热传导方程热传导方程的导出及其定解条件
热传导方程
热传导方程引言热传导方程是描述物质内部温度分布随时间演变的一种偏微分方程。
它广泛应用于热传导领域,如材料科学、工程热学、地球科学等。
热传导方程描述了热量在物质内部的传递方式,是研究热传导过程和温度场分布的重要工具。
热传导方程的一维形式考虑物质在一维情况下的热传导,热传导方程可以写作:∂u/∂t = α * ∂²u/∂x²其中,u为物质内部的温度,t为时间,x为空间坐标,α为热扩散系数。
热传导方程的二维形式对于二维的情况,假设热传导方程适用于平面内任意点,可以写作:∂u/∂t = α * (∂²u/∂x² + ∂²u/∂y²)其中,u为物质内部的温度,t为时间,x和y为平面内的空间坐标,α为热扩散系数。
热传导方程的三维形式在三维情况下,热传导方程可以写作:∂u/∂t = α * (∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²)其中,u为物质内部的温度,t为时间,x、y和z为空间坐标,α为热扩散系数。
定解条件为了求解热传导方程,需要给定一些定解条件。
常见的定解条件有:•初始条件:指定初始时刻的温度分布,即u(x, y, z, 0),其中u是温度,x、y和z分别是空间坐标,0表示初始时刻。
•边界条件:指定物体表面的温度或热流密度。
常见的边界条件有:第一类边界条件(温度指定),即u(x, y, z, t) = g(x, y, z, t);第二类边界条件(热流密度指定),即-k * ∂u/∂n = q(x, y, z, t),其中k为导热系数,n为法向量,q为热流密度。
热传导方程的数值解热传导方程是一个偏微分方程,通常无法得到解析解。
因此,需要借助数值计算方法来求解。
常见的数值方法有有限差分法、有限元法和边界元法等。
在有限差分法中,可以将空间离散为若干个网格点,时间离散为若干个时间步长。
§1 热传导方程及其定解问题的导出
∫t
t2
1
t2 ∂u dt ∫∫∫ cρ dxdydz = ∫ dt ∫∫∫ [k∆u + F ( x , y , z , t )]dxdydz t1 ∂t Ω Ω
的任意性知: 由[t 1 , t 2 ]及 Ω 的任意性知:
∂u cρ = k∆u + F ( x , y , z , t ) ∂t
9
上页 下页 返回
2 2 2
r 如果 A = ∇u 由高斯公式: 由高斯公式:
∂Ω
∂Ω
Ω
r ∂u r ∫∫ ∇u ⋅ dS = ∫∫ ∂n dS = ∫∫∫ ∇(∇u)dV = ∫∫∫ ∆udV ∂Ω ∂Ω Ω Ω
4
上页 下页 返回
1.热传导方程的导出 热传导方程的导出
物理模型:在三维空间中,考虑一均匀、各向同性 的物体 G(其边界为分片光滑曲面 Γ ) 假定其内部有 , 研 热源,并且与周围介质有热交换。 究物体内部温度的 分布和变化。 物理定律:物体内部由于各部分温度不同,产生热 量的传递。热传导过程中遵循 能量守恒定律,即,物 体 内 部 热 量 的 增 加 等 于 通 过 物 体的 边 界 流入 的 热 量 与 由物体内部的热源所产生的热量的总和:
5
上页 下页 返回
在G 内任取一小块 区域 Ω ,其 边界为闭曲面 ∂Ω 。
热量 热量 通过边界的流入量 热源的生成量 - = + t=t2 t=t1 t1≤ t ≤t2 t1≤ t ≤t2
Q1 数学推导: 数学推导:
Q2
Q3
①在时间间隔[ t1 , t 2 ]内,物体 Ω 的温度由 u( x , y , z , t1 ) 变 所需要的热量 热量为 到 u( x , y , z , t 2 )所需要的热量为Q1 :
热传导与导热方程
热传导与导热方程热传导是物质内部热量传递的过程,可以通过研究导热方程来描述。
导热方程是一个重要的热传导模型,在各个领域都有广泛的应用。
本文将对热传导与导热方程进行详细解析。
一、热传导的基本概念热传导是物质中热量的传递过程,有三种基本方式:传导、对流和辐射。
其中,传导是通过固体或液体的分子热运动来传递热量。
固体传导的机制主要是由于颗粒振动引起的传热,而液体传导主要是由于颗粒原子间的碰撞引起的传热。
二、导热方程的概念和含义导热方程是描述热传导过程的数学模型,可以应用于各种热传导问题的求解。
它描述了物体内部温度的分布随时间的演变。
导热方程可以写成如下形式:∂T/∂t = α∇²T其中,∂T/∂t表示温度在时间上的变化率,∇²T表示温度梯度的二阶空间导数。
α是热扩散率,是材料的物理特性,与材料的热导率和比热容有关。
三、导热方程的推导过程导热方程的推导过程涉及热传导原理和假设条件。
首先,我们假设热传导介质是一个连续媒体,其内部不存在任何孔隙或断裂。
其次,我们假设热传导的过程是线性的,即温度梯度和热流密度成正比。
最后,我们应用热传导原理和能量守恒定律,推导出导热方程。
四、导热方程的边界条件和初值条件在使用导热方程求解具体问题时,需要给出合适的边界条件和初值条件。
边界条件包括温度、热流密度或者热通量在物体边界上的数值。
初值条件则是指初始时刻物体内部温度的分布情况。
五、导热方程的求解方法导热方程是一个二阶偏微分方程,可以通过数值方法或解析方法进行求解。
常见的数值方法有有限差分法、有限元法和有限体积法。
解析方法可以通过分离变量法或变换法求解。
六、导热方程的应用导热方程在物理学、工程学、材料科学等领域有广泛的应用。
例如,在热传导实验中,我们可以通过测量温度的变化来验证导热方程。
在工程设计中,我们可以利用导热方程来研究材料的热传导性能,以便优化设计。
在材料科学领域,导热方程可以帮助我们了解材料结构对热传导性能的影响。
热传导方程的导出及其定解问题的导出
热传导方程的导出及其定解问题的导出1. 热传导方程的导出考察空间某物体G 的热传导问题。
以函数u (x ,y ,z ,t )表示物体G 在位置(x ,y ,z )及时刻t 的温度。
依据传热学中的Fourier 实验定律,物体在无穷小时段dt 内沿法线方向n 流过一个无穷小面积dS 的热量dQ 与物体温度沿曲面dS 法线方向的方向导数学成正比,即o n d udQ =-k (x ,y ,z )dSdt (1-1)o n 其中k (x ,y ,z )称为物体在点(x ,y ,z )处的热传导系数,它应取正值。
(1-1)式中负号的出 o u现是由于热量总是从温度高的一侧流向低的一侧,因此dQ 应和异号。
o n在物体G 内任取一闭曲面r ,它所包围的区域记为0,由(1-1)式,从时刻t 到t 流进12此闭曲面的全部热量为Q =f t 2仙k (x ,y ,z)—dS\dt (1-2)4I r O nJ这里表示u沿r 上单位外法线方向n 的方向导数。
o n流入的热量使物体内部的温度发生变化,在实践间隔(t ,t )中物体温度从u (x ,y ,z ,t )121变化到u (x‘y ,z ,t2),它所应该吸收的热量是JU c (x ,y ,z )P (x ,y ,z )[u (x ,y ,z ,t )一u (x ,y ,z ,t )]dxdydz其中c 为比热,P 为密度。
因此就成立 >dt=JfJ C (x ,y ,z )P (x,y ,z)[u (x,y ,z ,12)一U (x ,y ,z ,t i )]dxdydz(1-3)假设函数u 关于变量x ,y ,z 具有二阶连续偏导数,关于t 具有一阶连续偏导数,利用格林公式,可以把(1-3)化为交换积分次序,就得到J t t 12仰(x ,y ,z )护t10O x{k 譽'O x 丿(一O u 、 +—k 二+—°y°y 丿 O z (O u 、k 一>dxdydzdt =c P JI o 丿J 「E O u dtdxdydztO t 丿dxdydzdt =0(1-4)训c P '0、由于t i,t2,0都是任意的,我们得到(1-5)式称为非均匀的各向同性体得热传导方程。
大学物理-热传导方程的定解问题
在各向同性的介质中,热流强度 q 与温度的负梯度成正比, 即
(k:热传导系数)
|q|:单位时间垂直通过等温面单位面积的热量,即 q 的方向:等温面的法线方向 (由高温指向低温) 定律的物理意义:q 正比于温度的下降率 单位时间内流入 / 流出 V 的热量为
单位时间内热源在 V 中释放 / 吸收的热量为
单位时间内,V 中介质温度升高/降低所需/放出的热量为
能量守恒定律:Q3 = Q1 + Q2 则 由 V 的任意性,得到
若介质均匀,即 k 为常量,有来自定义:,因此得到
当 V 内无热源,即 f = 0,故有
二、扩散方程 1. 扩散现象:当空间各点浓度分布不均匀时,就有粒子
从高浓度处流向低浓度处。(浓度:单位体 积中的粒子数) 2. 方程的推导 设:空间中任一小体积 V,其边界面为 S
粒子源强度:F (x, y, z, t) ——单位时间,单位体积 内产生的粒子数
求:空间各点粒子浓度 u(x, y, z, t) 的方程 V 内粒子数增加的来源:扩散 + 粒子源
扩散浓度:N ——单位时间通过垂直于 v (粒子定向运动速 度) 的单位面积的粒子数 N=uv,方向:v 的方向
对于扩散现象,有斐克定律: 扩散强度与浓度的负梯度成正比,即 D:扩散系数
扩散导致 V 内粒子增加的数量:
粒子源 V 粒子增加的数量: 内粒子数总的增加数:
因粒子数守恒,有 由 V 的任意性,得到 若 D 为常量,且设 D = a2,则
若 V 内无粒子源,即 F = 0,因而
总结:热传导:热量的传递;扩散:粒子的运动,两 者物理本质不同,但满足同一微分方程。
热传导方程
0
(1 − ξ) sin kπξdξ
例 2.3 如果有一长度为 l 的均匀细棒, 其周围以及两端 x = 0, x = l 均为绝热, 初始温度 分别为 u( x, 0) = f ( x), 问以后时刻的温度分布如何? 且证明当 f ( x) 等于常数 u0 时, 恒 有 u( x , t ) = u0 . 解: ( 2 2 ) ut = a2 u xx , ∞ ∑ kπ k π u x | x=0 = u x | x=l = 0, ⇒ u( x, t) = Ck exp − 2 a2 t cos x l l u| k=0 t=0 = f ( x). ∫ ∫ 1 l 2 l kπ C0 = f (ξ)dξ, Ck = f (ξ) cos ξdξ (k 0) l 0 l 0 l f ( x ) ≡ u0 ⇒ C0 = u0 , Ck = 0 (k 0) ⇒ u( x, t) ≡ u0 .
∞ ∑
(
例 2.5 长度为 l 的均匀细杆的初始温度为 0 ◦ C, 端点 x = 0 保持常温 u0 , 而在 x = l 和 侧面上, 热量可以发散到周围的 介质中去, 介质的温度为 0 ◦ C, 此时杆上的温度分布函数 u( x, t) 满足下述定解问题: ut = a2 u xx − b2 u, u(0, t) = u0 , (u x + Hu)| x=l = 0, u( x, 0) = 0. 试求出 u( x, t). 解: 令 u( x, t) = e−b t v( x, t) + ψ( x), 则当 ψ( x) 满足
T ′ + λa2 T = 0, X (0) = X ′ (π) = 0. k = 0, 1, 2, . . . ( 1) sin k + x. 2
数学物理方程-福州大学-江飞-2.1热传导方程及其定解问题的导出
n
k
u n
k1 u
u1 uΒιβλιοθήκη k k1u nu1
一般形式:u
u n (x,y,z)
g(x, y, z,t)
或
u
u n
g
泛定方程:u t
a2
2u x2
2u y2
2u z2
f
柯 西
初始条件 u
a2u f
问 题
t0
初 边
u g
值边
热管道 1D : ut a2uxx f
t1
则有热源的热传导方程为 ut a2u f a2u F / c .
2. 扩散方程的导出
扩散物从浓度高流向浓度低
* Nerst扩散定律
在该点的扩散系数
扩散物在无穷小时段dt内沿法线方向流过一个无穷
小面积dS的质量dm与扩散物浓度沿曲面dS法线
方向的方向导数N 成正比,即
n
t1,t2
由能量守恒:Q流入 Q吸收
t2 k(x, y, z) udSdt
t1
n
N-L公式及交换下积分次
c(x, y, z)(x, y, z)[u(x, y, z,t2) u(x, y序, z,t1)]dxdydz
t2 t1
ctudxdydzdt
利用高维N-L积分公式,
左端 t2 k(x, y, z) udSdt
dm D(x, y, z) N dSdt
n
因此类似热方程推导:
t2 D(x, y, z) NdSdt
t1
n
(N(x, y, z,t2) N(x, y, z,t1))dxdydz
tN(x, y, z,t) x DxN x DyN x DzN
第7章 热传导
5. 二维、三维非稳态导热
1. 薄壁物体非稳态导热 ----集总热容法 ( lumped capacity method ) 薄壁——当物体内部的导热热阻比物体与环境
的对流热阻小的很多时,可归结为薄壁物体的导热 问题。
集总热容法——当物体体积不大,而导热系
数又比较大,认为物体内部的温度在任意时刻都是均 匀的,好像该物体原来连续分布的质量和热容量汇 总到一点,因而只有一个温度值,这种分析法称为 总集热容法。
第一类边界条件(记为B.C.I)
直接给出边界上(任意时刻)的数值。
传热 传质
T TS
A AS
第二类边界条件(记为B.C.II)
给出边界上的导数值(梯度值、通量值)
传热 传质
q ys
T k y
S
j Ays D AB
A y
S
T 0 如某一端面(L)绝热,则可具体写为 q k x x l T 如温度分布中心对称(x =0),则写为 x 0 0 x
初始条件(I.C.)
反映研究对象的特定历史条件。 追溯了在某个初始时刻的状态。
边界条件(B.C.)
反映所研究对象是处于怎样的特定环境。 环境通过体系的边界将如何影响所研究的对象。
下面以传热为例写出相应的初始条件和边界条件。
1)初始条件
给定某时刻物体内的温度或浓度分布,写为:
传热 传质 传热 传质
三、非稳态导热
在工程问题中,需要知道当物体表面的热状态
发生变化时,物体内给定的温度变化到某一确 定值需要的时间,这也是非稳态导热问题。
在本节将着重讨论薄壁、无限大物体、厚
壁物体 非稳态导热中的 温度分布及求解 方法。
第四章热传导方程
可知,这种边界条件实际上表示温度u在表面上的法向导数是已知的,即 ∂u ∂n = g (t, x, y, z ),
(x,y,z )∈S
(1.15)
4
其中
∂u 表示u沿边界S 上的单位外法线方向n的方向导数,而g (t, x, y, z )是定义在[0, T ]× ∂n S 上的已知函数。这种边界条件称为热传导方程的::: 第二 类边界条件,又称::::::::::::: Neumann边 :::::::::::::::: 界条件。 第三类边界条件 考察介质放在另一种介质,不妨称为介质1中的情形:我们能测量
其中S 表示介质的边界,g (t, x, y, z )是定义在[0, T ] × S 上的已知函数,这里T 是一给定 的正数。这种边界条件称为热传导方程的::: 第一 类边界条件,又称::::::::::::: Dirichlet边界 条件。 :::::::::::::::: :::::::: 第二类边界条件 我们再考察另一种情况:在介质的表面上知道的不是它的表面温度 而是热量在表面各点的流速,也就是说在表面各点的单位面积上在单位时间内所流过 的热量Q是已知的。根据Fourier定律 dQ = −k ∂u dSdt ∂n
::::::::
到的只是与所考察介质接触处的介质1的温度u1 ,它与所考察介质表面上的温度u往往 并不相同。在u1 已知时研究边界条件的提法还必须利用另一个热传导实验定律,即牛 顿定律:从所考察介质流到介质1中的热量和两者的温度差成正比,即 dQ = γ (u − u1 )dSdt, (1.16)
这里的比例常数γ 称为::: 热交 换系数,它取正值。考察流过所考察介质表面S 的热量,从 :::::::::: 所考察介质内部来看它应由Fourier定律确定,而从介质1方面来看则应由牛顿定律所决 定,因此有 −k 即 γu + k ∂u = γu1 . ∂n ∂u dSdt = γ (u − u1 )dSdt, ∂n
热力学热传导的数学模型推导
热力学热传导的数学模型推导热力学热传导是研究热量在物体内部传递的过程以及温度随时间和空间的变化规律。
在热力学热传导中,需要利用数学模型来描述热传导的行为。
本文将详细推导热力学热传导的数学模型。
热传导方程是描述热传导行为的基本方程之一。
其推导基于以下假设:物体是均匀且各向同性的媒介,热传导过程不考虑对流和辐射。
根据能量守恒原理,可以得到热传导方程。
首先,我们考虑一维情况下的热传导。
设物体长度为L,则可以将其划分为无数个微小的元素,每个微小元素的长度为Δx。
假设该元素内的温度为T,由热力学第一定律可知,该元素内的净热流量可以表示为:dQ = -kA(T_x)Δt其中,dQ表示该元素内的净热流量,k为物体的热传导系数,A为该元素的横截面积,T_x表示该元素的温度梯度,Δt为时间间隔。
根据定义,温度梯度可以表示为温度对长度的导数,即:T_x = dT/dx将温度梯度代入热流量表达式中,可以得到:dQ = -kA(dT/dx)Δt对于该微小元素内的热量,可以表示为:dQ = ρcAΔT其中,ρ为物体的密度,c为物体的比热容,ΔT为该元素内的温度变化。
将两个表达式相等,可以得到:-kA(dT/dx)Δt = ρcAΔT去除A并整理后得到:ρc(dT/dx) = -k(ΔT/Δt)对右侧进行变量分离,左侧进行积分,可以得到:∫(1/ρc)dT = -∫(k/Δt)dx对两个积分进行求解,可以得到:(T - T_0)/(ρc) = -(k/Δt)(x - x_0) + C其中,T_0为初始温度,x_0为物体线性分布的起点,C为常数。
进一步整理可以得到:T - T_0 = (k/ρcΔt)(x - x_0) + C综上所述,我们推导得到一维情况下的热传导方程:T - T_0 = (k/ρcΔt)(x - x_0) + C该方程描述了一维情况下物体内部温度随时间和位置变化的规律。
对于二维和三维情况下的热传导,可以将热传导方程进行推广。
二维热传导方程导出及求解
{ ” x , y , 0 ) = o , ∈ 【 一 口 , 口 ] , Y ∈ [ 一 b , b 】
I - a , Y , f ) = “ a , Y , f ) = 0 ,Y ∈ 【 一 6 , b 】 I U y ( x , - b , t ) ~, x b) = 0 ,X  ̄ : [ - a , a ]
v ( x , y , 0 ) = 2 7 3 . 1 5 , ∈ 卜 口 】 , y  ̄ [ - b , b 】 v ( - a , y , t ) = v ( a , y , f ) = o ,y  ̄ [ - b , b 】 b , t ) : ( 五 f ) = 0 , ∈ [ 一 口 , a 】 故原方程可化解为
由于产热恒定则此时热平衡方程可改写为2其中为单位面积内热量的生成速率c为定压比热容为面密度将2简写可得到二定解条件的提出要具体确定热传导方程的解还必须给出适当的定解条件假设长方形物质初始时刻的温度为27315k即选取第二边界条件可得方程再考虑物体不向外散热则即可将方程改写三热分布方程的提出将方程统一即可得烤盘边缘的热分布方程代入方程6两端除以得到其中数由此便其中均为常数且
( 7 ) ( 8 ) ( 9 )
I g . A, 建 立直 角坐 标系, 以“ ( x , Y , f ) 表 示点 ( x , y ) 在 时刻t 的 温
度 。依据传 热学 中的 F o u r i e r 实 验定 律 ,从 时刻 t 到t 流进 此
曲面的全部热量与在时间间隔( f l , t ) 中, 它所应吸收的热量相
生
得 出 该 方 程 后 , 求 解 “ x , Y , f ) 。 令 ( , y , ) “ ) 一 盖 , 则
热传导热传导方程的推导
热传导热传导方程的推导热传导是指物质内部由高温区向低温区传递热量的过程。
热传导广泛应用于各个领域,如工程、物理学和地球科学等。
热传导方程是描述热传导过程的数学表达式。
本文将通过推导展示如何得到热传导方程。
1. 热传导基本原理热传导的基本原理是根据热量传递的分子动力学理论。
在物质内部,分子之间存在着热运动,高温区的分子会以更高的速度振动,从而传递给低温区的分子。
这种热传递是通过分子之间的碰撞和能量传递来实现的。
2. 热传导方程的推导为了推导热传导方程,我们首先需要定义一些物理量:- 温度:表示物体的热状态,用T表示。
- 热流密度:表示单位时间内通过单位面积的热量,用q表示。
- 热导率:表示物质传导热量的能力,用λ表示。
- 热传导方程:用于描述热传导过程的方程,用符号形式表示如下: q = -λ∇T其中,∇T表示温度的梯度,即温度变化的速率。
为了推导热传导方程,我们需要考虑热量在物质内部的传递过程。
假设一个空间区域Ω内的物体,我们可以将其划分为无数个小体积元,每个小体积元的体积为dV。
在Ω内,热量总是从高温区向低温区传递,而且传递的热量正比于温度梯度。
考虑Ω内任意一个小体积元dV,在时间t时刻,该小体积元所受到的热流密度q可以表示为:q = -λ∇T dV根据物质的连续性,Ω内的热量变化率等于通过Ω的表面流出的热量,即:dQ = -∇·(λ∇T) dV其中,∇·表示散度运算符,表示向各个方向上的热量流出。
根据高斯公式,上式可以进一步变形为:dQ = -λ∇^2T dV其中,∇^2表示拉普拉斯运算符,表示温度的二阶偏导数。
由于dV是任意小体积元的体积,所以可以将上式中的dV移至等式右侧,得到:dQ/dV = -λ∇^2T因为dQ/dV等于单位体积内的热量变化率,即ρc∂T/∂t(其中,ρ表示物体的密度,c表示物体的比热容),所以我们可以将上式改写为:ρc∂T/∂t = λ∇^2T这就是热传导方程的推导过程。
3热传导方程(扩散方程)
u
g ( x , y , z , t ),
( x, y, z ) ,
t 0,
(1.8)
特别地:g ( x , y , z , t ) 0 时,物体表面保持恒温。
2、第二边界条件 ( Neumann 边界条件)
u k n
g ( x , y , z , t ),
定义2 在区域 R 3 [0, ) 上,由偏微分方程和初 始条件组成的定解问题称为初值问题或柯西问题。 例如三维热传导方程的初值问题为:
2 3 u a ( u u u ) f ( x , y , z , t ), ( x , y , z , t ) R , t 0, t xx yy zz 3 u ( x , y , z , t ) | ( x , y , z ), ( x , y , z , t ) R . t 0
准备知识
2. *通量与散度 设向量场 A ( P, Q, R ), P, Q, R, 在域G 内有一阶 连续 偏导数, 则 向量场通过有向曲面 的通量为
A n d S
( n 为 的单位法向量)
G 内任意点处的散度为 P Q R div A A x y z
(1.6)
通常称(1.5)为非齐次的热传导方程,而称(1.6) 为齐次热传导方程。
二、定解条件(初始条件和边界条件) 初始条件:
u( x , y , z , t ) ( x , y , z ), ( x , y , z ) G , t 0 : (1.7)
边界条件:( G )
例如三维热传导方程的第一初边值问题为:
第三章热传导方程的分离变量法
百度文库数学物理方法Mathematical Method in Physics西北师范大学物理与电子工程学院豆福全第三章 热传导方程的分离变量法引 言上一章对弦振动方程为代表的双曲型方程进行了研究,它的研究包括从方程的导出到应用行波法。
本章我们对抛物型方程−以热传导方程为代表进行研究。
复习:数理方程的导出步骤(−−−−→定量化物理模型数学模型) ⅰ 建坐标系 ⅱ 选物理量u ⅲ 找物理规律 ⅳ 写表达式本章,我们先对热传导进行推导。
热传导方程3.1.1热传导方程的导出 1. 物理模型截面积为A 均匀细杆,侧面绝热,沿杆长方向有温差,求热量的流动。
2.相关概念和定律ⅰ相关概念①热传导:由于温度分布不均匀产生的热传递现象。
设热量:Q 面积:S 体积:V 时间:t 密度:ρ 温度:T , ②比热:单位物质,温度升高一度所需热量QC VTρ=③热流密度:单位时间流过单位面积的热量(Fourier 实验定律)Q u q tS nκ∂==-∂,κ:导热率 ④热源强度:单位时间,单位体积放出的热量(热源密度)Qf tV= ⅱ用到的物理学规律① Fourier 实验定律(热传导定律):当物体内存在温度差时,会产生热量的流动。
热流强度(热流密度)q 与温度的下降成正比。
即q u κ→=-∇。
κ:热导系数(热导率),不同物质ℜ不同,(),x u κκ=。
对均匀杆κ是常 数。
负号表示温度下降的方向。
分量形式:x u q x κ∂=-∂ ,y u q y κ∂=-∂,z uq zκ∂=-∂一维问题:uq nκ∂=-∂ ②热量守恒(质量)定律:物体内部温度升高所吸收的热量(浓度增加 所需要的质量),等于流入物体内部的净热量(质量)与物体内部的热源所 产生的热量(质量)之和。
3分析研究的问题: 热流流动是由温差造成,设u 为温度. 已知:C ,ρ,κ常数(),u u x t =是一维问题4研究建立方程取x 轴与细杆重合,(),u x t 表示在x 点t 时刻的温度。
3 数理方程-热传导方程的导出
ux | x=L = q / k ux | x=L = q / k ux | x=L = – q / k
∂u | x = L = k1 ( u | x = L − u1 ) −k ∂x ∂u k | x = 0 = k1 ( u | x = 0 − u1 ) ∂x 电子科技大学
8/12
拉普拉斯方程与拉普拉斯算子 二维热传导方程: 二维热传导方程 ut = a2[uxx + uyy] 三维热传导方程: 三维热传导方程 ut = a2[uxx + uyy + uzz ]
t2 ∂u ∂u dt ]dxdydz = ∫ [ ∫∫∫ cρ dxdydz ]dt = ∫∫∫ cρ [ ∫ t 1 ∂t t1 ∂t V V
V
t2
Q1 = Q2
∫ [∫∫∫ k[div(Grad u )]dxdydz ]dt = ∫
t1 V
t2
t2
t1
∂u [ ∫∫∫ c ρ dxdydz ]dt ∂t V
∂u Q1 = ∫ [ ∫∫ k ds ]dt t1 ∂n 电子科技大学 S
t2
3/12
通过曲面进入导热体的总热量: 通过曲面进入导热体的总热量
Q1 = ∫ [ ∫∫∫ k[div (Grad u)]dxdydz ]dt
t1 V t2
温度升高所需热量: 温度升高所需热量
Q2 = ∫∫∫ cρ [u( x , y , z , t 2 ) − u( x , y , z , t1 )]dxdydz
(边界上有热流进入 边界上有热流进入) 边界上有热流进入
∂u = β ( x, y, z, t ) ∂n S
∂u III. 第三类边界条件 [ + σu] = γ ( x , y , z , t ) 第三类边界条件: ∂n S (边界上有热交换 边界上有热交换 边界上有热交换)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1.9)
二、扩散方程
在研究分子扩散过程中也会遇到类似的方程。例如气体的扩散,液体的渗透,半
导体材料中的杂质扩散等。下面,我们来建立所考察介质扩散过程所满足的偏微分方
程。
由于扩散方程和热传导方程的导出极为类似,我们不重复这一过程。只要将扩散
过程所满足的物理规律与热传导过程所满足的物理规律作个类比,扩散方程就不难写
本章中的讨论仅限于对一个空间变量的方程进行,对于多个空间变量的情形, 可 以 进 行 类 似 的 讨 论 , 有 兴 趣 的 读 者 可 以 参 看F. John编 著 的 《Partial Differential Equations》, Springer-Verlag, 1982.
§ 1. 热传导方程的导出及其定解条件
出。
在 推 导 热 传 导 方 程 的 过 程 中 起 基 本 作 用 的 是Fourier定 律 与 热 量 守 恒 定 律 , 即 方
程(1.1)与方程(1.3)式。在考虑扩散过程时,我们碰到的是相应的扩散定律与质量守恒
定律,即
dm
=
−γ(x,
y,
z)
∂U ∂n
dS
dt,
(1.10)
t2 t1
S
由于t1,t2与区域Ω都是任意的,于是
νρ
∂u ∂t
=
∂ ∂x
k
∂u ∂x
+
∂ ∂y
k
∂u ∂y
+
∂ ∂z
k
∂u ∂z
.
(1.4) (1.5)
(1.5)式称为非均匀的各向同性介质的:热:::传::导:::方::程:::。如果介质是均匀的,此时k ,ν 及ρ均 为常数,记k/νρ = c2,即得
∂u ∂t
γ
∂U ∂n
dSdt
=
[U (t2, x, y, z) − U (t1, x, y, z)]dxdydz,
Ω
(1.11)
其中U 表示扩散物质的浓度,dm表示在无穷小时段dt内沿法线方向n经过一个无穷小面
积dS的扩散物质的质量,式中γ(x, y, z)为扩散系数,其它符号与(1.1)、(1.3)中的含义 :::::::::::
法线方向的方向导数
∂u ∂n
成正比,即
dQ
=
−k(x,
y,
z)
∂u ∂n
dSdt,
(1.1)
其中k(x, y, z)称为介质在点(x, y, z)处的热传导系数,它取正值。(1.1)式中的负号是因
为热量总是从温度高的一侧流向低的一侧,因此,dQ应和
∂u ∂n
异号。
1
在介质D内任取一闭曲面S ,它所包围的区域记为Ω,由(1.1)式,从时刻t1到t2流进
(1.7)
相应地,此时方程(1.6)为
∂u ∂t
=
c2
∂2u ∂x2
+
∂2u ∂y2
+
∂2u ∂z2
+ f (t, x, y, z),
(1.8)
其中
f (t,
x,
y,
z)
=
F
(t, x, y, νρ
z).
(1.6)称为齐:::次::热:::传:::导::方:::程::,而(1.8)称为非:::齐::次:::热:::传::导:::方::程:::。
本节我们将考察热传导方程的导出及其相应的定解条件。
1.1 方程的导出
一、热传导方程
考察空间某介质D的热传导问题。以函数u(t, x, y, z)表示介质D在位置(x, y, z)及时
刻t的温度。
依据传热学中的Fourier 实验定律,介质在无穷小时段dt内沿法线方向n流过一个无
穷小面积dS
的热量dQ与介质温度沿曲面dS
=
c2
∂2u ∂x2
+
∂2u ∂y2
+
∂2u ∂z2
.
(1.6)
如果所考察的介质内部有热源(例如介质中通有电流,或有化学反应等),则在热传 导方程(1.5)的推导中还需要考虑热源的影响。若设在单位时间内单位体积中所产生的
2
热量为F (t, x, y, z),则此时热平衡方程为
t2 t1
S
k
∂u ∂n
此曲面的全部热量为
t2
Q=
t1
S
k(x,
y,
z)
∂u ∂n
dS
dt,
(1.2)
其中
∂u ∂n
表示u沿S
上单位外法线方向n的方向导数。
流入的热量使介质内部温度发生变化,在时间间隔(t1, t2)中介质温度从u(t1, x, y, z)变
化到u(t2, x, y, z),它所应该吸收的热量是
ν(x, y, z)ρ(x, y, z)[u(t2, x, y, z) − u(t1, x, y, z)]dxdydz,
第四章 热传导方程
关于函数u = u(t, x1, x2, · · · , xn)的热传导方程具有下述形式
ut = k u
其中k是热传导系数,是一个正常数。当n = 1时,导热的绝缘导线中的温度分布满足此 方程;当n = 3时,导热介质中的温度满足上述方程。此外,在描述扩散过程时,也会 出现同类型的方程。本章我们将介绍这类最典型的抛物方程的一些基本概念、方法和 结果。在第一节中,我们以n = 3为例介绍热传导方程的导出以及相应的定解条件。在 第二节中我们介绍求解热传导方程的Cauchy 问题(也称初值问题)的Fourier变换法。在 第三节中我们介绍求解热传导方程的初边值问题的分离变量法。在第四节中我们着重 介绍热传导方程的极值原理以及定解问题解的唯一性和稳定性。在第五节中我们介绍 了热传导方程的Li-Yau Hanarck 不等式。该不等式在几何分析中具有重要作用。第六 节讨论了当时间t趋于无穷时热传导方程初边值问题及Cauchy问题解的渐近性态。
用Green公式,可以把(1.3)式写成
t2 t1
=
交换积分顺序得到
∂ Ω ∂x
k
∂u ∂x
+
∂ ∂y
k
∂u ∂y
+
∂ ∂z
k
∂u ∂z
νρ
Ω
t2 t1
∂u ∂t
dt
dxdydz,
dxdydzdt
t2 t1
Ω
νρ
∂u ∂t
−
∂ ∂x
k
∂u ∂x
−
∂ ∂y
k
∂u ∂y
−
∂ ∂z
k
∂u ∂z
dxdydzdt = 0.
dSdt
+
t2 t1
F (t, x, y, z)dxdydzdt
Ω
=
νρ[u(t2, x, y, z) − u(t1, x, y, z)]dxdydz.
Ω
于是,相应于(1.5)的热传导方程应改为
νρ
∂u ∂t
=
∂ ∂x
k
∂u ∂x
+
∂ ∂y
k
∂u ∂y
+
∂ ∂z
k
∂u ∂z
+ F (t, x, y, z).
Ω
其中ν为介质的比热,ρ为密度。因此就成立
t2 t1
S
k
∂u ∂n
dSdt
=
νρ[u(t2, x, y, z) − u(t1, x, y, z)]dxdydz.
Ω
(1.3)
假 设 函 数u关 于 变 量x, y, z具 有 二 阶 连 续 偏 导 数 , 关 于t具 有 一 阶 连 续 偏 导 数 , 利