习题14S-L本征值问题

合集下载

结构化学习题解答解析

结构化学习题解答解析

习题选解第一章1.1 E = 1.988⨯10-18Jp = 6.626⨯10-27kg ⋅m ⋅s -1 1.2 h = 6.442⨯10-34J ⋅s w = 5.869⨯10-19J ν0 = 9.11⨯1014s -1 1.4 光子能量21.24eV ;电子动能 5.481eV 1.5 70.8pm1.9 (1)1/4;(2)2.63⨯10-5;(3)2/l ;(4)01.10 3个,E 1 = h 2/(8ml 2);E 2 = 4h 2/(8ml 2);E 3 = 9h 2/(8ml 2) 1.13 301.5 nm 1.16 0.14 nm 1.17 86.2nm1.20 (1)无,l /2;(2)无,0;(3)有,2224n h l ;(4)有,2228n h ml 1.21 (1)是,能量无确定值,22513h E mL =;(2) 是,能量无确定值,2297104h E mL = 1.22 (1) 2222k E mr =,i k φψ, k =0, ±1, ±2, …;(2) 136pm 1.23 (1) h 2/(8ml 2);(2) l /2,2/l ;(3)01.24 n x =3, n y =1, n z =2;n x =3, n y =2, n z =1;n x =2, n y =1, n z =3;n x =2, n y =3, n z =1;n x =1, n y =2, n z =3;n x =1, n y =3, n z =2 1.25 (1)不是,x →∞时,ψ→∞不满足平方可积;(2)不是,x →-∞时,ψ→∞不满足平方可积;(3)不是,在x =0处一阶微商不连续;(4)不是,ψ不满足平方可积;(5) 不是,ψ不满足平方可积,在x =0处一阶微商不连续;(6) 是 1.27 11πsin 42π2n n -;n =3;1/4;说明当n →∞时,一维势箱中运动的粒子,其概率分布与经典力学相同 1.28 (1)1ψ=;(2) ψ=(3) i m φψ=;(4) 0/r a ψ-=1.29 (1)是;(2) 是;(3) 不是;(4) 是;(5) 不是1.31 (1) 是d/d x 和d 2/d x 2的本征函数,本征值分别为a 、a 2(2) 不是d/d x 和d 2/d x 2的本征函数(3) 不是d/d x 的本征函数,是d 2/d x 2的本征函数,本征值为-a 2 (4) 不是d/d x 的本征函数,是d 2/d x 2的本征函数,本征值为-a 2 (5) 不是d/d x 和d 2/d x 2的本征函数 (6) 不是d/d x 和d 2/d x 2的本征函数1.34 无确定值,2258h E ml =1.351.36 (a /2, a /4, a /2),(a /2, 3a /4, a /2);y = a /2 1.37 (1) 是;(2) 是;(3) 不是;(1) 不是 1.38 |p |=nh /2l第二章 2.1 3a 0/2 2.5 22.6 (1) ()22212349R C C C ⎡⎤-++⎣⎦;(2)21C ;;(4)1;(5) 2223()C C - ;(6)0 2.14 (1) -3.4eV ;(2) ;(3)0;(4)r /a 0(5)(6)2.15 (1);(2) n =2, l =1, m =0;(3) E =-3.4eV ,|M | =0,M z = 02.16 (1) 1111(1)(1)(1)(1)(2)(2)(1)(2)s s s s αψβΦαψβ=;(2) E = -78.6eV2.17 (1) 112112112(1)(1)(1)(1)(3)(3)(2)(2)(2)(2)(3)(3)(3)(3)(3)(3)(3)(3)s s s s s s s s s αψβψαΦαψβψααψβψα=或112112112(1)(1)(1)(1)(3)(3)(2)(2)(2)(2)(3)(3)(3)(3)(3)(3)(3)(3)s s s s s s s s sαψβψβΦαψβψβαψβψβ=; (2) E = -204.03eV2.18 (1) 3P 0;(2) 3P 2;(3) 4S 3/2;(4) 6S 5/2;(5) 3F 2;(6) 3F 4;(7) 4F 3/2;(8) 4F 9/2;(9) 5D 4 2.19 (1) 1S(1S 0);(2) 2P(2P 3/2 2P 1/2);(3) 1S(1S 0), 3P(3P 2, 3P 1, 3P 0), 1D(1D 2);(4) 1S(1S 0), 3P(3P 2, 3P 1, 3P 0), 1D(1D 2), 3F(3F 4, 3F 3, 3F 2), 1G(1G 4); (5) 1P(1P 1),3P(3P 2, 3P 1, 3P 0);(6)1S(1S 0), 3S(3S 1), 1P(1P 1),3P(3P 2, 3P 1, 3P 0), 1D(1D 2), 3D(3D 3, 3D 2, 3D 1) 2.21 第一种2.22 未成对电子数:2l +1 基支项:2212l l S ++2.24 (1) 4S 、2D 、2P(2) 4D 、4P 、4S 、2D(2)、2P(2)、2S(2) (3) 4P 、2D 、2P 、2S(4) 4P 、4D 、4F 、2S 、2P(2)、2D(3)、2F(2)、2G (5)1S 3P 1D 1S 1S 3P 1D 3P 3P 5D, 5P,5S, 3D, 3P, 3S, 1D, 1P, 1S3F, 3D,3P1D 1D 3F, 3D, 3P 1G,1F, 1D, 1P,1S3 F 3F 5G, 5F , 5D, 3G, 3F , 3D, 1G, 1F , 1D 3H, 3G, 3F, 3D,3P1G 1G 3H, 3G, 3F 1I, 1H, 1G,1F,1D2.25 I 1= 11.46eV2.26 (1)5;(2)15;(3)4;(4)45;(5)675;(6)1350 ;;(4) 2, 1, 0, -1, -2;(5)5 2.29 (1)A, C ;(2)A, B ;(3)B, C 2.31 2个节面2.32 (1))122z s s p ψψψψ=++;(2) 无,<E>=-6.8eV ,1/3; (3) 3 ,2/3; (4) 有,0,0第三章3.7 (1)OF :(1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π)3,一个σ键,一个三电子π键,键级3/2,顺磁性(2)NO :(1σ)2(2σ)2(3σ)2(4σ)2(1π)4 (5σ)2(2π)1,1σ,1π,一个三电子π键,键级5/2,顺磁性 (3)CO :(1σ)2(2σ)2(3σ)2(4σ)2(1π)4 (5σ)2,一个σ键,二个π键,键级3,反磁性(4)CN :(1σ)2(2σ)2(3σ)2(4σ)2(1π)4 (5σ)1,一个单电子σ键,二个π键,键级5/2,顺磁性 (5)HF :(1σ)2(2σ)2(3σ)2(1π)4,一个σ键,键级1,反磁性3.8 (1) O 2:2*22*2222*1*1112222222s s s s pz px py px py σσσσσππππ;O 2+:2*22*2222*111222222s s s s pz px py px σσσσσπππ;O 2-:2*22*2222*2*1112222222s s s s pz px py px py σσσσσππππ;键级:O 2+ > O 2 > O 2-;键长:O 2+ < O 2 < O 2- (2) OF :(1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π)3;OF +:(1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π)2;OF -:(1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π)4;键级:OF + > OF > OF -;键长:OF + < OF < OF -3.10 (1)得电子变为AB -型负离子后比原来中性分子键能大的分子:C 2,CN(2)失电子变为AB +型正离子后比原来中性分子键能大的分子:O 2,F 2,NO 3.12 p x -d xy (否);p y -d yz (π);d x 2-y 2-d x 2-y 2(δ);d z 2-d z 2(σ);p x -p x (π) 3.13原子轨道3s 3p z 3p x 3p y 3d z 23d zx 3d yz 3d xy 3d x 2-y 2沿z 轴对称类型(节面数) 0 0 1 10 1 1 2 2 有14对轨道对符合对称性匹配:原子轨道对 3s -3s 3s -3p z 3s -3d z 2 3p z -3p z 3p z -3d z 23d z 2-3d z 2 3p x -3p x 分子轨道类型 σ σ σ σσσπ原子轨道对 3p x -3d xz 3p y -3p y 3p y -3d yz 3d xz -3d xz 3d yz -3d yz 3d xy -3d xy 3d x 2-y 2-3d x 2-y 2分子轨道类型 π π π ππδδ3.14 (1) E I <E 1<E 2<E II ;(2) 222112/()a a a +;(3) 222112/()b b b +;(4) ψI 含φ1(A)原子轨道的成份多一些,ψII 含φ2(B)原子轨道的成份多一些;(5) 这个化学键的电子云会偏向A 原子3.15 1122x s p ψψ=+;21263x y s p p ψψψψ=-+;312662x y z s p p p ψψψψψ=--+;412662x y z s p p p ψψψψψ=---3.17 (1)0.73;(2)0.71;(3)0.683.23 NF :1σ22σ23σ24σ25σ21π42π2,键级:2,顺磁性;NF +:1σ22σ23σ24σ25σ21π42π1,键级:2.5,顺磁性;NF -:1σ22σ23σ24σ25σ21π42π3,键级:1.5,顺磁性第四章4.1 (1)π34,(2)π78,(3) π78,(4) π88,(5) π910,(6) π78,(7) π34,(8) π34,(9)无,(10) π1414,(11) π44,(12) π34(2个),(13) π34(2个),(14) π34(2个),(15)无,(16) π34(2个),(17) π34,(18) π46,(19) π46,(20)π46,(21) π344.6 (1) 1E α=,E 2 = α,3E α=;(2) ()112312φψψ=++)213φψψ-()312312φψψ=-+; (3) -0.828β;(4) C C C0.51.00.7074.8 (1) E 1=α+2β,E 2=E 3=α-β(2) 环丙烯正离子、自由基和负离子的离域能分别为-2β、-β和0(3) )1123φψψψ++,)21232φψψψ=--,)323φψψ=-(4) 4.11 (1) 2个π34,(2) E 1=α+2β, E 2=α+β,E 3=α-β(3) α+2βα+βα-β(4) 离域能为-1.528β 4.14 6α+5.656β第六章6.2 存在对称中心i : C 2h C 4h C 6h D 2h D 4h D 6h D 3d D 5d S 2 S 6存在垂直于主轴的镜面σh :C 2h C 3h C 4h C 5h C 6h D 2h D 3h D 4h D 5h D 6h S 3 S 5 6.3(1) CO —C ∞v ,CO 2—D ∞h ,NO 2+—D ∞h ,乙炔—D ∞h ,H 2S —C 2v ,NH 3—C 3v ,CH 3Cl —C 3v ,HOCl —C s ,H 2O 2—C 2,NO 2—C 2v ,CH 4—T d ,SF 6—O h(2) 重叠式乙烷—D 3h ,交叉式乙烷—D 3d ,椅式环己烷—D 3d ,船式环己烷—C 2v ,丙二烯—D 2d ,CHCl 2Br —C s ,CH 2=C=CCl 2—C 2v ,CHCl=C=CHCl —C 2,CH 3-CCl 3(交叉式)—C 3v , CH 3-CCl 3(重叠式)—C 3v(3) 顺式(重叠式)二茂铁—D 5h ,反式(交叉式)二茂铁—D 5d ,[Co(NH 2–CH 2–CH 2–NH 2)3]3+—D 3,1,3,5,7四甲基–环辛四烯—S 4(4) [PtCl 4]2-—D 4h ,HCHO —C 2v ,顺式二氯乙烯—C 2v ,反式二氯乙烯—C 2h ,CH 2=CCl 2—C 2v ,苯分子—D 6h ,萘分子—D 2h ,对二氯苯—D 2h ,邻二氯苯—C 2v ,间二氯苯—C 2v , BCl 3—D 3h ,[CO 3]2-—D 3h6.4B N B N B N H H H H H HD 3h ,B B BNH 2NH 2H 2ND 3hFH HFHHC 2h , H FF HHH C 2h, HHHHFFC2h ,CC FC 2h ,6.5 (1)D 2h (2)D 2d (3)D 26.6 (1) 去掉2个球有以下3种情况:2vvd (2) 去掉3个球有以下3种情况:s s 3v6.7⑴正三角形D 3h ⑵正方形 D 4h ⑶正六边形D 6h ⑷长方形 D 2h ⑸中国国旗上的一个五角星 D 5h ⑹正三棱锥 C 3v ⑺正三棱柱D 3h ⑻正四棱锥C 4v ⑼正四棱柱 D 4h ⑽双正四棱锥D 4h ⑾正六棱柱D 6h ⑿正四面体T d ⒀正八面体 O h⒁正六面体(即立方体)O h⒂圆锥体C ∞v ⒃园柱体D ∞h6.8 XX XXXXXXXX XXX XXX X XXXXXXX XXXXXX XXX XX Y XXY XYXYYXX YC s C 2D 2dC 2vC i C 1C 2hC s C sC 2vD 2hC 2hC 2hC 4v C 2C 2v第七章 7.1点阵点数目1 1 1 1每个点阵点代表的内容 白1、黑2白1、黑1白1、黑1白3 黑球和白球的数目 白1、黑2白1、黑1白1、黑1白37.7(1)0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2; 1/4,1/4,1/4; 1/4,3/4,3/4; 3/4,1/4,3/4; 3/4,3/4,1/4;(2)154.5pm 7.8 (右图)7.9 d 110=233.8pm ;d 220=143.2pm7.10 201pm7.11 (100)与(010):90°;(100)与(001):90°;(100)与(210):26.56°7.14 (1)C 2v ,正交;(2) C 2h ,单斜;(3)D 2h ,正交;(4) D 4h ,四方; (5)D 6h ,六方;(6)C 3v ,三方;(7)C 3i ,三方(8)C 3h ,六方;(9)D 3h ,六方; (10)S 4,四方;(11)C s ,单斜;(12) O h ,立方;(13)T d ,立方; (14) D 2d ,四方;(15)O ,立方;(16) C 6h ,六方;(17) D 3,三方; (18) T ,立方;(19) D 3d 三方;(20)T h ,立方 7.157.17(100)(010)(120)(230)第八章8.1 28.0748.2 21.453gcm-3r=138.7pm8.3 a=b=328pm,c=536pm;3.187gcm-38.4 r =185.8pm,0.967gcm-3,d=303pm8.8 a=352.4pm,8.908gcm-3,r=124.6pm8.14 r=146pm8.17 CaS:正负离子配位数皆为6,正八面体,A1,晶体结构型式为cF;CsBr:正负离子配位数皆为8,立方体,立方简单,晶体结构型式为cP8.18 (2) 154pm;(3) 1.53gcm-3;(4) 274pm8.20 cF;分数坐标:0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2;80.99%8.22 (1)Ti4+:000;Ba2+:1/2,1/2,1/2;O2-:0,0,1/2; 0,1/2,0; 1/2,0,0(2) BaTiO3 (3)cP(4)与Ba2+离子配位的O2-负离子数为12;与Ti4+离子配位的O2-负离子数为6(6) A1第九章9.2 cF,a=359pm9.5 (1) a=415.8pm;(2) x = 0.92,(NiO)76(Ni2O3)8;(3) A1,正八面体空隙,92%;(4) 294pm9.8 (1) 21.45gcm-3,r = 186.7pm;(2)有两个,分别来自200和4009.9 (1)19.356gcm-3;(2) 共有7对粉末线,衍射指标依次为(110), (200), (211), (220), (310), (222) (321) 9.10 (1) r = 128pm;(2) 仅有(200)和(400)的衍射峰;(3) (200)与(400)衍射峰对应的2L值分别为50.4mm和116.8mm9.11 (1) a=565.9pm;(2)cF;(3)n = 49.12 (1) r=137.0pm;(2)2级9.16 106.6pm9.17 141.9pm9.18 k1/k2=1.7149.19 11MHz9.26 λ1,λ3,λ5由HCl产生,HCl核间距129pm;λ2,λ4,λ6由HBr产生,HBr核间距143pm9.28 131pm;477.7Nm−19.30 64.32⨯1012s−1;1.5547⨯10−14s;1859.7 Nm−1;12.83kJ;3.859cm−1附录III 模型实习实习一、分子的对称性目的:1. 掌握寻找分子中独立对称元素、判断分子点群的方法;2. 根据分子所属点群判断分子有无偶极矩3. 根据分子所属点群判断分子有无旋光性。

量子力学 第八章自旋 习题解(延边大学)

量子力学 第八章自旋 习题解(延边大学)

第八章:自旋[1]在x σˆ表象中,求x σˆ的本征态 (解) 设泡利算符2σ,x σ,的共同本征函数组是: ()z s x 21 和()z s x21- (1)或者简单地记作α和β,因为这两个波函数并不是x σˆ的本征函数,但它们构成一个完整系,所以任何自旋态都能用这两个本征函数的线性式表示(叠加原理),x σˆ的本征函数可表示:βαχ21c c += (2)21,c c 待定常数,又设x σˆ的本征值λ,则x σˆ的本征方程式是: λχχσ=x ˆ (3) 将(2)代入(3):()()βαλβασ2121ˆc c c c x +=+ (4) 根据本章问题6(P .264),x σˆ对z σˆ表象基矢的运算法则是: βασ=x ˆ αβσ=x ˆ 此外又假设x σˆ的本征矢(2)是归一花的,将(5)代入(4):βλαλαβ2111c c c c +=+比较βα,的系数(这二者线性不相关),再加的归一化条件,有:)6()6()6(122211221c b a c c c c c c ------------------------------------⎪⎩⎪⎨⎧=+==λλ 前二式得12=λ,即1=λ,或1-=λ当时1=λ,代入(6a )得21c c =,再代入(6c),得: δi e c 211=δi e c 212=δ 是任意的相位因子。

当时1-=λ,代入(6a )得21c c -=代入(6c),得:δi e c 211=δi e c 212-=最后得x σˆ的本征函数: )(21βαδ+=i e x 对应本征值1)(22βαδ-=i e x 对应本征值-1以上是利用寻常的波函数表示法,但在2ˆˆσσx 共同表象中,采用z s 作自变量时,既是坐标表象,同时又是角动量表象。

可用矩阵表示算符和本征矢。

⎥⎦⎤⎢⎣⎡=01α ⎥⎦⎤⎢⎣⎡=10β ⎥⎦⎤⎢⎣⎡=21c c χ (7)x σˆ的矩阵已证明是 ⎥⎦⎤⎢⎣⎡=0110ˆx σ因此x σˆ的矩阵式本征方程式是: ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡21211010c c c c λ (8) 其余步骤与坐标表象的方法相同,x σˆ本征矢的矩阵形式是: ⎥⎦⎤⎢⎣⎡=1121δi e x ⎥⎦⎤⎢⎣⎡-=1122δi e x[2]在z σ表象中,求n⋅σ的本征态,)cos ,sin sin ,cos (sin θϕθϕθn 是),(ϕθ方向的单位矢。

角动量算符的本征值

角动量算符的本征值

角动量算符的本征值高峰;许成科;张登玉;游开明【摘要】量子物理学中,角动量算符是一个十分重要的物理量,可以用它的本征值来表征微观体系的状态.本文根据对易关系,利用较为简便的方法求出任意角动量算符的本征值,并讨论了轨道角动量算符和自旋角动量算符的本征值.【期刊名称】《衡阳师范学院学报》【年(卷),期】2015(036)006【总页数】3页(P43-45)【关键词】角动量算符;对易关系;本征值【作者】高峰;许成科;张登玉;游开明【作者单位】衡阳师范学院物理与电子工程学院,湖南衡阳 421002;衡阳师范学院南岳学院,湖南衡阳 421008;衡阳师范学院物理与电子工程学院,湖南衡阳 421002;衡阳师范学院南岳学院,湖南衡阳 421008;衡阳师范学院物理与电子工程学院,湖南衡阳 421002;衡阳师范学院南岳学院,湖南衡阳 421008;衡阳师范学院物理与电子工程学院,湖南衡阳 421002【正文语种】中文【中图分类】O413.1角动量是物理体系的一个重要物理量,它是确定体系状态的物理量之一。

特别是在研究原子问题时,它显得尤为重要,根据原子体系角动量的取值可以确定其状态。

原则上,量子力学可以根据最基本的转动求出角动量算符。

量子力学的一个十分重要的任务就是求解力学量算符的本征方程,从而得出算符的本征值和本征态。

相对于宏观系统而言,微观体系要复杂得多,其角动量除轨道角动量之外,还有自旋角动量。

自旋是微观体系特有的物理现象,不存在经典类比,尽管地球除绕太阳旋转以外也还有自转,但这种自转归根结底还是一种轨道运动。

人们经过研究发现,对于任意的转动,无论是轨道角动量、自旋角动量,还是总角动量、分角动量,其相应的角动量算符都具有一些共同的特点。

例如,任意一种角动量算符^J都满足如下对易关系简记为这是角动量算符最重要的性质,它也可直接作为角动量算符的定义[1][2]。

一般说来,要想得到力学量算符的本征值和本征态,需要求解该算符的本征方程。

数学物理方法期末试题(5年试题含答案)

数学物理方法期末试题(5年试题含答案)

………密………封………线………以………内………答………题………无………效……附:拉普拉斯方程02=∇u 在柱坐标系和球坐标系下的表达式 柱坐标系:2222222110u u u uzρρρρϕ∂∂∂∂+++=∂∂∂∂球坐标系:2222222111sin 0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂⎛⎫⎛⎫++= ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭一、填空题36分(每空2分)1、 数量场2322u x z y z =+在点(2, 0, -1)处沿2423x xy z =-+l i j k 方向的方向导数是。

2、 矢量场()xyz x y z ==+A r r i +j k 在点(1, 3, 3)处的散度为 。

3、 面单连域内设有矢量场A ,若其散度0∇⋅A =,则称此矢量场为 。

4、 高斯公式Sd ⋅=⎰⎰ A S ;斯托克斯公式ld ⋅=⎰ A l 。

5、 将泛定方程和 结合在一起,就构成了一个定解问题。

只有初始条件,没有边界条件的定解问题称为 ;只有边界条件,没有初始条件的定解问题称为 ;既有边界条件,又有初始条件的定解问题称为 。

………密………封………线………以………内………答………题………无………效……6、 ()l P x 是l 次勒让德多项式,则11()()l l P x P x +-''-= ; m n =时,11()()mn P x P x dx -=⎰。

7、 已知()n J x 和()n N x 分别为n 阶贝塞尔函数和n 阶诺依曼函数(其中n 为整数),那么可知(1)()n H x = 。

(2)()n H x = 。

8、 定解问题2222000(0,0)|0,||0,|0x x ay y bu ux a y b x y u u V u u ====⎧∂∂+=<<<<⎪∂∂⎪⎪==⎨⎪==⎪⎪⎩的本征函数为 ,本征值为 。

《量子力学》考试知识点

《量子力学》考试知识点

《量⼦⼒学》考试知识点《量⼦⼒学》考试知识点第⼀章:绪论―经典物理学的困难考核知识点:(⼀)、经典物理学困难的实例(⼆)、微观粒⼦波-粒⼆象性考核要求:(⼀)、经典物理困难的实例1.识记:紫外灾难、能量⼦、光电效应、康普顿效应。

2.领会:微观粒⼦的波-粒⼆象性、德布罗意波。

第⼆章:波函数和薛定谔⽅程考核知识点:(⼀)、波函数及波函数的统计解释(⼆)、含时薛定谔⽅程(三)、不含时薛定谔⽅程考核要求:(⼀)、波函数及波函数的统计解释1.识记:波函数、波函数的⾃然条件、⾃由粒⼦平⾯波2.领会:微观粒⼦状态的描述、Born⼏率解释、⼏率波、态叠加原理(⼆)、含时薛定谔⽅程1.领会:薛定谔⽅程的建⽴、⼏率流密度,粒⼦数守恒定理2.简明应⽤:量⼦⼒学的初值问题(三)、不含时薛定谔⽅程1. 领会:定态、定态性质2. 简明应⽤:定态薛定谔⽅程第三章:⼀维定态问题⼀、考核知识点:(⼀)、⼀维定态的⼀般性质(⼆)、实例⼆、考核要求:1.领会:⼀维定态问题的⼀般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振2.简明应⽤:定态薛定谔⽅程的求解、第四章量⼦⼒学中的⼒学量⼀、考核知识点:(⼀)、表⽰⼒学量算符的性质(⼆)、厄密算符的本征值和本征函数(三)、连续谱本征函数“归⼀化”(四)、算符的共同本征函数(五)、⼒学量的平均值随时间的变化⼆、考核要求:(⼀)、表⽰⼒学量算符的性质1.识记:算符、⼒学量算符、对易关系2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本⼒学量算符的对易关系(⼆)、厄密算符的本征值和本征函数1.识记:本征⽅程、本征值、本征函数、正交归⼀完备性2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、⼒学量可取值及测量⼏率、⼏率振幅。

(三)、连续谱本征函数“归⼀化”1.领会:连续谱的归⼀化、箱归⼀化、本征函数的封闭性关系(四)、⼒学量的平均值随时间的变化(⼀)、表象变换,⼳正变换(⼆)、平均值,本征⽅程和Schrodinger equation的矩阵形式(三)、量⼦态的不同描述⼆、考核要求:(⼀)、表象变换,⼳正变换1.领会:⼳正变换及其性质2.简明应⽤:表象变换(⼆)、平均值,本征⽅程和Schrodinger equation的矩阵形式1.简明应⽤:平均值、本征⽅程和Schrodinger equation的矩阵形式2.综合应⽤:利⽤算符矩阵表⽰求本征值和本征函数(三)、量⼦态的不同描述第六章:微扰理论⼀、考核知识点:(⼀)、定态微扰论(⼆)、变分法(三)、量⼦跃迁⼆、考核要求:(⼀)、定态微扰论1.识记:微扰2.领会:微扰论的思想3.简明应⽤:简并态能级的⼀级,⼆级修正及零级近似波函数4.综合应⽤:⾮简并定态能级的⼀级,⼆级修正、波函数的⼀级修正。

第九章第四节 施图姆刘维尔本征值问题

第九章第四节 施图姆刘维尔本征值问题

b a
ym
xyn
x x dx
N m2 mn......9.4.18
其中
mn
1,n m 0,n m......9.4.19
是克罗内克符号。对于正交归一化的本征函数族,
(9.4.18)简化为
b
a
ym
xyn
x
xdx
mn
......
9.4.20
(四) 复数的本征函数族
对于本征值问题
0,
自然周期条件
或满足自然边界条件 kb 0
都有 kyn ym kym yn xb 0
2、如果在端点 x b满足第三类齐次边界条件
ym hym xb 0, yn hyn xb 0
则, kyn ym
kym yn xb
1 h
k
yn
y
m
hym
kym yn hyn xb 0
总之右边第一项为零。同理在端点x=a若满足上面的边
0a
x
b9.4.1
d
d
dy
d
m2
y y
0,
P230式(9.1.22)
y0有限,y0
0.......9.4.5
贝塞尔方程本征 值问题
⑤ a ,b ;kx ex2 , qx 0, x ex2.
代入施图姆-刘维尔方程
d dx
k x
dy dx
qxy
xy
0a
x
b9.4.1
d dx
e
如果在端点 x a 满足第三类齐次边界条件
则,
yn hyn xa 0
kyn yn xa k yn hyn yn hkyn 2 xa h kyn 2 xa 0

量子力学习题集及答案

量子力学习题集及答案

量子力学习题集及答案09光信息量子力研究题集一、填空题1.__________2.设电子能量为4电子伏,其德布罗意波长为6.125A。

XXX的量子化条件为∫pdq=nh,应用这量子化条件求得一维谐振子的能级En=(nωℏ)。

3.XXX假说的正确性,在1927年为XXX和革末所做的电子衍射实验所证实,德布罗意关系为E=ωℏ和p=ℏk。

4.ψ(r)=(三维空间自由粒子的归一化波函数为e^(ip·r/ℏ)),其中p为动量算符的归一化本征态。

5.∫ψ*(r)ψ(r)dτ=(δ(p'-p)),其中δ为狄拉克函数。

6.t=0时体系的状态为ψ(x,0)=ψ_n(x)+2ψ_2(x),其中ψ_n(x)为一维线性谐振子的定态波函数,则ψ(x,t)=(ψ(x)e^(-iωt/2)+2ψ_2(x)e^(-5iωt/2))。

7.按照量子力学理论,微观粒子的几率密度w=(|Ψ|^2),几率流密度j=(iℏ/2μ)(Ψ*∇Ψ-Ψ∇Ψ*)。

其中Ψ(r)描写粒子的状态,Ψ(r)是粒子的几率密度,在Ψ(r)中F(x)的平均值为F=(∫Ψ*F(x)Ψdx)/(∫Ψ*Ψdx)。

8.波函数Ψ和cΨ是描写同一状态,Ψe^(iδ)中的e^(iδ)称为相因子,e^(iδ)不影响波函数Ψ的归一化,因为e^(iδ)=1.9.定态是指能量具有确定值的状态,束缚态是指无穷远处波函数为零的状态。

10.E1=E2时,Ψ(x,t)=Ψ_1(x)exp(-iE1t)+Ψ_2(x)exp(-iE2t)是定态的条件。

11.这时几率密度和几率流密度都与时间无关。

12.粒子在能量小于势垒高度时仍能贯穿势垒的现象称为隧道效应。

13.无穷远处波函数为零的状态称为束缚态,其能量一般为分立谱。

14.ψ(x,t)=(ψ(x)e^(-iωt/2)+ψ_3(x)e^(-7iωt/2))。

2.15.在一维无限深势阱中,粒子处于位置区间x a,第一激发态的能量为1/13(22222/2ma2),第一激发态的波函数为sin(n x/a)(n=2)/a。

结构化学第一章课后习题答案

结构化学第一章课后习题答案

6.626 ×10−34 = = 8.95 × 10−10 m p 7.40 × 10−25
13. 在电视机显像管中运动的电子,假定加速电压为 1000 V,电子运动速度的不确定量Δυ为υ的 10%,
判断电子的波动性对荧光屏上成像有无影响? 解:根据不确定关系: Δx Δpx ≥ h Δx • m • Δυ x ≥ h ∴Δx = h h = m Δυ x m υ x 10%
l
px = ∫
0
2 nπ x ˆx sin p l l
2 nπ x dx sin l l 2 nπ x sin dx = 0 l l
=∫
0
l
2 nπ x ih d sin (− ) 2π dx l l h2 d 2 4π 2 dx 2
ˆ x2 = − pˆ x源自2ψ n ( x) = − ph2 d 2 h2 d 2 = − ψ ( ) x n 4π 2 dx 2 4π 2 dx 2
n πy n πx nπz 8 sin x sin y sin z 3 a a a a
8 2π x πy πz sin sin sin 3 a a a a πy 2 πz 2 8 2π x 2 * ∫ψ 211 ( x, y, z )ψ 211 ( x, y, z)dτ = a3 ∫ (sin a ) ∫ (sin a ) ∫ (sin a ) 2π z ⎤ 8 ⎡ Δx a 4π ( x + Δx) a 4π x ⎤ ⎡ Δy a 2π ( y + Δy ) a 2π y ⎤ ⎡ Δz a 2π ( z + Δz ) a = 3⎢ − + − + − + sin sin sin sin sin sin ⎢ ⎥ ⎢ ⎥ a ⎥ 8π 4π 4π a ⎣ 2 8π a a ⎦ ⎣ 2 4π a a ⎦ ⎣ 2 4π a ⎦ 8 πx πy 2π z ψ 112 ( x, y, z ) = 3 sin sin sin a a a a πx 2 πy 2 8 2π z 2 * ∫ψ 112 ( x, y, z)ψ 112 ( x, y, z )dτ = a3 ∫ (sin a ) ∫ (sin a ) ∫ (sin a ) 4π z ⎤ 8 ⎡ Δx a 2π ( x + Δx) a 2π x ⎤ ⎡ Δy a 2π ( y + Δy ) a 2π y ⎤ ⎡ Δz a 4π ( z + Δz ) a = 3⎢ − + − + − + sin sin sin sin sin sin ⎢ ⎢ ⎥ a ⎥ π π π π 4π 2 4 4 2 8 8 a ⎣ 2 4π a a ⎥ a a a ⎦ ⎦⎣ ⎦⎣

量子力学练习题

量子力学练习题

1、 若ˆF 、ˆG 均为厄米算符,则ˆˆFG 也为厄米算符 ()2、 不同定态的线性叠加还是定态 ()3、 若ˆA 与ˆB 对易,且ˆB 与ˆC 对易,则必有ˆA 与ˆC 对易 ()4、 若两力学量算符ˆF 与ˆG 对易,则在任意态中,它们都有确定的值 ()5、 所谓全同粒子就是指所有性质均相同的粒子 ()6、 归一化波函数的模方2|(,)|r t ψ表示时刻,r 处粒子出现的概率 ()7. 设为()n x ψ一维线性谐振子的归一化波函数,则有*ˆ()()n n x p x dx ∞-∞ψψ=⎰ ;*1ˆ()()n n x p x dx ∞+-∞ψψ=⎰ 8、 称为隧道效应;9、在2ˆL 和ˆz L 的共同本征态lm Y 中,22ˆˆx y L L ∆⋅∆= 10、氢原子处于03232020(,)r a Ar eY θϕ-ψ=态,则其最可几半径r = 11、 Planck 的量子假说揭示了微观粒子能量的 特性。

12. 两个角动量11j =、212j =耦合的总角动量J = 和 13. 量子力学几率守恒定律的微分形式和积分形式分别为14. 本征值方程的特点是什么?15. 全同性原理是16. 已知ˆd F x dx +=+,ˆd F x dx-=-,求ˆˆ[,]?F F +-= 17. 求ˆˆ[,()]?xf p = 18. 如果电子的质量、电荷和加速电压分别为m 、-e 、U ,则其德布罗意波长。

19.若Ψ1 ,Ψ2 ,..., Ψn ,...是体系的一系列可能的状态,则这些态的线性叠加Ψ= C 1Ψ1 + C 2Ψ2 + ...+ C n Ψn + ... (其中 C 1 , C 2 ,...,C n ,...为复常数)也是体系的一个可能状态。

( )20.设氢原子处于态求氢原子的能量、角动量平方、角动量z 分量取值的情况和相应的概率P 以及各力学量的平均值。

()()()()()1101111,,,,22r R r Y R r Y ψθϕθϕθϕ-=-221、 简述量子力学的主要基本假定。

结果化学课后习题考试重点ra

结果化学课后习题考试重点ra

【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm,这是Li原子由电子组态(1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J·mol-1为单位的能量。

解【1.3】金属钾的临阈频率为5.464×10-14s-1,如用它作为光电极的阴极当用波长为300nm的紫外光照射该电池时,发射光电子的最大速度是多少?解:【1.4】计算下列粒子的德布罗意波的波长:(a)质量为10-10kg,运动速度为0.01m·s-1的尘埃;(b)动能为0.1eV的中子;(c)动能为300eV的自由电子。

解:根据关系式:(1)【1.6】对一个运动速度(光速)的自由粒子,有人进行了如下推导:结果得出的结论。

上述推导错在何处?请说明理由。

解:微观粒子具有波性和粒性,两者的对立统一和相互制约可由下列关系式表达:式中,等号左边的物理量体现了粒性,等号右边的物理量体现了波性,而联系波性和粒性的纽带是Planck常数。

根据上述两式及早为人们所熟知的力学公式:知①,②,④和⑤四步都是正确的。

微粒波的波长λ服从下式:式中,u是微粒的传播速度,它不等于微粒的运动速度υ,但③中用了,显然是错的。

在④中,无疑是正确的,这里的E是微粒的总能量。

若计及E中的势能,则⑤也不正确。

【1.7】子弹(质量0.01kg,速度1000m·s-1),尘埃(质量10-9kg,速度10m·s-1)、作布郎运动的花粉(质量10-13kg,速度1m·s-1)、原子中电子(速度1000m·s-1)等,其速度的不确定度均为原速度的10%,判断在确定这些质点位置时,不确定度关系是否有实际意义?解:按测不准关系,诸粒子的坐标的不确定度分别为:子弹:尘埃:花粉:电子:【1.11】是算符的本征函数,求其本征值。

解:应用量子力学基本假设Ⅱ(算符)和Ⅲ(本征函数,本征值和本征方程)得:因此,本征值为。

结构化学习题参考答案-周公度-第5版

结构化学习题参考答案-周公度-第5版

【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J ·mol -1为单位的能量。

解:811412.99810m s 4.46910s 670.8m cνλ--⨯⋅===⨯ 41711 1.49110cm670.810cm νλ--===⨯⨯3414123-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N sν--==⨯⋅⨯⨯⨯⨯=⋅【1.3】金属钾的临阈频率为5.464×10-14s -1,如用它作为光电极的阴极当用波长为300nm 的紫外光照射该电池时,发射光电子的最大速度是多少?解:2012hv hv mv =+()1201812341419312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kgυ------⎡⎤=⎢⎥⎣⎦⎡⎤⎛⎫⨯⨯⨯-⨯⎢⎥ ⎪⨯⎝⎭⎢⎥=⎢⎥⨯⎢⎥⎣⎦134141231512 6.62610 4.529109.109108.1210J s s kg m s ----⎡⎤⨯⨯⨯⨯=⎢⎥⨯⎣⎦=⨯【1.4】计算下列粒子的德布罗意波的波长:(a ) 质量为10-10kg,运动速度为0.01m ·s -1的尘埃; (b ) 动能为0.1eV 的中子; (c ) 动能为300eV 的自由电子。

解:根据关系式:(1)34221016.62610J s 6.62610m 10kg 0.01m s h mv λ----⨯⋅===⨯⨯⋅ 34-11 (2) 9.40310mh p λ-====⨯3411(3) 7.0810mh p λ--====⨯【1.6】对一个运动速度c υ(光速)的自由粒子,有人进行了如下推导:1v vv v 2h h E m p m νλ=====①②③④⑤结果得出12m m υυ=的结论。

量子力学作业习题

量子力学作业习题

第一章 量子力学的诞生[1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明: ( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅;( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率;( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m 2时的窗子所衍射.[2] 用h,e,c,m (电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计: ( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 )经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂[3]导出、估计、猜测或背出下列数值,精确到一个数量级范围内,( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命.[4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由.( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz 实验;( 4 ) Davisson -Ger - mer 实验;( 5 ) Compton 散射.[5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释. ( 1 ) A 缝开启,B 缝关闭; ( 2 ) B 缝开启,A 缝关闭; ( 3 )两缝均开启. [6]验算三个系数数值:(1)h 2e m ;(2)h 2nm ;(3)hc第二章 波函数与Schr ödinger 方程[1] 试用量子化条件,求谐振子的能量[谐振子势能2221)(x m x V ω=] [2] 一维运动的粒子处在⎩⎨⎧<≥=-0,00,)(x x Axe x x 当当λψ的状态,其中0>λ,求:(1)粒子动量的几率分布函数;(2)粒子动量的平均值。

结构化学基础习题答案_周公度_第4版

结构化学基础习题答案_周公度_第4版

【】金属钾的临阈频率为×10-14s-1,如用它作为光电极的阴极当用波长为300nm的紫外光照射该电池时,发射光电子的最大速度是多少?解:【】计算下列粒子的德布罗意波的波长:(a)质量为10-10kg,运动速度为·s-1的尘埃;(b)动能为的中子;(c)动能为300eV的自由电子。

解:根据关系式:(1)【】子弹(质量,速度1000m·s-1),尘埃(质量10-9kg,速度10m·s-1)、作布郎运动的花粉(质量10-13kg,速度1m·s-1)、原子中电子(速度1000 m·s-1)等,其速度的不确定度均为原速度的10%,判断在确定这些质点位置时,不确定度关系是否有实际意义?解:按测不准关系,诸粒子的坐标的不确定度分别为:子弹:尘埃:花粉:电子:【】用不确定度关系说明光学光栅(周期约)观察不到电子衍射(用电压加速电子)。

解:解法一:根据不确定度关系,电子位置的不确定度为:这不确定度约为光学光栅周期的10-5倍,即在此加速电压条件下电子波的波长约为光学光栅周期的10-5倍,用光学光栅观察不到电子衍射。

解法二:若电子位置的不确定度为10-6m,则由不确定关系决定的动量不确定度为:在104V的加速电压下,电子的动量为:由Δp x和p x估算出现第一衍射极小值的偏离角为:这说明电子通过光栅狭缝后沿直线前进,落到同一个点上。

因此,用光学光栅观察不到电子衍射。

【】是算符的本征函数,求其本征值。

解:应用量子力学基本假设Ⅱ(算符)和Ⅲ(本征函数,本征值和本征方程)得:因此,本征值为。

【】和对算符是否为本征函数?若是,求出本征值。

解:,所以,是算符的本征函数,本征值为。

而所以不是算符的本征函数。

【】证明在一维势箱中运动的粒子的各个波函数互相正交。

证:在长度为的一维势箱中运动的粒子的波函数为:=1,2,3,……令n和n’表示不同的量子数,积分:和皆为正整数,因而和皆为正整数,所以积分:根据定义,和互相正交。

S-L本征值问题

S-L本征值问题
2
2
d dy m2 → [(1 − x 2 ) ] − y + l (l + 1) y = 0 2 dx dx 1 − x d dy n 2 2 ′′ + xy′ + [k 2 x 2 − n 2 ] y = 0 → [( x ] − y + k 2 xy = 0 x y dx dx x
Hale Waihona Puke d dy [k ( x) ] − q ( x) y + λρ ( x) y = 0, a ≤ x ≤ b (1) dx dx
Wuhan University
四、例题
证明: 1)e 2tx −t = ∑ H n ( x) t n ( n! n =0
2

(2)
令 e 2tx −t = ∑ an ( x)t n , 则
2

n =0
1 d n 2tx −t 2 an ( x ) = e n n! dt
ξ =t−x
t =0
1 x 2 d n −( x 2 − 2tx +t 2 ) = e e n n! dt
Wuhan University
三、S-L本征值问题
2、 S-L本征值问题的性质:
n (2) λm ≥ 0, m = 1,2, L 如: (k m ) 2 ≥ 0
(3)

b
a
ρ ( x) ym ( x) yn ( x)dx = N n2δ mn
a
a2 2 n ρJ n (k m ρ )J n (kln ρ )dρ = J n +1 (kln a )δ ml 如: ∫0 2 ∞ 1 b (4) f ( x) = ∑ cm ym ( x) cm = 2 ∫a ρ ( x) f ( x) ym ( x)dx Nm m =1

结构化学章节习题(含答案)

结构化学章节习题(含答案)

结构化学章节习题(含答案)第⼀章量⼦⼒学基础⼀、单选题: 1、32/sinx l lπ为⼀维势箱的状态其能量是:( a ) 22229164:; :; :; :8888h h h hA B C D ml ml ml ml 2、Ψ321的节⾯有( b )个,其中( b )个球⾯。

A 、3 B 、2 C 、1 D 、03、⽴⽅箱中2246m lh E ≤的能量范围内,能级数和状态数为( b ). A.5,20 B.6,6 C.5,11 D.6,174、下列函数是算符d /dx的本征函数的是:( a );本征值为:( h )。

A 、e 2xB 、cosXC 、loge xD 、sinx 3E 、3F 、-1G 、1H 、2 5、下列算符为线性算符的是:( c )A 、sine xB 、C 、d 2/dx 2D 、cos2x6、已知⼀维谐振⼦的势能表达式为V = kx 2/2,则该体系的定态薛定谔⽅程应当为( c )。

A [-m 22 2?+21kx 2]Ψ= E ΨB [m 22 2?- 21kx 2]Ψ= E Ψ C [-m 22 22dx d +21kx 2]Ψ= E Ψ D [-m 22 -21kx 2]Ψ= E Ψ 7、下列函数中,22dx d ,dxd的共同本征函数是( bc )。

A cos kxB e –kxC e –ikxD e –kx2 8、粒⼦处于定态意味着:( c )A 、粒⼦处于概率最⼤的状态B 、粒⼦处于势能为0的状态C 、粒⼦的⼒学量平均值及概率密度分布都与时间⽆关系的状态.D 、粒⼦处于静⽌状态9、氢原⼦处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,⼜是M z 算符的本征函数?( c )A. (1) (3)B. (2) (4)C. (3) (4) (5)D. (1) (2) (5) 10、+He 离⼦n=4的状态有( c )(A )4个(B )8个(C )16个(D )20个 11、测不准关系的含义是指( d ) (A) 粒⼦太⼩,不能准确测定其坐标; (B)运动不快时,不能准确测定其动量(C) 粒⼦的坐标的动量都不能准确地测定;(D )不能同时准确地测定粒⼦的坐标与动量12、若⽤电⼦束与中⼦束分别作衍射实验,得到⼤⼩相同的环纹,则说明⼆者( b ) (A) 动量相同 (B) 动能相同 (C) 质量相同13、为了写出⼀个经典⼒学量对应的量⼦⼒学算符,若坐标算符取作坐标本⾝,动量算符应是(以⼀维运动为例) ( a )(A) mv (B) i x ?? (C)222x ?-? 14、若∫|ψ|2d τ=K ,利⽤下列哪个常数乘ψ可以使之归⼀化:( c )(A) K (B) K 2 (C) 1/K15、丁⼆烯等共轭分⼦中π电⼦的离域化可降低体系的能量,这与简单的⼀维势阱模型是⼀致的,因为⼀维势阱中粒⼦的能量( b )(A) 反⽐于势阱长度平⽅ (B) 正⽐于势阱长度 (C) 正⽐于量⼦数16、对于厄⽶算符, 下⾯哪种说法是对的( b )(A) 厄⽶算符中必然不包含虚数 (B) 厄⽶算符的本征值必定是实数(C) 厄⽶算符的本征函数中必然不包含虚数17、对于算符?的⾮本征态Ψ( c )(A) 不可能测量其本征值g . (B) 不可能测量其平均值.(C) 本征值与平均值均可测量,且⼆者相等18、将⼏个⾮简并的本征函数进⾏线形组合,结果( b )(A) 再不是原算符的本征函数(B) 仍是原算符的本征函数,且本征值不变 (C) 仍是原算符的本征函数,但本征值改变19. 在光电效应实验中,光电⼦动能与⼊射光的哪种物理量呈线形关系:( B )A .波长B. 频率C. 振幅20. 在通常情况下,如果两个算符不可对易,意味着相应的两种物理量( A)A .不能同时精确测定B .可以同时精确测定C .只有量纲不同的两种物理量才不能同时精确测定 21. 电⼦德布罗意波长为(C )A .λ=E /h B. λ=c /ν C. λ=h /p 22. 将⼏个⾮简并的本征函数进⾏线形组合,结果( A) A .再不是原算符的本征函数B .仍是原算符的本征函数,且本征值不变C .仍是原算符的本征函数,但本征值改变23. 根据能量-时间测不准关系式,粒⼦在某能级上存在的时间τ越短,该能级的不确定度程度ΔE (B)A .越⼩ B. 越⼤ C.与τ⽆关24. 实物微粒具有波粒⼆象性, ⼀个质量为m 速度为v 的粒⼦的德布罗意波长为:A .h/(mv)B. mv/hC. E/h25. 对于厄⽶算符, 下⾯哪种说法是对的 ( B )A .厄⽶算符中必然不包含虚数B .厄⽶算符的本征值必定是实数C .厄⽶算符的本征函数中必然不包含虚数 26. 对于算符?的⾮本征态Ψ (A ) A .不可能测得其本征值g. B .不可能测得其平均值.C .本征值与平均值均可测得,且⼆者相等 27. 下列哪⼀组算符都是线性算符:( C )A . cos, sinB . x, logC . x d dx d dx,,22⼆填空题1、能量为100eV 的⾃由电⼦的德布罗依波波长为( 122.5pm )2、函数:①xe ,②2x ,③x sin 中,是算符22dxd 的本征函数的是( 1,3 ),其本征值分别是( 1,—1;)3、Li 原⼦的哈密顿算符,在(定核)近似的基础上是:(()23213212232221223222123332?r e r e r e r e r e r e mH +++---?+?+?-= )三简答题1. 计算波长为600nm(红光),550nm(黄光),400nm(蓝光)和200nm(紫光)光⼦的能量。

结构化学试题及答案

结构化学试题及答案

兰州化学化学化工学院结构化学试卷及参考答案2002级试卷A——————————————————————————————————————说明:1.试卷页号P.1-5,答题前请核对.[]3.Y(θ,φ)图A.即电子云角度分布图,反映电子云的角度部分随空间方位θ,φ的变化B. 即波函数角度分布图,反映原子轨道的角度部分随空间方位θ,φ的变化C.即原子轨道的界面图,代表原子轨道的形状和位相[]4.为了写出原子光谱项,必须首先区分电子组态是由等价电子还是非等价电子形成的。

试判断下列哪种组态是等价组态:A.2s12p1 B.1s12s1 C.2p2[]5.对于O2,O2-,O22-,何者具有最大的顺磁性?A.O2B.O2-C.O22-[]6.苯胺虽然不是平面型分子,但-NH2与苯环之间仍有一定程度的共轭。

据此判断A.苯胺的碱性比氨弱B.苯胺的碱性比氨强C.苯胺的碱性与氨相同[]7.利用以下哪一原理,可以判定CO、CN-的分子轨道与N2相似:A.轨道对称性守恒原理B.Franck-Condon原理C.等电子原理[]8.下列分子中,哪种分子有两个不成对电子?A.BB[]9.[]10.[]11.,它们[]12.[]13.A.D3B.D3h→D3→D3dC.C3h→C3→C3V[]14.S在室温下稳定存在的形式为正交硫,其中的分子是S8环,分子点群为A.C4vB.D4dC.D8h[]15.Cl原子基态的光谱项为2P,其能量最低的光谱支项为A.2P3/2B.2P1/2C.2P3/2或2P1/2,二者能量相同[]16.下列哪种物质最不可能是晶体A.金刚石B.琥珀C.食盐粉末[]17.晶系和晶体学点群各有多少种?A.7种晶系,32种晶体学点群B.14种晶系,32种晶体学点群C.7种晶系,14种晶体学点群[]18.下列哪一式是晶体结构的代数表示——平移群:A.T mnpB.r=xaC.Δ[]19.A.[]20.A.([]22.[]23.为了区分素格子与复格子,空间格子中的每个顶点、棱心、面心只分别算作A.1,1,1B.1/8,1/4,1/2C.1,1/2,1/4[]24.CuZn合金(即β黄铜)中两种金属原子的分数坐标分别为0,0,0和1/2,1/2,1/2。

结构化学 第二章练习题

结构化学 第二章练习题

第二章 原子的结构和性质1、(南开99)在中心力场近似下,Li 原子基态能量为_____R, Li 原子的第一电离能I 1=____R ,第二电离能I 2=_____R 。

当考虑电子自旋时,基态Li 原子共有_____个微观状态。

在这些微观状态中,Li 原子总角动量大小|M J |=__________。

(已知R=13.6eV ,屏蔽常数0.01,σ=0.30;σ=0.85;σ=s 1s 2s,1s 1s,2s ) 注意屏蔽常数的写法解: Li 1s 2 2s 1()()22122-30.37.291s Z E R R R n σ-=-=-=- ()2223-0.852-0.42252s E R R ⨯==-12215.0025Li s s E E E R =+=-电离能: 1()-()A A e I E A E A ++→+= 222()-()A A e I E A E A ++++→+= 第一电离能:1Li Li I E E +=- 12s Li E E +=120.4225s I E R ∴=-=第二电离能: 22231Li E R +=- 12s Li E E += 29(27.29) 5.58I R R R =---⨯=2122:12Li S S S − 2个微观状态11022S l J === 133||1)222J M ==⨯=(Be 原子的第一和第二电离能如何求?)2、(南开04)若测量氢原子中电子的轨道角动量在磁场方向(Z 轴方向)的分量Z M 值,当电子处在下列状态时,Z M 值的测量值为的几率分别是多少?2221(1)(2)(3)px PZ P +ψψψ 解: 2(1)10.5px Z m m ψ=±=的几率为2211211)px ψψψ-=+ 2(2)00PZ Z m m ψ==的几率为21(3)11P Z m m +ψ==的几率为3、在下表中填写下列原子的基谱项和基支项(基支项又称基谱支项,即能量最低的光谱支项)464346433/25/29/22233:44As Mn Co OS S F PS S F P As S P P −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−↑ ↑ ↑ 原子 基谱项基谱支项 43/252565/272749/22443302255:3402239:34322:22L S J S Mn d S d L S J S Co d S d L S J F O S P P === ↑↑↑↑↑===↑↓↑↓↑ ↑ ↑ ===↑↓↑ ↑ 32112L S J P === 4、(南开04)(1)用原子单位制写出H 2+体系的Schrodinger 方程(采用固定核近似)。

结构化学课后答案

结构化学课后答案

一、练习题1.立方势箱中的粒子,具有的状态量子数,是A. 211 B. 231 C. 222 D. 213。

(参考答案)解:(C)。

2.处于状态的一维势箱中的粒子,出现在处的概率是多少?A.B.C.D.E.题目提法不妥,以上四个答案都不对。

(参考答案)解:(E)。

3.计算能量为100eV光子、自由电子、质量为300g小球的波长。

( )(参考答案)解:光子波长自由电子300g小球。

4.根据测不准关系说明束缚在0到a范围内活动的一维势箱中粒子的零点能效应。

(参考答案)解:。

5.链状共轭分子在波长方向460nm处出现第一个强吸收峰,试按一维势箱模型估计该分子的长度。

(参考答案)解:6.设体系处于状态中,角动量和有无定值。

其值是多少?若无,求其平均值。

(参考答案)解:角动量角动量平均值7.函数是不是一维势箱中粒子的一种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?(参考答案)解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。

(2s+1) (1)二维方势箱中的9个电子。

(2)二维势箱中的10个电子。

(3)三维方势箱中的11个电子。

(参考答案)解:(1)2,(2)3,(3)4。

9.在0-a间运动的一维势箱中粒子,证明它在区域内出现的几率。

当,几率P怎样变?(参考答案)解:10.在长度l的一维势箱中运动的粒子,处于量子数n的状态。

求 (1)在箱的左端1/4区域内找到粒子的几率?(2)n为何值,上述的几率最大?(3),此几率的极限是多少?(4)(3)中说明什么?(参考答案)解:11.一含K个碳原子的直链共轭烯烃,相邻两碳原子的距离为a,其中大π键上的电子可视为位于两端碳原子间的一维箱中运动。

取l=(K-1)a,若处于基组态中一个π电子跃迁到高能级,求伴随这一跃迁所吸收到光子的最长波长是多少?(参考答案)解:12.写出一个被束缚在半径为a的圆周上运动的质量为m的粒子的薛定锷方程,求其解。

北师大_结构化学课后习题答案

北师大_结构化学课后习题答案

北师大 结构化学 课后习题第一章 量子理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电子等实物粒子具有波动性被称作物质波。

物质波的波动性是和微粒行为的统计性联系在一起的。

对大量粒子而言,衍射强度(即波的强度)大的地方,粒子出现的数目就多,而衍射强度小的地方,粒子出现的数目就少。

对一个粒子而言,通过晶体到达底片的位置不能准确预测。

若将相同速度的粒子,在相同的条件下重复多次相同的实验,一定会在衍射强度大的地方出现的机会多,在衍射强度小的地方出现的机会少。

因此按照波恩物质波的统计解释,对于单个粒子,ψψ=ψ*2代表粒子的几率密度,在时刻t ,空间q 点附近体积元τd 内粒子的几率应为τd 2ψ;在整个空间找到一个粒子的几率应为12=ψ⎰τd 。

表示波函数具有归一性。

2 如何理解合格波函数的基本条件?参考答案合格波函数的基本条件是单值,连续和平方可积。

由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒子运动状态的波函数首先必须是单值的,因为只有当波函数ψ在空间每一点只有一个值时,才能保证概率密度的单值性;至于连续的要求是由于粒子运动状态要符合Schrödinger 方程,该方程是二阶方程,就要求波函数具有连续性的特点;平方可积的是因为在整个空间中发现粒子的概率一定是100%,所以积分⎰τψψd *必为一个有限数。

3 如何理解态叠加原理?参考答案在经典理论中,一个波可由若干个波叠加组成。

这个合成的波含有原来若干波的各种成份(如各种不同的波长和频率)。

而在量子力学中,按波函数的统计解释,态叠加原理有更深刻的含义。

某一物理量Q 的对应不同本征值的本征态的叠加,使粒子部分地处于Q 1状态,部分地处于Q 2态,……。

各种态都有自己的权重(即成份)。

这就导致了在态叠加下测量结果的不确定性。

但量子力学可以计算出测量的平均值。

4 测不准原理的根源是什么?参考答案根源就在于微观粒子的波粒二象性。

习题14S-L本征值问题

习题14S-L本征值问题

2 ⎧ ⎛ω ⎞ ⎪ X 1′′( x ) + ⎜ ⎟ X 1 ( x ) = 0, 0 < x < l1 ⎪ ⎝ a1 ⎠ ⎪ 2 ⎪ ⎛ω ⎞ 界条件和连接条件得: ⎨ X 2 ′′ ( x ) + ⎜ ⎟ X 2 ( x ) = 0, l1 < x < l1 + l2 。 ⎪ ⎝ a2 ⎠ ⎪ ⎪ X 1 ( 0 ) = 0, X 2 ( l1 + l2 ) = 0 ⎪ ′ ( l1 ) ⎩ X 1 ( l1 ) = X 2 ( l1 ) , X 1′ ( l1 ) = X 2 当 ω = 0 时只有零解,故 ω > 0 ( ω < 0 是同一解) 。
dy ⎞ ⎛ dy 两边积分得 ∫ ( y1 Ly2 − y2 Ly1 ) dx = (1 − x ) ⎜ y2 1 − y1 2 ⎟ , −1 dx ⎠ x =−1 ⎝ dx
1 2
x =1
所以 1 − x 由于 y ( ±1) 有界, 即 L 为自伴算符。 (2)记 L = −
(
2
)⎛ ⎜y ⎝
)
⎧ A sin ⎪ ⎨ ⎪ A sin ⎩
( (
) ( λ ln b ) + B cos (
λ ln a + B cos λ ln a
) , λ ln b ) = 0
λ ln a = 0 λ ln a
sin
所以
( sin (
) λ ln b )
cos
( cos (
) = sin ⎡ ⎣ λ ln b )
d ⎡ xa dy ⎤ x a −1 y=0。 写成: ⎢ ⎥ −λ a −b a − b +1 dx ⎣ (1 − x ) ⎢ (1 − x ) dx ⎦ ⎥
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p ( x ) ≥ p0 > 0 , ρ ( x ) ≥ ρ 0 > 0 , q ( x ) ≥ 0 , a 与 b 及 c 与 d 均为不同时为 0 的非负常数,
证明本征值 ≥ 0 。 方程两边同乘 y 得 λρ y = − y
2
d ⎛ dy ⎞ 2 ⎜ p ⎟ + qy ,两边积分得 dx ⎝ dx ⎠
dy2 dy − p y2 1 = 0 dx a dx a

ρ y1 y2 dx = 0 ⎢ p ( x ) dx ⎥ + ⎡ ⎣λρ ( x ) − q ( x ) ⎤ ⎦y=0 256.假设 S-L 方程的本征值问题 ⎨ ⎣ 中, ⎦ ⎪( ay′ − by ) = 0, ( cy′ + dy ) = 0 x =0 x =l ⎩
在 a ≤ x ≤ b 上均为连续实函数,且 p ( x ) ≥ p0 > 0 , ρ ( x ) ≥ 交性。 ,即 设本征值 λ1 对应本征函数 y1 ,本征值 λ2 对应本征函数 y2 ( λ1 ≠ λ2 )
ρ0 > 0 。试证明本征函数的正
λ1 ρ y1 = − λ2 ρ y2 = −
d ⎛ dy1 ⎞ ⎜p ⎟ + qy1 , dx ⎝ dx ⎠ d ⎛ dy2 ⎞ ⎜p ⎟ + qy2 。 dx ⎝ dx ⎠
)
⎧ A sin ⎪ ⎨ ⎪ A sin ⎩
( (
) ( λ ln b ) + B cos (
λ ln a + B cos λ ln a
) , λ ln b ) = 0
λ ln a = 0 λ ln a
sin
所以
( sin (
) λ ln b )
cos
( cos (
) = sin ⎡ ⎣ λ ln b )
(a)
(b)
(a) × y2 − (b) × y1 得 ( λ1 − λ2 ) ρ y1 y2 = y1
b
d ⎛ dy2 ⎞ d ⎛ dy1 ⎞ ⎜p ⎟ − y2 ⎜ p ⎟, dx ⎝ dx ⎠ dx ⎝ dx ⎠
b
两边积分得 ( λ1 − λ2 ) 由于 λ1 ≠ λ2 ,所以

b a
b
a
ρ y1 y2 dx = py1
ω ⎧ ⎪ X1 ( x ) = A sin a x,0 < x < l1 ⎪ 1 由方程及 X1 ( 0) = 0, X2 ( l1 + l2 ) = 0 可得 X ( x ) = ⎨ 。 ω ⎪ X ( x ) = B sin ( l + l − x ) , l < x < l + l 2 1 2 1 1 2 ⎪ a2 ⎩ ω ω ⎧ ⎪ A sin a l1 − B sin a l2 = 0 ⎪ 1 2 ′ ( l1 ) = X 2 ′ ( l1 ) 得 ⎨ , (*) 代入条件 X 1 ( l1 ) = X 2 ( l1 ) , X 1 ⎪ A ω cos ω l + B ω cos ω l = 0 1 2 ⎪ a1 a2 a2 ⎩ a1
(1)记 L = −
d ⎡ d ⎤ 2 1 − x ,则 ( ) dx ⎢ dx ⎥ ⎣ ⎦ dy ⎤ dy ⎤ d ⎡ d ⎡ 1 − x 2 ) 1 ⎥ − y1 ⎢(1 − x 2 ) 2 ⎥ ( ⎢ dx ⎣ dx ⎦ dx ⎣ dx ⎦ + (1 − x 2 ) y2 d (1 − x d 2 y1 − y1 2 dx dx
254.将下列方程化为 S-L 型方程的标准形式: (1) x
d2y dy + 2 +(x +λ) y = 0; 2 dx dx
(2)
d2y dy d2y dy + cot x + λ y = 0 ; ( 3 ) x 1 − x + ( a − bx ) − λ y = 0 ; ( ) 2 2 dx dx dx dx d2y dy + (1 − x ) + λ y = 0 。 2 dx dx
2
1 1 dy1 dy ⎞ y L y dx = − y1 2 ⎟ =0, ( ) 1 2 ∫−1 ∫−1 L ( y1 ) y2 dx , dx dx ⎠ x =±1
d ⎛ d ⎞ ⎜ x ⎟ ,重复上小题过程有 dx ⎝ dx ⎠
x =1
dy ⎞ dy ⎞ ⎛ dy1 ⎛ dy y2 − y1 2 ⎟ = − x ⎜ y2 1 − y1 2 ⎟ , ∫−1 ( y1Ly2 − y2 Ly1 ) dx = x ⎜ dx ⎠ x =0 dx ⎠ x =0 ⎝ dx ⎝ dx
b b
b
⎛a ⎞ a12 ′ ( a ) − y1 ′ ( a ) y2 ( a ) ⎤ = p ( a ) ⎜ 11 − 1⎟ ⎡ ⎣ y1 ( a ) y2 ⎦ a a 21 22 ⎝ ⎠
所以当
a11 a21
a12 a22
= 1 时, y1 和 y2 正交。
260.两条质料不同,长各为 l1 与 l2 的均匀弦连接在一起,而两端( x = 0 及 x = l1 + l2 )固 定。试决定弦的横振动本征频率,并验证本征函数的正交性。 令 u1 , u2 分别表示两段弦的横向位移,由弦的连续性可得连接条件 u1
2
(4) x
d2y dy (1)方程两边同乘 x 得: x + 2 x + x ( x + λ ) y = 0 ,写成: 2 dx dx
d ⎛ 2 dy ⎞ 2 ⎜x ⎟ + (λ x + x ) y = 0 。 dx ⎝ dx ⎠
(2)两边同乘 sin x 得: sin x
d2y dy + cos x + λ y sin x = 0 ,写成: 2 dx dx
2 ⎧ ⎛ω ⎞ ⎪ X 1′′( x ) + ⎜ ⎟ X 1 ( x ) = 0, 0 < x < l1 ⎪ ⎝ a1 ⎠ ⎪ 2 ⎪ ⎛ω ⎞ 界条件和连接条件得: ⎨ X 2 ′′ ( x ) + ⎜ ⎟ X 2 ( x ) = 0, l1 < x < l1 + l2 。 ⎪ ⎝ a2 ⎠ ⎪ ⎪ X 1 ( 0 ) = 0, X 2 ( l1 + l2 ) = 0 ⎪ ′ ( l1 ) ⎩ X 1 ( l1 ) = X 2 ( l1 ) , X 1′ ( l1 ) = X 2 当 ω = 0 时只有零解,故 ω > 0 ( ω < 0 是同一解) 。
d ⎛ dy ⎞ ⎜ sin x ⎟ + λ y sin x = 0 。 dx ⎝ dx ⎠
(3)两边同乘
x a −1
(1 − x )
a − b +1
得:
xa
(1 − x )
a −b
a −1 d 2 y x ( a − bx ) dy x a −1 y = 0, + − λ a − b +1 a − b +1 dx 2 dx (1 − x ) (1 − x )
l l ⎛ dy ⎞ p ⎜ ⎟ dx + ∫ qy 2 dx 0 ⎝ dx ⎠ 2
λ ∫ ρ y dx = p ⎡ ⎣ y ( 0 ) y′ ( 0 ) − y ( l ) y′ ( l ) ⎤ ⎦ + ∫0 0
2
l
b b y ( 0 ) , y ( 0 ) y′ ( 0 ) = y 2 ( 0 ) ≥ 0 , a a a a 2 若 b ≠ 0 ,则 y ( 0 ) = y′ ( 0 ) , y ( 0 ) y′ ( 0 ) = y′ ( 0 ) ≥ 0 ; b b d 2 d 若 c ≠ 0 ,则 y′ ( l ) = − y ( l ) , − y ( l ) y′ ( l ) = y ( l ) ≥ 0 , c c c 2 c 若 d ≠ 0 ,则 y ( l ) = y′ ( l ) , − y ( l ) y′ ( l ) = y′ ( l ) ≥ 0 ; d d 所以 λ ≥ 0 。
λ ( ln b − ln a ) ⎤ ⎦ = 0,
nπ ⎛ ln r − ln a ⎞ ⎛ ⎞ nπ ⎟ ( n = 1, 2," ) 。 则本征值 λn = ⎜ ⎟ ,本征函数 Rn ( r ) = sin ⎜ ⎝ ln b − ln a ⎠ ⎝ ln b − ln a ⎠
2
⎧d ⎡ 2 dy ⎤ ⎪ ⎢(1 − x ) ⎥ + λ y = 0 dx ⎦ 258.证明下列奇异的本征值问题是自伴的: (1) ⎨ dx ⎣ ; ⎪ y ( ±1) 有界 ⎩ ⎧ 1 d ⎛ dy ⎞ ⎪ ⎜x ⎟+λy = 0 。 (2) ⎨ x dx ⎝ dx ⎠ ⎪ y ( 0 ) 有界,y (1) = 0 ⎩
1
由于 y ( 0 ) 有界,所以上式等于 0,即 L 为自伴算符。
dy ⎤ ⎧d ⎡ λρ ( x ) − q ( x ) ⎤ ⎪ ⎢ p ( x) ⎥ + ⎡ ⎦y=0 dx ⎦ ⎣ , 259.设有本征值问题: ⎨ dx ⎣ ⎪ y ( b ) = a y ( a ) + a y′ ( a ) , y′ ( b ) = a y ( a ) + a y′ ( a ) 11 12 21 22 ⎩
dy ⎞ ⎛ dy 两边积分得 ∫ ( y1 Ly2 − y2 Ly1 ) dx = (1 − x ) ⎜ y2 1 − y1 2 ⎟ , −1 dx ⎠ x =−1 ⎝ dx
1 2
x =1
所以 1 − x 由于 y ( ±1) 有界, 即 L 为自伴算符。 (2)记 L = −
(
2
)⎛ ⎜y ⎝
d ⎡ xa dy ⎤ x a −1 y=0。 写成: ⎢ ⎥ −λ a −b a − b +1 dx ⎣ (1 − x ) ⎢ (1 − x ) dx ⎦ ⎥
相关文档
最新文档