电路分析仿真实验教程(Multisim)

合集下载

multisim电路分析方法

multisim电路分析方法

在Variables in Circuit栏中列出的是电路中可 用于分析的节点和变量。点击 Variables in circuit 窗口中的下箭头按钮,可以给出变量类型选择表。 在变量类型选择表中: 点击Voltage and current选择电压和电流变量。
点击Voltage选择电压变量。 点击 Current选择电流变量。 点击Device/Model Parameters 选择元件/ 模型参数变量。 点击All variables选择电路中的全部变量。
其中Output variables、 Miscellaneous Options 和Summary 3个选项与直流工作点分析的设置 一样,下面仅介绍Analysis Parameters选项, Analysis Parameters对话框如图1.6.8所示。
图1.6.8 Analysis Parameters对话框
图 1.6.5 Miscellaneous Options对话框
如果选择Use this custom analysis,可以用 来选择用户所设定的分析选项。可供选取设定的 项目已出现在下面的栏中,其中大部分项目应该 采用默认值,如果想要改变其中某一个分析选项 参数,则在选取该项后,再选中下面的Use this option选项。选中Use this option选项将在其右边
2. Parameters区 在Parameters区可以对时间间隔和步长等参数 进行设置。
Start time窗口:设置开始分析的时间。 End time窗口:设置结束分析的时间。
点击Maximum time step settings,可以设 置分析的最大时间步长。其中:
(1)设置单位时间内的采样点数 点击Minimum number of time points,可以 设置单位时间内的采样点数。

Multisim三相电路仿真实验

Multisim三相电路仿真实验

Multisim三相电路仿真实验————————————————————————————————作者:————————————————————————————————日期:2--3 实验六 三相电路仿真实验一、实验目的1、 熟练运用Multisim 正确连接电路,对不同联接情况进行仿真;2、 对称负载和非对称负载电压电流的测量,并能根据测量数据进行分析总结;3、 加深对三相四线制供电系统中性线作用的理解。

4、 掌握示波器的连接及仿真使用方法。

5、 进一步提高分析、判断和查找故障的能力。

二、实验仪器1.PC 机一台 2.Multisim 软件开发系统一套 三、实验要求1.绘制出三相交流电源的连接及波形观察 2.学习示波器的使用及设置。

3.仿真分析三相电路的相关内容。

4.掌握三瓦法测试及二瓦法测试方法 四、原理与说明1、负载应作星形联接时,三相负载的额定电压等于电源的相电压。

这种联接方式的特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。

2、负载应作三角形联接时,三相负载的额定电压等于电源的线电压。

这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。

3、电流、电压的“线量”与“相量”关系测量电流与电压的线量与相量关系,是在对称负载的条件下进行的。

画仿真图时要注意。

负载对称星形联接时,线量与相量的关系为: (1)P L U U 3=(2)P L I I =负载对称三角形联接时,线量与相量的关系为:(1)P L U U = (2)P LI I 3=4、星形联接时中性线的作用三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。

中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。

--4 如果中性线断开,这时线电压仍然对称,但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。

Multisim仿真教程及实例

Multisim仿真教程及实例

菜单系统工具栏设计工具栏仪器仪表工具栏电路图编辑窗口四、定制Multisim用户界面操作:设置菜单栏Option /Preferences中各属性选择元件的符号标准ANSI:美国标准DIN:欧洲标准。

元器件和背景的颜色一、电源库电源库中共有30个电源器件,分别是:●接地端●数字接地端● VCC电压源● VDD数字电压源●直流电压源●直流电流源●正弦交流电压源●正弦交流电流源●时钟电压源●调幅信号源●调频电压源●调频电流源● FSK信号源●电压控制正弦波电压源●电压控制方波电压源●电压控制三角波电压源●电压控制电压源●电压控制电流源●电流控制电压源●电流控制电流源●电流控制电压源●电流控制电流源●脉冲电压源●脉冲电流源图●指数电压源●指数电流源●分段线性电压源●分段线性电流源●压控分段电压源●受控单脉冲●多项式电源●非线性相关电源4、时钟电压源实质上是一个频率、占空比及幅度皆可调的方波发生器二、基本元件库●电阻●虚拟电阻●电容●虚拟电容●电解电容●上拉电容●电感●虚拟电感●电位器●虚拟电位器●可变电容●虚拟可变电容●可变电感●虚拟可变电感●开关●继电器●变压器●非线性变压器●磁芯●无芯线圈●连接器●插座●半导体电阻●半导体电容●封装电阻● SMT电阻● SMT电容● SMT电解电容● SMT电感现实元件虚拟元件“GeneralGeneral””页:元件的一般性资料,包括元件的名称、制造商、创建时间、制作者。

“SymbolSymbol””页:元件的符号。

“ModelModel””页:元件的模型,提供电路仿真时所需要的参数。

Footprint””页:元件封装,提供“Footprint给印制电路板设计的原件外形。

Electronic Parameters””页:“Electronic Parameters元件的电气参数,包括元件在实际使用中应该考虑的参数指标。

编辑电阻元件“User FieldsUser Fields””页:用户使用信息。

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验电路仿真是电子工程领域中重要的实验方法,它通过计算机软件模拟电路的工作原理和性能,可以在电路设计阶段进行测试和验证。

其中,Multisim作为常用的电路设计与仿真工具,具有强大的功能和用户友好的界面,被广泛应用于电子工程教学和实践中。

本文将对Multisim模拟电路仿真实验进行探讨和介绍,包括电路仿真的基本原理、Multisim的使用方法以及实验设计与实施等方面。

通过本文的阅读,读者将能够了解到Multisim模拟电路仿真实验的基本概念和操作方法,掌握电路仿真实验的设计和实施技巧。

一、Multisim模拟电路仿真的基本原理Multisim模拟电路仿真实验基于电路分析和计算机仿真技术,通过建立电路模型和参数设置,使用数值计算方法求解电路的节点电压、电流以及功率等相关参数,从而模拟电路的工作情况。

Multisim模拟电路仿真的基本原理包括以下几个方面:1. 电路模型建立:首先,需要根据电路的实际连接和元件参数建立相应的电路模型。

Multisim提供了丰富的元件库和连接方式,可以通过简单的拖拽操作和参数设置来搭建电路模型。

2. 参数设置:在建立电路模型的基础上,需要为每个元件设置合适的参数值。

例如,电阻器的阻值、电容器的容值、电源的电压等。

这些参数值将直接影响到电路的仿真结果。

3. 仿真方法选择:Multisim提供了多种仿真方法,如直流分析、交流分析、暂态分析等。

根据不同的仿真目的和需求,选择适当的仿真方法来进行仿真计算。

4. 仿真结果分析:仿真计算完成后,Multisim会给出电路的仿真结果,包括节点电压、电流、功率等参数。

通过分析这些仿真结果,可以评估电路的性能和工作情况。

二、Multisim的使用方法Multisim作为一款功能强大的电路设计与仿真工具,具有直观的操作界面和丰富的功能模块,使得电路仿真实验变得简单而高效。

以下是Multisim的使用方法的基本流程:1. 新建电路文件:启动Multisim软件,点击“新建”按钮创建一个新的电路文件。

Multisim仿真—电路

Multisim仿真—电路

电路分析基础2.1 L 、C 并联谐振回路频率特性的仿真测试电路说明:①电源选择“Sources ”→“SIGNAL_VOLTAGE_SOURCE ”→“AC_VOLTAGE ”。

9个,设置为电路分析:理论值:kHz FmH LCf 035.51121210=⨯==μππ实际值:kHz f 006.50=左右测量此处的频率观察左下脚的值,为实际值2.2 L 、C串联谐振回路频率特性的仿真测试电路说明:①电源选择“Sources”→“SIGNAL_VOLTAGE_SOURCE”→“AC_VOLTAGE”。

9个,设置为电路分析:理论值:kHz nFmH LCf 23.1591121210=⨯==ππ实际值:kHz f 23.1590=2.3 电容特性仿真测试C11uF按Space 键,来回切换,看电容的充放电过程。

2.4 电感特性仿真测试按Space键,来回切换,观察电感特性。

模拟电子线路2.5 全波整流电路¸1N40072.6 光电控制电路图中,SONALERT为固体音调发生器,按Space键,是开关闭合,观察效果如下图。

若接实际电路,SONALERT应发出200Hz对应的声音。

图中用2.5V的红色探针来表示。

X1在指示器库(Indicators)中的探针(PROBE)中选择PROBE-RED。

2.7 桥式整流∏滤波电路¸观察波形:①起始波形:②平稳后波形:2.8同向比例运算电路W① 理论值:通过同向比例运算的公式计算:V mV k k 110.010101001U 2=⨯ΩΩ+=)(。

② 实际值:电压表示数0.110V 。

2.9 三角波发生器观察示波器波形,分析三角波的产生过程。

数字电子技术2.10译码器仿真电路的分析XWG1为字信号发生器(Word Generation)。

设置其值为0-7。

选择循环时,灯依次点亮,可设断点、可单步执行。

74LS138的真值表:例:当字发生器-XWG1运行到0000000003时,2.11 模数AD与转换电路的仿真电路中函数信号发生器设置为:改变变阻器的值,观察数码管显示数值的变换。

Multisim电路仿真实验

Multisim电路仿真实验

仿真错误
遇到仿真错误时,首先 检查电路原理是否正确 ,然后检查元件库是否
完整。
界面显示问题
如果界面显示异常,可 以尝试调整软件设置或
重启软件。
导出问题
在导出电路图或仿真结 果时出现问题,检查文 件路径和格式是否正确

THANKS
分析实验结果,验证电路的功 能和性能是否符合预期。
如果实验结果不理想,需要对 电路进行调整和优化。
04
电路仿真实验分析
实验数据整理
1 2 3
实验数据整理
在Multisim中进行电路仿真实验后,需要将实验 数据导出并整理成表格或图表形式,以便后续分 析和处理。
数据格式
数据整理时需要确保数据的准确性和完整性,包 括电压、电流、电阻、电容、电感等参数,以及 仿真时间和波形图等。
数据存储
整理好的数据应妥善存储,以便后续查阅和引用。
数据分析与处理
数据分析
对整理好的实验数据进行深入分 析,包括参数变化趋势、波形图 特征等,以揭示电路的性能和特 性。
数据处理
根据分析结果,对数据进行必要 的处理,如计算平均值、求取标 准差等,以得出更准确的结论。
误差分析
分析实验数据中可能存在的误差 来源,如测量误差、电路元件误 差等,以提高实验的准确性和可 靠性。
Multisim软件
Multisim软件是进行电路仿真实验的核心工具,用户可以在软件中创建电路图、设置元件参数、 进行仿真实验等操作。
实验电路板
实验电路板是用来搭建实际电路的硬件设备,用户可以在上面放置电路元件、连接导线等,实现 电路的物理连接。
元件库
Multisim软件提供了丰富的元件库,用户可以从元件库中选择需要的元件,将其添加到电路图中 ,方便快捷地搭建电路。

Multisim电路仿真实验

Multisim电路仿真实验

(1) 万用表的使用 如图所示,在万用表控制面板上可以选择电压值、电流值、 电阻以及分贝值。参数设置窗口,可以设置万用表的一些参数。
万用表图标、面板和参数设置
(2) 函数信号发生器 如图所示,在函数信号发生器中可以选择正弦波、三角波和 矩形波三种波形,频率可在1~999范围内调整。信号的幅值、 占空比、偏移量也可以根据需要进行调节。偏移量指的是交流 信号中直流电平的偏移。
IV分析仪及其使用
Multisim 电路仿真分析
1. 仿真实验法 应用Multisim 进行仿真的基本步骤如下。
(1) 启动Multisim
双击Multisim 图标进入Multisim 主窗口。 (2) 创建实验电路 连接好电路和仪器,并保存电路文件。
(3) 仿真实验
① 设置仪器仪表的参数。
② 运行电路:单击主窗口的启动开关O/I按钮,电 路开始仿真,若再单击此按钮,则仿真实验结束。若 要使实验暂停,可单击主窗口的暂停键,在开关旁边 再单击就可重新恢复电路运行。 ③ 观测记录实验结果。实验结果也可存储或打印输 出,并可用word的剪贴板输出。
新特点:
可以根据自己的需求制造出真正属于自己的仪器; 所有的虚拟信号都可以通过计算机输出到实际的 硬件电路上; 所有硬件电路产生的结果都可以输回到计算机中 进行处理和分析。
Multisim 使用方法
通过Option菜单可以对软件的运行环境进行定制和设置。 Global Preference:Symbol standard栏选DIN(欧洲标准,我国采用 的是欧洲标准) 放置元器件 通过Place/ Place Component命令打开Component Browser窗口。 选中相应的元器件:在Component Family Name中选择74LS系列, 在Component Name List中选择74LS00。单击OK按钮就可以选中 74LS00,出现如下备选窗口。7400是四/二输入与非门,在窗口种的 Section A/B/C/D分别代表其中的一个与非门,用鼠标选中其中的一个 放置在电路图编辑窗口中,如左图所示。器件在电路图中显示的图形 符号,用户可以在上面的Component Browser中的Symbol选项框中 预览到。当器件放置到电路编辑窗口中后,用户就可以进行移动、复 制、粘贴等编辑工作了。 将元器件连接成电路 将电路需要的元器件放置在电路编辑窗口后,用鼠标就可以方便地将 器件连接起来。方法是:用鼠标单击连线的起点并拖动鼠标至连线的 终点。在Multisim中连线的起点和终点不能悬空。 通过Simulate菜单执行仿真分析命令。项

电路分析基础 实验一:电路仿真软件Multisim的快速入门实验报告

电路分析基础 实验一:电路仿真软件Multisim的快速入门实验报告

电路分析基础实验一:电路仿真软件
Multisim的快速入门实验报告
本实验旨在介绍电路仿真软件Multisim的基本操作和使
用方法。

在实验中,我们将绘制简单的电路图并进行仿真分析,掌握Multisim中基本虚拟仪器的使用方法,以及分析正弦波
信号的方法。

首先,在电路工作区中,我们需要放置电源、接地、电阻和连接导线等元器件,并进行相应标注。

然后,使用菜单栏中的仿真分析命令进行直流工作点仿真,选定需要分析的变量并记录仿真结果。

接下来,我们将使用虚拟仪器进行仿真分析。

将虚拟万用表和电流探头按电路原理图连接,进行仿真分析,并记录虚拟万用表显示结果。

为了进一步分析电路,我们将仿真分析电路原理图中的直流电源从0~24V变化过程中,电流的变化情况。

使用菜单栏
中的参数扫描命令设置相关参数,进行仿真分析,观察并记录结果。

最后,我们将使用Multisim绘制电路原理图,并运用虚
拟信号发生器和示波器进行仿真分析正弦波信号,观察并记录虚拟示波器显示的输入输出信号波形。

通过本实验的研究,我们可以熟悉Multisim的基本操作,掌握绘制电路图及仿真电路的方法,以及基本虚拟仪器的使用方法。

同时,我们也能够分析正弦波信号的方法,为今后的电路设计和分析打下基础。

Multisim电路仿真

Multisim电路仿真

Multisim电路仿真示例1.直流电路分析步骤一:文件保存打开Multisim 软件,自动产生一个名为Design1的新文件。

打开菜单File>>Save as…,将文件另存为“CS01”(自动加后缀)步骤二:放置元件打开菜单Place>>Component…1.选择Sources(电源)Group (组),选择POWER_SOURCES(功率源)Family(小组),在元件栏中用鼠标双击DC_POWER,将直流电源放置到电路工作区。

说明:所有元件按Database -> Group -> Family 分类存放2.继续放置元件:Sources Group –>POWER_SOURCES Family->ROUND(接地点Basic Group->RESISTOR Family(选择5个电阻)3.设定元件参数。

采用下面两种方式之一1)在放置元件时(在一系列标准值中)选择;2)在工作区,鼠标右键点击元件,在Properties (属性)子菜单中设定。

步骤三.根据电路图连线用鼠标拖动元件到合适位置,如果有必要,鼠标右键点击元件,可对其翻转(Flip)或旋转(Rotate)。

连线时先用鼠移至一个元件的接线端,鼠标符号变成叉形,然后拖动到另一结点,点击右键确认连线。

若需显示全部节点编号,在菜单Option>>Sheet Properties>>Sheet visibility的Net names 选板中选中show all。

步骤四.电路仿真选择菜单Simulate>>Analyses>>DC operating point…(直流工作点分析)在DC operating point analysis窗口中,选择需要分析的变量(节点电压、元件电流或功率等)。

点击“Simulate”按钮,得到结果:可以验证,模拟结果与理论计算完全一致。

实验指导书(电路分析multisim)

实验指导书(电路分析multisim)

对于上述零状态响应、零输入响应和全响应的过程,uC (t)和iC (t)的波形只有用长余辉 示波器才能直接显示出来,普通示波器难于观察。
如用方波信号源激励,RC 电路的方波响应,在电路的时间常数远小于方波周期时,前
5
半周期激励作用时的响应就是零状态响应,得到电容充电曲线;而后半周期激励为 0,相当
容量大小就代表时间常数的大小。如图 3 所示给出了电容容量较小时, C = 100μF 时,电
容的充放电波形,该波形近似为矩形波,充放电加快,上升沿和下降沿变陡。
4.2 二阶电路的过渡过程 1 创建电路:从元器件库中选择电压源、电阻、电容、电感、单刀双掷开关和虚拟示波器, 创建二阶电路如图 4 所示。
R1
1kHz
10Ω

图 1 串联谐振电路 2、电路的幅频特性:单击运行(RUN)按钮,双击频率特性仪XBP1 图标,在Mode选项组 中单击Magnitude(幅频特性)按钮,可得到该电路的幅频特性,如图 2 所示。从图中所知, 电路在谐振频率f0处有个增益极大值,而在其他频段增益大大下降。需要说明的是,电路的 谐振频率只与电路的结构和元件参数有关,与外加电源的频率无关。本处电路所选的电源频 率为 1kHz,若选择其他频率,幅频特性不变。
7
切换开关,就能得到电容的充放电波形
图 3 电容容量较小时的充放电波形
说明: 1 当开关停留在触点 1 时,电源一直给电容充电,电容充到最大值 12V,如图 2 中电容充放 电波形的开始阶段。 2 仿真时,电路的参数大小选择要合理,电路的过渡过程快慢与时间常数大小有关,时间常 数越大,则过渡过程越慢;时间常数越小,则过渡过程越快。电路中其他参数不变时,电容
R
R
(自由分量)

Multisim模拟电路仿真实验报告

Multisim模拟电路仿真实验报告

一、实验目的1.认识并了解Multisim的元器件库;2.学习使用Multisim绘制电路原理图;3.学习使用Multisim里面的各种仪器分析模拟电路;二、实验内容【基本单管放大电路的仿真研究】1.仿真电路如图所示。

2.修改参数,方法如下:双击三极管,在Value选项卡下单击EDIT MODEL;修改电流放大倍数BF为60,其他参数不变;图中三极管名称变为2N2222A*;双击交流电源,改为1mV,1kz;双击Vcc,在Value选项卡下修改电压为12V;双击滑动变阻器,在Value选项卡下修改Increment值为0.1% 或更小。

三、数据计算1.由表中数据可知,测量值和估算值并不完全相同。

可以通过更精细地调节滑动变阻器,使V E更接近于1.2V.2.电压放大倍数测量值A u =−13.852985 ;估算值A u =−14.06 ;相对误差=−13.852985−(−14.06)−14.06×100% =−1.47%由以上数据可知,测量值和估算值并不完全相同,可能的原因有:1) 估算值的计算过程中使用了一些简化处理,如动态分析时视电容为短路,r be =300+(β+1)∙26I E等与仿真电路并不完全相同。

2) 仿真电路的静态工作点与理想情况并不相同,也会影响放大倍数。

3. 输入输出电阻验相同的原因外(不再赘述),还有:万用表本身存在电阻。

4.去掉R E1后,电压放大倍数增大,下限截止频率和上限截止频率增大,输入电阻减小。

说明R E1减小了放大倍数,增大了输入电阻。

四、感想与体会电子实验中,估算值与仿真值、仿真值与实际测量值往往并不完全一致。

在设计电路时可以通过估算得到大致的判断,再在电脑中进行仿真,最后再实际测量运行。

用电脑仿真是很必要的,一方面可以及早发现一些简单错误,防止功亏一篑,另一方面还可以节省材料和制作时间。

但必须考虑实际测量与仿真的不同之处,并应以实测值为准。

数字电路实验Multisim仿真完整版

数字电路实验Multisim仿真完整版

数字电路实验M u l t i s i m仿真HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】实验一逻辑门电路一、与非门逻辑功能的测试74LS20(双四输入与非门)仿真结果二、门)三、与或非门逻辑功能的测试四、现路;一、分析半加器的逻辑功能二.74LS138接成四线-十六线译码器 00000001011110001111(2)用一片74LS153接成两位四选一数据选择器; (3)用一片74LS153一片74LS00和接成一位全加器(1)设计一个有A 、B 、C 三位代码输入的密码锁(假设密码是011),当输入密码正确时,锁被打开(Y 1=1),如果密码不符,电路发出报警信号(Y 2=1)。

以上四个小设计任做一个,多做不限。

还可以用门电路搭建实验三 触发器及触发器之间的转换1. D 触发器逻辑功能的测试(上升沿)2. JK 触发器功能测试(下降沿)Q=0Q=0略3. 思考题:(1)(2)(3)略实验四寄存器与计数器1.右移寄存器(74ls74 为上升沿有效)位异步二进制加法,减法计数器(74LS112 下降沿有效)也可以不加数码显示管3.设计性试验(1)74LS160设计7进制计数器(74LS160 是上升沿有效,且异步清零,同步置数)若采用异步清零:若采用同步置数:(2)74LS160设计7进制计数器略(3)24进制83进制注意:用74LS160与74LS197、74LS191是完全不一样的实验五 555定时器及其应用1.施密特触发器输入电压从零开始增加:输入电压从5V开始减小:2.单稳态触发器3.多谢振荡。

Multisim14电子电路仿真方法和样例

Multisim14电子电路仿真方法和样例
8图51瞬态分析参数设置图52瞬态分析仿真结果512虚拟仪器测试方法也可以利用虚拟仪器直接测试电压放大倍数测试电路如图53所示点击仿真按钮后双击示波器得到如图54所示波形直接读数并计算可得到电压放大倍数
Multisim14 电子电路仿真方法和样例
2019 年 9 月
1
前言
本手册基于 Multisim14 仿真环境,从最基本的仿真电路图的建立开始,结合实际的例 子,对模拟和数字电路中常用的测试方法进行介绍。这些应用示例包括:常用半导体器件特 性曲线的测试、放大电路静态工作点和动态参数的测试、电压传输特性的测试、波形上升时 间的测试、逻辑函数的转换与化简、逻辑分析仪的使用方法等。
选定 sheet properties 即弹出图 2.3 所示界面,选中 Net names 下的 Show all(简述为
Optionsàsheet propertiesà Net namesàShow all,以下均用简述方法表述),即可在电路图中
显示出各个节点号。
4
图 2.2 移动连线
图 2.3 显示电路节点号
3
1. Multisim14 主界面简介
运行 Multisim14,自动进入电路图编辑界面。当前电路图的缺省命名为“Design1”,在 保存文件时可以选择存放路径并重新命名。Multisim14 主界面如图 1.1 所示。
图 1.1 Multisim14 用户界面
2. 仿真电路图的建立
下面以单管放大电路为例,介绍建立电路的步骤。其中三极管选用实际器件
此外,本手册侧重于测试方法的介绍,仅对主要步骤进行说明,如碰到更细节的问题, 可参阅《Multisim 14 教学版使用说明书》或其它帮助文档。
2
目录

MULTISIM电路仿真软件的使用操作教程

MULTISIM电路仿真软件的使用操作教程

MULTISIM电路仿真软件的使用操作教程Multisim是一款功能强大的电路仿真软件,可以帮助用户进行电路设计、分析和仿真。

在本教程中,我们将介绍Multisim的基本使用操作,让您可以快速上手并开始进行电路仿真。

1.创建新电路首先,在打开Multisim软件后,点击“File”菜单,并选择“New”来创建一个新的电路文件。

您可以选择使用自定义的模板或者从已有的电路模板中选择其中一个。

2.添加元件在新建的电路文件中,您可以通过点击“Place”菜单来添加不同种类的元件。

通过选择合适的元件,您可以构建您需要的电路。

您可以添加电源、电阻、电容、电感、晶体管等元件。

3.连接元件在添加完元件后,您需要连接这些元件以构建完整的电路。

通过点击“Connect”工具或者直接拖拽连接线将元件连接起来。

4.设置元件参数5.运行仿真完成电路的搭建后,您可以点击“Run”按钮来开始进行仿真。

Multisim会模拟电路的运行情况,并显示出电路中各元件的电流、电压等参数。

6.分析仿真结果在进行仿真后,您可以查看仿真结果并进行分析。

您可以查看波形图、数据表格等来了解电路的运行情况,以便进行进一步的优化和改进。

7.保存电路文件在完成电路设计后,您可以点击“File”菜单并选择“Save As”来保存电路文件。

您可以选择保存为不同格式的文件,以便将电路文件与他人分享或者备份。

8.导出报告如果您需要将电路设计的结果进行报告或者分享给他人,您可以点击“Tools”菜单并选择“Export”来导出报告或者数据表格。

9.调整仿真设置在进行仿真前,您可以点击“Options”菜单来调整仿真的参数,例如仿真时间、采样率等。

这可以帮助您更好地分析电路的性能。

10.学习资源Multisim提供了大量的学习资源,包括用户手册、视频教程、示例项目等。

您可以通过点击“Help”菜单来访问这些资源,以帮助您更好地使用Multisim进行电路仿真。

通过以上教程,您可以快速上手Multisim软件,并开始进行电路设计和仿真。

电路分析multisim仿真实验二

电路分析multisim仿真实验二

电路分析Multisim仿真实验二验证欧姆定律1.实验要求与目的(1)学习使用万用表测量电阻。

(2)验证欧姆定律。

2. 元器件选取(1)电源:Place Source→POWER_SOURCES→DC_POWER,选取直流电源,设置电源电压为12V。

(2)接地:Place Source→POWER_SOURCES→GROUND,选取电路中的接地。

(3)电阻:Place Basic→RESISTOR,选取R1=10Ω,R2=20Ω。

(4)数字万用表:从虚拟仪器工具栏调取XMM1。

(5)电流表:Place Indicators→AMMETER,选取电流表并设置为直流档。

3. 仿真实验电路图1 数字万用表测量电阻阻值的仿真实验电路及数字万用表面板图2 欧姆定律仿真电路及数字万用表面板4.实验原理欧姆定律叙述为:线性电阻两端的电压与流过的电流成正比,比例常数就是这个电阻元件的电阻值。

欧姆定律确定了线性电阻两端的电压与流过电阻的电流之间的关系。

其数学表达式为U=RI,式中,R为电阻的阻值(单位为Ω);I为流过电阻的电流(单位为A);U为电阻两端的电压(单位为V)。

欧姆定律也可以表示为I=U/R,这个关系式说明当电压一定时电流与电阻的阻值成反比,因此电阻阻值越大则流过的电流就越小。

如果把流过电阻的电流当成电阻两端电压的函数,画出U(I)特性曲线,便可确定电阻是线性的还是非线性的。

如果画出的特性曲线是一条直线,则电阻式线性的;否则就是非线性的。

5.仿真分析(1)测量电阻阻值的仿真分析①搭建图1所示的用数字万用表测量电阻阻值的仿真实验电路,数字万用表按图设置。

②单击仿真开关,激活电路,记录数字万用表显示的读数。

③将两次测量的读数与所选电阻的标称值进行比较,验证仿真结果。

(2)欧姆定律电路的仿真分析①搭建图2所示的欧姆定律仿真电路。

②单击仿真开关,激活电路,数字万用表和电流表均出现读数,记录电阻R1两端的电压值U和流过R的电流值I。

Multisim模拟电子技术仿真实验

Multisim模拟电子技术仿真实验
2)根据示波器显示的输出电压峰值U OP 和输入电压峰值U IP ,求
放大器的电压增益A u 和放大器的最大平均输出功率P O 。
第23页/共55页
9.5 结型场效应晶体管共源极放大电路仿真实验
1)学会测量跨导g m 。
2)依据结型场效应晶体管共源极放大电路输入输出电压波形,
计算电压增益。
1)直流电源:Place Source→POWER_SOURCES→VDD, 选取
直流电源并根据电路设置电压。
2)接地:Place Source→POWER_SOURCES→GROUND,选取
电路中的接地。
3)电阻:Place Basic→RESISTOR,选取电阻并根据电路设置电
阻值。
第24页/共55页
9.5 结型场效应晶体管共源极放大电路仿真实验
4)电容:Place Basic→CAPACITOR,选取电容并根据电路设置
1)根据仿真的数据U IP 和U OP ,计算放大电路的电压增益A u 。
2)放大电路输出与输入波形之间的相位差怎么样?
第30页/共55页
9.6 串联电压负反馈放大器仿真实验
1)学会测量串联电压负反馈放大器的输入和输出电压,计算闭
环电压增益。
2)学会测量负反馈放大器输入与输出电压波形之间的相位差。
电容值。
5)场效应晶体管:Place Transistors→JFET_N,选取2SK117型
场效应晶体管。
6)电压表:Place Indicators→VOLTMETER,选取电压表并设
置为直流档。
7)电流表:Place Indicators→AMMETER,选取电流表并设置
为直流档。
8)函数发生器:从虚拟仪器工具栏调取XFG1。

multisim电子电路仿真教程第4章

multisim电子电路仿真教程第4章

第4章 Multisim基本分析方法
2.交流分析举例
【例4-2】 对图4-11所示电路进行交流分析。
图4-11 串联谐振电路
第4章 Multisim基本分析方法
首先按图4-11在电路窗口中构建电路,元件参数如图中
所示。选取分析菜单中的AC Analysis...选项,在出现的对话 框中的Frequency Parameters页设置Start Frequency为1 Hz, Stop Frequency为10 GHz,Sweep Type选择Decade,Number of points per decade设置为10,Vertical scale选择Linear;在 Output variables页选定分析节点3;在Miscellaneous Options 页More Options区Title for栏输入“交流分析”。点击 Simulate按钮开始仿真分析。完成分析后,出现Analysis Graphs窗口,显示电路的幅频特性曲线和相频特性曲线,如 图4-12所示。
第4章 Multisim基本分析方法
图4-10 交流分析Frequency Parameters页
第4章 Multisim基本分析方法
1.Frequency Parameters页
Frequency Parameters页各部分功能介绍如下: > > Start frequency:设置分析起始频率。 Stop frequency(FSTOP):设置分析终止频率。
第4章 Multisim基本分析方法
图4-5 More Options区
第4章 Multisim基本分析方法
2.Miscellaneous Options页
Miscellaneous Options页如图4-6所示,其主要功能是 设定分析参数,一般采取默认值。如果要自行设定,则先选 中某个分析选项,再选中Use this custom analysis options选项,在其右边出现一个栏位,可在该栏内指定新 的参数。如果要恢复程序预设置值,按Reset option to default按钮即可。

Multisim电路仿真实验

Multisim电路仿真实验

Multisim电路仿真实验一、实验目的熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。

二、使用软件NI Multisim student V12三、实验内容1.研究电压表内阻对测量结果的影响输入如图1所示的电路图,在setting 中改变电压表的内阻,使其分别为200kΩ、5kΩ等,观察其读数的变化,研究电压表内阻对测量结果的影响。

并分析说明仿真结果。

图1实验结果:【200kΩ】图2【5kΩ】图3分析:①根据图1电路分析,如果不考虑电压表内阻的影响,U10=R2V1/(R1+R2)=5V;②根据图2,电压表内阻为200kΩ时,电压表示数U10=4.878V,相对误差|4.878-5|*100%/5=2.44%③根据图3,电压表内阻为5kΩ时,电压表示数U10=2.5V,相对误差|2.5-5|*100%/5=50%可以看出,电压表内阻对于测量结果有影响,分析原因,可知电压表具有分流作用,与R2并联后,R2’=1/(1/R1+1/R V)<R2,U10’=R2‘V1/(R1+R2’)=V1/(R1/R2‘+1)<U10;因而,电压表内阻使得测量结果偏小,并且电压表内阻越小,误差越大;电压表内阻越大,误差越小;当R V>>R2时,U10’≈U102. RLC串联谐振研究输入如图4的电路,调节信号源频率,使之低于、等于、高于谐振频率时,用示波器观察波形的相位关系,并测量谐振时的电流值。

用波特图仪绘制幅频特性曲线和相频特性曲线,并使用光标测量谐振频率、带宽(测量光标初始位置在最左侧,可以用鼠标拖动。

将鼠标对准光标,单击右键可以调出其弹出式菜单指令,利用这些指令可以将鼠标自动对准需要的座标位置)。

图4实验结果:【等于:f=159.155Hz】图5:波形图6:谐振时的电流图7:幅频特性曲线图8.1:测量带宽图8.2:测量带宽【小于:f=150Hz】【大于:f=200Hz】图11:波形分析:a.根据图5波形,当信号源频率等于谐振频率f0=159.155Hz时,其中f0=1/(2π√LC),相位相同,谐振时的电流为99.946mA;根据图8.1及8.2,可求得带宽Δf=(175.952-143.98)Hz=31.972Hzb.根据图10波形,当信号源频率小于谐振频率,f=150Hz时,可以观察到U R的相位超前U,分析原因知,由于X L=2πfL,X C=1/(2πfC),f<f0时,X L<X C,X L-X C<0,又易知U R的相位超前U。

电路分析仿真实验教程(Multisim)

电路分析仿真实验教程(Multisim)

图 2-1 线性性研究实验电路 4.添加仪表及仿真 添加仪表后的实验电路如图 2-2 所示,Vs 为可调电源,取不同值时电路的仿真结果如 图 2-2、3-2-3 所示。
图 2-2 Vs=5V 时的仿真结果
李良荣 编著 项目来源:贵州省教育厅 2008 年教学质量与教学改革工程项目“EDA 教学电子资源的建设” 6
图 2-9
V1 、 V2 同时作用的响应值
3)结果分析 通过理论计算结果与仿真实验结果的比较看出,结果相符。 (2)通过 R3 的电流,我们直接测量就可以了 。添加仪表后电路如图 2-10 所示,其仿 真结果也示于图中。
图 2-10 测量通过 R3 的电流 结论:从图 2-10 中可以看出,其仿真结果与理论计算结果相符。
75 15 3 V 75 150 150
那么独立源 V2 作用时 ,通过 R3 的电流为“ I 12 ”
I12
V 12 3 30 mA R3 100
两个独立源共同作用 (叠加) ,通过 R3 的电流“ I ”
I I11 I12 46 mA
5.实验及仿真 (1)测试节点“2”处的电压: 1)根据叠加原理,首先短路掉 V2,在“2”节点接电压表 U1,如图 2-7 所示,独立 源 V1 作用的仿真结果也示于图中 。同理,可仿真独立源 V2 作用的响应值 ,如图 2-8 所示。 按叠加原理叠加(代数和) ,那么节点“2”的电压响应值:
前面我们已经计算出 V1 独立源作用时的节点 “1”处的电压 V 11 1.6 V ,那么,通过 R3 的电流为“ I 11 ”
I11
V 11 1.6 16 mA R3 100
独立源 V2 作用时 , “1”节点的电压为“ V 12 ”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路分析仿真实验教程
摘要
本教程涉及Multisim10在电路分析教程课程教学中的应用。

第一部分通过实例介绍常用仪器仪表的测量方法,主要应用了安培表、伏特表、万用表、信号发生器、示波器,读者可依据所选教材、侧重内容、学习进度适当取舍。

参考书目推荐:
1.李良荣罗伟雄杨鲁平等.《EWB9电子设计技术》,北京:机械工业出版社,2007.7。

2.李良荣周骅林洁馨等.《EDA技术及实验》,成都:电子科技大学出版社,2008.8。

3.李良荣罗伟雄杨鲁平等.《现代电子设计技术》,北京:机械工业出版社,2004.7。

1
2
Multisim 10基本应用
第一节资源简介
1.Multisim 10设计界面
设计界面如图1-1所示,
2.元件工具条
主数据库的元器件资源如图1-2所示。

图1-1 Multisim10的工作界面
主菜单系统工具条
查看工具条元器件工具条
设计工具条虚拟器件工具条
正在使用的元件列表
仿真开关仪表工具条
设计翻页标签
设计管
理窗口设计工作窗口
图1-2元件库资源
3
选择元器件工具条中每一个按钮都会弹出相应的元器件选择窗口,如图1-3
所示是元件组的器件选择界面,其中一个Group (元器件组)有多个Family (元器件系列),每一个元器件系列有多个Component (器件)。

3.仪器工具条
仪表工具条如图1-4所示,它是进行虚拟电子实验和电子设计仿真的最快捷而又形象的特殊工具,各仪表的功能名称与Simulate 菜单下的虚拟仪表相同,如图1-5所示。

图1-3通用器件选择窗口
功能描述模型商
模型名
封装商
也叫封装名
封装类型超连接元器件组
元件系列
元器件选
择窗口电路符号
图1-4仪表工具条
4
4.设计窗口翻页
在窗口中允许有多个项目,点击如图1-1所示下部的翻页标签,可将其置于当前视窗。

5.设计管理器
如图1-1所示左边的设计管理器可以将所有打开的设计项目中的任何一页置为当前设计窗口,可以利用设计工具条中的按钮开启/关闭。

6.设计工具条
设计工具条如图1-6所示:
图1-5
虚拟仪表名称
图1-6设计工具条
(1
)层次项目栏按钮(Toggle Project Bar),用于设计管理器的开启/关闭。

(2
)层次电子数据表按钮(Toggle Spreadsheet view),用于开关当前电路的电子数
据表。

(3
)数据库按钮(Database management),可开启数据库管理对话框,对元件进行
编辑。

(4
)元件编辑器按钮(Create Component),用于调整或增加、创建新元件。

(5
)分析结果示窗按钮,其后的箭头下拉菜单选择分析命令。

(6
)后处理器窗口开/关,可以对已分析过的数据进行综合处理。

(7
)电气规则检查按钮。

(8
)屏幕捕捉器按钮。

(9
)返回顶层按钮。

(10
)由Ultiboard反注释到Mutisim。

(11)注释到Ultiboard 10。

(12
)使用中的元件列表,列出了当前电路中用过的全部元件种类。

(13)Multisim的帮助文件。

5
6
第二节分析应用实例
一、网络的线性性关系研究
1.实验目的:
(1)理解线性网络的线性性关系。

(2)了解和掌握Multisim10的测量设备。

2.基本原理:
在含有一个独立源的线性网络中,每一个电流和电压响应与该独立源的数值成线性关系。

3.实验电路:
实验电路如图2-1所示。

4.添加仪表及仿真
添加仪表后的实验电路如图2-2所示,Vs 为可调电源,取不同值时电路的仿真结果如图2-2、3-2-3所示。

图2-1
线性性研究实验电路
图2-2 Vs=5V
时的仿真结果
75.结论分析
从图2-2和3-2-3中可以看出,支路上的电压与电源电压成线性关系,其电流也与电源电压成线性关系。

二、线性网络的叠加原理研究
1.实验目的
理解和掌握线性网络的叠加原理
2.基本原理
在含有多个独立源的线性网络中,任一支路上的电流或电压响应可以看成是每一个独立源单独激励所产生响应的代数和。

3.实验电路
实验电路如图2-4所示。

(1)要求测试节点“2”处的电压(在窗口的空白处点击鼠标右键,的弹出式菜单中选
择,在弹出窗口的翻页标签中选中,即可显示节点,它是绘图时计算机根据连接顺序自动产生的,不需要修改)。

(2)测试通过R3的电流。

4.理论计算
图2-3
添加仪表及仿真结果。

相关文档
最新文档