人教版2019年黑龙江齐齐哈尔中考数学试题(解析版)

合集下载

2019年黑龙江省齐齐哈尔市中考数学试题(含解析)

2019年黑龙江省齐齐哈尔市中考数学试题(含解析)

2019黑龙江省齐齐哈尔市中考数学解析一、选择题1. (2019黑龙江省齐齐哈尔市,1,3分)3的相反数是( )(A) -3 (B)3 (C) 3 (D) 3±【答案】A【解析】符号相反的两个数互为相反数 【知识点】相反数2. (2019黑龙江省齐齐哈尔市,2,3分)下面四个图形中,既是轴对称图形又是中心对称图形的是( )【答案】D【解析】选项A ,B 都是中心对称,但不是轴对称图形,选项C 是轴对称但不是中心对称图形,选项D 既是轴对称又是中心对称图形,故选D 【知识点】中心对称,轴对称3. (2019黑龙江省齐齐哈尔市,3,3分)下列计算不正确的是( )(A) 39±=± (B) 2ab+3ba=5ab (C)11-20=)( (D) (3ab 2)2=6a 2b 4 【答案】D【解析】选项D (3ab 2)2=9a 2b 4,32=9,所以原式是错误的,选D 【知识点】整式的运算4. (2019黑龙江省齐齐哈尔市,4,3分)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩下列统计量中能用来比较两人成绩稳定程度的是( )(A) 平均数 (B) 中位数 (C) 方差 (D) 众数 【答案】C【解析】平均数、中位数和众数是反映一组数据的平均水平的,只有方差是反映数据的波动的,所以选择C 【知识点】数据的分析5. (2019黑龙江省齐齐哈尔市,5,3分) 如图,直线a ∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A 和C 两点分别落在直线a 和b 上,若∠1=20°,则∠2的度数为( )(A) 20° (B) 30° (C) 40° (D) 50°【答案】C 【解析】根据直线a ∥b,可得两直线平行,同旁内角互补,即∠2+∠BAC+∠1+∠BCA=180°,∴∠2=180°-∠BAC-∠1-∠BCA=180°-30°-90°-20°=40°,∴选C 【知识点】平行线的性质6.(2019黑龙江省齐齐哈尔市,6,3分)如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个集合体所需要的小正方体的个数至少为()(A) 5 (B) 6 (C) 7 (D) 8【答案】B【解析】如图,在俯视图上的数字表示小正方体的个数,满足条件的小正方体个数至少是6个,所以选择B【知识点】三视图7.(2019黑龙江省齐齐哈尔市,7,3分)“六一”儿童节前夕,某部队战士到福利院慰问儿童,战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上),到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图像能大致反映战士们离营地的距离S与时间t之间函数关系的是【答案】B【解析】开始从营地出发,所以初始距离为0,所以A是错误的,选购礼物停留一段时间后,继续前往福利院,距离营地越来越远,所以C是不正确的,按原速前往福利院,所以两段线段的倾斜程度应该是一样的,所以D 是错误的,故选B【知识点】函数的图像8.(2019黑龙江省齐齐哈尔市,8,3分)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元,学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()(A) 3种(B) 4种(C) 5种(D) 6种【答案】B【解析】设学校购买A种品牌的足球x个,购买B种品牌的足球y个,根据题意得60x+75y=1500,,化简得4x+5y=100,因为x,y都是正整数,所以x=5,y=16;x=10,y=12;x=15,y=8;x=20,y=4,共四种方案,选择B【知识点】二元一次方程9. (2019黑龙江省齐齐哈尔市,9,3分) 在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球,已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是101,则袋中黑球的个数为(A) 27 (B) 23 (C) 22 (D) 18【答案】C【解析】设袋中黑球的个数为x 个,则摸出红球的概率为1015235=++x ,所以x=22,故选C【知识点】概率10. (2019黑龙江省齐齐哈尔市,10,3分)如图,抛物线y=ax 2+bx+c(a ≠0)与x 轴交于点(-3,0),其对称轴为直线x=21-结合图像分析下列结论:①abc >0;②3a+c >0;③当x <0时,y 随x 的增大而增大;④一元二次方程cx 2+bx+a=0的两根分别为31-x 1=,21x 2=,⑤0442<a ac b -⑥若m,n (m <n)为方程a(x+3)(x-2)+3=0的两个根,则m <-3,n >2,其中正确的结论有(A) 3个 (B) 4个 (C) 5个 (D) 6个【答案】C【解析】①由图像可知a <0,b <0,c >0,∴abc >0,∴①正确;②由于对称轴是直线x=21-,所以a=b,∵与x 轴的一个交点是(-3,0),∴另一个交点是(2,0),把(2,0)点代入解析式可得4a+2b+c=0,∴6a+c=0,∴3a+c=-3a,∵a <0,∴-3a >0,∴3a+c >0,故②正确;③由图像可知当21-<x <0时,y 随x 的增大而减小,所以当x <0时,y 随x 的增大而增大是错误的;④一元二次方程ax 2+bx+c=0的两根为x 1=-3,x 2=2,∴一元二次方程cx 2+bx+a=0的两根分别为31-x 1=,21x 2=,正确;⑤由图像顶点的纵坐标大于0可知,04b -42>a ac ,∴0442<a acb -正确;⑥若m,n (m <n)为方程a(x+3)(x-2)+3=0的两个根,则a(x+3)(x-2)=-3,由图像可知,当y=-3时,方程的两根为m,n,∴m <-3,n >2,正确,综上正确的有5个,所以选择C【知识点】二次函数的性质二、填空题11.(2019黑龙江省齐齐哈尔市,11,3分)预计到2025年我国高铁运营里程将达到38000公里,将数据38000用科学记数法表示为 【答案】4103.8⨯【解析】科学记数法表示为na 10⨯,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。

2019年黑龙江省齐齐哈尔市中考数学试题(原卷+解析)含答案

2019年黑龙江省齐齐哈尔市中考数学试题(原卷+解析)含答案

黑龙江省齐齐哈尔市2019年中考数学试卷一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.(3分)3的相反数是()A.﹣3 B.C.3 D.±32.(3分)下面四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列计算不正确的是()A.±=±3 B.2ab+3ba=5abC.(﹣1)0=1 D.(3ab2)2=6a2b44.(3分)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.方差D.众数5.(3分)如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A 和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°6.(3分)如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5 B.6 C.7 D.87.(3分)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()A.B.C.D.8.(3分)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种9.(3分)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为()A.27 B.23 C.22 D.1810.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个二、填空题(共7小题,每小题3分,满分21分)11.(3分)预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为.12.(3分)如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).13.(3分)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.14.(3分)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.15.(3分)如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为.16.(3分)等腰△ABC中,BD⊥AC,垂足为点D,且BD=AC,则等腰△ABC底角的度数为.17.(3分)如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n=.三、解答题(共7小题,满分69分)18.(10分)(1)计算:()﹣1+﹣6tan60°+|2﹣4|(2)因式分解:a2+1﹣2a+4(a﹣1)19.(5分)解方程:x2+6x=﹣720.(8分)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD =AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21.(10分)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为°;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?22.(10分)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.(12分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②(一)填一填,做一做:(1)图②中,∠CMD=.线段NF=(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.(二)填一填(3)图③中阴影部分的周长为.(4)图③中,若∠A′GN=80°,则∠A′HD=°.(5)图③中的相似三角形(包括全等三角形)共有对;(6)如图④点A′落在边ND上,若=,则=(用含m,n的代数式表示).24.(14分)综合与探究如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为.(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2019年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:3的相反数是﹣3,故选:A.2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.【分析】直接利用同底数幂的乘除运算法则以及完全平方公式、合并同类项法则分别化简得出答案.【解答】解:A、±=±3,正确,故此选项错误;B、2ab+3ba=5ab,正确,故此选项错误;C、(﹣1)0=1,正确,故此选项错误;D、(3ab2)2=9a2b4,错误,故此选项正确;故选:D.4.【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:能用来比较两人成绩稳定程度的是方差,故选:C.5.【分析】直接利用平行线的性质结合三角形内角和定理得出答案.【解答】解:∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.6.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选:B.7.【分析】根据题意,可以写出各段过程中,S与t的关系,从而可以解答本题.【解答】解:由题意可得,战士们从营地出发到文具店这段过程中,S随t的增加而增大,故选项A错误,战士们在文具店选购文具的过程中,S随着t的增加不变,战士们从文具店去福利院的过程中,S随着t的增加而增大,故选项C错误,战士们从福利院跑回营地的过程中,S随着t的增大而减小,且在单位时间内距离的变化比战士们从营地出发到文具店这段过程中快,故选项B正确,选项D错误,故选:B.8.【分析】设购买A品牌足球x个,购买B品牌足球y个,根据总价=单价×数量,即可得出关于x,y 的二元一次方程,结合x,y均为正整数即可求出结论.【解答】解:设购买A品牌足球x个,购买B品牌足球y个,依题意,得:60x+75y=1500,∴y=20﹣x.∵x,y均为正整数,∴,,,,∴该学校共有4种购买方案.故选:B.9.【分析】袋中黑球的个数为x,利用概率公式得到=,然后利用比例性质求出x即可.【解答】解:设袋中黑球的个数为x,根据题意得=,解得x=22,即袋中黑球的个数为22个.故选:C.10.【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b由图象知:a<0,c>0,b<0故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)∴9a﹣3b+c=0∵a=b∴c=﹣6a∴3a+c=﹣3a>0故结论②正确;∵当x<﹣时,y随x的增大而增大;当﹣<x<0时,y随x的增大而减小∴结论③错误;∵cx2+bx+a=0,c>0∴x2+x+1=0∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0)∴ax2+bx+c=0的两根是﹣3和2∴=1,=﹣6∴x2+x+1=0即为:﹣6x2+x+1=0,解得x1=﹣,x2=;故结论④正确;∵当x=﹣时,y=>0∴<0故结论⑤正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),∴y=ax2+bx+c=a(x+3)(x﹣2)∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标结合图象得:m<﹣3且n>2故结论⑥成立;二、填空题(共7小题,每小题3分,满分21分)11.【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:38000用科学记数法表示应为3.8×104,故答案为:3.8×104.12.【分析】添加AB=DE,由BF=CE推出BC=EF,由SAS可证△ABC≌△DEF.【解答】解:添加AB=DE;∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故答案为:AB=DE.13.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=3,然后根据勾股定理计算出圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.14.【分析】根据解分式方程的方法和方程﹣=3的解为非负数,可以求得a的取值范围.【解答】解:﹣=3,方程两边同乘以x﹣1,得2x﹣a+1=3(x﹣1),去括号,得2x﹣a+1=3x﹣3,移项及合并同类项,得x=4﹣a,∵关于x的分式方程﹣=3的解为非负数,x﹣1≠0,∴,解得,a≤4且a≠3,故答案为:a≤4且a≠3.15.【分析】过点D作DE⊥x轴于点E,由点B的坐标为(﹣2,0)知OC=AB=﹣,由旋转性质知OD=OC=﹣、∠DOC=60°,据此求得OE=OD cos30°=﹣k,DE=OD sin30°=﹣k,即D(﹣k,﹣k),代入解析式解之可得.【解答】解:过点D作DE⊥x轴于点E,∵点B的坐标为(﹣2,0),∴AB=﹣,∴OC=﹣,由旋转性质知OD=OC=﹣、∠COD=60°,∴∠DOE=30°,∴DE=OD=﹣k,OE=OD cos30°=×(﹣)=﹣k,即D(﹣k,﹣k),∵反比例函数y=(k≠0)的图象经过D点,∴k=(﹣k)(﹣k)=k2,解得:k=0(舍)或k=﹣,故答案为:﹣.16.【分析】分点A是顶点、点A是底角顶点、AD在△ABC外部和AD在△ABC内部三种情况,根据等腰三角形的性质、直角三角形的性质计算.【解答】解:①如图1,点A是顶点时,∵AB=AC,AD⊥BC,∴BD=CD,∵AD=BC,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=×(180°﹣90°)=45°;②如图2,点A是底角顶点,且AD在△ABC外部时,∵AD=BC,AC=BC,∴AD=AC,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如图3,点A是底角顶点,且AD在△ABC内部时,∵AD=BC,AC=BC,∴AD=AC,∴∠C=30°,∴∠BAC=∠ABC=(180°﹣30°)=75°;故答案为:15°或45°或75°.17.【分析】由直线l:y=x+1可求出与x轴交点A的坐标,与y轴交点A1的坐标,进而得到OA,OA1的长,也可求出Rt△OAA1的各个内角的度数,是一个特殊的直角三角形,以下所作的三角形都是含有30°角的直角三角形,然后这个求出S1、S2、S3、S4、……根据规律得出Sn.【解答】解:直线l:y=x+1,当x=0时,y=1;当y=0时,x=﹣∴A(﹣,0)A1(0,1)∴∠OAA1=30°又∵A1B1⊥l,∴∠OA1B1=30°,在Rt△OA1B1中,OB1=•OA1=,∴S1=;同理可求出:A2B1=,B1B2=,∴S2===;依次可求出:S3=;S4=;S5=……因此:S n=故答案为:.三、解答题(共7小题,满分69分)18.【分析】(1)根据实数运算的法则计算即可;(2)根据因式分解﹣分组分解法分解因式即可.【解答】解:(1)()﹣1+﹣6tan60°+|2﹣4|=3+2﹣6×+4﹣2=1;(2)a2+1﹣2a+4(a﹣1)=(a﹣1)2+4(a﹣1)=(a﹣1)(a﹣1+4)=(a﹣1)(a+3).19.【分析】方程两边都加上9,配成完全平方式,再两边开方即可得.【解答】解:∵x2+6x=﹣7,∴x2+6x+9=﹣7+9,即(x+3)2=2,则x+3=±,∴x=﹣3±,即x1=﹣3+,x2=﹣3﹣.20.【分析】(1)连接OA,则得出∠COA=2∠B=2∠D=60°,可求得∠OAD=90°,可得出结论;(2)可利用△OAD的面积﹣扇形AOC的面积求得阴影部分的面积.【解答】(1)证明:连接OA,则∠COA=2∠B,∵AD=AB,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2,所以S△OAD=OA•AD=×2×2=2,因为∠COA=60°,所以S扇形COA==π,所以S阴影=S△OAD﹣S扇形COA=2﹣.21.【分析】(1)本次被抽取的学生共30÷30%=100(名);(2)100﹣20﹣30﹣10=40(名),据此补全;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名).【解答】解:(1)本次被抽取的学生共30÷30%=100(名),故答案为100;(2)100﹣20﹣30﹣10=40(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°,故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.22.【分析】(1)观察图象即可解决问题;(2)分别求出得A、B、C的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【解答】解:(1)车的速度是50千米/小时;轿车的速度是:400÷(7﹣2)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.23.【分析】(1)由折叠的性质得,四边形CDEF是矩形,得出EF=CD,∠DEF=90°,DE=AE=AD,由折叠的性质得出DN=CD=2DE,MN=CM,得出∠EDN=60°,得出∠CDM=∠NDM=15°,EN=DN=2,因此∠CMD=75°,NF=EF﹣EN=4﹣2;(2)证明△AEN≌△DEN得出AN=DN,即可得出△AND是等边三角形;(3)由折叠的性质得出A′G=AG,A′H=AH,得出图③中阴影部分的周长=△ADN的周长=12;(4)由折叠的性质得出∠AGH=∠A′GH,∠AHG=∠A′HG,求出∠AGH=50°,得出∠AHG =∠A′HG=70°,即可得出结果;(5)证明△NGM∽△A′NM∽△DNH,即可得出结论;(6)设==a,则A'N=am,A'D=an,证明△A′GH∽△HA′D,得出==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,得出==,解得:x=y,得出===.【解答】解:(1)由折叠的性质得,四边形CDEF是矩形,∴EF=CD,∠DEF=90°,DE=AE=AD,∵将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,∴DN=CD=2DE,MN=CM,∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=DN=2,∴∠CMD=75°,NF=EF﹣EN=4﹣2;故答案为:75°,4﹣2;(2)△AND是等边三角形,理由如下:在△AEN与△DEN中,,∴△AEN≌△DEN(SAS),∴AN=DN,∵∠EDN=60°,∴△AND是等边三角形;(3)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴A′G=AG,A′H=AH,∴图③中阴影部分的周长=△ADN的周长=3×4=12;故答案为:12;(4)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴∠AGH=∠A′GH,∠AHG=∠A′HG,∵∠A′GN=80°,∴∠AGH=50°,∴∠AHG=∠A′HG=70°,∴∠A′HD=180°﹣70°﹣70°=40°;故答案为:40;(5)如图③,∵∠A=∠N=∠D=∠A′=60°,∠NMG=∠A′MN,∠A′NM=∠DNH,∴△NGM∽△A′NM∽△DNH,∵△AGH≌△A′GH∴图③中的相似三角形(包括全等三角形)共有4对,故答案为:4;(6)设==a,则A'N=am,A'D=an,∵∠N=∠D=∠A=∠A′=60°,∴∠NA′G+∠A′GN=∠NA′G+∠DA′H=120°,∴∠A′GN=∠DA′H,∴△A′GH∽△HA′D,∴==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,∴==,解得:x=y,∴===;故答案为:.24.【分析】(1)由OA=2,OC=6得到A(﹣2,0),C(0,﹣6),用待定系数法即求得抛物线解析式.(2)由点D在抛物线对称轴上运动且A、B关于对称轴对称可得,AD=BD,所以当点C、D、B在同一直线上时,△ACD周长最小.求直线BC解析式,把对称轴的横坐标代入即求得点D纵坐标.(3)过点E作EG⊥x轴于点G,交直线BC与点F,设点E横坐标为t,则能用t表示EF的长.△BCE面积拆分为△BEF与△CEF的和,以EF为公共底计算可得S△BCE=EF•OB,把含t的式子代入计算即得到S△BCE关于t的二次函数,配方即求得最大值和t的值,进而求得点E坐标.(4)以AC为菱形的边和菱形的对角线进行分类画图,根据菱形邻边相等、对边平行的性质确定点N 在坐标.【解答】解:(1)∵OA=2,OC=6∴A(﹣2,0),C(0,﹣6)∵抛物线y=x2+bx+c过点A、C∴解得:∴抛物线解析式为y=x2﹣x﹣6(2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3∴B(3,0),抛物线对称轴为直线x=∵点D在直线x=上,点A、B关于直线x=对称∴x D=,AD=BD∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小设直线BC解析式为y=kx﹣6∴3k﹣6=0,解得:k=2∴直线BC:y=2x﹣6∴y D=2×﹣6=﹣5∴D(,﹣5)故答案为:(,﹣5)(3)过点E作EG⊥x轴于点G,交直线BC与点F设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6)∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t∴S△BCE=S△BEF+S△CEF=EF•BG+EF•OG=EF(BG+OG)=EF•OB=×3(﹣t2+3t)=﹣(t﹣)2+∴当t=时,△BCE面积最大∴y E=()2﹣﹣6=﹣∴点E坐标为(,﹣)时,△BCE面积最大,最大值为.(4)存在点N,使以点A、C、M、N为顶点的四边形是菱形.∵A(﹣2,0),C(0,﹣6)∴AC=①若AC为菱形的边长,如图3,则MN∥AC且,MN=AC=2∴N1(﹣2,2),N2(﹣2,﹣2),N3(2,0)②若AC为菱形的对角线,如图4,则AN4∥CM4,AN4=CN4设N4(﹣2,n)∴﹣n=解得:n=﹣∴N4(﹣2,﹣)综上所述,点N坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).。

2019年齐齐哈尔市中考数学试卷及答案(Word版)

2019年齐齐哈尔市中考数学试卷及答案(Word版)

2019年齐齐哈尔市初中学业考试数学试题考生注意:1. 考试时间120分钟2. 全卷共三道大题,总分120分3. 使用答题卡的考生,请将答案填写在答题卡上的指定位置. 一、单项选择题(每小题3分,满分30分)1.下列数字是既是轴对称图形又是中习对称图形的有几个( )A.1个B.2个C.3个D.4个2.下列各式计算正确的是( ) A.4222a aa=+ B.39±= C.()111=-- D.()772=-3.如图是一种古代计时器——“漏壶”的示意图,在壶内盛有一定量的水,水从壶下的小孔漏出,壶壁上画有刻度, 人们可以根据壶中的水面的位置计算时间.现用x 表示时间,y 表示壶到水面的高度,下列图象适合表示一小时内y 与x 的函数关系的是(暂不考虑水量变化对压力的影响)( )4.CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB=10,CD=8,则BE 的长是( ) A.8 B.2 C.2或8 D.3或75.甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差甲2S=1.4,乙2S =18.8,丙2S =2.5,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选( )A.甲队B.乙队C.丙队D.哪一个都可以6.假期到了,17名女教师去外地培训,住宿时人2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案.( )A.5种B.4种C.3种D.2种7.已知二次函数()02≠++=a c bx ax y 和图象经过点(1x ,0)、(2,0),且-2<1x <-1,与y 轴正半轴的交点在(0,2)的下方,则下列结论:①a b c <0 ②2b >4a c ③2a +b +1<0 ④2a +c>0.则其中正确结论的序号是( )A. ①②B. ②③C. ①②④D. ①②③④O x y O x yO xyO x y A B C D 第3题图8.下列说法正确的是( )A.相等和圆心角所对的弧相等B.无限小数是无理数C.阴天会下雨是必然事件D.在平南直角坐标系中,如果位似是以原点为位似中心,相似比为k , 那么位似图形对应点的坐标的比等于K 或-k 。

2019年黑龙江省齐齐哈尔市中考数学试卷(精品推荐)

2019年黑龙江省齐齐哈尔市中考数学试卷(精品推荐)

黑龙江省齐齐哈尔市2019年中考数学试卷一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.(3分)3的相反数是()A.﹣3 B.C.3 D.±32.(3分)下面四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列计算不正确的是()A.±=±3 B.2ab+3ba=5abC.(﹣1)0=1 D.(3ab2)2=6a2b44.(3分)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.方差D.众数5.(3分)如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°6.(3分)如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5 B.6 C.7 D.87.(3分)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()A.B.C.D.8.(3分)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种9.(3分)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为()A.27 B.23 C.22 D.1810.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个二、填空题(共7小题,每小题3分,满分21分)11.(3分)预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为.12.(3分)如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).13.(3分)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.14.(3分)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.15.(3分)如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为.16.(3分)等腰△ABC中,BD⊥AC,垂足为点D,且BD=AC,则等腰△ABC底角的度数为.17.(3分)如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n=.三、解答题(共7小题,满分69分)18.(10分)(1)计算:()﹣1+﹣6tan60°+|2﹣4|(2)因式分解:a2+1﹣2a+4(a﹣1)19.(5分)解方程:x2+6x=﹣720.(8分)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21.(10分)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为°;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?22.(10分)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.(12分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②(一)填一填,做一做:(1)图②中,∠CMD=.线段NF=(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.(二)填一填(3)图③中阴影部分的周长为.(4)图③中,若∠A′GN=80°,则∠A′HD=°.(5)图③中的相似三角形(包括全等三角形)共有对;(6)如图④点A′落在边ND上,若=,则=(用含m,n的代数式表示).24.(14分)综合与探究如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为.(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2019年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:3的相反数是﹣3,故选:A.2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.【分析】直接利用同底数幂的乘除运算法则以及完全平方公式、合并同类项法则分别化简得出答案.【解答】解:A、±=±3,正确,故此选项错误;B、2ab+3ba=5ab,正确,故此选项错误;C、(﹣1)0=1,正确,故此选项错误;D、(3ab2)2=9a2b4,错误,故此选项正确;故选:D.4.【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:能用来比较两人成绩稳定程度的是方差,故选:C.5.【分析】直接利用平行线的性质结合三角形内角和定理得出答案.【解答】解:∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.6.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选:B.7.【分析】根据题意,可以写出各段过程中,S与t的关系,从而可以解答本题.【解答】解:由题意可得,战士们从营地出发到文具店这段过程中,S随t的增加而增大,故选项A错误,战士们在文具店选购文具的过程中,S随着t的增加不变,战士们从文具店去福利院的过程中,S随着t的增加而增大,故选项C错误,战士们从福利院跑回营地的过程中,S随着t的增大而减小,且在单位时间内距离的变化比战士们从营地出发到文具店这段过程中快,故选项B正确,选项D错误,故选:B.8.【分析】设购买A品牌足球x个,购买B品牌足球y个,根据总价=单价×数量,即可得出关于x,y 的二元一次方程,结合x,y均为正整数即可求出结论.【解答】解:设购买A品牌足球x个,购买B品牌足球y个,依题意,得:60x+75y=1500,∴y=20﹣x.∵x,y均为正整数,∴,,,,∴该学校共有4种购买方案.故选:B.9.【分析】袋中黑球的个数为x,利用概率公式得到=,然后利用比例性质求出x即可.【解答】解:设袋中黑球的个数为x,根据题意得=,解得x=22,即袋中黑球的个数为22个.故选:C.10.【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b由图象知:a<0,c>0,b<0∴abc>0故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)∴9a﹣3b+c=0∵a=b∴c=﹣6a∴3a+c=﹣3a>0故结论②正确;∵当x<﹣时,y随x的增大而增大;当﹣<x<0时,y随x的增大而减小∴结论③错误;∵cx2+bx+a=0,c>0∴x2+x+1=0∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0)∴ax2+bx+c=0的两根是﹣3和2∴=1,=﹣6∴x2+x+1=0即为:﹣6x2+x+1=0,解得x1=﹣,x2=;故结论④正确;∵当x=﹣时,y=>0∴<0故结论⑤正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),∴y=ax2+bx+c=a(x+3)(x﹣2)∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标结合图象得:m<﹣3且n>2故结论⑥成立;故选:C.二、填空题(共7小题,每小题3分,满分21分)11.【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:38000用科学记数法表示应为3.8×104,故答案为:3.8×104.12.【分析】添加AB=DE,由BF=CE推出BC=EF,由SAS可证△ABC≌△DEF.【解答】解:添加AB=DE;∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故答案为:AB=DE.13.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=3,然后根据勾股定理计算出圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.14.【分析】根据解分式方程的方法和方程﹣=3的解为非负数,可以求得a的取值范围.【解答】解:﹣=3,方程两边同乘以x﹣1,得2x﹣a+1=3(x﹣1),去括号,得2x﹣a+1=3x﹣3,移项及合并同类项,得x=4﹣a,∵关于x的分式方程﹣=3的解为非负数,x﹣1≠0,∴,解得,a≤4且a≠3,故答案为:a≤4且a≠3.15.【分析】过点D作DE⊥x轴于点E,由点B的坐标为(﹣2,0)知OC=AB=﹣,由旋转性质知OD=OC=﹣、∠DOC=60°,据此求得OE=OD cos30°=﹣k,DE=OD sin30°=﹣k,即D(﹣k,﹣k),代入解析式解之可得.【解答】解:过点D作DE⊥x轴于点E,∵点B的坐标为(﹣2,0),∴AB=﹣,∴OC=﹣,由旋转性质知OD=OC=﹣、∠COD=60°,∴∠DOE=30°,∴DE=OD=﹣k,OE=OD cos30°=×(﹣)=﹣k,即D(﹣k,﹣k),∵反比例函数y=(k≠0)的图象经过D点,∴k=(﹣k)(﹣k)=k2,解得:k=0(舍)或k=﹣,故答案为:﹣.16.【分析】分点A是顶点、点A是底角顶点、AD在△ABC外部和AD在△ABC内部三种情况,根据等腰三角形的性质、直角三角形的性质计算.【解答】解:①如图1,点A是顶点时,∵AB=AC,AD⊥BC,∴BD=CD,∵AD=BC,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=×(180°﹣90°)=45°;②如图2,点A是底角顶点,且AD在△ABC外部时,∵AD=BC,AC=BC,∴AD=AC,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如图3,点A是底角顶点,且AD在△ABC内部时,∵AD=BC,AC=BC,∴AD=AC,∴∠C=30°,∴∠BAC=∠ABC=(180°﹣30°)=75°;故答案为:15°或45°或75°.17.【分析】由直线l:y=x+1可求出与x轴交点A的坐标,与y轴交点A1的坐标,进而得到OA,OA1的长,也可求出Rt△OAA1的各个内角的度数,是一个特殊的直角三角形,以下所作的三角形都是含有30°角的直角三角形,然后这个求出S1、S2、S3、S4、……根据规律得出Sn.【解答】解:直线l:y=x+1,当x=0时,y=1;当y=0时,x=﹣∴A(﹣,0)A1(0,1)∴∠OAA1=30°又∵A1B1⊥l,∴∠OA1B1=30°,在Rt△OA1B1中,OB1=•OA1=,∴S1=;同理可求出:A2B1=,B1B2=,∴S2===;依次可求出:S3=;S4=;S5=……因此:S n=故答案为:.三、解答题(共7小题,满分69分)18.【分析】(1)根据实数运算的法则计算即可;(2)根据因式分解﹣分组分解法分解因式即可.【解答】解:(1)()﹣1+﹣6tan60°+|2﹣4|=3+2﹣6×+4﹣2=1;(2)a2+1﹣2a+4(a﹣1)=(a﹣1)2+4(a﹣1)=(a﹣1)(a﹣1+4)=(a﹣1)(a+3).19.【分析】方程两边都加上9,配成完全平方式,再两边开方即可得.【解答】解:∵x2+6x=﹣7,∴x2+6x+9=﹣7+9,即(x+3)2=2,则x+3=±,∴x=﹣3±,即x1=﹣3+,x2=﹣3﹣.20.【分析】(1)连接OA,则得出∠COA=2∠B=2∠D=60°,可求得∠OAD=90°,可得出结论;(2)可利用△OAD的面积﹣扇形AOC的面积求得阴影部分的面积.【解答】(1)证明:连接OA,则∠COA=2∠B,∵AD=AB,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2,所以S△OAD=OA•AD=×2×2=2,因为∠COA=60°,所以S扇形COA==π,所以S阴影=S△OAD﹣S扇形COA=2﹣.21.【分析】(1)本次被抽取的学生共30÷30%=100(名);(2)100﹣20﹣30﹣10=40(名),据此补全;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名).【解答】解:(1)本次被抽取的学生共30÷30%=100(名),故答案为100;(2)100﹣20﹣30﹣10=40(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°,故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.22.【分析】(1)观察图象即可解决问题;(2)分别求出得A、B、C的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【解答】解:(1)车的速度是50千米/小时;轿车的速度是:400÷(7﹣2)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.23.【分析】(1)由折叠的性质得,四边形CDEF是矩形,得出EF=CD,∠DEF=90°,DE=AE=AD,由折叠的性质得出DN=CD=2DE,MN=CM,得出∠EDN=60°,得出∠CDM=∠NDM=15°,EN=DN=2,因此∠CMD=75°,NF=EF﹣EN=4﹣2;(2)证明△AEN≌△DEN得出AN=DN,即可得出△AND是等边三角形;(3)由折叠的性质得出A′G=AG,A′H=AH,得出图③中阴影部分的周长=△ADN的周长=12;(4)由折叠的性质得出∠AGH=∠A′GH,∠AHG=∠A′HG,求出∠AGH=50°,得出∠AHG=∠A′HG=70°,即可得出结果;(5)证明△NGM∽△A′NM∽△DNH,即可得出结论;(6)设==a,则A'N=am,A'D=an,证明△A′GH∽△HA′D,得出==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,得出==,解得:x=y,得出===.【解答】解:(1)由折叠的性质得,四边形CDEF是矩形,∴EF=CD,∠DEF=90°,DE=AE=AD,∵将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,∴DN=CD=2DE,MN=CM,∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=DN=2,∴∠CMD=75°,NF=EF﹣EN=4﹣2;故答案为:75°,4﹣2;(2)△AND是等边三角形,理由如下:在△AEN与△DEN中,,∴△AEN≌△DEN(SAS),∴AN=DN,∵∠EDN=60°,∴△AND是等边三角形;(3)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴A′G=AG,A′H=AH,∴图③中阴影部分的周长=△ADN的周长=3×4=12;故答案为:12;(4)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴∠AGH=∠A′GH,∠AHG=∠A′HG,∵∠A′GN=80°,∴∠AGH=50°,∴∠AHG=∠A′HG=70°,∴∠A′HD=180°﹣70°﹣70°=40°;故答案为:40;(5)如图③,∵∠A=∠N=∠D=∠A′=60°,∠NMG=∠A′MN,∠A′NM=∠DNH,∴△NGM∽△A′NM∽△DNH,∵△AGH≌△A′GH∴图③中的相似三角形(包括全等三角形)共有4对,故答案为:4;(6)设==a,则A'N=am,A'D=an,∵∠N=∠D=∠A=∠A′=60°,∴∠NA′G+∠A′GN=∠NA′G+∠DA′H=120°,∴∠A′GN=∠DA′H,∴△A′GH∽△HA′D,∴==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,∴==,解得:x=y,∴===;故答案为:.24.【分析】(1)由OA=2,OC=6得到A(﹣2,0),C(0,﹣6),用待定系数法即求得抛物线解析式.(2)由点D在抛物线对称轴上运动且A、B关于对称轴对称可得,AD=BD,所以当点C、D、B在同一直线上时,△ACD周长最小.求直线BC解析式,把对称轴的横坐标代入即求得点D纵坐标.(3)过点E作EG⊥x轴于点G,交直线BC与点F,设点E横坐标为t,则能用t表示EF的长.△BCE面积拆分为△BEF与△CEF的和,以EF为公共底计算可得S△BCE=EF•OB,把含t的式子代入计算即得到S关于t的二次函数,配方即求得最大值和t的值,进而求得点E坐标.△BCE(4)以AC为菱形的边和菱形的对角线进行分类画图,根据菱形邻边相等、对边平行的性质确定点N在坐标.【解答】解:(1)∵OA=2,OC=6∴A(﹣2,0),C(0,﹣6)∵抛物线y=x2+bx+c过点A、C∴解得:∴抛物线解析式为y=x2﹣x﹣6(2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3∴B(3,0),抛物线对称轴为直线x=∵点D在直线x=上,点A、B关于直线x=对称∴x D=,AD=BD∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小设直线BC解析式为y=kx﹣6∴3k﹣6=0,解得:k=2∴直线BC:y=2x﹣6∴y D=2×﹣6=﹣5∴D(,﹣5)故答案为:(,﹣5)(3)过点E作EG⊥x轴于点G,交直线BC与点F设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6)∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t∴S△BCE=S△BEF+S△CEF=EF•BG+EF•OG=EF(BG+OG)=EF•OB=×3(﹣t2+3t)=﹣(t﹣)2+∴当t=时,△BCE面积最大∴y E=()2﹣﹣6=﹣∴点E坐标为(,﹣)时,△BCE面积最大,最大值为.(4)存在点N,使以点A、C、M、N为顶点的四边形是菱形.∵A(﹣2,0),C(0,﹣6)∴AC=①若AC为菱形的边长,如图3,则MN∥AC且,MN=AC=2∴N1(﹣2,2),N2(﹣2,﹣2),N3(2,0)②若AC为菱形的对角线,如图4,则AN4∥CM4,AN4=CN4设N4(﹣2,n)∴﹣n=解得:n=﹣∴N4(﹣2,﹣)综上所述,点N坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).。

2019年黑龙江省齐齐哈尔市中考数学一模试卷(解析版)

2019年黑龙江省齐齐哈尔市中考数学一模试卷(解析版)

2019年黑龙江省齐齐哈尔市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.9的平方根是()A. 3B. ±3C. ±√3D. 812.下面四个图案中,是中心对称图形的是()A. B. C. D.3.下列计算正确的是()A. a4⋅a2=a8B. a4+a2=a8C. (a2)4=a8D. a4÷a2=2a4.代数式3x2-4x-5的值为7,则x2-43x-5的值为()A. 4B. −1C. −5D. 75.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是()A. 12B. 13C. 16D. 186.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x,4,9.已知这组数据的平均数是4,则这组数据的中位数和众数分别是()A. 2和2B. 4和2C. 2和3D. 3和27.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随时间的变化而变化.设时针与分针的夹角为y(度),运行时间为t(分),当时间从12:00开始到12:30止,y与t之间的函数图象是()A. B.C. D.8.某校九年级(1)班为了筹备演讲比赛,准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔15元/支,在钱全部用完的条件下,购买的方案共有()A.4种B. 5种C. 6种D. 7种9.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=-4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A. 3B. 4C. 5D. 610.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(3,0),其部分图象如图所示,现有下列结论:①abc>0:②b2-4ac<0;③a+b>0;④当x>0时,y随x的增大而减小;⑤3a+c=0;⑥c<4b.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共7小题,共21.0分)11.近年来日本发生的一次地震及海啸给日本带来16万亿日元到25万亿日元的经济损失,25万亿日元用科学记数法表示为______日元.12.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为______个.13.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD沿BD折叠,使点C落在边AB上的点C′处,则折痕BD的长为______.14.若一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,则圆锥的母线长是______cm.15.关于x的分式方程1−ax−2=a2的解是正数,则a的取值范围是______.16.矩形ABCD的边AB=6,BC=12,点P为矩形ABCD边上一点,连接AP,若线段AP、BD交点为点H,△PAB为等腰三角形,则AH的长为______.17.在平面直角坐标系中,点A在x轴正半轴上,点B在y轴正半轴上,O为坐标原点,OA=OB=1,过点O作OM1⊥AB于点M1:过点M1作M1A1⊥OA于点A1:过点A作M1A2⊥AB于点M2;过点M2作M2A2⊥OA于点A2…以类推,点M2019的坐标为______.三、解答题(本大题共8小题,共69.0分)18.计算:√186−|√3−3|+2sin60°−(√2)−119.因式分解:a2-4-3(a+2)20.解方程:x2-4x-9=021.Rt△ABC中,∠C=90°,点E在AB上,BE=12AE=2,以AE为直径作⊙O交AC于点F,交BC于点D,且点D为切点,连接AD、EF.(1)求证:AD平分∠BAC;(2)求阴影部分面积.(结果保留π)22.某中学为了解学生业余时间的活动情况,从看电视、看书、上网、运动四个方面进行了统计调查,随机调查了某班所有同学(每名同学必选且只能选一项最喜欢的活动),并将调查结果绘成了如下两个不完整的统计图,请根据图中信息回答下列问题:(1)被调查的班级学生共有______名(2)补全条形统计图;(3)扇形统计图中“上网”的学生所对应的圆心角是______度;(4)该校一共有1200名学生,根据抽样调查结果,请你计算出该校大约有多少名学生喜欢“运动”?23.周末,小明从家步行去书店看书,出发14小时后距家1.8千米时,爸爸驾车从家沿相同路线追赶小明,在A地追上小明后,二人驾车继续前行到达书店,小明在书店B看书,爸爸去单位C地办事.如图是小明与爸爸两人之间距离S(千米)与小明出发的时t(小时)之间的函数图象,(小明步行速度与爸爸驾车速度始终保持不变,彼此交流时间忽略不计),请根据图象回答下列问题(1)小明步行速度是______千米/小时,爸爸驾车速度是______千米/小时;(2)图中点A的坐标是______;(3)求书店与家的路程;(4)求爸爸出发多长时间,两人相距3千米.24.旋转是图形变化的方法之一,借助旋转知识可以解决线段长、角的大小、取值范围、判断三角形形状等问题,在实际生活中也有十分重要的地位和作用.问题背景:一块等边三角形建筑材料内一点到三角形三个顶点的距离满足一定条件时,我们可以用所学的知识帮助工人师傅在没有刻度尺的情况下求出等边三角形的边长.数学建模如图1,等边三角形ABC内有一点P,已知PA=2√3,PB=4,PC=2√7.问题解决(1)如图2,将△ABP绕点B顺时针旋转60°得到△CBP',连接PP',易证∠BP'P=______°,△______为等边三角形,∠______=90°,∠BPA=______°:(2)点H为直线BP'上的一个动点,则CH的最小值为______;(3)求AB长;拓展延伸已知:点P在正方形ABCD内,点Q在平面,BP=BQ=1,BP⊥BQ.(4)在图3中,连接PA、PC、PQ、QC,AP=√3,若点A、P、Q在一条直线上,则cos∠PCQ=______;(5)若AB=2,连接DP,则______≤DP<______;连接PQ,当D、P、Q三点同一条直线上时,△BDQ的面积为______.25.综合与探究:如图,抛物线y=ax2+bx-4与x轴交于A(-3,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线解析式;(2)抛物线对称轴上存在一点H,连接AH、CH,当|AH-CH|值最大时,求点H坐标;(3)若抛物线上存在一点P(m,n),mn>0,当S△ABC=S△ABp时,求点P坐标;(4)若点M是∠BAC平分线上的一点,点N是平面内一点,若以A、B、M、N为顶点的四边形是矩形,请直接写出点N坐标.答案和解析1.【答案】B【解析】解:±=±3,故选:B.根据平方与开平方互为逆运算,可得一个正数的平方根.本题考查了平方根,根据平方求出平方根,注意一个正数的平方跟有两个.2.【答案】B【解析】解:A.此图案是轴对称图形,不是中心对称图形,不合题意;B.此图案是中心对称图形,符合题意;C.此图案是轴对称图形,不是中心对称图形,不合题意;D.此图案是轴对称图形,不是中心对称图形,不合题意;故选:B.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】C【解析】解:A、a4•a2=a6,故此选项错误;B、a4+a2,无法计算,故此选项错误;C、(a2)4=a8,正确;D、a4÷a2=a2,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.此题主要考查了直接利用同底数幂的乘除运算以及幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:∵3x2-4x-5的值为7,3x2-4x=12,代入x2-x-5,得(3x2-4x)-5=4-5=-1.故选:B.根据题意列出等式,变形后求出x2-x的值,代入原式计算即可得到结果.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.5.【答案】C【解析】解:∴一共有12种情况,有2种情况两次都摸到红球,∴两次都摸到红球的概率是=.故选:C.列举出所有情况,看两次都摸到红球的情况占总情况的多少即可.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.【答案】D【解析】解:根据平均数的含义得:=4,所以x=3;将这组数据从小到大的顺序排列(2,2,3,4,9),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选:D.根据平均数的定义得到关于x的方程,求x,再根据中位数和众数的定义求解.本题为统计题,考查平均数、众数与中位数的意义,解题要细心.7.【答案】A【解析】解:∵从12:00开始时针与分针的夹角为0°,而分针每分钟转动6°,时针每分钟转动0.5°,∴y越来越大,而分针每分钟转动6°,时针每分钟转动0.5°,∴从12:00开始到12:30止,y=(6-0.5)×30=165.故选:A.由于从12:00开始时针与分针的夹角为0°,而分针每分钟转动6°,时针每分钟转动0.5°,由此得到时针与分针的夹角越来越大,可以根据已知条件计算夹角的大小.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.8.【答案】C【解析】解:设购买了日记本x本,钢笔y支,根据题意得:10x+15y=200,化简整理得:2x+3y=40,得x=20-y,∵x,y为正整数,∴,,,,,,∴有6种购买方案:方案1:购买了日记本17本,钢笔2支;方案2:购买了日记本14本,钢笔4支;方案3:购买了日记本11本,钢笔6支;方案4:购买了日记本8本,钢笔8支;方案5:购买了日记本5本,钢笔10支;方案6:购买了日记本2本,钢笔12支.故选:C.设购买了日记本x本,钢笔y支,根据准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔15元/支,钱全部用完可列出方程,再根据x,y为正整数可求出解.本题考查了二元一次方程的应用,关键是读懂题意,根据题意列出二元一次方程,然后根据解为正整数确定出x,y的值.9.【答案】A【解析】解:连接OA、OB,如图,∵AB∥x轴,∴S△OAP =×|-4|=2,S△OBP =×|2|=1,∴S△OAB=3,∵AB∥OC,∴S△CAB=S△OAB=3.故选:A.连接OA、OB,如图,由于AB∥x轴,根据反比例函数k的几何意义得到S△OAP=2,S△OBP=1,则S△OAB=3,然后利用AB∥OC,根据三角形面积公式即可得到S△CAB=S△OAB=3.本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x 轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.10.【答案】B【解析】解:①由抛物线开口方向向下知,a<0.由抛物线对称轴位于y轴右侧知,a、b异号,即ab<0,抛物线与y轴交于正半轴,则c>0.则abc<0.故错误;②由抛物线与x轴有两个不同的交点知,b2-4ac>0.故错误;③由对称轴x=-=1知b=-2a,则a+b=a-2a=-a>0,即a+b>0.故正确;④如图所示,当x>1时,y随x的增大而减小,故错误;⑤如图所示,根据抛物线的对称性知,抛物线与x轴的另一交点坐标是(-1,0).所以当x=-1时,y=a-b+c=a+2a+c=3a+c=0,即3a+c=0,故正确;⑥如图所示,当x=2时,y=4a+2b+c=2×(-3b)+2b+c=c-4b>0,而点(2,c-4b)在第一象限,∴c-4b>0,∴c>4b.故错误.综上所述,其中正确的结论有2个.故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题考查了二次函数的图象与系数的关系,还考查了同学们从函数图象中获取信息的能力,以及考查二次函数的图象和性质.11.【答案】2.5×1013【解析】解:25万亿=2.5×1013.故答案为:2.5×1013.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.12.【答案】8【解析】解:综合主视图和俯视图,底层最少有5个小立方体,第二层最少有2个小立方体,第三层至少有1个,因此搭成这个几何体的小正方体的个数最少是8个.故答案为:8.主视图、俯视图是分别从物体正面、上面看,所得到的图形.考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.13.【答案】3√5【解析】解:∵∠C=90°,AC=8,BC=6,∴AB=10.根据折叠的性质,BC=BC′,CD=DC′,∠C=∠AC′D=90°.∴AC′=10-6=4.在△AC′D中,设DC′=x,则AD=8-x,根据勾股定理得(8-x)2=x2+42.解得x=3.∴CD=3.∴BD===3.根据勾股定理易求AB=10.根据折叠的性质有BC=BC′,CD=DC′,∠C=∠AC′D=90°.在△AC′D中,设DC′=x,则AD=8-x,AC′=10-6=4.根据勾股定理可求x.在△BCD中,运用勾股定理求BD.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应边、角相等.14.【答案】9【解析】解:设母线长为l,则=2π×3解得:l=9.故答案为:9.利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解.考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.【答案】a>0且a≠1【解析】解:去分母得:2-2a=ax-2a得ax=2即:x=∵关于x 的分式方程的解是正数∴>0 即a>0又∵原分式方程有解,∴x≠2∴≠2即a≠1故答案为a>0且a≠1.关于x 的分式方程的解是正数,首先表明分式方程有解,不能让分母等于0,所以x≠2;再考虑解是正数,才能求出正确结果.本题考查的是解分式方程,并把握分式方程有解的条件,本题中往往容易遗漏对方程有解的检验,导致范围不正确.16.【答案】4√2或2√17【解析】解:分两种情况:①当P在BC上时,如图1所示∵四边形ABCD是矩形,∴∠ABP=90°,AD=BC=4,AD∥BC,CD=AB=2,∴△ADE∽△PBE,∴=,∵△ABP是等腰三角形,∴PB=AB=6,∴=2,∴=,由勾股定理得:AP==6,∴AE=4;②当P在CD上时,P为CD的中点,如图2所示:则PD=CD=3,∴AP==3,∵AB∥CD,∴△ABE∽△DPE,∴=2,∴AE=2PE,∴AE=AP=2;综上所述,AE的长为4或2;故答案为:4或2.根据题意画出图形,分两种情况:①当P在BC上时;②当P在CD上时,P为CD的中点;由矩形的性质和勾股定理以及相似三角形的性质即可得出结果.本题考查了矩形的性质、等腰三角形的性质、相似三角形的判定与性质、比例的性质;熟练掌握矩形的性质,证明三角形相似得出比例式是解决问题的关键.17.【答案】(1-122019,122019)【解析】解:∵OA=OB,OM1⊥AB,∴点M1是AB的中点,∵M1A1⊥OA,∴A1是OA的中点,∴点M1的坐标为(,),同理,点M2的坐标为(1-,),点M3的坐标为(1-,),……点M2019的坐标为(1-,),故答案为:(1-,).根据等腰三角形的性质得到点M1是AB的中点,根据三角形中位线定理求出点M1的坐标,总结规律,根据规律解答即可.本题考查的是点的坐标规律,掌握等腰直角三角形的性质、点的坐标性质是解题的关键.18.【答案】解:原式=3√26−(3−√3)+2×√32−√22=√22−3+√3+√3−√22=2√3−3.【解析】先分别计算二次根式、绝对值、三角函数值、负整数指数幂,然后算加减法.本题考查了实数的运算,熟练掌握二次根式、绝对值、三角函数值、负整数指数幂的运算是解题的关键.19.【答案】解:原式=(a+2)(a-2)-3(a+2)=(a+2)(a-5).【解析】利用平方差公式和提取公因式法进行因式分解.考查了公式法和提取公因式法进行因式分解,能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.20.【答案】解:配方得:x2-4x+4=13,即(x-2)2=13,开方得:x-2=±√13,解得:x1=2+√13,x2=2-√13.【解析】方程移项配方后,开方即可求出解.考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.【答案】(1)证明:连接OD交EF于M.∵BC切⊙O于D,∴OD⊥BC,∴∠ODB =90°, ∵∠C =90°, ∴∠ODB =∠C , ∴OD ∥AC , ∴∠DAC =∠ODA , ∵OD =OA , ∴∠OAD =∠ODA , ∴∠OAD =∠DAC , ∴AD 平分∠ABC .(2)连接OF .∵AE 是直径, ∴∠AFE =90°, ∵EF ∥BC , ∴CF AF =BE AE =12,∵∠C =∠AFE =∠ODC =90°, ∴四边形DMFC 是矩形, ∴DM =CF =12AF , ∵OM =DM =12OD =12OE , ∴∠OEM =30°, ∴∠EOF =120°, ∵BE =12AE =2, ∴OE =2,∴OM =1,EM =√3,EF -2√3,∴S 阴=S 扇形OEF -S △OEF =120⋅π⋅22360-12×2√3×1=4π3-√3. 【解析】(1)欲证明AD 平分∠BAC ,只要证明∠DAO=∠DAC 即可. (2)根据S 阴=S 扇形OEF-S △OEF ,计算即可.本题考查扇形的面积,角平分线的定义,垂径定理,勾股定理,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 22.【答案】50 72【解析】解:(1)被调查的班级学生共有18÷36%=50(人), 故答案为:50;(2)看书的人数为50×28%=14(人),运动的人数为50-(18+14+10)=8(人), 补全图形如下:(3)扇形统计图中“上网”的学生所对应的圆心角是360°×=72°, 故答案为:72;(4)该校喜欢“运动”的学生约有1200×=192(人). (1)由看电视的人数及其所占百分比可得总人数;(2)总人数乘以看书对应的百分比求得其人数,再根据各情况人数之和等于总人数求得运动的人数,从而补全图形;(3)用360°乘以上网人数所占比例;(4)用总人数乘以样本中运动人数所占比例即可得.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】7.2 48 (2380,0)【解析】解:(1)小明步行速度为(千米/小时); 爸爸驾车速度为(千米/小时);故答案为:7.2;48;(2)1.8÷48=(小时),(小时),故点A的坐标是(,0),故答案为:(,0);(3)48×(千米);(4),C (,8),故直线BC的解析式为y=48x-24,当48x-24=3时,x=,(小时).答:爸爸出发小时后,两人相距3千米.(1)根据“速度=路程÷时间”即可解答;(2)根据(1)中爸爸驾车速度以及行驶的路程即可求出行驶时间,进而求出点A的坐标;(3)用“爸爸驾车速度×时间”即可求出书店与家的路程;(4)求出直线BC的解析式,再把相应数据代入解析式即可解答.本题主要考查了一次函数图象上的点所表示的意义,结合实际求出问题.24.【答案】60 BPP' PP'C150 √3√1552√2-1 √5√15+14【解析】解:(1)∵△ABC是等边三角形∴AB=BC,∠ABC=60°∵△ABP绕点B顺时针旋转60°得到△CBP'∴△ABP≌△CBP',∠PBP'=∠ABC=60°,∴BP'=BP,CP'=AP=,∠BP'C=∠BPA ∴△BPP'是等边三角形∴∠BP'P=60°,PP'=BP=4∵PC=∴CP'2+PP'2=()2+42=28=PC2∴∠PP'C=90°∴∠BP'C=∠BP'P+∠PP'C=60°+90°=150°∴∠BPA=∠BP'C=150°故答案为:60;BPP';PP'C;150.(2)如图1,当CH⊥BP'时,CH 最小∵∠BP'C=150°,CP'=2,∠CHP'=90°∴∠CP'H=180°-∠BP'C=30°∴CH=CP'=故答案为:(3)如图1,过点C作CH⊥BP'于点H∵Rt△CP'H中,CH=,CP'=∴P'H=∵BP'=BP=4∴BH=BP'+P'H=7∴Rt△BCH 中,BC=∴AB=BC=(4)∵四边形ABCD是正方形∴AB=BC,∠ABC=90°∵BP=BQ=1,BP⊥BQ∴∠PBQ=90°∴∠BPQ=∠BQP=45°,PQ=,∠PBQ=∠ABC∴∠APB=180°-∠BPQ=135°,∠PBQ-∠PBC=∠ABC-∠PBC即∠CBQ=∠ABP在△CBQ与△ABP中,∴△CBQ≌△ABP(SAS)∴CQ=AP=,∠BQC=∠BPA=135°∴∠PQC=∠BQC-∠BQP=90°∴PC=∴cos∠PCQ=故答案为:(5)①∵BP=1,点P在正方形ABCD内∴点P在以B为圆心、BP长为半径且在正方形内的圆周上∴如图2,当B、P、D在一条直线上时,PD最短PD=BD-BP=-BP=2-1如图3,当P很接近AB或BC时,PD取极大值PD=∴2-1≤DP <②如图4,过点B作BE⊥PQ于点E∴∠BED=90°∵BP=BQ=1,∠PBQ=90°∴BE=PE=EQ=PQ=∴DE=∴DQ=DE+EQ=∴S△BDQ =DQ•BE=故答案为:-1;;.(1)根据题目给的填空提示,先证明△BPP'是等边三角形,再用勾股定理逆定理证明∠PP'C=90°,求得∠BP'C即得到∠APB的度数.(2)由点到直线的距离垂线段最短可知,当CH⊥BP'时,CH最小,用特殊三角函数值即求得CH的长.(3)由(2)的结论,可利用CH⊥BP'构造直角三角形,用勾股定理求BC,即求得AB的长.(4)由点A、P、Q在一条直线上,可得关键条件∠APB=135°,易证△CBQ≌△ABP即有∠BQC=∠BPA=135°,进而得到∠PQC=90°,所以cos∠PCQ即为CQ与PC的比.(5)由BP=1可知点P在以B为圆心、BP长为半径且在正方形内的圆周上运动,所以P在AB上时DP 最大,B、P、D在一条直线上时,DP最短,画出具体图形即求出DP的最值;当D、P、Q三点同一条直线上时,△BDQ的面积可用DQ为底来求,故作BE⊥DQ,利用等腰Rt△BPQ的性质和勾股定理求BE 和DQ的长,即求得面积.本题考查了旋转的性质,等边三角形的判定和性质,勾股定理和勾股定理逆定理,点到直线距离,全等三角形的判定和性质,正方形的性质,三角函数.解题关键由等边三角形的解题方法转化到正方形的运用.动点题要发挥想象,把极值情况画出再进行思考.25.【答案】解:(1)∵抛物线与y轴交于点C,∴点C坐标为(0,-4),把A(-3,0)、B(4,0)坐标代入y=ax2+bx-4得{0=16a+4b−40=9a−3b−4解得{a=13b=−13∴抛物线解析式为:y=13x2−13x−4.(2)抛物线的对称轴为:x=12,由三角形任意两边之差小于第三边,可知抛物线对称轴上存在一点H,连接AH、CH,当|AH-CH|值最大时,点H 为AC直线与对称轴的交点,由A(-3,0)、C(0,-4)易得直线AC解析式为:y=−43x−4,当x=12时,y=−143,故点H的坐标为:(12,-143).(3)∵抛物线上存在一点P(m,n),mn>0,当S△ABC=S△ABp时,∴点P(m,n)只能位于第一象限,C(0,-4)∴n=4∴由4=13x2−13x-4解得x=1+√972或x=1−√972(舍)故点P 坐标为(1+√972,4).(4)若以A 、B 、M 、N 为顶点的四边形是矩形,则点M 和点N 的位置有两种如图所示点M 和点M ’点N 和点N ’易得OA =3,OC =4,AC =5,点M 是∠BAC 平分线上的一点,作QF ⊥AC ,则OQ =QF ,12OA ×OC =12OA ×OQ +12AC ×QF ∴OQ =QF =1.5,∴在直角三角形AOQ 和直角三角形ABM 中,OQAO =BM AB,∴1.53=BM 7,∴BM =3.5, ∴点N (-3,-3.5)同理在直角三角形AEN ’和直角三角形ABN ’中,可解得点N ’(-85,145). 故点N 的坐标为(-3,-3.5)或(-85,145). 【解析】(1)把点A 和点B 坐标代入抛物线解析式解出a 和b 即可;(2)由三角形任意两边之差小于第三边,可知抛物线对称轴上存在一点H ,连接AH 、CH ,当|AH-CH|值最大时,点H 为AC 直线与对称轴的交点,从而可解;(3)由mn >0,当S △ABC =S △ABp ,可知点P 位于第一象限,且其纵坐标与点C 的纵坐标为相反数,从而可解;(4)画图,利用角平分线的性质定理,用面积法解出点OQ ,从而利用同角的三角函数值相等可解. 本题属于二次函数的综合题,考查了待定系数法求解析式,三角形三边关系求最值,角平分线的性质定理,解三角形等知识点,难度较大.。

2014--2019齐齐哈尔市中考数学试题分类解析-统计与概率

2014--2019齐齐哈尔市中考数学试题分类解析-统计与概率

1.(2014年)现测得齐齐哈尔市扎龙自然保护区六月某五天的最高气温分别为27、30、27、32、34(单位:℃),这组数据的众数和中位数分别是()A.34、27B.27、30C.27、34D.30、27【分析】根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),即可得出答案.【解答】解:27出现了2次,出现的次数最多,则众数是27;把这组数据从小到大排列:27,27,30,32,34,最中间的数是30,则中位数是30;故选:B.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).2.(2014年)从2、3、4这三个数字中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中能被3整除的两位数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,其中能被3整除的两位数的有:24,42,∴其中能被3整除的两位数的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3.(2014年)在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取名学生;(2)补全条形统计图;(3)在扇形统计图中,“立定跳远”部分对应的圆心角的度数是度;(4)若全校共2130名学生,请你估算“其他”部分的学生人数.【分析】(1)根据跳绳的人数是15,占30%,即可求得总人数;(2)根据百分比的意义求得踢毽子的人数,则其他项目的人数可求得,从而补全直方图;(3)利用360°乘以对应的比例即可求得;(4)利用总人数2130乘以对应的比例即可求解.【解答】解:(1)抽取的总人数是:15÷30%=50(人);(2)踢毽子的人数是:50×18%=9(人),则其他项目的人数是:50﹣15﹣16﹣9=10(人),(3)“立定跳远”部分对应的圆心角的度数是:360°×=115.2°;(4)“其他”部分的学生人数是:2130×=426(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.4.(2015年)下列是某校教学活动小组学生的年龄情况:13,15,15,16,13,15,14,15(单位:岁).这组数据的中位数和极差分别是()A.15,3B.14,15C.16,16D.14,3【分析】根据中位数与极差的定义分别求出即可解答.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;极差就是这组数中最大值与最小值的差.【解答】解:按从小到大的顺序排列为:13,13,14,15,15,15,15,16,故中位数为(15+15)÷2=15,极差为16﹣13=3.故选:A.【点评】本题为统计题,考查中位数与极差的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.极差是指一组数据中最大数据与最小数据的差.极差=最大值﹣最小值.5.(2015年)从点A(﹣2,3)、B(1,﹣6)、C(﹣2,﹣4)中任取一个点,在y=﹣的图象上的概率是.【分析】先把三点分别代入反比例函数解析式,求出在此函数图象上的点,再利用概率公式解答即可.【解答】解:∵A、B、C三个点,在函数在y=﹣的图象上的点有A和B点,∴随机抽取一张,该点在y=﹣的图象上的概率是.故答案为:.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比;点在函数解析式上,点的横纵坐标适合函数解析式.6.(2015年)4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:(1)九年(1)班有名学生;(2)补全直方图;(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;(4)求该年级每天阅读时间不少于1小时的学生有多少人?【分析】(1)利用条形统计图与扇形统计图中0~0.5小时的人数以及所占比例进而得出该班的人数;(2)利用班级人数进而得出0.5~1小时的人数,进而得出答案;(3)利用九年级其他班级每天阅读时间在1~1.5小时的学生有165人,求出1~1.5小时在扇形统计图中所占比例,进而得出0.5~1小时在扇形统计图中所占比例;(4)利用扇形统计图得出该年级每天阅读时间不少于1小时的人数,进而得出答案.【解答】解:(1)由题意可得:4÷8%=50(人);故答案为:50;(2)由(1)得:0.5~1小时的为:50﹣4﹣18﹣8=20(人),如图所示:;(3)∵除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,∴1~1.5小时在扇形统计图中所占比例为:165÷(600﹣50)×100%=30%,故0.5~1小时在扇形统计图中所占比例为:1﹣30%﹣10%﹣12%=48%,如图所示:;(4)该年级每天阅读时间不少于1小时的学生有:(600﹣50)×(30%+10%)+18+8=246(人).【点评】此题主要考查了频数分部直方图以及扇形统计图和条形统计图的应用,利用图形获取正确信息是解题关键.7.(2016年)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数B.众数和极差C.众数和方差D.中位数和极差【分析】根据众数和极差的概念进行判断即可.【解答】解:一班同学投中次数为6个的最多反映出的统计量是众数,二班同学投中次数最多与最少的相差6个能反映出的统计量极差,故选:B.【点评】本题考查的是统计量的选择,平均数、众数、中位数和极差、方差在描述数据时的区别:①数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数,描述了数据的离散程度.②极差和方差的不同点:极差表示一组数据波动范围的大小,一组数据极差越大,则它的波动范围越大.8.(2016年)下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.【分析】分别利用二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算法则、合并同类项法则进行判断,再利用概率公式求出答案.【解答】解:①=3,故此选项错误;②==9,正确;③26÷23=23=8,故此选项错误;④=2016,根号下为负数,无意义,故此选项错误;⑤a+a=2a,故此选项错误,故运算结果正确的概率是:,故选:A.【点评】此题主要考查了二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算、合并同类项、概率公式等知识,正确掌握相关运算法则是解题关键.9.(2016年)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x <8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【分析】(1)根据题目中的信息可知本次调查为抽样调查,也可以得到样本容量;(2)根据每周课外体育活动时间在6≤x<8小时的学生人数占24%,可以求得每周课外体育活动时间在6≤x<8小时的学生人数,从而可以求得2≤x<4的学生数,从而可以将条形统计图补充完整;(3)根据条形统计图可以得到这50名学生每周课外体育活动时间的平均数;(4)根据条形统计图,可以估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人),补全的频数分布直方图如右图所示,(3)由题意可得,=5,即这50名学生每周课外体育活动时间的平均数是5;(4)由题意可得,全校学生每周课外体育活动时间不少于6小时的学生有:1000×(人),即全校学生每周课外体育活动时间不少于6小时的学生有300人.【点评】本题考查频数分布直方图、样本、总体、样本容量、用样本估计总体、加权平均数,解题的关键是明确题意,找出所求问题需要的条件.10.(2017年)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是班.【分析】根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立【解答】解:∵s甲2<s乙2,∴成绩相对稳定的是甲,故答案为:甲.【点评】本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.(2017年)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动.某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第组;(4)请估计该校七年级学生日阅读量不足1小时的人数.【分析】(1)根据“频数÷百分比=数据总数”先计算总数为200人,再根据表中的数分别求a和b;(2)补全直方图;(3)第100和第101个学生读书时间都在第3组;(4)前两组的读书时间不足1小时,用总数2000乘以这两组的百分比的和即可.【解答】解:(1)10÷0.05=200,∴a=200×0.35=70,b=80÷200=0.40,故答案为:70,0.40;(2)补全直方图,如下图:(3)样本中一共有200人,中位数是第100和101人的读书时间的平均数,即第3组:1~1.5小时;故答案为:3;(4)1200×(0.05+0.1)=1200×0.15=180(人),答:估计该校七年级学生日阅读量不足1小时的人数为180人.【点评】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.12.(2018年)我们家乡的黑土地全国特有,肥沃的土壤、绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(千克数)中的()A.众数B.平均数C.中位数D.方差【分析】众数是一组数据中出现次数最多的数,可能不止一个,对这个米店老板来说,他最关注的是数据的众数.【解答】解:对这个米店老板来说,他最应该关注的是这些数据(千克数)中的哪一包装卖得最多,即是这组数据的众数.故选:A.【点评】考查了众数、平均数、中位数和方差意义,比较简单,属于基础题.13.(2019年)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.方差D.众数【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:能用来比较两人成绩稳定程度的是方差,故选:C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.14.(2018年)下列成语中,表示不可能事件的是()A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地【分析】直接利用不可能事件以及必然事件的定义分析得出答案.【解答】解:A、缘木求鱼,是不可能事件,符合题意;B、杀鸡取卵,是必然事件,不合题意;C、探囊取物,是必然事件,不合题意;D、日月经天,江河行地,是必然事件,不合题意;故选:A.【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.15.(2018年)初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?【分析】(1)由第二组频数及其频率可得总人数;(2)先由二、三组的频率和求得对应频数和,从而求得第三组频数,再由第三,四,五组的频数比求得后三组的频数,继而根据频数和为总数求得最后一组频数,从而补全统计图;(3)用总人数乘以样本中后三组人数和所占比例即可得;(4)根据概率公式计算即可得.【解答】解:(1)全班学生人数为6÷0.12=50人,故答案为:50;(2)第二、三组频数之和为50×0.48=24,则第三组频数为24﹣6=18,∵自左至右第三,四,五组的频数比为9:8:3,∴第四组频数为16、第五组频数为6,则第六组频数为50﹣(1+6+18+16+6)=3,补全图形如下:(3)全年级700人中成绩达到优秀的大约有700×=350人;(4)小强同学能被选中领奖的概率是=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.16.(2019年)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为()A.27B.23C.22D.18【分析】袋中黑球的个数为x,利用概率公式得到=,然后利用比例性质求出x即可.【解答】解:设袋中黑球的个数为x,根据题意得=,解得x=22,即袋中黑球的个数为22个.故选:C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.17.(2019年)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?【分析】(1)本次被抽取的学生共30÷30%=100(名);(2)100﹣20﹣30﹣10=40(名),据此补全;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名).【解答】解:(1)本次被抽取的学生共30÷30%=100(名),故答案为100;(2)100﹣20﹣30﹣10=40(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°,故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。

2014--2019齐齐哈尔市中考数学试题分类解析-三角形与四边形

2014--2019齐齐哈尔市中考数学试题分类解析-三角形与四边形

1.(2014年)如图,四边形ABCD是矩形,AB=6cm,BC=8cm,把矩形沿直线BD折叠,点C落在点E 处,BE与AD相交于点F,连接AE,下列结论:①△FBD是等腰三角形;②四边形ABDE是等腰梯形;③图中共有6对全等三角形;④四边形BCDF的周长为cm;⑤AE的长为cm.其中结论正确的个数为()A.2个B.3个C.4个D.5个【分析】①由折叠的性质可得到△ABD≌△EDB,那么∠ADB=∠EBD,所以BF=DF,可证得结论;②∠AEF=(180°﹣∠AFE)÷2=(180°﹣∠BFD)÷2=∠FBD,则AE∥BD,由AB=DE,可证得;③根据折叠的性质,得到相等的边角,即可判断;④根据勾股定理即可求得BF的长,则DF可知,从而求得四边形的周长;⑤利用△BDF∽△EAF,根据相似三角形的对应边的比相等即可求解.解:①由折叠的性质知,CD=ED,BE=BC.∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠BAD=90°,∴AB=DE,BE=AD,BD=BD,∴△ABD≌△EDB,∴∠EBD=∠ADB,∴BF=DF,即△FBD是等腰三角形,结论正确;②∵AD=BE,AB=DE,AE=AE,∴△AED≌△EAB(SSS),∴∠AEB=∠EAD,∵∠AFE=∠BFD,∴∠AEB=∠EBD,∴AE∥BD,又∵AB=DE,∴四边形ABDE是等腰梯形.结论正确;③图中的全等三角形有:△ABD≌△CDB,△ABD≌△EDB,△CDB≌△EDB,△ABF≌△EDF,△ABE≌△EDA共有5对,则结论错误;④BC=BE=8cm,CD=ED=AB=6cm,则设BF=DF=xcm,则AF=8﹣xcm,在直角△ABF中,AB2+AF2=BF2,则36+(8﹣x)2=x2,解得:x=cm,则四边形BCDF的周长为:8+6+2×=14+=cm,则结论正确;⑤在直角△BCD中,BD==10,∵AE∥BD,∴△BDF∽△EAF,∴==,∴AE=BD=×10=cm.则结论正确.综上所述,正确的结论有①②④⑤,共4个.故选:C.【点评】本题考查了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②全等三角形的判定和性质,等角对等边,三角形的内角和,平行线的判定求解.2.(2014年)在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sin B的值是.【分析】首先根据直角三角形斜边中线等于斜边一半求出AB的长度,然后根据锐角三角函数的定义求出sin B即可.解:∵Rt△ABC中,CD是斜边AB上的中线,CD=4,∴AB=2CD=8,则sin B===.故答案为:.【点评】本题考查了锐角三角函数的定义,属于基础题,解答本题的关键是掌握直角三角形斜边上的中线定理和锐角三角函数的定义.3.(2015年)如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE 和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC中点D,AC中点N,连接DN、DE、DF.下列结论:①EM=DN;②S△CDN=S四边形ABDN;③DE=DF;④DE⊥DF.其中正确的结论的个数是()A.1个B.2个C.3个D.4个【分析】①首先根据D是BC中点,N是AC中点N,可得DN是△ABC的中位线,判断出DN=;然后判断出EM=,即可判断出EM=DN;②首先根据DN∥AB,可得△CDN∽ABC;然后根据DN=,可得S△CDN=S△ABC,所以S△CDN=S四边形ABDN,据此判断即可.③首先连接MD、FN,判断出DM=FN,∠EMD=∠DNF,然后根据全等三角形判定的方法,判断出△EMD≌△DNF,即可判断出DE=DF.④首先判断出,DM=F A,∠EMD=∠EAF,根据相似计三角形判定的方法,判断出△EMD∽△∠EAF,即可判断出∠MED=∠AEF,然后根据∠MED+∠AED=45°,判断出∠DEF =45°,再根据DE=DF,判断出∠DFE=45°,∠EDF=90°,即可判断出DE⊥DF.解:∵D是BC中点,N是AC中点,∴DN是△ABC的中位线,∴DN∥AB,且DN=;∵三角形ABE是等腰直角三角形,EM平分∠AEB交AB于点M,∴M是AB的中点,∴EM=,又∵DN=,∴EM=DN,∴结论①正确;∵DN∥AB,∴△CDN∽ABC,∵DN=,∴S△CDN=S△ABC,∴S△CDN=S四边形ABDN,∴结论②正确;如图1,连接MD、FN,,∵D是BC中点,M是AB中点,∴DM是△ABC的中位线,∴DM∥AC,且DM=;∵三角形ACF是等腰直角三角形,N是AC的中点,∴FN=,又∵DM=,∴DM=FN,∵DM∥AC,DN∥AB,∴四边形AMDN是平行四边形,∴∠AMD=∠AND,又∵∠EMA=∠FNA=90°,∴∠EMD=∠DNF,在△EMD和△DNF中,,∴△EMD≌△DNF,∴DE=DF,∴结论③正确;如图2,连接MD,EF,NF,,∵三角形ABE是等腰直角三角形,EM平分∠AEB,∴M是AB的中点,EM⊥AB,∴EM=MA,∠EMA=90°,∠AEM=∠EAM=45°,∴,∵D是BC中点,M是AB中点,∴DM是△ABC的中位线,∴DM∥AC,且DM=;∵三角形ACF是等腰直角三角形,N是AC的中点,∴FN=,∠FNA=90°,∠F AN=∠AFN=45°,又∵DM=,∴DM=FN=F A,∵∠EMD=∠EMA+∠AMD=90°+∠AMD,∠EAF=360°﹣∠EAM﹣∠F AN﹣∠BAC=360°﹣45°﹣45°﹣(180°﹣∠AMD)=90°+∠AMD∴∠EMD=∠EAF,在△EMD和△∠EAF中,∴△EMD∽△∠EAF,∴∠MED=∠AEF,∵∠MED+∠AED=45°,∴∠AED+∠AEF=45°,即∠DEF=45°,又∵DE=DF,∴∠DFE=45°,∴∠EDF=180°﹣45°﹣45°=90°,∴DE⊥DF,∴结论④正确.∴正确的结论有4个:①②③④.故选:D.【点评】(1)此题主要考查了全等三角形的判定和性质的应用,以及相似三角形的判定和性质的应用,要熟练掌握.(2)此题还考查了等腰直角三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径.(3)此题还考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.4.(2016年)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为.【分析】过点M作MF⊥DC于点F,根据在边长为2的菱形ABCD中,∠A=60°,M为AD中点,得到2MD=AD=CD=2,从而得到∠FDM=60°,∠FMD=30°,进而利用锐角三角函数关系求出EC的长即可.解:如图所示:过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴EC=MC﹣ME=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,解题的关键是从题目中抽象出直角三角形,难度不大.5.(2016年)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.【分析】(1)由∠C+∠DBF=90°,∠C+∠DAC=90°,推出∠DBF=∠DAC,由此即可证明.(2)先证明AD=BD,由△ACD∽△BFD,得==1,即可解决问题.(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)∵tan∠ABD=1,∠ADB=90°∴=1,∴AD=BD,∵△ACD∽△BFD,∴==1,∴BF=AC=3.【点评】本题考查相似三角形的判定和性质、三角函数等知识,解题的关键是熟练掌握相似三角形的判定和性质,属于中考常考题型.6.(2017年)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.【分析】(1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△BDG和△ADC中,,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠F AD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)解:∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.【点评】本题考查的是全等三角形的判定和性质、直角三角形的性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.7.(2018年)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=60°,进而得出答案.解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.【点评】此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.8.(2019年)如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°【分析】直接利用平行线的性质结合三角形内角和定理得出答案.解:∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.【点评】此题主要考查了平行线的性质,正确掌握平行线的性质是解题关键.。

2019年黑龙江省齐齐哈尔市中考数学试卷-(6年中考)

2019年黑龙江省齐齐哈尔市中考数学试卷-(6年中考)

2019年黑龙江省齐齐哈尔市中考数学试卷-(6年中考)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.3的相反数是()A.﹣3B.C.3D.±32.下面四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列计算不正确的是()A.±=±3B.2ab+3ba=5ab C.(﹣1)0=1D.(3ab2)2=6a2b4 4.小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.方差D.众数5.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C 两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°6.如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.87.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()8.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种9.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为()A.27B.23C.22D.1810.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个二、填空题(共7小题,每小题3分,满分21分)11.预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为.12.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).13.将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.14.关于x的分式方程﹣=3的解为非负数,则a的取值范围为.15.如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为.16.等腰△ABC中,BD⊥AC,垂足为点D,且BD=AC,则等腰△ABC底角的度数为.17.如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x阴影△A3B2B3的面积为S3…,则S n=.三、解答题(共7小题,满分69分)18.(10分)(1)计算:()﹣1+﹣6tan60°+|2﹣4|(2)因式分解:a2+1﹣2a+4(a﹣1)19.(5分)解方程:x2+6x=﹣720.(8分)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD =AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21.(10分)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为°;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?22.(10分)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.(12分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD 对折,使边AB 与CD 重合,展开后得到折痕EF .如图①:点M 为CF 上一点,将正方形纸片ABCD 沿直线DM 折叠,使点C 落在EF 上的点N 处,展开后连接DN ,MN ,AN ,如图②(一)填一填,做一做:(1)图②中,∠CMD = . 线段NF =(2)图②中,试判断△AND 的形状,并给出证明.剪一剪、折一折:将图②中的△AND 剪下来,将其沿直线GH 折叠,使点A 落在点A ′处,分别得到图③、图④. (二)填一填(3)图③中阴影部分的周长为 .(4)图③中,若∠A ′GN =80°,则∠A ′HD = °. (5)图③中的相似三角形(包括全等三角形)共有 对; (6)如图④点A ′落在边ND 上,若=,则=(用含m ,n 的代数式表示).24.(14分)综合与探究如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于C 点,OA =2,OC =6,连接AC 和BC .(1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当△ACD 的周长最小时,点D 的坐标为 .(3)点E 是第四象限内抛物线上的动点,连接CE 和BE .求△BCE 面积的最大值及此时点E 的坐标;(4)若点M 是y 轴上的动点,在坐标平面内是否存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.2019年黑龙江省齐齐哈尔市中考数学试卷答案1.A.2.D.3.D.4.C.5.C.6.B.7.B.8.B.9.C.10.C.11.3.8×104.12.AB=DE.答案不唯一.13.4.14.a≤4且a≠3.15.﹣.16.15°或45°或75°.17.解:直线l:y=x+1,当x=0时,y=1;当y=0时,x=﹣∴A(﹣,0)A1(0,1)∴∠OAA1=30°又∵A1B1⊥l,∴∠OA1B1=30°,在Rt△OA1B1中,OB1=•OA1=,∴S1=;同理可求出:A2B1=,B1B2=,∴S2===;依次可求出:S3=;S4=;S5=……因此:S n=故答案为:.18.解:(1)()﹣1+﹣6tan60°+|2﹣4|=3+2﹣6×+4﹣2=1;(2)a2+1﹣2a+4(a﹣1)=(a﹣1)2+4(a﹣1)=(a﹣1)(a﹣1+4)=(a﹣1)(a+3).19.解:∵x2+6x=﹣7,∴x2+6x+9=﹣7+9,即(x+3)2=2,则x+3=±,∴x=﹣3±,即x1=﹣3+,x2=﹣3﹣.20.(1)证明:连接OA,则∠COA=2∠B,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2,所以S△OAD=OA•AD=×2×2=2,因为∠COA=60°,所以S扇形COA==π,所以S阴影=S△OAD﹣S扇形COA=2﹣.21.解:(1)本次被抽取的学生共30÷30%=100(名),故答案为100;(2)100﹣20﹣30﹣10=40(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°,故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.22.解:(1)车的速度是50千米/小时;轿车的速度是:400÷(7﹣2)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.23.解:(1)由折叠的性质得,四边形CDEF是矩形,∴EF=CD,∠DEF=90°,DE=AE=AD,∵将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,∴DN=CD=2DE,MN=CM,∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=DN=2,∴∠CMD=75°,NF=EF﹣EN=4﹣2;故答案为:75°,4﹣2;(2)△AND是等边三角形,理由如下:在△AEN与△DEN中,,∴△AEN≌△DEN(SAS),∴AN=DN,∵∠EDN=60°,∴△AND是等边三角形;(3)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴A′G=AG,A′H=AH,∴图③中阴影部分的周长=△ADN的周长=3×4=12;故答案为:12;(4)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴∠AGH=∠A′GH,∠AHG=∠A′HG,∵∠A′GN=80°,∴∠AGH=50°,∴∠AHG=∠A′HG=70°,∴∠A′HD=180°﹣70°﹣70°=40°;故答案为:40;(5)如图③,∵∠A=∠N=∠D=∠A′=60°,∠NMG=∠A′MN,∠A′NM=∠DNH,∴△NGM∽△A′NM∽△DNH,∵△AGH≌△A′GH∴图③中的相似三角形(包括全等三角形)共有4对,故答案为:4;(6)设==a,则A'N=am,A'D=an,∵∠N=∠D=∠A=∠A′=60°,∴∠NA′G+∠A′GN=∠NA′G+∠DA′H=120°,∴∠A′GN=∠DA′H,∴△A′GH∽△HA′D,∴==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,解得:x =y , ∴===;故答案为:.24.解:(1)∵OA =2,OC =6 ∴A (﹣2,0),C (0,﹣6) ∵抛物线y =x 2+bx +c 过点A 、C ∴解得:∴抛物线解析式为y =x 2﹣x ﹣6(2)∵当y =0时,x 2﹣x ﹣6=0,解得:x 1=﹣2,x 2=3 ∴B (3,0),抛物线对称轴为直线x =∵点D 在直线x =上,点A 、B 关于直线x =对称∴x D =,AD =BD∴当点B 、D 、C 在同一直线上时,C △ACD =AC +AD +CD =AC +BD +CD =AC +BC 最小 设直线BC 解析式为y =kx ﹣6 ∴3k ﹣6=0,解得:k =2 ∴直线BC :y =2x ﹣6 ∴y D =2×﹣6=﹣5∴D (,﹣5)故答案为:(,﹣5)(3)过点E 作EG ⊥x 轴于点G ,交直线BC 与点F ∴EF =2t ﹣6﹣(t 2﹣t ﹣6)=﹣t 2+3t ∴S △BCE =S △BEF +S △CEF =EF •BG +EF •OG =EF (BG +OG )=EF •OB =×3(﹣t 2+3t )=﹣(t ﹣)2+∴当t =时,△BCE 面积最大 ∴y E =()2﹣﹣6=﹣∴点E 坐标为(,﹣)时,△BCE 面积最大,最大值为.(4)存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形. ∵A (﹣2,0),C (0,﹣6)∴AC =①若AC 为菱形的边长,如图3, 则MN ∥AC 且,MN =AC =2∴N 1(﹣2,2),N 2(﹣2,﹣2),N 3(2,0)②若AC 为菱形的对角线,如图4,则AN 4∥CM 4,AN 4=CN 4 设N 4(﹣2,n ) ∴﹣n =解得:n =﹣∴N 4(﹣2,﹣)综上所述,点N 坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).2018年黑龙江省齐齐哈尔市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个2.下列计算正确的是()A.a2•a3=a6B.(a2)2=a4C.a8÷a4=a2D.(ab)3=ab33.“厉害了,我的国!”2018年1月18日,国家统计局对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶,把82万亿用科学记数法表示为()A.8.2×1013B.8.2×1012C.8.2×1011D.8.2×1094.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°5.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃6.我们家乡的黑土地全国特有,肥沃的土壤,绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A.众数B.平均数C.中位数D.方差正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数8.某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种9.下列成语中,表示不可能事件的是()A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地10.抛物线C1:y1=mx2﹣4mx+2n﹣1与平行于x轴的直线交于A、B两点,且A点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y轴交点坐标为(0,﹣1);③m>;④若抛物线C2:y2=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是≤a<2;⑤不等式mx2﹣4mx+2n>0的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有()A.2个B.3个C.4个D.5个二、填空题(共7小题,每小题3分,满分21分)11.已知反比例函数y=的图象在第一、三象限内,则k的值可以是.(写出满足条件的一个k的值即可)12.已知圆锥的底面半径为20,侧面积为400π,则这个圆锥的母线长为.13.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.14.若关于x的方程+=无解,则m的值为.15.爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.16.四边形ABCD中,BD是对角线,∠ABC=90°,tan∠ABD=,AB=20,BC=10,AD=13,则线段CD=.17.在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为.三、解答题(共7小题,满分69分)18.(10分)(1)计算:()﹣2+(﹣)0﹣2cos60°﹣|3﹣π|(2)分解因式:6(a﹣b)2+3(a﹣b)19.(5分)解方程:2(x﹣3)=3x(x﹣3).20.(8分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.21.(10分)初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?22.(10分)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为km,大客车途中停留了min,a=;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待分钟,大客车才能到达景点入口.23.(12分)综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B'C和AD相交于点E,连接B′D.解决向题(1)在图1中,①B′D和AC的位置关系为;②将△AEC剪下后展开,得到的图形是;(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为;拓展应用(4)在图2中,若∠B=30°,AB=4,当△AB′D恰好为直角三角形时,BC的长度为.24.(14分)综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)2018年黑龙江省齐齐哈尔市中考数学试卷答案1.C.2.B.3.A.4.B.5.D.6.A.7.D.8.B.9.A.10.B.11.1.12.20.13.4.14.﹣1或5或﹣.15.6.16.17.17.32019 18.解:(1)原式=4+1﹣2×﹣(π﹣3)=5﹣1﹣π+3=7﹣π;(2)6(a﹣b)2+3(a﹣b)=3(a﹣b)[2(a﹣b)+1]=3(a﹣b)(2a﹣2b+1).19.解:2(x﹣3)=3x(x﹣3),移项得:2(x﹣3)﹣3x(x﹣3)=0,整理得:(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3或x2=.20.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∵∠DBC+∠ABD=90°,∴BC是⊙O的切线;(2)连接OD,∵BF=BC=2,且∠ADB=90°,∴∠CBD=∠FBD,∵OE∥BD,∴∠FBD=∠OEB,∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠OEB=∠OBE=∠ADB=90°=30°,∴∠C=60°,∴AB=BC=2,∴⊙O的半径为,∴阴影部分的面积=扇形DOB的面积﹣三角形DOB的面积=..21.解:(1)全班学生人数为6÷0.12=50人,故答案为:50;(2)第二、三组频数之和为50×0.48=24,则第三组频数为24﹣6=18,∵自左至右第三,四,五组的频数比为9:8:3,∴第四组频数为16、第五组频数为6,则第六组频数为50﹣(1+6+18+16+6)=3,补全图形如下:(3)全年级700人中成绩达到优秀的大约有700×=350人;(4)小强同学能被选中领奖的概率是=.22.解:(1)由图形可得:学校到景点的路程为40km,大客车途中停留了5min,小轿车的速度:=1(千米/分),a=(35﹣20)×1=15,(3分)故答案为:40,5,15;(2)由(1)得:a=15,得大客车的速度:=(千米/分),(4分)小轿车赶上来之后,大客车又行驶了:(60﹣35)×=(千米),40﹣﹣15=(千米),(6分)答:在小轿车司机驶过景点入口时,大客车离景点入口还有千米;(3)∵A(20,0),F(60,40),设直线AF的解析式为:S=kt+b,则,解得:,∴直线AF的解析式为:S=t﹣20,(7分)当S=46时,46=t﹣20,t=66,小轿车赶上来之后,大客车又行驶的时间:=35,小轿车司机折返时的速度:6÷(35+35﹣66)=(千米/分)=90千米/时>80千米/时,(8分)∴小轿车折返时已经超速;(4)大客车的时间:=80min,80﹣70=10min,答:小轿车折返后到达景点入口,需等待10分钟,大客车才能到达景点入口.(10分)故答案为:10.23.解:(1)①BD′∥AC.②将△AEC剪下后展开,得到的图形是菱形;故答案为BD′∥AC,菱形;(2)①选择②证明如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵将△ABC沿AC翻折至△AB′C,∴∠ACB′=∠ACB,∴∠DAC=∠ACB′,∴AE=CE,∴△AEC是等腰三角形;∴将△AEC剪下后展开,得到的图形四边相等,∴将△AEC剪下后展开,得到的图形四边是菱形.②选择①证明如下,∵四边形ABCD是平行四边形,∴AD=BC,∵将△ABC沿AC翻折至△AB′C,∵B′C=BC,∴B′C=AD,∴B′E=DE,∴∠CB′D=∠ADB′,∵∠AEC=∠B′ED,∠ACB′=∠CAD∴∠ADB′=∠DAC,∴B′D∥AC.(3)①当矩形的长宽相等时,满足条件,此时矩形纸片的长宽之比为1:1;∵∠AB′D+∠ADB′=90°,∴y﹣30°+y=90°,②当矩形的长宽之比为:1时,满足条件,此时可以证明四边形ACDB′是等腰梯形,是轴对称图形;综上所述,满足条件的矩形纸片的长宽之比为1:1或:1;(4)∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠B=30°,∴∠AB′C=∠CDA=30°,∵△AB′D是直角三角形,当∠B′AD=90°,AB>BC时,如图3中,设∠ADB′=∠CB′D=y,∴∠AB′D=y﹣30°,解得y=60°,∴∠AB′D=y﹣30°=30°,∵AB′=AB=4,∴AD=×4=4,∴BC=4,当∠ADB′=90°,AB>BC时,如图4,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠ADB′=90°,∴四边形ACB′D是矩形,∴∠ACB′=90°,∴∠ACB=90°,∵∠B=30°,AB=4,∴BC=AB=×4=6;当∠B′AD=90°,AB<BC时,如图5,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∠B′AD=90°,∵∠B=30°,AB′=4,∴∠AB′C=30°,∴AE=4,BE′=2AE=8,∴AE=EC=4,∴CB′=12,当∠AB′D=90°时,如图6,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACDB′是等腰梯形,∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,AB=4,∴BC=AB÷=8;∴已知当BC的长为4或6或8或12时,△AB′D是直角三角形.故答案为:平行,菱形,1:1或:1,4或6或8或12;24.解:(1)将A(﹣4,0)代入y=x+c∴c=4将A(﹣4,0)和c=4代入y=﹣x2+bx+c∴b=﹣3∴抛物线解析式为y=﹣x2﹣3x+4(2)做点C关于抛物线的对称轴直线l的对称点C′,连OC′,交直线l于点E.连CE,此时CE+OE的值最小.∵抛物线对称轴位置线x=﹣∴CC′=3由勾股定理OC′=5∴CE+OE的最小值为5(3)①当△CNP∽△AMP时,∠CNP=90°,则NC关于抛物线对称轴对称∴NC=NP=3∴△CPN的面积为当△CNP∽△MAP时由已知△NCP为等腰直角三角形,∠NCP=90°过点C作CE⊥MN于点E,设点M坐标为(a,0)∴EP=EC=﹣a,则N为(a,﹣a2﹣3a+4),MP=﹣a2﹣3a+4﹣(﹣2a)=﹣a2﹣a+4∴P(a,﹣a2﹣a+4)代入y=x+4解得a=﹣2∴△CPN的面积为4故答案为:或4②存在设M坐标为(a,0)则N为(a,﹣a2﹣3a+4)则P点坐标为(a,)把点P坐标代入y=﹣x+4解得a1=﹣4(舍去),a2=﹣1当PF=FM时,点D在MN垂直平分线上,则D()当PM=PF时,由菱形性质点D坐标为(﹣1+,)(﹣1﹣,﹣)当MP=MF时,M、D关于直线y=﹣x+4对称,点D坐标为(﹣4,3)2017年黑龙江省齐齐哈尔市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.2.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×10124.下列算式运算结果正确的是()A.(2x5)2=2x10B.(﹣3)﹣2=C.(a+1)2=a2+1D.a﹣(a﹣b)=﹣b5.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣17.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B.C.D.8.一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.139.一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为()A.120°B.180°C.240°D.300°10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt (t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共9小题,每小题3分,共27分)11.在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是班.12.在函数y=+x﹣2中,自变量x的取值范围是.13.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)14.因式分解:4m2﹣36=.15.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.16.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.17.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB 的度数为.18.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于.19.如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为.三、解答题(共63分)20.先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.21.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.22.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.24.为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第组;(4)请估计该校七年级学生日阅读量不足1小时的人数.25.“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.26.如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.。

2019年黑龙江中考数学试卷及答案

2019年黑龙江中考数学试卷及答案

【导语】中考频道⼩编提醒参加2019中考的所有考⽣,⿊龙江2019年中考将于6⽉中旬陆续开始举⾏,⿊龙江中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,中考频道将在本次中考结束后陆续公布2019年⿊龙江中考数学试卷及答案信息。

考⽣可点击进⼊⿊龙江中考频道《、》栏⽬查看⿊龙江中考数学试卷及答案信息。

中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以当地教育考试院公布为准。

)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。

确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。

在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。

中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。

涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。

不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。

有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。

中考数学为了能让⼴⼤考⽣及时⽅便获取⿊龙江中考数学试卷答案信息,特别整理了《2019⿊龙江中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。

数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年⿊龙江中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。

考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。

数学中考试题-2019年黑龙江省齐齐哈尔市中考试题含答案详解

数学中考试题-2019年黑龙江省齐齐哈尔市中考试题含答案详解

黑龙江省齐齐哈尔市2019年中考数学试卷一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.3的相反数是()A.﹣3B.C.3D.±32.下面四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列计算不正确的是()A.±=±3B.2ab+3ba=5abC.(﹣1)0=1D.(3ab2)2=6a2b44.小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.方差D.众数5.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°6.如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.87.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()A.B.C.D.8.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种9.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为()A.27B.23C.22D.1810.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个二、填空题(共7小题,每小题3分,满分21分)11.预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为.12.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).13.将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.14.关于x的分式方程﹣=3的解为非负数,则a的取值范围为.15.如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为.16.等腰△ABC中,BD⊥AC,垂足为点D,且BD=AC,则等腰△ABC底角的度数为.17.如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n=.三、解答题(共7小题,满分69分)18.(10分)(1)计算:()﹣1+﹣6tan60°+|2﹣4|;(2)因式分解:a2+1﹣2a+4(a﹣1).19.(5分)解方程:x2+6x=﹣7.20.(8分)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21.(10分)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为°;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?22.(10分)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.(12分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N 处,展开后连接DN,MN,AN,如图②(一)填一填,做一做:(1)图②中,∠CMD=.线段NF=(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.(二)填一填(3)图③中阴影部分的周长为.(4)图③中,若∠A′GN=80°,则∠A′HD=°.(5)图③中的相似三角形(包括全等三角形)共有对;(6)如图④点A′落在边ND上,若=,则=(用含m,n的代数式表示).24.(14分)综合与探究如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为.(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【参考答案】一、选择题1.A【解析】3的相反数是﹣3,故选:A.2.D【解析】A.不是轴对称图形,是中心对称图形,故此选项错误;B.不是轴对称图形,不是中心对称图形,故此选项错误;C.是轴对称图形,不是中心对称图形,故此选项错误;D.是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.D【解析】A.±=±3,正确,故此选项错误;B.2ab+3ba=5ab,正确,故此选项错误;C.(﹣1)0=1,正确,故此选项错误;D.(3ab2)2=9a2b4,错误,故此选项正确;故选:D.4.C【解析】能用来比较两人成绩稳定程度的是方差,故选:C.5.C【解析】∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.6.B【解析】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选:B.7.B【解析】由题意可得,战士们从营地出发到文具店这段过程中,S随t的增加而增大,故选项A错误,战士们在文具店选购文具的过程中,S随着t的增加不变,战士们从文具店去福利院的过程中,S随着t的增加而增大,故选项C错误,战士们从福利院跑回营地的过程中,S随着t的增大而减小,且在单位时间内距离的变化比战士们从营地出发到文具店这段过程中快,故选项B正确,选项D错误,故选:B.8.B【解析】设购买A品牌足球x个,购买B品牌足球y个,依题意,得:60x+75y=1500,∴y=20﹣x.∵x,y均为正整数,∴,,,,∴该学校共有4种购买方案.故选:B.9.C【解析】设袋中黑球的个数为x,根据题意得=,解得x=22,即袋中黑球的个数为22个.故选:C.10.C【解析】∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b由图象知:a<0,c>0,b<0∴abc>0故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)∴9a﹣3b+c=0∵a=b∴c=﹣6a∴3a+c=﹣3a>0故结论②正确;∵当x<﹣时,y随x的增大而增大;当﹣<x<0时,y随x的增大而减小∴结论③错误;∵cx2+bx+a=0,c>0∴x2+x+1=0∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0)∴ax2+bx+c=0的两根是﹣3和2∴=1,=﹣6∴x2+x+1=0即为:﹣6x2+x+1=0,解得x1=﹣,x2=;故结论④正确;∵当x=﹣时,y=>0∴<0故结论⑤正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),∴y=ax2+bx+c=a(x+3)(x﹣2)∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标结合图象得:m<﹣3且n>2故结论⑥成立;故选:C.二、填空题(共7小题,每小题3分,满分21分)11.3.8×104【解析】38000用科学记数法表示应为3.8×104,故答案为:3.8×104.12.AB=DE【解析】添加AB=DE;∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故答案为:AB=DE.13.4【解析】设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.14.a≤4且a≠3【解析】﹣=3,方程两边同乘以x﹣1,得2x﹣a+1=3(x﹣1),去括号,得2x﹣a+1=3x﹣3,移项及合并同类项,得x=4﹣a,∵关于x的分式方程﹣=3的解为非负数,x﹣1≠0,∴,解得,a≤4且a≠3,故答案为:a≤4且a≠3.15.﹣【解析】过点D作DE⊥x轴于点E,∵点B的坐标为(﹣2,0),∴AB=﹣,∴OC=﹣,由旋转性质知OD=OC=﹣、∠COD=60°,∴∠DOE=30°,∴DE=OD=﹣k,OE=OD cos30°=×(﹣)=﹣k,即D(﹣k,﹣k),∵反比例函数y=(k≠0)的图象经过D点,∴k=(﹣k)(﹣k)=k2,解得:k=0(舍)或k=﹣,故答案为:﹣.16.15°或45°或75°【解析】①如图1,点A是顶点时,∵AB=AC,AD⊥BC,∴BD=CD,∵AD=BC,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=×(180°﹣90°)=45°;②如图2,点A是底角顶点,且AD在△ABC外部时,∵AD=BC,AC=BC,∴AD=AC,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如图3,点A是底角顶点,且AD在△ABC内部时,∵AD=BC,AC=BC,∴AD=AC,∴∠C=30°,∴∠BAC=∠ABC=(180°﹣30°)=75°;故答案为:15°或45°或75°.17.【解析】直线l:y=x+1,当x=0时,y=1;当y=0时,x=﹣∴A(﹣,0)A1(0,1),∴∠OAA1=30°,又∵A1B1⊥l,∴∠OA1B1=30°,在Rt△OA1B1中,OB1=•OA1=,∴S1=;同理可求出:A2B1=,B1B2=,∴S2===;依次可求出:S3=;S4=;S5=……,因此:S n=,故答案为:.三、解答题(共7小题,满分69分)18.解:(1)()﹣1+﹣6tan60°+|2﹣4|=3+2﹣6×+4﹣2=1;(2)a2+1﹣2a+4(a﹣1)=(a﹣1)2+4(a﹣1)=(a﹣1)(a﹣1+4)=(a﹣1)(a+3).19.解:∵x2+6x=﹣7,∴x2+6x+9=﹣7+9,即(x+3)2=2,则x+3=±,∴x=﹣3±,即x1=﹣3+,x2=﹣3﹣.20.(1)证明:连接OA,则∠COA=2∠B,∵AD=AB,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2,所以S△OAD=OA•AD=×2×2=2,因为∠COA=60°,所以S扇形COA==π,所以S阴影=S△OAD﹣S扇形COA=2﹣.21.解:(1)本次被抽取的学生共30÷30%=100(名),故答案为100;(2)100﹣20﹣30﹣10=40(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°,故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.22.解:(1)车的速度是50千米/小时;轿车的速度是:400÷(7﹣2)=80千米/小时;t =240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.23.解:(1)由折叠的性质得,四边形CDEF是矩形,∴EF=CD,∠DEF=90°,DE=AE=AD,∵将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,∴DN=CD=2DE,MN=CM,∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=DN=2,∴∠CMD=75°,NF=EF﹣EN=4﹣2;故答案为:75°,4﹣2;(2)△AND是等边三角形,理由如下:在△AEN与△DEN中,,∴△AEN≌△DEN(SAS),∴AN=DN,∵∠EDN=60°,∴△AND是等边三角形;(3)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴A′G=AG,A′H=AH,∴图③中阴影部分的周长=△ADN的周长=3×4=12;故答案为:12;(4)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴∠AGH=∠A′GH,∠AHG=∠A′HG,∵∠A′GN=80°,∴∠AGH=50°,∴∠AHG=∠A′HG=70°,∴∠A′HD=180°﹣70°﹣70°=40°;故答案为:40;(5)如图③,∵∠A=∠N=∠D=∠A′=60°,∠NMG=∠A′MN,∠A′NM=∠DNH,∴△NGM∽△A′NM∽△DNH,∵△AGH≌△A′GH,∴图③中的相似三角形(包括全等三角形)共有4对,故答案为:4;(6)设==a,则A'N=am,A'D=an,∵∠N=∠D=∠A=∠A′=60°,∴∠NA′G+∠A′GN=∠NA′G+∠DA′H=120°,∴∠A′GN=∠DA′H,∴△A′GH∽△HA′D,∴==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,∴==,解得:x=y,∴===;故答案为:.24.解:(1)∵OA=2,OC=6,∴A(﹣2,0),C(0,﹣6),∵抛物线y=x2+bx+c过点A、C,∴解得:,∴抛物线解析式为y=x2﹣x﹣6.(2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3,∴B(3,0),抛物线对称轴为直线x=,∵点D在直线x=上,点A、B关于直线x=对称,∴x D=,AD=BD,∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小,设直线BC解析式为y=kx﹣6,∴3k﹣6=0,解得:k=2,∴直线BC:y=2x﹣6,∴y D=2×﹣6=﹣5,∴D(,﹣5),故答案为:(,﹣5).(3)过点E作EG⊥x轴于点G,交直线BC与点F,设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6),∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t,∴S△BCE=S△BEF+S△CEF=EF•BG+EF•OG=EF(BG+OG)=EF•OB=×3(﹣t2+3t)=﹣(t﹣)2+,∴当t=时,△BCE面积最大,∴y E=()2﹣﹣6=﹣,∴点E坐标为(,﹣)时,△BCE面积最大,最大值为.(4)存在点N,使以点A、C、M、N为顶点的四边形是菱形.∵A(﹣2,0),C(0,﹣6),∴AC=,①若AC为菱形的边长,如图3,则MN∥AC且,MN=AC=2,∴N1(﹣2,2),N2(﹣2,﹣2),N3(2,0),②若AC为菱形的对角线,如图4,则AN4∥CM4,AN4=CN4,设N4(﹣2,n),∴﹣n=,解得:n=﹣,∴N4(﹣2,﹣),综上所述,点N坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).。

2014--2019齐齐哈尔市中考数学试题分类解析-反比例函数

2014--2019齐齐哈尔市中考数学试题分类解析-反比例函数

1.(2014年)在平面直角坐标系xOy中,点P到x轴的距离为3个单位长度,到原点O的距离为5个单位长度,则经过点P的反比例函数的解析式为.【分析】根据题意确定出P的坐标,设反比例解析式为y=,将P坐标代入求出k的值,即可确定出反比例解析式.解:根据题意,P的坐标可能是:(4,3),(4,﹣3),(﹣4,3),(﹣4,﹣3),设反比例解析式为y=,将P坐标分别代入得:k=12或k=﹣12,则反比例解析式为y=或y=﹣.故答案为:y=或y=﹣.【点评】此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.2.(2015年)如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为.【分析】过A点向x轴作垂线,与坐标轴围成的四边形的面积是定值|k|,由此可得出答案.解:过A点向x轴作垂线,如图:根据反比例函数的几何意义可得:四边形ABCD的面积为3,即|k|=3,又∵函数图象在二、四象限,∴k=﹣3,即函数解析式为:y=﹣.故答案为:y=﹣.【点评】此题考查了反比例函数的几何意义,解答本题关键是掌握在反比例函数中k所代表的几何意义,属于基础题,难度一般.3.(2016年)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=.【分析】根据点P(6,3),可得点A的横坐标为6,点B的纵坐标为3,代入函数解析式分别求出点A的纵坐标和点B的横坐标,然后根据四边形OAPB的面积为12,列出方程求出k的值.解:∵点P(6,3),∴点A的横坐标为6,点B的纵坐标为3,代入反比例函数y=得,点A的纵坐标为,点B的横坐标为,即AM=,NB=,∵S四边形OAPB=12,即S矩形OMPN﹣S△OAM﹣S△NBO=12,6×3﹣×6×﹣×3×=12,解得:k=6.解法二:△OAM的面积=△OBN的面积=k,∴k=四边形OMPN的面积﹣四边形OAPB的面积=6×3﹣12=6故答案为:6.【点评】本题考查了反比例函数系数k的几何意义,解答本题的关键是根据点A、B的纵横坐标,代入解析式表示出其坐标,然后根据面积公式求解.4.(2017年)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于.【分析】易证S菱形ABCO=2S△CDO,再根据tan∠AOC的值即可求得菱形的边长,即可求得点C的坐标,代入反比例函数即可解题.解:作DE∥AO,CF⊥AO,设CF=4x,∵四边形OABC为菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴S△ADO=S△DEO,同理S△BCD=S△CDE,∵S菱形ABCO=S△ADO+S△DEO+S△BCD+S△CDE,∴S菱形ABCO=2(S△DEO+S△CDE)=2S△CDO=40,∵tan∠AOC=,∴OF=3x,∴OC==5x,∴OA=OC=5x,∵S菱形ABCO=AO•CF=20x2,解得:x=,∴OF=,CF=,∴点C坐标为(﹣,),∵反比例函数y=的图象经过点C,∴代入点C得:k=﹣24,故答案为﹣24.【点评】本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO=2S△CDO是解题的关键.5.(2018年)已知反比例函数y=的图象在第一、三象限内,则k的值可以是.(写出满足条件的一个k的值即可)【分析】根据反比例函数的性质:反比例函数y=的图象在第一、三象限内,则可知2﹣k>0,解得k的取值范围,写出一个符合题意的k即可.解:由题意得,反比例函数y=的图象在第一、三象限内,则2﹣k>0,故k<2,满足条件的k可以为1,故答案为:1.【点评】本题主要考查反比例函数的性质,当k>0时,双曲线的两个分支在一,三象限,y随x的增大而减小;当k<0时,双曲线的两个分支在二,四象限,y随x的增大而增大.6.(2019年)如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为.【分析】过点D作DE⊥x轴于点E,由点B的坐标为(﹣2,0)知OC=AB=﹣,由旋转性质知OD=OC=﹣、∠DOC=60°,据此求得OE=OD cos30°=﹣k,DE=OD sin30°=﹣k,即D(﹣k,﹣k),代入解析式解之可得.解:过点D作DE⊥x轴于点E,∵点B的坐标为(﹣2,0),∴AB=﹣,∴OC=﹣,由旋转性质知OD=OC=﹣、∠COD=60°,∴∠DOE=30°,∴DE=OD=﹣k,OE=OD cos30°=×(﹣)=﹣k,即D(﹣k,﹣k),∵反比例函数y=(k≠0)的图象经过D点,∴k=(﹣k)(﹣k)=k2,解得:k=0(舍)或k=﹣,故答案为:﹣.【点评】本题主要考查反比例函数图象上的点,解题的关键是表示出点D的坐标.。

2019年黑龙江省齐齐哈尔市中考数学试卷附分析答案

2019年黑龙江省齐齐哈尔市中考数学试卷附分析答案

8.(3 分)学校计划购买 A 和 B 两种品牌的足球,已知一个 A 品牌足球 60 元,一个 B 品牌
足球 75 元.学校准备将 1500 元钱全部用于购买这两种足球(两种足球都买),该学校的
购买方案共有( )
A.3 种
B.4 种
C.5 种
D.6 种
9.(3 分)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小
法表示为

12.(3 分)如图,已知在△ABC 和△DEF 中,∠B=∠E,BF=CE,点 B、F、C、E 在同
一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是
(只填一个即可).
13.(3 分)将圆心角为 216°,半径为 5cm 的扇形围成一个圆锥的侧面,那么围成的这个
圆锥的高为
cm.
t 14.(3 分)关于 x 的分式方程 t
t 3 的解为非负数,则 a 的取值范围为

15.(3 分)如图,矩形 ABOC 的顶点 B、C 分别在 x 轴,y 轴上,顶点 A 在第二象限,点 B
的坐标为(﹣2,0).将线段 OC 绕点 O 逆时针旋转 60°至线段 OD,若反比例函数 y t
(k≠0)的图象经过 A、D 两点,则 k 值为

(1)本次被抽取的学生共有
名;
(2)请补全条形图;
(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为
第 4页(共 26页)
°;
(4)若该校共有 2000 名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十
分了解”和“了解较多”的学生共有多少名?
22.(10 分)甲、乙两地间的直线公路长为 400 千米.一辆轿车和一辆货车分别沿该公路从

2019年黑龙江省齐齐哈尔市中考数学试卷(中考)

2019年黑龙江省齐齐哈尔市中考数学试卷(中考)

黑龙江省齐齐哈尔市2019年中考数学试卷一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.(3分)3的相反数是()A.﹣3 B.C.3 D.±32.(3分)下面四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列计算不正确的是()A.±=±3 B.2ab+3ba=5abC.(﹣1)0=1 D.(3ab2)2=6a2b44.(3分)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.方差D.众数5.(3分)如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A 和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°6.(3分)如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5 B.6 C.7 D.87.(3分)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()A.B.C.D.8.(3分)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种9.(3分)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为()A.27 B.23 C.22 D.1810.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个二、填空题(共7小题,每小题3分,满分21分)11.(3分)预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为.12.(3分)如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).13.(3分)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.14.(3分)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.15.(3分)如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为.16.(3分)等腰△ABC中,BD⊥AC,垂足为点D,且BD=AC,则等腰△ABC底角的度数为.17.(3分)如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n=.三、解答题(共7小题,满分69分)18.(10分)(1)计算:()﹣1+﹣6tan60°+|2﹣4|(2)因式分解:a2+1﹣2a+4(a﹣1)19.(5分)解方程:x2+6x=﹣720.(8分)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD =AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21.(10分)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为°;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?22.(10分)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.(12分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②(一)填一填,做一做:(1)图②中,∠CMD=.线段NF=(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.(二)填一填(3)图③中阴影部分的周长为.(4)图③中,若∠A′GN=80°,则∠A′HD=°.(5)图③中的相似三角形(包括全等三角形)共有对;(6)如图④点A′落在边ND上,若=,则=(用含m,n的代数式表示).24.(14分)综合与探究如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为.(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2019年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:3的相反数是﹣3,故选:A.2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.【分析】直接利用同底数幂的乘除运算法则以及完全平方公式、合并同类项法则分别化简得出答案.【解答】解:A、±=±3,正确,故此选项错误;B、2ab+3ba=5ab,正确,故此选项错误;C、(﹣1)0=1,正确,故此选项错误;D、(3ab2)2=9a2b4,错误,故此选项正确;故选:D.4.【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:能用来比较两人成绩稳定程度的是方差,故选:C.5.【分析】直接利用平行线的性质结合三角形内角和定理得出答案.【解答】解:∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.6.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选:B.7.【分析】根据题意,可以写出各段过程中,S与t的关系,从而可以解答本题.【解答】解:由题意可得,战士们从营地出发到文具店这段过程中,S随t的增加而增大,故选项A错误,战士们在文具店选购文具的过程中,S随着t的增加不变,战士们从文具店去福利院的过程中,S随着t的增加而增大,故选项C错误,战士们从福利院跑回营地的过程中,S随着t的增大而减小,且在单位时间内距离的变化比战士们从营地出发到文具店这段过程中快,故选项B正确,选项D错误,故选:B.8.【分析】设购买A品牌足球x个,购买B品牌足球y个,根据总价=单价×数量,即可得出关于x,y 的二元一次方程,结合x,y均为正整数即可求出结论.【解答】解:设购买A品牌足球x个,购买B品牌足球y个,依题意,得:60x+75y=1500,∴y=20﹣x.∵x,y均为正整数,∴,,,,∴该学校共有4种购买方案.故选:B.9.【分析】袋中黑球的个数为x,利用概率公式得到=,然后利用比例性质求出x即可.【解答】解:设袋中黑球的个数为x,根据题意得=,解得x=22,即袋中黑球的个数为22个.故选:C.10.【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b由图象知:a<0,c>0,b<0故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)∴9a﹣3b+c=0∵a=b∴c=﹣6a∴3a+c=﹣3a>0故结论②正确;∵当x<﹣时,y随x的增大而增大;当﹣<x<0时,y随x的增大而减小∴结论③错误;∵cx2+bx+a=0,c>0∴x2+x+1=0∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0)∴ax2+bx+c=0的两根是﹣3和2∴=1,=﹣6∴x2+x+1=0即为:﹣6x2+x+1=0,解得x1=﹣,x2=;故结论④正确;∵当x=﹣时,y=>0∴<0故结论⑤正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),∴y=ax2+bx+c=a(x+3)(x﹣2)∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标结合图象得:m<﹣3且n>2故结论⑥成立;二、填空题(共7小题,每小题3分,满分21分)11.【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:38000用科学记数法表示应为3.8×104,故答案为:3.8×104.12.【分析】添加AB=DE,由BF=CE推出BC=EF,由SAS可证△ABC≌△DEF.【解答】解:添加AB=DE;∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故答案为:AB=DE.13.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=3,然后根据勾股定理计算出圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.14.【分析】根据解分式方程的方法和方程﹣=3的解为非负数,可以求得a的取值范围.【解答】解:﹣=3,方程两边同乘以x﹣1,得2x﹣a+1=3(x﹣1),去括号,得2x﹣a+1=3x﹣3,移项及合并同类项,得x=4﹣a,∵关于x的分式方程﹣=3的解为非负数,x﹣1≠0,∴,解得,a≤4且a≠3,故答案为:a≤4且a≠3.15.【分析】过点D作DE⊥x轴于点E,由点B的坐标为(﹣2,0)知OC=AB=﹣,由旋转性质知OD=OC=﹣、∠DOC=60°,据此求得OE=OD cos30°=﹣k,DE=OD sin30°=﹣k,即D(﹣k,﹣k),代入解析式解之可得.【解答】解:过点D作DE⊥x轴于点E,∵点B的坐标为(﹣2,0),∴AB=﹣,∴OC=﹣,由旋转性质知OD=OC=﹣、∠COD=60°,∴∠DOE=30°,∴DE=OD=﹣k,OE=OD cos30°=×(﹣)=﹣k,即D(﹣k,﹣k),∵反比例函数y=(k≠0)的图象经过D点,∴k=(﹣k)(﹣k)=k2,解得:k=0(舍)或k=﹣,故答案为:﹣.16.【分析】分点A是顶点、点A是底角顶点、AD在△ABC外部和AD在△ABC内部三种情况,根据等腰三角形的性质、直角三角形的性质计算.【解答】解:①如图1,点A是顶点时,∵AB=AC,AD⊥BC,∴BD=CD,∵AD=BC,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=×(180°﹣90°)=45°;②如图2,点A是底角顶点,且AD在△ABC外部时,∵AD=BC,AC=BC,∴AD=AC,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如图3,点A是底角顶点,且AD在△ABC内部时,∵AD=BC,AC=BC,∴AD=AC,∴∠C=30°,∴∠BAC=∠ABC=(180°﹣30°)=75°;故答案为:15°或45°或75°.17.【分析】由直线l:y=x+1可求出与x轴交点A的坐标,与y轴交点A1的坐标,进而得到OA,OA1的长,也可求出Rt△OAA1的各个内角的度数,是一个特殊的直角三角形,以下所作的三角形都是含有30°角的直角三角形,然后这个求出S1、S2、S3、S4、……根据规律得出Sn.【解答】解:直线l:y=x+1,当x=0时,y=1;当y=0时,x=﹣∴A(﹣,0)A1(0,1)∴∠OAA1=30°又∵A1B1⊥l,∴∠OA1B1=30°,在Rt△OA1B1中,OB1=•OA1=,∴S1=;同理可求出:A2B1=,B1B2=,∴S2===;依次可求出:S3=;S4=;S5=……因此:S n=故答案为:.三、解答题(共7小题,满分69分)18.【分析】(1)根据实数运算的法则计算即可;(2)根据因式分解﹣分组分解法分解因式即可.【解答】解:(1)()﹣1+﹣6tan60°+|2﹣4|=3+2﹣6×+4﹣2=1;(2)a2+1﹣2a+4(a﹣1)=(a﹣1)2+4(a﹣1)=(a﹣1)(a﹣1+4)=(a﹣1)(a+3).19.【分析】方程两边都加上9,配成完全平方式,再两边开方即可得.【解答】解:∵x2+6x=﹣7,∴x2+6x+9=﹣7+9,即(x+3)2=2,则x+3=±,∴x=﹣3±,即x1=﹣3+,x2=﹣3﹣.20.【分析】(1)连接OA,则得出∠COA=2∠B=2∠D=60°,可求得∠OAD=90°,可得出结论;(2)可利用△OAD的面积﹣扇形AOC的面积求得阴影部分的面积.【解答】(1)证明:连接OA,则∠COA=2∠B,∵AD=AB,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2,所以S△OAD=OA•AD=×2×2=2,因为∠COA=60°,所以S扇形COA==π,所以S阴影=S△OAD﹣S扇形COA=2﹣.21.【分析】(1)本次被抽取的学生共30÷30%=100(名);(2)100﹣20﹣30﹣10=40(名),据此补全;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名).【解答】解:(1)本次被抽取的学生共30÷30%=100(名),故答案为100;(2)100﹣20﹣30﹣10=40(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°,故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.22.【分析】(1)观察图象即可解决问题;(2)分别求出得A、B、C的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【解答】解:(1)车的速度是50千米/小时;轿车的速度是:400÷(7﹣2)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.23.【分析】(1)由折叠的性质得,四边形CDEF是矩形,得出EF=CD,∠DEF=90°,DE=AE=AD,由折叠的性质得出DN=CD=2DE,MN=CM,得出∠EDN=60°,得出∠CDM=∠NDM=15°,EN=DN=2,因此∠CMD=75°,NF=EF﹣EN=4﹣2;(2)证明△AEN≌△DEN得出AN=DN,即可得出△AND是等边三角形;(3)由折叠的性质得出A′G=AG,A′H=AH,得出图③中阴影部分的周长=△ADN的周长=12;(4)由折叠的性质得出∠AGH=∠A′GH,∠AHG=∠A′HG,求出∠AGH=50°,得出∠AHG =∠A′HG=70°,即可得出结果;(5)证明△NGM∽△A′NM∽△DNH,即可得出结论;(6)设==a,则A'N=am,A'D=an,证明△A′GH∽△HA′D,得出==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,得出==,解得:x=y,得出===.【解答】解:(1)由折叠的性质得,四边形CDEF是矩形,∴EF=CD,∠DEF=90°,DE=AE=AD,∵将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,∴DN=CD=2DE,MN=CM,∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=DN=2,∴∠CMD=75°,NF=EF﹣EN=4﹣2;故答案为:75°,4﹣2;(2)△AND是等边三角形,理由如下:在△AEN与△DEN中,,∴△AEN≌△DEN(SAS),∴AN=DN,∵∠EDN=60°,∴△AND是等边三角形;(3)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴A′G=AG,A′H=AH,∴图③中阴影部分的周长=△ADN的周长=3×4=12;故答案为:12;(4)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴∠AGH=∠A′GH,∠AHG=∠A′HG,∵∠A′GN=80°,∴∠AGH=50°,∴∠AHG=∠A′HG=70°,∴∠A′HD=180°﹣70°﹣70°=40°;故答案为:40;(5)如图③,∵∠A=∠N=∠D=∠A′=60°,∠NMG=∠A′MN,∠A′NM=∠DNH,∴△NGM∽△A′NM∽△DNH,∵△AGH≌△A′GH∴图③中的相似三角形(包括全等三角形)共有4对,故答案为:4;(6)设==a,则A'N=am,A'D=an,∵∠N=∠D=∠A=∠A′=60°,∴∠NA′G+∠A′GN=∠NA′G+∠DA′H=120°,∴∠A′GN=∠DA′H,∴△A′GH∽△HA′D,∴==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,∴==,解得:x=y,∴===;故答案为:.24.【分析】(1)由OA=2,OC=6得到A(﹣2,0),C(0,﹣6),用待定系数法即求得抛物线解析式.(2)由点D在抛物线对称轴上运动且A、B关于对称轴对称可得,AD=BD,所以当点C、D、B在同一直线上时,△ACD周长最小.求直线BC解析式,把对称轴的横坐标代入即求得点D纵坐标.(3)过点E作EG⊥x轴于点G,交直线BC与点F,设点E横坐标为t,则能用t表示EF的长.△BCE面积拆分为△BEF与△CEF的和,以EF为公共底计算可得S△BCE=EF•OB,把含t的式子代入计算即得到S△BCE关于t的二次函数,配方即求得最大值和t的值,进而求得点E坐标.(4)以AC为菱形的边和菱形的对角线进行分类画图,根据菱形邻边相等、对边平行的性质确定点N 在坐标.【解答】解:(1)∵OA=2,OC=6∴A(﹣2,0),C(0,﹣6)∵抛物线y=x2+bx+c过点A、C∴解得:∴抛物线解析式为y=x2﹣x﹣6(2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3∴B(3,0),抛物线对称轴为直线x=∵点D在直线x=上,点A、B关于直线x=对称∴x D=,AD=BD∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小设直线BC解析式为y=kx﹣6∴3k﹣6=0,解得:k=2∴直线BC:y=2x﹣6∴y D=2×﹣6=﹣5∴D(,﹣5)故答案为:(,﹣5)(3)过点E作EG⊥x轴于点G,交直线BC与点F设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6)∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t∴S△BCE=S△BEF+S△CEF=EF•BG+EF•OG=EF(BG+OG)=EF•OB=×3(﹣t2+3t)=﹣(t﹣)2+∴当t=时,△BCE面积最大∴y E=()2﹣﹣6=﹣∴点E坐标为(,﹣)时,△BCE面积最大,最大值为.(4)存在点N,使以点A、C、M、N为顶点的四边形是菱形.∵A(﹣2,0),C(0,﹣6)∴AC=①若AC为菱形的边长,如图3,则MN∥AC且,MN=AC=2∴N1(﹣2,2),N2(﹣2,﹣2),N3(2,0)②若AC为菱形的对角线,如图4,则AN4∥CM4,AN4=CN4设N4(﹣2,n)∴﹣n=解得:n=﹣∴N4(﹣2,﹣)综上所述,点N坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).。

2019届黑龙江齐齐哈尔中考一模试卷数学试卷【含答案及解析】

2019届黑龙江齐齐哈尔中考一模试卷数学试卷【含答案及解析】

2019届黑龙江齐齐哈尔中考一模试卷数学试卷【含答案及解析】姓名 ___________ 班级 _______________ 分数 ___________题号-二二三四五总分得分、选择题3. 一组数据3、4、X 、1、4、3有唯一的众数3,则这组数据的中位数是( A. 3 B . 3.5 C . 4 D .4.5f T -F5>04. 不等式组• _ .的解集在数轴上表示为()5.如图,00的直径AB=2,点D 在AB 的延长线上,DC 与OO 相切于点 C,连接AC.若 Z A=30°,贝VCD 长为()1.-的倒数是()2.A. )B.D .A. — B .二 C . ^121 D.3 3 36. 一列火车匀速通过一座桥(桥长大于火车长)时,火车在桥上的长度y (m与火车进入桥的时间x (s)之间的关系用图象描述大致是()/ \-VB .亠C. J yO工(A r0n*7.如图,对于二次函数y=ax2+bx+c (a工0)的图象,得出了下面五条信息:①0; c>②b=6a;③b2- 4ac>0;④a+b+cv 0;⑤对于图象上的两点(- 6, m )、8.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小)A. 2个B . 3个C . 4个D . 5个(1, n),有m )9. 若关于x的分式方程----- ■-无解,则m的值为()xA. 0 B . 2 C . 0 或2 D .±2二、解答题10. 某班级劳动时,将全班同学分成x个小组,若每小组11人,则余下1人;若每小组12人,则有一组少4人•按下列哪个选项重新分组,能使每组人数相同?()A. 3组B . 5组C . 6组D . 7组三、选择题11. 2016年1月末,社会融资规模存量为141.57亿元,将141.57亿用科学记数法表示为元.四、填空题12. 在函数' I -中,自变量x的取值范围是・x-213. 四边形ABCD勺对角线AC BD相交于点O, AD// BC,AC=BD试添加一个条件,使四边形ABCD为矩形.B C14. 从长度分别为x (x为正整数)、4、6、8的四条线段中任选三条作边,能构成三角形的概率为一,若长为x的线段在四条线段中最短,则x可取的值为415. 若圆锥的主视图为等腰直角三角形,底面半径为1,则圆锥侧面积为16. 如图,在平面直角坐标系中,双曲线 Q (x>0)上的一点C过等边三角形OAB^条高的交点,则点B的坐标为X17. 某电脑批发店的一款鼠标垫现在的售价为每个30元,每星期可卖出1000个•市场调查反映,每涨价1元,每星期要少卖出100个;每降价1元,则多卖出100个.已知进价为每个20元,当鼠标垫售价为元/个时,这星期利润为9600元.18. 如图,矩形ABCD勺边长AB=8, AD=4若将△ DC沿BD所在直线翻折,点C落在点F处,DF与AB交于点E.则cos/ ADE= .19. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次运动到点(2, 0),第3次运动到点(3,- 1 ),•••,按照这样的运动五、解答题^-3 (5丄丄J20. ---------------------------------------- 化简求值:拿4应+丄,其中a满足:|a+1|是4的算术平方根.a—2 \2~a j21.在平面直角坐标系中,△ ABC 坐标分别为:A2).线段DE 的端点坐标为D (2,- 3), E ( 6,- 1).(2) 将厶ABC 绕点P 旋转180°后得到的厶DEF 使 标,并画出厶DEF(3) 求点C 在旋转过程中所经过的路径 I 的长.22. 如图,过点 A (- 1, 0)、B(3, 0)的抛物线y=-x2+bx+c 与y 轴交于点C,它的对(2) 求抛物线顶点 D 的坐标;(3) 若抛物线的对称轴上存在点 P 使SAPCB=3^POC 求此时 DP 的长.23. 如图,矩形 ABCD 中, AD=5 AB=3在BC 边上取一点 E ,使BE=4连结 AE,沿AE 剪 下厶ABE将它平移至△ DCF 的位置,拼成四边形 AEFD再向 平移AB的个单位,(1) 求证:四边形 AEFD 是菱形; (2) 求四边形AEFD 勺两条对角线的长.24. 某校分别于2014年、2015年随机调查相同数量的学生,对数学课开展变式训练的情 况进行调查(开展情况为极少、有时、常常、总是四种),并绘制了部分统计图•请你根据图中信息,解答下列问题:(3) 若该校2015年共有1200名学生,请你估计其中认为数学课“总是”开展变式训练 的学生有多少名?(4) 与2014年相比,2015年该校开展变式训练的情况有何变化? 25.在一次徒步活动中,有甲、乙两支徒步队伍.队伍甲由A 地步行到B 地后按原路返回,队伍乙由A 地步行经B 地继续前行到C 地后按原路返回,甲、乙两支队伍同时出发•设步 行时间为x (分钟),甲、乙两支队伍距 B 地的距离为y1 (千米)和y2 (千米).(甲、 乙两队始终保持匀速运动)图中的折线分别表示y1、y2与x 之间的函数关系,请你结合Ml 、年开愿变弍训练(1) m= %, n= %(2) 补全条形统计图;垂人数■ 201许1 I 201亍年ill!扳少有时常常总是幵展情况MM 年霽展变式训练情况的条形i 葡梱“总是”对应扇形统计图的圆心角的度数B C两地之间的距离为千米;(2)求队伍乙由A地出发首次到达B地所用的时间,并确定线段MN表示的y2与x的函数关系式;(3)请你直接写出点P的实际意义.26. 如图,矩形ABCD勺顶点A在x轴的正半轴上,顶点D在y轴的正半轴上,点B、点C在第一象限,sin Z OAD二退,线段AD AB的长分别是方程x2 - 11x+24=0的两根(AD>(2)求直线AB的解析式;(3)在直线AB上是否存在点M,使以点C、点B、点M为顶点的三角形与△ OAD相似?若存在,请直接写出点M的坐标;若不存在,请说明理由.参考答案及解析第1题【答案】j【解析】试超解析:--的您樹是-斗「故选D・第2题【答案】试题解析:是釉对称图形丿不是中心对称图形』故此选项错误$ E.泉轴j?惭團形,是中心对称團形,故此选项正确;黒是轴艮Jfe團形』不罡中心对称屈形』故此选项错误§D、不是轴对称图形.是中心对称图形,故此选项错误3故选:B -第3题【答案】A【解析】试题解析;T数据3、4、心1、4.磅唯一的介数4.\^=37把这些数抿从小到対非列切b 3, 3, 3, 4, 4,最中间壬个数的平均数是:(343) -2 =3;则这组数据的中位数罡北故选A・第4题【答案】解不等式①得:工A 工 解不竽式②得:x<a, 由大于向右画n 小于向左画,有等号画实点,无等号画空心,fx45>0: ••-不等式 <..,的解集在数轴上表示为:一c故选C.第5题【答案】【解析】试题解析:."5 二Ov.i '37 Al ②【解析】试题解析:如图所示,连接BS比,■/AB®直径;,\ZECA=90°,只T厶尸刘…也昭炉-30° =60 ,是切线.-\ZECL=ZA=3O fr , Z0CD=90o, /.ZD=ZCBA- ZBCD=CO e—30" =30° , 丁期謁・\OC=1?;XD=2, ,_.CD= 73 ;娅D・第6题【答案】A【解析】第7题【答案】【解析】试题解折:因为阴圈象与杆由的交点在话由的正半轴可知,丽加Ah二①正确』•诩数的对称轴为卢-:二-S二赵暫二②正範La抛物线与肩由有两个交点…廿」4盘X八二③正甌当口吋,7>0, /.a+b+c>0,丁对称轴为尸|-自- (_3) |=3)|1- (-3) |=4, .'.R<nj其中正确信息的有①©③⑤』故选C.第8题【答案】E I 【解析】试题解析;根据题意画主视團如下:故选氏【解析】第9题【答案】V >>i试题解析:'—X万程两边同乘咲和得兀-丹盂-*解存/ X- —VI2—旳Y™ 1JJ丁关于孟的分式方程---- =无解,■二尸感wi=O】辭•得心或J■謁工故选C.第10题【答案】j【解析】试题解析:设将全班同学分成灯小组,根拐題養得山“二⑵解得所吹全班同学共有:Hx+l^llX5tl^A, 56=7X3,则将全班同学分成丁个力罰,能使毎组人對[相同.故选D・第11题【答案】1.4157XW1&【解析】试题解析:141. 57^=141 5700 0000=1.4157X101",嗨案为;1.4157X1O10・第12题【答案】【解析】试题解析;由髄竜得,於0且“洋0,汨坪0,”得心0且详比x=t-b剜“ 4且血.故答案为;&0且季2 ■第13题【答案】AB7CD (答案不唯一)【解析】试题解析:癒加条件揺 g使四边形ABCD为矩形;理由如下,■-'AB//CD, AD//EG二四边形ABS是平行四边形”又丁曲初,二四边形磁斶拒恥故答秦为:AE//CD (答秦不唯一)・第14题【答案】1或2【解析】试题解析:丁从长应分别切(册正整数)、仁①8的四条线段中任选三条作边,能构成三角形的概率为丄* 4二只有虬匕日能组成三角形』丁长为孟的^段在凹条软段中最晅,.540,丁工为正整数」•「二1或茶故答秦为:1或2..第15题【答案】忑兀【解析】试题解析「•同锥的$由裁面是等廉直角三角形,圆锥的底面半径为1,圆锥的轴截面是等腰直角三角形I二圆锥的母戮长対迈」二圆锥的侧面积5二应匸近兀,故答案为:爲兀.第16题【答案】(i/s I -^3* 十【解析】WW析;延论咬o讦H,连结0G如塾丁点C为等边三角形倔三条高的交点,二EH丄皿X平分厶叽CBHSK K^A OCH申』设CH=t, _/ZCOU=3O a、-\OH=V J CH=73t;二c (命t, O ,EcC^I t, t》代入产晅得巧t•皆JJ ?解得t=_l《舍去〉,EnX.\QH=7i)CH=1, .'.BH=CH+EC=T/3十L」.\B(柘』Ji 十1〉・故答秦为(Ji , Ji斗1〉*第17题【答案】【解析】试题解析;设涨价吠,棍据題意得;涨价时,%00=<30-20+z) (1000-lWx)」整理得;宀4』解得:沪2,心-2 (不合题意舍去),故售价为3玩,降价时』弼00=(30-20-" <100CH-100^)整理得:宀4』解得:n=-2, E (不合题青舍去〉,故售价为38元,综上所述:售价邙玩或厢元时,这星期利润为岡00元・故答秦为:32或歸.第18题【答案】45【解析】试题解析:如團,宙翻折的性馬得,Z1=Z2, Zl=ZC=90* ,助割九T矩形ABCT的边AD/ZBCj .\Z1=Z3, /.Z2=Z3> .'.BF^DF,丁扼=8,二AFW-DF』ED4在EtAABF中」ABi+AEs=BFt, .\4s+ (8-DF) &=DF知解得DT=5, .\cosZAI)E=——=-*第19题【答案】(2017, 1)【加试题解析;硼点第耳换动到的点为为点(血自赠).观察,岌现规律:山(0;0) , ?! (1, 1), F;(2, 0) , Pn (3,-1),加(4, 0) , P E ⑸1> ,二<4n^ 0) j Pg〈4叶「1) 5Pir.-z (4计2,0)、(4n+3j - 1).Z2O17^X5OUb AP第加17次运动到点(2017, 1> .故答秦为;(2017, 1).第20题【答案】【斛斤】魄肃辔蟲麓囁稱醫磐则把原式曲亍化亀再根据罰展*的算术平方根求出啲11,把5+@ +2)(2-坤)_a-3^1-a灯_二门2十京_ 1试題解析:厲式二匸2-a口- 2駡一亦灯-2光-町{宀)ci + 3/ |a+l|是4的算术平方根;I a+11 =2 f解得创=-3,二二-3时,原式结果无意义…I当圧1时,原式二占斗第21题【答案】⑴右,4,下,g(2)见解析;(3)点C在血鹤过程中所经过的蹌径长1二& -【解析】试題分析:⑴直接刹托平穆的,性质得出平穆规律艮卩可;(2) 刑用能转的性庾得出对应点位羞进而得岀答素;(3) 利用弧长公式进而求出答案.试題解析:<1> AB先向右平移4个单位』再向下平移酉个单位話ED重合j 故答案为:右,£ 口Si<2)如囲所示:P (2, 1),画岀ADKF;<3)点人在旋轻过程中所经过的翳径长1=J5^ .第22题【答案】<1)抛物线解析式为y=-x52旳(2)顶点D的坐标为(1, 4);(3〉DP的长为1•或5.【解析】试题分析;(1〉利用待定系数法即可求得解析式j(2)把抛物线解析式化成顶点式,即可得出顶点坐标;綽蔚fP需髀番Sp薜角形的面积关系得出PF求出直线BC的解析式'得出F的坐标'再分两卜]_》4匚=0解析:(1)将A ( - 1, 0),B (3,0〉代入尸- x2+bx+c^§ :) 丿[-9+3m解得:b=2, 口,.•.拋物线解析式为尸-2也十冇(2) •.•y=-x a+2x+3=- (x-1) % •••顶点D的坐标为(L, 4);<3)设BC与抛物线的对称轴交于点F,如图所示:则点F的横坐标为1,Vy=-x Z+2x+3;— 1 3当沪0B寸,y=3「・0C=3八••△P0C的面积二一X3X1=-,| 2 2— 1 3[△PCB的面积=APCF的面积十△PBF的面积二一PF (14-2) =3X — ,解得;PQ3〉2 2、,、Z7 = 3 ,设直线BC的解析式为y=kx+a,则二?」°,解得:a=3^ k=-l^ 直线BC的解析式为y=-x+3,3 上+ d = 0第23题【答案】⑴见解杭【解析】<2)根据勾股定理,可得答秦.试題解析:⑴ 由平移的性质得:AE“DF, AE=DF…■四边形鈕切是平彳亍四边形.丁四边形AECD是距形…l£B=ZDCE书0°…〔AE=5ND』二匹边形AEFD是菱形(2)连结IE、PE,如图所示;在直角AAB沖「BP^BE+EP=U5=9^由勾股定理得到*山=3師;在直角△DCE中,CE=BC- BE=5-4=1^由勾股定理得至i|:闻二屎.第24题【答案】(1) n=19%? n=10%, 144°5(2)见解析;<3)耳中认为数学课“总是”开展烫式训练的学生有480人,(4)与2014年相比,2015年该校幵展变式训练的情况有很大的提高.【解析】牖咖號窮碗豔鸚觀跚鞋翳话議麋攏乘以"有时”和“常常”所占的百分比即可得出2015年"有时”和"常常"的人数,从<3)用该檄015年的总人数乘以“总是”所占的百分比即可得出答案,(4)与2014年相比,2015年该校幵展变式训练的情况有很大的携高.试题解析^(1)调查的总人数是:—=200 (人〉,40%38贝怙二——X 100%=19% ; n=100% - 31% - 40% - 19%=10%;200“总杲”对应扇形统计图的圆心角的度数为;360XO=h4c;故答案为:>=19%, n=10«, 144° ;<2)“有时”的人数是;200X10扫20人,“常常”的人数是;200X31X2人.补图如下:2014年.201、年开展娈式训练情况的杀形统计囹(3)根揺题竜得;1200X40^=480,答:其中认为数学课“总是”幵展变式的学生有480人;/ ・7 ―亠八・—丄Fill. 14-JA-TT Q ±JU ia=sr^-4—/»FR I 丄曰一i—第25 题【答案】(1) 5; 1.⑵纟务段皿表示的尸与x 的函数解析式为(50WxW60)・(3〉点P 的意义为:当沪晋 分钟时,甲乙距哋都为秸千米.【解析】试郦浙i 位〉話裂肛基y 朋附苕B 两地i 皱理富,^!蛭队伍乙的运动图象可知线段职段为队伍 次哋到C 地段極遐筑由社匕可得出X era®向的距動<2)根据鱼伍乙懂初为匀禮运助可很摒蹬戟借砂间比来桩脚鱼坐标,设直线顺的解析式为 y=Tb (呼0儿 MM. N 扁独徐律注萦数法求出参取馭的解折式, <3)设队伍甲从型倒B 地运动过程中离B 地距禽y 与运动时间x 之间的函数解析式为戸w+n (详0),由 点0 5)、(60, 0}利用待定系数法即可求出叭n 的值,再令存一5" * 叫 求出交点P 的坐 标,结合坐标系中点的坐标倉义即可解决问题.试题解析:(1〉当x=O 时,y=5? ・•)、晒地之间的距离九5千米, 观察队伍乙的运动團象可知,B 、C 两地之间的距离为L 千米.故答乗为;5j 1.(2)乙队伍60分钟走6千米,走5千米用时60-=-6X5二50分神,/.M <50, 0) , N (60, 1),.・.线段MN 表示的y 占x 的函数解析式为沪丄x - 5 (50WxW60) • 10(3)设队伍甲从邂到哋运动过程中离哋距离y 与运动时间x 之间的函数解析式为艸畑(#0),则点、(0, 5)、(60, 0)在该函数园象上,•••当02W60时,队伍甲的运动函数解析式为尸-右J” = 5 〔60加 + ” =0 1 =-— 12 .77 = 5 —x+5,解得: 600设直线MN 的解析式1=60 屮 >解得: 羊%.[b = _5第26 题【答案】⑴B点的坐标为|•2 2⑵直线AB的解析式为尸逼X-曲3 3E宀畔,厂心‘呼洛普).【解析】试题分析:(1)苜先求出AD、AB,根据“nZOAD二芈推出ZDAOkO°,作BE丄诽由于点E,在RT A ABE^,即可解决问题. 亠(2)利用待定系数法设直线屈为产也处,把A、B坐标代入即可解决问题.(3)分四种情形,利用相似三角形的•性质求岀皿的长,即可求出点川坐标.试题解析:⑴作班丄蚌由于点E,解方程/一11灶24=0得灯二3, X2=8.VAOABAAD^, AB=3,/.ZOAD=eO° , •・.ZBAE二30°、 0A=ADXcos60°二4,.\AE=ABXcos30^ =3X •IB点的坐标为(4+琴,|).<2)设直线AB的解析式为戶x+b (k^O).k =解得、b 二⑴存在,如團,①当△唤sg时,尊二警,\-sinZ0AD=/的解析式为冲。

黑龙江省齐齐哈尔市2019年中考数学试卷(解析版)

黑龙江省齐齐哈尔市2019年中考数学试卷(解析版)

黑龙江省齐齐哈尔市2019年中考数学试卷(解析版)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:3的相反数是﹣3,故选:A.2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.【分析】直接利用同底数幂的乘除运算法则以及完全平方公式、合并同类项法则分别化简得出答案.【解答】解:A、±=±3,正确,故此选项错误;B、2ab+3ba=5ab,正确,故此选项错误;C、(﹣1)0=1,正确,故此选项错误;D、(3ab2)2=9a2b4,错误,故此选项正确;故选:D.4.【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:能用来比较两人成绩稳定程度的是方差,故选:C.5.【分析】直接利用平行线的性质结合三角形内角和定理得出答案.【解答】解:∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.6.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选:B.7.【分析】根据题意,可以写出各段过程中,S与t的关系,从而可以解答本题.【解答】解:由题意可得,战士们从营地出发到文具店这段过程中,S随t的增加而增大,故选项A错误,战士们在文具店选购文具的过程中,S随着t的增加不变,战士们从文具店去福利院的过程中,S随着t的增加而增大,故选项C错误,战士们从福利院跑回营地的过程中,S随着t的增大而减小,且在单位时间内距离的变化比战士们从营地出发到文具店这段过程中快,故选项B正确,选项D错误,故选:B.8.【分析】设购买A品牌足球x个,购买B品牌足球y个,根据总价=单价×数量,即可得出关于x,y 的二元一次方程,结合x,y均为正整数即可求出结论.【解答】解:设购买A品牌足球x个,购买B品牌足球y个,依题意,得:60x+75y=1500,∴y=20﹣x.∵x,y均为正整数,∴,,,,∴该学校共有4种购买方案.故选:B.9.【分析】袋中黑球的个数为x,利用概率公式得到=,然后利用比例性质求出x即可.【解答】解:设袋中黑球的个数为x,根据题意得=,解得x=22,即袋中黑球的个数为22个.故选:C.10.【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b由图象知:a<0,c>0,b<0∴abc>0故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)∴9a﹣3b+c=0∵a=b∴c=﹣6a∴3a+c=﹣3a>0故结论②正确;∵当x<﹣时,y随x的增大而增大;当﹣<x<0时,y随x的增大而减小∴结论③错误;∵cx2+bx+a=0,c>0∴x2+x+1=0∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0)∴ax2+bx+c=0的两根是﹣3和2∴=1,=﹣6∴x2+x+1=0即为:﹣6x2+x+1=0,解得x1=﹣,x2=;故结论④正确;∵当x=﹣时,y=>0∴<0故结论⑤正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),∴y=ax2+bx+c=a(x+3)(x﹣2)∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标结合图象得:m<﹣3且n>2故结论⑥成立;故选:C.二、填空题(共7小题,每小题3分,满分21分)11.【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:38000用科学记数法表示应为3.8×104,故答案为:3.8×104.12.【分析】添加AB=DE,由BF=CE推出BC=EF,由SAS可证△ABC≌△DEF.【解答】解:添加AB=DE;∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故答案为:AB=DE.13.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=3,然后根据勾股定理计算出圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.14.【分析】根据解分式方程的方法和方程﹣=3的解为非负数,可以求得a的取值范围.【解答】解:﹣=3,方程两边同乘以x﹣1,得2x﹣a+1=3(x﹣1),去括号,得2x﹣a+1=3x﹣3,移项及合并同类项,得x=4﹣a,∵关于x的分式方程﹣=3的解为非负数,x﹣1≠0,∴,解得,a≤4且a≠3,故答案为:a≤4且a≠3.15.【分析】过点D作DE⊥x轴于点E,由点B的坐标为(﹣2,0)知OC=AB=﹣,由旋转性质知OD=OC=﹣、∠DOC=60°,据此求得OE=OD cos30°=﹣k,DE=OD sin30°=﹣k,即D(﹣k,﹣k),代入解析式解之可得.【解答】解:过点D作DE⊥x轴于点E,∵点B的坐标为(﹣2,0),∴AB=﹣,∴OC=﹣,由旋转性质知OD=OC=﹣、∠COD=60°,∴∠DOE=30°,∴DE=OD=﹣k,OE=OD cos30°=×(﹣)=﹣k,即D(﹣k,﹣k),∵反比例函数y=(k≠0)的图象经过D点,∴k=(﹣k)(﹣k)=k2,解得:k=0(舍)或k=﹣,故答案为:﹣.16.【分析】分点A是顶点、点A是底角顶点、AD在△ABC外部和AD在△ABC内部三种情况,根据等腰三角形的性质、直角三角形的性质计算.【解答】解:①如图1,点A是顶点时,∵AB=AC,AD⊥BC,∴BD=CD,∵AD=BC,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=×(180°﹣90°)=45°;②如图2,点A是底角顶点,且AD在△ABC外部时,∵AD=BC,AC=BC,∴AD=AC,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如图3,点A是底角顶点,且AD在△ABC内部时,∵AD=BC,AC=BC,∴AD=AC,∴∠C=30°,∴∠BAC=∠ABC=(180°﹣30°)=75°;故答案为:15°或45°或75°.17.【分析】由直线l:y=x+1可求出与x轴交点A的坐标,与y轴交点A1的坐标,进而得到OA,OA1的长,也可求出Rt△OAA1的各个内角的度数,是一个特殊的直角三角形,以下所作的三角形都是含有30°角的直角三角形,然后这个求出S1、S2、S3、S4、……根据规律得出Sn.【解答】解:直线l:y=x+1,当x=0时,y=1;当y=0时,x=﹣∴A(﹣,0)A1(0,1)∴∠OAA1=30°又∵A1B1⊥l,∴∠OA1B1=30°,在Rt△OA1B1中,OB1=•OA1=,∴S1=;同理可求出:A2B1=,B1B2=,∴S2===;依次可求出:S3=;S4=;S5=……因此:S n=故答案为:.三、解答题(共7小题,满分69分)18.【分析】(1)根据实数运算的法则计算即可;(2)根据因式分解﹣分组分解法分解因式即可.【解答】解:(1)()﹣1+﹣6tan60°+|2﹣4|=3+2﹣6×+4﹣2=1;(2)a2+1﹣2a+4(a﹣1)=(a﹣1)2+4(a﹣1)=(a﹣1)(a﹣1+4)=(a﹣1)(a+3).19.【分析】方程两边都加上9,配成完全平方式,再两边开方即可得.【解答】解:∵x2+6x=﹣7,∴x2+6x+9=﹣7+9,即(x+3)2=2,则x+3=±,∴x=﹣3±,即x1=﹣3+,x2=﹣3﹣.20.【分析】(1)连接OA,则得出∠COA=2∠B=2∠D=60°,可求得∠OAD=90°,可得出结论;(2)可利用△OAD的面积﹣扇形AOC的面积求得阴影部分的面积.【解答】(1)证明:连接OA,则∠COA=2∠B,∵AD=AB,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2,所以S△OAD=OA•AD=×2×2=2,因为∠COA=60°,所以S扇形COA==π,所以S阴影=S△OAD﹣S扇形COA=2﹣.21.【分析】(1)本次被抽取的学生共30÷30%=100(名);(2)100﹣20﹣30﹣10=40(名),据此补全;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名).【解答】解:(1)本次被抽取的学生共30÷30%=100(名),故答案为100;(2)100﹣20﹣30﹣10=40(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角360°×30%=108°,故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2000×=1200(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.22.【分析】(1)观察图象即可解决问题;(2)分别求出得A、B、C的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【解答】解:(1)车的速度是50千米/小时;轿车的速度是:400÷(7﹣2)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.23.【分析】(1)由折叠的性质得,四边形CDEF是矩形,得出EF=CD,∠DEF=90°,DE=AE=AD,由折叠的性质得出DN=CD=2DE,MN=CM,得出∠EDN=60°,得出∠CDM=∠NDM=15°,EN=DN=2,因此∠CMD=75°,NF=EF﹣EN=4﹣2;(2)证明△AEN≌△DEN得出AN=DN,即可得出△AND是等边三角形;(3)由折叠的性质得出A′G=AG,A′H=AH,得出图③中阴影部分的周长=△ADN的周长=12;(4)由折叠的性质得出∠AGH=∠A′GH,∠AHG=∠A′HG,求出∠AGH=50°,得出∠AHG=∠A′HG =70°,即可得出结果;(5)证明△NGM∽△A′NM∽△DNH,即可得出结论;(6)设==a,则A'N=am,A'D=an,证明△A′GH∽△HA′D,得出==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,得出==,解得:x=y,得出===.【解答】解:(1)由折叠的性质得,四边形CDEF是矩形,∴EF=CD,∠DEF=90°,DE=AE=AD,∵将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,∴DN=CD=2DE,MN=CM,∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=DN=2,∴∠CMD=75°,NF=EF﹣EN=4﹣2;故答案为:75°,4﹣2;(2)△AND是等边三角形,理由如下:在△AEN与△DEN中,,∴△AEN≌△DEN(SAS),∴AN=DN,∵∠EDN=60°,∴△AND是等边三角形;(3)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴A′G=AG,A′H=AH,∴图③中阴影部分的周长=△ADN的周长=3×4=12;故答案为:12;(4)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,∴∠AGH=∠A′GH,∠AHG=∠A′HG,∵∠A′GN=80°,∴∠AGH=50°,∴∠AHG=∠A′HG=70°,∴∠A′HD=180°﹣70°﹣70°=40°;故答案为:40;(5)如图③,∵∠A=∠N=∠D=∠A′=60°,∠NMG=∠A′MN,∠A′NM=∠DNH,∴△NGM∽△A′NM∽△DNH,∵△AGH≌△A′GH∴图③中的相似三角形(包括全等三角形)共有4对,故答案为:4;(6)设==a,则A'N=am,A'D=an,∵∠N=∠D=∠A=∠A′=60°,∴∠NA′G+∠A′GN=∠NA′G+∠DA′H=120°,∴∠A′GN=∠DA′H,∴△A′GH∽△HA′D,∴==,设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,∴==,解得:x=y,∴===;故答案为:.24.【分析】(1)由OA=2,OC=6得到A(﹣2,0),C(0,﹣6),用待定系数法即求得抛物线解析式.(2)由点D在抛物线对称轴上运动且A、B关于对称轴对称可得,AD=BD,所以当点C、D、B在同一直线上时,△ACD周长最小.求直线BC解析式,把对称轴的横坐标代入即求得点D纵坐标.(3)过点E作EG⊥x轴于点G,交直线BC与点F,设点E横坐标为t,则能用t表示EF的长.△BCE 面积拆分为△BEF与△CEF的和,以EF为公共底计算可得S△BCE=EF•OB,把含t的式子代入计算即得到S△BCE关于t的二次函数,配方即求得最大值和t的值,进而求得点E坐标.(4)以AC为菱形的边和菱形的对角线进行分类画图,根据菱形邻边相等、对边平行的性质确定点N 在坐标.【解答】解:(1)∵OA=2,OC=6∴A(﹣2,0),C(0,﹣6)∵抛物线y=x2+bx+c过点A、C∴解得:∴抛物线解析式为y=x2﹣x﹣6(2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3∴B(3,0),抛物线对称轴为直线x=∵点D在直线x=上,点A、B关于直线x=对称∴x D=,AD=BD∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小设直线BC解析式为y=kx﹣6∴3k﹣6=0,解得:k=2∴直线BC:y=2x﹣6∴y D=2×﹣6=﹣5∴D(,﹣5)故答案为:(,﹣5)(3)过点E作EG⊥x轴于点G,交直线BC与点F设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6)∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t∴S△BCE=S△BEF+S△CEF=EF•BG+EF•OG=EF(BG+OG)=EF•OB=×3(﹣t2+3t)=﹣(t﹣)2+∴当t=时,△BCE面积最大∴y E=()2﹣﹣6=﹣∴点E坐标为(,﹣)时,△BCE面积最大,最大值为.(4)存在点N,使以点A、C、M、N为顶点的四边形是菱形.∵A(﹣2,0),C(0,﹣6)∴AC=①若AC为菱形的边长,如图3,则MN∥AC且,MN=AC=2∴N1(﹣2,2),N2(﹣2,﹣2),N3(2,0)②若AC为菱形的对角线,如图4,则AN4∥CM4,AN4=CN4设N4(﹣2,n)∴﹣n=解得:n=﹣∴N4(﹣2,﹣)综上所述,点N坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).。

2019年黑龙江省齐齐哈尔市中考数学一模试卷(解析版)

2019年黑龙江省齐齐哈尔市中考数学一模试卷(解析版)

2019年黑龙江省齐齐哈尔市中考数学一模试卷一、选择题(每小题3分,满分30分)1.9的平方根是()A.3B.±3C.D.812.下面四个图案中,是中心对称图形的是()A.B.C.D.3.下列计算正确的是()A.a4•a2=a8B.a4+a2=a8C.(a2)4=a8D.a4÷a2=2a4.代数式3x2﹣4x﹣5的值为7,则x2﹣x﹣5的值为()A.4B.﹣1C.﹣5D.75.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是()A.B.C.D.6.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x,4,9.已知这组数据的平均数是4,则这组数据的中位数和众数分别是()A.2和2B.4和2C.2和3D.3和27.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随时间的变化而变化.设时针与分针的夹角为y(度),运行时间为t(分),当时间从12:00开始到12:30止,y与t之间的函数图象是()A.B.C.D.8.某校九年级(1)班为了筹备演讲比赛,准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔15元/支,在钱全部用完的条件下,购买的方案共有()A.4种B.5种C.6种D.7种9.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=﹣和y=的图象交于A 点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.610.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(3,0),其部分图象如图所示,现有下列结论:①abc>0:②b2﹣4ac<0;③a+b>0;④当x>0时,y 随x的增大而减小;⑤3a+c=0;⑥c<4b.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,满分21分)11.近年来日本发生的一次地震及海啸给日本带来16万亿日元到25万亿日元的经济损失,25万亿日元用科学记数法表示为日元.12.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为个.13.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD沿BD折叠,使点C落在边AB上的点C′处,则折痕BD的长为.14.若一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,则圆锥的母线长是cm.15.关于x的分式方程的解是正数,则a的取值范围是.16.矩形ABCD的边AB=6,BC=12,点P为矩形ABCD边上一点,连接AP,若线段AP、BD交点为点H,△PAB为等腰三角形,则AH的长为.17.在平面直角坐标系中,点A在x轴正半轴上,点B在y轴正半轴上,O为坐标原点,OA=OB =1,过点O作OM1⊥AB于点M1:过点M1作M1A1⊥OA于点A1:过点A作M1A2⊥AB于点M2;过点M2作M2A2⊥OA于点A2…以类推,点M2019的坐标为.三、解答题(本题共8道大题,共69分)18.(6分)计算:19.(4分)因式分解:a2﹣4﹣3(a+2)20.(5分)解方程:x2﹣4x﹣9=021.(8分)Rt△ABC中,∠C=90°,点E在AB上,BE=AE=2,以AE为直径作⊙O交AC 于点F,交BC于点D,且点D为切点,连接AD、EF.(1)求证:AD平分∠BAC;(2)求阴影部分面积.(结果保留π)22.(10分)某中学为了解学生业余时间的活动情况,从看电视、看书、上网、运动四个方面进行了统计调查,随机调查了某班所有同学(每名同学必选且只能选一项最喜欢的活动),并将调查结果绘成了如下两个不完整的统计图,请根据图中信息回答下列问题:(1)被调查的班级学生共有名(2)补全条形统计图;(3)扇形统计图中“上网”的学生所对应的圆心角是度;(4)该校一共有1200名学生,根据抽样调查结果,请你计算出该校大约有多少名学生喜欢“运动”?23.(10分)周末,小明从家步行去书店看书,出发小时后距家1.8千米时,爸爸驾车从家沿相同路线追赶小明,在A地追上小明后,二人驾车继续前行到达书店,小明在书店B看书,爸爸去单位C地办事.如图是小明与爸爸两人之间距离S(千米)与小明出发的时t(小时)之间的函数图象,(小明步行速度与爸爸驾车速度始终保持不变,彼此交流时间忽略不计),请根据图象回答下列问题(1)小明步行速度是千米/小时,爸爸驾车速度是千米/小时;(2)图中点A的坐标是;(3)求书店与家的路程;(4)求爸爸出发多长时间,两人相距3千米.24.(12分)旋转是图形变化的方法之一,借助旋转知识可以解决线段长、角的大小、取值范围、判断三角形形状等问题,在实际生活中也有十分重要的地位和作用.问题背景:一块等边三角形建筑材料内一点到三角形三个顶点的距离满足一定条件时,我们可以用所学的知识帮助工人师傅在没有刻度尺的情况下求出等边三角形的边长.数学建模如图1,等边三角形ABC内有一点P,已知PA=2,PB=4,PC=2.问题解决(1)如图2,将△ABP绕点B顺时针旋转60°得到△CBP',连接PP',易证∠BP'P=°,△为等边三角形,∠=90°,∠BPA=°:(2)点H为直线BP'上的一个动点,则CH的最小值为;(3)求AB长;拓展延伸已知:点P在正方形ABCD内,点Q在平面,BP=BQ=1,BP⊥BQ.(4)在图3中,连接PA、PC、PQ、QC,AP=,若点A、P、Q在一条直线上,则cos∠PCQ =;(5)若AB=2,连接DP,则≤DP<;连接PQ,当D、P、Q三点同一条直线上时,△BDQ的面积为.25.(14分)综合与探究:如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣3,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线解析式;(2)抛物线对称轴上存在一点H,连接AH、CH,当|AH﹣CH|值最大时,求点H坐标;(3)若抛物线上存在一点P(m,n),mn>0,当S△ABC =S△ABp时,求点P坐标;(4)若点M是∠BAC平分线上的一点,点N是平面内一点,若以A、B、M、N为顶点的四边形是矩形,请直接写出点N坐标.2019年黑龙江省齐齐哈尔市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,满分30分)1.【分析】根据平方与开平方互为逆运算,可得一个正数的平方根.【解答】解:±=±3,故选:B.【点评】本题考查了平方根,根据平方求出平方根,注意一个正数的平方跟有两个.2.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A.此图案是轴对称图形,不是中心对称图形,不合题意;B.此图案是中心对称图形,符合题意;C.此图案是轴对称图形,不是中心对称图形,不合题意;D.此图案是轴对称图形,不是中心对称图形,不合题意;故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a4•a2=a6,故此选项错误;B、a4+a2,无法计算,故此选项错误;C、(a2)4=a8,正确;D、a4÷a2=a2,故此选项错误;故选:C.【点评】此题主要考查了直接利用同底数幂的乘除运算以及幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.4.【分析】根据题意列出等式,变形后求出x2﹣x的值,代入原式计算即可得到结果.【解答】解:∵3x2﹣4x﹣5的值为7,3x2﹣4x=12,代入x2﹣x﹣5,得(3x2﹣4x)﹣5=4﹣5=﹣1.故选:B.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.5.【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可.【解答】解:∴一共有12种情况,有2种情况两次都摸到红球,∴两次都摸到红球的概率是=.故选:C.【点评】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.【分析】根据平均数的定义得到关于x的方程,求x,再根据中位数和众数的定义求解.【解答】解:根据平均数的含义得:=4,所以x=3;将这组数据从小到大的顺序排列(2,2,3,4,9),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选:D.【点评】本题为统计题,考查平均数、众数与中位数的意义,解题要细心.7.【分析】由于从12:00开始时针与分针的夹角为0°,而分针每分钟转动6°,时针每分钟转动0.5°,由此得到时针与分针的夹角越来越大,可以根据已知条件计算夹角的大小.【解答】解:∵从12:00开始时针与分针的夹角为0°,而分针每分钟转动6°,时针每分钟转动0.5°,∴y越来越大,而分针每分钟转动6°,时针每分钟转动0.5°,∴从12:00开始到12:30止,y=(6﹣0.5)×30=165.故选:A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.8.【分析】设购买了日记本x 本,钢笔y 支,根据准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔15元/支,钱全部用完可列出方程,再根据x ,y 为正整数可求出解.【解答】解:设购买了日记本x 本,钢笔y 支,根据题意得:10x +15y =200,化简整理得:2x +3y =40,得x =20﹣y ,∵x ,y 为正整数,∴,,,,,,∴有6种购买方案:方案1:购买了日记本17本,钢笔2支;方案2:购买了日记本14本,钢笔4支;方案3:购买了日记本11本,钢笔6支;方案4:购买了日记本8本,钢笔8支;方案5:购买了日记本5本,钢笔10支;方案6:购买了日记本2本,钢笔12支.故选:C .【点评】本题考查了二元一次方程的应用,关键是读懂题意,根据题意列出二元一次方程,然后根据解为正整数确定出x ,y 的值.9.【分析】连接OA 、OB ,如图,由于AB ∥x 轴,根据反比例函数k 的几何意义得到S △OAP =2,S △OBP =1,则S △OAB =3,然后利用AB ∥OC ,根据三角形面积公式即可得到S △CAB =S △OAB =3.【解答】解:连接OA 、OB ,如图,∵AB ∥x 轴,∴S △OAP =×|﹣4|=2,S △OBP =×|2|=1,∴S △OAB =3,∵AB ∥OC ,∴S △CAB =S △OAB =3.故选:A .【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由抛物线开口方向向下知,a<0.由抛物线对称轴位于y轴右侧知,a、b异号,即ab<0,抛物线与y轴交于正半轴,则c>0.则abc<0.故错误;②由抛物线与x轴有两个不同的交点知,b2﹣4ac>0.故错误;③由对称轴x=﹣=1知b=﹣2a,则a+b=a﹣2a=﹣a>0,即a+b>0.故正确;④如图所示,当x>1时,y随x的增大而减小,故错误;⑤如图所示,根据抛物线的对称性知,抛物线与x轴的另一交点坐标是(﹣1,0).所以当x=﹣1时,y=a﹣b+c=a+2a+c=3a+c=0,即3a+c=0,故正确;⑥如图所示,当x=2时,y=4a+2b+c=2×(﹣3b)+2b+c=c﹣4b>0,而点(2,c﹣4b)在第一象限,∴c﹣4b>0,∴c>4b.故错误.综上所述,其中正确的结论有2个.故选:B.【点评】本题考查了二次函数的图象与系数的关系,还考查了同学们从函数图象中获取信息的能力,以及考查二次函数的图象和性质.二、填空题(每小题3分,满分21分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:25万亿=2.5×1013.故答案为:2.5×1013.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.12.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:综合主视图和俯视图,底层最少有5个小立方体,第二层最少有2个小立方体,第三层至少有1个,因此搭成这个几何体的小正方体的个数最少是8个.故答案为:8.【点评】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.13.【分析】根据勾股定理易求AB=10.根据折叠的性质有BC=BC′,CD=DC′,∠C=∠AC′D=90°.在△AC′D中,设DC′=x,则AD=8﹣x,AC′=10﹣6=4.根据勾股定理可求x.在△BCD中,运用勾股定理求BD.【解答】解:∵∠C=90°,AC=8,BC=6,∴AB=10.根据折叠的性质,BC=BC′,CD=DC′,∠C=∠AC′D=90°.∴AC′=10﹣6=4.在△AC′D中,设DC′=x,则AD=8﹣x,根据勾股定理得(8﹣x)2=x2+42.解得x=3.∴CD=3.∴BD===3.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应边、角相等.14.【分析】利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解.【解答】解:设母线长为l,则=2π×3解得:l=9.故答案为:9.【点评】考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.【分析】关于x的分式方程的解是正数,首先表明分式方程有解,不能让分母等于0,所以x≠2;再考虑解是正数,才能求出正确结果.【解答】解:去分母得:2﹣2a=ax﹣2a得ax=2即:x=∵关于x的分式方程的解是正数∴>0 即a>0又∵原分式方程有解,∴x≠2∴≠2 即a≠1故答案为a>0且a≠1.【点评】本题考查的是解分式方程,并把握分式方程有解的条件,本题中往往容易遗漏对方程有解的检验,导致范围不正确.16.【分析】根据题意画出图形,分两种情况:①当P在BC上时;②当P在CD上时,P为CD 的中点;由矩形的性质和勾股定理以及相似三角形的性质即可得出结果.【解答】解:分两种情况:①当P在BC上时,如图1所示∵四边形ABCD是矩形,∴∠ABP=90°,AD=BC=4,AD∥BC,CD=AB=2,∴△ADE∽△PBE,∴=,∵△ABP是等腰三角形,∴PB=AB=6,∴=2,∴=,由勾股定理得:AP==6,∴AE=4;②当P在CD上时,P为CD的中点,如图2所示:则PD=CD=3,∴AP==3,∵AB∥CD,∴△ABE∽△DPE,∴=2,∴AE=2PE,∴AE=AP=2;综上所述,AE的长为4或2;故答案为:4或2.【点评】本题考查了矩形的性质、等腰三角形的性质、相似三角形的判定与性质、比例的性质;熟练掌握矩形的性质,证明三角形相似得出比例式是解决问题的关键.17.【分析】根据等腰三角形的性质得到点M1是AB的中点,根据三角形中位线定理求出点M1的坐标,总结规律,根据规律解答即可.【解答】解:∵OA=OB,OM1⊥AB,∴点M1是AB的中点,∵M1A1⊥OA,∴A1是OA的中点,∴点M1的坐标为(,),同理,点M2的坐标为(1﹣,),点M3的坐标为(1﹣,),……点M2019的坐标为(1﹣,),故答案为:(1﹣,).【点评】本题考查的是点的坐标规律,掌握等腰直角三角形的性质、点的坐标性质是解题的关键.三、解答题(本题共8道大题,共69分)18.【分析】先分别计算二次根式、绝对值、三角函数值、负整数指数幂,然后算加减法.【解答】解:原式===2.【点评】本题考查了实数的运算,熟练掌握二次根式、绝对值、三角函数值、负整数指数幂的运算是解题的关键.19.【分析】利用平方差公式和提取公因式法进行因式分解.【解答】解:原式=(a+2)(a﹣2)﹣3(a+2)=(a+2)(a﹣5).【点评】考查了公式法和提取公因式法进行因式分解,能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.20.【分析】方程移项配方后,开方即可求出解.【解答】解:配方得:x2﹣4x+4=13,即(x﹣2)2=13,开方得:x﹣2=±,解得:x1=2+,x2=2﹣.【点评】考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.【分析】(1)欲证明AD平分∠BAC,只要证明∠DAO=∠DAC即可.(2)根据S阴=S扇形OEF﹣S△OEF,计算即可.【解答】(1)证明:连接OD交EF于M.∵BC切⊙O于D,∴OD⊥BC,∴∠ODB=90°,∵∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠DAC=∠ODA,∵OD=OA,∴∠OAD=∠ODA,∴∠OAD=∠DAC,∴AD平分∠ABC.(2)连接OF.∵AE是直径,∴∠AFE=90°,∵EF∥BC,∴==,∵∠C=∠AFE=∠ODC=90°,∴四边形DMFC是矩形,∴DM=CF=AF,∵OM=DM=OD=OE,∴∠OEM=30°,∴∠EOF=120°,∵BE=AE=2,∴OE=2,∴OM=1,EM=,EF﹣2,∴S阴=S扇形OEF﹣S△OEF=﹣×2×1=﹣.【点评】本题考查扇形的面积,角平分线的定义,垂径定理,勾股定理,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.【分析】(1)由看电视的人数及其所占百分比可得总人数;(2)总人数乘以看书对应的百分比求得其人数,再根据各情况人数之和等于总人数求得运动的人数,从而补全图形;(3)用360°乘以上网人数所占比例;(4)用总人数乘以样本中运动人数所占比例即可得.【解答】解:(1)被调查的班级学生共有18÷36%=50(人),故答案为:50;(2)看书的人数为50×28%=14(人),运动的人数为50﹣(18+14+10)=8(人),补全图形如下:(3)扇形统计图中“上网”的学生所对应的圆心角是360°×=72°,故答案为:72;(4)该校喜欢“运动”的学生约有1200×=192(人).【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【分析】(1)根据“速度=路程÷时间”即可解答;(2)根据(1)中爸爸驾车速度以及行驶的路程即可求出行驶时间,进而求出点A的坐标;(3)用“爸爸驾车速度×时间”即可求出书店与家的路程;(4)求出直线BC的解析式,再把相应数据代入解析式即可解答.【解答】解:(1)小明步行速度为(千米/小时);爸爸驾车速度为(千米/小时);故答案为:7.2;48;(2)1.8÷48=(小时),(小时),故点A的坐标是(,0),故答案为:(,0);(3)48×(千米);(4),C(,8),故直线BC的解析式为y=48x﹣24,当48x﹣24=3时,x=,(小时).答:爸爸出发小时后,两人相距3千米.【点评】本题主要考查了一次函数图象上的点所表示的意义,结合实际求出问题.24.【分析】(1)根据题目给的填空提示,先证明△BPP'是等边三角形,再用勾股定理逆定理证明∠PP'C=90°,求得∠BP'C即得到∠APB的度数.(2)由点到直线的距离垂线段最短可知,当CH⊥BP'时,CH最小,用特殊三角函数值即求得CH的长.(3)由(2)的结论,可利用CH⊥BP'构造直角三角形,用勾股定理求BC,即求得AB的长.(4)由点A、P、Q在一条直线上,可得关键条件∠APB=135°,易证△CBQ≌△ABP即有∠BQC=∠BPA=135°,进而得到∠PQC=90°,所以cos∠PCQ即为CQ与PC的比.(5)由BP=1可知点P在以B为圆心、BP长为半径且在正方形内的圆周上运动,所以P在AB 上时DP最大,B、P、D在一条直线上时,DP最短,画出具体图形即求出DP的最值;当D、P、Q三点同一条直线上时,△BDQ的面积可用DQ为底来求,故作BE⊥DQ,利用等腰Rt△BPQ 的性质和勾股定理求BE和DQ的长,即求得面积.【解答】解:(1)∵△ABC是等边三角形∴AB=BC,∠ABC=60°∵△ABP绕点B顺时针旋转60°得到△CBP'∴△ABP≌△CBP',∠PBP'=∠ABC=60°,∴BP'=BP,CP'=AP=,∠BP'C=∠BPA∴△BPP'是等边三角形∴∠BP'P=60°,PP'=BP=4∵PC=∴CP'2+PP'2=()2+42=28=PC2∴∠PP'C=90°∴∠BP'C=∠BP'P+∠PP'C=60°+90°=150°∴∠BPA=∠BP'C=150°故答案为:60;BPP';PP'C;150.(2)如图1,当CH⊥BP'时,CH最小∵∠BP'C=150°,CP'=2,∠CHP'=90°∴∠CP'H=180°﹣∠BP'C=30°∴CH=CP'=故答案为:(3)如图1,过点C作CH⊥BP'于点H∵Rt△CP'H中,CH=,CP'=∴P'H=∵BP'=BP=4∴BH=BP'+P'H=7∴Rt△BCH中,BC=∴AB=BC=(4)∵四边形ABCD是正方形∴AB=BC,∠ABC=90°∵BP=BQ=1,BP⊥BQ∴∠PBQ=90°∴∠BPQ=∠BQP=45°,PQ=,∠PBQ=∠ABC ∴∠APB=180°﹣∠BPQ=135°,∠PBQ﹣∠PBC=∠ABC﹣∠PBC即∠CBQ=∠ABP在△CBQ与△ABP中,∴△CBQ≌△ABP(SAS)∴CQ=AP=,∠BQC=∠BPA=135°∴∠PQC=∠BQC﹣∠BQP=90°∴PC=∴cos∠PCQ=故答案为:(5)①∵BP=1,点P在正方形ABCD内∴点P在以B为圆心、BP长为半径且在正方形内的圆周上∴如图2,当B、P、D在一条直线上时,PD最短PD=BD﹣BP=﹣BP=2﹣1如图3,当P很接近AB或BC时,PD取极大值PD=∴2﹣1≤DP<②如图4,过点B作BE⊥PQ于点E∴∠BED=90°∵BP=BQ=1,∠PBQ=90°∴BE=PE=EQ=PQ=∴DE=∴DQ=DE+EQ==DQ•BE=∴S△BDQ故答案为:﹣1;;.【点评】本题考查了旋转的性质,等边三角形的判定和性质,勾股定理和勾股定理逆定理,点到直线距离,全等三角形的判定和性质,正方形的性质,三角函数.解题关键由等边三角形的解题方法转化到正方形的运用.动点题要发挥想象,把极值情况画出再进行思考.25.【分析】(1)把点A 和点B 坐标代入抛物线解析式解出a 和b 即可;(2)由三角形任意两边之差小于第三边,可知抛物线对称轴上存在一点H ,连接AH 、CH ,当|AH﹣CH |值最大时,点H 为AC 直线与对称轴的交点,从而可解;(3)由mn >0,当S △ABC =S △ABp ,可知点P 位于第一象限,且其纵坐标与点C 的纵坐标为相反数,从而可解;(4)画图,利用角平分线的性质定理,用面积法解出点OQ ,从而利用同角的三角函数值相等可解.【解答】解:(1)∵抛物线与y 轴交于点C ,∴点C 坐标为(0,﹣4),把A (﹣3,0)、B (4,0)坐标代入y =ax 2+bx ﹣4得解得∴抛物线解析式为:.(2)抛物线的对称轴为:x=,由三角形任意两边之差小于第三边,可知抛物线对称轴上存在一点H,连接AH、CH,当|AH﹣CH|值最大时,点H为AC直线与对称轴的交点,由A(﹣3,0)、C(0,﹣4)易得直线AC解析式为:,当x=时,y=,故点H的坐标为:(,﹣).(3)∵抛物线上存在一点P(m,n),mn>0,当S△ABC =S△ABp时,∴点P(m,n)只能位于第一象限,C(0,﹣4)∴n=4∴由4=﹣4解得x=或x=(舍)故点P坐标为(,4).(4)若以A、B、M、N为顶点的四边形是矩形,则点M和点N的位置有两种如图所示点M和点M’点N和点N’易得OA=3,OC=4,AC=5,点M是∠BAC平分线上的一点,作QF⊥AC,则OQ=QF,∴OQ=QF=1.5,∴在直角三角形AOQ和直角三角形ABM中,,∴,∴BM=3.5,∴点N(﹣3,﹣3.5)同理在直角三角形AEN’和直角三角形ABN’中,可解得点N’(﹣,).故点N的坐标为(﹣3,﹣3.5)或(﹣,).【点评】本题属于二次函数的综合题,考查了待定系数法求解析式,三角形三边关系求最值,角平分线的性质定理,解三角形等知识点,难度较大.。

最新黑龙江省齐齐哈尔市年中考数学试题(word版,含答案)

最新黑龙江省齐齐哈尔市年中考数学试题(word版,含答案)

黑龙江省齐齐哈尔市2019年中考数学试题(word 版,含答案)第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2017-的绝对值是()A .2017-B .12017-C .2017D .120172.下列四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()3.作为“一带一路”倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快、成效显著.两年来,已有18个项目在建或建成,总投资额达185亿美元.185亿用科学记数法表示为()A .91.8510⨯B .101.8510⨯C .111.8510⨯D .121.8510⨯ 4.下列算式运算结果正确的是()A .5210(2)2x x =B .21(3)9--=C .22(1)1a a +=+ D .()a a b b --=- 5.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A .16个B .17个C .33个D .34个 6.若关于x 的方程29304kx x --=有实数根,则实数k 的取值范围是() A .0k = B .1k ≥-或0k ≠ C .1k ≥-D .1k >- 7.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列函数中,能正确反映y 与x 之间函数关系的图象是()8.一个几何体的主视图和俯视图如图所示,若这个几何体最多有a 个小正方体组成,最少有b 个小正方体组成,则a b +等于()A .10B .11C .12D .139.一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是()A .120︒B .180︒C .240︒D .300︒ 10.如图,抛物线2y ax bx c =++(0a ≠)的对称轴为直线2x =-,与x 轴的一个交点在(3,0)-和(4,0)-之间,其部分图象如图所示,则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19(,)2y -,25(,)2y -,31(,)2y -是该抛物线上的点,则123y y y <<,正确的个数有()A .4个B .3个C .2个D .1个第Ⅱ卷(共90分)二、填空题(每题3分,满分27分,将答案填在答题纸上)11.在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为20.15S =甲,20.2S =乙,则成绩比较稳定的是 班.12.在函数24y x x -=++中,自变量x 的取值范围是 .13.矩形ABCD 的对角线AC ,BD 相交于点O ,请你添加一个适当的条件 ,使其成为正方形(只填一个即可).14.因式分解:2436m -= .15.如图,AC 是O 的切线,切点为C ,BC 是O 的直径,AB 交O 于点D ,连接OD ,若50A ∠=︒,则COD ∠的度数为 .16.如图,在等腰三角形纸片ABC 中,10AB AC ==,12BC =,沿底边BC 上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是 .17.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是ABC ∆的“和谐分割线”,ACD ∆为等腰三角形,CBD ∆和ABC ∆相似,46A ∠=︒,则A C B ∠的度数为 .18.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,4tan 3AOC ∠=,反比例函数k y x=的图像经过点C ,与AB 交于点D ,若COD ∆的面积为20,则k 的值等于 .19.如图,在平面直角坐标系中,等腰直角三角形12OA A 的直角边1OA 在y 轴的正半轴上,且1121OA A A ==,以2OA 为直角边作第二个等腰直角三角形23OA A ,以3OA 为直角边作第三个等腰直角三角形20172018OA A ,则点2017A 的坐标为 .三、解答题(本大题共6小题,共63分.解答应写出文字说明、证明过程或演算步骤.)20.先化简,再求值:223211(1)131x x x x x x -++⋅-+---,其中2cos603x =︒-.21.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC ∆的三个顶点的坐标分别为(3,4)A -,(5,2)B -,(2,1)C -.(1)画出ABC ∆关于y 轴的对称图形111A B C ∆;(2)画出将ABC ∆绕原点O 逆时针方向旋转90︒得到的222A B C ∆;(3)求(2)中线段OA 扫过的图形面积.22.如图,已知抛物线2y x bx c =-++与x 轴交于点(1,0)A -和点(3,0)B ,与y 轴交于点C ,连接BC 交抛物线的对称轴于点E ,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C 和点D 的坐标;(3)若点P 在第一象限内的抛物线上,且4ABP COE S S ∆∆=,求P 点坐标.注:二次函数2y ax bx c =++(0a ≠)的顶点坐标为24(,)24b ac b a a --. 23.如图,在ABC ∆中,AD BC ⊥于D ,BD AD =,DG DC =,E ,F 分别是BG ,AC 的中点.(1)求证:DE DF =,DE DF ⊥;(2)连接EF ,若10AC =,求EF 的长.24.为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动.某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出不完整的频数分布表和频数分布直方图.请根据图表信息解答问题:(1)表中a = ,b = ;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第 组;(4)请估计该校七年级学生日阅读量不足1小时的人数.25.“低碳环保、绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m 米/分的速度到达图书馆.小军始终以同一速度骑行,两人行驶的路程y (米)与时间x (分钟)的关系如图.请结合图象,解答下列问题:(1)a = ;b = ;m = ;(2)若小军的速度是120米/分,求小军在图中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v 米/分,且在图中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v 的取值范围.26.如图,在平面直角坐标系中,把矩形OABC 沿对角线AC 所在的直线折叠,点B 落在点D 处,DC 与y 轴相交于点E .矩形OABC 的边OC ,OA 的长是关于x 的一元二次方程212320x x -+=的两个根,且OA OC >.(1)求线段OA ,OC 的长;(2)求证:ADE COE ∆≅∆∆,并求出线段OE 的长;(3)直接写出点D 的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

{来源}2019年齐齐哈尔市中考数学{适用范围:3.九年级}{标题}齐齐哈尔市二〇一九年初中学业水平考试考试时间:120分钟满分:120分{题型:1-选择题}一、选择题:本大题共10小题,每小题3分,共30分.{题目}1.(2019·齐齐哈尔市,1)3的相反数是( )A.-3 B.3 C.3 D.±3 {答案}A{解析}本题考查了相反数的概念.因为只有符号不同的两个数叫做互为相反数.所以3的相反数是-3,因此本题选A.{分值}3{章节:[1-1-2-3]相反数}{考点:相反数的定义}{类别:常考题}{难度:1-最简单}{题目}2.(2019·齐齐哈尔市,2)下面四个图形中,既是轴对称图形又是中心对称图形的是 ( ){答案}D{解析}本题考查了轴对称图形和中心对称图形.选项A是中心对称图形,选项B是中心对称图形,选项C是轴对称图形,选项D既是轴对称图形又是中心对称图形,因此本题选D.{分值}3{章节:[1-23-2-2]中心对称图形}{考点:轴对称图形}{考点:中心对称图形}{类别:常考题}{难度:1-最简单}{题目}3.(2019·齐齐哈尔市,3)下列计算不正确的是 ( )A±3 B.2ab+3ba=5ab C.-1)0=1 D.(3ab2)2=6a2b4{答案}D{解析}本题考查了非负数的平方根,合并同类项,零指数幂,积的乘方.其中积的乘方,等于先把积中的每一个因式分别乘方,再把所得的幂相乘,故(3ab2)2=9a2b4,因此本题选D.{分值}3{章节:[1-15-2-3]整数指数幂}{考点:平方根的定义}{考点:合并同类项}{考点:零次幂}{考点:积的乘方}{类别:常考题}{难度:2-简单}{题目}4.(2019·齐齐哈尔市,4)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是( )A.平均数B.中位数 C.方差 D.众数{答案}C{解析}本题考查了平均数,中位数,方差,众数的意义.根据它们各自的定义进行判断,其中要比较两人的成绩稳定程度,即比较两组数据的波动性大小,即选用统计量方差,因此本题选C.{分值}3{章节:[1-10-1]统计调查}{考点:算术平均数}{考点:中位数}{考点:众数}{考点:方差}{考点:方差的实际应用}{类别:常考题}{难度:2-简单}{题目}5.(2019·齐齐哈尔市,5)如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a 和b上.若∠1=20°,则∠2的度数为( )A.20° B. 30° C.40°D.50°(第5题图){答案}C{解析}本题考查了平行线的性质和角的和差.在△ABC中,∠ACB=90°,∠BAC=30°,∵a∥b,∴∠DAC+∠ECA=180°,其中∠ECA=∠1+∠ACB =20°+90°=110°,∴∠DAC=70°,∵∠BAC=30°,∴∠2=∠DAC -∠BAC=70°-30°=40°,因此本题选C.(第5题解){分值}3{章节:[1-5-3]平行线的性质}{考点:平行线的性质与判定}{类别:常考题}{难度:2-简单}{题目}6.(2019·齐齐哈尔市,6)如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体的个数至少为 ( )8A.5 B.6 C.7 D.(第6题图){答案}B{解析}本题考查了三视图中的主视图和俯视图.由俯视图可知小正方体至少为4个,再由主视图可知,俯视图的左边这列中至少有一行是两个小正方体叠加,同理右边这一列亦是如此,故小正方体至少为6个,因此本题选B.{分值}3{章节:[1-29-2]三视图}{考点:由三视图判断几何体}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}7.(2019·齐齐哈尔市,7)“六一”儿童节前夕,某部队战士到福利院慰问儿童,战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上),到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计).下列图象能大致反映战士们离营地的距离S 与时间t之间函数关系的是 ( )A. B. C. D.{答案}B{解析}本题考查了距离与时间的图象.由题意可得,刚开始,战士们去文具店选购礼物,S随t的增大而增大,在选购礼物时,S随t的增大而保持不变,从文具店继续前往福利院时,S随t的增大而增大,当战士们返回营地时,S随t的增大反而减小,且在相同时间内,S减小的程度比先前增大的程度要大,因此本题选B.{分值}3{章节:[1-19-1-2] 函数的图象}{考点:距离时间图象}{类别:易错题}{难度:3-中等难度}{题目}8.(2019·齐齐哈尔市,8)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有 ( ) A.3种B.4种C.5种D.6种{答案}B{解析}本题考查了二元一次方程的实际应用.设A品牌足球买了x个,B品牌足球买了y个,根据题意可得:60x+75y=1500,即4x+5y=100,∴y=20-45x,∵x、y均是正整数,∴符合题意的解有516xy,1012xy,158xy,204xy,共有4种情况,因此本题选B.{分值}3{章节:[1-8-1]二元一次方程组} {考点:二元一次方程(组)的定义} {考点:二元一次方程的解}{类别:常考题}{难度:3-中等难度}{题目}9.(2019·齐齐哈尔市,9)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为( )A.27 B.23 C.22D.18{答案}C{解析}本题考查了概率.由题意得:红球是5个,且随机摸出一个红球的概率是110,所以球的总数为:5÷110=50个,故黑球的个数为:50-5-23=22个,因此本题选C.{分值}3{章节:[1-25-1-2]概率}{考点:概率的意义}{考点:一步事件的概率}{类别:思想方法}{类别:易错题}{难度:4-较高难度}{题目}10.(2019·齐齐哈尔市,10)如图,抛物线 y=ax2+bx+c(a≠0)与x轴交于点(-3,0),其对称轴为直线x=12,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=13,x2=12;⑤244b aca<0;⑥若m,n(m<n)为方程a(x+3)(x-2)+3=0的两个根,则m<-3且n>2.其中正确的结论有( )A .3个B .4个C .5个D .6个(第10题图){答案}C{解析}本题考查了二次函数的图象与不等式,一元二次方程的关系.如图,由二次函数图象开口向下,可得a <0,又∵抛物线与x 轴的交点(-3,0)关于直线x=12的对称点是(2,0),不妨设y=a (x+3)(x-2)=ax 2+ax-6a ,∴b=a<0,c= -6a >0,∴abc>0,即①正确;∵3a+c=3a -6a= -3a >0,即②正确;∵当x ≤12时,y 随x 的增大而增大,当12<x <0时, y 随x 的增大而减小,故③错误;∵对于方程cx 2+bx+a=0,即为-6ax 2+ax+a=0,∵a <0,∴原方程可化为:6x 2-x-1=0,∴x 1=13,x 2=12,故④正确;因为抛物线的顶点在第二象限,所以顶点纵坐标244ac b a >0,∴244b ac a<0,故⑤正确;∵方程a (x+3)(x-2)+3=0的两个根可以看作直线y= -3与抛物线的交点的横坐标,显然两个交点在x 轴的下方,在-3和2的两侧,∴m<-3且n >2,故⑥正确;综上所述,正确的有①,②,④,⑤,⑥共5个,因此本题选C .{分值}3{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质}{考点:二次函数的定义}{考点:二次函数y=ax2+bx+c的性质}{考点:二次函数的系数与图象的关系}{考点:抛物线与一元二次方程的关系}{考点:抛物线与不等式(组)}{类别:思想方法}{类别:常考题}{类别:易错题}{难度:5-高难度}{题型:2-填空题}二、填空题:本大题共7小题,每小题3分,共21分.{题目}11.(2019·齐齐哈尔市,11)预计到2025年我国高铁运营里程将达到38000公里,将数据38000用科学记数法表示为.{答案}3.8×104{解析}本题考查了科学记数法,其中38000=3.8×104.{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:2-简单}{题目}12.(2019·齐齐哈尔市,12)如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).(第12题图){答案}AB=DE (∠A=∠D 或∠ACB=∠DFE 或AC ∥DF ){解析}本题考查了三角形全等的判定.∵ BF=CE ,∴BF+FC=CE+CF ,即BC=EF ,又∵∠B=∠E ,要使△ABC ≌△DEF ,或是∠B 与∠E 的另一条夹边对应相等,或是另一对角对应相等.{分值}3{章节:[1-12-2]三角形全等的判定}{考点:两直线平行内错角相等}{考点:全等三角形的判定SAS}{考点:全等三角形的判定ASA,AAS}{类别:常考题}{难度:2-简单}{题目}13.(2019·齐齐哈尔市,13)将圆心角为216°,半径为5cm 的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为 cm . {答案}4{解析}本题考查了圆锥的母线,底面半径与侧面展开图的圆心角、圆锥的高之间的数量关系.∵θ=r l ×360°,其中θ=216°,l=5cm ,∴r=3cm,.{分值}3{章节:[1-29-2]三视图}{考点:几何体的展开图} {考点:几何体的三视图} {考点:圆锥侧面展开图} {类别:常考题} {类别:易错题} {难度:3-中等难度}{题目}14.(2019·齐齐哈尔市,14)关于x 的分式方程21x a x -11x=3的解为非负数,则a 的取值范围为 . {答案}a≤4且a≠3{解析}本题考查了分式方程的解.由21x a x -11x=3,得2x-a+1=3(x-1),得x=4-a ,∵关于x 的分式方程的解为非负数,∴x ≥0,且1-x ≠0,∴4-a ≥0,1-(4-a )≠0,得a≤4且a≠3. {分值}3{章节:[1-15-3]分式方程} {考点:分式方程的解}{考点:解含两个分式的分式方程} {考点:分式方程的检验} {考点:分式方程的增根} {考点:不等式的解集} {类别:常考题} {类别:易错题} {难度:3-中等难度}{题目}15.(2019·齐齐哈尔市,15)如图,矩形ABOC 的顶点B ,C 分别在x 轴、y 轴上,顶点A 在第二象限,点B 的坐标为(-2,0),将线段OC 绕点O 逆时针旋转60°至线段OD .若反比例函数y=kx(k ≠0)的图象经过A 、D 两点,则k 的值为 .(第15题图) {答案}1633{解析}本题考查了反比例函数与几何图形的结合.如图,作DE ⊥x 轴,垂足为点E .不妨设矩形ABOC 的一边长OC=m (m >0),∴A(-2,m ),C(0,m ),∵OC 绕点O 逆时针旋转60°至线段OD ,∴∠COD=60°,OD=OC=m,∴∠DOE=30°,∴DE=OD·sin30°=12m ,m ,∴D (m ,12m ),∵点A 、D 均在反比例函数y=k x 的图象上,∴-2m= -2m×12m ,∵m>0,∴A (-2),∴k= -(第15题解) {分值}3{章节:[1-28-1-2]解直角三角形}{考点:矩形的性质}{考点:双曲线与几何图形的综合}{考点:旋转的性质}{考点:解直角三角形}{考点:方程的解}{类别:易错题}{难度:4-较高难度}{题目}16.(2019·齐齐哈尔市,16)等腰△ABC中,BD⊥AC,垂足为点D,且BD=12AC,则等腰△ABC底角的度数为.{答案}45°或75°或15°{解析}本题考查了等腰三角形的性质.如图①,在等腰△ABC中,若AC是底边,AB=CB,∵BD⊥AC,∴BD平分AC,∴AD=CD=12AC,∵BD=12AC,∴AD=BD,∴∠A=∠ABD,∵∠BDC=90°=∠A +∠ABD,∴∠A=∠ABD =45°,即等腰△ABC底角的度数为45°;如图②,若BC是底边,AB=AC,∴∠ABC=∠C,∵BD⊥AC,BD=12AC,∴BD=12AB,∴∠BAD=30°,∵∠BAD=∠ABC +∠C =2∠C,∴∠C=15°,即等腰△ABC底角的度数为15°;如图③,若BC是底边,如上同理可得∠BAD=30°,∵∠BAD +∠ABC +∠C =180°,∴∠ABC=∠C=75°,即等腰△ABC底角的度数为75°;若AB是底边,同理可得等腰△ABC底角的度数为15°或75°;综上可得:等腰△ABC底角的度数为45°或15°或75°.CD图① 图② 图③(第16题解) {分值}3{章节:[1-13-2-1]等腰三角形} {考点:等边对等角} {考点:三线合一} {考点:等腰直角三角形} {考点:含30度角的直角三角形} {考点:三角形的外角} {类别:思想方法} {类别:易错题} {难度:4-较高难度}{题目}17.(2019·齐齐哈尔市,17)如图,直线l :y=3x+1分别交x 轴、y 轴于点A 和点A 1,过点A 1作A 1B 1⊥l ,交x 轴于点B 1,过点B 1作B 1A 2⊥x 轴,交直线l 于点A 2;过点A 2作A 2B 2⊥l ,交x 轴于点B 2,过点B 2作B 2A 3⊥x 轴,交直线l 于点A 3,依此规律…,若图中阴影△A 1OB 1的面积为S 1,阴影△A 2 B 1B 2的面积为S 2,阴影△A 3 B 2B 3的面积为S 3…,则S n = .(第17题图){答案}22463n{解析}本题考查了一次函数与几何图形的结合,含有30度的直角三角形的边长关系.如图,对于y=3x+1,可得:A (0),A 1(0,1),,A1O=1,∵∠A 1OA=90°,∴tan∠A 1AO=1A OAO1AO =30°,∵A n B n ⊥l (n 为正整数),∴∠A n B n A=60°,∴B n B n+1=A n+1B n (n 为正整数),OB 1A 1O ,∴S n =12A nB n-1·B n-1B n =12A nB n-1·3A n B n-1=6A nB n-12(n≥2,且n 为正整数).其中A 1O=1,OB 111=AO+ OB 1,∴A 2B 11=43,∴B1B 2=3A 2B 12=AB 1+B 1B 2=3∴A 3B 22=169=243,依次规律,可得A n B n-1=143n (n≥2,且n 为正整数),∴S n A n B n-12×(1)243n =22463n ,经检验,当n=1时,上述关系式仍成立;综上所述,S n =22463n (n 为正整数).{分值}3{章节:[1-28-2-1]特殊角}{考点:一次函数的图象} {考点:一次函数与几何图形综合} {考点:含30度角的直角三角形} {类别:思想方法} {类别:易错题} {类别:发现探究} {难度:4-较高难度}{题型:3-解答题}三、解答题:本大题有7小题,共69分.{题目}18.(2019·齐齐哈尔市,18)(1)计算:11()36tan60°+243 (2)因式分解:a 2+1-2a+4(a -1).{解析}本题考查了实数的综合运算能力,如负整数指数幂,算术平方根,60°的正切值,绝对值,以及因式分解——完全平方公式和提取公因式.在计算中,对负整数指数幂,算术平方根,60°的正切值,绝对值分别进行计算,再根据实数的运算法则求得计算结果;在因式分解中,先运用公式法对部分进行因式分解,再运用整体思想进行提取公因式.{答案}解:(1)原式=3+.(2)原式=(a -1)2+4(a -1)=(a -1)(a -1+4)=(a -1)(a +3).{分值}10(第(1)小题6分,第(2)小题4分) {章节:[1-14-3]因式分解} {难度:2-简单} {类别:常考题} {类别:易错题}{考点:算术平方根的应用}{考点:特殊角的三角函数值}{考点:实数与绝对值、相反数}{考点:因式分解-提公因式法}{考点:因式分解-完全平方式}{题目}19.(2019·齐齐哈尔市,19)解方程:x2+6x= -7.{解析}本题考查了一元二次方程的解法.根据题意可以用配方法求解,也可以把原方程化为一般式,利用公式法求解.{答案}解:x2+6x +9= -7+9(x+3)2=2x+3=2x2.∴x{分值}5{章节:[1-21-2-1] 配方法}{难度:3-中等难度}{类别:常考题}{类别:易错题}{考点:配方法解一元二次方程}{题目}20.(2019·齐齐哈尔市,20)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.(第20题图){解析}本题考查了切线的判定,三角形和扇形的面积计算.根据△ABD是以∠D=30°为底角的等腰三角形,利用等边对等角,直径所对的圆周角是90°等性质,通过角的和差关系证明∠DAO=90°即可证明AD是⊙O的切线;阴影部分的面积可以看作△ADO的面积减去扇形AOC的面积.{答案}证明:(1)如图,连接AO,∵AD=AB,∠D=30°,∴∠B=∠D=30°,∵BC是⊙O的直径,∴∠BAC=90°,∴∠ACB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠CAO=60°,∵∠D=30°,∠ACB=60°,∴∠DAC=30°,∴∠DAO=∠CAO +∠DAC=90°,∴AD是⊙O的切线.(2)∵BC=4,∴OA=2,OD=4,∴AD=ODcos30°=∴S△ADO=12AO·AD=又∵S扇形AOC=604360=23,∴阴影部分面积=23.(第20题解){分值}8{章节:[1-28-3]锐角三角函数}{难度:3-中等难度}{类别:常考题}{类别:易错题}{考点:等边对等角}{考点:等边三角形的判定}{考点:直径所对的圆周角}{考点:切线的判定}{考点:特殊角的三角函数值}{考点:扇形的面积}{题目}21.(2019·齐齐哈尔市,21)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多;C.了解较少;D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为°;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?{解析}本题考查了扇形统计图,条形统计图,用样本估计总体.因为“了解较少”的人有30人,占问卷人数的30%,所以总数为:30÷30%=100(名);根据条形统计图,可得选项A、C、D所对应的总人数为:20+30+10=60,∴B组人数:100-60=40(名);选项C所占圆心角为:30%×360°=108°;在抽取的100名学生中“十分了解”和“了解较多”的学生共有20+40=60(名),所以在2000名学生中,“十分了解”和“了解较多”的学生的人数是:60÷100×2000=1200(名).{答案}解:(1)本次被抽取的学生共有100名.(2)补全图形如下:(3)108°.(4)解:由题意可知:2000×60%=1200(名)∴“十分了解”和“了解较多”的学生共有1200名.{分值}10{章节:[1-10-1]统计调查}{难度:3-中等难度}{类别:常考题}{类别:易错题}{考点:抽样调查}{考点:扇形统计图}{考点:条形统计图}{题目}22.(2019·齐齐哈尔市,22)甲、乙两地间的直线公路长为400千米,一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行.货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶,1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计),最后两车同时到达甲地.已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时,轿车的速度是千米/小时,t 值为;(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.(第22题图){解析}本题考查了一次函数的解析式和图象.(1)由图象可得货车1小时行驶50千米,则速度即为50km/h,所以从乙地到甲地的总时间为400÷50=8h,所以点C对应的坐标为(7,0),轿车一来一去共行驶480千米,中途有1小时的故障排除,所以行驶时间为7-1=6小时,则速度为480÷6=80km/h,所以t所对应的数为:240÷80=3;(2)轿车距离出发地的距离y与时间x的图象是一条折线,故在此应用分类讨论思想,利用待定系数法进行求解即可;(3)货车和轿车一开始是相向而行,当轿车恰好发生故障时,两车一共行驶的路程:240+50×(3+1)=440>400,说明此时两车已经相遇,且相距40km,当轿车经1小时排除故障时,货车恰行驶50千米,此时两车相距50+40=90千米,此时货车共行驶3+1+1=5小时;当两车未相遇时,不妨设货车出发x小时后,两车相距90km,则:50x+80(x-1)+90=400,可得:x=3;综上所述,货车出发3小时或5小时时两车相距90km.{答案}解:(1)50;80;3;(2)解:由题意得:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0)∴y=80x(0≤x<3);当3≤x<4时,y=240;设直线BC的解析式为y=kx+b(k≠0)将B (4,240),C (7,0)代入上式:424070k b k b ,得80560k b ,∴y= -80x+560(4≤x ≤7),∴80(03)240(34)80560(47)x x yx x x(3)3小时或5小时. {分值}10{章节:[1-19-2-2]一次函数} {难度:4-较高难度} {类别:思想方法} {类别:常考题} {类别:易错题}{考点:待定系数法求一次函数的解析式}{题目}23.(2019·齐齐哈尔市,23)综合与实践.折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD 对折,使边AB 与CD 重合,展开后得到折痕EF ,如图①;点M 为CF 上一点,将正方形纸片ABCD 沿直线DM 折叠,使点C 落在EF 上的点N 处,展开后连接DN ,MN ,AN ,如图②.FADC BMFADB图① 图② (一)填一填,做一做:(1)图②中,∠CMD= ;线段NF= ; (2)图②中,试判断△AND 的形状,并给出证明.剪一剪,折一折:将图②中的△AND 剪下来,将其沿直线GH 折叠,使点A 落在点'A 处,分别得到图③、图④.A'图③ 图④ (二)填一填:(3)图③中阴影部分的周长为 ;(4)图③中,若∠'A GN=80°,则∠'A HD= °; (5)图③中的相似三角形(包括全等三角形)共有 对; (6)如图④点落在边ND 上,若''A N A D =m n ,则AGAH= (用含m 、n 的代数式表示).{解析}本题综合考查了折叠的性质,正方形的性质,30°的特殊角,等边三角形的判定和性质,矩形的性质,相似三角形的判定和性质等.(1)由折叠可得A 、D 关于直线EF 成轴对称,∴AN=DN,又由折叠可得DN=DC=AD ,∠CDM=∠NDM,∠DMC=∠NMD,CM=NM ,易证△ADN 是等边三角形,∴∠ADN=60°,∴∠NDC=30°,∴∠CDM=12∠NDC=15°,∵∠CDM +∠DMC =90°,∴∠DMC =75°=∠NMD,∴∠NMF=30°,不妨设CM=NM =x ,∴FM=NM·cos∠NMF= NM·cos30°=2x ,NF= NM ·sin∠NMF= NM ·sin30°=12x ,易证四边形CDEF 是矩形,所以CF=DE ,则x+2x =2,得,则NF=12x=12×((2)欲证△AND 是等边三角形,可说明AD=DN=AN 相等得证,或是通过说明∠EDN=60°,利用“有一个角是60°的等腰三角形是等边三角形”得证;(3)对于阴影部分周长可通过折叠进行线段的等量转化,即得阴影部分周长即为△ADN 的周长;由∠'A GN=80°,可得其邻补角为100°,∴∠A GH=12∠AG 'A =12×100°=50°,由“三角形内角和为180°”可得∠AHG=70°,∴∠AH 'A =2∠AHG=140°,∴∠'A HD =180°-∠AH 'A =180°-140°=40°;易得3个阴影三角形中均有一个角为60°,且分别有一对对顶角相等,易证它们均相似,此时有3对,又由折叠可知△AHG≌△'A HG ,所以一共有4对相似三角形;根据一线三等角的基本图形,易证△'A GN∽△H 'A D ,其中△'A GN 的周长=NG+'A G+N 'A =NG+AG+N 'A =AN+N 'A =4+N 'A ,同理可得△H 'A D 的周长=4+'A D ,∵''A N A D =mn,又∵'A D + 'A N=4,∴N 'A =4m m n ,'A D =4n m n ,根据“相似三角形的周长之比等于相似比”,可得:AG AH =''A G A H =''A GN HA DCC=4'4'A N A D =4444mm n n m n=22m n m n. {答案}解:(一)填一填,做一做:(1)图②中,∠CMD= 75° ;线段NF=423(2)△AND 是等边三角形,证明如下: 由折叠可得:DN=CD=AD , ∵DE=12AD ,∴DE=12DN , ∵EF ⊥AD ,∴∠END=30°,∴∠ADN=60°,∴△ADN 是等边三角形. (二)填一填:(3)图③中阴影部分的周长为 12 ;(4)图③中,若∠'A GN=80°,则∠'A HD= 40° ; (5)图③中的相似三角形(包括全等三角形)共有 4 对; (6)如图④点落在边ND 上,若''A N A D =m n ,则AGAH= 22m n m n (用含m 、n 的代数式表示). {分值}12{章节:[1-27-1-3]相似三角形应用举例} {难度:4-较高难度} {类别:思想方法} {类别:易错题}{考点:等边三角形的性质} {考点:等边三角形的判定} {考点:正方形的性质} {考点:轴对称的性质} {考点:轴对称图形}{考点:解一元一次方程(移项)} {考点:矩形的性质}{考点:相似三角形的性质}{考点:相似三角形的判定(两角相等)}{考点:相似三角形周长的性质}{题目}24.(2019·齐齐哈尔市,24)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连结AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为;(3)点E是第四象限内抛物线上的动点,连接CE和BE,求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.(备用图){解析}本题综合考查了抛物线的解析式,抛物线的轴对称性,“将军饮马”问题,面积最值,菱形的判定.(1)根据点A,C坐标,利用待定系数法即可求出抛物线解析式;(2)∵△ACD的周长=AC+AD+CD,其中AC为定值,即原问题等价于对称轴上一动点D到两定点A、C的距离之和最短,即为“将军饮马”问题,利用轴对称性可得AD+CD=BD+CD≥BC,即当B、C、D三点共线时,AD+CD之和最小,此时点D在D1的位置(如图①所示),由抛物线解析式可求得点B(3,0),对称轴为直线x=12,又由点C(0,-6),利用待定系数法可求得BC解析式:y=2x-6,令x=12,y=2×12-6= -5,则点D坐标(12,-5);(3)设点E(x,x2-x-6),用含x的代数式表示△BCE面积,进而求出△BCE面积的最大值;(4)根据AC、CM是菱形的对角线和边进行分类讨论.由A(-2,0),C(0,-6),易得=AC解析式:y= -3x-6,AC中点坐标(-1,-3),若AC是对角线,CM是边(如图②所示),根据“菱形的对角线互相垂直且平分”,可得MN解析式:y=13(x+1)-3=13x-83,则M(0,-83),∵MN与AC互相平分,∴2863NNxy,得2103NNxy,∴N(-2,-103);若AC是边,CM是对角线(如图③),则点A关于y轴的对称点即为点N,此时N(2,0);若AC为边,CM也为边(如图④),则AN∥CM,且AN=AC=-2,),同理在图⑤中可求得N(-2,210),即符合题意的点N共有四个.图①图②图③图④图⑤(第24题解){答案}解:(1)∵OA=2,OC=6,∴A(-2,0),C (0,-6),∴4206b cc,∴16bc,∴y=x2-x-6;(2)D(12,-5);(3)如图,过点E作直线EG⊥x轴于点G,交直线BC于点F,设点E坐标为(x,x2-x-6),则点F(x,2x-6),∴EF=(2x-6)-(x2-x-6)= -x2+3x,∵S△BCE=S△CEF+S△BEF=12EF·OG+12EF·BG,∴S△BCE=12EF·OB=12(-x2+3x)×3=32x2+92x,∵0<x<3,∴当x=32时,△BCE的面积最大为S△BCE= 32×(32)2+92×(32)=278,把x=32代入y=x2-x-6得:y=214,所以此时点E的坐标为(32,214);(第24题解)(4)存在N 1(2,0),N 2(-2,),N 3(-2,210),N 4(-2,103). {分值}14{章节:[1-22-3]实际问题与二次函数} {难度:5-高难度} {类别:思想方法} {类别:易错题} {考点:二次函数的定义} {考点:含参系数的二次函数问题} {考点:抛物线与一元二次方程的关系} {考点:最短路线问题} {考点:几何图形最大面积问题} {考点:二次函数与平行四边形综合} {考点:菱形的性质} {考点:菱形的判定} {考点:几何综合}。

相关文档
最新文档