文氏电桥振荡电路
文氏电桥振荡器的工作原理
文氏电桥振荡器的工作原理
文氏电桥振荡器是一种基于电桥平衡的振荡器电路,常用于产生稳定的正弦波信号。
其工作原理如下:
1. 电桥平衡状态
文氏电桥振荡器的基本原理是利用电桥的平衡状态来产生振荡。
电桥是由两个电阻和两个电容组成的电路,当电桥平衡时,电路中的电流为零。
为了产生振荡,需要在电桥中加入一个外部信号源,如一个交流电源或一个射频信号。
2. 振荡过程
当电桥中加入外部信号源后,电桥的平衡状态会被打破,电桥中的电流不再为零。
这个电流会通过电桥中的电阻和电容产生电压,从而改变电桥的平衡状态。
如果电桥中的电阻和电容的值可以使得电桥再次达到平衡状态,那么就可以产生稳定的振荡。
在文氏电桥振荡器中,通常使用两个可变电阻和两个固定电容组成电桥。
当电桥平衡时,振荡器处于稳态。
当加入一个外部信号源后,电桥会失去平衡,产生电流。
这个电流会通过电桥中的电阻和电容产生电压,从而改变电桥的平衡状态。
如果电桥中的电阻和电容的值可以使得电桥再次达到平衡状态,那么就可以产生稳定的振荡。
3. 输出信号
文氏电桥振荡器产生的输出信号为正弦波,其频率由电桥中的电容和电阻的值决定。
在振荡过程中,电桥的平衡状态会不断被打破和重新建立,从而产生周期性的电流和电压波动,最终形成稳定的正弦波输出信号。
综上所述,文氏电桥振荡器的工作原理基于电桥平衡状态和振荡过程,利用电桥中的电阻和电容的值来产生稳定的正弦波信号。
低失真文氏电桥正弦波振荡电路
低失真文氏电桥正弦波振荡电路
低失真文氏电桥正弦波振荡电路
电路的功能
文氏电桥电路一直被作为正弦波发生电路使用,需要在低频范围产生低失真波形时可以采用这样电路。
改变电阻RO或电容器CO可获得数百千赫兹以下的振荡频率。
电路工作原理
振荡原理是当环路内移相量是0度或360度的整数倍,环路放大倍数大于1时,电路便会产生振荡。
若振荡增大,电路就会饱和,所以需要振幅稳定电路。
文氏电桥电路谐振时的衰减量为1/3,为了起振,反馈放大器A1的电压放大倍数必须大于3。
参数无系数的文氏电桥电路的振荡频率FO由FO=1/2πCO.RO确定。
电容器CO的容量应保证基电抗XO在1K~数面千欧姆,决定CO的容量后,再根据RO=1/2πFO.CO求出RO的阻值。
文氏电桥振荡电路工作原理
文氏电桥振荡电路工作原理1. 引言文氏电桥振荡电路是一种常用于产生稳定振荡信号的电路,它在许多实际应用中都起到重要作用。
本文将深入探讨文氏电桥振荡电路的工作原理,并分享我对这一原理的观点和理解。
2. 文氏电桥简介文氏电桥是一种基于有源电感元件的电桥,由振荡放大器和文氏电桥组成。
它具有简单的电路结构,稳定的频率响应和较高的频率稳定性,因此被广泛应用于信号发生器、频率计和无线电通信等领域。
3. 文氏电桥振荡电路结构文氏电桥振荡电路由文氏电桥、振荡放大器和反馈网络组成。
文氏电桥由一个有源电感元件和电容元件构成。
振荡放大器通过放大器和反馈网络来提供正反馈,从而使电路产生振荡信号。
4. 文氏电桥振荡电路工作原理文氏电桥振荡电路的工作原理基于正反馈,当电路中的输出信号经过放大器和反馈网络之后,反馈信号与输入信号在相位和幅度上具有一致性。
这种一致性会导致振荡现象的发生,使电路产生稳定的振荡信号。
5. 文氏电桥振荡电路的频率稳定性文氏电桥振荡电路具有较高的频率稳定性,这是由于文氏电桥中的有源电感元件和电容元件等被精确选择和设计,以使其在特定的电路参数范围内能够提供稳定的反馈信号。
这种频率稳定性使得文氏电桥振荡电路在很多应用中都能够提供可靠的振荡信号。
6. 文氏电桥振荡电路的应用文氏电桥振荡电路在实际应用中有广泛的应用价值。
它可以用于产生精确的信号频率,例如信号发生器和频率计。
它还可以用于无线电通信中的调频发射机和接收机等设备上,以提供稳定的载波频率。
7. 对文氏电桥振荡电路工作原理的观点和理解在我的观点和理解中,文氏电桥振荡电路作为一种常见的振荡电路,其工作原理基于正反馈机制的产生振荡现象。
通过合理选择和设计电路元件,能够实现稳定的振荡信号输出。
文氏电桥振荡电路的频率稳定性使其在多个领域中都具有重要的应用价值。
总结:本文深入探讨了文氏电桥振荡电路的工作原理,并分享了对这一原理的观点和理解。
文氏电桥振荡电路以其简单的结构、稳定的频率响应和较高的频率稳定性在实际应用中得到广泛应用。
RC文氏电桥振荡电路知识分享
R C文氏电桥振荡电路RC文氏电桥振荡器的电路如图1所示,RC串并联网络是正反馈网络,由运算放大器、R3和R4负反馈网络构成放大电路。
C1R1和C2R2支路是正反馈网络,R3R4支路是负反馈网络。
C1R1、C2R2、R3、R4正好构成一个桥路,称为文氏桥。
图1 RC文氏电桥振荡器RC串并联选频网络的选频特性RC串并联网络的电路如图2所示。
RC串联臂的阻抗用Z1表示,RC并联臂的阻抗用Z2表示。
图2 RC串并联网络RC串并联网络的传递函数为式(1)当输入端的电压和电流同相时,电路产生谐振,也就是式(1)是实数,虚部为0。
令式(1)的虚部为0,即可求出谐振频率。
谐振频率对于文氏RC振荡电路,一般都取R=R1 = R2,C=C1 = C2时,于是谐振角频率:频率特性幅频特性相频特性文氏RC振荡电路正反馈网络传递函数的幅度频率特性曲线和相位频率特性曲线如图3所示。
(a) 幅频特性曲线 (b) 相频特性曲线图3 RC串并联网络的频率响应特性曲线反馈系数当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数此时反馈系数与频率f0的大小无关,此时的相角 jF=0°。
文氏RC振荡电路可以通过双连电位器或双连电容器来调节振荡电路的频率,即保证R=R1 = R2,C=C1 = C2始终同步跟踪变化,于是改变文氏桥RC振荡电路的频率时,不会影响反馈系数和相角,在调节频率的过程中,不会停振,也不会使输出幅度改变。
根据振荡条件丨AF丨>1,在谐振时,放大电路的电压增益应该Au=3。
由图1可知,RC串并联网络的反馈信号加在运算放大器的同相输入端,运算放大器的电压增益由R3和R4确定,是电压串联负反馈,于是应有振荡的建立和幅度的稳定振荡的建立所谓振荡的建立,就是要使电路自激,从而产生持续的振荡输出。
由于电路中存在噪声,噪声的频谱分布很广,其中也包括f0及其附近一些频率成分。
高二物理竞赛课件RC文氏电桥正弦波振荡电路
A 1800 必须,F 1800 附加相移
放大电路 反馈网络
Uo
构成正弦波振荡电路
最简单的做法是通过变
压器引入反馈。
2、变压器反馈式 LC 振荡电路
1 f0 2π LC
U f
必须有合适的同名端!
分析电路: 1) 是否存在四部分? 2) 放大电路是否能正常工作
Ui ( f f0 )
C1 必要吗?
谐振频率为
f0
2
π
1 LC
电流谐振
在损耗较小时,品质因数 Q 1 L RC
损耗
在
f
=
f0
时,电容和电感中电流各约为多少?网络的阻抗为多少?
QI
LC 选频放大电路 → 正弦波振荡电路
LC网络作为共射放大的集电极负载
当 f = f0 ,电压放大倍数的数值 最大,且附加相移为 0
Au
z rbe
如何引入正反馈?
Au
1
Rf rd R1
U o
Uo iD rd
Uo Au
R
C
RT
RC
注意 RC 串并联网络与放大电路的接法 是否具有四个组成部分?
频率从0~∞中必有一个频率 f0 ,满足φF=0o 新问题:如何使Au ≥ 3 ?
振荡频率
fo
1
2RC
按深负反馈计算:
Auf
1 RT R4
该取RT ≥ 2 R4
频率可调的文氏电桥振荡器
粗调,靠改变电容;微调,靠改变电位器滑动端 加稳压管可以限制输出电压的峰-峰值。
同轴 电位器
看P346 换挡粗调
稳幅的方法
1)热敏电阻
Uo PRT T
Uo Au RT
文氏电桥振荡器电路组成及工作原理
8.1 正弦波信号发生器
8.1.1 正弦波自激振荡的基本原理 8.1.2 RC 型正弦波信号发生器 1.文氏电桥振荡器电路组成及工作原理
模拟电子技术
8. 信号发生器
8.1.2 RC 型正弦波信号发生器
.
.
Xid 放大环节 A· Xo
. Xf 正反馈网络 F·
正弦波信号发 生器的组成
(1)当 f= f0 时,
R C
U·f 与 U·o 同相位 U·f 的幅值最大
即
· Uf
=
· Uo /3
F=Fmax=1/3
RC
而AF ≥1, 电路才能振荡。
R1 +
U·o
A
–
R2
(2)当
时,
满足振荡条件
(3)振荡频率
模拟电子技术
谢 谢!
模拟电子技术
+ 图中
R
C
· Uf
Z–2
–
R C
RC
R1 +A
U·o
–
R2
模拟电子技术
8. 信号发生器
反馈系数
+
··
·
Z1
C
U·o
+
R
C
· Uf
Z–2
–
模拟电子技术
8. 信号发生器
··
即
·
令 ·
由此可得 F·的幅频特性与相频特性
模拟电子技术
8. 信号发生器
幅频特性
幅频特性曲线 F 1/ 3
当0 时, F0 当 时, F0 当=0 时, F=Fmax=1/3 0
f0
f
模拟电子技术
8. 信号发生器
RC文氏电桥振荡电路
RC文氏电桥振荡电路RC文氏电桥振荡器的电路如图1所示,RC串并联网络是正反馈网络,由运算放大器、R3和R4负反馈网络构成放大电路。
C1R1和C2R2支路是正反馈网络,R3R4支路是负反馈网络。
C1R1、C2R2、R3、R4正好构成一个桥路,称为文氏桥。
图1 RC文氏电桥振荡器RC串并联选频网络的选频特性RC串并联网络的电路如图2所示。
RC串联臂的阻抗用Z1表示,RC并联臂的阻抗用Z2表示。
图2 RC串并联网络RC串并联网络的传递函数为式(1)当输入端的电压和电流同相时,电路产生谐振,也就是式(1)是实数,虚部为0。
令式(1)的虚部为0,即可求出谐振频率。
谐振频率对于文氏RC振荡电路,一般都取R=R1 = R2,C=C1 = C2时,于是谐振角频率:频率特性幅频特性相频特性文氏RC振荡电路正反馈网络传递函数的幅度频率特性曲线和相位频率特性曲线如图3所示。
(a) 幅频特性曲线 (b) 相频特性曲线图3 RC串并联网络的频率响应特性曲线反馈系数当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数此时反馈系数与频率f0的大小无关,此时的相角jF=0°。
文氏RC振荡电路可以通过双连电位器或双连电容器来调节振荡电路的频率,即保证R=R1 = R2,C=C1 = C2始终同步跟踪变化,于是改变文氏桥RC振荡电路的频率时,不会影响反馈系数和相角,在调节频率的过程中,不会停振,也不会使输出幅度改变。
根据振荡条件丨AF丨>1,在谐振时,放大电路的电压增益应该Au=3。
由图1可知,RC串并联网络的反馈信号加在运算放大器的同相输入端,运算放大器的电压增益由R3和R4确定,是电压串联负反馈,于是应有振荡的建立和幅度的稳定振荡的建立所谓振荡的建立,就是要使电路自激,从而产生持续的振荡输出。
由于电路中存在噪声,噪声的频谱分布很广,其中也包括f0及其附近一些频率成分。
文氏电桥振荡电路
第4页/共10页
具体测量步骤:A:检查运放的好坏:可以有多种方法来进行,下面以同相比例放大电路的连接方法介绍。按实验图Ⅱ正确连接,检查无误后接通电源,一定会得出如下结果V1=V+=V-=2V,否则就可以确定运放是坏的。
注:V1电源由实验箱上的直流信号源提供±12V电源也是从实验箱上的直流稳压电源提供。
图Ⅲ
第6页/共10页
C:观察自激振荡和D1和D2稳幅作用 按实验图Ⅰ连线,为满足电路起振条件,选取合适的R3和R4阻值,其满足条件是放大器的电压放大倍数AvF≥3,即AvF=[1+(R5+R4/R6)] ≥3。用示波器观察运放输出端,即可得到文氏电桥的振荡波形,同时观察有无D1和D2的波形,说明其原理。
六:实验注意事项
第8页/共10页
1、给出设计电路图中具体参数。2、说明实验方案,写出简要的实验过程与步骤。3、记录实验相关数据。4、完成思考题。
七、实验报告要求
第9页/共10页
第5页/共10页
B:RC串并联网络幅频特性的测量 按实验图Ⅲ连线,根据实验任务选择合适的RC参数,其目的满足f=500Hz。由函数发生器向A端对地之间加入正弦信号,调节函数发生器的频率,用示波器观察到Ua 和Ub同相时,即可得到该RC串并联网络振荡频率(f0=1/2ΠRC,若取R1=R2=R,C1=C2=C)。
三、实验任务
第3页/共10页
五、实验内容及步骤
1、简述原理: 图Ⅰ是典型的文氏电桥振荡电路。由集成运放组成的放大器,其输出一路接到RC串并联选频网络,构成正反馈;另一路由R3 和R4分压接到运放的反相输入端,构成负反馈放大器电路,其D1 和D2起稳幅作用。两条反馈电路组成桥式电路。电路稳幅时,正、负反馈平衡:
第7页/共10页
文氏桥振荡电路(精品)
文氏桥振荡电路一、 问题背景将RC 串并联选频网络和放大器结合起来即可组成RC 振荡电路,放大器件可采纳集成运算放大器。
RC 串并联选频网络接在运算放大器的输出端和同相输入端之间,组成正反馈,接在运算放大器的输出端和反相输入端之间的电阻,组成负反馈。
正反馈电路和负反馈电路组成一文氏电桥电桥。
文氏电桥振荡器的优势是:不仅振荡较稳固,波形良好,而且振荡频率在较宽的范围内能方便地持续调剂。
二、问题简介由文桥选频电路和同相较例器组成的正弦波发生器如图1 所示。
(1)假设取R 1=15k Ω,试分析该振荡电路的起振条件(R f 的取值);(2)仿真观看R f 取不同值时,运放同相输入端和输出端的电压波形;图1 由文桥选频电路和放大器组成正弦波发生器的电路原理图(3)假设在反馈回路中加入由二极管组成的非线性环节(如图2所示),仿真观看R 2 取不同值时,运放同相输入端和输出端的电压波形。
也可同时改变R f 和R 2的值。
图2 加入非线性环节的正弦波发生器的电路原理图三、理论分析(1)由图一的电路能够看出,电路在回路网络中加入了文氏选频网络,下面对文氏选频网络进行理论上的分析,从电路总提取文氏电路如图三所示。
图3 文氏选频网络图中o U是运放的输出量,fU 是反馈量。
为了能够使电路振荡起来,就必需通过选定参数即确信频率,使得在某一频率下o U 和fU 同相。
那么,当信号频率很低时,有1R C ω>>故将会有fU 的相位超前o U 的相位,当频率接近0时,相位超前接近于90度。
相反地,当信号频率很高以至于趋于无穷大时,能够得出fU 的相位滞后o U 的相位几乎-90度。
因此,在信号频率由0到无穷大的转变进程中,必然有某一个频率,使得输出量与反馈量同相,从而形成正反馈。
下面就具体来求解此振荡频率。
由反馈系数1//11//f oRU j C F U R R j C j C ωωω==++整理可得113()F j CR CR ωω=+-假设电路的信号频率为f ,令特点频率012f RC π=代入F 的表达式,能够取得0013()F f fj f f =+-。
文氏电桥振荡电路原理
文氏电桥振荡电路原理一、引言文氏电桥振荡电路是一种常见的正弦波振荡电路,其原理是通过文氏电桥的平衡条件,使得反馈网络中的信号形成正反馈,从而实现振荡。
本文将详细介绍文氏电桥振荡电路的原理。
二、文氏电桥简介文氏电桥是由美国物理学家奥斯汀·福特·文氏于1920年发明的一种用于测量电阻和容抗值的仪器。
它由四个分别为R1、R2、C1和C2的元件组成,如图1所示。
图1 文氏电桥当该电桥中两个对角线上的节点具有相同的电势时,即满足平衡条件时,可以得到以下公式:R1C1 = R2C2三、文氏振荡器原理文氏振荡器由放大器和反馈网络组成。
放大器将输入信号进行放大后,送入反馈网络中。
在反馈网络中,信号会经过一个相位移动,并与放大器输出信号相加。
如果反馈网络中的相位移动为360度,则输出信号与输入信号相位差为0度,即形成了正反馈。
图2 文氏振荡器在文氏电桥振荡电路中,反馈网络由两个电容C3和C4组成,如图3所示。
图3 文氏电桥振荡电路当文氏电桥平衡时,有:R1C1 = R2C2又因为:C3 + C4 = C1 + C2所以可以得到:R1R2 = (C1 + C2)(C3 + C4)当文氏电桥不平衡时,输出信号将会被放大并送回反馈网络中。
如果反馈网络中的相位移动为360度,则输出信号与输入信号相位差为0度,即形成了正反馈。
在这种情况下,输出信号将会继续增大,直到放大器达到饱和状态或者其他非线性效应出现。
四、工作原理文氏电桥振荡电路的工作原理可以分为以下几个步骤:1. 初始状态:文氏电桥处于平衡状态,没有输入信号。
2. 扰动状态:当有微小的扰动输入时,文氏电桥将不再平衡。
这个扰动可以来自于任何一个元件的微小变化。
3. 放大器放大:扰动信号被放大器放大,并送入反馈网络中。
4. 相位移动:扰动信号在反馈网络中经过一个相位移动。
5. 正反馈:如果反馈网络中的相位移动为360度,则输出信号与输入信号相位差为0度,即形成了正反馈。
RC文氏电桥振荡电路原理分析
RC文氏电桥振荡电路原理分析这有个例子,如下:咋一看有点傻眼了,这2个二极管是干啥的,莫大疑问,需要仔细分析原理,首先既然是振荡电路需满足起振条件如图(图中都为向量):图中向量A=Uo/Ui ;F=Uf/Uo起振条件:|AF|>1且Ui 与Uf同相位,这样才能自激励当起振后又需要|AF|=1,才能稳定振荡(也就是Ui =Uf),而UA741CD是个高增益运放,把电路先做简化然后推导分析,简化如下:当此网络发生谐振时虚部为零即:此为谐振角频率如果取R1=R2=R,C1=C2=C,那么F的模如下:F的相角如下:当选频正反馈网络谐振时正反馈系数|F|=1/3,由起振条件|AF|>1 ,需要负反馈网络组成的闭环增益大于3即而起振后应该Au=3,所以需要R3/R4分别是负温度系数热敏电阻和正温度系数热敏电阻,如果不用热敏电阻,有啥办法到稳定后让放大倍数减小呢?我们先把例子中的电路改成这样:这时Au=11倍看波形已经限幅了如图,而且很容易起振:如果把R3改成30k,Au=4倍看看波形如何:如果把R3改成21k,Au=3.1倍看看波形如何:如果把R3改成20k,Au=3倍看看波形永远不会起振的,如果我们想个办法起振时候为4倍,而起振完成后变成稍稍小于3倍,不就不在限幅也能起振如下图:很明显起振时候Au=4,而起振后由于二极管导通R2//R3=18.9K,得Au≈2.89倍,得到波形如下:而例子中也是这个原理,如果运放是单电源又该咋办呢,就需要抬一下直流电平更改如下:R4//R7=R5的值,交流通路就是把V2和C3短路即可原理:V2通过R7和R4分压由于2个阻值相等,又由于运放正端输入阻抗无穷大,那么可以认为运放正端的直流电平为V2/2,而负端"虚短"缘故则也为V2/2,从而输出处也为V2/2的直流电平(也可以看出一个电压跟随器,所以负端和输出都为V2/2的直流电平),交流通路就是把R7和R1接地,由于R4//R7=R5,交流通路没变,所以还是满足振荡条件的。
rc振荡电路类型
RC振荡电路主要有两种类型:RC相移振荡电路和文氏电桥振荡电路。
RC相移振荡电路采用超前移相或滞后移相电路作为选频网络,与反相放大器构成的振荡器。
其电路简单、经济,但稳定性不高,一般用于频率固定、稳定性要求不高的场合。
文氏电桥振荡电路将RC串并联选频网络和放大器结合起来,构成RC振荡电路。
放大器件可采用集成运算放大器。
RC串并联选频网络接在运算放大器的输出端和同相输入端之间,构成正反馈。
R1、R接在运算放大器的输出端和反相输入端之间,构成负反馈。
正反馈电路和负反馈电路构成一文氏电桥电路,运算放大器的输入端和输出端分别跨接在电桥的对角线上。
这种振荡电路的稳定性高、非线性失真小,频率调节方便,性能比RC相移振荡电路好。
以上内容仅供参考,如需更准确的信息,建议查阅相关文献或咨询电子工程专家。
文氏桥振荡电路(精品)
文氏桥振荡电路一、问题背景将RC串并联选频网络和放大器结合起来即可构成RC振荡电路,放大器件可采用集成运算放大器。
RC串并联选频网络接在运算放大器的输出端和同相输入端之间,构成正反馈,接在运算放大器的输出端和反相输入端之间的电阻,构成负反馈。
正反馈电路和负反馈电路构成一文氏电桥电桥。
文氏电桥振荡器的优点是:不仅振荡较稳定,波形良好,而且振荡频率在较宽的范围内能方便地连续调节。
二、问题简介由文桥选频电路和同相比例器组成的正弦波发生器如图1 所示。
(1)若取R1=15kΩ,试分析该振荡电路的起振条件(R f的取值);(2)仿真观察R f取不同值时,运放同相输入端和输出端的电压波形;图1 由文桥选频电路和放大器组成正弦波发生器的电路原理图(3)若在反馈回路中加入由二极管构成的非线性环节(如图2所示),仿真观察R2取不同值时,运放同相输入端和输出端的电压波形。
也可同时改变R f和R2的值。
图2 加入非线性环节的正弦波发生器的电路原理图三、理论分析(1)由图一的电路可以看出,电路在回路网络中加入了文氏选频网络,下面对文氏选频网络进行理论上的分析,从电路总提取文氏电路如图三所示。
图3 文氏选频网络图中o U 是运放的输出量,fU 是反馈量。
为了能够使电路振荡起来,就必须通过选定参数即确定频率,使得在某一频率下o U 和fU 同相。
那么,当信号频率很低时,有1RCω>>故将会有fU 的相位超前o U 的相位,当频率接近0时,相位超前接近于90度。
相反地,当信号频率很高以至于趋于无穷大时,可以得出fU 的相位滞后o U 的相位几乎-90度。
所以,在信号频率由0到无穷大的变化过程中,必然有某一个频率,使得输出量与反馈量同相,从而形成正反馈。
下面就具体来求解此振荡频率。
由反馈系数1//11//foR Uj C F U R Rj Cj Cωωω==++整理可得113()F j C R C R ωω=+-若电路的信号频率为f ,令特征频率012f R C π=代入F 的表达式,可以得到0013()F f f j f f =+-。
实验五:RC文氏电桥振荡器说课讲解
实验五:R C文氏电桥振荡器RC文氏电桥振荡器一、实验目的(1)学习RC正弦波振荡器的组成及其振荡条件。
(2)学会测量、调试振荡器。
二、实验原理文氏电桥振荡器是一种较好的正弦波产生电路,适用于产生频率小于1MHz,频率范围宽,波形较好的低频振荡信号。
因为没有输入信号,为了产生正弦波,必须在电路里加入正反馈。
下图是用运算放大器组成的电路,图中R3,R4构成负反馈支路,R1,R2,C1,C2的串并联选频网络构成正反馈支路并兼作选频网络,二极管构成稳幅电路。
调节电位器Rp可以改变负反馈的深度,以满足振荡的振幅条件和改善波形。
二极管D1,D2要求温度稳定性好且特性匹配,这样才能保证输出波形正负半周对称,同时接入R4以消除二极管的非线性影响。
若R1=R2,C1=C2,则振荡频率为f0=1/2πRC,正反馈的电压与输出电压同相位,且正反馈系数为1/3。
为满足电路的起振条件放大器的电压放大倍数AV > 3,其中AV = 1+R5/ =Rp+R4。
由此可得出当R5 >2R3时,可满足电路的自激振荡的振幅起振条件。
在实际应用中R5应略大于R3,这样既可以满足起振条件,又不会因其过大而引起波形严重失真。
此外,为了输出单一的正弦波,还必须进行选频。
由于振荡频率为f0=1/2πRC,故在电路中可变换电容来进行振荡频率的粗调,可用电位器代替R1,R2来进行频率的细调。
电路起振后,由于元件参数的不稳定性,如果电路增益增大,输出幅度将越来越大,最后由于二极管的非线性限幅,这必然产生非线性失真。
反之,如果增益不足,则输出幅度减小,可能停振,为此振荡电路要有一个稳幅电路。
图中两个二极管主要是利用二极管的正向电阻随所加电压而改变的特性,来自动调节负反馈深度。
三、实验内容(1)计算机仿真部分仿真电路如图所示启动仿真按钮,通过调节电位器使输出为不失真的正弦波(如下图所示)。
此时Vf=1.987V,Vo=5.964V,f=1.572KHZ正弦波振荡器仿真数据测试记录Vf Vo 临界频率C1=C2=0.01uF 1.987V 5.964V 1.572KHZ计算得到的数据fo=1/2piRC=1.592KHZ(c=0.01uF时)与仿真得到的数据基本一致,证明本次仿真是十分成功的【得到输出波形图如下】(2)实验室操作部分调整示波器到有正弦输出正弦波振荡器实验数据测试记录Vf Vo 临界频率C1=C2=0.01uF 4.69V 16.22V 1.60KHZ四、问题及原因分析试验中我组始终得不到实验想要的正弦波形的情况(包括波形跳动明显等),经分析后我们得出的结论为集成块损坏的情况,更换后即得出正确的正弦波形。
AGC型维恩电桥振荡电路实际制作(你细细往下看看就知道有多给力)
AGC型维恩电桥振荡电路实际制作(你细细往下看看就知道有多给⼒)AGC 型维恩(⽂⽒)电桥振荡电路1. 设计指标双电源供电,V p-p=10V 的振幅稳定度⾼,波形失真率低的100KHz 的正弦波。
2. 理论分析理论电路1①下部同相放⼤器②上部Vp 是OP 通过两个RC⽹络产⽣的,其值为1.现在的电⼦技术的书,都是⼀个抄⼀个的,很多电路作者⾃⼰都没有⽤过。
完全就是抄以前的书来出新书,出错的话⼤家⼀起错。
更绝的就是抄芯⽚的Datasheet 复印出书骗钱。
哎!2.理论是很重要的,但理论是实践出来的理论啊,不是抄出来的理论啊!理论实践结合设计才是王道啊。
以下设计是我⼀个在校学⽣⼀个⼩⼩的电路实践的总结。
放到百度⽂库希望⼤家能有所收获。
现在⽹上很多电路资料都不是很好的,都是纯理论的,所以实际电路设计需要好好思考。
我觉得纯理论是⽤来理解的,否则直接看实际电路,真的会看不懂。
这个电路可以看成2个电路,先分开考虑,容易理解。
⽅程展开,得出上式中,,信号经过整个环路的总增益为,,带通函数!!峰值出现在处,!!为实数,净相移为0.中性的稳定状态,此时正负反馈量相等,任何频率为f0的扰动⾸先被放⼤3倍,然后再缩⼩3倍。
巴克豪森准则。
必须满⾜。
!!实际电路技巧可通过⽐值R2/R1与幅度有关,以使得在低信号电平时⽐2略⼤以保证振荡开始,⽽在⾼电平时使⽐值略⼩于2以限制振荡幅度。
分析: ⼆极管——电阻⽹络来控制R2的有效值。
信号较⼩时,⼆极管截⽌,R2/R1=2.21略⼤于2振荡积累。
在⼆极管充分导通的限制下,R2的值会变成22.1||100=18.1kΩ,然⽽在此极限值到达之前,振幅会⾃动稳定。
缺点:1.温度特性较差,温度升⾼输出振幅下降2.Vom输出电压对⼆极管正向电压降⾮常灵敏。
理论电路3打开电源,1µF电容仍没有放电,栅极电压接近0V,沟道电阻较低,JFET将51kΩ电阻接地,从⽽有R2/R1≈20/(11.0||51)≈2.21>2.振荡开始,⼆极管和1µF电容组成负峰检测器,其电压随振荡的增长变得愈负。
文桥电路
文氏电桥振荡电路及工作原理详解文氏电桥振荡电路及工作原理详解一般讲,文氏电桥振荡电路所产生的正弦波优于移相式电路。
获得20HZ~ 50KHZ的正弦波常采用文氏电桥振荡电路。
从理论上讲,满足振荡条件后,振荡幅值可固定在某一定值上。
但由于温度等环境条件的变化,会使振荡条件遭受破坏,电路不是停振就是振荡波形严重失真,所以,基本文氏电桥振荡电路要达到实用目的,还必须采用自动稳幅措施。
图5.3-27B是热敏电阻自动稳幅的振荡电路。
电路用具有负温度系数的热敏电阻R1代替图5.3-27A电路中负反馈回路电阻RF2。
其工作原理是:当振幅增大时,流过RT的电流增大,温度升高,RT值随之而减小,使负反馈深度加深,从而达到稳幅目的。
图5.3-27为二极管自动稳幅振荡电路,电路利用二极管的非线性,在UO 幅度增大时,其正向电阻减小,从而使负反馈深度加深,迫使UO幅度减小,以此达到稳幅目的,这种电路的输出阻抗比较大,故后面应接缓冲级或输入阻抗较高的电路。
图5.3-27D是应用JFET(结型场效应管)作为可变电阻进行稳幅的文氏电桥振荡电路,通常JFET处于导通状态,当输出电压幅度增大时,经二极管CD 整流的电压增大,JFET反偏增大,其漏源间电阻变大,负反馈量增大,从而起到稳幅作用。
该电路的振荡频率为1KHZ,输出幅度UP-P=8V。
图5.3-27A示出了一个用运放和文氏电桥组成的基本振荡电路。
运放A和负反馈回路电阻RF1、RF2组成基本放大环节,正反馈网络由文氏电桥两臂R1、C1和R2、C2组成。
电路工作原理图同5.3-23。
振荡条件和振荡频率分别为实际应用中,从基本文氏电桥振荡电路的振幅条件式5.3-1)可以看出,若要对其频率进行调节而又不破坏振荡的振幅条件,则必须对正反馈回路中的两只电阻R1、R2或两只电容C1、C2按比例进行同步调节,这使调节很不方便。
采用图5.3-27 E电路,则只需改变一只电阻(R1)的阻值就能实现频率的调节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文氏电桥振荡电路
为克服RC移相振荡器的缺点,常采用RC串并联电路作为选频反馈网络的正弦振荡电路,也称为文氏电桥振荡电路,如图Z0820所示。
它由两级共射电路构成的同相放大器和RC串并联反馈网络组成。
由于φA= 0,这就要求RC串并联反馈网络对某一频率的相移φF=2nπ,才能满足振荡的相位平衡条件。
下面分析RC串并联网络的选频特性,再介绍其它有关元件的作用。
图Z0820中RC串并联网络在低、高频时的等效电路如图Z0821所示。
这是因为在频率比较低的情况下,(1/ωC)>R,而频率较高的情况下,则(1/ωC)为调节频率方便,通常取R1 = R2 = R,C1 = C2 = C,如果令ω0=1/ RC,则上式简化为:
可见,RC串并联反馈网络的反馈系数是频率的函数。
由式GS0821可画出的幅频和相频特性,如图Z0822所示。
由图可以看出:
当时,的模最大,且| | = 1/3 ,φF=0;当f大于f0时,| |都减小,且φF≠0 。
这就表明RC串并联网络具有选频特性。
因此图Z0820电路满足振荡的相位平衡条件。
如果同时满足振荡的幅度平衡条件,就可产生自。