关于导热问题的数值解法课件

合集下载

第4章-导热问题的数值解法PPT

第4章-导热问题的数值解法PPT
∴ x = 0.6 × = 0.88 m 4aτ = 0.6 × 4 × 1.38 × 10 − 7 × 45 × 24 × 3600 m
一维非稳态导热
Bi≤0.1
集中参数法
0.06<Fo<0.2
一维非稳态导热完 全级数解
Bi>0.1
物体形状比 较简单
正规状况阶段的简化 解法 物体形状比较 Fo<0.06 复杂? 复杂? 半无限大物体
λ 43 .3 a = = m 2 / s = 1.18 × 10 − 5 m 2 / s ρc 7790 × 470
τ =
Fo(V / A )2
a
27 .51 × (0.039 )2 = s = 0.98h −5 1.18 × 10
例题3 例题 地面下的埋管是常见的工程与生活设施。 地面下的埋管是常见的工程与生活设施。考虑埋管 深度的一个重要因素是在当地的气候条件下, 深度的一个重要因素是在当地的气候条件下,埋管 处的温度不会导致管内流体冻结或者凝固。 处的温度不会导致管内流体冻结或者凝固。 以输送工业及民用水的埋管为例, 以输送工业及民用水的埋管为例,埋管处的温度不 能低于0° 。设某地冬天的地表温度为10° , 能低于 °C。设某地冬天的地表温度为 °C,后 突然受冷空气侵袭,地表温度下降到-15° , 突然受冷空气侵袭,地表温度下降到 °C,并维 天不变, 持45天不变,试确定此种条件下,45天后地面下温 天不变 试确定此种条件下, 天后地面下温 度为0° 的位置 土壤的物性取c=1840J/(kg·k), 的位置。 度为 °C的位置。土壤的物性取 λ=0.52 W/(m·K), ρ=2050kg/m3. 解: 采用第一类边界条件下半无限大物体的非稳态 导热模型,物性参数为常数。 导热模型,物性参数为常数。

《传热学》教学课件—第4章 导热问题数值解法基础

《传热学》教学课件—第4章 导热问题数值解法基础

基本泰勒 展开式
一阶导数
t i 1,
j
ti,
j
t x
i,
j
x
2t x 2
i, j
x 2
2!
3t x 3
i, j
x 3
3!
t i 1,
j
ti,
j
t x
i,
j
x
2t x 2
i, j
x 2
2!
3t x 3
i,
j
x 3
3!
二阶导数中心差分
向前 差分
向后 差分
中心 差分
t x
i, j
F
o
a
x2
稳定性条件 14Fo0
11
隐式格式
tin1,j tin,j y tin1,j tin,j y tin,j1 tin,j x tin,j1 tin,j x
x
x
y
y
c x y tin,j tin,j1
或 xy 时:
14Fotin,j Fo tin1,j tin1,j tin,j1tin,j1 tin,j1
ti1, j ti, j
x
Ox
2t x 2
i, j
ti1, j
ti1, j
x 2
2ti, j
O
x 2
t x
i, j
ti, j
ti1, j
x
Ox
同理,y方向二阶导数中心差分
t x
i, j
ti1, j ti1, j
2x
O
x 2
2t y 2
i, j
ti, j1 ti, j1
tin,j1 Fo 2tin1,j tin,j1tin,j12Bit f 14Fo2BiFotin,j

导热问题的数值解法-PPT精选文档

导热问题的数值解法-PPT精选文档

例:一圆形金属棒,长L=0.5m,横截面积为A=0.01m2,其 导热系数为常数1000W/m.℃,无内热源,金属棒两端温度 已给定,分别为100℃、500℃,且不随时间变化,金属棒 径向的温度变化忽略不计。求该金属棒内的温度分布。 解:
t t t q t V 2 2 2 x y z c

差分方程的建立-热平衡法 j n
t Q qF F n t t i 1 ,j i ,j Q y 1 i 1 ,j i ,j j y x t t i 1 ,j i ,j Q y 1 i 1 ,j i ,j x
x V y 1 2
n 1
Q t t y 1 f i , j f i , j
Q Q Q Q 0 i 1 , j i , j f i , j i , j 1 i , j i , j 1 i , j
Q i ,j 1 i ,j t t i ,j 1 i ,j y x 1

y
m 1 n 1
i, j1 i1 , j
i1 , j i, j1
y
11 导 热 问 题 的 数 值 解 法
i, j
x
i1 , j i, j1
y
稳态导热的有限差分方法
j y
11 导 热 问 题 的 数 值 解 法
i, j
x
2t 2t 2 0 2 x y
0,0
ix
i m
d2t ti 2 ti ti 1 1 2 2 dx x i
2 2 2

三维稳态导热问题数值求解 实验内容的ppt讲解

三维稳态导热问题数值求解 实验内容的ppt讲解

第一类边界条件
tAB=ti,M=200℃; tBC=tL,j=100℃ ; tCD=ti,0=50℃; tDA=t0,j=50℃;
上边界200℃
其余边界50℃
导热系数为常数、稳态、无内热源时的导 热微分方程式(控制方程)为
t t t 2 2 0 0℃; tbob=50℃; tlb=50℃; trb=50℃; tfb=50℃; tbab=50℃;
划分为10×10×10的三维网格后,Δx=Δy=Δz
实验一、三维稳态导热问题数值求解
一正方体金属块,其长宽 高均为0.1m,上边界面温 度为200℃,其他5个面 温度均为50℃,利用C语 言在10×10×10三维网 格上编写该三维稳态导热 问题计算程序,并求出图 2中所示中间面的温度分 布。
实验一、三维稳态导热问题数值求解

一正方体金属块,其长宽高均为0.1m,上边界面温度 为200℃,其他5个面温度均为50℃,利用C语言在 10×10×10三维网格上编写该三维稳态导热问题计 算程序,并求出图中所示中间面的温度分布。
a /( c) ,称为热扩散率。 式中,
对于二维问题,导热微分方程式为
2 2 t t t a x 2 y 2
初始条件(时间条件)
t 0 t0 50 C
第一类边界条件
t
tAB=200℃; tBC=100℃; tCD=50℃; tDA=50℃;
划分为10×5的二维网格后,Δx=Δy 内节点离散方程(显式差分格式)
t i , j Fo t i 1, j t i 1, j t i, j 1 t i , j 1 1 4Fot i , j
k 1 k k k k k

第4章 导热问题的数值解法共30页

第4章 导热问题的数值解法共30页

若取上面式右边的前三项,并将式①和式③相加 移项整理即得二阶导数的中心差分:
2t tm 1 ,n2 tm ,ntm 1 ,no( x2)
x2m ,n
x2
截断误差
同样可得:
未明确写出的级数余项中
的Δx的最低阶数为2
2t tm ,n 12tm ,ntm ,n 1o( y2)
y2m ,n
y2
28.05.2020 - 8 -
(3) 实验法: 是传热学的基本研究方法,a 适应性不好; b 费用昂贵
数值解法:有限差分法(finite-difference)、 有限元法(finite-element) 、 边界元法(boundary- element)、 分子动力学模拟(MD)
28.05.2020 - 2 -
第4章 导热问题的数值解法——§4-1 导热问题数值求解的基本思
2 例题条件
y
h3t f
W
t0
t2 x 2
t2 y 2
0
x 0, t t0
x H,
t x
h2 (t
tf)
h2t f
y 0,
t y
h1 (t
tf)
yW ,
t y
h3 (t
tf)
h1t f
Hx
二维矩形域内稳态无内热源,
常物性的导热问题
28.05.2020 - 4 -
第4章 导热问题的数值解法———§4-1 导热问题数值求解的基本思想
第4章 导热问题的数值解法———§4-1 导热问题数值求解的基本思想
以二维、稳态、有内热源的导热问题为例 此时:
Φ 上 Φ 下 Φ 左 + Φ 右 Φ v 0 左Ad dxtyd dxt

东南大学传热学课件第四章导热问题数值解法2

东南大学传热学课件第四章导热问题数值解法2

显式差分格式稳定性分析
由内部节点差分方程可见,在节点n上,i+1时刻 的温度是在该点i 时刻温度的基础上考虑了左右相 邻两点温度的影响后得出的。现在,假设相邻两 点的温度不变,那么合理的情况是:i时刻节点n的 温度越高,则其相继时刻(i+1时刻)的温度也越 高;反之,i时刻节点n的温度越低,则其相继时 刻的温度也越低。所以,在差分方程中要满足这 i 1 i t 种合理性的条件,则差分方程中 n 与 tn 前面的系 i 1 数必须保持同方向变化。由于 tn 的系数大于零, i 因此 tn 前面的系数也必须大于零 。
h, t f
h, t f
2
x
控制方程
解:由于问题的对称性,只要研究一半即可,此时,该问 题的控制方程为
t 2t a 2 0 x , 0 x t x,0 t0 0 x t x, 0 x x 0 t x, h t x , t x x
ydy
m,n+1

m+1,n
y y x x
左侧面导入元体的热量 右侧面导入元体的热量
i i tm t 1, n m,n
i i tm t 1, n m,n
m-1,n
m,n
x
m,n-1
区域离散化
• 将所研究平板的一半N等分, 共有N+1个节点,其中节 点1在平板中心截面上,节 点N在平板右侧面上,如图 所示 • 两个节点之间的距离为 x • 节点-1与节点2换热情况对 称,固有相同的温度 • 时间步长取
-1
n=1 2
3
N-1
N

导热问题的数值解法课件.ppt

导热问题的数值解法课件.ppt


2tm,n y2

tm,n1
m,n
x y
tm,n

1 4
(tm1,n
tm1,n

tm,n1
tm,n1



x2 )
2t x 2

2t y 2



=0时:
0
tm,n

1 4
(tm1,n

tm1,n

tm,n1

tm,n 1 )
§4-2 稳态导热问题的数值解法 长江大学机械工程学院 School of Mechanical Engineering
三、建立节点物理量的代数方程(离散方程) 内节点 (2) 热平衡法
基本思想:对每个有限大 y
小的控制容积应用能量守
恒,从而获得温度场的代
数方程组,它从基本物理
现象和基本定律出发,不
必事先建立控制方程,依 据 能 量 守 恒 和 Fourier 导
t0
热定律即可。
h3tቤተ መጻሕፍቲ ባይዱf
(m,n+1)
(m,n)
(m-1,n)
§4-1导热问题数值求解的基本思想长江大学机械工程学院 School of Mechanical Engineering
数值求解的步骤
建立控制方程及定解条件
确定节点(区域离散化)
设立迭代初值
建立节点物理量的代数方程
求解代数方程组
改进初场
是否收敛 否
是 解的分析
§4-1导热问题数值求解的基本思想长江大学机械工程学院 School of Mechanical Engineering
为什么要建边界 节点离散方程?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
h3t f
t0
二维矩形域内
稳态无内热源,
常物性的导热
h2t f
问题
h1t f
x
第四章 导热问题的数值解法
6
控制方程:是指描写物理问题的微分方程 针对图示的导热问题,它的控制方程(即导热微分方程)为:
2t 2t 0
x2 y 2
其四个边的边界条件为三个边界条件中的一种, 三个边界条件为:
tw C1
关于导热问题的数值解法
§4-0 引言
1 求解导热问题的三种基本方法:(1) 理论分析法;(2) 数 值计算 法;(3) 实验法
2 三种方法的基本求解过程
3 (1) 所谓理论分析方法,就是在理论分析的基础上,直 接对微分方程在给定的定解条件下进行积分,这样获得的 解称之为分析解,或叫理论解;
4 (2) 数值计算法,把原来在时间和空间连续的物理量的 场,用有限个离散点上的值的集合来代替,通过求解按一 定方法建立起来的关于这些值的代数方程,从而获得离散 点上被求物理量的值;并称之为数值解;
内部节点: Φ m 1 , n Φ m 1 , n Φ m , n 1 Φ m , n 1 0
(m,n+1)
y
Φ 上 Φ 下 Φ 左 + Φ 右 0 (m-1,n)
y
y
x
o
x
第四章 导热问题的数值解法
(m, n) (m,n-1)
x
(m+1,n)
16
以二维、稳态、有内热源的导热问题为例 此时:
(nt)w C2
(nt)wh(twtf )
第四章 导热问题的数值解法
7
3 基本概念:控制容积、网格线、节点、界面线、步长
(m,n) N
n
y
y
x x
m
第四章 导热问题的数值解法
二维矩形 域内稳态 无内热源, 常物性的 导热问题
M
8
用一系列与坐标轴平行的网格线把求解区域划分成若干个子区 域,用网格线的交点作为需要确定温度值的空间位置,称为节点 ( 结点 ) ,节点的位置用该节点在两个方向上的标号 m , n 表 示。
第四章 导热问题的数值解法
2
(3) 实验法 就是在传热学基本理论的指导下,采用对所 研究对象的传热过程所求量的方法
3 三种方法的特点 (1) 分析法 a 能获得所研究问题的精确解,可以为实验和数值计算 提供比较依据; b 局限性很大,对复杂的问题无法求解; c 分析解具有普遍性,各种情况的影响清晰可见
y2m ,n
y2
未明确写出的级数余项
中的ΔX的最低阶数为2
第四章 导热问题的数值解法
12
对于二维稳态导热问题,在直角坐标中,其导热 微分方程为:
2t 2t v 0 x2 y2
其节点方程为:
ti1,j 2ti,j ti1,j x2
ti,j12ty i,2 j ti,j1v,i,j
0
第四章 导热问题的数值解法
第四章 导热问题的数值解法
10
第四章 导热问题的数值解法
11
若取上面式右边的前三项,并将式①和式③相加 移项整理即得二阶导数的中心差分:
2t tm 1 ,n2 tm ,ntm 1 ,no ( x2)
x2m ,n
x2
同样可得:
截断误差
2t tm ,n 12tm ,ntm ,n 1o( y2)
此时:
tm-1,n
tm,n
tm+1,n
左 yd d x t ytm 1 ,n xtm ,n

ytm1,ntm,n x
(m-1,n) (m,n) (m+1,n)
上xtm,n 1ytm,n 下xtm,n 1ytm,n
内热源:Φ v Φ V Φ x y
第四章 导热问题的数值解法
18
Φ 上 Φ 下 Φ 左 + Φ 右 Φ v 0
y tm 1 ,n tm ,n y tm 1 ,n tm ,n x tm ,n 1 tm ,n x tm ,n 1 tm ,n
x
x
y
y
Φ x y 0
xy时:tm 1 ,n tm 1 ,n tm ,n 1 tm ,n 1 4 tm ,n x 2 Φ 0
相邻两节点间的距离称步长。 △x, △y 每个节点都可以看成是以它为中心的一个小区域的代表把节点 代表的小区域称为元体(又叫控制容积)。
第四章 导热问题的数值解法
9
4 建立离散方程的常用方法:
(1) Taylor(泰勒)级数展开法; (2) 多项式拟合法; (3) 控制容积积分法; (4) 控制容积平衡法(也称为热平衡法)
13
(2) 控制容积平衡法(热平衡法)
基本思想:对每个有限大小的控制容积应用能量守恒,从 而获得温度场的代数方程组,它从基本物理现象和基本定 律出发,不必事先建立控制方程,依据能量守恒和Fourier 导热定律即可。
能量守恒:流入控制体的总热流量+控制体内热源生成热 = 流出控制体的总热流量+控制体内能的增量
第四章 导热问题的数值解法
3
(2) 数值法:在很大程度上弥补了分析法的缺点,适应性 强,特别对于复杂问题更显其优越性;与实 验法相比成本低
(3) 实验法: 是传热学的基本研究方法,a 适应性不好; b 费用昂贵
数值解法:有限差分法(finite-difference)、 有限元法(finite-element) 、 边界元法(boundary- element)、 分Ad dxtyd dxt
可见:当温度场还没有求出来之前,我们并不知道 dt dx 所以,必须假设相邻节点间的温度分布形式,这里我们 假定温度呈分段线性分布,如图所示
第四章 导热问题的数值解法
17
可见,节点越多,假设的分段线性分布越接近真实的温度布。
第四章 导热问题的数值解法
4
§4-1 导热问题数值求解的基本思想 及内部节点离散方程的建立
1物 理 问 题 的 数 值 求 解 过 程
建立控制方程及定解条件
确定节点(区域离散化)
设立温度场的迭代初值
建立节点物理量的代数方程
求解代数方程
改进初场
是否收敛 否
是 解的分析
第四章 导热问题的数值解法
5
2 例题条件
即: i v o
单位:[W ]
第四章 导热问题的数值解法
14
i v o i ( o ) v
即:从所有方向流入控制体的总热流量 + 控制体内热源生成热 = 控制体内能的增量
注意:上面的公式对内部节点和边界节点均适用
第四章 导热问题的数值解法
15
稳态、无内热源时: 从所有方向流入控制体的总热流量=0
相关文档
最新文档