2018年初中数学突破中考压轴题几何模型之角平分线模型学案(无答案)

合集下载

2018年初中数学突破中考压轴题几何模型之相似三角形中的一线三等角模型名师制作优质教学资料

2018年初中数学突破中考压轴题几何模型之相似三角形中的一线三等角模型名师制作优质教学资料

( 2)当 BD =1, FC=3 时,求 BE
【例 2】 如图,等腰△ ABC 中, AB=AC,D 是 BC 中点,∠ EDF =∠ B,
A
求证:△ BDE ∽△ DFE
F
E
B
D
C
【例 3】如图,在△ ABC 中, AB=AC=5cm , BC=8,点 P 为 BC 边上一动点(不与点 交 AC 于点 M,使∠ APM=∠ B; ( 1)求证:△ ABP∽△ PCM ; ( 2)设 BP=x, CM =y.求 y 与 x 的函数解析式,并写出函数的定义域. ( 3)当△ APM 为等腰三角形时, 求 PB 的长.
【例 5】已知:菱形 ABCD,AB=4m, ∠ B=60 ° ,点 P、Q 分别从点 B 、C 出发,沿线段 BC 、CD 以 1m/s 的速度向终 点 C、 D 运动 ,运动时间为 t 秒 ( 1)连接 AP、 AQ、 PQ,试判断△ APQ的形状,并说明理由。 ( 2)当 t=1 秒时,连接 AC,与 PQ相交于点 K. 求 AK的长。 ( 3) 当 t=2 秒时,连接 AP、PQ,将∠ APQ逆时针旋转,使角的两边与 AB、 AD、AC分别交于点 E、N、F,连接 EF. 若 AN=1,求 S△ . EPF
A
D
A
D
A
D
Q
KQ
B
P
C
BP
C
B
C
定义域;
A Q
B
P
C
( 2)正方形 ABCD 的边长为 5 (如图 12),点 P 、 Q 分别在直线 CB 、 DC 上
(点 P 不与点 C 、点 B 重合),且保持 APQ 90 .
当 CQ 1 时,写出线段 BP 的长(不需要计算过程,请直接写出结果) .

中考数学几何模型复习 专题01 角平分线的五种模型(学生版+解析版)

中考数学几何模型复习 专题01 角平分线的五种模型(学生版+解析版)

中考数学几何模型复习专题01 角平分线的五种模型模型一、角平分线垂两边【例1】如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定【例2】如图,∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=4,则PD的长为___.【变式训练1】如图所示,在四边形ABCD中,DC//AB,∠DAB =90°,AC BC,AC =BC,∠ABC的平分线交A D,AC于点E、F,则BFEF的值是___________.【变式训练2】如图,BD平分ABC的外角∠ABP,DA=DC,DE∠BP于点E,若AB=5,BC=3,求BE的长.【变式训练3,的平分线相交于点E ,过点E 作交AC 于点F ,则EF 的长为 .模型二、角平分线垂中间【例3】 如图,已知,90,,BAC AB AC BD ∠=︒=是ABC ∠的平分线,且CE BD ⊥交BD 的延长线于点E . 求证:2BD CE =.【变式训练1】如图,已知∠ABC ,∠BAC =45°,在∠ABC 的高BD 上取点E ,使AE =BC . (1)求证:CD =DE ;(2)试判断AE 与BC 的位置关系?请说明理由;【变式训练2】如图,D 是△ABC 的BC 边的中点,AE 平分∠BAC ,AE ⊥CE 于点E ,且AB =10,AC =16,则DE 的长度为________【变式训练3】如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.模型三、角平分线+平行线构造等腰三角形【例4】 如图所示,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q ,当CQ =13CE 时,EP +BP =________.【变式训练1】平分于点C ,,求OC 的长?【变式训练2C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且,则AC=.模型四、利用角平分线作对称例.平分.【变式训练】AD是∠ABC的角平分线,过点D作DE∠AB于点E,且DE=3,S∠ABC=20.(1)如图1,若AB=AC,求AC的长;(2)如图2,若AB=5,请直接写出AC的长.模型五、内外模型【例5】如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠AC E的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°的平分线CP与内角BP交于点P,若,则.课后训练4321DA1.如图,BD 是ABC 的外角∠ABP 的角平分线,DA =DC ,DE ∠BP 于点E ,若AB =5,BC =3,则BE 的长为( )A .2B .1.5C .1D .02.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,32=DE ,5AB =,则AC 的长为( )A .133B .4C .5D .63.如图,在Rt∠ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,CD =2,BD =3,Q 为AB 上一动点,则DQ 的最小值为( )A .1B .2C .2.5 D4.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =6,BC =9,CD =4,则四边形ABCD的面积是______.5.如图,在∠ABC中,AD为∠ABC的角平分线,DE∠AB,垂足为E,DF∠AC,垂足为F,若AB=5,AC=3,DF=2,则∠ABC的面积为______.6.在∠ABC中,∠ABC=62°,∠ACB=50°,∠ACD是∠ABC的外角∠ACD和∠ABC的平分线交于点E,则∠AEB =_____∠7.如图,DE∠AB于E,DF∠AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC:(2)已知AC=18,BE=4,求AB的长.8.如图1,在平面直角坐标系中,∠ABC的顶点A(-4,0),B(0,4),AD∠BC交BC于D点,交y轴正半轴于点E(0,t)(1)当t=1时,点C的坐标为;(2)如图2,求∠ADO的度数;(3)如图3,已知点P(0,3),若PQ∠PC,PQ=PC,求Q的坐标(用含t的式子表示).9AB为直径,CD D,求证:.中考数学几何模型复习专题01 角平分线的五种模型模型一、角平分线垂两边例1.如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定【答案】A【详解】过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=3:2,∴S△ABD:S△ACD=(12AB•DE):(12AC•DF)=AB:AC=3:2.故选A.例2.如图,∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=4,则PD的长为___.【答案】2【详解】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC//OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO =30°,在直角三角形CEP 中,∠ECP =30°,PC =4,∴PE =12PC =2,则PD =PE =2.故答案为:2. 【变式训练1】如图所示,在四边形ABCD 中,DC //AB ,∠DAB =90°,AC ⊥BC ,AC =BC ,∠ABC 的平分线交AD ,AC 于点E 、F ,则BFEF的值是___________.11221BCBC BC ==--【详解】解:如图,作FG ⊥AB 于点G ,∠DAB -90°,∴FG /AD ,∴BF EF =BGAGAC ⊥BC ,∴∠ACB =90° 又BF 平分∠ABC ,∴FG =FC 在Rt △BGF 和Rt △BCF 中BF BFCF GF=⎧⎨=⎩ ∴△BGF ≌△BCF (HL ),∴BC =BGAC =BC ,∴∠CBA =45°,∴AB =2BC1BF BG BC EF AG AB BG ∴===- 【变式训练2】如图,BD 平分ABC 的外角∠ABP ,DA =DC ,DE ⊥BP 于点E ,若AB =5,BC =3,求BE 的长.【答案】1【详解】解:过点D 作BA 的垂线交AB 于点H ,∵BD平分△ABC的外角∠ABP,DH⊥AB,∴DE=DH,在Rt△DEB和Rt△DHB中,DE DHDB DB=⎧⎨=⎩,∴Rt△DEB≌Rt△DHB(HL),∴BE=BH,在Rt△DEC和Rt△DHA中,DE DHDC DA=⎧⎨=⎩,∴Rt△DEC≌Rt△DHA(HL),∴AH=CE,由图易知:AH=AB−BH,CE=BE+BC,∴AB−BH=BE+BC,∴BE+BH=AB−BC=5−3=2,而BE=BH,∴2BE=2,故BE=1.【变式训练3,,的平分线相交于点E,过点E作交AC于点F,则EF的长为.【答案】【解析】延长FE交AB于点D G H,如图所示:四边形BDEG是矩形,平分CE平分,四边形BDEG是正,,设,则,,,解得,,即,解得,.模型二、角平分线垂中间例.如图,已知,90,,BAC AB AC BD ∠=︒=是ABC ∠的平分线,且CE BD ⊥交BD 的延长线于点E .求证:2BD CE =. 【答案】见解析【详解】证明:如图,延长CE 与BA 的延长线相交于点F ,∵90,90EBF F ACF F ∠+∠=︒∠+∠=︒,∴EBF ACF ∠=∠,在ABD △和ACF 中,EBF ACF AB AC BAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABD ACF ASA △≌△,∴BD CF =,∵BD 是ABC ∠的平分线,∴EBC EBF ∠=∠.在BCE ∆和BFE ∆中,EBC EBF BE BE CEB FEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BCE BFE ASA ≌△△, ∴CE EF =,∴2CF CE =, ∴2BD CF CE ==.【变式训练1】如图,已知△ABC ,∠BAC =45°,在△ABC 的高BD 上取点E ,使AE =BC . (1)求证:CD =DE ;(2)试判断AE 与BC 的位置关系?请说明理由;【答案】(1)见解析;(2)AE BC ⊥,理由见解析;(3)【详解】(1)证明:∵BD AC ⊥,45BAC ∠=︒,∴90,45EDA BDC ABD BAD ∠=∠=︒∠=∠=︒,∴AD BD =,在Rt ADE △和Rt BDC 中,∵AD BDAE BC =⎧⎨=⎩∴()Rt ADE Rt BDC HL ≅,∴CD =DE ; (2)AE BC ⊥,理由如下:如图,延长AE ,交BC 于点F , 由(1)得,90EAD EBF EAD AED ∠=∠∠+∠=︒,∵AED AEF ∠=∠,∴90BEF EBF ∠+∠=︒,∴90EFB =︒,即AE BC ⊥;【变式训练2】如图,D 是△ABC 的BC 边的中点,AE 平分∠BAC ,AE ⊥CE 于点E ,且AB =10,AC =16,则DE 的长度为________【答案】3【解答】解:如图,延长CE ,AB 交于点F .AE 平分∠BAC ,AE ⊥EC ,∴∠F AE =∠CAE ,∠AEF =∠AEC =90°在△AFE 和△ACE 中,EAF EAC AE AE AEF AEC =⎧⎪=⎨⎪=⎩∠∠∠∠,∴△AFE ≌ACE (ASA ),∴AF =AC =16,EF =EC ,∴BF =6又D 是BC 的中点,∴BD =CD ,∴DE 是△CBF 的中位线,∴DE =12BF =3,故答案为:3. 【变式训练3】如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.【答案】见解析【解答】证明:延长AD 交BC 于点F .CD 平分ACF ∠, ACD FCD ∴∠=∠.又,,AD CD CD CD ⊥=ADC ∴∆≌FDC ∆,AD FD ∴=. 又DE ∥BC ,EA EB ∴=.模型三、角平分线+平行线构造等腰三角形例.如图所示,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D,∠CBP 的平分线交CE 于Q ,当CQ =13CE 时,EP +BP =________.【答案】12【解答】解:如图,延长BQ 交射线EF 于点M .E 、F 分别是AB 、AC 的中点,∴EF //BC ,∴∠CBM =∠EMBBM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠EMB =∠EBM ,∴EB =EM ,∴EP +BP =EP +PM =EM CQ =13CE ,∴EQ =2CQ由EF //BC 得,△EMQ ∽△CBQ∴2 212 12EM EQEM BC EP BP BC CQ==∴==∴+=【变式训练1】如图,平分于点C ,,求OC 的长?【解析】如图所示:过点D 作交OA 于点E ,平分,,,.【变式训练2C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AC=.【解析】过点E于G,连接CF,如图所示:分别是的平分线,,CF是的平分线,,,由勾股定理可得.模型四、利用角平分线作对称例.平分.【答案】见解析【解析】证明:在AB上截取,连接DE,如图所示:.【变式训练】AD是△ABC的角平分线,过点D作DE⊥AB于点E,且DE=3,S△ABC=20.(1)如图1,若AB=AC,求AC的长;(2)如图2,若AB=5,请直接写出AC的长.【答案】(1)203;(2)253【详解】解:(1)如图1,作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×AB ×3+12×AC ×3=20,解得,AC =AB =203; (2)如图2,作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×5×3+12×AC ×3=20,解得,AC =253. 模型五、内外模型例.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°4321DA【答案】A【解析】∵∠ABC与∠ACE的平分线相交于点D,∴∠DCE=∠DCA,∠CBD=∠ABD,即.的外角的平分线CP与内角BP交于点P,若,则.【解析】平分平分,又,过点P的延长线,垂足分别为点E、F、G,如图所示:由角平分线的性质可得,AP是.课后训练1.如图,BD 是ABC 的外角∠ABP 的角平分线,DA =DC ,DE ⊥BP 于点E ,若AB =5,BC =3,则BE 的长为( )A .2B .1.5C .1D .0【答案】C【详解】解:如图,过点D 作DF AB ⊥于F ,BD 是ABP ∠的角平分线,DF AB ⊥,DE ⊥BP ,DE DF ∴=,在Rt BDE 和Rt BDF 中,BD BDDE DF =⎧⎨=⎩,()Rt BDE Rt BDF HL ∴△≌△,BE BF ∴=,在Rt ADF 和Rt CDE △中,DA DCDE DF =⎧⎨=⎩,()Rt ADF Rt CDE HL ∴△≌△,AF CE ∴=,AF AB BF =-,CE BC BE =+,AB BF BC BE ∴-=+,2BE AB BC ∴=-,5AB =,3BC =,2532BE ∴=-=,解得:1BE =.故选:C .2.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,32=DE ,5AB =,则AC 的长为( )A .133B .4C .5D .6【详解】∵AD 是ABC ∆中BAC ∠的平分线,DE AB ⊥于点E ,DF AC ⊥交AC 于点F ,∴32DF DE ==. 又∵ABC ABD ACD S S S =+,5AB =,∴1313752222AC =⨯⨯+⨯⨯,∴133AC =.故选:A . 3.如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,CD =2,BD =3,Q 为AB 上一动点,则DQ 的最小值为( )A .1B .2C .2.5D 【答案】B 【详解】解:作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DH ⊥AB ,DC ⊥AC ,∴DH =DC =2,∵Q 为AB 上一动点,∴DQ 的最小值为DH 的长,即DQ 的最小值为2.故选:B .4.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =6,BC =9,CD =4,则四边形ABCD 的面积是______.【详解】过D作DE⊥AB,交BA的延长线于E,则∠E=∠C=90°,∵∠BCD=90°,BD平分∠ABC,∴DE=DC=4,∴四边形ABCD的面积S=S△BCD+S△BAD=12×BC×CD+12×AB×DE=12×9×4+12×6×4=30,故答案为:30.5.如图,在△ABC中,AD为△ABC的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,若AB=5,AC=3,DF=2,则△ABC的面积为______.【答案】8【详解】解:∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=2,∴△ABC的面积=12×5×2+12×3×2=8,故答案侍:8.6.在△ABC中,∠ABC=62°,∠ACB=50°,∠ACD是△ABC的外角∠ACD和∠ABC的平分线交于点E,则∠AEB=_____︒【答案】25【详解】解:如图示:过点E ,分别作EF BD ⊥交BD 于点E ,EG AC ⊥交AC 于点G ,EH AB ⊥,交AB 延长线于点H , ∵BE 平分ABC ∠,CE 平分ACD ∠,∴EH EF =,EG EF =,∴EH EG =,∴AE 平分HAC ∠, ∵62ABC ∠=︒,50∠=°ACB ,∴6250112HAC ABC ACB ∠=∠+∠=︒+︒=︒,∴111125622EAO HAC ∠=∠=⨯︒=︒, ∵BE 平分ABC ∠,62ABC ∠=︒∴11623122EBC ABC ∠=∠=⨯︒=︒在AOE △和BOC 中,OBC OCB OAE AEB ∠+∠=∠+∠∴31505625AEB OBC OCB OAE ∠=∠+∠-∠=︒+︒-︒=︒,故答案是:25.7.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD ,BE =CF .(1)求证:AD 平分∠BAC :(2)已知AC =18,BE =4,求AB 的长.【答案】(1)见解析;(2)10AB =.【详解】(1)证明:DE AB ∵⊥,DF AC ⊥,90E DFC ∴∠=∠=︒,在Rt BED 和Rt CFD △中,BD CD BE CF =⎧⎨=⎩,∴Rt BED Rt CFD ≅()HL ,DE DF ∴=, DE AB ∵⊥,DF AC ⊥,AD ∴平分BAC ∠;(2)解:DE DF =,AD AD =,Rt ADE Rt ADF ∴≅()HL ,AE AF ∴=,AB AE BE AF BE AC CF BE =-=-=--,184410AB ∴=--=.8.如图1,在平面直角坐标系中,△ABC 的顶点A (-4,0),B (0,4),AD ⊥BC 交BC 于D 点,交y 轴正半轴于点E (0,t )(1)当t=1时,点C 的坐标为 ;(2)如图2,求∠ADO 的度数;(3)如图3,已知点P (0,3),若PQ ⊥PC ,PQ=PC ,求Q 的坐标(用含t 的式子表示).【答案】(1)点C 坐标(1,0);(2)∠ADO =45°;(3)Q (-3,3-t ).【详解】(1)如图1,当t =1时,点E (0,1),∵AD ⊥BC , ∴∠EAO +∠BCO =90°,∵∠CBO +∠BCO =90°,∴∠EAO =∠CBO ,在△AOE 和△BOC 中,∵90EAO CBO AO BO AOE BOC ∠=∠⎧⎪=⎨⎪∠=∠︒⎩=,∴△AOE ≌△BOC (ASA ),∴OE =OC =1,∴点C 坐标(1,0).故答案为:(1,0);(2)如图2,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE =BC ,∵OM ⊥AE ,ON ⊥BC ,∴OM =ON ,∴OD 平分∠ADC ;AD ⊥BC ,90ADC ∴∠=︒∴∠ADO =1452ADC ∠=︒; (3)如图3,过P 作GH ∥x 轴,过C 作CG ⊥GH 于G ,过Q 作QH ⊥GH 于H ,交x 轴于F ,∵P(0,3),C(t,0),∴CG=FH=3,PG=OC=t,∵∠QPC=90°,∴∠CPG+∠QPH=90°,∵∠QPH+∠HQP=90°,∴∠CPG=∠HQP,∵∠QHP=∠G=90°,PQ=PC,∴△PCG≌△QPH,∴CG=PH=3,PG=QH=t,∴Q(-3,3-t).9AB为直径,CD平分D.【解答】见解析【解析】连接AD、BD,过点A,过点B M、N,如图所示:CD于点D,,,,又,.。

2018年初中数学突破中考压轴题几何模型之正方形的半角模型教案(共14张PPT)

2018年初中数学突破中考压轴题几何模型之正方形的半角模型教案(共14张PPT)
2 ——————————
间的数量关系是否仍然成立,请证明。
A
D
F
画板
顺 变式2
B
E
C
A
E′
D
结论:
F
EF= BE+DF
B
E
C
画板 变式2
A
D
结论:
F
E′
EF =BE+DF
B
E
C
画板 逆 变式2
Байду номын сангаас
(2)如图,在四边形ABCD中, AB=AD, ———————— ∠B+∠D= 180°,E、F分别是BC、CD上的点, —————————— ——————————————— 1 且 EAF BAD , BE、DF、EF三条线段之间 2 —————————— 的数量关系是否仍然成立?
A
D B E C F
画板
变式3
A
E′
D
结论:
B
F
EF= BE+DF
E C
画板 变式3
(3)如图,在四边形ABCD中, AB=AD, ———————— ∠B+∠D=180°,E、F分别是BC、CD延长线上 —————————— ———————————————————— 1 的点,且 EAF 2 BAD BE、DF、EF三条线段 —————————— 之间的数量关系是否仍然成立,若不成立,请 写出它们之间的数量关系,并证明.
A
E
B C F
D
画板
一、知识与技能:
1、“半角模型” 特征:
①共端点的等线段; ②共顶点的倍半角; ③等线段的相邻对角互补; 2、强化关于利用旋转变换解决问题: ①旋转的目的: 将分散的条件集中,隐蔽的关系显现; ②旋转的条件:具有公共端点的等线段; ③旋转的方法:以公共端点为旋转中心,相等的两条线段的夹

中考数学常见几何模型专题08 角平分线的基本模型(二)非全等类(解析版)

中考数学常见几何模型专题08 角平分线的基本模型(二)非全等类(解析版)

专题08 角平分线的重要模型(二)非全等类角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,,本专题就角平分线的非全等类模型作相应的总结,需学生反复掌握。

模型1.双角平分线模型(导角模型) 【模型解读】双角平分线模型(导角模型)指的是当三角形的内角(外角)的平分线相交时,可以导出平分线的夹角的度数。

【模型图示】条件:BD ,CD 是角平分线.结论:1902BDC A ∠=︒+∠ 1902BDC A ∠=︒-∠ 12BDC A ∠=∠ 1.(2022·广东·九年级专题练习)BP 是∠ABC 的平分线,CP 是∠ACB 的邻补角的平分线,∠ABP =20°,∠ACP =50°,则∠P =( )A .30°B .40°C .50°D .60°【答案】A【分析】据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P 的度数. 【详解】∠BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线, ∠∠ABP =∠CBP =20°,∠ACP =∠MCP =50°,4231AFCB4321DA∠∠PCM是△BCP的外角,∠∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.2.(2022·山东·济南中考模拟)如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.(1)求证:∠AOC=90°+1∠ABC;2(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.【点睛】本题考查了全等三角形的性质和判定,角平分线定义和性质,三角形的面积,三角形内角和定理的应用,熟练掌握各性质定理是解答此题的关键.3.(2022•蓬溪县九年级月考)某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A =α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并说明理由.(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC=°,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R=°.【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠E与∠1表示出∠2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解;(4)结合(1)(2)(3)的解析即可求得.【解答】解:(1)∵PB、PC分别平分∠ABC和∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB(角平分线的性质),∴∠BPC+∠PBC+∠PCB=180°(三角形内角和定理),∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=180°﹣90°+12∠A=90°+12∠A=90°+12×64°=122°.故答案为:122°;(2)∵BE是∠ABD的平分线,CE是∠ACB的平分线,∴∠ECB=12∠ACB,∠ECD=12∠ABD.∵∠ABD是△ABC的外角,∠EBD是△BCE的外角,∴∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,∴∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB,即12∠A+∠ECB=∠ECB+∠BEC,∴∠BEC=12∠A=12α;(3)结论∠BQC=90°−12∠A.∵∠CBM与∠BCN是△ABC的外角,∴∠CBM=∠A+∠ACB,∠BCN=∠A+∠ABC,∵BQ,CQ分别是∠ABC与∠ACB外角的平分线,∴∠QBC=12(∠A+∠ACB),∠QCB=12(∠A+∠ABC).∵∠QBC+∠QCB+∠BQC=180°,∴∠BQC=180°﹣∠QBC﹣∠EQB=180°−12(∠A+∠ACB)−12(∠A+∠ABC),=180°−12∠A−12(∠A+∠ABC+∠ACB)=180°−12∠A﹣90°=90°−12∠A;(4)由(3)可知,∠BQC=90°−12∠A=90°−12×64°=58°,由(1)可知∠BPC=90°+12∠BQC=90°+12×58°=119°;由(2)可知,∠R=12∠BQC=29°故答案为119,29.【点评】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.4.(2022·辽宁沈阳·九年级期中)阅读下面的材料,并解决问题(1)已知在∠ABC中,∠A=60°,图1-3的∠ABC的内角平分线或外角平分线交于点O,请直接写出下列角度的度数,如图1,∠O=;如图2,∠O=;如图3,∠O=;(2)如图4,点O是∠ABC的两条内角平分线的交点,求证:∠O=90°+12∠A(3)如图5,在∠ABC中,∠ABC的三等分线分别与∠ACB的平分线交于点O1O2,若∠1=115°,∠2=135°,求∠A 的度数.【答案】(1)120°,30°,60°(2)见解析(3)70°∠2α+β=180°-115°=65°,α+β=180°-135°=45°解得:α=20°,β=25° ∠∠ABC +∠ACB =3α+2β=60°+50°=110°,∠∠A =70°.【点睛】本题主要考查了三角形内角和定理,角平分线的定义,三角形外角的性质等知识,熟练掌握三角形内角和定理,以及基本图形是解题的关键.模型2.角平分线加平行线等腰现(角平分线+平行线)【模型解读】1)过角平分线上一点作角的一边的平行线,构造等腰三角形;2)有角平分线时,过角一边上的点作角平分线的平行线,交角的另一边的直线于一点,也可构造等腰三角形。

2018年中考数学压轴题培优方案 第四部分 考点详解(PDF 无答案)

2018年中考数学压轴题培优方案 第四部分  考点详解(PDF 无答案)

第四部分考点详解§4.1 角的平分线角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:【例题】已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD= AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD= AC(用含α的三角函数表示),并给出证明.§4.2 旋转(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角. ③旋转前、后的图形全等.(2)旋转三要素:①旋转中心; ②旋转方向; ③旋转角度. 注意:三要素中只要任意改变一个,图形就会不一样. 【例题】在Rt △ABC 中,∠ACB=90°,tan ∠BAC=21,点D 在边AC 上(不与A ,C 重合),连结BD ,F 为BD 中点。

(1)若过点D 作DE ⊥AB 于E ,连结CF 、EF 、CE ,如图1. 设CF=k EF ,则k = ;(2)若将图1中的△ADE 绕点A 旋转,使得D 、E 、B 三点共线,点F 仍为BD 中点,如图2所示.求证:BE-DE=2CF ;(3)若BC=6,点D 在边AC 的三等分点处,将线段AD 绕点A 旋转,点F 始终为BD 中点,求线段CF 长度的最大值.BCADEFB DEAFC BAC 1图2图备图§4.3 直角三角形斜边中线+四点共圆(1)性质:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)(2)定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.【例题】 已知:在△ABC 中,∠ABC =90 , 点E 在直线AB 上, ED 与直线AC 垂直, 垂足为D ,且点M 为EC 中点, 连接BM , DM .(1)如图1,若点E 在线段AB 上,探究线段BM 与DM 及∠BMD 与∠BCD 所满足的数量关系, 并直接写出你得到的结论;(2)如图2,若点E 在BA 延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;(3)若点E 在AB 延长线上,请你根据条件画出相应的图形,并直接写出线段BM与DM 及∠BMD 与∠BCD 所满足的数量关系.图1 图2BED AMCB E D A MC EBAM§4.4 倍长过中点的线段如图1,在菱形ABCD和菱形BEFG中,点A B E,,在同一条直线上,P是线段DF的中点,连结PG PC,.若60ABC BEF∠=∠=o,探究PG与PC的位置关系及PGPC的值.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG与PC的位置关系及PGPC的值;(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEFαα∠=∠=<<o o,将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).DABEFCPG图1D CGPA BEF图2§4.5 共端点的等线段,旋转如图1,在□ABCD 中,AE ⊥BC 于E ,E 恰为BC 的中点,2tan =B .(1)求证:AD =AE ;(2)如图2,点P 在BE 上,作EF ⊥DP 于点F ,连结AF .求证:AF EF DF 2=-;(3)请你在图3中画图探究:当P 为射线E C 上任意一点(P 不与点E 重合)时,作EF ⊥DP 于点F ,连结AF ,线段DF 、EF 与AF 之间有怎样的数量关系?直接写出你的结论.图1EBCAD图3EB CA D图2ECB AD FP§4.6 利用平移变换转移线段,类比梯形平移对角线我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形。

专题06 全等模型-角平分线模型(原卷版)

专题06 全等模型-角平分线模型(原卷版)

专题06全等模型-角平分线模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各类模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的几类全等模型作相应的总结,需学生反复掌握。

模型1.角平分线垂两边(角平分线+外垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线、CA OA ⊥于点A 时,过点C 作CA OB ⊥.结论:CA CB =、OAC ∆≌OBC ∆.图1图2常见模型1(直角三角形型)条件:如图2,在ABC ∆中,90C ∠=︒,AD 为CAB ∠的角平分线,过点D 作DE AB ⊥.结论:DC DE =、DAC ∆≌DAE ∆.(当ABC ∆是等腰直角三角形时,还有AB AC CD =+.)图3常见模型2(邻等对补型)条件:如图3,OC 是∠COB 的角平分线,AC =BC ,过点C 作CD ⊥O A 、CE ⊥OB 。

结论:①180BOA ACB ∠+∠=︒;②AD BE =;③2OA OB AD =+.例1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.例2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =()A .40°B .45°C .50°D .60°(1)填空:角平分线的性质定理:角平分线上的点到.符号语言:∵如图1,OP 为COD ∠上的平分线,且,∴.(2)解答:已知:如图2,60AOB ∠=︒,OP 为AOB ∠的平分线,以点P 为顶点的CPD ∠与角的两边相交于点C 、D ,且120CPD ∠=︒.求证:PC PD =.(3)作图:根据以上种情况,再次寻找其它情况,点P P 为AOB ∠的平分线上的点,请你用尺规作图3,分别在角的两边上找点C 、D ,使得PC PD =(要求保留作图痕迹,不写作法)(4)思考:如图4,OP 为AOB ∠的平分线,以点P 为顶点的CPD ∠与角的两边相交于点C 、D ,当OCP ∠与ODP ∠有怎样的数量关系时,PC PD =.(只写数量关系,不必证明)模型2.角平分线垂中间(角平分线+内垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线,AB OC ⊥,结论:△AOC ≌△BOC ,OAB ∆是等腰三角形、OC 是三线合一等。

中考几何——角平分线模型(供参考)

中考几何——角平分线模型(供参考)

学案学科初中数学年级九年级班级教师王春艳课题中考几何——角平分线辅助线添加技巧上课时间学习目标复习角平分线的性质与意义,认识中考几何中常用的四大角平分线模型的添加技巧,并能运用中几何证明中去。

学习重点中考几何中常用的四大角平分线模型的添加技巧学习难点巧找突破口、秒杀中考角平分线类型题教学流程国学:老鹰是世界上寿命最长的鸟类,但在40岁时,它锋利的爪子开始老化,无法有效地捕抓猎物。

它的羽毛长得又浓又厚,飞翔十分吃力,昨日雄风不再。

于是不得不面临两种选择:一种是等死,另一种是必须经过持续5个月,自我“虐待”和“煎熬”的漫长“修炼”。

它费尽全力奋飞到一个绝高山顶,筑巢于悬崖之上,停留在那里,不得飞翔,从此开始过苦行僧般的生活。

5个月后,新的羽毛长出来了,一生一次“脱胎换骨”的工程便告结束。

老鹰又开始飞翔,无限广阔的大地,再次成为它的天堂。

重生后,寿命可再添30年!如果能象老鹰一样,给自己一片没有退路的悬崖,不找理由找方法,面临后无退路的境地,集中精力奋勇向前,从生活中争得属于自己的位置,给自己一个向生命高地冲锋的机会,才能站的更高、望的更远。

一、知识梳理在中考几何中,角平分线有着非常重要的技巧,借助于角平分线我们可以构造许多常见基本模型,比如全等三角形、等腰三角形等,从而使许多复杂的几何题找到突破口,下面我们便一起来学习一下它的神奇之处吧!模型一、角分线,截两边,造全等模型二、角分线,垂两边,成全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。

模型三、角分垂,等腰现延长垂线段:题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形。

模型四、角分平,等腰呈做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。

或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。

2018年初中数学突破中考压轴题几何模型之相似三角形中的一线三等角模型(2021年整理)

2018年初中数学突破中考压轴题几何模型之相似三角形中的一线三等角模型(2021年整理)

2018年初中数学突破中考压轴题几何模型之相似三角形中的一线三等角模型(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年初中数学突破中考压轴题几何模型之相似三角形中的一线三等角模型(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年初中数学突破中考压轴题几何模型之相似三角形中的一线三等角模型(word版可编辑修改)的全部内容。

相似三角形判定的基本模型A字型 X字型反A字型反8字型母子型旋转型双垂直三垂直相似三角形判定的变化模型CB EDA一线三等角型相似三角形三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:等角的顶点在底边上的位置不同得到的相似三角形的结论也不同,当顶点移动到底边的延长线时,形成变式图形,图形虽然变化但是求证的方法不变。

此规律需通过认真做题,细细体会。

(1)连接AP、AQ、PQ,试判断△APQ的形状,并说明理由.(2)当t=1秒时,连接AC,与PQ相交于点K。

求AK的长.(3)当t=2秒时,连接AP、PQ,将∠APQ逆时针旋转,使角的两边与AB、AD、AC分别交于点E、N、F,连接EF。

若AN=1,求S△EPF。

AB C DP Q KAB CDPQDCBA【应用】1.如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,BC=1,AB=5,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD交AB 于点D.(1)直接写出点B的坐标.(2)当点P在线段OA上运动时,使得∠CPD=∠OAB,且BD: AD=3:2 ,求点P的坐标.2、已知在梯形ABCD中,AD∥BC,AD<BC,且BC =6,AB=DC=4,点E是AB的中点.(1)如图,P为BC上的一点,且BP=2.求证:△BEP∽△CPD;一线三等角。

2018年全国中考数学真题分类 线段垂直平分线、角平分线、中位线解析版(精品文档)

2018年全国中考数学真题分类  线段垂直平分线、角平分线、中位线解析版(精品文档)

2018年全国中考数学真题分类线段垂直平分线、角平分线、中位线(二)一、选择题1. (2018黑龙江大庆,9,3) 如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB的度数是( )A.30°B.35°C.45°D.60°【答案】B,【解析】过点M作MN⊥AD于N,根据角平分线上的点到角的两边的距离相等可得MC=MN,然后求出MB=MN,再根据到角的两边距离相等的点在角的平分线上判断出AM是∠BAD的平分线,然后求出∠AMB,再根据直角三角形两锐角互余求解即可.二、填空题1. (2018山东省东营市,15,3分)如图,在RT△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D,若BD=3,AC=10,则△ACD的面积是。

15.(2018山东省东营市,15,3分)如图,在RT△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D,若BD=3,AC=10,则△ACD的面积是。

【答案】15【解析】由作图语言叙述知CD是∠ACB的平分线,所以过D作AC的垂线段的长就是△ACD的高,而这个垂线段的长由角平分线的性质定理知它等于BD的长。

所以△ACD的面积12AC BD=15.【知识点】角平分线性质定理,三角形的面积公式。

2. (2018年江苏省南京市,14,2分) .如图,在ABC△中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若10cmBC=,则DE=cm.【答案】5【解析】∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【知识点】线段垂直平分线中位线3. (2018贵州省毕节市,17,3分)如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是________.[来源:【答案】16.第15题图第16题图【解析】∵DE 是AB 垂直平分线,∴AE =BE , ∴C △BCE =BC +CE +BE =BC +CE +AE =BC +AC =6+10=16.【知识点】线段垂直平分线的性质;三角形的周长公式4. (2018山西省,14题,3分) 如图,直线MN ∥PQ.直线AB 分别与MN,PQ 相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C,交AB 于点D;②分别以C,D 为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ于点F.若AB=2.∠ABP =60°则线段AF 的长为 .【答案】2√3【解析】解:过点A 作AG ⊥PQ 交PQ 与点G由作图可知,AF 平分∠NAB ∵ MN ∥PQ ;AF 平分∠NAB ;∠ABP =60°∴ ∠AFG =30°在Rt △ABG 中,∠ABP =60°,AB=2;∴ AG =√3在Rt △AFG 中,∠AFG =30°,AG =√3;∴ AF =2√3【知识点】角平分线、特殊角三角函数PP5. (2018内蒙古通辽,16,3分)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接A D .若AB =BD ,AB =6,∠C =30°,则△ACD 的面积为 .【答案】9 3【解析】依题意MN 是AC 的垂直平分线,所以∠C =∠DAC =30°,所以∠ADB =∠C +∠DAC =60°,又AB =BD ,所以△ABD 为等边三角形,∠BAD =60°,所以∠BAC =∠DAC +∠BAD =90°,因为AB=6,所以AC =63,所以△ABC 的面积为12×6×63=183.又BD =AD =DC ,所以S △ACD =12S △ABC =93,故应填:93.6.(2018辽宁省抚顺市,题号16,分值3)如图,ABCD 中,AB=7,BC=3,连接AC ,分别以点连接AE ,则△AED 的周长是__________.【答案】10【解析】由题可知,直线MN 是线段AC 的垂直平分线,∴AE=EC.∵在ABCD 中DE+EC=CD=AB=7,AD=BC=3,∴△AED 的周长为AD+DE+AE=BC+DE+EC=BC+CD=10.【知识点】用尺规作垂直平分线,垂直平分线的性质.三、解答题1. (2018甘肃省兰州市,20,6分)如图,在Rt△ABC中.(1)利用尺度作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【思路分析】PC⊥AC,要使P到AB的距离(PD的长)等于PC的长,即求∠A的角平分线与BC的交点.【解题过程】(1)作∠A的平分线AD,交BC于P;(2)过点P作直线AB的垂线,垂中为D。【知识点】尺规作图2. (2018湖北省江汉油田潜江天门仙桃市,18,5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.CA B第20题图【思路分析】(1)在只能用直尺画角平分线的情况下,就设法将∠MON 放置在能画出角平分线的图形中,如菱形.(2)原图是由全等的小菱形组成的,∴要想找到直角就要从菱形的对角线方面入手考虑.设法找让三角形中的一个顶点处在两个菱形的对角线交点位置,并且在格点上.【解题过程】解:(1)如图①,将∠MON 放在菱形AOBC 中,连接对角线OC ,并取格点P ,OP 即为所求.2分 如图②所示,△ABC 或△ABC 1均可.3. (2018湖南省怀化市,19,10分)已知:如图,点A ,F ,E ,C 在同一直线上,AB//DC ,AB =CD ,D B ∠=∠(1)求证:∆ABE ≅∆CDF ;(2)若点E ,G 分别为线段FC ,FD 的中点,连接EG ,且EG =5,求AB 的长.(第18题图) 图①图② B A ONM第18题答图 PA 图①O NMBC C 1 C 图② B A【思路分析】(1)首先根据AB//DC 可得CFD AEB ∠=∠,再加上条件AB =CD ,D B ∠=∠可利用AAS定理证明三角形全等.(2)根据(1)中的全等,可知AB =CD ,再根据三角形中位线定理可知已知量EG 和未知量CD 的等量关系,即可求出CD ,继而求出AB 的长度.【解题过程】(1)证明:∵AB//DC ∴CFD AEB ∠=∠,又∵D B ∠=∠,AB =CD ,∴在∆ABE 和∆CDF中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,,CD AB D B CFD AED ∴∆ABE ≅∆CDF(AAS)(2)∵点E ,G 分别为线段FC ,FD 的中点,∴线段EG 为CDF ∆的中位线,根据三角形中位线的性质定理,可得:CD EG 21=,又∵∆ABE ≅∆CDF ∴AB =CD ∴52121===AB CD EG , ∴521=AB ,即10=AB . 【知识点】全等三角形的判定方法 三角形中位线定理。

2018年初中数学突破中考压轴题几何模型之角平分线模型学案(无答案)

2018年初中数学突破中考压轴题几何模型之角平分线模型学案(无答案)

角平分线模型授课日期时间主题教学内容1.熟练掌握与角平分线相关的性质;2.会根据角平分线模型分析证明.1.角平分线的性质定理:角平分线上的点到这个角的两边的距离相等(作用:证明两条线段相等);2.角平分线的性质定理逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点在这个角的角平分线上。

(作用:证明两角相等或一条射线是一个角的角平分线).3.还有哪些性质或定理与角平分线有关?角平分线+平行线→等腰三角形:如图,已知BP平分ABC∠,//PA BC,则AB AP=;如图,已知BP平分ABC∠,//EF PB,则BE BF=.NBMPCABPCAFE三线合一(利用角平分线+垂线→等腰三角形):如图,已知AD平分BAC∠,且AD BC⊥,则AB AC=,BD CD=.CDAB【例1】如图:已知在ABC∆中,ABC∠的平分线与ACB∠的外角平分线交于点D,DE∥BC,交AB于点E,交AC于点F,求证:FCBEEF-=.FE DAB C M 【例2】如图,已知在ABC∆中,60=∠B,ABC∆的两条角平分线AD CE、相交于点O,求证:ACCDAE=+.DEOB CA【例3】如图,已知ABC ∆中CD AC AB BAC ,,90==∠垂直于ABC ∠的平分线BD 于D ,BD 交AC 于E ,求证:CD BE 2=.ED CAB【例4】已知如图在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,∠A 的平分线交CD 于F ,BC 于E ,过点E 作EH ⊥AB 于H .求证:(1)CF =EH . (2)四边形CEHF 是菱形.1.已知:如图,平行四边形ABCD各角的平分线分别相交于点E,F,G,H,求证:四边形EFGH是矩形.2.已知:如图,ADCDACABCADBAD⊥>∠=∠,,于点HD,是BC中点,求证:()ACABDH-=21.HD CAB3.如图,已知∠BAC =90°,AD ⊥BC 于点D ,∠1=∠2,EF ∥BC 交AC 于点F .试说明AE =CF .21FE DABC。

人教版初三数学压轴题解题模型之角平分线模型

人教版初三数学压轴题解题模型之角平分线模型

角平分线模型1 •熟练掌握与角平分线相关的性质;2 •会根据角平分线模型分析证明.互动探索1 •角平分线的性质定理:角平分线上的点到这个角的两边的距离相等(作用:证明两条线段相等)2 •角平分线的性质定理逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点在这个角的角平分线上。

(作用:证明两角相等或一条射线是一个角的角平分线)3 •还有哪些性质或定理与角平分线有关?角平分线+平行线T等腰三角形:如图,已知BP平分ABC , PA//BC,贝U AB AP ;如图,已知BP平分ABC , EF //PB,贝U BEiBF•严B X厂PFC N三线合一(利用角平分线+垂线T等腰三角形):如图,已知AD平分BAC,且AD BC,则AB AC , BD CD •精讲提升【例1】如图:已知在ABC 中,ABC的平分线与交AB于点E,交AC 于点F,求证:EF BEAACB的外角平分线交于点D , DE//BC,【参考答案】证明:因为DE //BC ,•DBCBD•/ DBA DBC , / EBD BDE, • BE ED同理:FC FD•/ EF ED FD••• EF BE FC【例2】如图,已知在ABC 中,B60,ABC的两求证: AE CD AC •AD、CE相交于点O ,【参考答案】证明:在线段AC上截取AF=AE,连接OF。

因为B 60,所以/ BAC+ / BCA=120 °1 1因为CAO BAC, OCA ACO2 2所以/ CAO + / OCA=60°, / AOE=/ CAO + / OCA=60°AE AF在厶AOE 和厶AOF 中EAO FAO ,所以△ AOE^A AOFAO AO所以AE=AF,/ AOE = Z AOF =60°因为/ AOE = Z DOC =60°,所以/ DOC = / COF=60°COD COF在厶COD和厶COF中OC OC 所以△ DOC◎△ FOCDCO FCO所以OD = CF所以AE CD AC90 ,AB AC,CD垂直于ABC的平分线BD于D , BD交AC 于E,求证:BE 2CD .【参考答案】证明:延长BA、CD交于点FBDCD ,•BDC BDF 90BD BD , FBD CBD【例3】如图,已知ABC中BAC••• FBD CBD••• CD DF , FC 2CDABE F 90 , ACF F 90ABE ACF又••• AB AC , BAC CAF 90 /. ABE ACF , • BE FC 2CDA【例4】已知如图在△ ABC中,/ ACB=90°, CD丄AB于D,/ A的平分线交CD于F, BC于E,过点E作EH丄AB于H .求证:(1)CF = EH . (2)四边形CEHF是菱形.【参考答案】(1)提示:先证△ AECACF,得到CE=EH,/ CEA = Z HEA 再借助平行线得到/ CFE = / HEA,/ CFE = / CEA,得到CE=CF,进而得到CF=EH(2)联结FH,由CF平行且等于EH,得到CEHF是平行四边形再由EC = EH得到CEHF是菱形课堂练习此环节设计时间在30分钟左右(20分钟练习+ 10分钟互动讲解)1 .已知:如图,平行四边形ABCD各角的平分线分别相交于点E, F, G, H ,求证:四边形EFGH是矩形.同理:Z F= Z HEF = Z HGF=90°所以四边形EFGH是矩形3.如图,已知Z BAC=90 ° AD丄BC于点D , Z1 = Z 2, EF // BC交AC于点F.试说明AE=CF .【参考答案】证明:•••四边形ABCD 是平行四边形,所以AD // BC 所以/ DAB + Z ABC=180°因为1HAB BAD, HBA2ABC ,所以HAB HBA 1( DAB2 ABC) 90所以Z H=90°2 .已知:如图, BAD CAD, AB AC,CD AD 于点D, H 是BC 中点,求证:DH AC .【参考答案】提示: 延长CD交AB于点E,用全等和中位线性质去证明DC证明:过点 E 作EG // FC ,交BC 于点G 因为EF // BC, EG // FC ,所以CFEG 是平行四边形,/ C=Z EGB所以CF=EG 因为/ C+ / DAC=90° / BAE+ / DAC =90° 所以/ BAE = Z C= / EGB因为/ 1= / 2, BE=BE ,所以△AEB 也 A GEB 所以AE=EG ,所以AE=CF(此环节设计时间在 5- 10分钟内)让学生回顾本节课所学的重点知识,以学生自我总结为主,学科教师引导为辅,为本次课做一个总结 回顾AFBD G。

中考数学常见几何模型专题07 角平分线的基本模型(一)全等类(解析版)

中考数学常见几何模型专题07 角平分线的基本模型(一)全等类(解析版)

专题07 角平分线的重要模型(一)全等类角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的全等类模型作相应的总结,需学生反复掌握。

模型1.角平分线构造轴对称模型(角平分线+截线段等)【模型解读与图示】已知如图1,OP为AOB∠的角平分线、PM不具备特殊位置时,辅助线的作法大都为在OB上截取ON OM=,连结PN即可.即有OMP∆≌ONP∆,利用相关结论解决问题.图1 图21.(2022·湖北十堰·九年级期末)在△ABC中,△ACB=2△B,如图①,当△C=90°,AD为△BAC的角平分线时,在AB上截取AE=AC,连结DE,易证AB=AC+CD.(1)如图②,当△C≠90°,AD为△BAC的角平分线时,线段AB,AC,CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(2)如图③,当AD为△ABC的外角平分线时,线段AB,AC,CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【答案】(1)AB AC CD=+;证明见解析;(2)AB AC CD+=;证明见解析.【分析】(1)首先在AB上截取AE=AC,连接DE,易证△ADE△△ADC(SAS),则可得△AED=△C,ED=CD,又由△AED=△ACB,△ACB=2△B,所以△AED=2△B,即△B=△BDE,易证DE=CD,则可求得AB=AC+CD;(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD△△CAD,可得ED=CD,△AED=△ACD,又由△ACBAB∥CD⇒AB+CD=BCFDEBAC=2△B ,易证DE =EB ,则可求得AC +AB =CD .【详解】(1)猜想:AB AC CD =+. 证明:如图②,在AB 上截取AE AC =,连结DE ,△AD 为ABC 的角平分线时,△BAD CAD ∠=∠,△AD AD =,△()SAS ADE ADC ≌△△, △AED C ∠=∠,ED CD =,△2ACB B ∠=∠,△2AED B ∠=∠.△B EDB ∠=∠,△EB ED =,△EB CD =,△AB AE DE AC CD =+=+.(2)猜想:AB AC CD +=.证明:在BA 的延长线上截取AE AC =,连结ED .△AD 平分FAC ∠,△EAD CAD ∠=∠.在EAD 与CAD 中,AE AC =,EAD CAD ∠=∠,AD AD =,△EAD CAD ≌△△. △ED CD =,AED ACD ∠=∠.△FED ACB ∠=∠.又2ACB B ∠=∠,FED B EDB ∠=∠+∠,EDB B ∠=∠.△EB ED =.△EA AB EB ED CD +===.△AC AB CD +=.【点睛】此题考查三角形综合题、全等三角形的判定与性质、等腰三角形的判定、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.2.(2022·山东烟台·九年级期末)已知在ABC 中,满足2ACB B ∠=∠,(1)【问题解决】如图1,当90C ∠=︒,AD 为BAC ∠的角平分线时,在AB 上取一点E 使得AE AC =,连接DE ,求证:AB AC CD =+.(2)【问题拓展】如图2,当90C ∠≠︒,AD 为BAC ∠的角平分线时,在AB 上取一点E 使得AE AC =,连接DE ,(1)中的结论还成立吗?若成立,请你证明:若不成立,请说明理由.(3)【猜想证明】如图3,当AD 为ABC 的外角平分线时,在BA 的延长线上取一点E 使得AE AC =,连接DE ,线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明. 【答案】(1)证明见解析(2)成立,证明见解析(3)猜想AB AC CD +=,证明见解析【分析】(1)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED ACD ∠=∠,再根据三角形的外角性质可得45B BDE ∠=∠=︒,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证;(2)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED C ∠=∠,再根据三角形的外角性质可得B BDE ∠=∠,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证;(3)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED ACD ∠=∠,从而可得FED ACB ∠=∠,再根据三角形的外角性质可得B BDE ∠=∠,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证.证明:△AD 为BAC ∠的角平分线,△EAD CAD ∠=∠,在AED 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS ≅,△ED CD =,AED ACD ∠=∠,又△90ACB ∠=︒,2ACB B ∠=∠,△45B ∠=︒,90AED ∠=︒,△45AED BDE B ∠=∠=∠-︒,△B BDE ∠=∠,△EB ED =,△EB CD =,△AB AE EB AC CD =+=+.(2)解:(1)中的结论还成立,证明如下:△AD 为BAC ∠的角平分线时,△EAD CAD ∠=∠,在AED 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS ≅,△AED C ∠=∠,ED CD =,△2ACB B ∠=∠,△2AED B ∠=∠,又△AED B EDB ∠=∠+∠,△B EDB ∠=∠,△EB ED =,△EB CD =,△AB AE EB AC CD =+=+.解:猜想AB AC CD+=,证明如下:△AD平分EAC∠,△EAD CAD∠=∠,在AED与ACD△中,AE ACEAD CAD AD AD=⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS≅,△ED CD=,AED ACD∠=∠,如图,△180180AED ACD︒-∠=︒-∠,即FED ACB∠=∠,△2ACB B∠=∠,△2FED B∠=∠,又△FED B EDB∠=∠+∠,△EDB B∠=∠,△EB ED=,△AB AE EB ED CD+===,△AB AC CD+=.【点睛】本题主要考查了三角形全等的判定与性质、等腰三角形的判定,熟练掌握三角形全等的判定方法是解题关键.3.(2022·浙江·九年级期中)(1)如图1,在△ABC中,△ACB=2△B,△C=90°,AD为△BAC的平分线交BC 于D,求证:AB=AC+CD.(提示:在AB上截取AE=AC,连接DE)(2)如图2,当△C≠90°时,其他条件不变,线段AB、AC、CD又有怎样的数量关系,直接写出结果,不需要证明.(3)如图3,当△ACB≠90°,△ACB=2△B ,AD为△ABC的外角△CAF的平分线,交BC的延长线于点D,则线段AB、AC、CD又有怎样的数量关系?写出你的猜想,并加以证明.【答案】(1)见解析;(2)AB=AC+CD;(3)AB=CD﹣AC【分析】(1)在AB上截取AE=AC,连接DE,根据角平分线的定义得到△1=△2.推出△ACD△△AED(SAS).根据全等三角形的性质得到△AED=△C=90,CD=ED,根据已知条件得到△B=45°.求得△EDB=△B=45°.得到DE=BE,等量代换得到CD=BE.即可得到结论;(2)在AC取一点E使AB=AE,连接DE,易证△ABD△△AED,所以△B=△AED,BD=DE,又因为△B=2△C,所以△AED=2△C,因为△AED是△EDC的外角,所以△EDC=△C,所以ED=EC,BD=EC,进而可证明AB+BD=AE+EC=AC;(3)在AB的延长线AF上取一点E,使得AE=AC,连接DE.证明△ACD△△AED,根据全等三角形的性质得到DE=BE,BE=CD,即可得出结论.【详解】(1)证明:在AB上取一点E,使AE=AC△AD为△BAC的平分线△△BAD=△CAD.在△ACD和△AED中,AE AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩△△ACD △△AED (SAS ).△△AED =△C =90°,CD =ED ,又△△ACB =2△B ,△C =90°,△△B =45°. △△EDB =△B =45°.△DE =BE , △CD =BE .△AB =AE +BE , △AB =AC +CD .(2)证明:在AB 取一点E 使AC=AE ,在△ACD 和△AED 中,AC AE BAD EAD AD AD ===⎧⎪∠∠⎨⎪⎩, △△ACD△△AED ,△△C=△AED ,CD=DE ,又△△C=2△B ,△△AED=2△B ,△△AED 是△EDC 的外角,△△EDB=△B ,△ED=EB ,△CD=EB ,△AB=AC+CD ;(3)猜想:AB =CD ﹣AC证明:在BA 的延长线上取一点E ,使得AE =AC ,连接DE ,在△ACD和△AED中,AC AECAD EADAD AD=⎧⎪∠=∠⎨⎪=⎩,△△ACD△△AED(SAS),△△ACD=△AED,CD=DE,△△ACB=△FED,又△△ACB=2△B△△FED=2△B,又△△FED=△B+△EDB,△△EDB=△B,△DE=BE,△BE=CD,△AB=BE-AE△AB=CD﹣AC.【点睛】本题考查全等三角形的判定和性质,关于线段和差关系的证明,通常采用截长补短法. 4.(2022·北京九年级专题练习)在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分BAE∠,90ACE∠=︒,则线段AE、AB、DE的长度满足的数量关系为______;(直接写出答案)(2)如图(2),AC平分BAE∠,EC平分AED∠,若120ACE∠=︒,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明.【答案】(1)AE=AB+DE;(2)AE=AB+DE+12BD,证明见解析.【分析】(1)在AE上取一点F,使AF=AB,由三角形全等的判定可证得△ACB≌△ACF,根据全等三角形的性质可得BC=FC,∠ACB=∠ACF,根据三角形全等的判定证得△CEF≌△CED,得到EF=ED,再由线段的和差可以得出结论;(2)在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG,根据全等三角形的判定证得△ACB≌△ACF和△ECD≌△ECG,由全等三角形的性质证得CF=CG,进而证得△CFG是等边三角形,就有FG=CG=12BD,从而可证得结论.【详解】解:(1)如图(1),在AE上取一点F,使AF=AB.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,AB AFBAC FACAC AC⎧⎪∠∠⎨⎪⎩===∴△ACB≌△ACF(SAS).∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点,∴BC=CD.∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°.∴∠ECF=∠ECD.在△CEF和△CED中,CF CDECF ECDCE CE⎧⎪∠∠⎨⎪⎩===∴△CEF≌△CED(SAS).∴EF=ED.∵AE=AF+EF,∴AE=AB+DE.故答案为:AE=AB+DE;(2)AE=AB+DE+12BD.证明:如图(2),在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG.∵C 是BD 边的中点,∴CB =CD =12BD .∵AC 平分∠BAE ,∴∠BAC =∠FAC . 在△ACB 和△ACF 中,AB AF BAC FAC AC AC ⎧⎪∠∠⎨⎪⎩===∴△ACB ≌△ACF (SAS ).∴CF =CB ,∠BCA =∠FCA .同理可证:△ECD ≌△ECG ∴CD =CG ,∠DCE =∠GCE .∵CB =CD ,∴CG =CF .∵∠ACE =120°,∴∠BCA +∠DCE =180°−120°=60°.∴∠FCA +∠GCE =60°.∴∠FCG =60°.∴△FGC 是等边三角形.∴FG =FC =12BD .∵AE =AF +EG +FG ,∴AE =AB +DE +12BD .【点睛】本题主要考查了全等三角形的判定与性质的运用,能熟练应用三角形全等的判定和性质是解决问题的关键.模型2.角平分线垂两边(角平分线+外垂直)【模型解读与图示】已知如图1,OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题.图1 图2 图3邻等对补模型:已知如图2,AP 是∠CAB 的角平分线,EP =DP辅助线:过点P 作PG ⊥AC 、PF ⊥AB结论:①︒=∠+∠180EPD BAC (D P E A 、、、四点共圆);②EG DF =;③DF AE AD 2+= 1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____. D B【答案】1【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,△AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,△1DF DE ==, △1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1. 【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键. 2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =( )A .40°B .45°C .50°D .60°【答案】C 【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC =∠ACD ﹣∠ABC =2x °﹣(x °﹣40°)﹣(x °﹣40°)=80°,∴∠CAF =100°,在Rt △PFA 和Rt △PMA 中,{PA PAPM PF ==,∴Rt △PFA ≌Rt △PMA (HL ),∴∠FAP =∠PAC =50°.故选C .【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM =PN =PF 是解题的关键.3.(2022·江苏扬州·中考真题)如图,在ABCD 中,BE 、DG 分别平分ABC ADC ∠∠、,交AC 于点E G 、.(1)求证:,BE DG BE DG =∥;(2)过点E 作EF AB ⊥,垂足为F .若ABCD 的周长为56,6EF =,求ABC ∆的面积. 【答案】(1)见详解(2)84【分析】(1)由平行四边形的性质证()ABE CDG ASA ∆≅∆即可求证;(2)作EQ BC ⊥,由ΔΔΔABC ABE EBC S S S =+即可求解;(1)证明:在ABCD 中,△//AB CD ,△BAE DCG ∠=∠,△BE 、DG 分别平分ABC ADC ∠∠、,ABC ADC ∠=∠,△ABE CDG ∠=∠,在ABE ∆和CDG ∆中,△ABCD的周长为AB BC+=BE平分∠EQ EF=ABCS S∆∆=4.(2022·河北·九年级专题练习)已知OP平分△AOB,△DCE的顶点C在射线OP上,射线CD交射线OA 于点F,射线CE交射线OB于点G.(1)如图1,若CD△OA,CE△OB,请直接写出线段CF与CG的数量关系;(2)如图2,若△AOB=120°,△DCE=△AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF =CG ;(2)CF =CG ,见解析【分析】(1)结论CF =CG ,由角平分线性质定理即可判断.(2)结论:CF =CG ,作CM △OA 于M ,CN △OB 于N ,证明△CMF △△CNG ,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF =CG ;证明:△OP 平分△AOB ,CF △OA ,CG △OB ,△CF =CG (角平分线上的点到角两边的距离相等);(2)CF =CG .理由如下:如图,过点C 作CM △OA ,CN △OB ,△OP 平分△AOB ,CM △OA ,CN △OB ,△AOB =120°,△CM =CN (角平分线上的点到角两边的距离相等),△△AOC =△BOC =60°(角平分线的性质),△△DCE =△AOC ,△△AOC =△BOC =△DCE =60°,△△MCO =90°-60° =30°,△NCO =90°-60° =30°,△△MCN =30°+30°=60°,△△MCN =△DCE ,△△MCF =△MCN -△DCN ,△NCG =△DCE -△DCN ,△△MCF =△NCG ,在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩△△MCF △△NCG (ASA ),△CF =CG (全等三角形对应边相等).【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.模型3.角平分线垂中间(角平分线+内垂直)【模型解读与图示】已知如图1,OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可。

角平分线的四大模型-【压轴必刷】中考数学压轴大题之经典模型(解析版)

角平分线的四大模型-【压轴必刷】中考数学压轴大题之经典模型(解析版)

角平分线的四大模型解题策略模型1角平分线的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点P 作PA ⏊OM 于点A ,PB ⏊ON 于点B ,则PB =PA模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口模型2截取构造对称全等如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB =OA ,连接PB ,则△OPB ≌△OPA 模型分析利用角平分线图形的对称性,在铁的两边构造对称全等三角形,可以得到对应边,对应角相等,利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧模型3角平分线+垂线构造等腰三角形如图,P 是∠MON 的平分线上一点,AP ⏊OP 于P 点,延长AP 交ON 于点B ,则△AOB 是等腰三角形.模型4角平分线+平行线模型分析有角平分线时,常过角平分线上一点作角的一边的平行线.构造等腰三角形,为证明结论提供更多的条件,体现了用平分线与等腰三角形之间的密切关系.A B MNO PAB MNO P A B MNO PO P QMN经典例题【例1】(2022·黑龙江·哈尔滨市第六十九中学校八年级阶段练习)四边形ABCD 中,DA =DC ,连接BD .(1)如图1,若BD 平分∠ABC ,求证:∠A +∠C =180°.(2)如图2,若BD =BC ,∠BAD =150°,求证:∠DBC =2∠ABD .(3)如图3,在(2)的条件下,作AE ⊥BC 于点E ,连接DE ,若DA ⊥DC ,BC =2,求DE 的长度.【答案】(1)见解析;(2)见解析;(3)2【分析】(1)过点D 分别作DF ⊥BC 于点F ,DE ⊥BA 交BA 的延长线于点E ,根据角平分线的性质可得ED =FD ,结合已知条件HL 证明Rt △DAE ≌Rt △DCF ,继而可得∠C =∠EAD ,根据平角的定义以及等量代换即可证明∠BAD +∠BCD =180°;(2)过点D 分别作DF ⊥BC 于点F ,DE ⊥BA 交BA 的延长线于点E ,过点B 作BG ⊥DC ,根据含30度角的直角三角形的性质可得ED =12AD ,根据三线合一,可得DG =12DC ,进而可得DE =DG ,根据角平分线的判定定理可推出∠ABD =∠DBG =12∠DBC ,进而即可证明∠DBC =2∠ABD ;(3)先证明四边形DMEF 是矩形,证明△MAD ≌△FCD ,进而证明四边形DMEF 是正方形,设∠ABD =α,根据(2)的结论以及三角形内角和定理,求得α=15°,进而求得∠DBC =30°,根据含30度角的直角三角形的性质,即可求得EF ,进而在Rt △DEF 中,勾股定理即可求得DE 的长.【详解】(1)如图,过点D 分别作DF ⊥BC 于点F ,DE ⊥BA 交BA 的延长线于点E ,∵BD 平分∠ABC ,∴ED =FD∵DA =DC ,在Rt △DAE 与Rt △DCF 中AD =DC ED =FD∴Rt △DAE ≌Rt △DCF (HL )∴∠C =∠EAD∴∠DAB +∠EAD =∠DAB +∠C =180°即∠BAD +∠BCD =180°(2)如图,过点D 作DE ⊥BA 交BA 的延长线于点E ,过点B 作BG ⊥DC ,∵BD =BC∴DG =GC =12DC ,∠DBG =∠CBG =12∠DBC∵∠BAD =150°,∴∠EAD =180°-150°=30°∴ED =12AD ∵DA =DC∴ED =DG∵ED ⊥BE ,DG ⊥BG∴∠EBD =∠GBD∴∠ABD =12∠DBC 即∠DBC =2∠ABD(3)如图,过点D 分别作DF ⊥BC 于点F ,DM ⊥EA 交EA 的延长线于点M ,∵AE ⊥BC ,DM ⊥ME ,DF ⊥FE∴四边形DMEF 是矩形∴∠MDF =90°∴∠MDA +∠ADF =90°∵DA ⊥DC∴∠ADC =90°∴∠ADF +∠FDC =90°∴∠FDC =∠MDA在△MAD 与△FCD 中∠MDA =∠FDC ∠DMA =∠DFC DA =DC∴△MAD ≌△FCD∴DM =DF ,∠MDA =∠FDC∴四边形DMEF 是正方形∴DF =EF设∠ABD =α∴∠DBC =2∠ABD =2α∵BD =BC∴∠BDC =∠BCD =12(180°-2α)=90-α∴∠MDA =∠FDC =90°-∠BCD =α∴∠DAE =∠M +∠MDA =90°+α∵∠BAD =150°∴∠BAE =60-α在△BAE 中∠ABE =90°-∠BAE =30°+α∵∠ABE =∠ABD +∠DBC =α+2α=3α∴α=15°∴∠DBC =2α=30°∵BD=2∴DF=12BD=12×2=1在Rt△DEF中,EF=DF=1∴DE=EF2+DF2=2【点睛】本题考查了三角形全等的性质与判定,角平分线的性质与判定,三角形内角和定理,三角形的外角性质,勾股定理,正方形的性质与判定,正确的添加辅助线是解题的关键.【例2】(2022·山西·交城县教学研究办公室八年级期中)综合与实践:问题情境:已知OM是∠AOB的平分线,P是射线OM上的一点,点C,D分别在射线OA,OB上,连接PC,PD.(1)初步探究:如图1,当PC⊥OA,PD⊥OB时,PC与PD的数量关系是;(2)深入探究:如图2,点C,D分别在射线OA,OB上运动,且∠AOB=90°,当∠CPD=90°时,PC与PD在(1)中的数量关系还成立吗?请说明理由;(3)拓展应用:如图3,如果点C在射线OA上运动,且∠AOB=90°,当∠CPD=90°时,点D落在了射线OB的反向延长线上,若点P到OB的距离为3,OD=1,求OC的长(直接写出答案).【答案】(1)PC=PD(2)PC与PD在(1)中的数量关系还成立,理由见解析(3)OC的长为7【分析】(1)根据角平分线的性质进行解答即可;(2)过点P作PE⊥OA,PF⊥OB,垂足分别为E,F,根据“ASA”证明△CPE≌△DPF即可得出结论;(3)过点P作PE⊥OA,PF⊥OB,垂足分别为E,F,先证明四边形OEPF为正方形,然后证明△CPE≌△DPF(ASA),根据正方形的性质以及全等三角形的性质可得结论.【详解】(1)解:∵OM是∠AOB的平分线,PC⊥OA,PD⊥OB,∴PC=PD,故答案为:PC=PD;(2)还成立,理由如下:过点P作PE⊥OA,PF⊥OB,垂足分别为E,F,∵OM平分∠AOB,∴PE=PF,∠PEC=∠PFD=90°,∵∠AOB=90°,∴∠EPF =360°-∠DEO -∠AOB -∠DFO =90°,∵∠CPD =90°∴∠CPD -∠EPD =∠EPF -∠EPD ,即∠CPE =∠DPF ,在△CPE 和△DPF 中,∠CPE =∠DPFPE =PF ∠PEC =∠PFD,∴△CPE ≌△DPF ASA ,∴PC =PD ;(3)过点P 作PE ⊥OA ,PF ⊥OB ,垂足分别为E ,F ,∴四边形OEPF 为矩形,∵OM 是∠AOB 的平分线,∴PE =PF =3,四边形OEPF 为正方形,∵∠AOB =90°,∠OEP =90°,∠OFP =90°,∴∠EPF =90°,∵∠CPD =90°,∴∠CPE +∠EPD =∠EPD +∠DPF =90°,∴∠CPE =∠DPF ,在△CPE 和△DPF 中,∠CPE =∠DPFPE =PF ∠CEP =∠DFP,∴△CPE ≌△DPF (ASA ),∴CE =DF ,∵OD =1,∴DF =OD +OF =1+3=4,∴OC =OE +CE =3+4=7.【点睛】本题考查了全等三角形的判定与性质,正方形的判定与性质,角平分线的性质,熟练掌握相关图形的判定定理以及性质定理是解本题的关键.【例3】(2021·全国·八年级专题练习)如图,已知B (-1,0),C (1,0),A 为y 轴正半轴上一点,点D 为第二象限一动点,E 在BD 的延长线上,CD 交AB 于F ,且∠BDC =∠BAC .(1)求证:∠ABD =∠ACD ;(2)求证:AD 平分∠CDE ;(3)若在点D 运动的过程中,始终有DC =DA +DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数.【答案】(1)见解析;(2)见解析;(3)不变,60°【分析】(1)根据∠BDC=∠BAC,∠DFB=∠AFC,再结合∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,即可得出结论;(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.运用“AAS”证明△ACM≌△ABN得AM=AN.根据“到角的两边距离相等的点在角的平分线上”得证;(3)运用截长法在CD上截取CP=BD,连接AP.证明△ACP≌ABD得△ADP为等边三角形,从而求∠BAC的度数.【详解】(1)证明:∵∠BDC=∠BAC,∠DFB=∠AFC,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD;(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.则∠AMC=∠ANB=90°,∵OB=OC,OA⊥BC,∴AB=AC,∵∠ABD=∠ACD,∴△ACM≌△ABN(AAS),∴AM=AN,∴AD平分∠CDE(到角的两边距离相等的点在角的平分线上);(3)∠BAC的度数不变化.在CD上截取CP=BD,连接AP.∵CD=AD+BD,∴AD=PD,∵AB=AC,∠ABD=∠ACD,BD=CP,∴△ABD≌△ACP,∴AD=AP,∠BAD=∠CAP,∴AD=AP=PD,即△ADP是等边三角形,∴∠DAP=60°,∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.【点睛】此题考查全等三角形的判定与性质,运用了角平分线的判定定理和“截长补短”的数学思想方法,综合性较强.【例4】(2021·贵州·九年级专题练习)【特例感知】(1)如图(1),∠ABC是⊙O的圆周角,BC为直径,BD平分∠ABC交⊙O于点D,CD=3,BD=4,求点D到直线AB的距离.【类比迁移】(2)如图(2),∠ABC是⊙O的圆周角,BC为⊙O的弦,BD平分∠ABC交⊙O于点D,过点D作DE⊥BC,垂足为点E,探索线段AB,BE,BC之间的数量关系,并说明理由.【问题解决】(3)如图(3),四边形ABCD为⊙O的内接四边形,∠ABC=90°,BD平分∠ABC,BD=72,AB=6,求△ABC的内心与外心之间的距离.【答案】(1)125;(2)AB+BC=2BE,理由见解析;(3)5.【分析】(1)如图①中,作DF⊥AB于F,DE⊥BC于E.理由面积法求出DE,再利用角平分线的性质定理可得DF=DE解决问题;(2)如图②中,结论:AB+BC=2BE.只要证明ΔDFA≅ΔDEC(ASA),推出AF=CE,RtΔBDF ≅RtΔBDE(HL),推出AF=BE即可解决问题;(3)如图③,过点D作DF⊥BA,交BA的延长线于点F,DE⊥BC,交BC于点E,连接AC,作△ABC△ABC的内切圆,圆心为M,N为切点,连接MN,OM.由(1)(2)可知,四边形BEDF是正方形,BD是对角线.由切线长定理可知:AN=6+10-82=4,推出ON=5-4=1,由面积法可知内切圆半径为2,在RtΔOMN中,理由勾股定理即可解决问题;【详解】解:(1)如图①中,作DF⊥AB于F,DE⊥BC于E.图①∵BD平分∠ABC,DF⊥AB,DE⊥BC,∴DF=DE,∵BC是直径,∴∠BDC=90°,∴BC=BD2+CD2=42+32=5,∵12·BC·DE=12·BD·DC,∴DE=125,∴DF =DE =125.故答案为125(2)如图②中,结论:AB +BC =2BE .图②理由:作DF ⊥BA 于F ,连接AD ,DC .∵BD 平分∠ABC ,DE ⊥BC ,DF ⊥BA ,∴DF =DE ,∠DFB =∠DEB =90°,∵∠ABC +∠ADC =180°,∠ABC +∠EDF =180°,∴∠ADC =∠EDF ,∴∠FDA =∠CDE ,∵∠DFA =∠DEC =90°,∴ΔDFA ≅ΔDEC (ASA ),∴AF =CE ,∵BD =BD ,DF =DE ,∴Rt ΔBDF ≅Rt ΔBDE (HL ),∴BF =BE ,∴AB +BC =BF -AF +BE +CE =2BE .(3)如图③,过点D 作DF ⊥BA ,交BA 的延长线于点F ,DE ⊥BC ,交BC 于点E ,连接AC ,作△ABC △ABC 的内切圆,圆心为M ,N 为切点,连接MN ,OM .由(1)(2)可知,四边形BEDF 是正方形,BD 是对角线.图③∵BD =72,∴正方形BEDF 的边长为7,由(2)可知:BC =2BE -AB =8,∴AC =62+82=10,由切线长定理可知:AN =6+10-82=4,∴ON=5-4=1,设内切圆的半径为r,则12×r×10+12×r×6+12×r×8=12×6×8解得r=2,即MN=2,在RtΔOMN中,OM=MN2+ON2=22+12=5.故答案为5.【点睛】本题属于圆综合题,考查了角平分线的性质定理,全等三角形的判定和性质,勾股定理,解直角三角形,正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.培优训练一、解答题1.(2022·全国·八年级课时练习)已知:如图,在四边形ABCD中,BD平分∠ABC,∠A+∠C=180°,BC>BA.求证:点D在线段AC的垂直平分线上.【答案】见解析【分析】在BC上截取BE=BA,连接DE,证明△ABD≌△BED,可得出∠C=∠DEC,则DE=DC,从而得出AD=CD即可证明.【详解】证:如图,在BC上截取BE=BA,连接DE,∵BD=BD,∠ABD=∠CBD,∴△BAD≌△BED,∴∠A=∠DEB,AD=DE,∵∠A+∠C=180°,∠BED+∠DEC=180°,∴∠C=∠DEC,∴DE=DC,∴AD=CD,∴点D在线段AC的垂直平分线上.【点睛】本题考查全等三角形的判定与性质,以及垂直平分线的判定等,学会做辅助线找出全等三角形是解题的关键.2.(2022·全国·八年级课时练习)如图,△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC于点D,过点B作BE⊥AD,交AD延长线于点E,F为AB的中点,连接CF,交AD于点G,连接BG.(1)线段BE与线段AD有何数量关系?并说明理由;(2)判断△BEG的形状,并说明理由.【答案】(1)BE=12AD,见解析;(2)△BEG是等腰直角三角形,见解析【分析】(1)延长BE、AC交于点H,先证明△BAE≌△HAE,得BE=HE=12BH,再证明△BCH≌△ACD,得BH=AD,则BE=12AD;(2)先证明CF垂直平分AB,则AG=BG,再证明∠CAB=∠CBA=45°,则∠GAB=∠GBA= 22.5°,于是∠EGB=∠GAB+∠GBA=45°,可证明△BEG是等腰直角三角形.【详解】证:(1)BE=12AD,理由如下:如图,延长BE、AC交于点H,∵BE⊥AD,∴∠AEB=∠AEH=90°,∵AD平分∠BAC,∴∠BAE=∠HAE,在△BAE和△HAE中,∠AEB=∠AEHAE=AE∠BAE=∠HAE,∴△BAE≌△HAE(ASA),∴BE=HE=12BH,∵∠ACB=90°,∴∠BCH=180°-∠ACB=90°=∠ACD,∴∠CBH=90°-∠H=∠CAD,在△BCH和△ACD中,∠BCH=∠ACDBC=AC∠CBH=∠CAD,∴△BCH≌△ACD(ASA),∴BH=AD,∴BE=12AD.(2)△BEG是等腰直角三角形,理由如下:∵AC=BC,AF=BF,∴CF⊥AB,∴AG=BG,∴∠GAB=∠GBA,∵AC=BC,∠ACB=90°,∴∠CAB=∠CBA=45°,∴∠GAB=1∠CAB=22.5°,2∴∠GAB=∠GBA=22.5°,∴∠EGB=∠GAB+∠GBA=45°,∵∠BEG=90°,∴∠EBG=∠EGB=45°,∴EG=EB,∴△BEG是等腰直角三角形.【点睛】本题考查等腰直角三角形的判定与性质,全等三角形的判定与性质等,理解等腰直角三角形的基本性质,并且掌握全等三角形中常见辅助线的作法是解题关键.3.(2022·江苏·八年级专题练习)在△ABC中,AD为△ABC的角平分线,点E是直线BC上的动点.(1)如图1,当点E在CB的延长线上时,连接AE,若∠E=48°,AE=AD=DC,则∠ABC的度数为 .(2)如图2,AC>AB,点P在线段AD延长线上,比较AC+BP与AB+CP之间的大小关系,并证明.(3)连接AE,若∠DAE=90°,∠BAC=24°,且满足AB+AC=EC,请求出∠ACB的度数(要求:画图,写思路,求出度数).【答案】(1)108°;(2)AC+BP>AB+PC,见解析;(3)44°或104°;详见解析.【分析】(1)根据等边对等角,可得∠E=∠ADE,∠DAC=∠C,再根据三角形外角的性质求出∠ADE=2∠DAC=48°,由此即可解题;(2)在AC边上取一点M使AM=AB,构造△ABP≅△AMP,根据MP+MC>PC即可得出答案;(3)画出图形,根据点E的位置分四种情况,当点E在射线CB延长线上,延长CA到G,使AG=AB,可得GC=EC,可得∠G=∠GEC,设∠ACB=2x,则∠G=∠GEC=90°-x;根据∠BAC= 24°,AD为△ABC的角平分线,可得∠BAD=∠DAC=12°,可证△AGE≅△ABE(SAS),得出∠ABE=∠G=90°-x,利用还有∠ABE=24°+2x,列方程90°-x=24°+2x;当点E在BD上时,∠EAD<90°,不成立;当点E在CD上时,∠EAD<90°,不成立;当点E在BC延长线上,延长CA 到G,使AG=AB,可得GC=EC,得出∠G=∠GEC,设∠ACB=2x,则∠G=∠GEC=x;∠BAC=24°,根据AD为△ABC的角平分线,得出∠BAD=∠DAC=12°,证明△AGE≅△ABE (SAS),得出∠ABE=∠G=x,利用三角形内角和列方程x+24°+2x=180°,解方程即可.【详解】解:(1)∵AE=AD=DC,∴∠E=∠ADE,∠DAC=∠C,∵∠E=48°,∠ADE=∠DAC+∠C,∴∠ADE=2∠DAC=48°,∵AD为△ABC的角平分线,即∠BAC=2∠DAC,∴∠BAC=48°;∴∠ABC=180°-48°-24°=108°(2)如图2,在AC边上取一点M使AM=AB,连接MP,在△ABP和△AMP中,AB=AM∠BAP=∠MAPAP=AP,∴△ABP≅△AMP(SAS),∴BP=MP,∵MP+MC>PC,MC=AC-AM,∴AC-AB+BP>PC,∴AC+BP>AB+PC;(3)如图,点E在射线CB延长线上,延长CA到G,使AG= AB,∵AB+AC=EC,∴AG+AC=EC,即GC=EC,∴∠G=∠GEC,设∠ACB=2x,则∠G=∠GEC=90°-x;又∠BAC=24°,AD为△ABC的角平分线,∴∠BAD=∠DAC=12°,又∵∠DAE=90°,∴∠BAE=90°-∠BAD=78°,∠GAE=90°-∠DAC=78°,∴∠BAE=∠GAE,在△AGE和△ABE中,AE=AE∠GAE=∠BAEAG=AB,∴△AGE≅△ABE(SAS),∴∠ABE=∠G=90°-x,又∵∠ABE=∠BAC+∠ACB=24°+2x,∴90°-x=24°+2x,解得:x=22°,∴∠ACB=2x=44°;当点E在BD上时,∠EAD<90°,不成立;不成立;当点E在CD上时,∠EAD<90°,如图,点E在BC延长线上,延长CA到G,使AG=AB,∵AB+AC=EC,∴AG+AC=EC,即GC=EC,∴∠G=∠GEC,设∠ACB=2x,则∠G=∠GEC=x;又∵∠BAC=24°,AD为△ABC的角平分线,∴∠BAD=∠DAC=12°,又∵∠DAE=90°,在△AGE和△ABE中,AE=AE,∠GAE=∠BAEAG=AB∴△AGE ≅△ABE (SAS ),∴∠ABE =∠G =x ,∴x +24°+2x =180°,解得:x =52°,∴∠ACB =2x =104°.∴∠ACB 的度数为44°或104°.【点睛】本题主要考查了等腰三角形性质、全等三角形判定和性质,角平分线,三角形外角性质,三角形内角和,解一元一次方程,根据角平分线模型构造全等三角形转换线段和角的关系是解题关键.4.(2022·全国·八年级课时练习)如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,交BC 于点D ,过D 作DE ⊥BA 于点E ,点F 在AC 上,且BD =DF .(1)求证:AC =AE ;(2)若AB =7.4,AF =1.4,求线段BE 的长.【答案】(1)见解析;(2)3【分析】(1)证明△ACD ≌△AED (AAS ),即可得出结论;(2)在AB 上截取AM =AF ,连接MD ,证△FAD ≌△MAD (SAS ),得FD =MD ,∠ADF =∠ADM ,再证Rt △MDE ≌Rt △BDE (HL ),得ME =BE ,求出MB =AB -AM =6,即可求解.【详解】解:(1)证明:∵AD 平分∠BAC ,∴∠DAC =∠DAE ,∵DE ⊥BA ,∴∠DEA =∠DEB =90°,∵∠C =90°,∴∠C =∠DEA =90°,在△ACD 和△AED 中,∠C =∠DEA∠DAC =∠DAE AD =AD,∴△ACD ≌△AED (AAS ),∴AC =AE ;(2)在AB 上截取AM =AF ,连接MD ,在△FAD 和△MAD中,AF=AM∠DAF=∠DAMAD=AD,∴△FAD≌△MAD(SAS),∴FD=MD,∠ADF=∠ADM,∵BD=DF,∴BD=MD,在Rt△MDE和Rt△BDE中,MD=BDDE=DE,∴Rt△MDE≌Rt△BDE(HL),∴ME=BE,∵AF=AM,且AF=1.4,∴AM=1.4,∵AB=7.4,∴MB=AB-AM=7.4-1.4=6,∴BE=12BM=3,即BE的长为3.【点睛】本题考查了全等三角形的判定与性质、角平分线定义、直角三角形的性质、三角形的外角性质等知识;证明△FAD≌△MAD和Rt△MDE≌Rt△BDE是解题的关键.5.(2022·江苏·八年级专题练习)如图1,在△ABC中,CM是AB边的中线,∠BCN=∠BCM交AB延长线于点N,2CM=CN.(1)求证AC=BN;(2)如图2,NP平分∠ANC交CM于点P,交BC于点O,若∠AMC=120°,CP=kAC,求CPCM的值.【答案】(1)见解析;(2)2k k+1【分析】(1)延长CM至点D,使CM=DM,可证ΔACM≅ΔBDM,由全等三角形的性质从而得出AC=BD,根据题目已知,可证ΔDCB≅ΔNCB,由全等三角形的性质从而得出BN=BD,等量代换即可得出答案;(2)如图所示,作CQ=CP,可证ΔCPO≅ΔCQO,由全等三角形的性质相等角从而得出∠1=∠2=∠3,进而得出∠4=∠5,故可证ΔNOB≅ΔNOQ等量转化即可求出CPCM的值.【详解】(1)如图1所示,延长CM至点D,使CM=DM,在△ACM与△BDM中,CM=DM∠AMC=∠BMDAM=BM,∴ΔACM≅ΔBDM,∴AC=BD,∵2CM=CN,∴CD=CN,在△DCB与△NCB中,CD=CN∠DCB=∠NCBCB=CB,∴ΔDCB≅ΔNCB,∴BN=BD,∴AC=BN;(2)如图所示,∵∠AMC=120°,∴∠CMN=60°,∵NP平分∠MNC,∠BCN=∠BCM,∠PNC+∠BCN=12∠AMC=60°,∴∠CON=120°,∠COP=60°,∴∠CMN+∠BOP=180°,作CQ=CP,在△CPO与△CQO中,CQ=CP∠QCO=∠PCOCO=CO,∴ΔCPO≅ΔCQO,∴∠1=∠2=∠3,∴∠4=∠5,在△NOB与△NOQ中,∠4=∠5∠BNO=∠QNONO=NO,∴ΔNOB≅ΔNOQ,∴BN=NQ,∴CN=CP+NB,∴2CM=CP+AC,设AC=a,∴CP=ka,CM=a(k+1)2,∴CP CM =2kk+1.【点睛】本题考查全等三角形的综合应用,掌握全等三角形的判定与性质是解题的关键.6.(2022·全国·八年级课时练习)(1)如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.求证:AD=BD.(2)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD.(3)如图3,在四边形ABDE中,AB=9,DE=1,BD=6,C为BD边中点,若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.【答案】(1)见详解;(2)见详解;(3)AE=13【分析】(1)由题意易得∠AOD=∠BOD,然后易证△AOD≌△BOD,进而问题可求证;(2)在BC上截取CE=CA,连接DE,由题意易得∠ACD=∠ECD,∠B=30°,则有△ACD≌△ECD,然后可得∠A=∠CED=60°,则根据三角形外角的性质可得∠EDB=∠B=30°,然后可得DE=BE,进而问题可求证;(3)在AE上分别截取AF=AB,EG=ED,连接CF、CG,同理(2)可证△ABC≌△AFC,△CDE≌△CGE,则有∠ACB=∠ACF,∠DCE=∠GCE,然后可得∠ACF+∠GCE=60°,进而可得△CFG 是等边三角形,最后问题可求解.【详解】证明:(1)∵射线OP平分∠MON,∴∠AOD=∠BOD,∵OD=OD,OA=OB,∴△AOD≌△BOD(SAS),∴AD=BD.(2)在BC上截取CE=CA,连接DE,如图所示:∵∠ACB=90°,∠A=60°,CD平分∠ACB,∴∠ACD=∠ECD,∠B=30°,∵CD=CD,∴△ACD≌△ECD(SAS),∴∠A=∠CED=60°,AD=DE,∵∠B+∠EDB=∠CED,∴∠EDB=∠B=30°,∴DE=BE,∴AD=BE,∵BC=CE+BE,∴BC=AC+AD.(3)在AE上分别截取AF=AB=9,EG=ED=1,连接CF、CG,如图所示:同理(1)(2)可得:△ABC≌△AFC,△CDE≌△CGE,∴∠ACB=∠ACF,∠DCE=∠GCE,BC=CF,CD=CG,DE=GE=1,∵C为BD边中点,∴BC=CD=CF=CG=3,∵∠ACE=120°,∴∠ACB+∠DCE=60°,∴∠ACF+∠GCE=60°,∴∠FCG=60°,∴△CFG是等边三角形,∴FG=CF=CG=3,∴AE=AF+FG+GE=9+3+1=13.【点睛】本题主要考查三角形全等的性质与判定、角平分线的定义、等腰三角形的性质与判定及等边三角形的性质与判定,解题的关键是构造辅助线证明三角形全等.7.(2022·全国·八年级课时练习)已知:AD是△ABC的角平分线,且AD⊥BC.(1)如图1,求证:AB=AC;(2)如图2,∠ABC=30°,点E在AD上,连接CE并延长交AB于点F,BG交CA的延长线于点G,且∠ABG=∠ACF,连接FG.①求证:∠AFG=∠AFC;②若S△ABG:S△ACF=2:3,且AG=2,求AC的长.【答案】(1)见解析;(2)①见解析;②6.【分析】(1)用ASA证明△ABD≌△ACD,即得AB=AC;(2)①证明△BAG≌△CAE可得AG=AE,再用SAS证明△FAG≌△FAE,即得∠AFG=∠AFC;②过F作FK⊥AG于K,由S△ABG:S△ACF=2:3,可得S△CAE:S△ACF=2:3,S△FAE:S△ACF=1:3,而△FAG≌△FAE,故S△FAG:S△ACF=1:3,即得AG:AC=1:3,根据AG=2,可求AC=6.【详解】解:(1)证明:∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD ,∵AD ⊥BC ,∴∠ADB =∠ADC ,在△ABD 和△ACD 中,∠BAD =∠CADAD =AD ∠ADB =∠ADC,∴△ABD ≌△ACD ASA ,∴AB =AC ;(2)①∵AB =AC ,∠ABC =30°,AD ⊥BC ,∴∠BAD =∠CAD =60°,∴∠BAG =60°=∠CAD ,在△BAG 和△CAE 中,∠BAG =∠CAEAB =AC ∠ABG =∠ACE,∴△BAG ≌△CAE ASA ,∴AG =AE ,在△FAG 和△FAE 中,AG =AE∠GAF =∠EAF AF =AF,∴△FAG ≌△FAE SAS ,∴∠AFG =∠AFC ;②过F 作FK ⊥AG 于K ,如图:由①知:△BAG ≌△CAE ,∵S △ABG :S △ACF =2:3,∴S △CAE :S △ACF =2:3,∴S △FAE :S △ACF =1:3,由①知:△FAG ≌△FAE ,∴S △FAG :S △ACF =1:3,∴12AG ⋅FK :12AC ⋅FK =1:3,∴AG :AC =1:3,∵AG =2,∴AC =6.【点睛】本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的相关知识.8.(2022·全国·八年级)如图1,在△ABC 中,AF ,BE 分别是∠BAC 和∠ABC 的角平分线,AF 和BE 相交于D 点.(1)求证:CD 平分∠ACB ;(2)如图2,过F 作FP ⊥AC 于点P ,连接PD ,若∠ACB =45°,∠PDF =67.5°,求证:PD =CP ;(3)如图3,若2∠BAF +3∠ABE =180°,求证:BE -BF =AB -AE.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【分析】(1)过D 点分别作三边的垂线,垂足分别为G 、H 、K ,根据角平分线的定义可证得DG =DH =DK ,从而根据角平分线的判定定理可证得结论;(2)作DS ⊥AC ,DT ⊥BC ,在AC 上取一点Q ,使∠QDP =∠FDP ,通过证明△SQD ≌△TFD 和△QDP ≌△FDP 得到∠PDC =∠PCD =22.5°,从而根据等角对等边判断即可;(3)延长AB 至M ,使BM =BF ,连接FM ,通过证明△AFC ≌△AFM 得到AC =AM ,再结合CE =EB 即可得出结论.【详解】(1)证明:如图所示,过D 点分别作三边的垂线,垂足分别为G 、H 、K ,∵AF ,BE 分别是∠BAC 和∠ABC 的角平分线,∴DG =DH =DK ,∴CD 平分∠ACB ;(2)证明:如图,作DS ⊥AC ,DT ⊥BC ,在AC 上取一点Q ,使∠QDP =∠FDP .∵CD 平分∠ACB ,∴DS =DT ,∵∠QDP =∠FDP =67.5°,∠ACB =45°,∴∠QDF +∠ACB =135°+45°=180°,在四边形QDFC 中,∠CQD +∠DFC =180°,又∵∠DFT +∠DFC =180°,∴∠CQD =∠DFT ,在△SQD 和△TFD 中,∠CQD =∠DFTDS =DT∠DSQ =∠DTF =90°∴△SQD ≌△TFD ,∴QD =FD ,在△QDP 和△FDP 中QD =FD∠QDP =∠FDPDP =DP∴△QDP ≌△FDP,∴∠QPD =∠FPD =45°又∵∠QPD =∠PCD +∠PDC ,∠PCD =22.5°,∴∠PDC =∠PCD =22.5°,∴CP =PD ;(3)证明:延长AB 至M ,使BM =BF ,连接FM .∵AF ,BE 分别是∠BAC 和∠ABC 的角平分线,∴2∠BAF +2∠ABE +∠C =180°,又∵2∠BAF +3∠ABE =180°,∴∠C =∠ABE =∠CBE ,∴CE =EB ,∵BM =BF ,∴∠BFM =∠BMF =∠ABE =∠CBE =∠C ,在△AFC 和△AFM 中,∠C =∠BMF∠CAF =∠BAF AF =AF,∴△AFC ≌△AFM ,∴AC =AM ,∴AE +CE =AB +BM ,∴AE +BE =AB +BF ,∴BE -BF =AB -AE .【点睛】本题考查角平分线的性质与判断,以及全等三角形的判定与性质,灵活结合角平分线的性质构造辅助线是解题关键.9.(2022·湖南·宁远县至善学校八年级阶段练习)在平面直角坐标系中,点A 的坐标是(0,a ),点B 的坐标(b ,0)且a ,b 满足a 2-12a +36+a -b =0.(1)求A 、B 两点的坐标;(2)如图(1),点C 为x 轴负半轴一动点,OC <OB ,BD ⊥AC 于D ,交y 轴于点E ,求证:OD 平分∠CDB .(3)如图(2),点F 为AB 的中点,点G 为x 正半轴点B 右侧的一动点,过点F 作FG 的垂线FH ,交y 轴的负半轴于点H ,那么当点G 的位置不断变化时,S △AFH -S △FBG 的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果.【答案】(1)A(0,6),B(6,0);(2)证明见解析;(3)不变化,S△AFH-S△FBG=9.【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标;(2)过点O作OM⊥BD于M,ON⊥AC于N,根据全等三角形的判定和性质解答即可;(3)由于点F是等腰直角三角形AOB的斜边的中点,所以连接OF,得出OF=BF.∠BFO=∠GFH,进而得出∠OFH=∠BFG,利用等腰直角三角形和全等三角形的判定和性质以及三角形面积公式解答即可.【详解】解:(1)∵a2-12a+36+a-b=0∴(a-6)2+a-b=0,∴a-6=0a-b=0,即a=b=6.∴A(0,6),B(6,0).(2)如图,过点O作OM⊥BD于M,ON⊥AC于N,根据题意可知∠ACO+∠CAO=90°.∵BD⊥AC,∴∠BCD+∠CBE=90°,∴∠CAO=∠CBE.∵A(0,6),B(6,0),∴OA=OB=6.在△AOC和△BOE中,∠CAO=∠EBOOA=OB∠AOC=∠BOE=90°,∴△AOC≅△BOE(ASA).∴OE=OC,AC=BE,S△AOC=S△BOE.∴1 2AC·ON=12BE·OM,∴OM=ON,∴点O一定在∠CDB的角平分线上,即OD平分∠CDB.(3)如图,连接OF,∵△AOB是等腰直角三角形且点F为AB的中点,∴OF⊥AB,OF=FB,OF平分∠AOB.∴∠OFB=∠OFH+∠HFB=90°.又∵FG⊥FH,∴∠HFG=∠BFG+∠HFB=90°,∴∠OFH=∠BFG.∵∠FOB=12∠AOB=45°,∴∠FOH=∠FOB+∠HOB=45°+90°=135°.又∵∠FBG=180°-∠ABO=180°-45°=135°,∴∠FOH=∠FBG.在△FOH和△FBG中∠OFH=∠BFG OF=BF∠FOH=∠FBG ,∴△FOH≅△FBG(ASA).∴S△FOH=S△FBG,∴S△AFH-S△FBG=S△AFH-S△FOH=S△FOA=12S△AOB=12×12OA·OB=14×6×6=9.故不发生变化,且S△AFH-S△FBG=9.【点睛】本题为三角形综合题,考查非负数的性质,角平分线的判定,等腰直角三角形的性质和判定、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,正确添加辅助线,构造全等三角形解决问题,属于中考压轴题.10.(2022·全国·八年级课时练习)已知:如图,AC∥BD,AE、BE分别平分∠CAB和∠ABD,点E在CD上.用等式表示线段AB、AC、BD三者之间的数量关系,并证明.【答案】AC+BD=AB,理由见见解析【分析】在BA上截取BF=BD,连接EF,先证得△BEF≌△BED,可得到∠BFE=∠D,再由AC∥BD,可得∠AFE=∠C,从而证得△AEF≌△AEC,可得AF=AC,即可求解.【详解】解:AC+BD=AB,证明如下:在BA上截取BF=BD,连接EF,如图所示:∵AE、BE分别平分∠CAB和∠ABD,∴∠EAF=∠EAC,∠EBF=∠EBD,在△BEF和△BED中,BF=BD∠EBF=∠EBDBE=BE,∴△BEF≌△BED(SAS),∴∠BFE=∠D,∵AC∥BD,∴∠C+∠D=180°,∵∠AFE+∠BFE=180°,∴∠AFE+∠D=180°,∴∠AFE=∠C,在△AEF和△AEC中,∠EAF=∠EAC∠AFE=∠CAE=AE,∴△AEF≌△AEC(AAS),∴AF=AC,∵AF+BF=AB,∴AC+BD=AB.【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.11.(2022·全国·八年级课时练习)已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.【答案】(1)见解析;(2)AD-AB=2BE,理由见解析;(3)3.【分析】(1)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,证明△BCE≌△DCF,根据全等三角形的性质证明结论;(2)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,AE=AF,证明△BCE≌△DCF,得到DF=BE,结合图形解答即可;(3)在BD上截取BH=BG,连接OH,证明△OBH≌△OBG,根据全等三角形的性质得到∠OHB=∠OGB,根据角平分线的判定定理得到∠ODH=∠ODF,证明△ODH≌△ODF,得到DH=DF,计算即可.【详解】(1)证明:如图1,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,∵∠CBE+∠ADC=180°,∠CDF+∠ADC=180°,∴∠CBE=∠CDF,在△BCE和△DCF中,∠CBE=∠CDF∠CEB=∠CFD=90°CE=CF,∴△BCE≌△DCF(AAS)∴BC=DC;(2)解:AD-AB=2BE,理由如下:如图2,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,AE=AF,∵∠ABC +∠ADC =180°,∠ABC +∠CBE =180°,∴∠CDF =∠CBE ,在△BCE 和△DCF 中,∠CBE =∠CDF∠CEB =∠CFD =90°CE =CF,∴△BCE ≌△DCF (AAS ),∴DF =BE ,∴AD =AF +DF =AE +DF =AB +BE +DF =AB +2BE ,∴AD -AB =2BE ;(3)解:如图3,在BD 上截取BH =BG ,连接OH ,∵BH =BG ,∠OBH =∠OBG ,OB =OB在△OBH 和△OBG 中,BH =BG∠OBH =∠OBG OB =OB,∴△OBH ≌△OBG (SAS )∴∠OHB =∠OGB ,∵AO 是∠MAN 的平分线,BO 是∠ABD 的平分线,∴点O 到AD ,AB ,BD 的距离相等,∴∠ODH =∠ODF ,∵∠OHB =∠ODH +∠DOH ,∠OGB =∠ODF +∠DAB ,∴∠DOH =∠DAB =60°,∴∠GOH =120°,∴∠BOG =∠BOH =60°,∴∠DOF =∠BOG =60°,∴∠DOH =∠DOF ,在△ODH 和△ODF 中,∠DOH =∠DOFOD =OD ∠ODH =∠ODF,∴△ODH ≌△ODF (ASA ),∴DH =DF ,∴DB =DH +BH =DF +BG =2+1=3.【点睛】本题考查了角平分线的性质,三角形全等的判定和性质,关键是依照基础示例引出正确辅助线.12.(2022·全国·八年级)在平面直角坐标系中,点A -5,0 ,B 0,5 ,点C 为x 轴正半轴上一动点,过点A 作AD ⊥BC 交y 轴于点E .(1)如图①,若点C 的坐标为(3,0),试求点E 的坐标;(2)如图②,若点C 在x 轴正半轴上运动,且OC <5,其它条件不变,连接DO ,求证:OD 平分∠ADC(3)若点C 在x 轴正半轴上运动,当∠OCB =2∠DAO 时,试探索线段AD 、OC 、DC 的数量关系,并证明.【答案】(1)(0,3);(2)详见解析;(3)AD =OC +CD【分析】(1)先根据AAS 判定△AOE ≌△BOC ,得出OE =OC ,再根据点C 的坐标为(3,0),得到OC =2=OE ,进而得到点E 的坐标;(2)先过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,根据△AOE ≌△BOC ,得到S △AOE =S △BOC ,且AE =BC ,再根据OM ⊥AE ,ON ⊥BC ,得出OM =ON ,进而得到OD 平分∠ADC ;(3)在DA 上截取DP =DC ,连接OP ,根据三角形内角和定理,求得∠PAO =30°,进而得到∠OCB =60°,根据SAS 判定△OPD ≌△OCD ,得OC =OP ,∠OPD =∠OCD =60°,再根据三角形外角性质得PA =PO =OC ,故AD =PA +PD =OC +CD .【详解】(1)如图①,∵AD ⊥BC ,BO ⊥AO ,∴∠AOE =∠BDE ,又∵∠AEO =∠BED ,∴∠OAE =∠OBC ,∵A (-5,0),B (0,5),∴OA =OB =5,∴△AOE ≌△BOC ,∴OE =OC ,又∵点C 的坐标为(3,0),∴OC =3=OE ,∴点E 的坐标为(0,3);(2)如图②,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE =BC ,∵OM ⊥AE ,ON ⊥BC ,∴OM =ON ,∴OD 平分∠ADC ;(3)如所示,在DA 上截取DP =DC ,连接OP ,∵∠OCB =2∠DAO ,∠ADC =90°∴∠PAO +∠OCD =90°,∴∠DAC =90°3=30°,∠DCA =2×90°3=60°∵∠PDO =∠CDO ,OD =OD ,∴△OPD ≌△OCD ,∴OC =OP ,∠OPD =∠OCD =60°,∴∠POA=∠PAO=30°∴PA=PO=OC∴AD=PA+PD=OC+CD即:AD=OC+CD.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质,角平分线的判定定理以及等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行求解.13.(2022·全国·八年级)如图1,点A是直线MN上一点,点B是直线PQ上一点,且MN⎳PQ.∠NAB和∠ABQ的平分线交于点C.(1)求证:BC⊥AC;(2)过点C作直线交MN于点D(不与点A重合),交PQ于点E,①若点D在点A的右侧,如图2,求证:AD+BE=AB;②若点D在点A的左侧,则线段AD、BE、AB有何数量关系?直接写出结论,不说理由.【答案】(1)见解析;(2)见解析;(3)BE=AD+AB【分析】(1)由平行线性质可得∠NAB+∠ABQ=180°,再由角平分线定义可得∠BAC=12∠NAB,∠CBA=12∠ABQ,再利用三角形内角和定理即可得∠C=90°,即可证明BC⊥AC;(2)①延长AC交PQ点F,先证明AC=FC,再证明△ACD≌△FCE,即可得AD+BE=AB;②方法与①相同.【详解】解:(1)∵MN∥PQ∴∠NAB+∠ABQ=180°∵AC平分∠NAB,BC平分∠ABQ∴∠BAC=12∠NAB,∠CBA=12∠ABQ∴∠BAC+∠ABC=12×180°=90°在△ABC中,∵∠BAC+∠ABC+∠C=180°∴∠C=180°-(∠BAC+∠ABC)=180°-90°=90°∴BC⊥AC;(2)①延长AC交PQ于点F∵BC⊥AC∴∠ACB=∠FCB=90°∵BC平分∠ABF∴∠ABC=∠FBC∴BC=BC∴△ABC≌△FBC∴AC =CF ,AB =BF∵MN ∥BQ∴∠DAC =∠EFC∵∠ACD =∠FCE∴△ACD ≌△FCE∴AD =EF∴AB =BF =BE +EF =BE +AD即:AB =AD +BE②线段AD ,BE ,AB 数量关系是:AD +AB =BE如图3,延长AC 交PQ 点F ,∵MN ⎳PQ .∴∠AFB =∠FAN ,∠DAC =∠EFC∵AC 平分∠NAB∴∠BAF =∠FAN∴∠BAF =∠AFB∴AB =FB∵BC ⊥AC∴C 是AF 的中点∴AC =FC在△ACD 与△FCE 中∠DAC =∠EFC AC =FC ∠ACD =∠FCE∴△ACD ≅△FCE (ASA )∴AD =EF∵AB =FB =BE -EF∴AD +AB =BE【点睛】本题考查了平行线性质,全等三角形性质判定,等腰三角形性质等,解题关键正确添加辅助线构造全等三角形.14.(2018·湖北武汉·八年级期中)在平面直角坐标中,等腰Rt △ABC 中,AB =AC ,∠CAB =90°,A (0,a ),B (b ,0).(1)如图1,若2a-b+(a-2)2=0,求△ABO的面积;(2)如图2,AC与x轴交于D点,BC与y轴交于E点,连接DE,AD=CD,求证:∠ADB=∠CDE;(3)如图3,在(1)的条件下,若以P(0,-6)为直角顶点,PC为腰作等腰Rt△PQC,连接BQ,求证:AP∥BQ.【答案】(1)△ABO的面积=4;(2)证明见解析;(3)证明见解析.【分析】(1)根据绝对值和偶次方的非负性求出a,b,根据三角形的面积公式计算;(2)作AF平分∠BAC交BD于F点,分别证明△ACE≌△BAF,△CED≌△AFD,根据全等三角形的性质证明;(3)过C点作CM⊥y轴于M点,过D点作DN⊥y轴于N点,证明△ACM≌△BAO,根据全等三角形的性质得到CM=AO=2,AM=BO=4,证明四边形ONQB为平行四边形,得到答案.【详解】解:(1)∵2a-b+(a-2)2=0,∴2a-b=0,a-2=0,解得,a=2,b=4,∴A(0,2),B(4,0),∴OA=2,OB=4,∴△ABO的面积=12×2×4=4;(2)作AF平分∠BAC交BD于F点,∵AB=AC,∠CAB=90°,∴∠C=∠ABC=∠DAF=∠BAF=45°,∵∠CAE+∠BAO=∠ABF+∠BAO=90°,∴∠CAE=∠ABF,在△ACE和△BAF中,∠CAE=∠ABFAC=AB∠ACE=∠BAF,∴△ACE≌△BAF(ASA),∴CE=AF,在△CED和△AFD中,CD=AD∠C=∠DAFCE=AF,∴△CED≌△AFD(SAS)∴∠CDE=∠ADB;(3)过C点作CM⊥y轴于M点,过D点作DN⊥y轴于N点,则∠AMC=∠BOA=90°,∵∠CAM+∠BAO=∠ABO+∠BAO=90°,∴∠CAM=∠ABO,在△ACM和△BAO中,。

专题2.3 角平分线模型(压轴题专项讲练)(浙教版)(解析版)

专题2.3 角平分线模型(压轴题专项讲练)(浙教版)(解析版)

专题2.3 角平分线模型【典例1】在△ABC中,AE、BF是角平分线,交于O点.(1)如图1,AD是高,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度数.(2)如图2,若OE=OF,AC≠BC,求∠C的度数.(3)如图3,若∠C=90°,BC=8,AC=6,AB=10,求S△AOB.(1)根据垂直的定义得到∠ADC=90°,根据角平分线的定义得到∠ABO=30°,根据三角形的内角和即可得到结论;(2)连接OC,根据角平分线的性质得到OM=ON,根据全等三角形的性质得到∠EOM=∠FOH,根据角平分线的定义即可得到结论;(3)连接OC,过O作OD⊥AB于D,OG⊥BC于G,OH⊥AC于H,根据角平分线的性质得到OD=OG=OH,根据三角形的面积公式即可得的结论.解:(1)∵AD⊥BC,∴∠ADC=90°,∵∠C=70°,∴∠DAC=180°﹣90°﹣70°=20°;∵∠BAC=50°,∠C=70°,∴∠BAO=25°,∠ABC=60°,∵BF是∠ABC的角平分线,∴∠ABO=30°,∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣25°﹣30°=125°;(2)如图2,连接OC,∵AE、BF是角平分线,交于O点,∴OC是∠ACB的角平分线,∴∠OCF=∠OCE,过O作OM⊥BC,ON⊥AC,则OM=ON,在Rt△OEM与Rt△OFN中,OE=OF OM=ON,∴Rt△OEM≌Rt△OFN,(HL),∴∠EOM=∠FON,∴∠MON=∠EOF=180°﹣∠ACB,∵AE、BF是角平分线,∴∠AOB=90°+12∠ACB,即90°+12∠ACB=180°﹣∠ACB,∴∠ACB=60°;(3)如图3,连接OC,过O作OD⊥AB于D,OG⊥BC于G,OH⊥AC于H,∵AE 、BF 是角平分线,交于O 点,∴OD =OG =OH ,∴S △ABC =12×8×6=12×10OD +12×6×OG +12×8×OH ,∴OD =2,∴S △AOB =12×10×2=10.1.(2022春•振兴区校级期末)如图,△ABC 的三边AB ,BC ,CA 的长分别为15,20,25,点O 是△ABC 三条角平分线的交点,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【思路点拨】过O 点作OD ⊥AB 于D ,OE ⊥BC 于E ,OF ⊥CA 于F ,如图,利用角平分线的性质得到OD =OE =OF ,然后根据三角形面积公式得到S △ABO :S △BCO :S △CAO =AB :BC :AC .【解题过程】解:过O 点作OD ⊥AB 于D ,OE ⊥BC 于E ,OF ⊥CA 于F ,如图,∵点O 是△ABC 三条角平分线的交点,∴OD =OE =OF ,∴S △ABO :S △BCO :S △CAO =(12AB •OD ):(12OE •BC ):(12OF •AC )=AB :BC :AC =15:20:25=3:4:5.故选:D .2.(2021秋•藁城区校级月考)如图,已知点P 是∠AOB 角平分线上的一点,∠AOB =60°,PD ⊥OA ,M 是OP 的中点,DM =4cm ,如果点C 是OB 上一个动点,则PC 的最小值为( )A.2B.1C.4D.3【思路点拨】过P点作PH⊥OB于H,如图,根据角平分线的性质得到PH=PD,∠AOP=30°,再根据斜边上的中线性质得到OP=2DM,所以PD=DM=4cm,然后根据垂线段最短解决问题.【解题过程】解:过P点作PH⊥OB于H,如图,∵OP平分∠AOB,∴PH=PD,∠AOP=30°,∵M是OP的中点,∴OP=2DM,OP=DM=4cm,∴PD=12∵点C是OB上一个动点,∴PC的最小值为线段PH的长,即PC的最小值为4cm.故选:C.3.(2022春•海州区校级期末)如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=122°,则∠1+∠2的度数为( )A .116°B .100°C .128°D .120°【思路点拨】连接AA ',先求出∠BAC ,再证明∠1+∠2=2∠BAC ,即可解答.【解题过程】解:如图,连接AA ',∵A 'B 平分∠ABC ,A 'C 平分∠ACB ,∴∠A 'BC =12∠ABC ,∠A 'CB =12∠ACB ,∵∠BA 'C =122°,∴∠A 'BC +∠A 'CB =180°﹣122°=58°,∴∠ABC +∠ACB =116°,∴∠BAC =180°﹣116°=64°,∵△ABC 纸片沿DE 折叠,∴∠DAA '=∠DA 'A ,∠EAA '=∠EA 'A ,∵∠1=∠DAA '+∠DA 'A =2∠DAA ',∠2=∠EAA '+∠EA 'A =2∠EAA ',∴∠1+∠2=2∠DAA '+2∠EAA '=2∠BAC =2×58°=128°,故选:C .4.(2021秋•全椒县期末)如图,在△ABC 中,PM ⊥AB 于点M ,PN ⊥AC 于点N ,且PM =PN ,点Q 在AC 上,∠PAQ =∠APQ ,则下面结论中不一定正确的是( )A .AM =ANB .∠BAP =∠CAPC .PQ ∥ABD .PQ =PC【思路点拨】可利用角平分线的性质判断选项B ,利用HL 判断选项A ,利用平行线的判定定理判定选项C .【解题过程】解:∵PM ⊥AB 于点M ,PN ⊥AC 于点N ,PM =PN ,∴点P 在∠BAC 的角平分线上.∴∠BAP =∠CAP ,故选项B 正确;∵∠PAQ =∠APQ ,∴∠BAP =∠APQ .∴PQ ∥AB ,故选项C 正确;在Rt △APM 和Rt △APN 中,PM =PN AP =AP ,∴Rt △APM ≌Rt △APN (HL ).∴AM =AN ,故选项A 正确;由于不能说明∠C 与∠CQP 相等,也不能直接证明PQ 与PC 相等,故选项D 错误.故选:D .5.(2022春•南岗区校级期末)如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D .下列四个结论:①∠BOC =90°+12∠A ,②∠EBO =12∠AEF ,③∠DOC +∠OCB =90°,④设OD =m ,AE +AF =n ,则S △AEF =mn 2.其中正确的结论有( )A .1个B .2个C .3个D .4个【思路点拨】利用角平分线的定义得到∠OBC =12∠ABC ,∠OCB =12∠ACB ,则∠OBC +∠OCB =12(∠ABC +∠ACB ),再根据三角形内角和定理得到180°﹣∠BOC =12(180°﹣∠A ),则可对①进行判断;根据平行线的性质得到∠AEF =∠EBC ,然后利用OB 平分∠EBC 得到∠EBO =12∠EBC ,则可对②进行判断;利用互余和∠OCB =∠OCD 可对③进行判断;根据角平分线的性质得到O 点到AE 的距离等于m ,然后利用三角形面积公式可对④进行判断.【解题过程】解:∵∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∴∠OBC +∠OCB =12(∠ABC +∠ACB ),∵∠OBC +∠OCB =180°﹣∠BOC ,∠ABC +∠ACB =180°﹣∠A ,∴180°﹣∠BOC =12(180°﹣∠A ),∴∠BOC =90°+12∠A ,所以①正确;∵EF ∥BC ,∴∠AEF =∠EBC ,而OB 平分∠EBC ,∴∠EBO =12∠EBC ,∴∠EBO =12∠AEF ,所以②正确;∵OD ⊥AC 于D ,∴∠ODC =90°,∴∠DOC +∠OCD =90°,∵OC 平分∠BCD ,∴∠OCB =∠OCD ,∴∠DOC +∠OCB =90°,所以③正确;∵∠ABC 和∠ACB 的平分线相交于点O ,∴O 点到BA 和BC 的距离相等,O 点到BC 和AC 的距离相等,∴O 点到AB 的距离等于OD 的长,即O 点到AE 的距离等于m ,∴S △AEF =12AE •m +12AF •m =12m (AE +AF )=12mn ,所以④正确.故选:D .6.(2021秋•黄石期末)如图,△ABC 中,∠ACF 、∠EAC 的角平分线CP 、AP 交于点P ,延长BA 、BC ,PM ⊥BE ,PN ⊥BF .则下列结论中正确的个数( )①BP 平分∠ABC ;②∠ABC +2∠APC =180°;③∠CAB =2∠CPB ;④S △PAC =S △MAP +S △NCP .A .1个B .2个C .3个D .4个【思路点拨】过P 作PQ ⊥AC 于Q ,根据角平分线的性质得出PQ =PN ,PQ =PM ,求出PQ =PM =PN ,求出∠PMA =∠PNC =∠PQA =∠PQC =90°,根据全等三角形的判定得出Rt △PMA ≌Rt △PQA ,Rt △PQC ≌Rt △PNC ,再逐个判断即可.【解题过程】解:过P 作PQ ⊥AC 于Q ,∵∠ACF 、∠EAC 的角平分线CP 、AP 交于点P ,PM ⊥BE ,PN ⊥BF ,∴PM =PQ ,PQ =PN ,∴PM =PN ,∴P 在∠ABC 的角平分线上,即BP 平分∠ABC ,故①正确;∵PM ⊥AB ,PN ⊥BC ,PQ ⊥AC ,∴∠PMA =∠PQA =90°,∠PQC =∠PNC =90°,在Rt △PMA 和Rt △PQA 中,PA=PAPM=PQ,∴Rt△PMA≌Rt△PQA(HL),∴∠MPA=∠QPA,同理Rt△PQC≌Rt△PNC,∴∠QPC=∠NPC,∵∠PMA=∠PNC=90°,∴∠ABC+∠MPN=360°﹣90°﹣90°=180°,∴∠ABC+2∠APC=180°,故②正确;∵PC平分∠FCA,BP平分∠ABC,∴∠FCA=∠ABC+∠CAB=2∠PCN,∠ABC+∠CPB,又∵∠PCN=12∠ABC+∠CPB),∴∠ABC+∠CAB=2(12∴∠CAB=2∠CPB,故③正确;∵Rt△PMA≌Rt△PQA,Rt△PQC≌Rt△PNC,∴S△PAC=S△MAP+S△NCP,故④正确;即正确的个数是4,故选:D.7.(2020秋•永城市期末)如图,∠AOP=∠BOP,PD⊥OA,C是OB上的动点,连接PC,若PD=4,则PC的最小值为 4 .【思路点拨】过点P作PE⊥OB于点E,先证明PD=PE=4,再根据垂线段最短得PC≥PE,即可求解.【解题过程】解:过点P作PE⊥OB于点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE=4,∵C是OB上的动点,∴PC≥PE(垂线段最短),∴PC的最小值为4.故答案为:4.8.(2022春•双峰县期末)如图,已知EF⊥CD,EF⊥AB,MN⊥AC,M是EF的中点,只需添加 ME=MN ,就可使CM,AM分别为∠ACD和∠CAB的平分线.【思路点拨】根据HL判定Rt△MEC≌Rt△MNC,Rt△MFA≌Rt△MNA,即可得证.【解题过程】解:添加MN=ME,理由如下:∵EF⊥CD,MN⊥AC,∴∠MEC=∠MNC=90°,在Rt△MEC和Rt△MNC中,MN=MECM=CM,∴Rt△MEC≌Rt△MNC(HL),∴∠MCE=∠MCN,∴CM平分∠ACD,∵EF⊥AB,MN⊥AC,∴∠MFA=∠MNA=90°,∵M是EF的中点,∴ME=MF,∴MN=MF,在Rt△MFA和Rt△MNA中,MF=MNAM=AM,∴Rt△MFA≌Rt△MNA(HL),∴∠MAF=∠MAN,∴AM平分∠CAB,∴CM,AM分别为∠ACD和∠CAB的平分线,故答案为:ME=MN.9.(2021秋•樊城区月考)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED 的面积分别为27和16,则△EDF的面积为 5.5 .【思路点拨】过D点作DH⊥AC于H,如图,先根据角平分线的性质得到DF=DH,再证明Rt△ADF≌Rt△ADH得到S△ADF =S△ADH,证明Rt△EDF≌Rt△GDH得到S△EDF=S△GDH,然后利用S△EDF+S△AED=S△ADG﹣S△GDH得到S△EDF+16=27﹣S△EDF,从而可求出S△EDF的值.【解题过程】解:过D点作DH⊥AC于H,如图,∵AD是△ABC的角平分线,DF⊥AB,DH⊥AC,∴DF=DH,在Rt△ADF和Rt△ADH中,AD=ADDF=DH,∴Rt△ADF≌Rt△ADH(HL),∴S△ADF=S△ADH,在Rt△EDF和Rt△GDH中,DE=DGDF=DH,∴Rt△EDF≌Rt△GDH(HL),∴S△EDF=S△GDH,∴S△EDF+S△AED=S△ADG﹣S△GDH,即S△EDF+16=27﹣S△EDF,∴S△EDF=5.5.故答案为:5.5.10.(2021秋•兴城市期末)如图,AD、CF分别是△ABC的高和角平分线,AD与CF相交于G,AE平分∠CAD交BC于E,交CF于M,连接BM交AD于H,且知BM⊥AE.有下列结论:①∠AMC=135°;②△AMH≌△BME;③∠AGC+∠BAC=180°;④BC=BH+2MH;⑤AH+CE=AC.其中,正确的结论有 ①②③⑤ .(填序号)【思路点拨】由”双角平分线模型“可得∠AMC=135°;先证△CMA≌△CMB,从而易得出AM=BM,再利用互余得∠MAH=∠MBE,所以△AME≌△BME;表示∠AGC和∠BAC的度数,可得相加等于定角180°;由△AME≌△BME可得AH=BE,从而得AH+CE=AC;延长BM交AC于点N,先证△AMH≌△AMN得出2MH=HN,从而得到BH+2MH=BN≠BC.【解题过程】解:∵AD⊥BC,∴∠ADC=90°,∵AM、CM平分∠CAD、∠ACD,∴∠1=∠2,∠3=∠4,在△ACD中,90°+2∠2+2∠3=180°,∴∠2+∠3=45°,∴∠AMC=180°﹣(∠2+∠3)=135°.故①正确;∴∠AMF=45°,∵AD⊥DC,BM⊥AE,∴∠AMH=∠BME=∠ADB=90°,∴∠1+∠7=∠6+∠5=90°,又∵∠6=∠7,∴∠1=∠5=∠2.在△CMA和△CMB中,∠3=∠4CM=CM,∠2=∠5∴△CMA≌△CMB(ASA).∴AC=BC.∵CF平分∠ACB,∴CF⊥AB,即∠MFA=90°,∴∠MAF=180°﹣90°﹣45°=45°,∴∠MBF=180°﹣90°﹣45°=45°=∠MAF,∴MB=MA.在△AMH和△BME中,∠1=∠5AM=BM,∠AMH=∠BME∴△AMH≌△BME(ASA).故②正确;∴AH=BE,∵BC=BE+CE,且BC=AC,∴AH+CE=AC.故⑤正确;∵∠AGC=180°﹣∠1﹣45°,∠BAC=∠MAF+∠2=45°+∠1,∴∠AGC+∠BAC=180°﹣∠1﹣45°+45°+∠1=180°,故③正确;延长BM交AC于点N,∵BM⊥AE,∴∠AMH=∠AMN=90°,在△AMH和△AMN中,∠1=∠2AM=AM,∠AMH=∠AMN∴△AMH≌△AMN(ASA).∴HM=MN,∴2MH=HN,∴BH+2MH=BM<BC,故④错误.所以正确的结论是①②③⑤.11.(2022春•海阳市期末)如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.(1)求∠PAD的度数;(2)求证:P是线段CD的中点.【思路点拨】(1)根据平行线的性质得到∠C=180°﹣∠D=90°,∠DAB+∠ABC=180°,再计算出∠PBC=60°,则利用角平分线的定义得到∠ABC=120°,所以∠DAB=60°,然后利用角平分线的定义得到∠PAD的度数;(2)过P点作PE⊥AB于E点,如图,根据角平分线的性质得到PE=PD,PE=PC,从而得到PD=PC.【解题过程】(1)解:∵AD∥BC,∴∠C=180°﹣∠D=180°﹣90°=90°,∵∠CPB=30°,∴∠PBC=90°﹣∠B=60°,∵PB平分∠ABC,∴∠ABC=2∠PBC=120°,∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠DAB=180°﹣120°=60°,∵AP平分∠DAB,∠DAB=30°;∴∠PAD=12(2)证明:过P点作PE⊥AB于E点,如图,∵AP平分∠DAB,PD⊥AD,PE⊥AB,∴PE=PD,∵BP平分∠ABC,PC⊥BC,PE⊥AB,∴PE=PC,∴PD=PC,∴P是线段CD的中点.12.(2021秋•龙江县期末)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC 于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.【思路点拨】(1)连接BD,CD,由AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,根据角平分线的性质,即可得DE=DF,又由DG⊥BC且平分BC,根据线段垂直平分线的性质,可得BD=CD,继而可证得Rt△BED≌Rt△CFD,则可得BE=CF;(2)首先证得△AED≌△AFD,即可得AE=AF,然后设BE=x,由AB﹣BE=AC+CF,即可得方程5﹣x=3+x,解方程即可求得答案.【解题过程】(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,BD=CDDE=DF,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,∠AED=∠AFD=90°∠EAD=∠FAD,AD=AD∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.13.(2021秋•雨花区期末)如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点P.(1)求∠APC的度数;(2)若AE=3,CD=4,求线段AC的长.【思路点拨】(1)先由∠ABC=60°,得到∠BAC+∠BCA=120°,然后由AD、CE分别平分∠BAC、∠ACB得到∠PAC+∠PCA 的值,进而得到∠APC的度数;(2)在AC上截取AF=AE,连接PF,然后证明△AEP≌△AFP,从而得到∠APE=∠APF,然后由∠APC=120°得到∠DPC=60°,从而得到∠APE=∠APF=60°,进而得到∠FPC=∠DPC=60°,再结合CE平分∠ACB、CP=CP得到△PCF≌△PCD,即可得到CD=CF,最后得到AC=AE+CD.【解题过程】解:(1)∵∠ABC=60°,∴∠BAC+∠BCA=120°,∵AD、CE分别平分∠BAC、∠ACB,(∠BAC+∠BCA)=60°,∴∠PAC+∠PCA=12∴∠APC=120°.(2)如图,在AC上截取AF=AE,连接PF,∵AD平分∠BAC,∴∠BAD=∠CAD,在△APE和△APF中,AE=AF∠EAP=∠FAP,AP=AP∴△APE≌△APF(SAS),∴∠APE=∠APF,∵∠APC=120°,∴∠APE=60°,∴∠APF=∠CPD=60°=∠CPF,∵CE平分∠ACB,∴∠ACP=∠BCP,在△CPF和△CPD中,∠FPC=∠DPCCP=CP,∠FCP=∠DCP∴△CPF≌△CPD(ASA),∴CF=CD,∴AC=AF+CF=AE+CD=3+4=7.14.(2021秋•南沙区期末)如图①,在△ABC中,∠ABC和∠ACB的平分线交于点O,∠A=α.(1)如图①,若∠A =50°,求∠BOC 的度数.(2)如图②,连接OA ,求证:OA 平分∠BAC .(3)如图③,若射线BO 与∠ACB 的外角平分线交于点P ,求证OC ⊥PC .【思路点拨】(1)利用三角形的内角和先求出∠ABC 与∠ACB 的和,再根据角平分的定义求出∠OBC 与∠OCB 的和即可解答;(2)根据角平分线的性质定理,想到过点O 作OD ⊥BC ,OE ⊥AB ,OF ⊥AC ,垂足分别为D ,E ,F ,证出OE =OF 即可解答;(3)根据角平分的定义求出∠OCP =90°即可解答.【解题过程】(1)解:∵∠A =50°,∴∠ABC +∠ACB =180°﹣∠A =130°,∵∠ABC 和∠ACB 的平分线交于点O ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∴∠OBC +∠OCB =12∠ABC +12∠ACB =65°,∴∠BOC =180°﹣(∠OBC +∠OCB )=115°;(2)证明:过点O 作OD ⊥BC ,OE ⊥AB ,OF ⊥AC ,垂足分别为D ,E ,F ,∵∠ABC 和∠ACB 的平分线交于点O ,OD ⊥BC ,OE ⊥AB ,OF ⊥AC ,∴OD =OE ,OD =OF ,∴OE =OF ,∴OA 平分∠BAC ;(3)证明:∵OC 平分∠ACB ,CP 平分∠ACD ,∴∠ACO =12∠ACB ,∠ACP =12∠ACD ,∴∠OCP =∠ACO +∠ACP=12∠ACB +12∠ACD=12∠BCD=12×180°=90°,∴OC ⊥CP .15.(2021秋•聊城期末)如图1,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)猜想:EF 与BE 、CF 之间有怎样的关系.(2)如图2,若AB ≠AC ,其他条件不变,在第(1)问中EF 与BE 、CF 间的关系还存在吗?并说明理由.(3)如图3,若△ABC 中∠B 的平分线BO 与三角形外角平分线CO 交于O ,过O 点作OE ∥BC 交AB 于E ,交AC 于F .这时图中还有等腰三角形吗?EF 与BE 、CF 关系又如何?说明你的理由.【思路点拨】(1)利用角平分线的定义和平行线的性质即可得出结论;(2)利用(1)的方法解答即可;(3)利用角平分线的定义和平行线的性质可以判定△BEO 和△CFO 为等腰三角形,利用线段和差的关系可得结论.【解题过程】解:(1)EF 与BE 、CF 之间的关系为:EF =BE +CF .理由:∵BO是∠ABC的平分线,∴∠EBO=∠CBO.∵EF∥BC,∴∠EOB=∠OBC.∴∠EBO=∠EOB.∴BE=EO.同理:CF=FO.∴EF=OE+OF=BE+CF.(2)第(1)问中EF与BE、CF间的关系还存在,即EF=BE+CF.理由:∵BO是∠ABC的平分线,∴∠EBO=∠CBO.∵EF∥BC,∴∠EOB=∠OBC.∴∠EBO=∠EOB.∴BE=EO.同理:CF=FO.∴EF=OE+OF=BE+CF.∴第(1)问中EF与BE、CF间的关系还存在.(3)图中还存在等腰三角形△BEO和△CFO,此时EF=BE﹣CF,理由:∵BO是∠ABC的平分线,∴∠EBO=∠CBO.∵EF∥BC,∴∠EOB=∠OBC.∴∠EBO=∠EOB.∴BE=EO.∴△BEO是等腰三角形,同理可证△CFO是等腰三角形,∵BE=EO,OF=FC∴BE=EF+FO=EF+CF,∴EF=BE﹣CF.16.(2021秋•台江区校级期中)在四边形ABCD中,AC平分∠DAB,∠ABC=α,∠ADC=180°﹣α.(1)若α=90°时,直接写出CD与CB的数量关系为 CD=CB ;(2)如图1,当α≠90°时,(1)中结论是否还成立,说明理由;的值.(3)如图2,O为AC中点,M为AB上一点,BM=AD,求CMDO【思路点拨】(1)利用角平分线上的点到角两边的距离相等即可;(2)过点C作CE⊥AB于E,CF⊥AD,交AD的延长线于F,利用角平分线的性质可得CE=CF,再证明△CDF≌△CBE(AAS),从而证明结论;(3)延长DO至点N,使ON=DO,连接AN,首先利用SAS证明△AON≌△COD,得∠N=∠CDO,AN=CD=CB,再证明△AND≌△BCM(SAS),得CM=DN=2DO,即可得出答案.【解题过程】解:(1)当α=90°时,利用角平分线上的点到角两边的距离相等,可得CD=CB,故答案为:CD=CB;(2)仍然有CD=CB,理由如下:过点C作CE⊥AB于E,CF⊥AD,交AD的延长线于F,则∠CEB=∠CFD=90°,∵∠ADC+∠CDF=180°,∠ADC=180°﹣a,∴∠CDF=α=∠ABC,∵AC平分∠BAD,CE⊥AB,CF⊥AD,∴CE=CF,∴△CDF≌△CBE(AAS),∴CD=CB;(3)延长DO至点N,使ON=DO,连接AN,∵AO=OC,∠AON=∠COD,∴△AON≌△COD(SAS),∴∠N=∠CDO,AN=CD=CB,∴CD∥AN,∴∠DAN+∠ADC=180°,∴∠DAN=180°﹣∠ADC=α=∠B,又∵AD=BM,∴△AND≌△BCM(SAS),∴CM=DN=2DO,∴CMDO=2.17.(2021秋•顺平县期末)如图(1),三角形ABC中,BD是∠ABC的角平分线.(1)若∠A=80°,∠ABC=58°,则∠ADB= 71 °.(2)若AB=6,设△ABD和△CBD的面积分别为S1和S2,已知S1S2=23,则BC的长为 9 .(3)如图(2),∠ACE是△ABC的一个外角,CF平分∠ACE,BD的延长线与CF相交于点F,CG平分∠ACB,交BD于点H,连接AF,设∠BAC=α,求∠BHC与∠HFC的度数(用含α的式子表示).【思路点拨】(1)根据角平分线的定义和三角形的内角和定理即可得到结论;(2)如图(1),过D 作DE ⊥BC 于E ,DF ⊥AB 于F ,根据角平分线的性质得到DF =DE ,根据三角形的面积公式即可得到结论;(3)根据角平分线的定义得到∠HBC =12∠ABC ,∠HCB =12∠ACB ,根据三角形的内角和定理即可得到结论.【解题过程】解:(1)∵∠ABC =58°,BD 是∠ABC 的角平分线,∴∠ABD =12∠ABC =29°,∴∠ADB =180°﹣∠A ﹣∠ABD =71°,故答案为:71;(2)如图(1),过D 作DE ⊥BC 于E ,DF ⊥AB 于F ,∵BD 是∠ABC 的角平分线,∴DF =DE ,∴S 1S 2=12AB⋅DF 12BC⋅DE =12×612BC =23,∴BC =9,故答案为:9;(3)解:在△ABC 中,由∠BAC =α,可得∠ABC +∠ACB =180°﹣α,∵BD 平分∠ABC ,CG 平分∠ACB∴∠HBC =12∠ABC ,∠HCB =12∠ACB ,∴∠HBC +∠HCB =12∠ABC +12∠ACB =12(∠ABC +∠ACB )=12(180°﹣α)=90°―12α,在△BHC 中,∠BHC =180°﹣(∠HBC +∠HCB )=180°﹣(90°―12α)=90°+12α,∵∠ACE 为△ABC 的外角,设∠ABC =β,∴∠ACE =∠ABC +∠BAC =α+β,∵BD 平分∠ABC ,CF 平分∠ACE ,∴∠FBE =12∠ABC =12β∠FCE =12∠ACE ,∴∠HFC =∠FCE ﹣∠FBE =12(α+β)―12β=12α.18.(2022春•海陵区校级期末)△ABC 中,三个内角的平分线交于点O ,过点O 作∠ODC =∠AOC ,交边BC 于点D .(1)如图1,求∠BOD 的度数;(2)如图2,作∠ABC 外角∠ABE 的平分线交CO 的延长线于点F .①求证:BF ∥OD ;②若∠F =50°,求∠BAC 的度数;③若∠F =∠ABC =50°,将△BOD 绕点O 顺时针旋转一定角度α(0°<α<360°)后得△B 'O ′D ′,B ′D ′所在直线与FC 平行,请直接写出所有符合条件的旋转角度α的值.【思路点拨】(1)根据角平分线的定义,结合三角形内角和即可得到答案.(2)①根据角平分线的定义,结合三角形内角和即可得到答案.②结合角平分线的性质,根据三角形外角的性质即可得到答案.③求出∠ODB 的度数即可解决【解题过程】解:(1)∵三个内角的平分线交于点O ,∴∠OAC +∠OCA =12(∠BAC +∠BCA )=12(180°﹣∠ABC ),∵∠OBC =12∠ABC ,∴∠AOC =180°﹣(∠OAC +∠OCA )=90°+12∠ABC =90°+∠OBC ,∵∠ODC =∠BOD +∠OBC =∠AOC ,∴∠BOD =90°;(2)①∵三个内角的平分线交于点O ,∴∠EBF =12∠ABE =12(180°﹣∠ABC )=90°﹣∠DBO ,∵∠ODB =90°﹣∠OBD ,∴∠FBE =∠ODB ,∴BF ∥OD ;②∵三个内角的平分线交于点O ,∴∠EBF =12∠ABE =12(∠BAC +∠ABC ),∴∠FCB =12∠ACB ,∵∠F =∠FBE ﹣∠BCF =12(∠BAC +∠ACB )―12∠ACB =12∠BAC ,∵∠F =50°,∴∠BAC=2∠F=100°;③∵∠F=∠ABC=50°,∴由②可知,∠BAC=100°,∴∠ACB=30°,∵OC平分∠ACB,∴∠OCD=15°,∠COD=50°,∴∠BDO=∠COD+∠OCD=65°,∠DOF=130°,∵将△BOD绕点O顺时针旋转一定角度α(0°<α<360°)后得△B'O′D′,∴∠B'D'O=∠BDO=65°,∵B'D'∥FC,∴∠COD'=∠B'DO=65°,∴∠DOD'=∠COD'﹣∠COD=15°,即此时旋转角度为α=15°,∵BD'∥FC,∴∠FOD'=∠B'OD=65°,∴α=∠DOF+∠FOD'=130°+65°=195°,∴△BOD绕点O顺时针旋转15°或195°后得△B'O′D′,B′D′所在直线与FC平行.19.(2021秋•沂水县期中)【问题提出】在△ABC中,∠ACB=2∠B,AD为∠BAC的角平分线,探究线段AB,AC,CD的数量关系.【问题解决】如图1,当∠ACB=90°,过点D作DE⊥AB,垂足为E,易得AB=AC+CD;由此,如图2,当∠ACB≠90°时,猜想线段AB,AC,CD有怎样的数量关系?给出证明.【方法迁移】如图3,当∠ACB≠90°,AD为△ABC的外角平分线时,探究线段AB,AC,CD又有怎样的数量关系?直接写出结论,不证明.【思路点拨】【问题解决】结论:AB=AC+CD,构造全等三角形解决问题即可;【方法迁移】结论:AB=CD﹣AC,如图3.在AF上截取AH=AC,连接DH,证明△ADH≌△ACD (SAS),可得结论.【解题过程】解:【问题解决】:如图1中,当∠ACB=90°时,∵AD为∠BAC的角平分线,∠ACB=90°,DE⊥AB,∴DC=DE,∵∠ACB=2∠B,∠ACB=90°,∴∠B=45°,∵DE⊥AB,∴DE=BE,在△AED和△ACD中,∠DAE=∠DAC∠AED=∠ACD,AD=AD∴△AED≌△ACD(AAS),∴AE=AC,∴AB=AE+BE=AC+CD;当∠ACB≠90°时,结论:AB=CD+AC,理由:如图2,在AB上截取AG=AC,连接DG,∵AD为∠BAC的平分线,∴∠GAD=∠CAD,在△ADG和△ADC中,AG=AC∠DAG=∠DAC,AD=AD∴△ADG≌△ADC(SAS),∴CD=DG,∠AGD=∠ACB,∵∠ACB=2∠B,∴∠AGD=2∠B,∵∠AGD=∠B+∠GDB,∴∠B=∠GDB,∴BG=DG=DC∴AB=BG+AG=CD+AC;【方法迁移】结论:AB=CD﹣AC,理由:如图3.在AF上截取AH=AC,连接DH,∵AD为∠FAC的平分线,∴∠HAD=∠CAD,在△ADH和△ACD中,AH=AC∠DAH=∠DAC,AD=AD∴△ADH≌△ACD(SAS),∴CD=HD,∠AHD=∠ACD,即∠ACB=∠FHD,∵∠ACB=2∠B,∴∠FHD=2∠B,∵∠FHD=∠B+∠HDB,∴∠B=∠HDB,∴BH=DH=DC,∴AB=BH﹣AH=CD﹣AC.20.(2021秋•江汉区校级月考)如图:在∠EAF的平分线上取点B作BC⊥AF于点C,在直线AC上取一动点P.在直线AE上取点Q使得BQ=BP.(1)如图1,当点P在点线段AC上时,∠BQA+∠BPA= 180 °;(2)如图2,当点P在CA延长线上时,探究AQ、AP、AC三条线段之间的数量关系,说明理由;(3)在满足(1)的结论条件下,当点P运动到在射线AC上时,直接写出AQ、AP、PC三条线段之间的数量关系为: AQ﹣AP=2PC或AP﹣AQ=2PC .【思路点拨】(1)作BM⊥AE于点M,根据角平分线的性质得到BM=BC,证明Rt△BMQ≌Rt△BPC(HL),进而证明∠BQA=∠BPC即可得出答案;(2)作BM⊥AE于点M,证明Rt△ABM≌Rt△ABC(HL),得到∠ABM=∠ABC,AM=AC,BM=BC,再证明Rt△BMQ≌Rt△BCP(HL),从而得出PC=QM即可;(3)分两种情况进行讨论,P在线段AC上或P在线段AC的延长线上,作出图后,由△QBM≌△PBC (AAS),得∠QBC=∠PBC,QM=PC,BM=BC,结合Rt△ABM≌Rt△ABC(HL),得出AM=AC,利用线段和差计算即可.【解题过程】解:(1)作BM⊥AE于点M,∵AB平方∠EAF,BC⊥AF,∴BM=BC,在Rt△BMQ和Rt△BPC中,BQ=BPBM=BC,∴Rt△BMQ≌Rt△BPC(HL),∴∠BQA=∠BPC,又∵∠BPC+∠BPA=180°,∴∠BQA+∠BPA=180°,故答案为:180;(2)AQ﹣AP=2AC,理由如下,作BM⊥AE于点M,∵AB平方∠EAF,BC⊥AF,∴BM=BC,∠BMA=∠BCA=90°,在Rt△ABM和Rt△ABC中,BM=BCAB=AB,∴Rt△ABM≌Rt△ABC(HL),∴∠ABM=∠ABC,AM=AC,在Rt△BMQ和Rt△BCP中,BQ=BPBM=BC,∴Rt△BMQ≌Rt△BCP(HL),∴PC=QM,∴AQ﹣QP=(AM+QM)﹣(PC﹣AC)=AM+AC=2AC;(3)当点P在线段AC上时,如图,AQ﹣AP=2PC,作BM⊥AE于点M,∵BC⊥AF,∴,∠BMA=∠BCA=90°,∵∠BQA+∠BPA=180°,∠BPC+∠BPA=180°,∴∠BPC=∠BQM,在△QBM和△PBC中,∠BMQ=∠BCP∠BQM=∠BPC,QB=PB∴△QBM≌△PBC(AAS),∴∠QBC=∠PBC,QM=PC,BM=BC,在Rt△ABM和Rt△ABC中,BM=BCAB=AB,∴Rt△ABM≌Rt△ABC(HL),∴AM=AC,∴AQ﹣AP=AM+QM﹣(AC﹣PC)=QM+PC=2PC;当P在线段AC的延长线上,如图,AP﹣AQ=2PC,作BM⊥AE于点M,∵BC⊥AF,∴∠BMA=∠BCA=90°,∵∠BQA+∠BPA=180°,∠BQM+∠BQA=180°,∴∠BPC=∠BQM,在△QBM和△PBC中,∠BMQ=∠BCP∠BQM=∠BPC,QB=PB∴△QBM≌△PBC(AAS),∴∠QBC=∠PBC,QM=PC,BM=BC,在Rt△ABM和Rt△ABC中,BM=BCAB=AB,∴Rt△ABM≌Rt△ABC(HL),∴AM=AC,∴AP﹣AQ=AC+CP﹣(AM﹣QM)=MQ+PC=2PC.故答案为:AQ﹣AP=2PC或AP﹣AQ=2PC.。

专题06 全等模型-角平分线模型(解析版)

专题06 全等模型-角平分线模型(解析版)

专题06全等模型-角平分线模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各类模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的几类全等模型作相应的总结,需学生反复掌握。

模型1.角平分线垂两边(角平分线+外垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线、CA OA ⊥于点A 时,过点C 作CA OB ⊥.结论:CA CB =、OAC ∆≌OBC ∆.图1图2常见模型1(直角三角形型)条件:如图2,在ABC ∆中,90C ∠=︒,AD 为CAB ∠的角平分线,过点D 作DE AB ⊥.结论:DC DE =、DAC ∆≌DAE ∆.(当ABC ∆是等腰直角三角形时,还有AB AC CD =+.)图3常见模型2(邻等对补型)条件:如图3,OC 是∠COB 的角平分线,AC =BC ,过点C 作CD ⊥O A 、CE ⊥OB 。

结论:①180BOA ACB ∠+∠=︒;②AD BE =;③2OA OB AD =+.例1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.【答案】1【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,∴1DF DE ==,∴1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1.【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键.例2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =()A .40°B .45°C .50°D .60°【答案】C 【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,{PA PA PM PF==,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故选C.【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解题的关键.例3.(2023·山东·七年级专题练习)如图,∠D=∠C=90°,点E是DC的中点,AE平分∠DAB,∠DEA =28°,求∠ABE的大小.【答案】28°【分析】过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,即可求得∠ABE的度数.【详解】如图,过点E作EF⊥AB于F,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠AEB=90°,(1)填空:角平分线的性质定理:角平分线上的点到.符号语言:∵如图1,OP 为COD ∠上的平分线,且,∴.(2)解答:已知:如图2,60AOB ∠=︒,OP 为AOB ∠的平分线,以点P 为顶点的CPD ∠与角的两边相交于点C 、D ,且120CPD ∠=︒.求证:PC PD =.(3)作图:根据以上种情况,再次寻找其它情况,点P P 为AOB ∠的平分线上的点,请你用尺规作图作PE OA ⊥于E ,作PF OB ⊥于F ,90PEC PFD PEO PFO ∴∠=∠=∠=∠=︒,OP 平分AOB ∠,PE PF ∴=,在四边形EOFP 中,60AOB ∠=︒,90PEO PFO ∠=∠=︒,36060290120EPF ∴∠=︒-︒-⨯︒=︒,120CPD ∠=︒ ,CPD EPF ∴∠=∠,CPD EPD EPF EPD ∴∠-∠=∠-∠,CPE DPF ∴∠=∠,PEC PFD ∴≅ (ASA )PC PD ∴=;(3)证明:如图2,作射线PC ,交OA 于C ,作PCN AOB ∠=∠,反向延长NP ,交OB 于D ,则PC PD =;,(4)解:如图3,当ODP ∠和OCP ∠互补时,PC PD =,理由如下:作PE OA ⊥于E ,作PF OB ⊥于F ,90PEC PFD PEO PFO ∴∠=∠=∠=∠=︒,OP 平分AOB ∠,PE PF ∴=,在四边形EOFP 中,90PEO PFO ∠=∠=︒,360290180EPF AOB ∴∠+∠=︒-⨯︒=︒,180CPD AOB ∠+∠=︒ ,CPD EPF ∴∠=∠,CPD EPD EPF EPD ∴∠-∠=∠-∠,CPE DPF ∴∠=∠,PEC PFD ∴≅ (ASA)PC PD ∴=.【点睛】本题考查全等三角形的判定,角平分线的性质等知识,解决问题的关键是熟练掌握有关基础知识.模型2.角平分线垂中间(角平分线+内垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线,AB OC ⊥,结论:△AOC ≌△BOC ,OAB ∆是等腰三角形、OC 是三线合一等。

2024中考数学核心几何模型重点突破专题02 角平分线模型(含解析)

2024中考数学核心几何模型重点突破专题02 角平分线模型(含解析)

2024中考数学核心几何模型重点突破专题02角平分线模型模型分析【理论基础】角平分线的概念:如图,已知OC 是AOB ∠的角平分线⇒AOB COB AOC ∠=∠=∠21【模型变式1】双中点求和型如图已知OC 是AOB ∠内任意一条射线,射线OE 是AOC ∠的角平分线,射线OF 是COB ∠的角平分线⇒AOB EOF ∠=∠21【证明】射线OE 是AOC ∠的角平分线,射线OF 是COB ∠的角平分线;21AOC EOC AOE ∠=∠=∠∴COB FOB COF ∠=∠=∠21COFEOC EOF ∠+∠=∠AOB COB AOC COB AOC EOF ∠=∠+∠=∠+∠=∠∴21)(212121AOB EOF ∠=∠21【模型总结】某个角内的一条射线,把这个角分成两个角,这两个角的平分线形成的角等于原来角的一半。

【模型变式2】双中点求差型如图已知OB 是AOC ∠外任意一条射线,射线OE 是AOB ∠的角平分线,射线OF 是COB ∠的角平分线⇒AOC EOF ∠=∠21【证明】射线OE 是AOB ∠的角平分线,射线OF 是COB ∠的角平分线;21AOB EOB AOE ∠=∠=∠∴COB FOB COF ∠=∠=∠21FOB EOB EOF ∠-∠=∠AOC COB AOB COB AOB EOF ∠=∠-∠=∠-∠=∠∴21)(212121AOC EOF ∠=∠21【模型总结】某个角外的一条射线,以该射线为邻边的两个角的平分线形成的角等于原来角的一半。

典例分析【例1】如图,已知AOB ∠和AOC ∠互余,OM 、ON 分别平分AOB ∠和AOC ∠,20MON ∠=︒,则AOB ∠=_______________°.【例2】如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=1∠EOC2C.∠AOD+∠BOE=60°D.∠BOE=2∠COD【例3】如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,求∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,尝试发现∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,①猜想:∠MON与α、β有数量关系吗?直接写出结论即可;②当∠CON=3∠BOM时,直接写出α、β之间的数量关系模型演练一、单选题1.如图,直线AB∥CD,直线EF分别交AB,CD于点G,H.GM平分∠BGH,且∠GHM=48°,那么∠GMD的度数为()A.96°B.104°C.114°D.124°2.如图,∠AOC与∠BOC互为余角,OD平分∠BOC,∠EOC=2∠AOE.若∠COD=18°,则∠AOE的大小是()A.12°B.15°C.18°D.24°3.如图,直线AB,CD,EO相交于点O,已知OA平分∠EOC,若∠EOC:∠EOD=2:3,则∠BOD的度数为()A.40°B.37°C.36°D.35°4.如图,直线AC和直线BD相交于点O,OE平分∠BOC.若∠1+∠2=80°,则∠3的度数为()A.40°B.50°C.60°D.70°5.(2022·山东东营·二模)如图,CD AB ∥,点O 在AB 上,OE 平分,110BOD OF OE D ∠⊥∠=︒,,则AOF ∠的度数是()A .20︒B .25︒C .30°D .35︒二、填空题6.(2022·湖南长沙·七年级期末)如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠.若76AOC ∠=︒,则BOF ∠的度数为______°.7.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .若∠BOF =30°,则∠DOE =_______°.8.如图,直线AB 、CD 交于点O ,CO OE ⊥,OF 是AOD ∠的平分线,OG 是EOB ∠的平分线,44AOC ∠=︒,则∠=FOG _____________.9.如图,已知射线OC 在AOB ∠内部,OD 平分AOC ∠,OE 平分BOC ∠,OF 平分AOB ∠,现给出以下4个结论:①DOE AOF ∠=∠;②2DOF AOF COF ∠=∠-∠;③AOD BOC ∠=∠;④()12EOF COF BOF ∠=∠+∠其中正确的结论有(填写所有正确结论的序号)______.10.如图,∠COD 在∠AOB 的内部,且12COD AOB Ð=Ð,若将∠COD 绕点O 顺时针旋转,使∠COD 在∠AOB 的外部,在运动过程中,OE 平分∠BOC ,则∠DOE 与∠AOC 之间满足的数量关系是_____.三、解答题11.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.12.如图,O 为直线AB 上的一点,48AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求BOD ∠的度数;(2)OE 是BOC ∠的平分线吗?为什么?13.已知O 为直线AB 上一点,过点O 向直线AB 上方引两条射线OC ,OD ,且OC 平分AOD ∠.(Ⅰ)请在图①中BOD ∠的内部画一条射线OE ,使得OE 平分BOD ∠,并求此时COE ∠的度数;(Ⅱ)如图②,若在BOD ∠内部画的射线OE ,恰好使得3BOE DOE ∠=∠,且70COE ∠=︒,求此时∠BOE 的度数.14.已知:如图所示(1),AOB ∠和COD ∠共顶点,OB OD 、重合,OM 为AOD ∠的平分线,ON 为BOC ∠的平分线,=AOB α∠,=COD β∠.(1)如图所示(2),若=90α︒,=30β︒,则MON ∠=_______.(2)如图所示(3),若COD ∠绕O 点逆时针旋转,且=BOD γ∠,求MON ∠.(3)如图所示(4),若=2αβ,COD ∠绕O 点逆时针旋转,OE 平分BOD ∠,以下两个结论:①AOD COE∠∠为定值;②-AOD COE ∠∠为定值;请选择正确的结论,并说明理由.参考答案与详细解析典例分析【例1】如图,已知AOB ∠和AOC ∠互余,OM 、ON 分别平分AOB ∠和AOC ∠,20MON ∠=︒,则AOB ∠=_______________°.【答案】65【分析】根据余角的定义以及角平分线的定义解答即可.【解析】解:∵OM 、ON 分别平分AOB ∠和AOC ∠,20MON ∠=︒,∴12AOM AOB ∠=∠,12AON AOC ∠=∠,∴112022AOB AOC AOM AON MON ∠-∠=∠-∠=∠=︒,∴40AOB AOC ∠-∠=︒①,又∵AOB ∠和AOC ∠互余,∴90AOB AOC ∠+∠=︒②,①+②,得:24090AOB ∠=︒+︒,解得:65AOB ∠=︒.故答案为:65.【例2】如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=12∠EOCC.∠AOD+∠BOE=60°D.∠BOE=2∠COD【答案】C【分析】依据OD、OE分别是∠AOC、∠BOC的平分线,即可得出∠AOD+∠BOE=∠EOC+∠COD=∠DOE=60°,结合选项得出正确结论.【解析】∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠AOD=∠COD,∠EOC=∠BOE.又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=120°,∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=60°.故选C.【例3】如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,求∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,尝试发现∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,①猜想:∠MON与α、β有数量关系吗?直接写出结论即可;②当∠CON=3∠BOM时,直接写出α、β之间的数量关系【答案】(1)45°(2)∠MON=12α(3)①∠MON=12α;②α=23β或=43β【分析】(1)求出∠AOC的度数,再根据角平分线的定义求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;(2)求出∠AOC的度数,再根据角平分线的定义求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;(3)①求出∠AOC的度数,再根据角平分线的定义求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;②分OM、ON在OB的异侧和同侧两种情况求解.【解析】(1)∵∠AOB是直角,∴∠AOB=90°,∠BOC=60°,∴∠COA=∠AOB+∠BOC=90°+60°=150°.∵OM平分∠AOC,∴∠COM=12∠COA=75°,∵ON平分∠BOC,∴∠CON=12∠BOC=30°,∴∠MON=∠COM-∠CON=75°-30°=45°(2)∵∠AOB=α,∠BOC=60°,∴∠COA=α+60°,∵OM平分∠AOC,∴∠COM=12∠COA=12(α+60°),∵ON平分∠BOC,∴∠CON=12∠BOC=30°,∴∠MON=∠COM-∠CON=12(α+60°)-30°=12α.(3)①∵∠AOB=α,∠BOC=β,∴∠COA=∠AOB+∠BOC=α+β.∵OM平分∠AOC,∴∠COM=12∠COA=12(α+β),∵ON平分∠BOC,∴∠CON=12∠BOC=12β,∴∠MON=∠COM-∠CON=12(α+β)-12β=12α.②当OM、ON在OB的异侧时,如图3-1,∵∠COM=12(α+β),∠BOC=β,∴∠BOM=12(α+β)-β=12(α-β),∵∠CON=3∠BOM时,∠CON=12β,∴12β=3×12(α-β),∴α=43β;当OM、ON在OB的同侧时,如图3-2,∵∠COM=12(α+β),∠BOC=β,∴∠BOM=β-12(α+β)=12(β-α),∵∠CON=3∠BOM时,∠CON=12β,∴12β=3×12(β-α),∴α=23β.综上可知,α=23β或=43β.模型演练一、单选题1.如图,直线AB∥CD,直线EF分别交AB,CD于点G,H.GM平分∠BGH,且∠GHM=48°,那么∠GMD的度数为()A.96°B.104°C.114°D.124°【答案】C【分析】根据两直线平行,同旁内角互补求出∠BGH,再根据角平分线的定义可得∠BGM=12∠BGH,然后根据两直线平行,同旁内角互补列式计算即可得解.【解析】解:∵AB∥CD,∴∠BGH=180°-∠GHM=180°-48°=132°,∵GM平分∠BGH,∴∠BGM =12∠BGH =12×132°=66°,∵AB ∥CD ,∴∠GMD =180°-∠BGM =180°-66°=114°.故选:C .2.如图,∠AOC 与∠BOC 互为余角,OD 平分∠BOC ,∠EOC =2∠AOE .若∠COD =18°,则∠AOE 的大小是()A .12°B .15°C .18°D .24°【答案】C 【分析】利用角平分线求出∠BOC =36°,利用∠AOC 与∠BOC 互为余角,求出∠AOC =90-36°=54°,再根据∠EOC =2∠AOE ,即可求出∠AOE =18°.【解析】解:∵∠COD =18°,OD 平分∠BOC ,∴∠BOC =36°,∵∠AOC 与∠BOC 互为余角,∴∠AOC =90°-36°=54°∵∠EOC =2∠AOE ,∴3∠AOE =54°,∴∠AOE =18°.故选:C3.如图,直线AB ,CD ,EO 相交于点O ,已知OA 平分∠EOC ,若∠EOC:∠EOD =2:3,则∠BOD 的度数为()A .40°B .37°C .36°D .35°【答案】C 【分析】根据:2:3EOC EOD ∠∠=与180EOC EOD ∠+∠=︒得到EOC ∠,根据OA 平分EOC ∠得到AOC ∠,最后根据对顶角相等即可求出BOD ∠.【解析】解::2:3EOC EOD ∠∠=,180EOC EOD ∠+∠=︒,31802EOC EOC ∴∠+∠=︒,72EOC ∴∠=︒,OA 平分EOC ∠,11723622AOC EOC ∴∠=∠=⨯︒=︒,36BOD AOC ∴∠=∠=︒.故选:C .4.如图,直线AC 和直线BD 相交于点O ,OE 平分∠BOC .若∠1+∠2=80°,则∠3的度数为()A .40°B .50°C .60°D .70°【答案】D 【分析】根据对顶角和邻补角的定义即可得到BOC ∠的度数,再根据角平分线即可得出3∠的度数.【解析】解:12∠=∠,1280∠+∠=︒,1240∴∠=∠=︒,140BOC ∴∠=︒,又OE 平分BOC ∠,3140270∴∠=︒÷=︒.故选:D .5.(2022·山东东营·二模)如图,CD AB ∥,点O 在AB 上,OE 平分,110BOD OF OE D ∠⊥∠=︒,,则AOF ∠的度数是()A .20︒B .25︒C .30°D .35︒【答案】D 【分析】根据CD AB ∥,∠D =110°,求出∠AOD =70°,∠DOB =110°,利用OE 平分∠BOD ,得到∠DOE =55°,由∠FOE =90°求出∠DOF =90°﹣55°=35°,即可求出∠AOF 的度数.【解析】解:∵CD AB ∥,∴∠AOD +∠D =180°,∠DOB =∠D ,∵∠D =110°,∴∠AOD =70°,∠DOB =110°,∵OE 平分∠BOD ,∴∠DOE =12DOB ∠=55°,∵OF ⊥OE ,∴∠FOE =90°,∴∠DOF =90°﹣55°=35°,∴∠AOF =∠AOD ﹣∠DOF =70°﹣35°=35°,故D 正确.故选:D .二、填空题6.(2022·湖南长沙·七年级期末)如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠.若76AOC ∠=︒,则BOF ∠的度数为______°.【答案】33【分析】先根据对顶角相等求出76BOD ∠=︒,再由角平分线定义得38DOE BOE ∠=∠=︒,由邻补角得142COE ∠=︒,再根据角平分线定义得71EOF ∠=︒,从而可得结论.【解析】解:∵AOC BOD ∠∠、是对顶角,∴76,BOD AOC ∠=∠=︒∵OE 平分BOD ∠,∴1382DOE BOE BOD ∠=∠=∠=︒∴142COE ∠=︒,∵OF 平分COE ∠.∴1712EOF COE ∠=∠=︒又BOE BOF EOF ∠+∠=∠,∴=713833BOF EOF BOE ∠∠-∠=︒-︒=︒,故答案为:337.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .若∠BOF =30°,则∠DOE =_______°.【答案】40【分析】利用角平分线定义列式计算即可求出所求.【解析】解:∵OE 平分∠BOD ,∴∠BOE =∠DOE ,设∠BOE =∠DOE =x ,则有∠COE =180°-x ,∵OF 平分∠COE ,∴∠EOF =12(180°-x )=90°-12x ,由题意得:∠EOF -∠BOE =∠BOF =30°,即90°-12x -x =30°,解得:x =40°,则∠DOE =40°.故答案为:40.8.如图,直线AB 、CD 交于点O ,CO OE ⊥,OF 是AOD ∠的平分线,OG 是EOB ∠的平分线,44AOC ∠=︒,则∠=FOG _____________.【答案】135︒【分析】根据邻补角求得AOD ∠,COB ∠,根据CO OE ⊥,求得90COE ∠=︒,进而求得EOB ∠,根据对顶角求得BOD AOC ∠=∠,根据角平分线的定义求得12FOD AOD ∠=∠,12BOG BOE ∠=∠,根据FOG FOD BOD BOG ∠=∠+∠+∠即可求解.【解析】解:44AOC ∠=︒,180AOD AOC COB ∴∠=︒-∠=∠18044136=︒-︒=︒,CO OE ⊥,∴90COE ∠=︒,1369046BOE BOC COE ∴∠=∠-∠=︒-︒=︒,OF 是AOD ∠的平分线,OG 是EOB ∠的平分线,∴1682FOD AOD ∠=∠=︒,1232BOG BOE ∠=∠=︒,又BOD AOC ∠=∠44=︒,∴FOG FOD BOD BOG∠=∠+∠+∠1122AOD BOD BOE =∠+∠+∠684423=︒+︒+︒135=︒故答案为:135︒.9.如图,已知射线OC 在AOB ∠内部,OD 平分AOC ∠,OE 平分BOC ∠,OF 平分AOB ∠,现给出以下4个结论:①DOE AOF ∠=∠;②2DOF AOF COF ∠=∠-∠;③AOD BOC ∠=∠;④()12EOF COF BOF ∠=∠+∠其中正确的结论有(填写所有正确结论的序号)______.【答案】①②④【分析】①根据OD 平分AOC ∠,OE 平分BOC ∠,OF 平分AOB ∠,得出12AOD COD AOC ∠=∠=∠,12BOE COE BOC ∠=∠=∠,12AOF BOF AOB ∠=∠=∠,求出12∠=∠DOE AOB ,即可得出结论;②根据角度之间的关系得出12DOF BOC COE ∠=∠=∠,得出AOF COF BOF COF BOC ∠-∠=∠-∠=∠,即可得出结论;③无法证明AOD BOC ∠=∠;④根据12DOF BOC COE ∠=∠=∠,得出EOF COD ∠=∠,2COF BOF COD ∠+∠=∠,即可得出结论.【解析】解:①∵OD 平分AOC ∠,OE 平分BOC ∠,OF 平分AOB ∠,∴12AOD COD AOC ∠=∠=∠,12BOE COE BOC ∠=∠=∠,12AOF BOF AOB ∠=∠=∠,AOC BOC AOB ∠+∠=∠,12DOC COE AOD BOE AOB ∴∠+∠=∠+∠=∠,即12∠=∠DOE AOB ,∴DOE AOF ∠=∠,故①正确;②∵DOF DOE EOF∠=∠-∠1122AOB COF BOC ⎛⎫=∠-∠+∠ ⎪⎝⎭1122AOB COF BOC =∠-∠-∠()1122AOB BOF BOC BOC =∠-∠-∠-∠111222AOB AOB BOC BOC ⎛⎫=∠-∠-∠-∠ ⎪⎝⎭111222AOB AOB BOC BOC =∠-∠+∠-∠12BOC =∠AOF COF BOF COF BOC ∠-∠=∠-∠=∠,∴2DOF AOF COF ∠=∠-∠,故②正确;③AOD ∠与BOC ∠不一定相等,故③错误;④根据解析②可知,12DOF BOC COE ∠=∠=∠,∴EOF EOC COF COF DOF COD ∠=∠+∠=∠+∠=∠,∵2COF BOF COF AOF AOC COD ∠+∠=∠+∠=∠=∠,∴()12EOF COF BOF ∠=∠+∠,故④正确;综上分析可知,正确的有①②④.故答案为:①②④.10.如图,∠COD 在∠AOB 的内部,且12COD AOB Ð=Ð,若将∠COD 绕点O 顺时针旋转,使∠COD 在∠AOB 的外部,在运动过程中,OE 平分∠BOC ,则∠DOE 与∠AOC 之间满足的数量关系是_____.【答案】2AOC DOE ∠∠=或3602AOC DOE∠=︒-∠【分析】分情况讨论:当旋转的角度不超过180︒时,当旋转的角度超过180︒,不超过360︒时,画出旋转后的图,利用角之间的关系计算即可.【解析】解:当旋转的角度不超过180︒时,如图:∴AOC AOB BOC ∠=∠+∠,DOE COD COE ∠=∠+∠,∵12COD AOB Ð=Ð,OE 平分∠BOC ,∴BOE COE ∠=∠,()22=2∠=∠+∠∠+∠AOC COD COE COD COE ,∴2AOC DOE ∠∠=.当旋转的角度超过180︒,不超过360︒时,如图,∴()360∠=︒-∠+∠AOC AOB BOC ,DOE COD COE ∠=∠+∠,∵12COD AOB Ð=Ð,OE 平分∠BOC ,∴BOE COE ∠=∠,222=∠=∠+∠∠+∠DOE COD COE AOB BOC ,∴3602AOC DOE ∠=︒-∠.三、解答题11.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.【答案】120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.【解析】∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE=15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.12.如图,O 为直线AB 上的一点,48AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求BOD ∠的度数;(2)OE 是BOC ∠的平分线吗?为什么?【答案】(1)156BOD ∠=︒(2)OE 是BOC ∠的平分线,理由见解析【分析】(1)由角平分线的性质可知∠1的度数,再利用互补即可算出∠BOD 的度数;(2)想要判断OE 是否为∠BOC 的平分线,只需分别计算出∠3和∠4的度数,看它们是否相等.【解析】(1)解:48AOC ∠=︒,OD 平分AOC ∠,1112482422AOC ∴∠=∠=∠=⨯︒=︒,1180BOD ∠+∠=︒,18024156BOD ∴∠=︒-︒=︒;(2)解:OE 是BOC ∠的平分线.理由如下:90DOE ∠=︒,224∠=︒,390266∴∠=︒-∠=︒,90DOE ∠=︒,156BOD ∠=︒,466BOD DOE ∴∠=∠-∠=︒,3466∴∠=∠=︒,OE ∴是BOC ∠的平分线.13.已知O 为直线AB 上一点,过点O 向直线AB 上方引两条射线OC ,OD ,且OC 平分AOD ∠.(Ⅰ)请在图①中BOD ∠的内部画一条射线OE ,使得OE 平分BOD ∠,并求此时COE ∠的度数;(Ⅱ)如图②,若在BOD ∠内部画的射线OE ,恰好使得3BOE DOE ∠=∠,且70COE ∠=︒,求此时∠BOE 的度数.【答案】(Ⅰ)90COE ∠=︒;(Ⅱ)∠BOE 的度数为60︒.【分析】由角平分线的定义得出12COD AOD ∠=∠,12EOD BOD ∠=∠,()1=902COE COD EOD AOD BOD ∠=∠+∠+=︒∠∠.(2)设1∠=α,则23α∠=,(4370)α∠=∠=︒-,根据平角的定义列等式求出结果即可.【解析】(Ⅰ)如图,∵OC 平分AOD ∠,OE 平分BOD ∠,∴12COD AOD ∠=∠,12EOD BOD ∠=∠,∴()1=902COE COD EOD AOD BOD ∠=∠+∠+=︒∠∠.(Ⅱ)如下图,设1∠=α,根据题意得2313α∠=∠=.∵1370COE ∠=∠+∠=︒,∴370()α∠=︒-.∵OC 平分AOD ∠,∴(4370)α∠=∠=︒-,∵1234180∠+∠+∠+∠=︒,∴()()37070180αααα++-+-=︒.解得:20α=︒.∴2360α∠==︒.∴∠BOE 的度数为60︒.14.已知:如图所示(1),AOB ∠和COD ∠共顶点,OB OD 、重合,OM 为AOD ∠的平分线,ON 为BOC ∠的平分线,=AOB α∠,=COD β∠.(1)如图所示(2),若=90α︒,=30β︒,则MON ∠=_______.(2)如图所示(3),若COD ∠绕O 点逆时针旋转,且=BOD γ∠,求MON ∠.(3)如图所示(4),若=2αβ,COD ∠绕O 点逆时针旋转,OE 平分BOD ∠,以下两个结论:①AOD COE∠∠为定值;②-AOD COE ∠∠为定值;请选择正确的结论,并说明理由.【答案】(1)60︒;(2)2MON αβ+∠=;(3)①2AOD COE∠=∠.【分析】(1)利用角平分线的性质即可得出∠MON =12∠AOD +12∠BOC ,进而求出即可;(2)∠BOD =γ,而122MOD AOD αγ+∠=∠=,122NOB COB βγ+∠=∠=,进而得出即可;(3)利用已知表示出∠COE 和∠AOD ,进而得出答案.【解析】解:(1)(1)∵OM 为∠AOD 的平分线,ON 为∠BOC 的平分线,∠AOB =α,∠COD =β,α=90゜,β=30゜,∴∠MON =12α+12β=60°;故答案为60°;(2)122MOD AOD αγ+∠=∠=,122NOB COB βγ+∠=∠=,222MON MOD NOB DOB αγβγαβγ+++∴∠=∠+∠-∠=+-=;(3)①2AOD COE∠=∠,设2BOD x ∠=,则222AOD a x x β∠=+=+,COE x β∠=+,∴2AOD COE ∠=∠.。

2018初中数学突破中考压轴题几何模型之相似三角形中的一线三等角模型

2018初中数学突破中考压轴题几何模型之相似三角形中的一线三等角模型
一线三等角
相似三角形判定的基本模型
A字型X字型反A字型反8字型
母子型旋转型双垂直三垂直
相似三角形判定的变化模型
一线三等角型相似三角形
三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:
等角的顶点在底边上的位置不同得到的相似三角形的结论也不同,当顶点移动到底边的延长线时,形成变式图形,图形虽然变化但是求证的方法不变。此规律需通过认真做题,细细体会。
定义域;
(2)正方形 的边长为 (如图12),点 、 分别在直线 、 上
(点 不与点 、点 重合),且保持 .
当 时,写出线段 的长(不需要计算过程,请直接写出结果).
点评:此题是典型的图形变式题,记住口诀:“图形改变,方法不变”。动点在线段上时,通过哪两个三角形相似求解,当动点在线段的延长线上时,还是找原来的两个三角形,多数情况下这两个三角形还是相似的,还是可以沿用原来的方法求解。
②当CE=1时,写出AP的长(不必写出解题过程)
6. 已知在梯形ABCD中,AD∥BC,AD<BC,且AD=5,AB=DC=2.
(1)如图8,P为AD上的一点,满足∠BPC=∠A.
①求证;△ABP∽△DPC
②求AP的长.
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q,那么
①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域;
(1)求证:△FCE∽△EBD;
(2)当点D在线段AB上运动时,是否有可能使 .
如果有可能,那么求出BD的长.如果不可能请说明理由.

专题06 线段的垂直平分线与角平分线综合压轴题五种模型全攻略(解析版)

专题06 线段的垂直平分线与角平分线综合压轴题五种模型全攻略(解析版)

专题06线段的垂直平分线与角平分线综合压轴题五种模型全攻略【考点导航】目录【典型例题】 (1)【考点一利用线段垂直平分线的性质求解】 (1)【考点二线段垂直平分线的判定】 (4)【考点三利用角平分线的性质求解】 (8)【考点四角平分线的判定】 (11)【考点五线段的垂直平分线与角平分线的综合问题】 (14)【过关检测】 (20)【典型例题】【考点一利用线段垂直平分线的性质求解】∴()SAS ADE CDE △△≌,∴36DCE A ==︒∠∠,∴72BEC A ACE ∠=∠+∠=︒,故答案为:72︒.【点睛】本题主要考查了三角形外角的性质,全等三角形的性质与判断,线段垂直平分线的定义,正确推出36DCE A ==︒∠∠是解题的关键.【变式训练】【答案】8【分析】根据垂直平分线的性质定理,得【详解】解:∵AB 的中垂线交【点睛】本题主要考查垂直平分线的性质定理,掌握垂直平分线的性质定理是解题的关键.线段的垂直平分线上的点到线段的两个端点的距离相等.3.(2023春·广东深圳·七年级校考期末)如图,在ABC 中,DM ,EN 分别垂直平分边AC 和边BC ,交边AB 于M ,N 两点,DM 与EN 相交于点F .(1)若10cm AB =,求CMN 的周长;(2)若o 65MFN ∠=,则MCN ∠的度数为______°.【答案】(1)10cm(2)50【分析】(1)由线段垂直平分线的性质可得MA MC =,NB NC =,则CMN 的周长CM CN MN AM MN BN AB =++=++=;(2)根据等边对等角可得A MAC ∠=∠,B NCB ∠=∠,根据三角形内角和定理,列式求出FMN FNM ∠+∠,再求出A B ∠∠+,即可求解.【详解】(1)解:∵DM ,EN 分别是AC ,BC 的中垂线∴MA MC =,NB NC=∴CMN C CM MN CN AM MN BN =++=++ AB =10cm =;(2)由(1)得MA MC =,NB NC =,由DM ,EN 分别垂直平分AC 和BC ,可得90MDA NEB ∠=∠=︒,∴A MCA ∠=∠,B NCB ∠=∠,∵在MNF 中,65MFN ∠=︒,∴115FMN FNM ∠+∠=︒,根据对顶角的性质可得:FMN AMD ∠=∠,FNM BNE ∠=∠,在Rt ADM △中,9090A AMD FMN ∠=︒-∠=︒-∠,在Rt BNE 中,9090B BNE FNM ∠=︒-∠=︒-∠,∴909065A B FMN FNM ∠+∠=︒-∠+︒-∠=︒,∴65MCA NCB ∠+∠=︒,在ABC 中,65A B ∠+∠=︒∴115ACB ∠=︒,∴()50MCN ACB MCA NCB ∠=∠-∠+∠=︒.故答案为:50.【点睛】本题考查了线段垂直平分线的性质,等边对等角的性质,三角形内角和定理,解题的关键是熟练掌握相关基本性质和整体思想的利用.【考点二线段垂直平分线的判定】例题:(2023春·陕西西安·七年级校考阶段练习)如图,AD 为三角形ABC 的角平分线,DE AB ⊥于点E ,DF AC ⊥于点F ,连接EF 交AD 于点O .(1)若BE DE =,60BAC ∠=︒,求CDF ∠的度数;(2)写出AD 与EF 的关系,并说明理由;【答案】(1)15︒(2)AD EF ⊥,AD 平分EF【分析】(1)根据三角形内角和可得C ∠,再利用内角和即可得出CDF ∠;(2)由角平分线的意义及两个垂直可证明ADE ADF V V ≌,从而有,AE AF DE DF ==,由线段垂直平分线的判定知,AD EF ⊥,AD 平分EF .【详解】(1)解:∵DE AB⊥90BED ∴∠=︒∵BE DE=45B ∴∠=︒∵60BAC ∠=︒180456075C ∴∠=︒-︒-︒=︒∵DF AC⊥90DFC ∴∠=︒∴15CDF ∠=︒(2)解:AD EF ⊥,AD 平分EF ;理由如下:∵AD 平分BAC ∠,∴∠=∠DAB DAC ,∵DE AB ⊥,DF AC ⊥,∴90DEA DFA ∠=∠=︒,∵AD AD =,∴ADE ADF V V ≌,∴AE AF DE DF ==,,∴AD 是线段EF 的垂直平分线,即AD EF ⊥,AD 平分EF .【点睛】本题考查了全等三角形的证明,等腰三角形的性质,三角形内角和,角平分线的性质.找到Rt AED △和Rt ADF ,通过两个三角形全等,找到各量之间的关系,完成证明是关键.【变式训练】1.(2023秋·广西河池·八年级统考期末)如图,在ABC 中,边AB ,BC 的垂直平分线交于点P .(1)求证:PA PB PC ==;(2)求证:点P 在线段AC 的垂直平分线上.【答案】(1)见解析(2)见解析【分析】(1)根据垂直平分线的性质直接可得到答案;(2)根据到线段两个端点的距离相等的点在线段的垂直平分线上即可得到答案;【详解】(1)证明:∵边AB 、BC 的垂直平分线交于点P ,∴PA PB =,PB PC =,∴PA PB PC ==;(2)证明:∵边AB ,BC 的垂直平分线交于点P ,∴PA PB =,PB PC =,∴PA PC =,∴点P 在AC 的垂直平分线上.【点睛】本题考查垂直平分线的性质及判定,解题的关键是熟练掌握垂直平分线上的点到线段两个端点距离相等及到线段两个端点的距离相等的点在线段的垂直平分线上.2.(2023春·全国·八年级专题练习)如图,点D 是等边ABC 外一点,120BDC ∠=︒,DB DC =,点E ,F 分别在AB ,AC 上,连接AD 、DE 、DF 、EF .(1)求证:AD 是BC 的垂直平分线;(2)若ED 平分BEF ∠,5BC =,求AEF △的周长.【答案】(1)见解析;(2)10.【分析】(1)根据到线段两端距离相等的点在垂直平分线上即可证明;(2)如图,过D 作DM EF ⊥于M ,结合已知易证90DBE ∠=︒即DB AB ⊥,同理可得DC AC ⊥,易证()Rt DBE Rt DME HL ≌得BE ME =,同理可得CF MF =,然后转换求周长即可.【详解】(1)证明:ABC 是等边三角形,AB AC ∴=,∴A 在BC 的垂直平分线上,又DB DC =,∴D 在BC 的垂直平分线上,AD ∴是BC 的垂直平分线;(2)如图,过D 作DM EF ⊥于M ,120BDC ∠=︒ ,DB DC=30DBC ∴∠=︒又ABC 是等边三角形,90DBE DBC ABC ∴∠=∠+∠=︒A DB B∴⊥同理可得DC AC∴⊥ED 平分BEF ∠,DM EF⊥DB DM DC∴==DF ∴平分CFE ∠,在Rt DBE 与Rt DME 中DE DE DB DM=⎧⎨=⎩()Rt DBE Rt DME HL ∴ ≌BE ME∴=同理可得CF MF=()AEF C AE AF EF AE AF EM MF =++=+++ ()AE AF EB CF =+++()()AE EB AF CF =+++AB AC=+210BC ==.【点睛】本题考查了垂直平分线的判定,角平分线的判定和性质,全等三角形的判定和性质;解题的关键是通过相关性质构造线段相等、进行转换.【考点三利用角平分线的性质求解】A .14B .26【答案】D 【分析】如图:作DF AC ⊥交∵AD 平分BAC ∠,DE AB ⊥∴4DF DE ==,∴12ABC ADC ADB S S S AC ==+ 【变式训练】1.(2023春·甘肃张掖·八年级校考期末)一块三角形的草坪,现要在草坪上建一个凉亭供大家休息,要使凉亭到草坪三边的距离相等,凉亭的位置应选在()A .三角形三条边的垂直平分线的交点B .三角形三条角平分线的交点C .三角形三条高所在直线的交点D .三角形三条中线的交点【答案】B【答案】5【分析】根据垂线段最短确定点【详解】解: O是BA上任意一点,∴当PO BA⊥时,OP的值最小,∠,P是BD又 BD平分ABC(1)求PAD∠的度数;=.(2)试说明PD PC∵AP 平分DAB ∠,PD AD ⊥,PE ∴PE PD =.∵BP 平分ABC ∠,PC BC ⊥,PE ∴PE PC =,【考点四角平分线的判定】例题:(2023·全国·八年级假期作业)如图,ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,连接AD .求证:AD 是BAC ∠的外角平分线.【答案】证明见解析【分析】作DE BA ⊥交BA 的延长线于E ,DF AC ⊥于F ,DG BH ⊥于G ,根据角平分线的性质得到DE DF =,根据角平分线的判定定理证明结论.【详解】证明:作DE BA ⊥交BA 的延长线于E ,DF AC ⊥于F ,DG BH ⊥于G ,DB 平分ABC ∠、DC 平分ACH ∠,DE DG ∴=,DF DG =,DE DF ∴=,又DE BA ⊥,DF AC ⊥,∴AD 是BAC ∠的外角平分线.【点睛】本题考查的是角平分线的性质和判定,掌握角的平分线上的点到角的两边的距离相等、到角的两边的距离相等的点在角的平分线上是解题的关键.【变式训练】1.(2023·广东惠州·校联考二模)如图,CB CD =,180D ABC ∠+∠=︒,CE AD ⊥于E .(1)求证:AC 平分DAB ∠;(2)若10AE =,4DE =,求AB 的长.【答案】(1)见解析(2)6【分析】(1)过C 点作CF AB ⊥,交AB 的延长线于点F .由AAS 证明CDE CBF ≌,可得CE CF =,结论得证;(2)证明Rt ACE Rt ACF ≌,可得AE AF =,可求出AB .【详解】(1)证明:过C 点作CF AB ⊥,交AB 的延长线于点F .∵CE AD ⊥,∴90DEC CFB ∠=∠=︒,∵180D ABC ∠+∠=︒,180CBF ABC ∠+∠=︒,∴D CBF ∠=∠,又∵CB CD =,∴CDE CBF ≌,∴CE CF =,∴AC 平分DAB ∠;(2)解:由(1)可得4BF DE ==,在Rt ACE 和Rt ACF 中,CE CF AC AC=⎧⎨=⎩,∴Rt ACE Rt ACF ≌,∴10==AE AF ,∴6AB AF BF =-=.【点睛】本题考查了角平分线的判定与性质,全等三角形的判定与性质,关键是作出辅助线构造全等三角形.2.(2023·江苏·八年级假期作业)如图,DE AB ⊥于点E ,DF AC ⊥于点F ,若,BD CD BE CF ==.(1)求证:AD 平分BAC ∠;(2)请猜想+AB AC 与AE 之间的数量关系,并给予证明.【答案】(1)见解析(2)2AB AC AE +=,证明见解析【分析】(1)根据HL 证明Rt Rt DBE DCF ≌ ,得到DE DF =,再根据角平分线的判定定理,求证即可;(2)通过HL 证明Rt Rt ADE ADF ≌△△,得到AE AF =,利用线段之间的关系,求解即可.【详解】(1)证明:∵DE AB ⊥,DF AC ⊥,∴90E DFC ∠=∠=︒,在Rt DBE 和Rt DCF 中,BD CD BE CF =⎧⎨=⎩,∴()Rt Rt HL DBE DCF ≌△△,∴DE DF =,∵DE AB ⊥,DF AC ⊥,∴AD 平分BAC ∠.(2)解:2AB AC AE +=,证明如下:在Rt ADE △和Rt ADF 中,AD AD DE DF=⎧⎨=⎩,∴()Rt Rt HL ADE ADF ≌△△,∴AE AF =,∴2AB AC AB AF CF AB AE BE AE +=++=++=.【点睛】此题考查了全等三角形的判定与性质,以及角平分线的判定定理,解题的关键是灵活利用相关性质进行求解.【考点五线段的垂直平分线与角平分线的综合问题】例题:(2023秋·河北保定·八年级统考期末)如图,在ABC 中,AD 平分BAC ∠,90C = ∠,DE AB ⊥于点E ,点F 在AC 上,BD DF =.(1)求证:CF EB =.(2)连接CE ,求证AD 垂直平分CE .(3)若10AB =,6AF =,求CF 的长.【答案】(1)证明见解析(2)证明见解析(3)2CF =【分析】(1)利用角平分线的性质可得DC DE =,再利用“HL ”证明t R DCF Rt DEB △≌△,即可证明CF EB =;(2)利用“HL ”证明Rt ACD Rt AED ≌,可得AC AE =,所以点A 在CE 的垂直平分线上,根据DC DE =,可得点D 在CE 的垂直平分线上,进而可以解决问题;(3)设CF BE x ==,则AE AB BE x AC AF FC x 106=-=-==+=+,即可建立方程求解.【详解】(1)证明:∵DE AB ⊥于点E ,∴90DEB ∠= ,又AD 平分BAC ∠,90C = ∠,∴DC DE =,在t R DCF △和Rt DEB 中,DF DB DC DE =⎧⎨=⎩,∴()t R DCF Rt DEB HL ≌,∴CF EB =.(2)证明:连接CE ,如图在Rt ACD 和Rt AED △中,AD AD DC DE =⎧⎨=⎩,∴()Rt ACD Rt AED HL ≌,∴AC AE =∴点A 在CE 的垂直平分线上,∵DC DE =,∴点D 在CE 的垂直平分线上,∴AD 垂直平分CE (3)解:设CF BE x ==,∵10AB =,6AF =,∴AE AB BE x 10=-=-,AC AF FC x 6=+=+,∵AE AC =,∴106x x -=+,解得:2x =∴2CF =【点睛】本题考查了直角三角形全等的判定与性质,角平分线的性质,解题关键是在图形中找到正确的全等三角形以及熟悉以上性质与判定.【变式训练】1.(2023秋·河南洛阳·八年级统考期末)如图,AD 是ABC 的角平分线,DE AB ⊥于点E ,DF AC ⊥于点F ,连接EF .(1)求证:AD 为CAB ∠的角平分线;(2)若8AB =,6AC =,求AE 的长.【答案】(1)见解析(2)7AE =DG 为BC 的垂直平分线,CD BD ∴=,DE AB ∵⊥,DF AC ⊥,90DEB DFC ∴∠=∠=︒,在Rt DEB △和Rt DFC △中,(1)求证:BD平分∠ABC;(2)如图2,AC的垂直平分线交BD于点Q,交AC于点G,QM 【答案】(1)见解析(2)MC=1.5【分析】(1)由∠ACF=∠A+∠ABF,∠ECF=∠BPC+∠DBF,得∠【详解】(1)证明:∵∠ACF=∠A+∠ABF,∠ECF=∠BPC+∠DBF,∴∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,∵CE平分∠ACF,∴∠ACF=2∠ECF,∴∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF,∴BD平分∠ABC;(2)解:连接AQ,CQ,过点Q作BA的垂线交BA的延长线于N,∵QG垂直平分AC,∴AQ=CQ,∵BD平分∠ABC,QM⊥BC,QN⊥BA,∴QM=QN,∴Rt△QNA≌Rt△QMC(HL),∴NA=MC,∵QM=QN,BQ=BQ,∴Rt△QNB≌Rt△QMB(HL),∴NB=MB,∴BC=BM+MC=BN+MC=AB+AN+MC,∴7=4+2MC,∴MC=1.5.【点睛】本题主要考查了角平分线的定义和性质,三角形外角的性质,线段垂直平分线的性质,全等三角形的判定与性质等知识,作辅助线构造全等三角形是解题的关键.【过关检测】一、选择题1.(2023春·四川成都·八年级统考期末)如图,在ABC 中,DE 是AC 边的垂直平分线,分别交BC AC 、于D 、E 两点,连接AD ,25BAD ∠=︒,35C ∠=︒,则B ∠的度数为()A .70︒B .75︒C .80︒D .85︒【答案】D 【分析】利用垂直平分线的性质,可得35DAC C ∠=∠=︒,根据三角形内角和定理,可得B ∠的度数.【详解】解:DE 是AC 边的垂直平分线,35DAC C ∴∠=∠=︒,根据三角形内角和定理,可得18085B BAD DAC C ∠=︒-∠-∠-∠=︒,故选:D .【点睛】本题考查了垂直平分线的性质,三角形内角和定理,熟练利用垂直平分线的性质是解题的关键.2.(2023春·四川达州·八年级统考期末)如图,点P 为定角AOB ∠平分线上的一个定点,且MPN ∠与AOB ∠互补.若MPN ∠在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论中,不正确的是()A .OM ON +的值不变C .MN 的长不变【答案】C 【分析】如图作PE OA ⊥于E ∠∠EPM FPN =,由OP 平分∵∠∠90PEO PFO ==︒,∴∠∠180EPF AOB +=︒,∵∠∠180MPN AOB +=︒,∴∠∠MPN EPF =,∴∠∠EPM FPN =,∠故选:C【点睛】本题主要考查角平线的性质定理、全等三角形的判定和性质;能够结合角平分线的性质定理作出角平分线上点到两边的垂线段,构建全等三角形是解题的关键.二、填空题【答案】6【分析】过点C 作CP AB ⊥再根据三角形的面积公式求出【详解】解:过点C 作CP ∵BD 平分ABC ∠,PE AB ⊥∴PE EF =,∴CP CE PE CE EF =+=+的最小值.∵ABC 的面积为18,AB =性,是一道比较好的题目.三、解答题(1)如图1,若DE OB ∥.①DEO ∠的度数是︒,当DP OE ⊥时,x =②若EDF EFD ∠=∠,求x 的值;(2)如图2,若DE OA ⊥,是否存在这样的x 的值,使得说明理由.②∵20DEO ∠=︒,EDF EFD ∠=∠,∴80EDF ∠=︒,又∵140ODE ∠=︒,∴1408060ODP ∠=︒-︒=︒,∴60x =;(2)存在这样的x 的值,使得4EFD EDF ∠=∠.分两种情况:①如图2,若DP 在DE 左侧,∵DE OA ⊥,∴90EDF x ∠=︒-︒,∵20AOC ∠=︒,∴20EFD x ∠=︒+︒,当4EFD EDF ∠=∠时,()20490x x ︒+︒=︒︒﹣,解得68x =;②如图3,若DP 在DE 右侧,∵90EDF x ∠=︒-︒,18020160EFD x x ∠=︒-︒-︒=︒-︒,∴当4EFD EDF ∠=∠时,()160490x x ︒-︒=︒-︒,解得104x =;综上所述,当68x =或104时,4EFD EDF ∠=∠.(1)如图1,求BGC ∠的度数;(2)如图2,求证:EG FG =;(3)如图3,过点C 作CD EC ⊥交BF 延长线于点D ,连接AD ,点N 在BA 延长线上,连接NG 交AC 于点M 使DAC NGD ∠=∠,若:1:2EB FC =,10CG =,求线段MN 的长.【答案】(1)120︒(2)见解析∴60BGH CGH ∠=∠=︒,∵60BGE CGF GBC GCB ∠=∠=∠+∠=∴G BGH C CG GH B E F ∠∠=∠=∠=,∵GBC GBE ∠=∠,BG BG=∴BGE BGH ≌△△,∴EG GH =,∵CE 平分ACB ∠,∴2ACB ACE ∠=∠,∵CD EC ⊥,∴90ECD ∠=︒,∴90ACE ACD ∠+∠=︒,∵180ACB ACP ∠+∠=︒,∴2ACP ACD ∠=∠,∴CD 平分ACP ∠,∵DR AC ⊥,DP BC ⊥,∴DR DP =,∵BF 平分ABC ∠,DR AC ⊥,DQ AB ⊥,∴DP DQ =,∴DR DQ =,∴AD 平分QAC ∠,∵60BAC ∠=︒,∴60DAQ DAC ∠=∠=︒,∴60NGD DAC ∠=∠=︒,由(1)得120BGC ∠=︒,∴18060BEG FGC BGC ∠=∠=︒-∠=︒,∵60MGF ABF BNG ∠=∠+∠=︒,60FGC FBC ECB ∠=∠+∠=︒,(1)如图1,请指出AB 与PB 的数量关系,并说明理由.(2)如图2,当P ,Q 两点都在射线ON 的反向延长线上时,线段AB ,PB 是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由.【答案】(1)AB PB =,理由见解析(2)存在,理由见解析【分析】(1)连接BQ ,根据BC 垂直平分OQ ,可知BO BQ =,则BOQ BQO ∠=∠,根据OF 平分MON ∠,则AOB BOQ ∠=∠,即AOB BQO ∠=∠,根据OA QP =,可知AOB PQB △≌△,则可知AB PB =;(2)如图,连接BQ ,根据BC 垂直平分OQ ,可知BQ BO =,CQ CO =结合条件可证BQC BOC △≌△,则BQO BOQ ∠=∠,根据OF 平分MON ∠,BOQ FON =∠∠,可知AOF FON BOQ ∠=∠=∠,则AOF BQO =∠∠,进而可知AOB PQB =∠∠,由此可证AOB PQB △≌△(SAS ),则AB PB =.【详解】(1)解:AB PB=理由如下:连接BQ∵BC 垂直平分OQ∴BO BQ=∴BOQ BQO∠=∠∵OF 平分MON∠∴AOB BOQ∠=∠∴AOB BQO∠=∠∵OA QP=∴AOB PQB△≌△∴AB PB =;(2)存在,理由:如图,连接BQ ,∵BC 垂直平分OQ ,∴BQ BO =,CQ CO=在BQC 和BOC 中,BC BC CQ CO BQ BO =⎧⎪=⎨⎪=⎩∴BQC BOC △≌△(SSS )∴BQO BOQ ∠=∠,∵OF 平分MON ∠,BOQ FON =∠∠,∴AOF FON BOQ ∠=∠=∠,∴AOF BQO =∠∠,∴AOB PQB =∠∠,在△AOB 和△PQB 中,OA PQ AOB PQB BO BQ =⎧⎪∠=∠⎨⎪=⎩【知识回顾】(1)如图1,P 是BOA ∠的平分线上的一点,PE OB ⊥于点E ,作PD OA ⊥于点D ,试证:【深入探究】(2)如图2,在ABC 中,BD 为ABC ∠的角平分线交于AC 于D 点,其中10,AB BC AD +=BD Q 平分BAC ∠,DM DN ∴=,11,22ABD CBD S AB DM S BC =⋅= ABD S AB S BC∴= ,∴BC∥EF由①知:∠CBP=90°∴BP⊥EF∵EB=EP∴EF是线段BP的垂直平分线∴PF=BF∴∠PFE=∠BFE=30°(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ∵EC=EP,∠DEC=∠QEP∴△QEP≌△DEC(SAS)则PQ=DC=DB∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线∴QF=DF∵CD=AD∴∠CDA=∠A=60°∴∠CDB=120°∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP ∴△FQP≌△FDB(SAS)∴∠QFP=∠BFD∵EF是DQ的垂直平分线∴∠QFE=∠EFD=30°(1)【理解运用】如图2,在ABC 中,D 为BC 上一点,点D ,E 关于直线AB 对称,连接判断点B 是否为点D ,F 关于直线AB 的“等角点”,并说明理由;(2)【拓展提升】如图2,在(1)的条件下,若70A ∠=︒,AB AC =,点Q 是射线EF 上一点,且点D ,Q 角点”为点C ,请利用尺规在图2中确定点Q 的位置,并求出BQC ∠的度数;(3)【拓展提升】∵D 、E 关于AB 对称,∴BE BD =,AB DE ⊥,∴ABE ABC ∠=∠,∵ABE MBF Ð=Ð,∴ABC MBF Ð=Ð,∴点B 是点D ,F 关于直线AB 的“等角点”;(2)如图2,∵70A ∠=︒,AB AC =,∴55ABC ACB ∠=∠=︒.∵点D ,Q 关于直线AB ,AC 的“等角点”分别为点B 和点C ,∴55MBQ NCQ ∠=∠=︒,∴70CBQ BCQ ∠=∠=︒,∴40BQC ∠=︒;(3)如图3,。

中考数学专题模型—【专题5】角平分线模型探究(教师版)

中考数学专题模型—【专题5】角平分线模型探究(教师版)

【专题5】角平分线模型探究【回归概念】(一)定理:角平分线定义(Angle bisector definition)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。

三角形三条角平分线的交点叫做三角形的内心。

三角形的内心到三边的距离相等,是该三角形内切圆的圆心。

1.角平分线分得的两个角相等,都等于该角的一半。

(定义)2·角平分线上的点到角的两边的距离相等。

3.三角形的三条角平分线交于一点,称作三角形的内心。

三角形的内心到三角形三边的距离相等。

4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。

(二)与角平分线相关的模型1.角平分线+平行线—等腰三角形(见下图1)2.过角平分线上的点作角两边的垂线(见下图2)3.角平分线的两端过角的顶点取相等的两条线段构造全等三角形(见下图3)4.过角平分线上一点作角平分线的垂线,从而得到等腰三角形(见下图4)【规律探寻】1.两个内角平分线的夹角:三角形两内角的平分线的夹角等于90°与第三个内角的一半的和。

2.一个内角平分线和一个外角平分线的夹角三角形一内角与另外一外角的平分线的夹角等于第三个内角的一半。

3.两个外角平分线的夹角三角形两个外角的平分线的夹角等于90°与第三个内角的一半的差。

【典例解析】例题1:如图,要在S区建一个贸易市场,使它到铁路和公路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处(比例尺为1︰20000)?【点拨】根据角平分线的判定定理,要求作的点到两边的距离相等,一般需作这两边直线形成的角的平分线,再在这条角平分线上根据要求取点.【解析】解:作夹角的角平分线OC,截取OD=2.5cm ,D即为所求.【例题2】已知:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足分别为D,E,F.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE.同理PE=PF.∴PD=PE=PF.即点P到三边AB,BC,CA的距离相等.【达标检测】1. (2018·湖南省常德·3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.2. (2018•扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠B CD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.3. (2019•广西北部湾经济区•3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A. 40°B. 45°C. 50°D. 60°【答案】C【分析】利用等腰三角形的性质和基本作图得到CG⊥A B,则CG平分∠ACB,利用∠A=∠B和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解析】解:由作法得CG⊥AB,∵AB=AC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°-40°-40°=100°,∴∠BCG=∠ACB=50°.故选:C.4. (2018•山东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.5. (2018•广安)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF= 2 .【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答.【解答】解:作EH⊥OA于H,∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°,∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2,故答案为:2.6. (2018•德州)如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为.【分析】过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等可得CF=CM,进而可得答案.【解答】解:过C作CF⊥AO,∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF,∵OC=5,OM=4,∴CM=3,∴CF=3,故答案为:3.7. 如图所示,已知△ABC中,PE∥AB交BC于点E,PF∥AC交BC于点F,点P是AD上一点,且点D 到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由.解:AD平分∠BAC.理由如下:∵D到PE的距离与到PF的距离相等,∴点D在∠EPF的平分线上.∴∠1=∠2.又∵PE∥AB,∴∠1=∠3.同理,∠2=∠4.∴∠3=∠4,∴AD平分∠BAC.8. 如图,在直角△ABC中,AC=BC,∠C=900,AP平分∠BAC,BD平分∠ABC;AP,BD交于点O,过点O 作OM⊥AC,若OM=4.(2)若△ABC的面积为32,求△ABC的周长.解:连接OC1112221()21432642ABC AOC BOC AOBS S S S AB OE BC ON AB OM OM AB BC OM ∆∆∆∆=++=⋅+⋅+⋅=++=⨯⨯=9. (2018•宜昌)如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E . (1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.【分析】(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.10. 如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.分析:(1)根据角平分线性质得出OR=OQ=OP,根据勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角平分线模型
授课日期时间
主题
教学内容
1.熟练掌握与角平分线相关的性质;
2.会根据角平分线模型分析证明.
1.角平分线的性质定理:角平分线上的点到这个角的两边的距离相等(作用:证明两条线段相等);2.角平分线的性质定理逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点在这个角的角平分线上。

(作用:证明两角相等或一条射线是一个角的角平分线).
3.还有哪些性质或定理与角平分线有关?
角平分线+平行线→等腰三角形:
如图,已知BP平分ABC
∠,//
PA BC,则AB AP
=;
如图,已知BP平分ABC
∠,//
EF PB,则BE BF
=.
N
B
M
P
C
A
B
P
C
A
F
E
三线合一(利用角平分线+垂线→等腰三角形):
如图,已知AD平分BAC
∠,且AD BC
⊥,则AB AC
=,BD CD
=.
C
D
A
B
【例1】如图:已知在ABC
∆中,ABC
∠的平分线与ACB
∠的外角平分线交于点D,DE∥BC,交AB于点E,交AC于点F,求证:FC
BE
EF-
=.
F
E D
A
B C M 【例2】如图,已知在ABC
∆中,
60
=
∠B,ABC
∆的两条角平分线AD CE
、相交于点O,求证:AC
CD
AE=
+.
D
E
O
B C
A
【例3】如图,已知ABC ∆中CD AC AB BAC ,,90==∠
垂直于ABC ∠的平分线BD 于D ,BD 交
AC 于E ,求证:CD BE 2=.
E
D C
A
B
【例4】已知如图在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,∠A 的平分线交CD 于F ,BC 于E ,过点E 作EH ⊥AB 于H .
求证:(1)CF =EH . (2)四边形CEHF 是菱形.
1.已知:如图,平行四边形ABCD各角的平分线分别相交于点E,F,G,H,求证:四边形EFGH是矩形.
2.已知:如图,AD
CD
AC
AB
CAD
BAD⊥
>

=
∠,
,于点H
D,是BC中点,求证:()
AC
AB
DH-
=
2
1

H
D C
A
B
3.如图,已知∠BAC =90°,AD ⊥BC 于点D ,∠1=∠2,EF ∥BC 交AC 于点F .试说明AE =CF .
2
1F
E D
A
B
C。

相关文档
最新文档