Matrix exponential

合集下载

Nineteen Dubious Ways to Compute the exponential of a matrix, twenty-five years later

Nineteen Dubious Ways to Compute the exponential of a matrix, twenty-five years later

1. Introduction. Mathematical models of many physical, biological, and economic processes involve systems of linear, constant coefficient ordinary differential equations x ˙ (t) = Ax(t). Here A is a given, fixed, real or complex n-by-n matrix. A solution vector x(t) is sought which satisfies an initial condition x(0) = x0 . In control theory, A is known as the state companion matrix and x(t) is the system response. In principle, the solution is given by x(t) = etA x0 , where etA can be formally defined by the convergent power series etA = I + tA + t 2 AE MOLER AND CHARLES VAN LOAN
We will primarily be concerned with matrices whose order n is less than a few hundred, so that all the elements can be stored in the main memory of a contemporary computer. Our discussion will be less germane to t

matrix exponentialation method

matrix exponentialation method

matrix exponentialation method
矩阵指数法(Matrix Exponentiation Method)是一种数学计算方法,用于求解矩阵指数函数。

矩阵指数函数是指矩阵的幂,即求解 (e^{A}) 其中 (A) 是一个矩阵。

矩阵指数法通常用于数值计算和科学计算中,例如在控制系统、线性代数、微分方程等领域都有广泛的应用。

矩阵指数法的基本思想是将矩阵指数函数进行泰勒级数展开,然后利用矩阵的幂的性质进行化简和计算。

具体来说,矩阵指数函数可以展开为幂级数形式:
(e^{A} = I + A + \frac{A^{2}}{2!} + \frac{A^{3}} {3!} + \cdots)
其中 (I) 是单位矩阵,(A) 是给定的矩阵。

然后,利用矩阵的幂的性质,可以将每一项进行化简和计算,最终得到 (e^{A}) 的近似值。

矩阵指数法有多种实现方法,其中一种常用的方法是高斯-若尔当消元法(Gauss-Jordan elimination)。

该方法的基本思想是将矩阵 (e^{A}) 表示为一个行向量或列向量
的函数,然后利用高斯-若尔当消元法求解该函数。

具体来说,可以将 (e^{A}) 表示为一个列向量的函数:
(e^{A} = [v_{1}, v_{2}, \ldots, v_{n}])
其中 (v_{i}) 是 (A) 的特征向量。

然后,利用高斯-若尔当消元法求解该列向量函数,得到 (e^{A}) 的近似值。

总之,矩阵指数法是一种用于求解矩阵指数函数的数值计算方法,具有广泛的应用。

不同的实现方法可以根据具体的问题和要求进行选择和应用。

Modern Control Theory ppt3

Modern Control Theory ppt3
Φ( t ) = Φ( kt )
k
Φ( t2 − t1 ) Φ( t1 − t0 ) = Φ( t2 − t0 )
6) if A, B ∈ R(n×n) , AB = BA, then
e( A+B)t = eAt eBt
7) e At is state transition matrix of x = Ax &
where
G = eAT H = ∫ eAT Bdt
0 T
C, D remain the same
Ex 2. LTI continuous system state equation as following
0 −1 0 & (t ) = x x ( t ) + 1 u(t) 0 −2
so the state space description is
−2 0 1 x(k +1) = x(k) + 1 u(k) 0 −3 y(k) = [1 −4] x(k) + u(k)
Pulse transfer function matrix
G( z ) = C ( zI − G) H + D
& Φ( t ) = AΦ( t )
& ⇒ A = Φ( 0)
2) Φ( t − t0 ) is nonsingular
Φ( t − t0 ) = Φ( t0 − t )
−1
x ( t0 ) = Φ( t0 ) x ( 0) x ( 0) = Φ( t0 ) x ( t0 ) = Φ( −t0 ) x ( t0 )
Chapter 3
Dynamic Analysis of Linear System

matrix exponential

matrix exponential

Compute eX eY and eX +Y . (The results are completely different.)
5
a b of trace zero. Suppose also c −a that det A0 > 0, and write det A0 = r2 . Compute the powers Exercise 11.3. Consider a matrix A0 =
3
This shows that eλ is an eigenvalue of eA . For the second part, suppose λ and µ are the roots of the characteristic polynomial PA (x). Then tr A = λ + µ, so etr A = eλ+µ = eλ eµ , which by part (1) is the product of the eigenvalues of eA . But det eA is also the product of the eigenvalues of eA . So etr A = det eA . For part (3), we use the old fact that (B −1 AB )n = B −1 An B, and the fact that the conjugate of a sum is the sum of the conjugates. B −1 eA B = B −1 (I + A + 1 2 1 A + A3 + · · · )B 2! 3! 1 1 = I + B −1 AB + B −1 A2 B + B −1 A3 B + · · · 2! 3! 1 1 = I + B −1 AB + (B −1 AB )2 + (B −1 AB )3 + · · · 2! 3! (B −1 AB ) =e .

geogebra指令函数大全

geogebra指令函数大全

作图步骤
SetDynamicColor
动态颜色
SetFixed
固定
SetLayer
图层
NIntegral
定积分
NextPrime
后一质数
NormalQuantilePlot
正态分位数图
Numerator
分子
NSolve
近似解
Name
名称
Object
对象
Ordinal
序数
OrthogonalLine
垂线
现值
PrimeFactors
质因数
Product
乘积
ProveDetails
证明过程
Q1
ቤተ መጻሕፍቲ ባይዱ第一四分位数
QuadricSide
侧面
Radius
半径
RandomBinomial
随机二项分布数
RandomElement
随机元素
RandomPointIn
随机内点
RandomPolynomial
随机多项式
Rate
Expand Extremum FillCells Factor FillRow FirstAxis Fit FitGrowth FitLineX FitLog FitPoly FitSin Focus Frequency FrequencyTable Function GCD GeometricMean GroebnerDegRevLex GroebnerLexDeg Height Histogram HyperGeometric IFactor Identity ImplicitCurve Incircle InfiniteCone Insert IntegralBetween IntersectConic Intersection InverseCauchy InverseExponential InverseGamma InverseLaplace InverseLogistic InversePascal InverseTDistribution InverseZipf IsInRegion IsPrime IterationList KeepIf Last LaTeX LeftSum LetterToUnicode LimitAbove Line Locus LogNormal LowerSum MatrixRank Maximize MeanX Median Min MinimumSpanningTree MixedNumber Mode

EigenR 复数矩阵算法说明书

EigenR 复数矩阵算法说明书

Package‘EigenR’October12,2022Type PackageTitle Complex Matrix Algebra with'Eigen'Version1.2.3Author Stéphane LaurentMaintainer Stéphane Laurent<***********************>Description Matrix algebra using the'Eigen'C++library:determinant,rank,inverse,pseudo-inverse,kernel and image,QR decomposition,Cholesky decomposition,linear least-squares problems.Also provides matrix functions such as exponential,loga-rithm,power,sine and plex matrices are supported.License GPL-3Imports Rcpp(>=1.0.5)LinkingTo Rcpp,RcppEigenRoxygenNote7.1.2Encoding UTF-8URL https:///stla/EigenRBugReports https:///stla/EigenR/issuesNeedsCompilation yesRepository CRANDate/Publication2022-05-1809:00:02UTCR topics documented:Eigen_absdet (2)Eigen_chol (3)Eigen_cos (3)Eigen_cosh (4)Eigen_det (5)Eigen_exp (5)Eigen_inverse (6)Eigen_isInjective (6)12Eigen_absdet Eigen_isInvertible (7)Eigen_isSurjective (7)Eigen_kernel (8)Eigen_kernelDimension (8)Eigen_log (9)Eigen_logabsdet (10)Eigen_lsSolve (10)Eigen_pinverse (11)Eigen_pow (12)Eigen_QR (12)Eigen_range (13)Eigen_rank (13)Eigen_sin (14)Eigen_sinh (14)Eigen_sqrt (15)Eigen_UtDU (15)SparseMatrix (16)Index18 Eigen_absdet Absolute value of the determinantDescriptionAbsolute value of the determinant of a real matrix.UsageEigen_absdet(M)ArgumentsM a real square matrixValueThe absolute value of the determinant of M.Note‘Eigen_absdet(M)‘is not faster than‘abs(Eigen_det(M))‘.Examplesset.seed(666L)M<-matrix(rpois(25L,1),5L,5L)Eigen_absdet(M)Eigen_chol3 Eigen_chol Cholesky decomposition of a matrixDescriptionCholesky decomposition of a symmetric or Hermitian matrix.UsageEigen_chol(M)ArgumentsM a square symmetric/Hermitian positive-definite matrix or SparseMatrix,real/complex DetailsSymmetry is not checked;only the lower triangular part of M is used.ValueThe upper triangular factor of the Cholesky decomposition of M.ExamplesM<-rbind(c(5,1),c(1,3))U<-Eigen_chol(M)t(U)%*%U#this is M#a Hermitian example:A<-rbind(c(1,1i),c(1i,2))(M<-A%*%t(Conj(A)))try(chol(M))#failsU<-Eigen_chol(M)t(Conj(U))%*%U#this is M#a sparse exampleM<-asSparseMatrix(diag(1:5))Eigen_chol(M)Eigen_cos Matrix cosineDescriptionMatrix cosine of a real or complex square matrix.UsageEigen_cos(M)4Eigen_cosh ArgumentsM a square matrix,real or complexValueThe matrix cosine of M.Exampleslibrary(EigenR)M<-toeplitz(c(1,2,3))cosM<-Eigen_cos(M)sinM<-Eigen_sin(M)cosM%*%cosM+sinM%*%sinM#identity matrixEigen_cosh Matrix hyperbolic cosineDescriptionMatrix hyperbolic cosine of a real or complex square matrix.UsageEigen_cosh(M)ArgumentsM a square matrix,real or complexValueThe matrix hyperbolic cosine of M.Exampleslibrary(EigenR)M<-toeplitz(c(1,2,3))Eigen_cosh(M)(Eigen_exp(M)+Eigen_exp(-M))/2#identicalEigen_det5 Eigen_det Determinant of a matrixDescriptionDeterminant of a real or complex matrix.UsageEigen_det(M)ArgumentsM a square matrix or SparseMatrix,real or complexValueThe determinant of M.Examplesset.seed(666)M<-matrix(rpois(25,1),5L,5L)Eigen_det(M)#determinants of complex matrices are supported:Eigen_det(M+1i*M)#as well as determinants of sparse matrices:Eigen_det(asSparseMatrix(M))Eigen_det(asSparseMatrix(M+1i*M))Eigen_exp Exponential of a matrixDescriptionExponential of a real or complex square matrix.UsageEigen_exp(M)ArgumentsM a square matrix,real or complexValueThe exponential of M.6Eigen_isInjective Eigen_inverse Inverse of a matrixDescriptionInverse of a real or complex matrix.UsageEigen_inverse(M)ArgumentsM an invertible square matrix,real or complexValueThe inverse matrix of M.Eigen_isInjective Check injectivityDescriptionChecks whether a matrix represents an injective linear map(i.e.has trivial kernel).UsageEigen_isInjective(M)ArgumentsM a matrix,real or complexValueA Boolean value indicating whether M represents an injective linear map.Examplesset.seed(666L)M<-matrix(rpois(35L,1),5L,7L)Eigen_isInjective(M)Eigen_isInvertible7 Eigen_isInvertible Check invertibilityDescriptionChecks whether a matrix is invertible.UsageEigen_isInvertible(M)ArgumentsM a matrix,real or complexValueA Boolean value indicating whether M is invertible.Examplesset.seed(666L)M<-matrix(rpois(25L,1),5L,5L)Eigen_isInvertible(M)Eigen_isSurjective Check surjectivityDescriptionChecks whether a matrix represents a surjective linear map.UsageEigen_isSurjective(M)ArgumentsM a matrix,real or complexValueA Boolean value indicating whether M represents a surjective linear map.Examplesset.seed(666L)M<-matrix(rpois(35L,1),7L,5L)Eigen_isSurjective(M)8Eigen_kernelDimension Eigen_kernel Kernel of a matrixDescriptionKernel(null-space)of a real or complex matrix.UsageEigen_kernel(M,method="COD")ArgumentsM a matrix,real or complexmethod one of"COD"or"LU";the faster method depends on the size of the matrix ValueA basis of the kernel of M.With method="COD",the basis is orthonormal,while it is not withmethod="LU".Examplesset.seed(666)M<-matrix(rgamma(30L,12,1),10L,3L)M<-cbind(M,M[,1]+M[,2],M[,2]+2*M[,3])#basis of the kernel of M :Eigen_kernel(M,method="LU")#orthonormal basis of the kernel of M :Eigen_kernel(M,method="COD")Eigen_kernelDimension Dimension of kernelDescriptionDimension of the kernel of a matrix.UsageEigen_kernelDimension(M)ArgumentsM a matrix,real or complexEigen_log9 ValueAn integer,the dimension of the kernel of M.See AlsoEigen_isInjective,Eigen_kernel.Examplesset.seed(666L)M<-matrix(rpois(35L,1),5L,7L)Eigen_kernelDimension(M)Eigen_log Logarithm of a matrixDescriptionLogarithm of a real or complex square matrix,when possible.UsageEigen_log(M)ArgumentsM a square matrix,real or complexDetailsThe logarithm of a matrix does not always exist.See matrix logarithm.ValueThe logarithm of M.10Eigen_lsSolve Eigen_logabsdet Logarithm of the absolute value of the determinantDescriptionLogarithm of the absolute value of the determinant of a real matrix.UsageEigen_logabsdet(M)ArgumentsM a real square matrixValueThe logarithm of the absolute value of the determinant of M.Note‘Eigen_logabsdet(M)‘is not faster than‘log(abs(Eigen_det(M)))‘.Examplesset.seed(666L)M<-matrix(rpois(25L,1),5L,5L)Eigen_logabsdet(M)Eigen_lsSolve Linear least-squares problemsDescriptionSolves a linear least-squares problem.UsageEigen_lsSolve(A,b,method="cod")ArgumentsA a n*p matrix,real or complexb a vector of length n or a matrix with n rows,real or complexmethod the method used to solve the problem,either"svd"(based on the SVD decom-position)or"cod"(based on the complete orthogonal decomposition)Eigen_pinverse11ValueThe solution X of the least-squares problem AX~=b(similar to lm.fit(A,b)$coefficients).This is a matrix if b is a matrix,or a vector if b is a vector.Examplesset.seed(129)n<-7;p<-2A<-matrix(rnorm(n*p),n,p)b<-rnorm(n)lsfit<-Eigen_lsSolve(A,b)b-A%*%lsfit#residualsEigen_pinverse Pseudo-inverse of a matrixDescriptionPseudo-inverse of a real or complex matrix(Moore-Penrose generalized inverse).UsageEigen_pinverse(M)ArgumentsM a matrix,real or complex,not necessarily squareValueThe pseudo-inverse matrix of M.Exampleslibrary(EigenR)M<-rbind(toeplitz(c(3,2,1)),toeplitz(c(4,5,6)))Mplus<-Eigen_pinverse(M)all.equal(M,M%*%Mplus%*%M)all.equal(Mplus,Mplus%*%M%*%Mplus)# a complex matrixA<-M+1i*M[,c(3L,2L,1L)]Aplus<-Eigen_pinverse(A)AAplus<-A%*%Aplusall.equal(AAplus,t(Conj(AAplus)))# A%*%Aplus is HermitianAplusA<-Aplus%*%Aall.equal(AplusA,t(Conj(AplusA)))# Aplus%*%A is Hermitian12Eigen_QR Eigen_pow Matricial powerDescriptionMatricial power of a real or complex square matrix,when possible.UsageEigen_pow(M,p)ArgumentsM a square matrix,real or complexp a number,real or complex,the power exponentDetailsThe power is defined with the help of the exponential and the logarithm.See matrix power. ValueThe matrix M raised at the power p.Eigen_QR QR decomposition of a matrixDescriptionQR decomposition of a real or complex matrix.UsageEigen_QR(M)ArgumentsM a matrix,real or complexValueA list with the Q matrix and the R matrix.ExamplesM<-cbind(c(1,2,3),c(4,5,6))x<-Eigen_QR(M)x$Q%*%x$REigen_range13 Eigen_range Range of a matrixDescriptionRange(column-space,image,span)of a real or complex matrix.UsageEigen_range(M,method="QR")ArgumentsM a matrix,real or complexmethod one of"LU","QR",or"COD";the"LU"method is fasterValueA basis of the range of M.With method="LU",the basis is not orthonormal,while it is with method="QR"and method="COD".Eigen_rank Rank of a matrixDescriptionRank of a real or complex matrix.UsageEigen_rank(M)ArgumentsM a matrix,real or complexValueThe rank of M.14Eigen_sinh Eigen_sin Matrix sineDescriptionMatrix sine of a real or complex square matrix.UsageEigen_sin(M)ArgumentsM a square matrix,real or complexValueThe matrix sine of M.Eigen_sinh Matrix hyperbolic sineDescriptionMatrix hyperbolic sine of a real or complex square matrix.UsageEigen_sinh(M)ArgumentsM a square matrix,real or complexValueThe matrix hyperbolic sine of M.Exampleslibrary(EigenR)M<-toeplitz(c(1,2,3))Eigen_sinh(M)(Eigen_exp(M)-Eigen_exp(-M))/2#identicalEigen_sqrt15 Eigen_sqrt Square root of a matrixDescriptionSquare root of a real or complex square matrix,when possible.UsageEigen_sqrt(M)ArgumentsM a square matrix,real or complexDetailsSee matrix square root.ValueA square root of M.Examples#Rotation matrix over60degrees:M<-cbind(c(cos(pi/3),sin(pi/3)),c(-sin(pi/3),cos(pi/3)))#Its square root,the rotation matrix over30degrees:Eigen_sqrt(M)Eigen_UtDU’UtDU’decomposition of a matrixDescriptionCholesky-’UtDU’decomposition of a symmetric or Hermitian matrix.UsageEigen_UtDU(M)ArgumentsM a square symmetric/Hermitian positive or negative semidefinite matrix,real/complexDetailsSymmetry is not checked;only the lower triangular part of M is used.ValueThe Cholesky-’UtDU’decomposition of M in a list(see example).Examplesx<-matrix(c(1:5,(1:5)^2),5,2)x<-cbind(x,x[,1]+3*x[,2])M<-crossprod(x)UtDU<-Eigen_UtDU(M)U<-UtDU$UD<-UtDU$Dperm<-UtDU$permUP<-U[,perm]t(UP)%*%diag(D)%*%UP#this is MSparseMatrix Sparse matrixDescriptionConstructs a sparse matrix,real or complex.UsageSparseMatrix(i,j,Mij,nrows,ncols)##S3method for class SparseMatrixprint(x,...)asSparseMatrix(M)Argumentsi,j indices of the non-zero coefficientsMij values of the non-zero coefficients;must be a vector of the same length as i and j or a single number which will be recyclednrows,ncols dimensions of the matrixx a SparseMatrix object...ignoredM a matrix,real or complexValueA list with the class SparseMatrix.Examplesset.seed(666)(M<-matrix(rpois(50L,1),10L,5L)) asSparseMatrix(M)IndexasSparseMatrix(SparseMatrix),16Eigen_absdet,2Eigen_chol,3Eigen_cos,3Eigen_cosh,4Eigen_det,5Eigen_exp,5Eigen_inverse,6Eigen_isInjective,6,9Eigen_isInvertible,7Eigen_isSurjective,7Eigen_kernel,8,9Eigen_kernelDimension,8Eigen_log,9Eigen_logabsdet,10Eigen_lsSolve,10Eigen_pinverse,11Eigen_pow,12Eigen_QR,12Eigen_range,13Eigen_rank,13Eigen_sin,14Eigen_sinh,14Eigen_sqrt,15Eigen_UtDU,15print.SparseMatrix(SparseMatrix),16 SparseMatrix,3,5,1618。

matlab任务书

matlab任务书

MATLAB课程设计任务书(-)一、名称:MATLAB编程简介二、目的熟悉MATLAB编程环境,掌握Help 命令、基本的变量类型、矩阵的基本运算、基本的绘图函数和M-file的建立。

三、内容(一)例题例1、Help 命令help coshelp plothelp abshelp exphelp +例2、变量和矩阵运算(1) Matrix——The basic variable typeM=3M=[1 2 6]M=[1 2 6; 4 6 7]M13=M(1,3)size(M)(2) The Colon Operator ( : )%Creating Array and Vector% v = start: skip: endx1=0:2:10x2=0:1:10 (or x=0:10)t=-1:0.2:1%Accessing MatrixA=[1 2 3;4 5 6;7 8 9]A(2:3,1:2)x2(4:8)(3) Matrix Operations (A±B)A=[2 3 4; 6 9 8]B=[1 2 3; 5 8 7]C1=A+BC2=A-BC3=A-4(4)Matrix Operations (A*B A.*B)% A*BA=[2 3 4; 6 9 8]B=[1 2; 3 5; 8 7]A*B% A.*BA=[2 3 4; 6 9 8]B=[1 2 3 ;5 8 7]A.*B(5)Matrix Operations (B/A ,A\C, B./A ,A.\B)% B/A —— B*inv(A)% A\C —— inv(A)*C%B./A —— B(i,j)/A(i,j)%A.\B ——B(i,j)/A(i,j)(6) Matrix Operations ( ^ and .^)% ^ OperationA=[1 2 3; 4 5 6; 7 8 9]b=A^2% .^ OperationA=[1 2 3; 4 5 6; 7 8 9]b=A.^2(7)Matrix Operations ( A′and A. ′)% A′共轭转置a=[1+2i 3+4i; 3+2i 5+5i]a′% A.′非共轭转置a.′例3 、绘图函数plot(x,y) ,stem(k,y)% plot(x,y)x=0:0.01:2;y=sin(2*pi*x);plot(x,y)% stem(k,y)k=0:50;y=exp(-0.1*k);stem(k,y)例4、M file% y(t)=sin(2t) + sin(5t) -2pi ≤t ≤2pit =-2*pi:0.02:2*pi;y=sin(2*t) + sin(5*t);plot(t,y)(二)练习题1、基本命令help plothelp colonhelp opshelp zeroshelp onespi*pi-10sin(pi/4) ans^2 zz=3+4i; conj(zz)abs(zz) angle(zz) real(zz) imag(zz)2、Array Indexingxx=[ones(1,4),[2:2:11],zeros(1,3)] xx(3:7) length(xx)xx(2:2:length(xx)) xx(3:7)=pi*(1:5)3、 用以下语句建立M-file t=-2:0.05:3;y=sin(2*pi*0.789*t); plot(t,y), grid ontitle('TEST PLOT of SINUSOID') xlabel('TIME(sec)')4、 画出以下信号的波形1t 2≤≤(-)(用M-file 实现) 1()2cos(230)x t t π=+︒ 2()4cos(260)x t t π=-︒四、要求学生对实验练习题编写MATLAB 程序并运行,在计算机上输出仿真结果。

Maple教程_矩阵计算

Maple教程_矩阵计算

(2.5)
(2.6)
5.2 矩阵和向量计算
Maple 内置大量计算命令求解线性代数问题。 操作步骤 使用右键菜单完成矩阵计算 例子: 鼠标点击矩阵,从弹出的右键菜单中选择 Standard Operations>Inverse 求逆矩阵。 选择 Standard Operations>Determinant 求矩 阵的行列式。 结果
构造矩阵的最小多项式 计算矩阵的子式 矩阵相乘 计算矩阵或向量的p-范数 计算矩阵的p-范数 计算向量的p-范数 向量正规化 计算矩阵的零度零空间 两个向量的外积 方阵的不变量 矩阵元素的主元消去法 Popov 正规型 QR 分解 构造随机矩阵 构造随机向量 计算矩阵的秩 返回矩阵的一个行向量序列 返回矩阵的一个列向量序列 对矩阵作初等行变换 对矩阵作出等列变换 返回矩阵行空间的一组基 返回矩阵列空间的一组基 构造一个单位矩阵的数量倍数 构造一个单位向量的数量倍数 矩阵与数的乘积 计算矩阵与数的乘积 计算向量与数的乘积
MatrixAdd VectorAdd MatrixExponential MatrixFunction MatrixInverse MatrixMatrixMultiply MatrixVectorMultiply VectorMatrixMultiply MatrixPower
MinimalPolynomial Minor Multiply Norm MatrixNorm VectorNorm Normalize NullSpace OuterProductMatrix Permanent Pivot PopovForm QRDecomposition RandomMatrix RandomVector Rank Row Column RowOperation ColumnOperation RowSpace ColumnSpace ScalarMatrix ScalarVector ScalarMultiply MatrixScalarMultiply VectorScalarMultiply

基于matlab的数字信号调制与解调

基于matlab的数字信号调制与解调

一matlab常用函数1、特殊变量与常数ans 计算结果的变量名computer 确定运行的计算机eps 浮点相对精度Inf 无穷大I 虚数单位inputname 输入参数名NaN 非数nargin 输入参数个数nargout 输出参数的数目pi 圆周率nargoutchk 有效的输出参数数目realmax 最大正浮点数realmin 最小正浮点数varargin 实际输入的参量varargout 实际返回的参量操作符与特殊字符+ 加- 减* 矩阵乘法 .* 数组乘(对应元素相乘)^ 矩阵幂 .^ 数组幂(各个元素求幂)\ 左除或反斜杠/ 右除或斜面杠 ./ 数组除(对应元素除)kron Kronecker张量积: 冒号() 圆括[] 方括 . 小数点 .. 父目录 ... 继续, 逗号(分割多条命令); 分号(禁止结果显示)% 注释! 感叹号' 转置或引用= 赋值== 相等<> 不等于& 逻辑与| 逻辑或~ 逻辑非xor 逻辑异或2、基本数学函数abs 绝对值和复数模长acos,acodh 反余弦,反双曲余弦acot,acoth 反余切,反双曲余切acsc,acsch 反余割,反双曲余割angle 相角asec,asech 反正割,反双曲正割secant 正切asin,asinh 反正弦,反双曲正弦atan,atanh 反正切,双曲正切tangent 正切atan2 四象限反正切ceil 向着无穷大舍入complex 建立一个复数conj 复数配对cos,cosh 余弦,双曲余弦csc,csch 余切,双曲余切cot,coth 余切,双曲余切exp 指数fix 朝0方向取整floor 朝负无穷取整*** 最大公因数imag 复数值的虚部lcm 最小公倍数log 自然对数log2 以2为底的对数log10 常用对数mod 有符号的求余nchoosek 二项式系数和全部组合数real 复数的实部rem 相除后求余round 取整为最近的整数sec,sech 正割,双曲正割sign 符号数sin,sinh 正弦,双曲正弦sqrt 平方根tan,tanh 正切,双曲正切3、基本矩阵和矩阵操作blkding 从输入参量建立块对角矩阵eye 单位矩阵linespace 产生线性间隔的向量logspace 产生对数间隔的向量numel 元素个数ones 产生全为1的数组rand 均匀颁随机数和数组randn 正态分布随机数和数组zeros 建立一个全0矩阵colon) 等间隔向量cat 连接数组diag 对角矩阵和矩阵对角线fliplr 从左自右翻转矩阵flipud 从上到下翻转矩阵repmat 复制一个数组reshape 改造矩阵roy90 矩阵翻转90度tril 矩阵的下三角triu 矩阵的上三角dot 向量点集cross 向量叉集ismember 检测一个集合的元素intersect 向量的交集setxor 向量异或集setdiff 向是的差集union 向量的并集数值分析和傅立叶变换cumprod 累积cumsum 累加cumtrapz 累计梯形法计算数值微分factor 质因子inpolygon 删除多边形区域内的点max 最大值mean 数组的均值mediam 中值min 最小值perms 所有可能的转换polyarea 多边形区域primes 生成质数列表prod 数组元素的乘积rectint 矩形交集区域sort 按升序排列矩阵元素sortrows 按升序排列行std 标准偏差sum 求和trapz 梯形数值积分var 方差del2 离散拉普拉斯diff 差值和微分估计gradient 数值梯度cov 协方差矩阵corrcoef 相关系数conv2 二维卷积conv 卷积和多项式乘法filter IIR或FIR滤波器deconv 反卷积和多项式除法filter2 二维数字滤波器cplxpair 将复数值分类为共轭对fft 一维的快速傅立叶变换fft2 二维快速傅立叶变换fftshift 将FFT的DC分量移到频谱中心ifft 一维快速反傅立叶变换ifft2 二维傅立叶反变换ifftn 多维快速傅立叶变换ifftshift 反FFT偏移nextpow2 最靠近的2的幂次unwrap 校正相位角多项式与插值conv 卷积和多项式乘法roots 多项式的根poly 具有设定根的多项式polyder 多项式微分polyeig 多项式的特征根polyfit 多项式拟合polyint 解析多项式积分polyval 多项式求值polyvalm 矩阵变量多项式求值residue 部分分式展开interp1 一维插值interp2 二维插值interp3 三维插值interpft 使用FFT的一维插值interpn 多维插值meshgrid 为3维点生成x和y的网格ndgrid 生成多维函数和插值的数组pchip 分段3次Hermite插值多项式ppval 分段多项式的值spline 3次样条数据插值绘图函数bar 竖直条图barh 水平条图hist 直方图histc 直方图计数hold 保持当前图形loglog x,y对数坐标图pie 饼状图plot 绘二维图polar 极坐标图semilogy y轴对数坐标图semilogx x轴对数坐标subplot 绘制子图bar3 数值3D竖条图bar3h 水平3D条形图comet3 3D 慧星图cylinder 圆柱体fill3 填充的3D多边形plot3 3维空间绘图quiver3 3D震动(速度)图slice 体积薄片图sphere球stem3 绘制离散表面数据wate***ll 绘制瀑布trisurf三角表面clabel 增加轮廓标签到等高线图中datetick 数据格式标记grid 加网格线gtext 用鼠标将文本放在2D图中legend 图注plotyy 左右边都绘Y轴title 标题xlabel X轴标签ylabel Y轴标签zlabel Z轴标签contour 等高线图contourc 等高线计算contourf 填充的等高线图hidden 网格线消影meshc 连接网格/等高线mesh 具有参考轴的3D网格peaks 具有两个变量的采样函数surf 3D阴影表面图su***ce 建立表面低层对象surfc 海浪和等高线的结合surfl 具有光照的3D阴影表面trimesh 三角网格图二Matlab常用指令1、通用信息查询(General information)demo 演示程序help 在线帮助指令helpbrowser 超文本文档帮助信息helpdesk 超文本文档帮助信息helpwin 打开在线帮助窗info MATLAB 和MathWorks 公司的信息subscribe MATLAB 用户注册ver MATLAB 和TOOLBOX 的版本信息version MATLAB 版本whatsnew 显示版本新特征2、工作空间管理(Managing the workspace)clear 从内存中清除变量和函数exit 关闭MATLAB load 从磁盘中调入数据变量pack 合并工作内存中的碎块quit 退出MATLAB save 把内存变量存入磁盘who 列出工作内存中的变量名whos 列出工作内存中的变量细节workspace 工作内存浏览器3 、管理指令和函数(Managing commands and functions)edit 矩阵编辑器edit 打开M 文件inmem 查看内存中的P 码文件mex 创建MEX 文件open 打开文件pcode 生成P 码文件type 显示文件内容what 列出当前目录上的M、MAT、MEX 文件which 确定指定函数和文件的位置4 、搜索路径的管理(Managing the seach patli)addpath 添加搜索路径rmpath 从搜索路径中删除目录path 控制MATLAB 的搜索路径pathtool 修改搜索路径5、指令窗控制(Controlling the command window)beep 产生beep 声echo 显示命令文件指令的切换开关diary 储存MATLAB 指令窗操作内容format 设置数据输出格式more 命令窗口分页输出的控制开关6、操作系统指令(Operating system commands)cd 改变当前工作目录computer 计算机类型copyfile 文件拷贝delete 删除文件dir 列出的文件dos 执行dos 指令并返还结果getenv 给出环境值ispc MATLAB 为PC(Windows)版本则为真isunix MATLAB 为Unix 版本则为真mkdir 创建目录pwd 改变当前工作目录unix 执行unix 指令并返还结果vms 执行vms dcl 指令并返还结果web 打开web 浏览器! 执行外部应用程序三Matlab运算符和特殊算符1、算术运算符(Arithmetic operators)+ 加- 减* 矩阵乘 .* 数组乘^ 矩阵乘方 .^ 数组乘方\ 反斜杠或左除/ 斜杠或右除 ./或.\ 数组除张量积[注]本表第三栏括号中的字符供在线救助时help 指令引述用2、关系运算符(Relational operators)= = 等号~= 不等号< 小于> 大于<= 小于或等于>= 大于或等于3、逻辑操作(Logical operators)& 逻辑与| 逻辑或~ 逻辑非xor 异或any 有非零元则为真all 所有元素均非零则为真4、特殊算符(Special characters):冒号( ) 圆括号[ ] 方括号{ } 花括号@ 创建函数句柄 . 小数点 . 构架域的关节点 .. 父目录? 续行号, 逗号; 分号% 注释号! 调用操作系统命令= 赋值符号ˊ引号ˊ复数转置号 .ˊ转置号[,] 水平串接[;] 垂直串接( ),{ },. 下标赋值( ),{ },. 下标标识subsindex 下标标识四Matlab编程语言结构控制语句(Control flow)break 终止最内循环case 同switch 一起使用catch 同try 一起使用continue 将控制转交给外层的for 或while 循环else 同if 一起使用elseif 同if 一起使用end 结束for,while,if 语句for 按规定次数重复执行语句if 条件执行语句otherwise 可同switch 一起使用return 返回switch 多个条件分支try try-cathch 结构while 不确定次数重复执行语句2、计算运行(Evaluation and execution)assignin 跨空间赋值builtin 执行内建的函数eval 字符串宏指令evalc 执行MATLAB 字符串evalin 跨空间计算串表达式的值feval 函数宏指令run 执行脚本文件3、脚本文件、函数及变量(Scripts,function,and variables)exist 检查变量或函数是否被定义function 函数文件头global 定义全局变量isglobal 若是全局变量则为真iskeyword 若是关键字则为真mfilename 正在执行的M 文件的名字persistent 定义永久变量script MATLAB 命令文件4、宗量处理(Augument handling)inputname 实际调用变量名nargchk 输入变量个数检查nargin 函数输入宗量的个数nargout 函数输出宗量的个数nargoutchk 输出变量个数检查varagin 输入宗量varagout 输出宗量5、信息显示(Message display)disp 显示矩阵和文字内容display 显示矩阵和文字内容的重载函数error 显示错误信息fprintf 把格式化数据写到文件或屏幕lasterr 最后一个错误信息lastwarn 最后一个警告信息sprintf 按格式把数字转换为串warning 显示警告信息6 、交互式输入(Interactive input) input 提示键盘输入keyboard 激活键盘做为命令文件pause 暂停uicontrol 创建用户界面控制uimenu 创建用户界面菜单五Matlab基本矩阵函数和操作1、基本矩阵(Elementary matrices)eye 单位阵linspace 线性等分向量logspace 对数等分向量meshgrid用于三维曲面的分格线坐标ones 全1 矩阵rand 均匀分布随机阵randn 正态分布随机阵repmat 铺放模块数组zeros 全零矩阵: 矩阵的援引和重排2、矩阵基本信息(Basic array information)disp 显示矩阵和文字内容isempty 若是空矩阵则为真isequal 若对应元素相等则为1 islogical 尤其是逻辑数则为真isnumeric 若是数值则为真length 确定向量的长度logical 将数值转化为逻辑值ndims 数组A的维数size 确定矩阵的维数3、矩阵操作(Matrix manipulateion)blkdiag 块对角阵串接diag 创建对角阵,抽取对角向量end 数组的长度,即最大下标find 找出非零元素1 的下标fliplr 矩阵的左右翻转flipud 矩阵的上下翻转flipdim 交换对称位置上的元素ind2sub 据单下标换算出全下标reshape 矩阵变维rot90 矩阵逆时针90°旋转sub2idn 据全下标换算出单下标tril 抽取下三角阵triu 抽取上三角阵4、特殊变量和常数(Special variables and constants)ans 最新表达式的运算结果eps 浮点相对误差i,j 虚数单位inf 或Inf 无穷大isfinite 若是有限数则为真isinf 若是无穷大则为真isnan 若为非数则为真NaN 或nan 非数pi 3.1415926535897?. realmax 最大浮点数realmin 最小正浮点数why 一般问题的简明答案5、特殊矩阵(Specialized matrices)compan 伴随矩阵gallery 一些小测试矩阵hadamard Hadamard 矩阵hankel Hankel 矩阵hilb Hilbert 矩阵invhilb 逆Hilbert 矩阵magic 魔方阵pascal Pascal 矩阵rosser 典型对称特征值实验问题toeplitz Toeplitz 矩阵vander Vandermonde 矩阵wilkinson Wilkinson's 对称特征值实验矩阵六Matlab基本数学函数1、三角函数(Trigonometric)acos 反余弦acosh 反双曲余弦acot 反余切acoth 反双曲余切acsc 反余割acsch 反双曲余割asec 反正割asech 反双曲正割asin 反正弦asinh 反双曲正弦atan 反正切atanh 反双曲正切atan2 四象限反正切cos 余弦cosh 双曲余弦cot 余切coth 双曲余切csc 余割csch 双曲余割sec 正割sech 双曲正割sin 正弦sinh 双曲正弦tan 正切tanh 双曲正切2、指数函数(Exponential)exp 指数log 自然对数log10 常用对数log2 以2 为底的对数nestpow2 最近邻的2 的幂pow2 2 的幂sqrt 平方根3、复数函数(Complex)abs 绝对值angle 相角complex 将实部和虚部构成复数conj 复数共轭cplxpair 复数阵成共轭对形式排列imag 复数虚部isreal 若是实数矩阵则为真real 复数实部unwrap 相位角360°线调整4、圆整和求余函数(Rounding and remainder)ceil 朝正无穷大方向取整fix 朝零方向取整floor 朝负无穷大方向取整mod 模数求余rem 求余数round 四舍五入取整sign 符号函数 6 特殊函数(Specialized math functions) cart2pol 直角坐标变为柱(或极)坐标cart2sph 直角坐标变为球坐标cross 向量叉积dot 向量内积isprime 若是质数则为真pol2cart 柱(或极)坐标变为直角坐标sph2cart 球坐标变为直角坐标七Matlab矩阵函数和数值线性代数1、矩阵分析(Matrix analysis)det 行列式的值norm 矩阵或向量范数normest 估计2 范数null 零空间orth 值空间rank 秩rref 转换为行阶梯形trace迹subspace 子空间的角度2、线性方程(Linear equations)chol Cholesky 分解cholinc 不完全Cholesky 分解cond 矩阵条件数condest 估计1-范数条件数inv 矩阵的逆lu LU 分解luinc 不完全LU 分解lscov 已知协方差的最小二乘积nnls 非负二乘解pinv 伪逆qr QR 分解rcond LINPACK 逆条件数\、/ 解线性方程3、特性值与奇异值(Eigenvalues and singular values)condeig 矩阵各特征值的条件数eig 矩阵特征值和特征向量eigs 多个特征值gsvd 归一化奇异值分解hess Hessenberg 矩阵poly 特征多项式polyeig 多项式特征值问题qz 广义特征值schur Schur 分解svd 奇异值分解svds 多个奇异值4、矩阵函数(Matrix functions)expm 矩阵指数expm1 矩阵指数的Pade 逼近expm2 用泰勒级数求矩阵指数expm3 通过特征值和特征向量求矩阵指数funm 计算一般矩阵函数logm 矩阵对数sqrtm 矩阵平方根5、因式分解(Factorization utility)cdf2rdf 复数对角型转换到实块对角型balance 改善特征值精度的平衡刻度rsf2csf 实块对角型转换到复数对角型八数据分析和傅里叶变换1、基本运算(Basic operations)cumprod 元素累计积cumsum 元素累计和cumtrapz 累计积分hist 统计频数直方图histc 直方图统计max 最大值mean 平均值median 中值min 最小值prod 元素积sort 由小到大排序sortrows 由小到大按行排序std 标准差sum 元素和trapz 梯形数值积分var 求方差2、有限差分(Finite differentces)del2 五点离散Laplacian diff 差分和近似微分gradient 梯度3、相关(Correlation)corrcoef 相关系数cov 协方差矩阵subspace 子空间之间的角度4、滤波和卷积(Filtering and convoluteion)conv 卷积和多项式相乘conv2 二维卷积convn N 维卷积detrend 去除线性分量deconv 解卷和多项式相除filter 一维数字滤波器fliter2 二维数字滤波器5、傅里叶变换(Fourier transforms)fft 快速离散傅里叶变换fft2 二维离散傅里叶变换fftn N 维离散傅里叶变换fftshift 重排fft 和fft2 的输出ifft 离散傅里叶反变换ifft2 二维离散傅城叶反变换ifftn N 维离散傅里叶反变换ifftshift 反fftshift九音频支持1、音频硬件驱动(Audio hardware drivers)sound 播放向量soundsc 自动标刻并播放waveplay 利用系统音频输出设配播放waverecor 利用系统音频输入设配录音2、音频文件输入输出(Audio file import and export)auread 读取音频文件(.au) auwrite 创建音频文件(.au) wavread 读取音频文件(.wav) wavwrite 创建音频文件(.wav)3、工具(Utilities)lin2mu 将线性信号转换为μ 一律编码的信号mu2lin 将μ 一律编码信号转换为线性信号十插补多项式函数1、数据插补(Data Interpolation)griddata 分格点数据griddata3 三维分格点数据griddatan 多维分格点数据interpft 利用FFT 方法一维插补interp1 一维插补interp1q 快速一维插补interp2 二维插补interp3 三维插补intern N 维插补pchip hermite 插补2 、样条插补(Spline Interpolation)ppval 计算分段多项式spline 三次样条插补3 、多项式(Polynomials)conv 多项式相乘deconv 多项式相除poly 由根创建多项式polyder多项式微分polyfit 多项式拟合polyint 积分多项式分析polyval 求多项式的值polyvalm 求矩阵多项式的值residue 求部分分式表达roots 求多项式的根十一数值泛函函数和ODE 解算器1、优化和寻根(Optimization and root finding)fminbnd 非线性函数在某区间中极小值fminsearch 单纯形法求多元函数极值点指令fzero 单变量函数的零点2、优化选项处理(Optimization Option handling)optimget 从OPTIONS 构架中取得优化参数optimset 创建或修改OPTIONS 构架3、数值积分(Numerical intergration)dblquad 二重(闭型)数值积分指令quad 低阶法数值积分quadl 高阶法数值积分4、绘图(Plotting)ezcontour 画等位线ezcontourf 画填色等位线ezmesh 绘制网格图ezmeshc 绘制含等高线的网格图ezplot 绘制曲线ezplot3 绘制3 维曲线ezpolar 采用极坐标绘图ezsurf 画曲面图ezsurfc 画带等位线的曲面图fplot 画函数曲线图5、内联函数对象(Inline function object)argnames 给出函数的输入宗量char 创建字符传输组或者将其他类型变量转化为字符串数组formula 函数公式inline 创建内联函数6、差微分函数解算器(Differential equation solvers)ode113 变阶法解方程ode15s 变阶法解刚性方程ode23 低阶法解微分方程ode23s 低阶法解刚性微分方程ode23t 解适度刚性微分方程odet23tb 低阶法解刚性微分方程ode45 高阶法解微分方程十二二维图形函数1、基本平面图形(Elementary X-Y graphs)loglog 双对数刻度曲线plot 直角坐标下线性刻度曲线plotyy 双纵坐标图polar 极坐标曲线图semilogx X 轴半对数刻度曲线semilogy Y 轴半对数刻度曲线2 、轴控制(Axis control)axes 创建轴axis 轴的刻度和表现box 坐标形式在封闭式和开启词式之间切换grid 画坐标网格线hold 图形的保持subplot 创建子图zoom 二维图形的变焦放大3、图形注释(Graph annotation)gtext 用鼠标在图上标注文字legend 图例说明plotedit 图形编辑工具text 在图上标注文字texlabel 将字符串转换为Tex 格式title 图形标题xlabel X 轴名标注ylabel Y 轴名标注4、硬拷贝(Hardcopy and printing)orient 设置走纸方向print 打印图形或把图存入文件printopt 打印机设置十三三维图形函数1、基本三维图形(Elementary 3-D plots) fill3 三维曲面多边形填色mesh 三维网线图plot3 三维直角坐标曲线图surf 三维表面图2 、色彩控制(Color control)alpha 透明色控制brighten 控制色彩的明暗caxis (伪)颜色轴刻度colordef 用色风格colormap 设置色图graymon 设置缺省图形窗口为单色显示屏hidden 消隐shading 图形渲染模式whitebg 设置图形窗口为白底3、光照模式(Lighting)diffuse 漫反射表面系数light 灯光控制lighting 设置照明模式material 使用预定义反射模式specular 漫反射surfnorm 表面图的法线surfl 带光照的三维表面图4 、色图(Color maps)autumn 红、黄浓淡色bone 蓝色调灰度图colorcube 三浓淡多彩交错色cool 青和品红浓淡色图copper 线性变化纯铜色调图flag 红-白-蓝黑交错色图gray 线性灰度hot 黑-红-黄-白交错色图hsv 饱和色彩图jet 变异HSV 色图lines 采用plot 绘线色pink 淡粉红色图prism 光谱色图spring 青、黄浓淡色summer 绿、黄浓淡色vga 16 色white 全白色winter 蓝、绿浓淡色5、轴的控制(Axis control)axes 创建轴axis 轴的刻度和表现box 坐标形式在封闭式和开启式之间切换daspect 轴的DataAspectRatio 属性grid 画坐标网格线hold 图形的保持pbaspect 画坐标框的PlotBoxAspectRatio 属性subplot 创建子图xlim X 轴范围ylim Y 轴范围zlim Z 轴范围zoom 二维图形的变焦放大6、视角控制(Viewpoint control)rotate3d 旋动三维图形view 设定3-D 图形观测点viewmtx 观测点转换矩阵7、图形注释(Graph annotation)colorbar 显示色条gtext 用鼠标在图上标注文字plotedit 图形编辑工具text 在图上标注文字title 图形标题xlabel X 轴名标注ylabel Y 轴名标注zlabel Z 轴名标注8 、硬拷贝(Hardcopy and printing)orient 设置走纸方向print 打印图形或把图存入文件printopt 打印机设置verml 将图形保存为VRML2.0 文件十四特殊图形1、特殊平面图形(Specialized 2-D graphs)area 面域图bar 直方图barh 水平直方图comet 彗星状轨迹图compass 从原点出发的复数向量图errorbar 误差棒棒图ezplot 画二维曲线ezpolar 画极坐标曲线feather 从X 轴出发的复数向量图fill 多边填色图fplot 函数曲线图hist 统计频数直方图pareto Pareto图pie 饼形统计图plotmatrix 散点图阵列scatter 散点图stairs 阶梯形曲线图stem 火柴杆图2 、等高线及二维半图形(Contour and 2-1/2D graphs)clabel 给等高线加标注contour 等高线图contourf 等高线图contour3 三维等高线ezcontour 画等位线ezcontourf 画填色等位线pcolor 用颜色反映数据的伪色图voronoi Voronoi 图3、特殊三维图形(Specialized 3-D graphs)bar3 三维直方图bar3h 三维水平直方图comet3 三维彗星动态轨迹线图ezgraph3 通用指令ezmesh 画网线图ezmeshc 画等位线的网线图ezplot3 画三维曲线ezsurf 画曲面图ezsurfc 画带等位线的曲面图meshc 带等高线的三维网线图meshz 带零基准面的三维网线图pie3 三维饼图ribbon 以三维形式绘制二维曲线scatter3 三维散点图stem3 三维离散杆图surfc 带等高线的三维表面图trimesh 三角剖分网线图trisurf 三角剖分曲面图waterfall 瀑布水线图4、内剖及向量视图(Volume and vector visualization)coneplot 锥体图contourslice 切片等位线图quiver 矢量场图quiver3 三维方向箭头图slice 切片图5、图像显示及文件处理(Image display and file I/O)brighten 控制色彩的明暗colorbar 色彩条状图colormap 设置色图contrast 提高图像对比度的灰色图gray 线性灰度image 显示图像imagesc 显示亮度图像imfinfo 获取图像文件的特征数据imread 从文件读取图像的数据阵(和伴随色图))imwrite 把强度图像或真彩图像写入文件6、影片和动画(Movies and animation)capture 当前图的屏捕捉frame2im 将影片动画转换为编址图像getframe 获得影片动画图像的帧im2frame 将编址图像转换为影片动画movie 播放影片动画moviein 影片动画内存初始化rotate 旋转指令7、颜色相关函数(Color related function)spinmap 颜色周期性变化操纵8、三维模型函数(Solid modeling)cylinder 圆柱面patch 创建块sphere 球面Surf2patch 将曲面数据转换为块数据十五句柄图形1、图形窗的产生和控制(Figure window creation and control)clf 清除当前图close 关闭图形figure 打开或创建图形窗口gcf 获得当前图的柄openfig 打开图形refresh 刷新图形shg 显示图形窗2、轴的产生和控制(Axis creation and control)axes 在任意位置创建轴axis 轴的控制box 坐标形式在封闭式和开启式之间切换caxis 控制色轴的刻度cla 清除当前轴gca 获得当前轴的柄hold 图形的保持ishold 若图形处保持状态则为真subplot 创建子图3、句柄图形对象(Handle Graphics objects)axex 在任意位置创建轴figure 创建图形窗口image 创建图像light 创建光line 创建线patch 创建块rectangle 创建方surface 创建面text 创建图形中文本uicontextmenu 创建现场菜单对象uicontrol 用户使用界面控制uimenu 用户使用菜单控制4、句柄图形处理(Handle Graphics operations)copyobj 拷贝图形对象及其子对象delete 删除对象及文件drawnow 屏幕刷新findobj 用规定的特性找寻对象gcbf "正执行回调操作"的图形的柄gcbo "正执行回调操作"的控件图柄指令gco 获得当前对象的柄get 获得对象特性getappdat 获得应用程序定义数据isappdata 检验是否应用程序定义数据reset 重设对象特性rmappdata 删除应用程序定义数据set 建立对象特性setappdata 建立应用程序定义数据5 、工具函数(Utilities)closereq 关闭图形窗请求函数ishandle 若是图柄代号侧为真newplot 下一个新图十六图形用户界面工具align 对齐用户控件和轴cbedit 编辑回调函数ginput 从鼠标得到图形点坐标guide 设计GUI menu 创建菜单menuedit 菜单编辑propedit 属性编辑uicontrol 创建用户界面控制uimenu 创建用户界面菜单十七字符串1 、通用字符串函数(General)blanks 空格符号cellstr 通过字符串数组构建字符串的元胞数组char 创建字符传输组或者将其他类型变量转化为字符串数组deblank 删除最后的空格double 把字符串变成ASCII 码值eval 执行串形式的MATLAB 表达式2、字符串查询(String tests)iscellstr 若是字符串组成的元胞数组则为真ischar 若是字符串则为真isletter 串中是字母则为真isspace 串中是空格则为真isstr 若是字符串则为真3、字符串操作(String operations)base2dec X-进制串转换为十进制整数bin2dec 二进制串转换为十进制整数dec2base 十进制整数转换为X 进制串dec2bin 十进制整数转换为二进制串dec2hex 十进制整数转换为16 进制串findstr 在一个串中寻找一个子串hex2dec 16-进制串转换为十进制整数hex2num 16-进制串转换为浮点数int2str 将整数转换为字符串lower 把字符串变成小写mat2str 将数组转换为字符串num2str 把数值转换为字符串strcat 把多个串连接成长串strcmp 比较字符串strcmpi 比较字符串(忽略大小写)stringsMATLAB 中的字符串strjust 字符串的对齐方式strmatch 逐行搜索串strnomp 比较字符串的前N 个字符strncmpi 比较字符串的前N 个字符(忽略大小写)strrep 用另一个串代替一个串中的子串strtok 删除串中的指定子串strvcat 创建字符串数组str2mat 将字符串转换为含有空格的数组str2num 将字符串转换为数值upper 把字符串变成大写十八文件输入/输出clc 清除指令窗口disp 显示矩阵和文字内容fprintf 把格式化数据写到文件或屏幕home 光标返回行首input 提示键盘输入load 从磁盘中调入数据变量pause 暂停sprintf 写格式数据到串sscanf 在格式控制下读串十九时间和日期clock 时钟cputme MATLAB 战用CPU 时间date 日期etime 用CLOCK 计算的时间now 当前时钟和日期pause 暂停tic 秒表启动toc 秒表终止和显示二十数据类型1、数据类型(Data types)cell 创建元胞变量char 创建字符传输组或者将其他类型变量转化为字符串数组double 转化为16 位相对精度的浮点数值对象function handle 函数句柄inline 创建内联函数JavaArray 构建Java 数组JavaMethod 调用某个Java 方法JavaObject 调用Java 对象的构造函数single 转变为单精度数值sparse 创建稀疏矩阵struct 创建构架变量uint8(unit16、unit32) 转换为8(16、32)位无符号整型数int8(nit16、nit32) 转换为8(16、32)位符号整型数2、多维数组函数(Multi-dimensional array functions)cat 把若干数组串接成高维数组ndims 数组A 的维数ndgrid 为N-D 函数和插补创建数组ipermute 广义反转置permute 广义非共轭转置shiftdim 维数转换squeeze 使数组降维3、元胞数组函数(Cell array functions)cell 创建元胞变量celldisp 显示元胞数组内容cellfun 元胞数组函数cellplot 图示元胞数组的内容cell2struct 把元胞数组转换为构架数组deal 把输入分配给输出is cell 若是元胞则为真num2 cell 把数值数组转换为元胞数组struct2 cell 把构架数组转换为元胞数组4、构架函数(Structure functions)fieldnames 获取构架的域名getfield 获取域的内容isfield 若为给定构架的域名则为真isstruct 若是构架则为真rmfield 删除构架的域setfield 指定构架域的内容struct 创建构架变量5、函数句柄函数(Function handle functions)@ 创建函数句柄functions 列举函数句柄对应的函数func2str 将函数句柄数组转换为字符串str2func 将字符串转换为函数句柄6、面向对象编程(Object oriented programming functions)dlass 查明变量的类型isa 若是指定的数据类型则为真inferiorto 级别较低isjava 若是java 对象则为真isobject 若是对象则为真methods 显示类的方法名substruct 创建构架总量superiorto 级别较高二一示例demo 演示程序flow 无限大水体中水下射流速度数据intro 幻灯演示指令peaks 产生peaks 图形数据二二符号工具包1、微积分(Calculus)diff 求导数limit 求极限int 计算积分jacobian Jacobian 矩阵symsum 符号序列的求和trylor Trylor 级数2、线性代数(Linear Algebra)det 行列式的值diag 创建对角阵,抽取对角向量eig 矩阵特征值和特征向量expm 矩阵指数inv 矩阵的逆jordan Jordan 分解null 零空间poly 特征多项式rank 秩rref 转换为行阶梯形svd 奇异值分解tril 抽取下三角阵triu 抽取上三角阵3、化简(Simplification)collect 合并同类项expand 对指定项展开factor 进行因式或因子分解horner 转换成嵌套形式numden 提取公因式simple 运用各种指令化简符号表达式simplify 恒等式简化subexpr 运用符号变量置换子表达式subs 通用置换指令4、方程求解(Solution of Equation)compose 求复函数dsolve 求解符号常微分方程finverse 求反函数fminunc 拟牛顿法求多元函数极值点fsolve 解非线性方程组lsqnonlin 解非线性最小二乘问题solve 求解方程组5、变量精度(Variable Precision Arithmetic)digits 设置今后数值计算以n 位相对精度进行vpa 给出数值型符号结果6、积分变换(Integral Transforms)fourier Fourier 变换ifourier Fourier 反变换ilaplace Ilaplace 反变换iztrans Z 反变换laplace Ilaplace 变换ztrans Z 变换7、转换(Conversions)char 把符号对象转化为字符串数组double 把符号常数转化为16 位相对精度的浮点数值对象poly2sym 将多项式转换为符号多项式sym2poly 将符号多项式转换为系数向量8、基本操作(Basic Operation)ccode 符号表达式的C 码表达式findsym 确认表达式中符号"变量" fortran 符号表达式的fortran 表达式latex 符号表达式的LaTex 表示pretty 习惯方式显示sym 定义基本符号对象syms 定义基本符号对象9、串处理函数(String handling utilities)isvarname 检查是否为有效的变量名vectorize 将字符串表达式或内联函数对象向量化10 、图形应用(Pedagogical and Graphical Applications)ezcontour 画等位线ezcontourf 画填色等位线ezmesh 画网线图ezmeshc 带等位线的网线图ezplot 绘制符号表达式的图形ezplot2。

Linear Algebra(线性代数)

Linear Algebra(线性代数)

一、双语教学班组建学生自愿报名申请。

未修读过“线性代数”,且所在专业的培养方案中“线性代数”为必修课程的学生皆可申请。

申请学生需要有优良的英语基础和数学基础,对英语学习和数学学习有浓厚的兴趣,学习自主性强,已修课程应全部及格。

参加“线性代数”双语教学班的学生在课程考核通过后,不再需要修读中文讲授的“线性代数”课程;未通过者,可参加中文讲授的“线性代数”课程补考。

“线性代数”课程学分数为2.5。

下学期拟组建一个“线性代数”双语教学班,人数约90人。

当报名人数超过90人时,按照平均学分绩点从高到低进行选拔。

学生可以在该班试听两周,可以在开课两周内申请退出该双语教学班。

二、教学及考核课程教学以英文教材为主,强调数学思维训练,并介绍数学软件包Matlab的初步知识。

课程考试采用英文试卷,课程讲授循序渐进增加英语讲授时间。

课堂教学使用英语讲授时间平均超过50%。

该课程考核采用多种方式。

课程总评成绩=课程结束考试成绩(占60%) +课程中期测验(占20%) +平时作业成绩(占10%)+ Project (10%)。

课程期中测验题全部为书中习题。

英语运用能力作为考核指标纳入平时作业成绩的考核。

三、申请时间及上课时间申请参加双语教学班的学生于2012年元月6日(星期五)前将“修读…线性代数‟双语教学课程申请表”(见附表)按班级汇总后交至各学院教务员,学院将报名表汇总后于2012年元月11日前送至教学研究科。

上课时间为2011—2012学年第二学期,第二至第十二周,星期一、星期四晚6:30—8:30。

上课地点另行通知。

四、教材及参考书主要教材:Steven J. Leon,Linear Algebra with Applications(影印版),机械工业出版社,2007.5第七版,定价58元。

主要参考书:S.K.Jain, A.D. Gunawardena,Linear Algebra:An Interactive Approach(影印版),机械工业出版社,2003.7。

matrix_cookbook

matrix_cookbook
The Matrix Cookbook
Kaare Brandt Petersen Michael Syskind Pedersen Version: October 3, 2005
What is this? These pages are a collection of facts (identities, approximations, inequalities, relations, ...) about matrices and matters relating to them. It is collected in this form for the convenience of anyone who wants a quick desktop reference . Disclaimer: The identities, approximations and relations presented here were obviously not invented but collected, borrowed and copied from a large amount of sources. These sources include similar but shorter notes found on the internet and appendices in books - see the references for a full list. Errors: Very likely there are errors, typos, and mistakes for which we apologize and would be grateful to receive corrections at cookbook@2302.dk. Its ongoing: The project of keeping a large repository of relations involving matrices is naturally ongoing and the version will be apparent from the date in the header. Suggestions: Your suggestion for additional content or elaboration of some topics is most welcome at cookbook@2302.dk. Acknowledgements: We would like to thank the following for discussions, proofreading, extensive corrections and suggestions: Esben Hoegh-Rasmussen and Vasile Sima. Keywords: Matrix algebra, matrix relations, matrix identities, derivative of determinant, derivative of inverse matrix, differentiate a matrix.

工程振动名词术语大全(中英文),没见过这么全的

工程振动名词术语大全(中英文),没见过这么全的

工程振动名词术语大全(中英文),没见过这么全的1 振动信号的时域、频域描述振动过程 (Vibration Process)简谐振动 (Harmonic Vibration)周期振动 (Periodic Vibration)准周期振动 (Ouasi-periodic Vibration)瞬态过程 (Transient Process)随机振动过程 (Random Vibration Process)各态历经过程 (Ergodic Process)确定性过程 (Deterministic Process)振幅 (Amplitude)相位 (Phase)初相位 (Initial Phase)频率 (Frequency)角频率 (Angular Frequency)周期 (Period)复数振动 (Complex Vibration)复数振幅 (Complex Amplitude)峰值 (Peak-value)平均绝对值 (Average Absolute Value)有效值 (Effective Value,RMS Value)均值 (Mean Value,Average Value)傅里叶级数 (FS,Fourier Series)傅里叶变换 (FT,Fourier Transform)傅里叶逆变换 (IFT,Inverse Fourier Transform)离散谱 (Discrete Spectrum)连续谱 (Continuous Spectrum)傅里叶谱 (Fourier Spectrum)线性谱 (Linear Spectrum)幅值谱 (Amplitude Spectrum)相位谱 (Phase Spectrum)均方值 (Mean Square Value)方差 (Variance)协方差 (Covariance)自协方差函数 (Auto-covariance Function)互协方差函数 (Cross-covariance Function)自相关函数 (Auto-correlation Function)互相关函数 (Cross-correlation Function)标准偏差 (Standard Deviation)相对标准偏差 (Relative Standard Deviation)概率 (Probability)概率分布 (Probability Distribution)高斯概率分布 (Gaussian Probability Distribution) 概率密度 (Probability Density)集合平均 (Ensemble Average)时间平均 (Time Average)功率谱密度 (PSD,Power Spectrum Density)自功率谱密度 (Auto-spectral Density)互功率谱密度 (Cross-spectral Density)均方根谱密度 (RMS Spectral Density)能量谱密度 (ESD,Energy Spectrum Density)相干函数 (Coherence Function)帕斯瓦尔定理 (Parseval''s Theorem)维纳,辛钦公式 (Wiener-Khinchin Formula)2 振动系统的固有特性、激励与响应振动系统 (Vibration System)激励 (Excitation)响应 (Response)单自由度系统 (Single Degree-Of-Freedom System) 多自由度系统 (Multi-Degree-Of- Freedom System) 离散化系统 (Discrete System)连续体系统 (Continuous System)刚度系数 (Stiffness Coefficient)自由振动 (Free Vibration)自由响应 (Free Response)强迫振动 (Forced Vibration)强迫响应 (Forced Response)初始条件 (Initial Condition)固有频率 (Natural Frequency)阻尼比 (Damping Ratio)衰减指数 (Damping Exponent)阻尼固有频率 (Damped Natural Frequency)对数减幅系数 (Logarithmic Decrement)主频率 (Principal Frequency)无阻尼模态频率 (Undamped Modal Frequency)模态 (Mode)主振动 (Principal Vibration)振型 (Mode Shape)振型矢量 (Vector Of Mode Shape)模态矢量 (Modal Vector)正交性 (Orthogonality)展开定理 (Expansion Theorem)主质量 (Principal Mass)模态质量 (Modal Mass)主刚度 (Principal Stiffness)模态刚度 (Modal Stiffness)正则化 (Normalization)振型矩阵 (Matrix Of Modal Shape)主坐标 (Principal Coordinates)模态坐标 (Modal Coordinates)模态分析 (Modal Analysis)模态阻尼比 (Modal Damping Ratio)频响函数 (Frequency Response Function)幅频特性 (Amplitude-frequency Characteristics)相频特性 (Phase frequency Characteristics)共振 (Resonance)半功率点 (Half power Points)波德图(Bodé Plot)动力放大系数 (Dynamical Magnification Factor)单位脉冲 (Unit Impulse)冲激响应函数 (Impulse Response Function)杜哈美积分(Duhamel’s Integral)卷积积分 (Convolution Integral)卷积定理 (Convolution Theorem)特征矩阵 (Characteristic Matrix)阻抗矩阵 (Impedance Matrix)频响函数矩阵 (Matrix Of Frequency Response Function) 导纳矩阵 (Mobility Matrix)冲击响应谱 (Shock Response Spectrum)冲击激励 (Shock Excitation)冲击响应 (Shock Response)冲击初始响应谱 (Initial Shock Response Spectrum)冲击剩余响应谱 (Residual Shock Response Spectrum) 冲击最大响应谱 (Maximum Shock Response Spectrum) 冲击响应谱分析 (Shock Response Spectrum Analysis)3 模态试验分析机械阻抗 (Mechanical Impedance)位移阻抗 (Displacement Impedance)速度阻抗 (Velocity Impedance)加速度阻抗 (Acceleration Impedance)机械导纳 (Mechanical Mobility)位移导纳 (Displacement Mobility)速度导纳 (Velocity Mobility)加速度导纳 (Acceleration Mobility)驱动点导纳 (Driving Point Mobility)跨点导纳 (Cross Mobility)传递函数 (Transfer Function)拉普拉斯变换 (Laplace Transform)传递函数矩阵 (Matrix Of Transfer Function)频响函数 (FRF,Frequency Response Function)频响函数矩阵 (Matrix Of FRF)实模态 (Normal Mode)复模态 (Complex Mode)模态参数 (Modal Parameter)模态频率 (Modal Frequency)模态阻尼比 (Modal Damping Ratio)模态振型 (Modal Shape)模态质量 (Modal Mass)模态刚度 (Modal Stiffness)模态阻力系数 (Modal Damping Coefficient)模态阻抗 (Modal Impedance)模态导纳 (Modal Mobility)模态损耗因子 (Modal Loss Factor)比例粘性阻尼 (Proportional Viscous Damping)非比例粘性阻尼 (Non-proportional Viscous Damping)结构阻尼 (Structural Damping,Hysteretic Damping)复频率 (Complex Frequency)复振型 (Complex Modal Shape)留数 (Residue)极点 (Pole)零点 (Zero)复留数 (Complex Residue)随机激励 (Random Excitation)伪随机激励 (Pseudo Random Excitation)猝发随机激励 (Burst Random Excitation)稳态正弦激励 (Steady State Sine Excitation)正弦扫描激励 (Sweeping Sine Excitation)锤击激励 (Impact Excitation)频响函数的H1 估计 (FRF Estimate by H1)频响函数的H2 估计 (FRF Estimate by H2)频响函数的H3 估计 (FRF Estimate by H3)单模态曲线拟合法 (Single-mode Curve Fitting Method)多模态曲线拟合法 (Multi-mode Curve Fitting Method)模态圆 (Mode Circle)剩余模态 (Residual Mode)幅频峰值法 (Peak Value Method)实频-虚频峰值法 (Peak Real/Imaginary Method)圆拟合法 (Circle Fitting Method)加权最小二乘拟合法 (Weighting Least Squares Fitting method) 复指数拟合法 (Complex Exponential Fitting method)4 传感器测量系统传感器测量系统 (Transducer Measuring System)传感器 (Transducer)振动传感器 (Vibration Transducer)机械接收 (Mechanical Reception)机电变换 (Electro-mechanical Conversion)测量电路 (Measuring Circuit)惯性式传感器 (Inertial Transducer,Seismic Transducer) 相对式传感器 (Relative Transducer)电感式传感器 (Inductive Transducer)应变式传感器 (Strain Gauge Transducer)电动力传感器 (Electro-dynamic Transducer)压电式传感器 (Piezoelectric Transducer)压阻式传感器 (Piezoresistive Transducer)电涡流式传感器 (Eddy Current Transducer)伺服式传感器 (Servo Transducer)灵敏度 (Sensitivity)复数灵敏度 (Complex Sensitivity)分辨率 (Resolution)频率范围 (Frequency Range)线性范围 (Linear Range)频率上限 (Upper Limit Frequency)频率下限 (Lower Limit Frequency)静态响应 (Static Response)零频率响应 (Zero Frequency Response)动态范围 (Dynamic Range)幅值上限 Upper Limit Amplitude)幅值下限 (Lower Limit Amplitude)最大可测振级 (Max.Detectable Vibration Level)最小可测振级 (Min.Detectable Vibration Level)信噪比 (S/N Ratio)振动诺模图 (Vibration Nomogram)相移 (Phase Shift)波形畸变 (Wave-shape Distortion)比例相移 (Proportional Phase Shift)惯性传感器的稳态响应(Steady Response Of Inertial Transducer)惯性传感器的稳击响应 (Shock Response Of Inertial Transducer) 位移计型的频响特性(Frequency Response Characteristics Vibrometer)加速度计型的频响特性(Frequency Response Characteristics Accelerometer)幅频特性曲线 (Amplitude-frequency Curve)相频特性曲线 (Phase-frequency Curve)固定安装共振频率 (Mounted Resonance Frequency)安装刚度 (Mounted Stiffness)有限高频效应 (Effect Of Limited High Frequency)有限低频效应 (Effect Of Limited Low Frequency)电动式变换 (Electro-dynamic Conversion)磁感应强度 (Magnetic Induction, Magnetic Flux Density)磁通 (Magnetic Flux)磁隙 (Magnetic Gap)电磁力 (Electro-magnetic Force)相对式速度传 (Relative Velocity Transducer)惯性式速度传感器 (Inertial Velocity Transducer)速度灵敏度 (Velocity Sensitivity)电涡流阻尼 (Eddy-current Damping)无源微(积)分电路 (Passive Differential (Integrate) Circuit)有源微(积)分电路 (Active Differential (Integrate) Circuit)运算放大器 (Operational Amplifier)时间常数 (Time Constant)比例运算 (Scaling)积分运算 (Integration)微分运算 (Differentiation)高通滤波电路 (High-pass Filter Circuit)低通滤波电路 (Low-pass Filter Circuit)截止频率 (Cut-off Frequency)压电效应 (Piezoelectric Effect)压电陶瓷 (Piezoelectric Ceramic)压电常数 (Piezoelectric Constant)极化 (Polarization)压电式加速度传感器 (Piezoelectric Acceleration Transducer) 中心压缩式 (Center Compression Accelerometer)三角剪切式 (Delta Shear Accelerometer)压电方程 (Piezoelectric Equation)压电石英 (Piezoelectric Quartz)电荷等效电路 (Charge Equivalent Circuit)电压等效电路 (Voltage Equivalent Circuit)电荷灵敏度 (Charge Sensitivity)电压灵敏度 (Voltage Sensitivity)电荷放大器 (Charge Amplifier)适调放大环节 (Conditional Amplifier Section)归一化 (Uniformization)电荷放大器增益 (Gain Of Charge Amplifier)测量系统灵敏度 (Sensitivity Of Measuring System)底部应变灵敏度 (Base Strain Sensitivity)横向灵敏度 (Transverse Sensitivity)地回路 (Ground Loop)力传感器 (Force Transducer)力传感器灵敏度 (Sensitivity Of Force Transducer)电涡流 (Eddy Current)前置器 (Proximitor)间隙-电压曲线 (Voltage vs Gap Curve)间隙-电压灵敏度 (Voltage vs Gap Sensitivity)压阻效应 (Piezoresistive Effect)轴向压阻系数 (Axial Piezoresistive Coefficient)横向压阻系数 (Transverse Piezoresistive Coefficient)压阻常数 (Piezoresistive Constant)单晶硅 (Monocrystalline Silicon)应变灵敏度 (Strain Sensitivity)固态压阻式加速度传感器(Solid State Piezoresistive Accelerometer)体型压阻式加速度传感器(Bulk Type Piezoresistive Accelerometer)力平衡式传感器 (Force Balance Transducer)电动力常数 (Electro-dynamic Constant)机电耦合系统 (Electro-mechanical Coupling System)5 检测仪表、激励设备及校准装置时间基准信号 (Time Base Signal)李萨茹图 (Lissojous Curve)数字频率计 (Digital Frequency Meter)便携式测振表 (Portable Vibrometer)有效值电压表 (RMS Value Voltmeter)峰值电压表 (Peak-value Voltmeter)平均绝对值检波电路 (Average Absolute Value Detector)峰值检波电路 (Peak-value Detector)准有效值检波电路 (Quasi RMS Value Detector)真有效值检波电路 (True RMS Value Detector)直流数字电压表 (DVM,DC Digital Voltmeter)数字式测振表 (Digital Vibrometer)A/D 转换器 (A/D Converter)D/A 转换器 (D/A Converter)相位计 (Phase Meter)电子记录仪 (Lever Recorder)光线示波器 (Oscillograph)振子 (Galvonometer)磁带记录仪 (Magnetic Tape Recorder)DR 方式(直接记录式) (Direct Recorder)FM 方式(频率调制式) (Frequency Modulation)失真度 (Distortion)机械式激振器 (Mechanical Exciter)机械式振动台 (Mechanical Shaker)离心式激振器 (Centrifugal Exciter)电动力式振动台 (Electro-dynamic Shaker)电动力式激振器 (Electro-dynamic Exciter)液压式振动台 (Hydraulic Shaker)液压式激振器 (Hydraulic Exciter)电液放大器 (Electro-hydraulic Amplifier)磁吸式激振器 (Magnetic Pulling Exciter)涡流式激振器 (Eddy Current Exciter)压电激振片 (Piezoelectric Exciting Elements)冲击力锤 (Impact Hammer)冲击试验台 (Shock Testing Machine)激振控制技术 (Excitation Control Technique)波形再现 (Wave Reproduction)压缩技术 (Compression Technique)均衡技术 (Equalization Technique)交越频率 (Crossover Frequency)综合技术 (Synthesis Technique)校准 (Calibration)分部校准 (Calibration for Components in system) 系统校准 (Calibration for Over-all System)模拟传感器 (Simulated Transducer)静态校准 (Static Calibration)简谐激励校准 (Harmonic Excitation Calibration)绝对校准 (Absolute Calibration)相对校准 (Relative Calibration)比较校准 (Comparison Calibration)标准振动台 (Standard Vibration Exciter)读数显微镜法 (Microscope-streak Method)光栅板法 (Ronchi Ruling Method)光学干涉条纹计数法 (Optical Interferometer Fringe Counting Method)光学干涉条纹消失法(Optical Interferometer Fringe Disappearance Method)背靠背安装 (Back-to-back Mounting)互易校准法 (Reciprocity Calibration)共振梁 (Resonant Bar)冲击校准 (Impact Exciting Calibration)摆锤冲击校准 (Ballistic Pendulum Calibration)落锤冲击校准 (Drop Test Calibration)振动和冲击标准 (Vibration and Shock Standard)迈克尔逊干涉仪 (Michelson Interferometer)摩尔干涉图象 (Moire Fringe)参考传感器 (Reference Transducer)6 频率分析及数字信号处理带通滤波器 (Band-pass Filter)半功率带宽 (Half-power Bandwidth)3 dB 带宽 (3 dB Bandwidth)等效噪声带宽 (Effective Noise Bandwidth)恒带宽 (Constant Bandwidth)恒百分比带宽 (Constant Percentage Bandwidth)1/N 倍频程滤波器 (1/N Octave Filter)形状因子 (Shape Factor)截止频率 (Cut-off Frequency)中心频率 (Centre Frequency)模拟滤波器 (Analog Filter)数字滤波器 (Digital Filter)跟踪滤波器 (Tracking Filter)外差式频率分析仪 (Heterodyne Frequency Analyzer) 逐级式频率分析仪 (Stepped Frequency Analyzer)扫描式频率分析仪 (Sweeping Filter Analyzer)混频器 (Mixer)RC 平均 (RC Averaging)平均时间 (Averaging Time)扫描速度 (Sweeping Speed)滤波器响应时间 (Filter Response Time)离散傅里叶变换 (DFT,Discrete Fourier Transform) 快速傅里叶变换 (FFT,Fast Fourier Transform)抽样频率 (Sampling Frequency)抽样间隔 (Sampling Interval)抽样定理 (Sampling Theorem)抗混滤波 (Anti-aliasing Filter)泄漏 (Leakage)加窗 (Windowing)窗函数 (Window Function)截断 (Truncation)频率混淆 (Frequency Aliasing)乃奎斯特频率 (Nyquist Frequency)矩形窗 (Rectangular Window)汉宁窗 (Hanning Window)凯塞-贝塞尔窗 (Kaiser-Bessel Window)平顶窗 (Flat-top Window)平均 (Averaging)线性平均 (Linear Averaging)指数平均 (Exponential Averaging)峰值保持平均 (Peak-hold Averaging)时域平均 (Time-domain Averaging)谱平均 (Spectrum Averaging)重叠平均 (Overlap Averaging)栅栏效应 (Picket Fence Effect)吉卜斯效应 (Gibbs Effect)基带频谱分析 (Base-band Spectral Analysis)选带频谱分析 (Band Selectable Sp4ctralAnalysis)细化 (Zoom)数字移频 (Digital Frequency Shift)抽样率缩减 (Sampling Rate Reduction)功率谱估计 (Power Spectrum Estimate)相关函数估计 (Correlation Estimate)频响函数估计 (Frequency Response Function Estimate) 相干函数估计 (Coherence Function Estimate)冲激响应函数估计 (Impulse Response Function Estimate) 倒频谱 (Cepstrum)功率倒频谱 (Power Cepstrum)幅值倒频谱 (Amplitude Cepstrum)倒频率 (Quefrency)7 旋转机械的振动测试及状态监测状态监测 (Condition Monitoring)故障诊断 (Fault Diagnosis)转子 (Rotor)转手支承系统 (Rotor-Support System)振动故障 (Vibration Fault)轴振动 (Shaft Vibration)径向振动 (Radial Vibration)基频振动 (Fundamental Frequency Vibration)基频检测 (Fundamental Frequency Component Detecting) 键相信号 (Key-phase Signal)正峰相位 (+Peak Phase)高点 (High Spot)光电传感器 (Optical Transducer)同相分量 (In-phase Component)正交分量 (Quadrature Component)跟踪滤波 (Tracking Filter)波德图 (Bode Plot)极坐标图 (Polar Plot)临界转速 (Critical Speed)不平衡响应 (Unbalance Response)残余振幅 (Residual Amplitude)方位角 (Attitude Angle)轴心轨迹 (Shaft Centerline Orbit)正进动 (Forward Precession)同步正进动 (Synchronous Forward Precession)反进动 (Backward Precession)正向涡动 (Forward Whirl)反向涡动 (Backward Whirl)油膜涡动 (Oil Whirl)油膜振荡 (Oil Whip)轴心平均位置 (Average Shaft Centerline Position)复合探头 (Dual Probe)振摆信号 (Runout Signal)电学振摆 (Electrical Runout)机械振摆 (Mechanical Runout)慢滚动向量 (Slow Roll Vector)振摆补偿 (Runout Compensation)故障频率特征 (Frequency Characteristics Of Fault) 重力临界 (Gravity Critical)对中 (Alignment)双刚度转子 (Dual Stiffness Rotor)啮合频率 (Gear-mesh Frequency)间入简谐分量 (Interharmonic Component)边带振动 (Side-band Vibration)三维频谱图 (Three Dimensional Spectral Plot)瀑布图 (Waterfall Plot)级联图 (Cascade Plot)阶次跟踪 (Order Tracking)阶次跟踪倍乘器 (Order Tracking Multiplier)监测系统 (Monitoring System)适调放大器 (Conditional Amplifier)趋势分析 (Trend Analysis)倒频谱分析 (Cepstrum Analysis)直方图 (Histogram)确认矩阵 (Confirmation Matrix)通频幅值 (Over-all Amplitude)幅值谱 (Amplitude Spectrum)相位谱 (Phase Spectrum)报警限 (Alarm Level)。

. Journal of Optimization Theory

. Journal of Optimization Theory
13] M.L. Overton and R.S. Womersley. Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices. Mathematical Programming, 1993. To appear. 14] E. Polak and Y. Wardi. A nondi erentiable optimization algorithm for structural problems with eigenvalue inequality constraints. Journal of Structural Mechanics, 11:561{577, 1983. 15] R.A. Tapia. A stable approach to Newton's method for general mathematical programming problems in Rn. Journal of Optimization Theory and Applications, 14:453{476, 1974. 16] J. von Neumann and E. Wigner. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen. Physik. Zeitschr., 30:467{470, 1929. 17] G.A. Watson. Algorithms for minimum trace factor analysis. SIAM Journal on Matrix Analysis and Applications, 13:1039{1053, 1992. 18] G.A. Watson. Computing the structured singular value. SIAM Journal on Matrix Analysis and Applications, 13:1054{1066, 1992. 19] Jian Zhou, 1988. Private communication.31References

KraljicMatrix包的中文名字:克拉尔吉矩阵策略分析包说明书

KraljicMatrix包的中文名字:克拉尔吉矩阵策略分析包说明书

Package‘KraljicMatrix’October12,2022Type PackageTitle A Quantified Implementation of the Kraljic MatrixVersion0.2.1Maintainer Bradley Boehmke<************************>Date2017-11-01Description Implements a quantified approach to the Kraljic Matrix(Kraljic,1983,<https: ///1983/09/purchasing-must-become-supply-management>)for strategically analyzing afirm’s purchasing portfolio.It combines multi-objective decision analysis to measure purchasing characteristics anduses this information to place products and services within the Kraljic Matrix.URL https:///koalaverse/KraljicMatrixBugReports https:///koalaverse/KraljicMatrix/issuesLicense MIT+file LICENSEEncoding UTF-8LazyData trueDepends R(>=2.10)Imports ggplot2,dplyr,tibble,magrittrSuggests knitr,rmarkdown,testthatVignetteBuilder knitrRoxygenNote6.0.1NeedsCompilation noAuthor Bradley Boehmke[aut,cre],Brandon Greenwell[aut],Andrew McCarthy[aut],Robert Montgomery[ctb]Repository CRANDate/Publication2018-03-0622:49:03UTC1R topics documented:geom_frontier (2)get_frontier (3)kraljic_matrix (4)kraljic_quadrant (5)MA VF_score (6)MA VF_sensitivity (7)psc (8)SA VF_plot (9)SA VF_plot_rho_error (10)SA VF_preferred_rho (11)SA VF_score (12)%>% (13)Index14 geom_frontier Plotting the Pareto Optimal FrontierDescriptionThe frontier geom is used to overlay the efficient frontier on a scatterplot.Usagegeom_frontier(mapping=NULL,data=NULL,position="identity",direction="vh",na.rm=FALSE,show.legend=NA,inherit.aes=TRUE,...)stat_frontier(mapping=NULL,data=NULL,geom="step",position="identity",direction="vh",na.rm=FALSE,show.legend=NA,inherit.aes=TRUE,quadrant="top.right",...) Argumentsmapping Set of aesthetic mappings created by aes or aes_.If specified and inherit.aes =TRUE(the default),it is combined with the default mapping at the top level ofthe plot.You must supply mapping if there is no plot mapping.data The data to be displayed in this layer.position Position adjustment,either as a string,or the result of a call to a position adjust-ment function.direction Direction of stairs:’vh’for vertical then horizontal,or’hv’for horizontal then vertical.na.rm If FALSE,the default,missing values are removed with a warning.If TRUE, missing values are silently removed.show.legend Logical.Should this layer be included in the legends?NA,the default,includesif any aesthetics are mapped.FALSE never includes,and TRUE always includes.inherit.aes If FALSE,overrides the default aesthetics,rather than combining with them.This is most useful for helper functions that define both data and aesthetics andshouldn’t inherit behaviour from the default plot specification,e.g.borders....Other arguments passed on to layer.These are often aesthetics,used to set anaesthetic to afixed value,like color="red"or size=3.They may also beparameters to the paired geom/stat.geom Use to override the default connection between geom_frontier and stat_frontier.quadrant See get_frontier.Examples##Not run:#default will find the efficient front in top right quadrantggplot(mtcars,aes(mpg,wt))+geom_point()+geom_frontier()#change the direction of the stepsggplot(mtcars,aes(mpg,wt))+geom_point()+geom_frontier(direction= hv )#use quadrant parameter to change how you define the efficient frontierggplot(airquality,aes(Ozone,Temp))+geom_point()+geom_frontier(quadrant= top.left )ggplot(airquality,aes(Ozone,Temp))+geom_point()+geom_frontier(quadrant= bottom.right )##End(Not run)get_frontier Compute the Pareto Optimal FrontierDescriptionExtract the points that make up the Pareto frontier from a set of data.Usageget_frontier(data,x,y,quadrant=c("top.right","bottom.right","bottom.left","top.left"),decreasing=TRUE)4kraljic_matrixArgumentsdata A data frame.x A numeric vector.y A numeric vector.quadrant Chararacter string specifying which quadrant the frontier should appear in.De-fault is"top.right".decreasing Logical value indicating whether the data returned is in decreasing or ascending order(ordered by x and then y).Default is decreasing order.ValueA data frame containing the data points that make up the efficient frontier.See Alsogeom_frontier for plotting the Pareto frontExamples#default will find the Pareto optimal observations in top right quadrantget_frontier(mtcars,mpg,wt)#the output can be in descending or ascending orderget_frontier(mtcars,mpg,wt,decreasing=FALSE)#use quadrant parameter to change how you define the efficient frontierget_frontier(airquality,Ozone,Temp,quadrant= top.left )get_frontier(airquality,Ozone,Temp,quadrant= bottom.right )kraljic_matrix Kraljic matrix plotting functionDescriptionkraljic_matrix plots each product or service in the Kraljic purchasing matrix based on the at-tribute value score of x and yUsagekraljic_matrix(data,x,y)kraljic_quadrant5Argumentsdata A data framex Numeric vector of valuesy Numeric vector of values with compatible dimensions to xValueA Kraljic purchasing matrix plotSee AlsoSAVF_score for computing the exponential single attribute value score for x and yExamples#Given the following\code{x}and\code{y}attribute values we can plot each#product or service in the purchasing matrix:#to add a new variable while preserving existing datalibrary(dplyr)psc2<-psc%>%mutate(x_SAVF_score=SAVF_score(x_attribute,1,5,.653),y_SAVF_score=SAVF_score(y_attribute,1,10,.7))kraljic_matrix(psc2,x_SAVF_score,y_SAVF_score)kraljic_quadrant Kraljic quadrant assignment functionDescriptionkraljic_quadrant assigns the Kraljic purchasing matrix quadrant based on the attribute value score of x and yUsagekraljic_quadrant(x,y)Argumentsx Numeric vector of valuesy Numeric vector of values with compatible dimensions to x6MA VF_score ValueA vector of the same length as x and y with the relevant Kraljic quadrant nameSee AlsoSAVF_score for computing the exponential single attribute value score for x and yExamples#Given the following\code{x}and\code{y}attribute values we can determine#which quadrant each product or service falls in:#to add a new variable while preserving existing datalibrary(dplyr)psc2<-psc%>%mutate(x_SAVF_score=SAVF_score(x_attribute,1,5,.653),y_SAVF_score=SAVF_score(y_attribute,1,10,.7))psc2%>%mutate(quadrant=kraljic_quadrant(x_SAVF_score,y_SAVF_score))MAVF_score Multi-attribute value functionDescriptionMAVF_score computes the multi-attribute value score of x and y given their respective weights UsageMAVF_score(x,y,x_wt,y_wt)Argumentsx Numeric vector of valuesy Numeric vector of values with compatible dimensions to xx_wt Swing weight for xy_wt Swing weight for yValueA vector of the same length as x and y with the multi-attribute value scoresMA VF_sensitivity7See AlsoMAVF_sensitivity to perform sensitivity analysis with a range of x and y swing weightsSAVF_score for computing the exponential single attribute value scoreExamples#Given the following\code{x}and\code{y}attribute values with\code{x}and#\code{y}swing weight values of0.65and0.35respectively,we can compute#the multi-attribute utility score:x_attribute<-c(0.92,0.79,1.00,0.39,0.68,0.55,0.73,0.76,1.00,0.74)y_attribute<-c(0.52,0.19,0.62,1.00,0.55,0.52,0.53,0.46,0.61,0.84)MAVF_score(x_attribute,y_attribute,x_wt=.65,y_wt=.35)MAVF_sensitivity Multi-attribute value function sensitivity analysisDescriptionMAVF_sensitivity computes summary statistics for multi-attribute value scores of x and y given a range of swing weights for each attributeUsageMAVF_sensitivity(data,x,y,x_wt_min,x_wt_max,y_wt_min,y_wt_max) Argumentsdata A data framex Variable from data frame to represent x attribute valuesy Variable from data frame to represent y attribute valuesx_wt_min Lower bound anchor point for x attribute swing weightx_wt_max Upper bound anchor point for x attribute swing weighty_wt_min Lower bound anchor point for y attribute swing weighty_wt_max Upper bound anchor point for y attribute swing weightDetailsThe sensitivity analysis performs a Monte Carlo simulation with1000trials for each product or service(row).Each trial randomly selects a weight from a uniform distribution between the lower and upper bound weight parameters and calculates the mult-attribute utility score.From these trials, summary statistics for each product or service(row)are calculated and reported for thefinal output.8pscValueA data frame with added variables consisting of sensitivity analysis summary statistics for eachproduct or service(row).See AlsoMAVF_score for computing the multi-attribute value score of x and y given their respective weights SAVF_score for computing the exponential single attribute value scoreExamples#Given the following data frame that contains\code{x}and\code{y}attribute#values for each product or service contract,we can compute how the range of#swing weights for each\code{x}and\code{y}attribute influences the multi-#attribute value score.df<-data.frame(contract=1:10,x_attribute=c(0.92,0.79,1.00,0.39,0.68,0.55,0.73,0.76,1.00,0.74),y_attribute=c(0.52,0.19,0.62,1.00,0.55,0.52,0.53,0.46,0.61,0.84)) MAVF_sensitivity(df,x_attribute,y_attribute,.55,.75,.25,.45)psc Product and service contractsDescriptionA dataset containing a single value score for the x attribute(i.e.supply risk)and y attribute(i.e.profit impact)of200product and service contracts(PSC).The variables are as follows:UsagepscFormatA tibble with200rows and3variables:PSC Contract identifier for each product and servicex_attribute x attribute score,from1(worst)to5(best)in.01incrementsy_attribute y attribute score,from1(worst)to10(best)in.01incrementsSA VF_plot9 SAVF_plot Plot the single attribute value curveDescriptionSAVF_plot plots the single attribute value curve along with the subject matter desired values for comparisonUsageSAVF_plot(desired_x,desired_v,x_low,x_high,rho)Argumentsdesired_x Elicited input x value(s)desired_v Elicited value score related to elicited input value(s)x_low Lower bound anchor point(can be different than min(x))x_high Upper bound anchor point(can be different than max(x))rho Exponential constant for the value functionValueA plot that visualizes the single attribute value curve along with the subject matter desired valuesfor comparisonSee AlsoSAVF_plot_rho_error for plotting the rho squared error termsSAVF_score for computing the exponential single attribute value scoreExamples#Given the single attribute x is bounded between1and5and the subject matter experts #prefer x values of3,4,&5provide a utility score of.75,.90&1.0respectively, #the preferred rho is0.54.We can visualize this value function:SAVF_plot(desired_x=c(3,4,5),desired_v=c(.75,.9,1),x_low=1,x_high=5,rho=0.54)10SA VF_plot_rho_error SAVF_plot_rho_error Plot the rho squared error termsDescriptionSAVF_plot_rho_error plots the squared error terms for the rho search space to illustrate the pre-ferred rho that minimizes the squared error between subject matter desired values and exponentially fitted scoresUsageSAVF_plot_rho_error(desired_x,desired_v,x_low,x_high,rho_low=0,rho_high=1)Argumentsdesired_x Elicited input x value(s)desired_v Elicited value score related to elicited input value(s)x_low Lower bound anchor point(can be different than min(x))x_high Upper bound anchor point(can be different than max(x))rho_low Lower bound of the exponential constant search space for a bestfit value func-tionrho_high Upper bound of the exponential constant search space for a bestfit value func-tionValueA plot that visualizes the squared error terms for the rho search spaceSee AlsoSAVF_preferred_rho for identifying the preferred rho valueSAVF_score for computing the exponential single attribute value scoreExamples#Given the single attribute x is bounded between1and5and the subject matter experts #prefer x values of3,4,&5provide a utility score of.75,.90&1.0respectively,we #can visualize the error terms for rho values between0-1:SAVF_plot_rho_error(desired_x=c(3,4,5),desired_v=c(.75,.9,1),x_low=1,x_high=5,rho_low=0,rho_high=1)SA VF_preferred_rho11 SAVF_preferred_rho Identify preferred rhoDescriptionSAVF_preferred_rho computes the preferred rho that minimizes the squared error between subject matter input desired values and exponentiallyfitted scoresUsageSAVF_preferred_rho(desired_x,desired_v,x_low,x_high,rho_low=0,rho_high=1)Argumentsdesired_x Elicited input x value(s)desired_v Elicited value score related to elicited input value(s)x_low Lower bound anchor point(can be different than min(x))x_high Upper bound anchor point(can be different than max(x))rho_low Lower bound of the exponential constant search space for a bestfit value func-tionrho_high Upper bound of the exponential constant search space for a bestfit value func-tionValueA single element vector that represents the rho value that bestfits the exponential utility function tothe desired inputsSee AlsoSAVF_plot_rho_error for plotting the rho squared error termsSAVF_score for computing the exponential single attribute value scoreExamples#Given the single attribute x is bounded between1and5and the subject matter experts #prefer x values of3,4,&5provide a utility score of.75,.90&1.0respectively,we #can search for a rho value between0-1that provides the best fit utility function: SAVF_preferred_rho(desired_x=c(3,4,5),desired_v=c(.75,.9,1),x_low=1,x_high=5,rho_low=0,rho_high=1)12SA VF_score SAVF_score Single attribute value functionDescriptionSAVF_score computes the exponential single attribute value score of xUsageSAVF_score(x,x_low,x_high,rho)Argumentsx Numeric vector of values to scorex_low Lower bound anchor point(can be different than min(x))x_high Upper bound anchor point(can be different than max(x))rho Exponential constant for the value functionValueA vector of the same length as x with the exponential single attribute value scoresSee AlsoSAVF_plot for plotting single attribute scoresSAVF_preferred_rho for identifying the preferred rhoExamples#The single attribute x is bounded between1and5and follows an exponential#utility curve with rho=.653x<-runif(10,1,5)x##[1]2.9648531.9631821.2239491.5620254.3814672.2860303.071066##[8]4.4708753.9209134.314907SAVF_score(x,x_low=1,x_high=5,rho=.653)##[1]0.78005560.50382750.14682340.33152170.96058560.61319440.8001003##[8]0.96731240.91896850.9553165%>%13 %>%Pipe functionsDescriptionLike dplyr,KraljicMatrix also uses the pipe function,%>%to turn function composition into a series of imperative statements.Argumentslhs,rhs An R object and a function to apply to itExamples#given the following\code{psc2}data setpsc2<-dplyr::mutate(psc,x_SAVF_score=SAVF_score(x_attribute,1,5,.653),y_SAVF_score=SAVF_score(y_attribute,1,10,.7))#you can use the pipe operator to re-write the following:kraljic_matrix(psc2,x_SAVF_score,y_SAVF_score)#aspsc2%>%kraljic_matrix(x_SAVF_score,y_SAVF_score)Index∗datasetspsc,8%>%,13geom_frontier,2,4get_frontier,3,3kraljic_matrix,4kraljic_quadrant,5MAVF_score,6,8MAVF_sensitivity,7,7psc,8SAVF_plot,9,12SAVF_plot_rho_error,9,10,11SAVF_preferred_rho,10,11,12SAVF_score,5–11,12stat_frontier(geom_frontier),214。

eigen matrix计算指数

eigen matrix计算指数

eigen matrix计算指数引言:Eigen是一个C++模板库,用于线性代数计算。

它提供了丰富的矩阵和向量操作功能。

其中,计算指数是Eigen库的一个重要功能之一。

本文将详细介绍Eigen 库中计算指数的使用方法和相关注意事项。

正文:1. 指数计算的基本概念1.1 指数函数的定义指数函数是数学中常见的一种特殊函数,其定义为f(x) = e^x,其中e是自然对数的底数。

指数函数具有许多重要的性质,如指数函数的导数等。

1.2 矩阵指数的定义在线性代数中,矩阵指数是指将一个方阵通过指数函数进行运算得到的结果。

矩阵指数的计算在许多领域中都有广泛的应用,如物理学、工程学等。

1.3 Eigen库中的指数计算Eigen库提供了MatrixExponential模块,用于计算矩阵的指数。

通过调用MatrixExponential模块中的函数,可以方便地对矩阵进行指数计算。

2. Eigen库中计算指数的方法2.1 矩阵指数的Taylor级数展开Eigen库中的MatrixExponential模块使用Taylor级数展开的方法来计算矩阵的指数。

Taylor级数展开是一种将函数表示为无穷级数的方法,通过截断级数可以近似计算矩阵的指数。

2.2 指数计算的精度控制Eigen库中的MatrixExponential模块提供了精度控制的参数,可以根据需求调整计算结果的精度。

通过调整精度参数,可以在计算速度和计算精度之间进行权衡。

2.3 矩阵指数的性质矩阵指数具有一些重要的性质,如指数函数的线性性质、指数函数的导数等。

在使用Eigen库进行矩阵指数计算时,可以利用这些性质简化计算过程,提高计算效率。

3. Eigen库中计算指数的应用3.1 物理学中的应用在量子力学等物理学领域中,矩阵指数的计算是非常重要的。

通过使用Eigen库进行矩阵指数计算,可以方便地进行物理模型的求解和分析。

3.2 工程学中的应用在控制系统、信号处理等工程学领域中,矩阵指数的计算也有广泛的应用。

矩阵运算基础

矩阵运算基础

B=ones(size(A)) %形成与A结构相同的全1矩阵
C=eye(6)
%1个参数
D=eye(3,5)
6
4、从外部数据文件调入矩阵
➢命令调入文本文件 格式:load filename.dat/txt
➢菜阵进入工作环境
1、矩阵和数组的加减运算
二者没有区别,都是元素间的加减,只是参加 加减运算的两个矩阵结构要相同。
【例2-4】两个矩阵分别为[1 2 3;4 5 6;7 8 9]和[1 1 1;2 2 2;3 3 3], 求两者相加的和。
a=[1 2 3;4 5 6;7 8 9];
b=[1 1 1;2 2 2;3 3 3];
矩阵元素的标识:元素和子矩阵可以用标 量、矢量和冒号的标识来引用和赋值
➢子矩阵的序号矢量标识方式A(u,v)
✓ u,v是可以任意排列的正整数矢量(不是特别 要求,最好使用单调序号),分别表示子矩阵 元素在母矩阵中的行号和列号。
✓A(u,v)的行数或列数不受限制,但正整数值一定在行 数和列数的范围内
9
A([1,3],[2,4])=0 %第1,3行;第2,4列的元素置零 D=A([1,3,2,1,3],[3,2,1,3,2,1]) %扩充后传递给D
10
➢ 单下标标识,元素排序:第 A ( 1 ) 1
1列第1行元素,第1列第2行 元素…第1列最后1行元素, 第2列第1行元素,第2列第2 行元素…第2列最后1行元
conjugate →共轭 eigenvalue →特征值
exponential→指数的 eigenvector →特征向量 logarithm →对数
modulus →模数
unitary matrix→酉矩阵

矩阵指数函数的性质与计算

矩阵指数函数的性质与计算

矩阵指数函数的性质与计算PROPERTIES AND CALCULATION OF MATRIX EXPONENTIAL FUNCTION指导教师姓名:申请学位级别:学士论文提交日期:2014年6月 8日摘要矩阵函数是矩阵理论的重要组成部分,而矩阵函数中的一个最重要的函数就是矩阵指数函数,它广泛地应用于自控理论和微分方程。

本文深入浅出地介绍了矩阵指数函数,并进一步探讨如何借助矩阵指数函数分析相关问题。

文章以齐次线性微分方程组求解基解矩阵为出发点引出矩阵指数函数的概念,证明求解矩阵指数函数就是求解齐次线性微分方程组的基解矩阵,然后得到矩阵指数函数的一些基本性质。

本文的重点是讨论矩阵指数函数的五种计算方法。

其中,前三种方法广泛适用于各种矩阵,虽然计算过程复杂程度不同,但都需要计算矩阵特征值,如遇高阶矩阵或复特征值,则特征值的计算会变得异常麻烦。

后两种方法较特殊,虽然缺乏普适性,只能计算特殊矩阵的指数函数,但却避过了特征值计算,简化了运算过程。

最后,本文具体阐述矩阵指数函数在微分方程求解中的应用。

关键词:矩阵指数函数;Jordon 标准形;微分方程组ABSTRACTMatrix function is an important part of the matrix theory. And among the matrix function, there is a special and important function that is matrix exponential function. It has been widely used in automatic control theory and differential equations. This paper introduces profound theories on matrix exponential function in simple language, furthermore, it explores how to use matrix exponential function analysis related issues. Through the basic solution matrix of homogeneous linear differential equations, this paper draws out the concept of matrix exponential function. In this part, the author proves that solving matrix exponential function is to solve the basic solution matrix of the homogeneous linear differential equations. Then, some basic properties of matrix exponential function can be derived. The focus of this paper is on the discussion of five kinds of calculation on matrix exponential function. The first three methods can be applied to general cases. Although each method is different, in complexity, all of them need to compute the matrix eigenvalues. The calculation on high-order matrix or complex eigenvalues will be in trouble frequently. The latter two methods is more special for they can only calculate special matrix exponential function. These methods simplify the operation process instead of calculating eigenvalues, but their shortcomings are obvious. At the final part of this paper, the article expounds the application of matrix exponential function in different equations when solving the function in reality.Key words: Matrix exponential function; Jordon normal form; Differential equations目录1 前言 (1)1.1 矩阵(Matrix)的发展与历史 (1)1.2 本文的主要内容 (2)2 预备知识 (3)3 矩阵指数函数的性质 (7)3.1 矩阵指数 (7)3.1.1 关于级数! k kk A t k∞=∑的收敛性 (7)3.1.2 矩阵指数A e的性质 (8)3.1.3 常系数线性微分方程基解矩阵 (10)3.2 矩阵指数函数的性质 (100)3.2.1 矩阵函数 (100)3.2.2 矩阵指数函数的性质 (111)4 矩阵指数函数的计算方法 (177)4.1 矩阵指数函数的一般计算方法 (177)4.1.1 Hamilton‐Cayley求解法 (177)4.1.2 微分方程系数求解法 (211)4.1.3 Jordon块求解法 (233)4.2 矩阵指数函数的特殊计算方法 (266)4.2.1 矩阵指数函数展开法 (277)4.2.2 Laplace变换法 (27)4.3 矩阵指数函数方法比较 (28)5 矩阵指数函数在微分方程中的应用 (300)6 总结 (333)参考文献 (334)致谢 (35)1 前言1.1 矩阵(Matrix)的发展与历史在数学中,矩阵(Matrix)是很常用的工具,虽然Matrix亦有“子宫,或者控制中心的母体,孕育生命的地方”此类含义,然而矩阵却与生物没有太大的关联,矩阵(Matrix)是指在二维空间里的数据纵横分布形成的表格,最先起源于方程组的各项系数和常数所组成的方阵。

专业英语单词

专业英语单词

专业英语单词2011-10-05 15:39:56| 分类:力学| 标签:英语|举报|字号订阅row reduction 行化简applied math 应用数学graph 图node 节点edge 边缘incidence matrix 关联矩阵(m*n)(m=edge,n=node)(start=-1,end=1)potential 电势potential difference 电势差current 电流loop 回路sparse matrix 稀疏矩阵nullspace 零空间(矩阵A的零空间是指Ax=0的解)potentials at nodes 节点电势basis vector space的基dimension space的basis的个数ground node Reference node(参考节点)(地节点)rank matrix的秩(number of pivots)(r = rank)A'y = 0 Kirchoff's current law(基尔霍夫电流定律)(KCL)A是incidence matrix(关联矩阵)y表示edge current(支路电流)A(m*n),A'(n*m),n = node balance equations 平衡方程tree a graph with no loop(没有回路的图)#nodes + #loops - #edges = 1 Euler's formula(欧拉公式)orthogonal 正交的orthogonal vector 正交向量Triangular 三角形length square ||x||boil down 敖浓,摘要figure 图释(illustration)N(A')left nullspace(左零空间)projection 投影right angle 直角projection matrix 投影矩阵plane 平面least square 最小二乘square matrix 方阵rectangular matrix 一般矩阵(n*m)Xp paticular solutionXn nullspace solution(Xn由special solution的linear combination 构成)complete solution Xp + Xnspecial solution special solution的linear combination构成了Xn orthogonal 正交的orthogonal completements 正交补(比如rowspace & nullspace就是orthogonal completements)invertibility 可逆性projection matrix 投影矩阵column space 列空间N(A')matrix A的left nullspace(左零空间)regression 回归linear regression 线性回归(least square等)outlier 异常值(具有粗大误差)best line 最佳直线normal equations 正规方程partial derivative 偏导数orthonormal 标准正交(规格化正交)Schmidt 施密特Q 通常表示orthonormal matrixunit vector 单位向量orthogonal matrix 正交矩阵orthonormal matrix 规格化正交矩阵orthonormal 规格化正交的projection matrix 投影矩阵I Identity matrix(单位矩阵)Gram-Schmidt 施密特正交化Gram 从independent col到orthogonal col(正交化)Schmidt 从orthogonal col到orthonormal col(规格化)P Projection(投影)E Error(b = p + e)Q 通常表示orthonormal matrix(经过Gram-Schmidt后的matrix)rectangular matrix 矩形矩阵square matrix 方阵(只有square matrix才可以谈determinant)best straight line best line(最佳直线)best solution 最佳解决方案regression 回归linear regression 线性回归outlier 异常值orthogonal 正交的Q 通常表示orthogonal matrixunit vector 单位向量(模为1)orthogonal 正交的orthonormal 规格化正交的length square vector有direction & length,length square就是vector 的length的平方inner product 内积(和dot product几乎同意)Gram 规格化Schmidt 正交化A = LU L = Lower Triangular matrix,U = Upper Triangular matrix A = QR Q = Orthonormal matrix(规格化正交矩阵)eigenvalue 特征值(注意读音“爱跟value”)det determinant(行列式)U Upper Triangular matrix(上三角矩阵)D Diagonal matrix(对角矩阵)formula 公式minors 余子式cofactors 代数余子式(flip sign之后)adjoint 伴随矩阵(transpose之后)factorial 阶乘Permutation 排列C Cofactors(代数余子式matrix)minor 余子式(without built-in sign)Cofactor 代数余子式(with built-in sign)Cofactor formula 行列式按行(列)展开公式(代数余子式公式)big formula det的一般公式C' adjoint matrix,C表示Cofactors,那么C' = adjointdet A square matrix A的determinantQ 通常表示orthogonal matrix或者orthonormal matrixcube 立方体eigenvalue 特征值eigenvector 特征向量projection matrix 投影矩阵neat fact 简洁明了的事实singular matrix 奇异矩阵(降秩矩阵)rotation matrix 旋转矩阵eigenvector matrix 特征向量矩阵(diagonalising a matrix)S eigenvector matrix(特征向量矩阵)diagonal eigenvalue matrix 对角特征值矩阵difference equations 差分方程initial condition 初始条件(初值)differential equations 微分方程exponential 指数的steady state 稳态stability 稳定性unit circle 单位圆blow up 爆炸(放大)(不稳定):和stability是反义词S eigenvector matrix(特征向量矩阵)matrix exponential 矩阵指数complex plane 复平面Markov 马尔科夫Markov matrix 马尔科夫矩阵steady state 稳态matrix power 矩阵幂matrix exponential 矩阵指数steady state 稳态的eigenvector 特征向量state 状态orthonormal basis 规格化正交基expansion 展开span 充满(space)(这是vector space和subspace中经常使用的概念)Q 通常表示orthogonal或者orthonormal matrixS 通常是eigenvector matrix,用来实现diagonisation(对角化)infinite dimension space 无限维空间(比如fourier series,basis有infinite 个)(dimension是space的basis的个数),这叫做space的维度,注意区别dimension和component的个数symmetric matrix 对称矩阵A’= A的矩阵real matrix 实矩阵complex matrix 复矩阵symmetric matrix 对称矩阵positive definite matrix 正定矩阵:对于symmetric matrix,如果所有的eigenvalue都是positive的subdeterminant 子行列式FFT Fast Fourier Transform(快速傅里叶变换)matrix factorization 矩阵因子分解conjugate 共轭bar 横条(通常表示conjugate)hat 帽子(通常表示estimate)square root 平方根hermitian 厄密共轭Hermitian matrix 厄密共轭矩阵unitary matrix 单一矩阵(对于complex vector)(相当于perpendicular)(对于real vector)hermitian matrix 厄密共轭矩阵(对于complex matrix而言)(相当于symmetric matrix)(对于real matrix)fourier matrix 傅里叶矩阵fix up 修补even component 偶分量odd component 奇分量I Identity matrix(单位矩阵)D Diagonal matrix(对角矩阵)rectangular matrix 矩形矩阵square matrix 方阵(因为只有square matrix才有determinant存在)(似乎还有很多概念也在square matrix的playground里面)det(A)determinant of square matrix A(方阵A的行列式)singular 奇异的(降秩的)(和invertible是等价的)Permutation matrix 置换矩阵invertibility 可逆性(singular matrix are not invertible)(non-singular are invertible)playground = square matrix,因为要涉及det(A)rank 秩(number of pivots in a ef)DET determinant(行列式)U Upper Triangular matrix(上三角矩阵)factor out 提出公因子Cofactors 代数余子式survivor 幸存者(用来比喻det的分解中那些non-zero det)factorial 阶乘Permutation 置换,排列Cofactors 代数余子式minors 余子式Cofactors 代数余子式adjoint matrix 伴随矩阵C Cofactors matrix(代数余子式矩阵)checkboard 棋盘entry 在matrix中的某个elementtridiagonal matrix 三对角矩阵subdeterminant 子行列式figure out 弄清楚,弄明白recursion 递归time out 超时(时间用完了)nontrivial 非平凡的non-U 不属于上流社会的(尤其指语言运用方面)Q Orthogonal matrix(正交矩阵)projection matrix 投影矩阵Permutation matrix 置换矩阵x eigenvectorλeigenvaluerotation matrix 旋转矩阵complex eigenvalue 复特征值(matrix A is not symmetric)diagonalise 对角化diagonalisable 可对角化的S eigenvector matrix(特征向量矩阵)eigenvalue matrix 对matrix A执行diagonalise之后得到的对角矩阵eigenvector matrix S,用来对A进行“对角化”的matrix,对角化的方法:inv(S)ASinv(A)inverse of A:矩阵的逆(假定A是square matrix)det(A)determinant of A:矩阵的行列式(假定A是square matrix)I Identity matrix(单位矩阵)diagonal 对角的cancel 抵消A = LU //把A使用elimination method分解成Lower Triangular matrix (L)和U(Upper Triangular matrix)A = QR //把A分解成Q(orthonormal matrix)和R的product theorem 定理,法则approach 着手解决(解决问题的方法)diagonalisable 可对角化distinct 截然不同的repeated eigenvalue 重复的特征值(重根)solve equations 解方程Fibonacci 斐波那契(数列)S eigenvector matrix(特征向量矩阵)differential equations 微分方程difference equations 差分方程power 幂exponential 指数initial condition 初始条件steady state 稳态λeigenvaluex eigenvectorblow up 放大(不稳定)test 测试条件unit circle 单位圆blow up 不稳定stable matrix 稳定的矩阵S eigenvector matrixΛeigenvalue matrixS eigenvector matrix(特征向量矩阵)Taylor Series 泰勒级数degenerate matrix 退化矩阵(不能diagonalise的matrix)(因为它没有independent的eigenvector)S eigenvector matrix。

数学专业词汇及翻译

数学专业词汇及翻译

一、字母顺序表 (1)二、常用的数学英语表述 (7)三、代数英语(高端) (13)一、字母顺序表1、数学专业词汇Aabsolute value 绝对值 accept 接受 acceptable region 接受域additivity 可加性 adjusted 调整的 alternative hypothesis 对立假设analysis 分析 analysis of covariance 协方差分析 analysis of variance 方差分析 arithmetic mean 算术平均值 association 相关性 assumption 假设 assumption checking 假设检验availability 有效度average 均值Bbalanced 平衡的 band 带宽 bar chart 条形图beta-distribution 贝塔分布 between groups 组间的 bias 偏倚 binomial distribution 二项分布 binomial test 二项检验Ccalculate 计算 case 个案 category 类别 center of gravity 重心 central tendency 中心趋势 chi-square distribution 卡方分布 chi-square test 卡方检验 classify 分类cluster analysis 聚类分析 coefficient 系数 coefficient of correlation 相关系数collinearity 共线性 column 列 compare 比较 comparison 对照 components 构成,分量compound 复合的 confidence interval 置信区间 consistency 一致性 constant 常数continuous variable 连续变量 control charts 控制图 correlation 相关 covariance 协方差 covariance matrix 协方差矩阵 critical point 临界点critical value 临界值crosstab 列联表cubic 三次的,立方的 cubic term 三次项 cumulative distribution function 累加分布函数 curve estimation 曲线估计Ddata 数据default 默认的definition 定义deleted residual 剔除残差density function 密度函数dependent variable 因变量description 描述design of experiment 试验设计 deviations 差异 df.(degree of freedom) 自由度 diagnostic 诊断dimension 维discrete variable 离散变量discriminant function 判别函数discriminatory analysis 判别分析distance 距离distribution 分布D-optimal design D-优化设计Eeaqual 相等 effects of interaction 交互效应 efficiency 有效性eigenvalue 特征值equal size 等含量equation 方程error 误差estimate 估计estimation of parameters 参数估计estimations 估计量evaluate 衡量exact value 精确值expectation 期望expected value 期望值exponential 指数的exponential distributon 指数分布 extreme value 极值F factor 因素,因子 factor analysis 因子分析 factor score 因子得分 factorial designs 析因设计factorial experiment 析因试验fit 拟合fitted line 拟合线fitted value 拟合值 fixed model 固定模型 fixed variable 固定变量 fractional factorial design 部分析因设计 frequency 频数 F-test F检验 full factorial design 完全析因设计function 函数Ggamma distribution 伽玛分布 geometric mean 几何均值 group 组Hharmomic mean 调和均值 heterogeneity 不齐性histogram 直方图 homogeneity 齐性homogeneity of variance 方差齐性 hypothesis 假设 hypothesis test 假设检验Iindependence 独立 independent variable 自变量independent-samples 独立样本 index 指数 index of correlation 相关指数 interaction 交互作用 interclass correlation 组内相关 interval estimate 区间估计 intraclass correlation 组间相关 inverse 倒数的iterate 迭代Kkernal 核 Kolmogorov-Smirnov test柯尔莫哥洛夫-斯米诺夫检验 kurtosis 峰度Llarge sample problem 大样本问题 layer 层least-significant difference 最小显著差数 least-square estimation 最小二乘估计 least-square method 最小二乘法 level 水平 level of significance 显著性水平 leverage value 中心化杠杆值 life 寿命 life test 寿命试验 likelihood function 似然函数 likelihood ratio test 似然比检验linear 线性的 linear estimator 线性估计linear model 线性模型 linear regression 线性回归linear relation 线性关系linear term 线性项logarithmic 对数的logarithms 对数 logistic 逻辑的 lost function 损失函数Mmain effect 主效应 matrix 矩阵 maximum 最大值 maximum likelihood estimation 极大似然估计 mean squared deviation(MSD) 均方差 mean sum of square 均方和 measure 衡量 media 中位数 M-estimator M估计minimum 最小值 missing values 缺失值 mixed model 混合模型 mode 众数model 模型Monte Carle method 蒙特卡罗法 moving average 移动平均值multicollinearity 多元共线性multiple comparison 多重比较 multiple correlation 多重相关multiple correlation coefficient 复相关系数multiple correlation coefficient 多元相关系数 multiple regression analysis 多元回归分析multiple regression equation 多元回归方程 multiple response 多响应 multivariate analysis 多元分析Nnegative relationship 负相关 nonadditively 不可加性 nonlinear 非线性 nonlinear regression 非线性回归 noparametric tests 非参数检验 normal distribution 正态分布null hypothesis 零假设 number of cases 个案数Oone-sample 单样本 one-tailed test 单侧检验 one-way ANOVA 单向方差分析 one-way classification 单向分类 optimal 优化的optimum allocation 最优配制 order 排序order statistics 次序统计量 origin 原点orthogonal 正交的 outliers 异常值Ppaired observations 成对观测数据paired-sample 成对样本parameter 参数parameter estimation 参数估计 partial correlation 偏相关partial correlation coefficient 偏相关系数 partial regression coefficient 偏回归系数 percent 百分数percentiles 百分位数 pie chart 饼图 point estimate 点估计 poisson distribution 泊松分布polynomial curve 多项式曲线polynomial regression 多项式回归polynomials 多项式positive relationship 正相关 power 幂P-P plot P-P概率图predict 预测predicted value 预测值prediction intervals 预测区间principal component analysis 主成分分析 proability 概率 probability density function 概率密度函数 probit analysis 概率分析 proportion 比例Qqadratic 二次的 Q-Q plot Q-Q概率图 quadratic term 二次项 quality control 质量控制 quantitative 数量的,度量的 quartiles 四分位数Rrandom 随机的 random number 随机数 random number 随机数 random sampling 随机取样random seed 随机数种子 random variable 随机变量 randomization 随机化 range 极差rank 秩 rank correlation 秩相关 rank statistic 秩统计量 regression analysis 回归分析regression coefficient 回归系数regression line 回归线reject 拒绝rejection region 拒绝域 relationship 关系 reliability 可*性 repeated 重复的report 报告,报表 residual 残差 residual sum of squares 剩余平方和 response 响应risk function 风险函数 robustness 稳健性 root mean square 标准差 row 行 run 游程run test 游程检验Sample 样本 sample size 样本容量 sample space 样本空间 sampling 取样 sampling inspection 抽样检验 scatter chart 散点图 S-curve S形曲线 separately 单独地 sets 集合sign test 符号检验significance 显著性significance level 显著性水平significance testing 显著性检验 significant 显著的,有效的 significant digits 有效数字 skewed distribution 偏态分布 skewness 偏度 small sample problem 小样本问题 smooth 平滑 sort 排序 soruces of variation 方差来源 space 空间 spread 扩展square 平方 standard deviation 标准离差 standard error of mean 均值的标准误差standardization 标准化 standardize 标准化 statistic 统计量 statistical quality control 统计质量控制 std. residual 标准残差 stepwise regression analysis 逐步回归 stimulus 刺激 strong assumption 强假设 stud. deleted residual 学生化剔除残差stud. residual 学生化残差 subsamples 次级样本 sufficient statistic 充分统计量sum 和 sum of squares 平方和 summary 概括,综述Ttable 表t-distribution t分布test 检验test criterion 检验判据test for linearity 线性检验 test of goodness of fit 拟合优度检验 test of homogeneity 齐性检验 test of independence 独立性检验 test rules 检验法则 test statistics 检验统计量 testing function 检验函数 time series 时间序列 tolerance limits 容许限total 总共,和 transformation 转换 treatment 处理 trimmed mean 截尾均值 true value 真值 t-test t检验 two-tailed test 双侧检验Uunbalanced 不平衡的 unbiased estimation 无偏估计 unbiasedness 无偏性 uniform distribution 均匀分布Vvalue of estimator 估计值 variable 变量 variance 方差 variance components 方差分量 variance ratio 方差比 various 不同的 vector 向量Wweight 加权,权重 weighted average 加权平均值 within groups 组内的ZZ score Z分数2. 最优化方法词汇英汉对照表Aactive constraint 活动约束 active set method 活动集法 analytic gradient 解析梯度approximate 近似 arbitrary 强制性的 argument 变量 attainment factor 达到因子Bbandwidth 带宽 be equivalent to 等价于 best-fit 最佳拟合 bound 边界Ccoefficient 系数 complex-value 复数值 component 分量 constant 常数 constrained 有约束的constraint 约束constraint function 约束函数continuous 连续的converge 收敛 cubic polynomial interpolation method三次多项式插值法 curve-fitting 曲线拟合Ddata-fitting 数据拟合 default 默认的,默认的 define 定义 diagonal 对角的 direct search method 直接搜索法 direction of search 搜索方向 discontinuous 不连续Eeigenvalue 特征值 empty matrix 空矩阵 equality 等式 exceeded 溢出的Ffeasible 可行的 feasible solution 可行解 finite-difference 有限差分 first-order 一阶GGauss-Newton method 高斯-牛顿法 goal attainment problem 目标达到问题 gradient 梯度 gradient method 梯度法Hhandle 句柄 Hessian matrix 海色矩阵Independent variables 独立变量inequality 不等式infeasibility 不可行性infeasible 不可行的initial feasible solution 初始可行解initialize 初始化inverse 逆 invoke 激活 iteration 迭代 iteration 迭代JJacobian 雅可比矩阵LLagrange multiplier 拉格朗日乘子 large-scale 大型的 least square 最小二乘 least squares sense 最小二乘意义上的 Levenberg-Marquardt method 列文伯格-马夸尔特法line search 一维搜索 linear 线性的 linear equality constraints 线性等式约束linear programming problem 线性规划问题 local solution 局部解M medium-scale 中型的 minimize 最小化 mixed quadratic and cubic polynomialinterpolation and extrapolation method 混合二次、三次多项式内插、外插法multiobjective 多目标的Nnonlinear 非线性的 norm 范数Oobjective function 目标函数 observed data 测量数据 optimization routine 优化过程optimize 优化 optimizer 求解器 over-determined system 超定系统Pparameter 参数 partial derivatives 偏导数 polynomial interpolation method 多项式插值法Qquadratic 二次的 quadratic interpolation method 二次内插法 quadratic programming 二次规划Rreal-value 实数值 residuals 残差 robust 稳健的 robustness 稳健性,鲁棒性S scalar 标量 semi-infinitely problem 半无限问题 Sequential Quadratic Programming method 序列二次规划法 simplex search method 单纯形法 solution 解 sparse matrix 稀疏矩阵 sparsity pattern 稀疏模式 sparsity structure 稀疏结构 starting point 初始点 step length 步长 subspace trust region method 子空间置信域法 sum-of-squares 平方和 symmetric matrix 对称矩阵Ttermination message 终止信息 termination tolerance 终止容限 the exit condition 退出条件 the method of steepest descent 最速下降法 transpose 转置Uunconstrained 无约束的 under-determined system 负定系统Vvariable 变量 vector 矢量Wweighting matrix 加权矩阵3 样条词汇英汉对照表Aapproximation 逼近 array 数组 a spline in b-form/b-spline b样条 a spline of polynomial piece /ppform spline 分段多项式样条Bbivariate spline function 二元样条函数 break/breaks 断点Ccoefficient/coefficients 系数cubic interpolation 三次插值/三次内插cubic polynomial 三次多项式 cubic smoothing spline 三次平滑样条 cubic spline 三次样条cubic spline interpolation 三次样条插值/三次样条内插 curve 曲线Ddegree of freedom 自由度 dimension 维数Eend conditions 约束条件 input argument 输入参数 interpolation 插值/内插 interval取值区间Kknot/knots 节点Lleast-squares approximation 最小二乘拟合Mmultiplicity 重次 multivariate function 多元函数Ooptional argument 可选参数 order 阶次 output argument 输出参数P point/points 数据点Rrational spline 有理样条 rounding error 舍入误差(相对误差)Sscalar 标量 sequence 数列(数组) spline 样条 spline approximation 样条逼近/样条拟合spline function 样条函数 spline curve 样条曲线 spline interpolation 样条插值/样条内插 spline surface 样条曲面 smoothing spline 平滑样条Ttolerance 允许精度Uunivariate function 一元函数Vvector 向量Wweight/weights 权重4 偏微分方程数值解词汇英汉对照表Aabsolute error 绝对误差 absolute tolerance 绝对容限 adaptive mesh 适应性网格Bboundary condition 边界条件Ccontour plot 等值线图 converge 收敛 coordinate 坐标系Ddecomposed 分解的 decomposed geometry matrix 分解几何矩阵 diagonal matrix 对角矩阵 Dirichlet boundary conditions Dirichlet边界条件Eeigenvalue 特征值 elliptic 椭圆形的 error estimate 误差估计 exact solution 精确解Ggeneralized Neumann boundary condition 推广的Neumann边界条件 geometry 几何形状geometry description matrix 几何描述矩阵 geometry matrix 几何矩阵 graphical user interface(GUI)图形用户界面Hhyperbolic 双曲线的Iinitial mesh 初始网格Jjiggle 微调LLagrange multipliers 拉格朗日乘子Laplace equation 拉普拉斯方程linear interpolation 线性插值 loop 循环Mmachine precision 机器精度 mixed boundary condition 混合边界条件NNeuman boundary condition Neuman边界条件 node point 节点 nonlinear solver 非线性求解器 normal vector 法向量PParabolic 抛物线型的 partial differential equation 偏微分方程 plane strain 平面应变 plane stress 平面应力 Poisson's equation 泊松方程 polygon 多边形 positive definite 正定Qquality 质量Rrefined triangular mesh 加密的三角形网格 relative tolerance 相对容限 relative tolerance 相对容限 residual 残差 residual norm 残差范数Ssingular 奇异的二、常用的数学英语表述1.Logic∃there exist∀for allp⇒q p implies q / if p, then qp⇔q p if and only if q /p is equivalent to q / p and q are equivalent2.Setsx∈A x belongs to A / x is an element (or a member) of Ax∉A x does not belong to A / x is not an element (or a member) of AA⊂B A is contained in B / A is a subset of BA⊃B A contains B / B is a subset of AA∩B A cap B / A meet B / A intersection BA∪B A cup B / A join B / A union BA\B A minus B / the diference between A and BA×B A cross B / the cartesian product of A and B3. Real numbersx+1 x plus onex-1 x minus onex±1 x plus or minus onexy xy / x multiplied by y(x - y)(x + y) x minus y, x plus yx y x over y= the equals signx = 5 x equals 5 / x is equal to 5x≠5x (is) not equal to 5x≡y x is equivalent to (or identical with) yx ≡ y x is not equivalent to (or identical with) yx > y x is greater than yx≥y x is greater than or equal to yx < y x is less than yx≤y x is less than or equal to y0 < x < 1 zero is less than x is less than 10≤x≤1zero is less than or equal to x is less than or equal to 1| x | mod x / modulus xx 2 x squared / x (raised) to the power 2x 3 x cubedx 4 x to the fourth / x to the power fourx n x to the nth / x to the power nx −n x to the (power) minus nx (square) root x / the square root of xx 3 cube root (of) xx 4 fourth root (of) xx n nth root (of) x( x+y ) 2 x plus y all squared( x y ) 2 x over y all squaredn! n factorialx ^ x hatx ¯ x barx ˜x tildex i xi / x subscript i / x suffix i / x sub i∑ i=1 n a i the sum from i equals one to n a i / the sum as i runs from 1 to n of the a i4. Linear algebra‖ x ‖the norm (or modulus) of xOA →OA / vector OAOA ¯ OA / the length of the segment OAA T A transpose / the transpose of AA −1 A inverse / the inverse of A5. Functionsf( x ) fx / f of x / the function f of xf:S→T a function f from S to Tx→y x maps to y / x is sent (or mapped) to yf'( x ) f prime x / f dash x / the (first) derivative of f with respect to xf''( x ) f double-prime x / f double-dash x / the second derivative of f with r espect to xf'''( x ) triple-prime x / f triple-dash x / the third derivative of f with respect to xf (4) ( x ) f four x / the fourth derivative of f with respect to x∂f ∂ x 1the partial (derivative) of f with respect to x1∂ 2 f ∂ x 1 2the second partial (derivative) of f with respect to x1∫ 0 ∞the integral from zero to infinitylim⁡x→0 the limit as x approaches zerolim⁡x→0 + the limit as x approaches zero from abovelim⁡x→0 −the limit as x approaches zero from belowlog e y log y to the base e / log to the base e of y / natural log (of) yln⁡y log y to the base e / log to the base e of y / natural log (of) y一般词汇数学mathematics, maths(BrE), math(AmE)公理axiom定理theorem计算calculation运算operation证明prove假设hypothesis, hypotheses(pl.)命题proposition算术arithmetic加plus(prep.), add(v.), addition(n.)被加数augend, summand加数addend和sum减minus(prep.), subtract(v.), subtraction(n.)被减数minuend减数subtrahend差remainder乘times(prep.), multiply(v.), multiplication(n.)被乘数multiplicand, faciend乘数multiplicator积product除divided by(prep.), divide(v.), division(n.)被除数dividend除数divisor商quotient等于equals, is equal to, is equivalent to 大于is greater than小于is lesser than大于等于is equal or greater than小于等于is equal or lesser than运算符operator数字digit数number自然数natural number整数integer小数decimal小数点decimal point分数fraction分子numerator分母denominator比ratio正positive负negative零null, zero, nought, nil十进制decimal system二进制binary system十六进制hexadecimal system权weight, significance进位carry截尾truncation四舍五入round下舍入round down上舍入round up有效数字significant digit无效数字insignificant digit代数algebra公式formula, formulae(pl.)单项式monomial多项式polynomial, multinomial系数coefficient未知数unknown, x-factor, y-factor, z-factor 等式,方程式equation一次方程simple equation二次方程quadratic equation三次方程cubic equation四次方程quartic equation不等式inequation阶乘factorial对数logarithm指数,幂exponent乘方power二次方,平方square三次方,立方cube四次方the power of four, the fourth power n次方the power of n, the nth power开方evolution, extraction二次方根,平方根square root三次方根,立方根cube root四次方根the root of four, the fourth root n次方根the root of n, the nth root集合aggregate元素element空集void子集subset交集intersection并集union补集complement映射mapping函数function定义域domain, field of definition值域range常量constant变量variable单调性monotonicity奇偶性parity周期性periodicity图象image数列,级数series微积分calculus微分differential导数derivative极限limit无穷大infinite(a.) infinity(n.)无穷小infinitesimal积分integral定积分definite integral不定积分indefinite integral有理数rational number无理数irrational number实数real number虚数imaginary number复数complex number矩阵matrix行列式determinant几何geometry点point线line面plane体solid线段segment射线radial平行parallel相交intersect角angle角度degree弧度radian锐角acute angle直角right angle钝角obtuse angle平角straight angle周角perigon底base边side高height三角形triangle锐角三角形acute triangle直角三角形right triangle直角边leg斜边hypotenuse勾股定理Pythagorean theorem钝角三角形obtuse triangle不等边三角形scalene triangle等腰三角形isosceles triangle等边三角形equilateral triangle四边形quadrilateral平行四边形parallelogram矩形rectangle长length宽width附:在一个分数里,分子或分母或两者均含有分数。

常用数学符号英文对照

常用数学符号英文对照

常用数学符号英文对照Basic math symbolsSymbol Symbol Name Meaning / definition Example= equals sign equality 5 = 2+35 is equal to 2+3≠not equal sign inequality 5 ≠ 45 is not equal to 4≈approximatelyequal approximationsin(0.01) ≈ 0.01,x≈y means x isapproximately equal to y> strictinequality greater than5 > 45 is greater than 4< strictinequality less than4 < 54 is less than 5≥inequality greater than or equal to 5 ≥ 4,x≥y means x is greater than or equal to y≤inequality less than or equal to 4 ≤ 5,x ≤ y means x is greater than or equal to y( ) parentheses calculate expressioninside first2 × (3+5) = 16[ ] brackets calculate expressioninside first[(1+2)×(1+5)] = 18 + plus sign addition 1 + 1 = 2−minus sign subtraction 2 − 1 = 1±plus - minus both plus and minusoperations3 ± 5 = 8 and -2±minus - plus both minus and plusoperations3 ± 5 = -2 and 8* asterisk multiplication 2 * 3 = 6×times sign multiplication 2 × 3 = 6·multiplicationdotmultiplication 2 · 3 = 6÷division sign /obelusdivision 6 ÷ 2 = 3/ division slash division 6 / 2 = 3–horizontal line division / fractionmod modulo remainder calculation 7 mod 2 = 1. period decimal point, decimalseparator2.56 = 2+56/100a b power exponent 23= 8a^b caret exponent 2 ^ 3= 8√a square root √a ·√a = a√9 = ±33√a cube root 3√a ·3√a ·3√a = a3√8 = 24√a fourth root 4√a ·4√a ·4√a ·4√a =a4√16 = ±2n√a n-th root(radical)for n=3, n√8 = 2 % percent1% = 1/100 10% × 30 = 3‰per-mille1‰ = 1/1000 = 0.1% 10‰× 30 = 0.3 ppm per-million1ppm = 1/1000000 10ppm × 30 = 0.0003 ppb per-billion 1ppb = 1/1000000000 10ppb × 30 = 3×10-7Geometry symbolsSymbolSymbol NameMeaning / definitionExample∠angle formed by two rays ∠ABC = 30°measured angle ABC = 30°sphericalangleAOB = 30°∟ right angle = 90° α = 90°°degree 1 turn = 360° α = 60° degdegree1 turn = 360degα = 60deg ′ primearcminute, 1° = 60′α = 60°59′″double prime arcsecond, 1′ = 60″ α = 60°59′59″line infinite lineABline segment line from point A to point Bray line that start from point Aarc arc from point A to point B= 60°⊥ perpendicular perpendicular lines (90° angle) AC ⊥ BC| | parallel parallel lines AB | | CD≅ congruent toequivalence of geometric shapes and size∆ABC ≅ ∆XYZ~similarity same shapes, not same size ∆ABC~ ∆XYZΔtriangle triangle shape ΔABC≅ΔBCD |x-y| distance distance between points x and y | x-y| = 5πpi constant π= 3.141592654...is the ratio between the circumferenceand diameter of a circlec= π·d=2·π·rrad radians radians angle unit 360° = 2π rad c radians radians angle unit 360° = 2πcgrad gradians /gonsgrads angle unit 360° = 400 gradggradians /gonsgrads angle unit 360° = 400 gAlgebra symbolsSymbol Symbol Name Meaning / definition Examplex x variable unknown value to find when 2x= 4, then x= 2 ≡equivalence identical to≜equal by definition equal by definition:= equal by definition equal by definition~ approximately equal weak approximation 11 ~ 10≈approximately equal approximation sin(0.01) ≈ 0.01∝proportional to proportional to y∝x when y= kx,k constant ∞lemniscate infinity symbol≪much less than much less than 1 ≪ 1000000≫much greater than much greater than 1000000 ≫ 1( ) parentheses calculate expressioninside first2 * (3+5) = 16[ ] brackets calculate expressioninside first[(1+2)*(1+5)] = 18 { } braces set⌊x⌋floor brackets rounds number to lowerinteger⌊ 4.3⌋ = 4⌈x⌉ceiling brackets rounds number to upperinteger⌈ 4.3⌉ = 5x! exclamation mark factorial4! = 1*2*3*4 = 24 | x|single vertical bar absolute value | -5 | = 5f (x) function of x maps values of x to f(x) f (x) = 3x+5(f∘g) function composition(f∘g) (x)= f (g(x))f (x)=3x,g(x)=x-1 ⇒(f∘g)(x)=3(x-1)(a,b) open interval (a,b) ={x| a< x< b}x∈ (2,6)[a,b] closed interval [a,b] ={x| a≤x≤b}x∈ [2,6]∆delta change / difference ∆t= t1 -t0∆discriminant Δ = b2- 4ac∑sigma summation - sum of allvalues in range of series∑x i= x1+x2+...+x n∑∑sigma double summation∏capital piproduct - product of all values in range of series∏ x i =x 1∙x 2∙...∙x nee constant / Euler's numbere = 2.718281828... e = lim (1+1/x )x , x →∞γ Euler-Mascheroni const antγ = 0.527721566...φgolden ratio golden ratio constantπpi constantπ = 3.141592654...is the ratio between the circumference and diameter of a circlec = π·d = 2·π·rLinear Algebra SymbolsSymbolSymbol NameMeaning / definitionExample· dot scalar producta ·b ×cross vector producta ×b A ⊗Btensor product tensor product of A and BA ⊗ Binner product[ ] brackets matrix of numbers( ) parentheses matrix of numbers| A | determinant determinant of matrix Adet(A )determinant determinant of matrix A|| x || double vertical bars normA Ttranspose matrix transpose(A T)ij = (A )jiProbability and statistics symbols Symbol Symbol Name Meaning / definition Example P(A) probabilityfunctionprobability of event A P(A) = 0.5P(A∩B) probability ofeventsintersectionprobability that of events Aand BP(A∩B) = 0.5P(A∪B) probability ofevents union probability that of events Aor BP(A∪B) = 0.5P(A| B) conditionalprobabilityfunctionprobability of event A givenevent B occuredP(A | B) = 0.3f (x) probabilitydensityfunction (pdf)P(a ≤x ≤b)= ∫ f (x)dxF(x) cumulativedistributionfunction (cdf)F(x) = P(X≤x)μpopulation mean mean of population values μ= 10E(X) expectationvalue expected value of randomvariable XE(X) = 10E(X | Y) conditionalexpectation expected value of randomvariable X given YE(X | Y=2) = 5var (X )variancevariance of random variable Xvar (X ) = 4σ2variance variance of population valuesσ2 = 4std (X )standard deviation standard deviation of random variable Xstd (X ) = 2σX standard deviationstandard deviation value of random variable X σX = 2medianmiddle value of random variable xcov (X ,Y ) covariancecovariance of random variables X and Y cov (X,Y ) = 4corr (X ,Y ) correlationcorrelation of random variables X and Y corr (X,Y ) = 0.6ρX ,Ycorrelationcorrelation of random variables X and YρX ,Y= 0.6∑summationsummation - sum of all values in range of series∑∑double summationdouble summationMo mode value that occurs most frequently in populationMR mid-rangeMR = (x max +x min )/2Mdsample median half the population is below this valueQ 1lower / first quartile25% of population are below this valueQ 2median / second quartile50% of population are below this value = median of samplesQ3upper / thirdquartile 75% of population are below this valuex sample mean average / arithmetic mean x= (2+5+9) / 3 = 5.333s2sample variance population samples varianceestimators2= 4s sample standarddeviation population samples standard deviation estimators= 2z x standard score z x= (x-x) /s xX ~ distribution of X distribution of randomvariable XX ~N(0,3)N(μ,σ2) normaldistributiongaussian distribution X ~N(0,3)U(a,b) uniformdistributionequal probability in rangea,bX ~U(0,3)exp(λ) exponentialdistributionf (x)= λe-λx, x≥0gamma(c, λ) gammadistributionf (x)= λ c x c-1e-λx/ Γ(c), x≥0χ2(k) chi-squaredistributionf (x)= x k/2-1e-x/2/( 2k/2 Γ(k/2) )F (k1, k2) F distributionBin(n,p) binomialdistributionf (k)= n C k p k(1-p)n-kPoisson(λ) Poissondistributionf (k)= λk e-λ/ k!Geom(p) geometricdistributionf (k)= p(1-p)kHG(N,K,n) hyper-geometric distributionBern(p) Bernoulli distributionSet theory symbolsSymbol Symbol Name Meaning / definition Example{ } set a collection of elements A = {3,7,9,14},B = {9,14,28}A ∩B intersection objects that belong to set A and setBA ∩B = {9,14}A ∪B union objects that belong to set A or setBA ∪B ={3,7,9,14,28}A ⊆B subset subset has fewer elements or equal tothe set{9,14,28} ⊆{9,14,28}A ⊂B proper subset /strict subsetsubset has fewer elements than theset{9,14} ⊂{9,14,28}A ⊄B not subset left set not a subset of right set {9,66} ⊄{9,14,28}A ⊇B superset set A has more elements or equal tothe set B{9,14,28} ⊇{9,14,28}A ⊃B proper superset /strict supersetset A has more elements than set B{9,14,28} ⊃{9,14}A ⊅B not superset set A is not a superset of set B {9,14,28} ⊅{9,66}2Apower set all subsets of Apower set all subsets of AA =B equalityboth sets have the same membersA={3,9,14},B={3,9,14}, A=BA ccomplementall the objects that do not belong to set AA \B relative complementobjects that belong to A and not to BA = {3,9,14},B = {1,2,3}, A-B = {9,14} A - B relative complementobjects that belong to A and not to BA = {3,9,14},B = {1,2,3}, A-B = {9,14} A ∆ Bsymmetric differenceobjects that belong to A or B but not to their intersectionA = {3,9,14},B = {1,2,3}, A ∆ B = {1,2,9,14} A ⊖ Bsymmetric differenceobjects that belong to A or B but not to their intersectionA = {3,9,14},B = {1,2,3}, A ⊖ B = {1,2,9,14}a ∈Aelement of set membershipA={3,9,14}, 3 ∈ Ax ∉ A not element ofno set membershipA={3,9,14}, 1 ∉ A(a ,b ) ordered pair collection of 2 elementsA ×B cartesian product set of all ordered pairs from A and B|A| cardinalitythe number of elements of set AA={3,9,14}, |A|=3 #Acardinality the number of elements of set AA={3,9,14}, #A=3aleph-nullinfinite cardinality of natural numbers setaleph-one cardinality of countable ordinal numbers setØ empty set Ø = { }C = {Ø}universal set set of all possible valuesnatural numbers /whole numbers set (with zero) 0= {0,1,2,3,4,...} 0 ∈1natural numbers /whole numbers set (without zero)1= {1,2,3,4,5,...} 6 ∈1integer numbers set={...-3,-2,-1,0,1,2,3,...}-6 ∈rational numbers set= {x | x =a /b , a ,b ∈}2/6 ∈real numbers set= {x | -∞ < x <∞} 6.343434∈complex numbers set= {z | z=a +bi , -∞<a <∞, -∞<b <∞}6+2i ∈∨reversed caret or x∨y | vertical line or x| y x' single quote not - negation x'x bar not - negation x¬not not - negation ¬x ! exclamation mark not - negation ! x⊕circled plus / oplus exclusive or - xor x⊕y ~ tilde negation ~ x⇒implies⇔equivalent if and only if (iff)↔equivalent if and only if (iff)∀for all∃there exists∄there does not exists∴therefore∵because / sinceCalculus & analysis symbolsSymbol Symbol Name Meaning / definition Examplelimit limit value of a functionεepsilonrepresents a very small number, near zeroε → 0eeconstant / Euler's numbere = 2.718281828...e = lim(1+1/x )x,x →∞y ' derivativederivative - Lagrange's notation (3x 3)' = 9x 2y '' second derivative derivative of derivative(3x 3)'' = 18xy (n )nth derivativen times derivation(3x 3)(3)= 18derivativederivative - Leibniz's notation d (3x 3)/dx = 9x 2secondderivativederivative of derivatived 2(3x 3)/dx 2 = 18xnthderivativen times derivationtime derivative derivative by time - Newton's notationtime second derivativederivative of derivativeD x y derivative derivative - Euler's notationD x 2ysecond derivativederivative of derivativepartialderivative∂(x 2+y 2)/∂x = 2x∫ integral opposite to derivation∫ f(x)dx∫∫ double integral integration of function of 2 variables∫∫ f(x,y)dxdy ∫∫∫triple integral integration of function of 3 variables∫∫∫ f(x,y,z)dxdydz∮closedcontour / line integral∯closedsurface integral∰closedvolume integral[a ,b ] closed interval [a ,b ] ={x | a ≤ x ≤ b }(a ,b )open interval (a ,b ) ={x | a < x < b }i imaginary unit i ≡ √-1 z = 3 + 2iz * complex conjugate z = a +bi → z *=a -bi z* = 3 - 2izcomplex conjugatez = a +bi → z = a -bi z = 3 - 2i∇ nabla / del gradient / divergence operator ∇f (x ,y ,z )vectorunit vectorx * y convolutiony (t ) = x (t ) * h (t )) = {{。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 if i ≥ 0 0 otherwise
=
j =0 ∞
1 j N j! 1 j N j!
k=0 ∞
1 λk−j 1k−j (k − j )! 1 k λ = eλ k!
n−1
=
j =0
k=0
j =0
1 j N j!
or explicit eJλ = eλ I + 1 1 1 N + N2 + · · · + N n−1 , 1! 2! (n − 1)! 1 1/1! 1/(n − 1)! ... 1 λ =e .. . 1/1! 1 6
∞ k=0 ∞ k=0
ak and the limit
|ak+1 | k→∞ |ak |
ak and the limit
k
L = lim sup
k→∞
|ak |
then • If L < 1 the series converges absolutely. • If L > 1 the series diverges. If the limit is equal to 1 the series can be convergent or divergent. Theorem 1 The series (1) is convergent for all square matrix A ∈ Rn×n . Moreover eA where
n F
≤ ne
A
F
(2)
A is the Frobenius matrix norm.
i,j
2
Proof Consider the series

ak
k=0
where
ak =
1 (Ak )ij k!
i.e. ak is the (i, j ) component of the matrix |Al,m | ≤ A and thus
is to find the matrix exponential of a Jordan block 0 1 1 ... ... 1 0 = λ + . . .. .. . . 1 (4) . 1 1 0 λ
1
Computing matrix exponential for diagonalizable matrices
Let be A ∈ Rn×n symmetric, then the matrix has a complete set of linear independent eigenvectors v1 , v2 , . . . , vn : Avk = λk vk , k = 1, 2, . . . , n.
2
2.1
Computing matrix exponential for general square matrices
Using Jordan normal form
Let be A ∈ Rn×n then the matrix exponential can be computed starting from Jordan normal form (or Jordan canonical form): Theorem 2 (Jordan normal form) Any square matrix A ∈ Rn×n is similar to a block diagonal matrix J , i.e. T −1 AT = J where λk 1 J1 .. J . λ 2 k and Jk = J = ... ... 1 Jm λk The column of T = [t1,1 , t1,2 , . . . , tm,nm , tm,nm −1 ] are generalized eigenvectors, i.e. Atk,j = λk tk,j λk tk,j + tk,j −1 if j = 1 if j > 1 (3)
∞ ∞ F
1 k A . It is easy to verify that k!
F
,
Ak
≤ A
k F
ak =
k=0 k=0
1 (Ak )ij ≤ k!

k=0
1 Ak k!
∞ F

k=0
1 A k!
k F
=e
A
F
in conclusion the series (1) is convergent for each component and inequality (2) is trivially verified.
Using A = T ΛT −1 we can write

e =
k=0
A
1 k A = k!

k=0
1 (T ΛT −1 )k = T k!

k=0
1 k Λ k!
T −1 = T eΛ T −1 ,
and hence A e =T eλ1 e λ2 ... eλn −1 T
Thus, defining the matrix T = [v1 , v2 , . . . , vn ] whose columns are the eigenvectors we have AT = [Av1 , Av2 , . . . , Avn ] = [λ1 v1 , λ2 v2 , . . . , λn vn ] = T Λ and thus A = T ΛT −1 where Λ= λ1 λ2 .. . λn 3 .
Remark 1 (convergence criterion) here we recall some classical convergence criterion: Comparison. If ∞ k=0 bk is convergent and |ak | ≤ bk for all k ≥ n0 then ∞ k=0 ak is absolutely convergent. d’Alembert’s ratio test. Consider the series L = lim then • If the limit L exists and L < 1 the series converges absolutely. • If the limit L exists and L > 1 the series diverges. If the limit does not exist of is equal to 1 the series can be convergent or divergent. Root test. Consider the series
5
The matrix N has the property: 2 N =
0 0 0
1 .. . ...
0

1 0 0
and in general N k as ones on the k -th upper diagonal and is the null matrix if k ≥ n the dimension of the matrix. Using (4) we have

e =
k=0
A
1 k 1 1 1 A = I + A + A2 + A3 + · · · + Ap + · · · k! 2 6 p!
(1)
The first question is: when the series (1) is convergent? To respond to the question we recall the following facts: 1
1 Computing matrix exponential for diagonalizable matrices 2 Computing matrix exponential for general 2.1 Using Jordan normal form . . . . . . . . . 2.2 Using Cayley–Hamilton theorem . . . . . . 2.3 Using numerical integration . . . . . . . . 2.4 Using Pade approximation and squaring . 3 square matrices 4 . . . . . . . . . . . 4 . . . . . . . . . . . 7 . . . . . . . . . . . 10 . . . . . . . . . . . 12
Matrix exponential
Enrico Bertolazzi Integration lectures for the Course: Numerical Methods for Dynamical System and Control Accademic Year 2009/2010
Contents
4
Using Jordan normal form A = T J T −1 we can write 1 1 k A = (T ΛT −1 )k e = k! k! k=0 k=0 ∞ 1 k J1 k=0 k ! ∞ 1 J2 k! k =0 =T ...
A ∞ ∞
−1 T 1 Jm k!

k=0
=T Thus, the problem λ 1 λ Jλ = = λI + N
相关文档
最新文档