通和关断操作。
2.当Q1和Q4管开通,Q2和Q3管关断时,输入直流电源通过Q1管和Q4管流入负载电阻RL,形成正向电压。
3.反之,当Q1和Q4管关断,Q2和Q3管开通时,输入直流电源通过Q2管和Q3管流入负载电阻RL,形成反向电压。
通过适当控制IGBT管的导通和关断时间,可以调节输出的电压和频率,从而实现不同的应用需求。
在设计IGBT单相桥式无源逆变电路时,需要进行合理的元件选择、电路设计和控制策略设计,以确保电路的性能和稳定性。
此外,还需要考虑保护电路的设计,以确保电路和负载的安全性。
IGBT单相桥式无源逆变电路演示教学
南京信息工程大学电子电力技术题目:IGBT单相桥式无源逆变电路的仿真分析姓名:学号:专业:院系:指导老师:摘要单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。
当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。
绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。
它是一种典型的全控器件。
它综合了GTR和MOSFET的优点,因而具有良好的特性。
现已成为中、大功率电力电子设备的主导器件。
本文对其波形进行了仿真和分析。
关键词:IGBG,单相桥式逆变电路,无源一工作原理概论1. 1 IGBT的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。
它是一种典型的全控器件。
它综合了GTR和MOSFET的优点,因而具有良好的特性。
现已成为中、大功率电力电子设备的主导器件。
IGBT是三端器件,具有栅极G、集电极C和发射极E。
它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。
其等效电路和电气符号如下:图1 IGBT等效电路和电气图形符号它的开通和关断是由栅极和发射极间的电压所决定的。
当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT 导通。
由于前提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。
当山脊与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。
1.2 电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。
电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。
IGBT单相电压型半桥无源逆变电路设计
IGBT单相电压型半桥无源逆变电路设计引言:无源逆变器是一种将直流电源转换为交流电源的电力电子装置。
在工业和家庭中,无源逆变器被广泛应用于交流电源的供应,如电机驱动、照明系统和电力供应等。
本文将介绍IGBT单相电压型半桥无源逆变电路的设计原理和方法。
一、无源逆变器原理:无源逆变器的基本原理是通过DC电源,经过电容滤波以及交流输出变压器等,将直流电源转换为交流电源。
在半桥无源逆变器中,瞬时电流流经其两个输出电容之一,从而实现交流输出。
二、电路设计:1.IGBT选择:由于半桥无源逆变器所需承受较高的电压和电流,因此需要选择耐压能力强的IGBT。
根据要求,选择耐压大于输入电压和输出电压的IGBT装置。
2.控制电路设计:半桥无源逆变器需要一个合适的控制电路来控制IGBT的开关状态。
一种常见的控制方法是采用PWM(脉冲宽度调制)技术。
PWM技术可通过控制转换器的开关时间,来实现输出电压的调节。
3.输出滤波电路设计:在半桥无源逆变器中,输出的交流电压通常需要通过滤波电路进行过滤,以消除输出中的谐波和噪音。
滤波电路通常由电感和电容组成,可根据需求选择适当的参数。
4.保护电路设计:为了确保无源逆变器的安全运行,需要设计相应的保护电路。
保护电路可以包括过压保护、过流保护、温度保护等功能,以防止电路过载、过热等情况发生。
三、实际应用:1.交流电机驱动:无源逆变器常用于交流电机驱动中,通过将直流电源逆变成交流电源,实现电机的控制和调速。
逆变器可以根据需要变换频率和电压,以满足不同负载的要求。
2.照明系统:无源逆变器也可以应用于照明系统中,通过逆变电路将直流电源转换成交流电源,供给照明设备。
逆变器可以实现对照明的调亮调暗和调色调温等功能,提高照明系统的灵活性。
3.电力供应:无源逆变器可以将直流电源转换为交流电源,用于电力供应。
逆变器可以应用于太阳能和风能等可再生能源系统中,将直流电源转换为交流电源,供给家庭和工业用电等。
IGBT单相电压型全桥无源逆变电路设计
IGBT单相电压型全桥无源逆变电路设计无源逆变器是一种将直流电能转换为交流电能的装置。
在无源逆变器中,使用单相电压型全桥拓扑结构,其中IGBT是指绝缘栅双极型晶体管,具有高电压和高电流开关特性。
本文将详细设计IGBT单相电压型全桥无源逆变电路。
设计要求:1. 输入电压:直流电压为Vin。
2. 输出电压:交流电压为Vout,频率为f。
3.负载:纯电阻性负载。
电路原理:1. 在每个IGBT导通期间的2/3时间内,两个IGBT之一导通,直流电压Vin流过负载。
2.在导通的另外1/3时间内,两个IGBT同时导通,负载两端电压降为零。
电路结构:1.两个开关电路串联:IGBT1和IGBT4、IGBT3和IGBT22.两个共享电压元件:一个直流电源和一个电感。
电路设计:1.选择IGBT:根据输入电压和负载电流选择IGBT,确保IGBT的电流和电压额定值工作在安全范围内。
2.选择电感:根据电压和电流需求选取合适的电感,它能平滑电路的工作并提供稳定的电流输出。
3.选择电容:选取合适的电容来平滑输出电压。
4.选择二极管:选择合适的二极管防止反向电流损坏电路。
参数计算:1. 选择输入电压Vin。
2. 根据输出电压Vout和负载电流计算负载电阻Rload。
3. 根据输出电压Vout和负载电流计算功率P。
4.根据频率f和功率P计算电感L和电容C的值。
原理图设计:根据电路设计和参数计算结果,绘制原理图。
确保各个组件的连接正确并保证整个电路的工作稳定。
电路实现:将电路原理图转换为实际的电路板。
在实际实施中,要注意电路的布局合理性、组件之间的联接可靠性,以确保电路能够正常工作。
性能测试:测试电路的性能,包括输出电压和电流的波形、频率和效率。
如果有必要,可以进行调整和改进。
总结:。
单相桥式无源逆变电路
黄石理工学院课程设计绪论电力电子技术是一门新兴的应用于电力领域的电子技术,是建立在电子学、电工原理和自动控制三大学科上的新兴学科,就是使用电力电子器件(如晶闸管,GTO,IGBT 等)对电能进行变换和控制的技术。
电力电子技术所变换的“电力”功率可大到数百MW 甚至GW,也可以小到数W 甚至1W 以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。
此技术的应用已深入到国家经济建设,交通运输,空间技术,国防现代化,医疗,环保和人们日常生活的各个领域。
进入新世纪后电力电子技术的应用更加广泛。
以计算机为核心的信息科学将是21 世纪起主导作用的科学技术之一,有人预言,电力电子技术和运动控制一起,将和计算机技术共同成为未来科学的两大支柱。
电力电子技术是应用于电力领域的电子技术。
具体地说,就是使用电力电子器件对电能进行变换和控制的技术。
通常把电力电子技术分为电力电子制造技术和变流技术(整流,逆变,斩波,变频,变相等)两个分支。
其中,变流技术也称为电力电子器件的应用技术,它包括用电力电子器件构成各种电力变换电路和对这些电路进行控制的技术,以及由这些电路构成电路电子装置和电力电子系统的技术。
“变流”不仅指交直流之间的交换,也包括直流变直流和交流变交流的变换。
将直流电转换为交流电的电路称为逆变电路,本课程设计主要介绍单相桥式无源逆变电路。
1 逆变器的性能指标与分类1.1 有源逆变的基本定义及其应用如果将逆变电路的交流侧接到交流电网上,把直流电逆变成同频率的交流电反送到电网去。
它用于直流电机的可逆调速、绕线型异步电机的串级调速、高压直流输电和太阳能发电等方面。
1.2 无源逆变电路的基本定义及应用无源逆变是指逆变器的交流侧不与电网连接,而是直接接到负载,即将直流电逆变为某一频率或可变频率的交流电供给负载。
它在交流电机变频调速、感应加热、不停电电源等方面应用十分广泛,是构成电力电子技术的重要内容。
1.3 逆变器的性能指标1.3.1 谐波系数HF谐波系数HF 定义为谐波分量有效值同基波分量有致值之比,即U HF =nU1(1-1)式中n=1、2、3…,表示谐波次数,n=1 时为基波。
单相全桥逆变电路仿真
计算机仿真实验报告一、实验名称:单相全桥电压型逆变电路MA TLAB仿真二、目的及要求1.了解并掌握单相全桥电压型逆变电路的工作原理;2.进一步熟悉MA TLAB中对Simulink的使用及构建模块;3.复习在Figure中显示图形的程序编写和对图形的修改。
三、实验原理1.电压型逆变器的原理图图1 电压逆变器的原理图当开关S1、S4闭合,S2、S3断开时,负载电压u0为正;当开关S1、S4断开,S2、S3闭合时,u0为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u0的波形如图1(b)所示。
输出交流电的频率与两组开关的切换频率成正比,这样就实现了直流电到交流电的逆变。
2.电压型单相全桥逆变电路图2 电压型单相全桥逆变电路它有4个桥臂可以看成由两个半桥电路组合而成。
两对桥臂交替导通180°。
输出电压和电流波形与半桥电路形状相同,幅值高出一倍。
改变输出交流电压的有效值只能通过改变直流电压Ud来实现。
可采用移相方式调节逆变电路的输出电压,成为移相调压。
各栅极信号为180°正偏,180°反偏,且T1和T2互补,T3和T4互补关系不变。
T3的基极信号只比T1落后q(0<q<180°),T3、T4的栅极信号分别比T2、T1的前移180°- q,u0成为正负各位q的脉冲,改变q即可调节输出电压有效值。
四、实验步骤及电路图1.建立MA TLAB仿真模型通过MA TLAB的Simulink模块建立单相电压型逆变电路的仿真模型,如下图3所示,图中因为用的是MA TLAB2011版本,所以在这个系统中添加了一个powergui模块保证系统的连续运行。
2.参数设置对于图3中的各模块,做如表1所示的参数设置(没有写出的为默认)。
模块名参数设置DC V oltage source Amplitude(V): 220*sqrt(2)Pulse Generator1 Pulse Generator4 Amplitude: 1Period(secs): 0.02Pulse Width(% of period): 50 Phase delay: 90*0.02/360Pulse Generator2 Pulse Generator3Amplitude: 1Period(secs): 0.02Pulse Width(% of period): 50Phase delay: (90+180)*0.02/360 图4 MATLAB仿真模型表1 参数设置00Series RLC Branch Resistance(Ohms): 5Inductance(H): 1Capacitance(F): infScope Number of axes: 5V ariable name: S3.程序设计为了在Figure中,显示仿真波形,我使用了M文件设计程序,如图5所示:五、实验结果1.纯电阻负载波形如图6所示:002.阻感负载波形(1)a=90°,波形如图7:(2)a=135°,波形如图8:图6 纯电阻负载波形图7 阻感负载波形(a=90°)(3)a=180°,波形如图9:图8 阻感负载波形(a=135°)图9 阻感负载波形(a=180°)六、实验心得由于之前已经完成了对三相桥式SPWM逆变电路的仿真,所以这次做单相全桥电压型逆变电路的仿真感觉要容易很多。
(完整word版)电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)
1 引言本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计(阻感负载),根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。
当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。
2 工作原理概论2. 1 IGBT的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。
它是一种典型的全控器件。
它综合了GTR和MOSFET的优点,因而具有良好的特性。
现已成为中、大功率电力电子设备的主导器件。
IGBT是三端器件,具有栅极G、集电极C和发射极E。
它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。
其等效电路和电气符号如下:图2-1 IGBT等效电路和电气图形符号它的开通和关断是由栅极和发射极间的电压所决定的。
当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。
由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。
当山脊与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。
2.2电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。
电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。
当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
单相全桥电压型无源逆变的设计与仿真
本科课程设计专用封面设计题目: 单相全桥电压型无源逆变的设计与仿真 所修课程名称: 电力电子技术课程设计 修课程时间: 2012 年 06 月 17 日至 6 月 23 日 完成设计日期: 2012 年 06 月 23日 评阅成绩: 评阅意见:评阅教师签名: 年 月 日____工____学院___2009___级_电气工程及其自动化_专业 姓名___ _____ 学号___________………………………………(密)………………………………(封)………………………………(线)………………………………单相全桥电压型无源逆变的设计与仿真一.设计要求1)完成电压型无源逆变器的设计、仿真;2)设计要求:输入:DC100V;输出:AC80V,100Hz设计合理的滤波电路,使输出负载电流接近正弦波。
计算其主开关器件所承受的最大正反向电压,器件的额定电流,并建立合适的仿真模型,对主电路进行仿真。
然后根据电压型无源逆变器的驱动控制要求,设计其控制电路,产生符合电路驱动所要求的触发波形。
二.题目分析无源逆变的作用:无源逆变电路主要用在变频领域。
把某种固定频率的电能转变为另一种固定频率或频率可调节的电能称为变频,这种变换通常有两种方式:一种是先把交流电能转变成直流电能,然后再把直流电能转换成固定频率或频率可调的交流电能,这种通过中间直流环节的变频叫间接变频,也被叫作交-直-交变频;另一种方式是不通过中间环节而实现直接变频,叫直接变频,也被称为交-交变频。
交-直-交变频中交-直的过程就是整流的过程,而直-交的过程就是无源逆变的过程。
由此可知许多变频电路就是由整流电路和无源逆变电路构成的。
无源逆变器输出的电压或电流除了频率可以调节外,幅值也可以调整。
无源逆变的特点:从总体上讲,逆变电路的功率流向是从直流侧到交流侧,但在逆变过程中也有从交流侧到直流侧的过程,即在逆变过程中包含了整流过程,因此设计逆变器时必须保证它能够在4个象限工作。
电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)
1 引言本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计(阻感负载),根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,和整流电路相比较,把直流电变成交流电的电路成为逆变电路。
当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的使用。
2 工作原理概论2. 1 IGBT的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。
它是一种典型的全控器件。
它综合了GTR和MOSFET的优点,因而具有良好的特性。
现已成为中、大功率电力电子设备的主导器件。
IGBT是三端器件,具有栅极G、集电极C和发射极E。
它可以看成是一个晶体管的基极通过电阻和MOSFET相连接所构成的一种器件。
其等效电路和电气符号如下:图2-1 IGBT等效电路和电气图形符号它的开通和关断是由栅极和发射极间的电压所决定的。
当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。
由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。
当山脊和发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。
2.2电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。
电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且和负载阻抗角无关。
而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。
当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
单相桥式逆变电路仿真
单相桥式逆变电路仿真
C E
C
E
C E
C
E
+-
+-
E
C
E
E
C
E
+
PWM 脉冲发生器(PWM Generator)模块在库浏览器中的位置
电力系统模块库特殊子库PWM Generator
SimPowerSystems →Extra Library →Control Blocks →PWM Generator
控制模块子库
Goto模块和From模块在库浏览器中的位置
Simulink库
信号
路径
子库
From模块
Goto模块Simulink→Signal Routing →From 或Goto
2.设置模块参数
PWM脉冲发生器
发生器模式:单桥、
双桥,三桥,双三桥
载波频率
内部产生
调制波调制度
输出电压基波频率
输出电压相位
信号端口连接模块
From模块
Goto模块
3.设置仿真参数
仿真参数设置
仿真开始时间
3.设置仿真参数
仿真结束时间
可变步长
算法选ode15s 或ode23tb
4.启动仿真
启动仿真
仿真结束时间,根据
具体情况设置为0.05
5.仿真结果分析
电流
电压
(1)开关1的电流和电压波形
输出电压电感电流
(2
)输出电压和电感电流波形。
单相逆变电路的仿真
第3页共3页指导教师签名
苏州市职业大学实训报告院系电子信息工程学院班级姓名学号实训名称单相逆变电路的仿真实训日期一实训目的1了解matlab的工作环境并能熟练地运用simulink中的各种模块组合建立仿真模型设置各种模块参数及仿真参数运行和结果分析
苏州市职业大学实训报告
院系电子信息工程学院班级姓名学号
实训名称单相逆变电路的仿真实训日期
三、实训步骤
1、建立仿真模型。
首先新建一个仿真模型的文件,然后提取电路元件模块,最后将电路元件模块按电压型单相逆变电路的原理图连接起来,组成仿真电路。Fra bibliotek2、设置模型参数。
①交流电压源,电压为220V,频率为50Hz。.
②IGBT,Rn=0.001Ω,Lon=1e-6H,Uf=0.8,Rs=10Ω,Cs=250e-6(250×10-6)F。
四、仿真模型
五、实训结果
第2页共3页指导教师签名
苏州市职业大学实训报告
院系电子信息工程学院班级姓名学号
实训名称单相逆变电路的仿真实训日期
电压型逆变电路的主要特点如下:
①直流侧接有大电容,相当于电压源,直流电压基本无脉动。
②交流侧电压波形为矩形波,与负载阻抗角无关,而交流侧电流波形和相位因负载阻抗角得不同而异,其波形接近三角波或接近正弦波。
一、实训目的
1、了解MATLAB的工作环境,并能熟练地运用Simulink中的各种模块组合建立仿真模型,设置各种模块参数及仿真参数,运行和结果分析。
2、通过仿真,进一步了解电压型单相逆变电路的结构。
3、通过仿真,进一步了解电压型单相逆变电路的工作原理。
二、实训原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 2-7
6 本系统选择的仿真算法为 ode23tb,仿真 Start time 设为 0,Stop time 设为 0.08s。
三、仿真结果与分析
波形图分别代表输入电压波形、IGBT1.IGBT3 触发脉冲、IGBT2.IGBT4 触 发脉冲、负载输出波形上的电压。下列波形分别是延迟角 a 为 30、40、50 时的 波形变化。
3
Simulink 仿真实验报告
Subsystem 参数设定如下:
IGBT1 增补的触发脉冲:
图 2-4
4 RLC 支路参数设定:
图 2-5
图 2-6
4
Simulink 仿真实验报告
5 示波器相关参数的设定:“Number of axes”设置为 4,“Time range” 设置为 auto,“Tick labels”设置为 bottom axis only,“sampling”设置为 Decimation1。
图 1-2.移向调压理论波形
二、单相桥式无源逆变电路(阻感性负载)建模
1).单相桥式无源逆变电路(电阻性负载)仿真电路图如图 2-1.所示:
图 2-1.单相桥式无源逆变仿真电路图
2
Simulink 仿真实验报告
2).仿真参数设定 1 IGBT 参数 Rn=0.001Ω,Lon=1e-6H,Vf=1V,Rs=1e5Ω,Cs=250e-6F; 负载参数 R=1Ω,L=1e-3H; 2 直流电压源参数 U=100V;
1
Simulink 仿真实验报告
度,而是只落后θ(0<θ<180).也就是说,V3、V4 的栅极信号不是分别和 V2、 V1 的栅极信号同相位,而是前移了 180-θ。这样,输出电压 u0 就不再是正负各 180 度的脉冲,而是正负各为θ的脉冲,由于输入为 DC100V,输出幅值也是 100V,θ=90°,则输出电压有效值为 50V。各 IGBT 的栅极信号 uG1~uG4 及输 出电压 u0、输出电流 i0 的波形如图 1-2.所示。
VT1 电压波形和 VT2 的互补,VT3 电压波形和 VT4 的互补,但 VT3 的基极信 号不是比 VT1 落后 180°,而是只落后 a。输出的电压波形不再是正负各为 180 °的脉冲,而是 90°的脉冲。由于没有电感,此时电压和电流的波形相同。
6
1 当 a 为 30 时,波形图如图 3-1.所示:
图 3-1
5
Simulink 仿真实验报告
2 当 a 为 40 时,波形图如图 3-2.所示:
图 3-2 3 当 a 为 50 时,波形图如图 3-3.所示:
图 3-3
四、实验结果分析
在接电阻负载时,采用移相的方式来调节逆变电路的输出电压。移相调压实 际上就是调节输出电压脉冲的宽度。通过对 2-4 触发脉冲的控制得到如图 3-1 和 3-2 的波形图,3-3 波形为输出电流电压的波形,由于没有电感负载,在波形 图中可看出,一个周期内的两个半个周期的输出电压值大小相等,幅值的正负相 反,则输出平均电压为 0。
V1 和 V2 栅极信号各半周正偏、半周反偏,互补。uo 为矩形波,幅值为 Um=Ud/2, io 波形随负载而异,感性负载时,图 2-3-b,V1 或 V2 通时,io 和 uo 同方向,直流 侧向负载提供能量,VD1 或 VD2 通时,io 和 uo 反向,电感中贮能向直流侧反馈,VD1、 VD2 称为反馈二极管,还使 io 连续,又称续流二极管。
图 1-1.电压型全桥无源逆变电路的电路图 2).IGBT 单相电压型全桥无源逆变电路工作原理
由于采用绝缘栅晶体管(IGBT)来设计,如图 2-2 的单相桥式电压型无源逆 变电路,此课程设计为阻感负载,故应将 RLC 负载中电容的值设为零。此电路由 两对桥臂组成,V1 和 V4 与 V2 和 V3 两对桥臂各导通 180 度。再加上采用了移相 调压法,所以 VT3 的基极信号落后于 VT1 的 90 度,VT4 的基极信号落后于 VT2 的 90 度。
Simulink 仿真实验报告
所属课程名称:计算机仿真 题目:单相桥式无源逆变电路建模与仿真 学院:电气与电子工程学院
日期:2014 年 4 月 30 日
Simulink 仿真实验报告
一、电路原理与工作原理
1).IGBT 单相电压型全桥无源逆变电路原理分析
单相逆变电路主要采用桥式接法。它的电路结构主要由四个桥臂组成,其中每个桥臂都 有一个全控器件 IGBT 和一个反向并接的续流二极管,在直流侧并联有大电容而负载接在桥 臂之间。其中桥臂 1,4 为一对,桥臂 2,3 为一对。可以看成由两个半桥电路组合而成。其 基本电路连接图 1-1 如下所:
图 2-2 3 脉冲发生器触发信号 1、2 的振幅为 1V,周期为 0.02s(即频率为 50Hz), 脉冲宽度为 a(可调节)。
图 2-3 同时封装两个触发脉冲,便于调节参数,从而得到不同的脉宽时的输出波形, 此外给 IGBT1 加上一个提前的触发脉冲,便于得到完整的输出波形,阶跃信号如 下图所示。